Home
last modified time | relevance | path

Searched refs:poly (Results 1 – 21 of 21) sorted by relevance

/linux/lib/
H A Dbch.c114 struct gf_poly poly; member
308 static inline int deg(unsigned int poly) in deg() argument
311 return fls(poly)-1; in deg()
375 uint32_t poly; in compute_syndromes() local
388 poly = *ecc++; in compute_syndromes()
390 while (poly) { in compute_syndromes()
391 i = deg(poly); in compute_syndromes()
395 poly ^= (1 << i); in compute_syndromes()
575 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, in find_poly_deg1_roots() argument
580 if (poly->c[0]) in find_poly_deg1_roots()
[all …]
H A Dpolynomial.c79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc() argument
81 const struct polynomial_term *term = poly->terms; in polynomial_calc()
82 long total_divider = poly->total_divider ?: 1; in polynomial_calc()
/linux/lib/crc/tests/
H A Dcrc_kunit.c44 u64 poly; member
75 crc = (crc >> 1) ^ ((crc & 1) ? v->poly : 0); in crc_ref()
80 crc = ((crc << 1) ^ v->poly) & in crc_ref()
284 .poly = 0x9,
308 .poly = 0xa001,
332 .poly = 0x8bb7,
356 .poly = 0xedb88320,
380 .poly = 0x04c11db7,
404 .poly = 0x82f63b78,
428 .poly = 0x42f0e1eba9ea3693,
[all …]
/linux/lib/crc/
H A Dgen_crc64table.c18 static void generate_reflected_crc64_table(uint64_t table[256], uint64_t poly) in generate_reflected_crc64_table() argument
28 crc = (crc >> 1) ^ poly; in generate_reflected_crc64_table()
36 static void generate_crc64_table(uint64_t table[256], uint64_t poly) in generate_crc64_table() argument
46 crc = (crc << 1) ^ poly; in generate_crc64_table()
/linux/lib/xz/
H A Dxz_crc32.c31 const uint32_t poly = 0xEDB88320; in xz_crc32_init() local
40 r = (r >> 1) ^ (poly & ~((r & 1) - 1)); in xz_crc32_init()
/linux/include/linux/
H A Dpolynomial.h33 long polynomial_calc(const struct polynomial *poly, long data);
H A Dpstore_ram.h17 int poly; member
/linux/arch/m68k/fpsp040/
H A Dslogn.S35 | log(1+u) = poly.
38 | by k*log(2) + (log(F) + poly). The values of log(F) are calculated
47 | k*log(2) + log(F) + poly where poly approximates log(1+u),
H A Dsatan.S30 | Step 3. Approximate arctan(u) by a polynomial poly.
32 | Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
/linux/drivers/net/dsa/sja1105/
H A Dsja1105_dynamic_config.c660 sja1105_packing(buf, &entry->poly, 7, 0, in sja1105et_l2_lookup_params_entry_packing()
1372 static u8 sja1105_crc8_add(u8 crc, u8 byte, u8 poly) in sja1105_crc8_add() argument
1379 crc ^= poly; in sja1105_crc8_add()
1398 u64 input, poly_koopman = l2_lookup_params->poly; in sja1105et_fdb_hash()
1400 u8 poly = (u8)(1 + (poly_koopman << 1)); in sja1105et_fdb_hash() local
1410 crc = sja1105_crc8_add(crc, byte, poly); in sja1105et_fdb_hash()
H A Dsja1105_static_config.h288 u64 poly; /* E/T only */ member
H A Dsja1105_static_config.c291 sja1105_packing(buf, &entry->poly, 13, 6, size, op); in sja1105et_l2_lookup_params_entry_packing()
H A Dsja1105_main.c395 .poly = 0x97, in sja1105_init_l2_lookup_params()
/linux/fs/pstore/
H A Dram_core.c202 prz->ecc_info.poly = ecc_info->poly ?: 0x11d; in persistent_ram_init_ecc()
224 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly, in persistent_ram_init_ecc()
/linux/drivers/scsi/libsas/
H A Dsas_init.c70 const u32 poly = 0x00DB2777; in sas_hash_addr() local
81 r ^= poly; in sas_hash_addr()
83 r ^= poly; in sas_hash_addr()
/linux/drivers/iio/imu/
H A Dsmi240.c151 static u8 smi240_crc3(u32 data, u8 init, u8 poly) in smi240_crc3() argument
162 crc ^= poly; in smi240_crc3()
/linux/drivers/net/ethernet/amd/
H A Dnmclan_cs.c1289 static const int poly[]={ in updateCRC() local
1307 CRC[j] ^= poly[j]; in updateCRC()
/linux/tools/perf/scripts/python/
H A Dexported-sql-viewer.py1852 poly = view.mapFromScene(scene_rectf)
1853 self.rubber_band.setGeometry(poly.boundingRect())
/linux/drivers/dma/ppc4xx/
H A Dadma.c4396 static DRIVER_ATTR_RW(poly);
/linux/arch/m68k/ifpsp060/src/
H A Dfplsp.S7991 # polynomial in u, log(1+u) = poly. #
7995 # by k*log(2) + (log(F) + poly). The values of log(F) are #
8005 # log(1+X) as k*log(2) + log(F) + poly where poly #
H A Dfpsp.S6168 # Step 3. Approximate arctan(u) by a polynomial poly. #
6170 # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #