| /linux/lib/ |
| H A D | bch.c | 114 struct gf_poly poly; member 308 static inline int deg(unsigned int poly) in deg() argument 311 return fls(poly)-1; in deg() 375 uint32_t poly; in compute_syndromes() local 388 poly = *ecc++; in compute_syndromes() 390 while (poly) { in compute_syndromes() 391 i = deg(poly); in compute_syndromes() 395 poly ^= (1 << i); in compute_syndromes() 575 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, in find_poly_deg1_roots() argument 580 if (poly->c[0]) in find_poly_deg1_roots() [all …]
|
| H A D | polynomial.c | 79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc() argument 81 const struct polynomial_term *term = poly->terms; in polynomial_calc() 82 long total_divider = poly->total_divider ?: 1; in polynomial_calc()
|
| /linux/lib/crc/tests/ |
| H A D | crc_kunit.c | 44 u64 poly; member 75 crc = (crc >> 1) ^ ((crc & 1) ? v->poly : 0); in crc_ref() 80 crc = ((crc << 1) ^ v->poly) & in crc_ref() 284 .poly = 0x9, 308 .poly = 0xa001, 332 .poly = 0x8bb7, 356 .poly = 0xedb88320, 380 .poly = 0x04c11db7, 404 .poly = 0x82f63b78, 428 .poly = 0x42f0e1eba9ea3693, [all …]
|
| /linux/lib/crc/ |
| H A D | gen_crc64table.c | 18 static void generate_reflected_crc64_table(uint64_t table[256], uint64_t poly) in generate_reflected_crc64_table() argument 28 crc = (crc >> 1) ^ poly; in generate_reflected_crc64_table() 36 static void generate_crc64_table(uint64_t table[256], uint64_t poly) in generate_crc64_table() argument 46 crc = (crc << 1) ^ poly; in generate_crc64_table()
|
| /linux/lib/xz/ |
| H A D | xz_crc32.c | 31 const uint32_t poly = 0xEDB88320; in xz_crc32_init() local 40 r = (r >> 1) ^ (poly & ~((r & 1) - 1)); in xz_crc32_init()
|
| /linux/include/linux/ |
| H A D | polynomial.h | 33 long polynomial_calc(const struct polynomial *poly, long data);
|
| H A D | pstore_ram.h | 17 int poly; member
|
| /linux/arch/m68k/fpsp040/ |
| H A D | slogn.S | 35 | log(1+u) = poly. 38 | by k*log(2) + (log(F) + poly). The values of log(F) are calculated 47 | k*log(2) + log(F) + poly where poly approximates log(1+u),
|
| H A D | satan.S | 30 | Step 3. Approximate arctan(u) by a polynomial poly. 32 | Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
|
| /linux/drivers/net/dsa/sja1105/ |
| H A D | sja1105_dynamic_config.c | 660 sja1105_packing(buf, &entry->poly, 7, 0, in sja1105et_l2_lookup_params_entry_packing() 1372 static u8 sja1105_crc8_add(u8 crc, u8 byte, u8 poly) in sja1105_crc8_add() argument 1379 crc ^= poly; in sja1105_crc8_add() 1398 u64 input, poly_koopman = l2_lookup_params->poly; in sja1105et_fdb_hash() 1400 u8 poly = (u8)(1 + (poly_koopman << 1)); in sja1105et_fdb_hash() local 1410 crc = sja1105_crc8_add(crc, byte, poly); in sja1105et_fdb_hash()
|
| H A D | sja1105_static_config.h | 288 u64 poly; /* E/T only */ member
|
| H A D | sja1105_static_config.c | 291 sja1105_packing(buf, &entry->poly, 13, 6, size, op); in sja1105et_l2_lookup_params_entry_packing()
|
| H A D | sja1105_main.c | 395 .poly = 0x97, in sja1105_init_l2_lookup_params()
|
| /linux/fs/pstore/ |
| H A D | ram_core.c | 202 prz->ecc_info.poly = ecc_info->poly ?: 0x11d; in persistent_ram_init_ecc() 224 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly, in persistent_ram_init_ecc()
|
| /linux/drivers/scsi/libsas/ |
| H A D | sas_init.c | 70 const u32 poly = 0x00DB2777; in sas_hash_addr() local 81 r ^= poly; in sas_hash_addr() 83 r ^= poly; in sas_hash_addr()
|
| /linux/drivers/iio/imu/ |
| H A D | smi240.c | 151 static u8 smi240_crc3(u32 data, u8 init, u8 poly) in smi240_crc3() argument 162 crc ^= poly; in smi240_crc3()
|
| /linux/drivers/net/ethernet/amd/ |
| H A D | nmclan_cs.c | 1289 static const int poly[]={ in updateCRC() local 1307 CRC[j] ^= poly[j]; in updateCRC()
|
| /linux/tools/perf/scripts/python/ |
| H A D | exported-sql-viewer.py | 1852 poly = view.mapFromScene(scene_rectf) 1853 self.rubber_band.setGeometry(poly.boundingRect())
|
| /linux/drivers/dma/ppc4xx/ |
| H A D | adma.c | 4396 static DRIVER_ATTR_RW(poly);
|
| /linux/arch/m68k/ifpsp060/src/ |
| H A D | fplsp.S | 7991 # polynomial in u, log(1+u) = poly. # 7995 # by k*log(2) + (log(F) + poly). The values of log(F) are # 8005 # log(1+X) as k*log(2) + log(F) + poly where poly #
|
| H A D | fpsp.S | 6168 # Step 3. Approximate arctan(u) by a polynomial poly. # 6170 # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
|