/linux/lib/ |
H A D | crc8.c | 29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument 38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb() 51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument 59 t = (t >> 1) ^ (t & 1 ? polynomial : 0); in crc8_populate_lsb()
|
H A D | gen_crc32table.c | 37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument 46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
|
H A D | polynomial.c | 79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc()
|
H A D | Makefile | 269 obj-$(CONFIG_POLYNOMIAL) += polynomial.o
|
/linux/include/linux/ |
H A D | polynomial.h | 28 struct polynomial { struct 33 long polynomial_calc(const struct polynomial *poly, long data); argument
|
H A D | crc8.h | 55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial); 73 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial);
|
/linux/Documentation/staging/ |
H A D | crc32.rst | 7 CRC polynomial. To check the CRC, you can either check that the 21 To produce a 32-bit CRC, the divisor is actually a 33-bit CRC polynomial. 43 the polynomial from the remainder and we're back to where we started, 82 The most significant coefficient of the remainder polynomial is stored 124 and the correct multiple of the polynomial to subtract is found using 179 of a polynomial produces a larger multiple of that polynomial. Thus,
|
/linux/Documentation/ABI/testing/ |
H A D | sysfs-bus-iio-isl29501 | 27 a second order error polynomial. 33 polynomial has to be generated from the data. The
|
/linux/Documentation/core-api/ |
H A D | librs.rst | 34 correction with the given polynomial. It either uses an existing 45 * Primitive polynomial is x^10+x^3+1 48 * generator polynomial degree (number of roots) = 6
|
/linux/arch/m68k/fpsp040/ |
H A D | satan.S | 30 | Step 3. Approximate arctan(u) by a polynomial poly. 37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. 39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
|
H A D | slogn.S | 27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, 42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
|
H A D | ssin.S | 41 | where cos(r) is approximated by an even polynomial in r, 46 | where sin(r) is approximated by an odd polynomial in r
|
H A D | setox.S | 127 | Step 4. Approximate exp(R)-1 by a polynomial 799 |--Step 9 exp(X)-1 by a simple polynomial
|
/linux/drivers/hwmon/ |
H A D | bt1-pvt.c | 69 static const struct polynomial __maybe_unused poly_temp_to_N = { 80 static const struct polynomial poly_N_to_temp = { 101 static const struct polynomial __maybe_unused poly_volt_to_N = { 109 static const struct polynomial poly_N_to_volt = {
|
H A D | lan966x-hwmon.c | 35 static const struct polynomial poly_N_to_temp = {
|
/linux/arch/sparc/crypto/ |
H A D | Kconfig | 25 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
|
/linux/arch/arm/crypto/ |
H A D | Kconfig | 33 that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64) 231 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
|
/linux/arch/powerpc/crypto/ |
H A D | Kconfig | 22 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
|
/linux/Documentation/networking/ |
H A D | generic-hdlc.rst | 90 crc16-itu (CRC16 with ITU-T polynomial) / crc16-itu-pr0 - sets parity
|
/linux/Documentation/networking/device_drivers/hamradio/ |
H A D | baycom.rst | 60 implementation of the HDLC protocol and the scrambler polynomial to
|
/linux/arch/x86/crypto/ |
H A D | Kconfig | 500 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
|
/linux/drivers/net/phy/ |
H A D | mxl-gpy.c | 173 static const struct polynomial poly_N_to_temp = {
|
/linux/crypto/ |
H A D | Kconfig | 1083 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) 1085 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
|
/linux/arch/x86/math-emu/ |
H A D | README | 71 "optimal" polynomial approximations. My definition of "optimal" was
|
/linux/arch/m68k/ifpsp060/src/ |
H A D | fplsp.S | 4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # 4938 # where sin(r) is approximated by an odd polynomial in r # 6784 # Step 4. Approximate exp(R)-1 by a polynomial # 7428 #--Step 9 exp(X)-1 by a simple polynomial 7982 # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # 7991 # polynomial in u, log(1+u) = poly. # 8000 # polynomial in u where u = 2X/(2+X). Otherwise, move on #
|