Home
last modified time | relevance | path

Searched refs:polynomial (Results 1 – 25 of 27) sorted by relevance

12

/linux/lib/
H A Dcrc8.c29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument
38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb()
51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument
59 t = (t >> 1) ^ (t & 1 ? polynomial : 0); in crc8_populate_lsb()
H A Dgen_crc32table.c37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument
46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
H A Dpolynomial.c79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc()
H A DMakefile269 obj-$(CONFIG_POLYNOMIAL) += polynomial.o
/linux/include/linux/
H A Dpolynomial.h28 struct polynomial { struct
33 long polynomial_calc(const struct polynomial *poly, long data); argument
H A Dcrc8.h55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial);
73 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial);
/linux/Documentation/staging/
H A Dcrc32.rst7 CRC polynomial. To check the CRC, you can either check that the
21 To produce a 32-bit CRC, the divisor is actually a 33-bit CRC polynomial.
43 the polynomial from the remainder and we're back to where we started,
82 The most significant coefficient of the remainder polynomial is stored
124 and the correct multiple of the polynomial to subtract is found using
179 of a polynomial produces a larger multiple of that polynomial. Thus,
/linux/Documentation/ABI/testing/
H A Dsysfs-bus-iio-isl2950127 a second order error polynomial.
33 polynomial has to be generated from the data. The
/linux/Documentation/core-api/
H A Dlibrs.rst34 correction with the given polynomial. It either uses an existing
45 * Primitive polynomial is x^10+x^3+1
48 * generator polynomial degree (number of roots) = 6
/linux/arch/m68k/fpsp040/
H A Dsatan.S30 | Step 3. Approximate arctan(u) by a polynomial poly.
37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
H A Dslogn.S27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
H A Dssin.S41 | where cos(r) is approximated by an even polynomial in r,
46 | where sin(r) is approximated by an odd polynomial in r
H A Dsetox.S127 | Step 4. Approximate exp(R)-1 by a polynomial
799 |--Step 9 exp(X)-1 by a simple polynomial
/linux/drivers/hwmon/
H A Dbt1-pvt.c69 static const struct polynomial __maybe_unused poly_temp_to_N = {
80 static const struct polynomial poly_N_to_temp = {
101 static const struct polynomial __maybe_unused poly_volt_to_N = {
109 static const struct polynomial poly_N_to_volt = {
H A Dlan966x-hwmon.c35 static const struct polynomial poly_N_to_temp = {
/linux/arch/sparc/crypto/
H A DKconfig25 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
/linux/arch/arm/crypto/
H A DKconfig33 that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
231 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
/linux/arch/powerpc/crypto/
H A DKconfig22 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
/linux/Documentation/networking/
H A Dgeneric-hdlc.rst90 crc16-itu (CRC16 with ITU-T polynomial) / crc16-itu-pr0 - sets parity
/linux/Documentation/networking/device_drivers/hamradio/
H A Dbaycom.rst60 implementation of the HDLC protocol and the scrambler polynomial to
/linux/arch/x86/crypto/
H A DKconfig500 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
/linux/drivers/net/phy/
H A Dmxl-gpy.c173 static const struct polynomial poly_N_to_temp = {
/linux/crypto/
H A DKconfig1083 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1085 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
/linux/arch/x86/math-emu/
H A DREADME71 "optimal" polynomial approximations. My definition of "optimal" was
/linux/arch/m68k/ifpsp060/src/
H A Dfplsp.S4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
4938 # where sin(r) is approximated by an odd polynomial in r #
6784 # Step 4. Approximate exp(R)-1 by a polynomial #
7428 #--Step 9 exp(X)-1 by a simple polynomial
7982 # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
7991 # polynomial in u, log(1+u) = poly. #
8000 # polynomial in u where u = 2X/(2+X). Otherwise, move on #

12