1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/splice.h>
23 #include <linux/task_io_accounting_ops.h>
24
fuse_send_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,int opcode,struct fuse_open_out * outargp)25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
26 unsigned int open_flags, int opcode,
27 struct fuse_open_out *outargp)
28 {
29 struct fuse_open_in inarg;
30 FUSE_ARGS(args);
31
32 memset(&inarg, 0, sizeof(inarg));
33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
34 if (!fm->fc->atomic_o_trunc)
35 inarg.flags &= ~O_TRUNC;
36
37 if (fm->fc->handle_killpriv_v2 &&
38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
40 }
41
42 args.opcode = opcode;
43 args.nodeid = nodeid;
44 args.in_numargs = 1;
45 args.in_args[0].size = sizeof(inarg);
46 args.in_args[0].value = &inarg;
47 args.out_numargs = 1;
48 args.out_args[0].size = sizeof(*outargp);
49 args.out_args[0].value = outargp;
50
51 return fuse_simple_request(fm, &args);
52 }
53
fuse_file_alloc(struct fuse_mount * fm,bool release)54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release)
55 {
56 struct fuse_file *ff;
57
58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
59 if (unlikely(!ff))
60 return NULL;
61
62 ff->fm = fm;
63 if (release) {
64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT);
65 if (!ff->args) {
66 kfree(ff);
67 return NULL;
68 }
69 }
70
71 INIT_LIST_HEAD(&ff->write_entry);
72 refcount_set(&ff->count, 1);
73 RB_CLEAR_NODE(&ff->polled_node);
74 init_waitqueue_head(&ff->poll_wait);
75
76 ff->kh = atomic64_inc_return(&fm->fc->khctr);
77
78 return ff;
79 }
80
fuse_file_free(struct fuse_file * ff)81 void fuse_file_free(struct fuse_file *ff)
82 {
83 kfree(ff->args);
84 kfree(ff);
85 }
86
fuse_file_get(struct fuse_file * ff)87 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
88 {
89 refcount_inc(&ff->count);
90 return ff;
91 }
92
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
94 int error)
95 {
96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
97
98 iput(ra->inode);
99 kfree(ra);
100 }
101
fuse_file_put(struct fuse_file * ff,bool sync)102 static void fuse_file_put(struct fuse_file *ff, bool sync)
103 {
104 if (refcount_dec_and_test(&ff->count)) {
105 struct fuse_release_args *ra = &ff->args->release_args;
106 struct fuse_args *args = (ra ? &ra->args : NULL);
107
108 if (ra && ra->inode)
109 fuse_file_io_release(ff, ra->inode);
110
111 if (!args) {
112 /* Do nothing when server does not implement 'open' */
113 } else if (sync) {
114 fuse_simple_request(ff->fm, args);
115 fuse_release_end(ff->fm, args, 0);
116 } else {
117 args->end = fuse_release_end;
118 if (fuse_simple_background(ff->fm, args,
119 GFP_KERNEL | __GFP_NOFAIL))
120 fuse_release_end(ff->fm, args, -ENOTCONN);
121 }
122 kfree(ff);
123 }
124 }
125
fuse_file_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,bool isdir)126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
127 unsigned int open_flags, bool isdir)
128 {
129 struct fuse_conn *fc = fm->fc;
130 struct fuse_file *ff;
131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
132 bool open = isdir ? !fc->no_opendir : !fc->no_open;
133
134 ff = fuse_file_alloc(fm, open);
135 if (!ff)
136 return ERR_PTR(-ENOMEM);
137
138 ff->fh = 0;
139 /* Default for no-open */
140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 if (open) {
142 /* Store outarg for fuse_finish_open() */
143 struct fuse_open_out *outargp = &ff->args->open_outarg;
144 int err;
145
146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp);
147 if (!err) {
148 ff->fh = outargp->fh;
149 ff->open_flags = outargp->open_flags;
150 } else if (err != -ENOSYS) {
151 fuse_file_free(ff);
152 return ERR_PTR(err);
153 } else {
154 /* No release needed */
155 kfree(ff->args);
156 ff->args = NULL;
157 if (isdir)
158 fc->no_opendir = 1;
159 else
160 fc->no_open = 1;
161 }
162 }
163
164 if (isdir)
165 ff->open_flags &= ~FOPEN_DIRECT_IO;
166
167 ff->nodeid = nodeid;
168
169 return ff;
170 }
171
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
173 bool isdir)
174 {
175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
176
177 if (!IS_ERR(ff))
178 file->private_data = ff;
179
180 return PTR_ERR_OR_ZERO(ff);
181 }
182 EXPORT_SYMBOL_GPL(fuse_do_open);
183
fuse_link_write_file(struct file * file)184 static void fuse_link_write_file(struct file *file)
185 {
186 struct inode *inode = file_inode(file);
187 struct fuse_inode *fi = get_fuse_inode(inode);
188 struct fuse_file *ff = file->private_data;
189 /*
190 * file may be written through mmap, so chain it onto the
191 * inodes's write_file list
192 */
193 spin_lock(&fi->lock);
194 if (list_empty(&ff->write_entry))
195 list_add(&ff->write_entry, &fi->write_files);
196 spin_unlock(&fi->lock);
197 }
198
fuse_finish_open(struct inode * inode,struct file * file)199 int fuse_finish_open(struct inode *inode, struct file *file)
200 {
201 struct fuse_file *ff = file->private_data;
202 struct fuse_conn *fc = get_fuse_conn(inode);
203 int err;
204
205 err = fuse_file_io_open(file, inode);
206 if (err)
207 return err;
208
209 if (ff->open_flags & FOPEN_STREAM)
210 stream_open(inode, file);
211 else if (ff->open_flags & FOPEN_NONSEEKABLE)
212 nonseekable_open(inode, file);
213
214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 fuse_link_write_file(file);
216
217 return 0;
218 }
219
fuse_truncate_update_attr(struct inode * inode,struct file * file)220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file)
221 {
222 struct fuse_conn *fc = get_fuse_conn(inode);
223 struct fuse_inode *fi = get_fuse_inode(inode);
224
225 spin_lock(&fi->lock);
226 fi->attr_version = atomic64_inc_return(&fc->attr_version);
227 i_size_write(inode, 0);
228 spin_unlock(&fi->lock);
229 file_update_time(file);
230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
231 }
232
fuse_open(struct inode * inode,struct file * file)233 static int fuse_open(struct inode *inode, struct file *file)
234 {
235 struct fuse_mount *fm = get_fuse_mount(inode);
236 struct fuse_inode *fi = get_fuse_inode(inode);
237 struct fuse_conn *fc = fm->fc;
238 struct fuse_file *ff;
239 int err;
240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc;
241 bool is_wb_truncate = is_truncate && fc->writeback_cache;
242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode);
243
244 if (fuse_is_bad(inode))
245 return -EIO;
246
247 err = generic_file_open(inode, file);
248 if (err)
249 return err;
250
251 if (is_wb_truncate || dax_truncate)
252 inode_lock(inode);
253
254 if (dax_truncate) {
255 filemap_invalidate_lock(inode->i_mapping);
256 err = fuse_dax_break_layouts(inode, 0, 0);
257 if (err)
258 goto out_inode_unlock;
259 }
260
261 if (is_wb_truncate || dax_truncate)
262 fuse_set_nowrite(inode);
263
264 err = fuse_do_open(fm, get_node_id(inode), file, false);
265 if (!err) {
266 ff = file->private_data;
267 err = fuse_finish_open(inode, file);
268 if (err)
269 fuse_sync_release(fi, ff, file->f_flags);
270 else if (is_truncate)
271 fuse_truncate_update_attr(inode, file);
272 }
273
274 if (is_wb_truncate || dax_truncate)
275 fuse_release_nowrite(inode);
276 if (!err) {
277 if (is_truncate)
278 truncate_pagecache(inode, 0);
279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
280 invalidate_inode_pages2(inode->i_mapping);
281 }
282 if (dax_truncate)
283 filemap_invalidate_unlock(inode->i_mapping);
284 out_inode_unlock:
285 if (is_wb_truncate || dax_truncate)
286 inode_unlock(inode);
287
288 return err;
289 }
290
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags,int opcode,bool sync)291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
292 unsigned int flags, int opcode, bool sync)
293 {
294 struct fuse_conn *fc = ff->fm->fc;
295 struct fuse_release_args *ra = &ff->args->release_args;
296
297 if (fuse_file_passthrough(ff))
298 fuse_passthrough_release(ff, fuse_inode_backing(fi));
299
300 /* Inode is NULL on error path of fuse_create_open() */
301 if (likely(fi)) {
302 spin_lock(&fi->lock);
303 list_del(&ff->write_entry);
304 spin_unlock(&fi->lock);
305 }
306 spin_lock(&fc->lock);
307 if (!RB_EMPTY_NODE(&ff->polled_node))
308 rb_erase(&ff->polled_node, &fc->polled_files);
309 spin_unlock(&fc->lock);
310
311 wake_up_interruptible_all(&ff->poll_wait);
312
313 if (!ra)
314 return;
315
316 /* ff->args was used for open outarg */
317 memset(ff->args, 0, sizeof(*ff->args));
318 ra->inarg.fh = ff->fh;
319 ra->inarg.flags = flags;
320 ra->args.in_numargs = 1;
321 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
322 ra->args.in_args[0].value = &ra->inarg;
323 ra->args.opcode = opcode;
324 ra->args.nodeid = ff->nodeid;
325 ra->args.force = true;
326 ra->args.nocreds = true;
327
328 /*
329 * Hold inode until release is finished.
330 * From fuse_sync_release() the refcount is 1 and everything's
331 * synchronous, so we are fine with not doing igrab() here.
332 */
333 ra->inode = sync ? NULL : igrab(&fi->inode);
334 }
335
fuse_file_release(struct inode * inode,struct fuse_file * ff,unsigned int open_flags,fl_owner_t id,bool isdir)336 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
337 unsigned int open_flags, fl_owner_t id, bool isdir)
338 {
339 struct fuse_inode *fi = get_fuse_inode(inode);
340 struct fuse_release_args *ra = &ff->args->release_args;
341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
342
343 fuse_prepare_release(fi, ff, open_flags, opcode, false);
344
345 if (ra && ff->flock) {
346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
348 }
349
350 /*
351 * Normally this will send the RELEASE request, however if
352 * some asynchronous READ or WRITE requests are outstanding,
353 * the sending will be delayed.
354 *
355 * Make the release synchronous if this is a fuseblk mount,
356 * synchronous RELEASE is allowed (and desirable) in this case
357 * because the server can be trusted not to screw up.
358 */
359 fuse_file_put(ff, ff->fm->fc->destroy);
360 }
361
fuse_release_common(struct file * file,bool isdir)362 void fuse_release_common(struct file *file, bool isdir)
363 {
364 fuse_file_release(file_inode(file), file->private_data, file->f_flags,
365 (fl_owner_t) file, isdir);
366 }
367
fuse_release(struct inode * inode,struct file * file)368 static int fuse_release(struct inode *inode, struct file *file)
369 {
370 struct fuse_conn *fc = get_fuse_conn(inode);
371
372 /*
373 * Dirty pages might remain despite write_inode_now() call from
374 * fuse_flush() due to writes racing with the close.
375 */
376 if (fc->writeback_cache)
377 write_inode_now(inode, 1);
378
379 fuse_release_common(file, false);
380
381 /* return value is ignored by VFS */
382 return 0;
383 }
384
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags)385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
386 unsigned int flags)
387 {
388 WARN_ON(refcount_read(&ff->count) > 1);
389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true);
390 fuse_file_put(ff, true);
391 }
392 EXPORT_SYMBOL_GPL(fuse_sync_release);
393
394 /*
395 * Scramble the ID space with XTEA, so that the value of the files_struct
396 * pointer is not exposed to userspace.
397 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
399 {
400 u32 *k = fc->scramble_key;
401 u64 v = (unsigned long) id;
402 u32 v0 = v;
403 u32 v1 = v >> 32;
404 u32 sum = 0;
405 int i;
406
407 for (i = 0; i < 32; i++) {
408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
409 sum += 0x9E3779B9;
410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
411 }
412
413 return (u64) v0 + ((u64) v1 << 32);
414 }
415
416 struct fuse_writepage_args {
417 struct fuse_io_args ia;
418 struct rb_node writepages_entry;
419 struct list_head queue_entry;
420 struct fuse_writepage_args *next;
421 struct inode *inode;
422 struct fuse_sync_bucket *bucket;
423 };
424
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
426 pgoff_t idx_from, pgoff_t idx_to)
427 {
428 struct rb_node *n;
429
430 n = fi->writepages.rb_node;
431
432 while (n) {
433 struct fuse_writepage_args *wpa;
434 pgoff_t curr_index;
435
436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
437 WARN_ON(get_fuse_inode(wpa->inode) != fi);
438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
439 if (idx_from >= curr_index + wpa->ia.ap.num_folios)
440 n = n->rb_right;
441 else if (idx_to < curr_index)
442 n = n->rb_left;
443 else
444 return wpa;
445 }
446 return NULL;
447 }
448
449 /*
450 * Check if any page in a range is under writeback
451 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
453 pgoff_t idx_to)
454 {
455 struct fuse_inode *fi = get_fuse_inode(inode);
456 bool found;
457
458 if (RB_EMPTY_ROOT(&fi->writepages))
459 return false;
460
461 spin_lock(&fi->lock);
462 found = fuse_find_writeback(fi, idx_from, idx_to);
463 spin_unlock(&fi->lock);
464
465 return found;
466 }
467
fuse_page_is_writeback(struct inode * inode,pgoff_t index)468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
469 {
470 return fuse_range_is_writeback(inode, index, index);
471 }
472
473 /*
474 * Wait for page writeback to be completed.
475 *
476 * Since fuse doesn't rely on the VM writeback tracking, this has to
477 * use some other means.
478 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
480 {
481 struct fuse_inode *fi = get_fuse_inode(inode);
482
483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
484 }
485
fuse_folio_is_writeback(struct inode * inode,struct folio * folio)486 static inline bool fuse_folio_is_writeback(struct inode *inode,
487 struct folio *folio)
488 {
489 pgoff_t last = folio_next_index(folio) - 1;
490 return fuse_range_is_writeback(inode, folio_index(folio), last);
491 }
492
fuse_wait_on_folio_writeback(struct inode * inode,struct folio * folio)493 static void fuse_wait_on_folio_writeback(struct inode *inode,
494 struct folio *folio)
495 {
496 struct fuse_inode *fi = get_fuse_inode(inode);
497
498 wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio));
499 }
500
501 /*
502 * Wait for all pending writepages on the inode to finish.
503 *
504 * This is currently done by blocking further writes with FUSE_NOWRITE
505 * and waiting for all sent writes to complete.
506 *
507 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
508 * could conflict with truncation.
509 */
fuse_sync_writes(struct inode * inode)510 static void fuse_sync_writes(struct inode *inode)
511 {
512 fuse_set_nowrite(inode);
513 fuse_release_nowrite(inode);
514 }
515
fuse_flush(struct file * file,fl_owner_t id)516 static int fuse_flush(struct file *file, fl_owner_t id)
517 {
518 struct inode *inode = file_inode(file);
519 struct fuse_mount *fm = get_fuse_mount(inode);
520 struct fuse_file *ff = file->private_data;
521 struct fuse_flush_in inarg;
522 FUSE_ARGS(args);
523 int err;
524
525 if (fuse_is_bad(inode))
526 return -EIO;
527
528 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
529 return 0;
530
531 err = write_inode_now(inode, 1);
532 if (err)
533 return err;
534
535 inode_lock(inode);
536 fuse_sync_writes(inode);
537 inode_unlock(inode);
538
539 err = filemap_check_errors(file->f_mapping);
540 if (err)
541 return err;
542
543 err = 0;
544 if (fm->fc->no_flush)
545 goto inval_attr_out;
546
547 memset(&inarg, 0, sizeof(inarg));
548 inarg.fh = ff->fh;
549 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
550 args.opcode = FUSE_FLUSH;
551 args.nodeid = get_node_id(inode);
552 args.in_numargs = 1;
553 args.in_args[0].size = sizeof(inarg);
554 args.in_args[0].value = &inarg;
555 args.force = true;
556
557 err = fuse_simple_request(fm, &args);
558 if (err == -ENOSYS) {
559 fm->fc->no_flush = 1;
560 err = 0;
561 }
562
563 inval_attr_out:
564 /*
565 * In memory i_blocks is not maintained by fuse, if writeback cache is
566 * enabled, i_blocks from cached attr may not be accurate.
567 */
568 if (!err && fm->fc->writeback_cache)
569 fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
570 return err;
571 }
572
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
574 int datasync, int opcode)
575 {
576 struct inode *inode = file->f_mapping->host;
577 struct fuse_mount *fm = get_fuse_mount(inode);
578 struct fuse_file *ff = file->private_data;
579 FUSE_ARGS(args);
580 struct fuse_fsync_in inarg;
581
582 memset(&inarg, 0, sizeof(inarg));
583 inarg.fh = ff->fh;
584 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
585 args.opcode = opcode;
586 args.nodeid = get_node_id(inode);
587 args.in_numargs = 1;
588 args.in_args[0].size = sizeof(inarg);
589 args.in_args[0].value = &inarg;
590 return fuse_simple_request(fm, &args);
591 }
592
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)593 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
594 int datasync)
595 {
596 struct inode *inode = file->f_mapping->host;
597 struct fuse_conn *fc = get_fuse_conn(inode);
598 int err;
599
600 if (fuse_is_bad(inode))
601 return -EIO;
602
603 inode_lock(inode);
604
605 /*
606 * Start writeback against all dirty pages of the inode, then
607 * wait for all outstanding writes, before sending the FSYNC
608 * request.
609 */
610 err = file_write_and_wait_range(file, start, end);
611 if (err)
612 goto out;
613
614 fuse_sync_writes(inode);
615
616 /*
617 * Due to implementation of fuse writeback
618 * file_write_and_wait_range() does not catch errors.
619 * We have to do this directly after fuse_sync_writes()
620 */
621 err = file_check_and_advance_wb_err(file);
622 if (err)
623 goto out;
624
625 err = sync_inode_metadata(inode, 1);
626 if (err)
627 goto out;
628
629 if (fc->no_fsync)
630 goto out;
631
632 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
633 if (err == -ENOSYS) {
634 fc->no_fsync = 1;
635 err = 0;
636 }
637 out:
638 inode_unlock(inode);
639
640 return err;
641 }
642
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
644 size_t count, int opcode)
645 {
646 struct fuse_file *ff = file->private_data;
647 struct fuse_args *args = &ia->ap.args;
648
649 ia->read.in.fh = ff->fh;
650 ia->read.in.offset = pos;
651 ia->read.in.size = count;
652 ia->read.in.flags = file->f_flags;
653 args->opcode = opcode;
654 args->nodeid = ff->nodeid;
655 args->in_numargs = 1;
656 args->in_args[0].size = sizeof(ia->read.in);
657 args->in_args[0].value = &ia->read.in;
658 args->out_argvar = true;
659 args->out_numargs = 1;
660 args->out_args[0].size = count;
661 }
662
fuse_release_user_pages(struct fuse_args_pages * ap,ssize_t nres,bool should_dirty)663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres,
664 bool should_dirty)
665 {
666 unsigned int i;
667
668 for (i = 0; i < ap->num_folios; i++) {
669 if (should_dirty)
670 folio_mark_dirty_lock(ap->folios[i]);
671 if (ap->args.is_pinned)
672 unpin_folio(ap->folios[i]);
673 }
674
675 if (nres > 0 && ap->args.invalidate_vmap)
676 invalidate_kernel_vmap_range(ap->args.vmap_base, nres);
677 }
678
fuse_io_release(struct kref * kref)679 static void fuse_io_release(struct kref *kref)
680 {
681 kfree(container_of(kref, struct fuse_io_priv, refcnt));
682 }
683
fuse_get_res_by_io(struct fuse_io_priv * io)684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
685 {
686 if (io->err)
687 return io->err;
688
689 if (io->bytes >= 0 && io->write)
690 return -EIO;
691
692 return io->bytes < 0 ? io->size : io->bytes;
693 }
694
695 /*
696 * In case of short read, the caller sets 'pos' to the position of
697 * actual end of fuse request in IO request. Otherwise, if bytes_requested
698 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
699 *
700 * An example:
701 * User requested DIO read of 64K. It was split into two 32K fuse requests,
702 * both submitted asynchronously. The first of them was ACKed by userspace as
703 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
704 * second request was ACKed as short, e.g. only 1K was read, resulting in
705 * pos == 33K.
706 *
707 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
708 * will be equal to the length of the longest contiguous fragment of
709 * transferred data starting from the beginning of IO request.
710 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
712 {
713 int left;
714
715 spin_lock(&io->lock);
716 if (err)
717 io->err = io->err ? : err;
718 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
719 io->bytes = pos;
720
721 left = --io->reqs;
722 if (!left && io->blocking)
723 complete(io->done);
724 spin_unlock(&io->lock);
725
726 if (!left && !io->blocking) {
727 ssize_t res = fuse_get_res_by_io(io);
728
729 if (res >= 0) {
730 struct inode *inode = file_inode(io->iocb->ki_filp);
731 struct fuse_conn *fc = get_fuse_conn(inode);
732 struct fuse_inode *fi = get_fuse_inode(inode);
733
734 spin_lock(&fi->lock);
735 fi->attr_version = atomic64_inc_return(&fc->attr_version);
736 spin_unlock(&fi->lock);
737 }
738
739 io->iocb->ki_complete(io->iocb, res);
740 }
741
742 kref_put(&io->refcnt, fuse_io_release);
743 }
744
fuse_io_alloc(struct fuse_io_priv * io,unsigned int nfolios)745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
746 unsigned int nfolios)
747 {
748 struct fuse_io_args *ia;
749
750 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
751 if (ia) {
752 ia->io = io;
753 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL,
754 &ia->ap.descs);
755 if (!ia->ap.folios) {
756 kfree(ia);
757 ia = NULL;
758 }
759 }
760 return ia;
761 }
762
fuse_io_free(struct fuse_io_args * ia)763 static void fuse_io_free(struct fuse_io_args *ia)
764 {
765 kfree(ia->ap.folios);
766 kfree(ia);
767 }
768
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
770 int err)
771 {
772 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
773 struct fuse_io_priv *io = ia->io;
774 ssize_t pos = -1;
775 size_t nres;
776
777 if (err) {
778 /* Nothing */
779 } else if (io->write) {
780 if (ia->write.out.size > ia->write.in.size) {
781 err = -EIO;
782 } else {
783 nres = ia->write.out.size;
784 if (ia->write.in.size != ia->write.out.size)
785 pos = ia->write.in.offset - io->offset +
786 ia->write.out.size;
787 }
788 } else {
789 u32 outsize = args->out_args[0].size;
790
791 nres = outsize;
792 if (ia->read.in.size != outsize)
793 pos = ia->read.in.offset - io->offset + outsize;
794 }
795
796 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty);
797
798 fuse_aio_complete(io, err, pos);
799 fuse_io_free(ia);
800 }
801
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)802 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
803 struct fuse_io_args *ia, size_t num_bytes)
804 {
805 ssize_t err;
806 struct fuse_io_priv *io = ia->io;
807
808 spin_lock(&io->lock);
809 kref_get(&io->refcnt);
810 io->size += num_bytes;
811 io->reqs++;
812 spin_unlock(&io->lock);
813
814 ia->ap.args.end = fuse_aio_complete_req;
815 ia->ap.args.may_block = io->should_dirty;
816 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
817 if (err)
818 fuse_aio_complete_req(fm, &ia->ap.args, err);
819
820 return num_bytes;
821 }
822
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
824 fl_owner_t owner)
825 {
826 struct file *file = ia->io->iocb->ki_filp;
827 struct fuse_file *ff = file->private_data;
828 struct fuse_mount *fm = ff->fm;
829
830 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
831 if (owner != NULL) {
832 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
833 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
834 }
835
836 if (ia->io->async)
837 return fuse_async_req_send(fm, ia, count);
838
839 return fuse_simple_request(fm, &ia->ap.args);
840 }
841
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)842 static void fuse_read_update_size(struct inode *inode, loff_t size,
843 u64 attr_ver)
844 {
845 struct fuse_conn *fc = get_fuse_conn(inode);
846 struct fuse_inode *fi = get_fuse_inode(inode);
847
848 spin_lock(&fi->lock);
849 if (attr_ver >= fi->attr_version && size < inode->i_size &&
850 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
851 fi->attr_version = atomic64_inc_return(&fc->attr_version);
852 i_size_write(inode, size);
853 }
854 spin_unlock(&fi->lock);
855 }
856
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
858 struct fuse_args_pages *ap)
859 {
860 struct fuse_conn *fc = get_fuse_conn(inode);
861
862 /*
863 * If writeback_cache is enabled, a short read means there's a hole in
864 * the file. Some data after the hole is in page cache, but has not
865 * reached the client fs yet. So the hole is not present there.
866 */
867 if (!fc->writeback_cache) {
868 loff_t pos = folio_pos(ap->folios[0]) + num_read;
869 fuse_read_update_size(inode, pos, attr_ver);
870 }
871 }
872
fuse_do_readfolio(struct file * file,struct folio * folio)873 static int fuse_do_readfolio(struct file *file, struct folio *folio)
874 {
875 struct inode *inode = folio->mapping->host;
876 struct fuse_mount *fm = get_fuse_mount(inode);
877 loff_t pos = folio_pos(folio);
878 struct fuse_folio_desc desc = { .length = PAGE_SIZE };
879 struct fuse_io_args ia = {
880 .ap.args.page_zeroing = true,
881 .ap.args.out_pages = true,
882 .ap.num_folios = 1,
883 .ap.folios = &folio,
884 .ap.descs = &desc,
885 };
886 ssize_t res;
887 u64 attr_ver;
888
889 /*
890 * With the temporary pages that are used to complete writeback, we can
891 * have writeback that extends beyond the lifetime of the folio. So
892 * make sure we read a properly synced folio.
893 */
894 fuse_wait_on_folio_writeback(inode, folio);
895
896 attr_ver = fuse_get_attr_version(fm->fc);
897
898 /* Don't overflow end offset */
899 if (pos + (desc.length - 1) == LLONG_MAX)
900 desc.length--;
901
902 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
903 res = fuse_simple_request(fm, &ia.ap.args);
904 if (res < 0)
905 return res;
906 /*
907 * Short read means EOF. If file size is larger, truncate it
908 */
909 if (res < desc.length)
910 fuse_short_read(inode, attr_ver, res, &ia.ap);
911
912 folio_mark_uptodate(folio);
913
914 return 0;
915 }
916
fuse_read_folio(struct file * file,struct folio * folio)917 static int fuse_read_folio(struct file *file, struct folio *folio)
918 {
919 struct inode *inode = folio->mapping->host;
920 int err;
921
922 err = -EIO;
923 if (fuse_is_bad(inode))
924 goto out;
925
926 err = fuse_do_readfolio(file, folio);
927 fuse_invalidate_atime(inode);
928 out:
929 folio_unlock(folio);
930 return err;
931 }
932
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
934 int err)
935 {
936 int i;
937 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
938 struct fuse_args_pages *ap = &ia->ap;
939 size_t count = ia->read.in.size;
940 size_t num_read = args->out_args[0].size;
941 struct address_space *mapping = NULL;
942
943 for (i = 0; mapping == NULL && i < ap->num_folios; i++)
944 mapping = ap->folios[i]->mapping;
945
946 if (mapping) {
947 struct inode *inode = mapping->host;
948
949 /*
950 * Short read means EOF. If file size is larger, truncate it
951 */
952 if (!err && num_read < count)
953 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
954
955 fuse_invalidate_atime(inode);
956 }
957
958 for (i = 0; i < ap->num_folios; i++) {
959 folio_end_read(ap->folios[i], !err);
960 folio_put(ap->folios[i]);
961 }
962 if (ia->ff)
963 fuse_file_put(ia->ff, false);
964
965 fuse_io_free(ia);
966 }
967
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)968 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
969 {
970 struct fuse_file *ff = file->private_data;
971 struct fuse_mount *fm = ff->fm;
972 struct fuse_args_pages *ap = &ia->ap;
973 loff_t pos = folio_pos(ap->folios[0]);
974 /* Currently, all folios in FUSE are one page */
975 size_t count = ap->num_folios << PAGE_SHIFT;
976 ssize_t res;
977 int err;
978
979 ap->args.out_pages = true;
980 ap->args.page_zeroing = true;
981 ap->args.page_replace = true;
982
983 /* Don't overflow end offset */
984 if (pos + (count - 1) == LLONG_MAX) {
985 count--;
986 ap->descs[ap->num_folios - 1].length--;
987 }
988 WARN_ON((loff_t) (pos + count) < 0);
989
990 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
991 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
992 if (fm->fc->async_read) {
993 ia->ff = fuse_file_get(ff);
994 ap->args.end = fuse_readpages_end;
995 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
996 if (!err)
997 return;
998 } else {
999 res = fuse_simple_request(fm, &ap->args);
1000 err = res < 0 ? res : 0;
1001 }
1002 fuse_readpages_end(fm, &ap->args, err);
1003 }
1004
fuse_readahead(struct readahead_control * rac)1005 static void fuse_readahead(struct readahead_control *rac)
1006 {
1007 struct inode *inode = rac->mapping->host;
1008 struct fuse_inode *fi = get_fuse_inode(inode);
1009 struct fuse_conn *fc = get_fuse_conn(inode);
1010 unsigned int max_pages, nr_pages;
1011 pgoff_t first = readahead_index(rac);
1012 pgoff_t last = first + readahead_count(rac) - 1;
1013
1014 if (fuse_is_bad(inode))
1015 return;
1016
1017 wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last));
1018
1019 max_pages = min_t(unsigned int, fc->max_pages,
1020 fc->max_read / PAGE_SIZE);
1021
1022 /*
1023 * This is only accurate the first time through, since readahead_folio()
1024 * doesn't update readahead_count() from the previous folio until the
1025 * next call. Grab nr_pages here so we know how many pages we're going
1026 * to have to process. This means that we will exit here with
1027 * readahead_count() == folio_nr_pages(last_folio), but we will have
1028 * consumed all of the folios, and read_pages() will call
1029 * readahead_folio() again which will clean up the rac.
1030 */
1031 nr_pages = readahead_count(rac);
1032
1033 while (nr_pages) {
1034 struct fuse_io_args *ia;
1035 struct fuse_args_pages *ap;
1036 struct folio *folio;
1037 unsigned cur_pages = min(max_pages, nr_pages);
1038
1039 if (fc->num_background >= fc->congestion_threshold &&
1040 rac->ra->async_size >= readahead_count(rac))
1041 /*
1042 * Congested and only async pages left, so skip the
1043 * rest.
1044 */
1045 break;
1046
1047 ia = fuse_io_alloc(NULL, cur_pages);
1048 if (!ia)
1049 return;
1050 ap = &ia->ap;
1051
1052 while (ap->num_folios < cur_pages) {
1053 /*
1054 * This returns a folio with a ref held on it.
1055 * The ref needs to be held until the request is
1056 * completed, since the splice case (see
1057 * fuse_try_move_page()) drops the ref after it's
1058 * replaced in the page cache.
1059 */
1060 folio = __readahead_folio(rac);
1061 ap->folios[ap->num_folios] = folio;
1062 ap->descs[ap->num_folios].length = folio_size(folio);
1063 ap->num_folios++;
1064 }
1065 fuse_send_readpages(ia, rac->file);
1066 nr_pages -= cur_pages;
1067 }
1068 }
1069
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)1070 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1071 {
1072 struct inode *inode = iocb->ki_filp->f_mapping->host;
1073 struct fuse_conn *fc = get_fuse_conn(inode);
1074
1075 /*
1076 * In auto invalidate mode, always update attributes on read.
1077 * Otherwise, only update if we attempt to read past EOF (to ensure
1078 * i_size is up to date).
1079 */
1080 if (fc->auto_inval_data ||
1081 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1082 int err;
1083 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1084 if (err)
1085 return err;
1086 }
1087
1088 return generic_file_read_iter(iocb, to);
1089 }
1090
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1091 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1092 loff_t pos, size_t count)
1093 {
1094 struct fuse_args *args = &ia->ap.args;
1095
1096 ia->write.in.fh = ff->fh;
1097 ia->write.in.offset = pos;
1098 ia->write.in.size = count;
1099 args->opcode = FUSE_WRITE;
1100 args->nodeid = ff->nodeid;
1101 args->in_numargs = 2;
1102 if (ff->fm->fc->minor < 9)
1103 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1104 else
1105 args->in_args[0].size = sizeof(ia->write.in);
1106 args->in_args[0].value = &ia->write.in;
1107 args->in_args[1].size = count;
1108 args->out_numargs = 1;
1109 args->out_args[0].size = sizeof(ia->write.out);
1110 args->out_args[0].value = &ia->write.out;
1111 }
1112
fuse_write_flags(struct kiocb * iocb)1113 static unsigned int fuse_write_flags(struct kiocb *iocb)
1114 {
1115 unsigned int flags = iocb->ki_filp->f_flags;
1116
1117 if (iocb_is_dsync(iocb))
1118 flags |= O_DSYNC;
1119 if (iocb->ki_flags & IOCB_SYNC)
1120 flags |= O_SYNC;
1121
1122 return flags;
1123 }
1124
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1125 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1126 size_t count, fl_owner_t owner)
1127 {
1128 struct kiocb *iocb = ia->io->iocb;
1129 struct file *file = iocb->ki_filp;
1130 struct fuse_file *ff = file->private_data;
1131 struct fuse_mount *fm = ff->fm;
1132 struct fuse_write_in *inarg = &ia->write.in;
1133 ssize_t err;
1134
1135 fuse_write_args_fill(ia, ff, pos, count);
1136 inarg->flags = fuse_write_flags(iocb);
1137 if (owner != NULL) {
1138 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1139 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1140 }
1141
1142 if (ia->io->async)
1143 return fuse_async_req_send(fm, ia, count);
1144
1145 err = fuse_simple_request(fm, &ia->ap.args);
1146 if (!err && ia->write.out.size > count)
1147 err = -EIO;
1148
1149 return err ?: ia->write.out.size;
1150 }
1151
fuse_write_update_attr(struct inode * inode,loff_t pos,ssize_t written)1152 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1153 {
1154 struct fuse_conn *fc = get_fuse_conn(inode);
1155 struct fuse_inode *fi = get_fuse_inode(inode);
1156 bool ret = false;
1157
1158 spin_lock(&fi->lock);
1159 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1160 if (written > 0 && pos > inode->i_size) {
1161 i_size_write(inode, pos);
1162 ret = true;
1163 }
1164 spin_unlock(&fi->lock);
1165
1166 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1167
1168 return ret;
1169 }
1170
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1171 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1172 struct kiocb *iocb, struct inode *inode,
1173 loff_t pos, size_t count)
1174 {
1175 struct fuse_args_pages *ap = &ia->ap;
1176 struct file *file = iocb->ki_filp;
1177 struct fuse_file *ff = file->private_data;
1178 struct fuse_mount *fm = ff->fm;
1179 unsigned int offset, i;
1180 bool short_write;
1181 int err;
1182
1183 for (i = 0; i < ap->num_folios; i++)
1184 fuse_wait_on_folio_writeback(inode, ap->folios[i]);
1185
1186 fuse_write_args_fill(ia, ff, pos, count);
1187 ia->write.in.flags = fuse_write_flags(iocb);
1188 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1189 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1190
1191 err = fuse_simple_request(fm, &ap->args);
1192 if (!err && ia->write.out.size > count)
1193 err = -EIO;
1194
1195 short_write = ia->write.out.size < count;
1196 offset = ap->descs[0].offset;
1197 count = ia->write.out.size;
1198 for (i = 0; i < ap->num_folios; i++) {
1199 struct folio *folio = ap->folios[i];
1200
1201 if (err) {
1202 folio_clear_uptodate(folio);
1203 } else {
1204 if (count >= folio_size(folio) - offset)
1205 count -= folio_size(folio) - offset;
1206 else {
1207 if (short_write)
1208 folio_clear_uptodate(folio);
1209 count = 0;
1210 }
1211 offset = 0;
1212 }
1213 if (ia->write.folio_locked && (i == ap->num_folios - 1))
1214 folio_unlock(folio);
1215 folio_put(folio);
1216 }
1217
1218 return err;
1219 }
1220
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1221 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1222 struct address_space *mapping,
1223 struct iov_iter *ii, loff_t pos,
1224 unsigned int max_pages)
1225 {
1226 struct fuse_args_pages *ap = &ia->ap;
1227 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1228 unsigned offset = pos & (PAGE_SIZE - 1);
1229 unsigned int nr_pages = 0;
1230 size_t count = 0;
1231 int err;
1232
1233 ap->args.in_pages = true;
1234 ap->descs[0].offset = offset;
1235
1236 do {
1237 size_t tmp;
1238 struct folio *folio;
1239 pgoff_t index = pos >> PAGE_SHIFT;
1240 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1241 iov_iter_count(ii));
1242
1243 bytes = min_t(size_t, bytes, fc->max_write - count);
1244
1245 again:
1246 err = -EFAULT;
1247 if (fault_in_iov_iter_readable(ii, bytes))
1248 break;
1249
1250 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1251 mapping_gfp_mask(mapping));
1252 if (IS_ERR(folio)) {
1253 err = PTR_ERR(folio);
1254 break;
1255 }
1256
1257 if (mapping_writably_mapped(mapping))
1258 flush_dcache_folio(folio);
1259
1260 tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii);
1261 flush_dcache_folio(folio);
1262
1263 if (!tmp) {
1264 folio_unlock(folio);
1265 folio_put(folio);
1266 goto again;
1267 }
1268
1269 err = 0;
1270 ap->folios[ap->num_folios] = folio;
1271 ap->descs[ap->num_folios].length = tmp;
1272 ap->num_folios++;
1273 nr_pages++;
1274
1275 count += tmp;
1276 pos += tmp;
1277 offset += tmp;
1278 if (offset == PAGE_SIZE)
1279 offset = 0;
1280
1281 /* If we copied full page, mark it uptodate */
1282 if (tmp == PAGE_SIZE)
1283 folio_mark_uptodate(folio);
1284
1285 if (folio_test_uptodate(folio)) {
1286 folio_unlock(folio);
1287 } else {
1288 ia->write.folio_locked = true;
1289 break;
1290 }
1291 if (!fc->big_writes)
1292 break;
1293 } while (iov_iter_count(ii) && count < fc->max_write &&
1294 nr_pages < max_pages && offset == 0);
1295
1296 return count > 0 ? count : err;
1297 }
1298
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1299 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1300 unsigned int max_pages)
1301 {
1302 return min_t(unsigned int,
1303 ((pos + len - 1) >> PAGE_SHIFT) -
1304 (pos >> PAGE_SHIFT) + 1,
1305 max_pages);
1306 }
1307
fuse_perform_write(struct kiocb * iocb,struct iov_iter * ii)1308 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1309 {
1310 struct address_space *mapping = iocb->ki_filp->f_mapping;
1311 struct inode *inode = mapping->host;
1312 struct fuse_conn *fc = get_fuse_conn(inode);
1313 struct fuse_inode *fi = get_fuse_inode(inode);
1314 loff_t pos = iocb->ki_pos;
1315 int err = 0;
1316 ssize_t res = 0;
1317
1318 if (inode->i_size < pos + iov_iter_count(ii))
1319 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1320
1321 do {
1322 ssize_t count;
1323 struct fuse_io_args ia = {};
1324 struct fuse_args_pages *ap = &ia.ap;
1325 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1326 fc->max_pages);
1327
1328 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1329 if (!ap->folios) {
1330 err = -ENOMEM;
1331 break;
1332 }
1333
1334 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1335 if (count <= 0) {
1336 err = count;
1337 } else {
1338 err = fuse_send_write_pages(&ia, iocb, inode,
1339 pos, count);
1340 if (!err) {
1341 size_t num_written = ia.write.out.size;
1342
1343 res += num_written;
1344 pos += num_written;
1345
1346 /* break out of the loop on short write */
1347 if (num_written != count)
1348 err = -EIO;
1349 }
1350 }
1351 kfree(ap->folios);
1352 } while (!err && iov_iter_count(ii));
1353
1354 fuse_write_update_attr(inode, pos, res);
1355 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1356
1357 if (!res)
1358 return err;
1359 iocb->ki_pos += res;
1360 return res;
1361 }
1362
fuse_io_past_eof(struct kiocb * iocb,struct iov_iter * iter)1363 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter)
1364 {
1365 struct inode *inode = file_inode(iocb->ki_filp);
1366
1367 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1368 }
1369
1370 /*
1371 * @return true if an exclusive lock for direct IO writes is needed
1372 */
fuse_dio_wr_exclusive_lock(struct kiocb * iocb,struct iov_iter * from)1373 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from)
1374 {
1375 struct file *file = iocb->ki_filp;
1376 struct fuse_file *ff = file->private_data;
1377 struct inode *inode = file_inode(iocb->ki_filp);
1378 struct fuse_inode *fi = get_fuse_inode(inode);
1379
1380 /* Server side has to advise that it supports parallel dio writes. */
1381 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES))
1382 return true;
1383
1384 /*
1385 * Append will need to know the eventual EOF - always needs an
1386 * exclusive lock.
1387 */
1388 if (iocb->ki_flags & IOCB_APPEND)
1389 return true;
1390
1391 /* shared locks are not allowed with parallel page cache IO */
1392 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state))
1393 return true;
1394
1395 /* Parallel dio beyond EOF is not supported, at least for now. */
1396 if (fuse_io_past_eof(iocb, from))
1397 return true;
1398
1399 return false;
1400 }
1401
fuse_dio_lock(struct kiocb * iocb,struct iov_iter * from,bool * exclusive)1402 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from,
1403 bool *exclusive)
1404 {
1405 struct inode *inode = file_inode(iocb->ki_filp);
1406 struct fuse_inode *fi = get_fuse_inode(inode);
1407
1408 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from);
1409 if (*exclusive) {
1410 inode_lock(inode);
1411 } else {
1412 inode_lock_shared(inode);
1413 /*
1414 * New parallal dio allowed only if inode is not in caching
1415 * mode and denies new opens in caching mode. This check
1416 * should be performed only after taking shared inode lock.
1417 * Previous past eof check was without inode lock and might
1418 * have raced, so check it again.
1419 */
1420 if (fuse_io_past_eof(iocb, from) ||
1421 fuse_inode_uncached_io_start(fi, NULL) != 0) {
1422 inode_unlock_shared(inode);
1423 inode_lock(inode);
1424 *exclusive = true;
1425 }
1426 }
1427 }
1428
fuse_dio_unlock(struct kiocb * iocb,bool exclusive)1429 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive)
1430 {
1431 struct inode *inode = file_inode(iocb->ki_filp);
1432 struct fuse_inode *fi = get_fuse_inode(inode);
1433
1434 if (exclusive) {
1435 inode_unlock(inode);
1436 } else {
1437 /* Allow opens in caching mode after last parallel dio end */
1438 fuse_inode_uncached_io_end(fi);
1439 inode_unlock_shared(inode);
1440 }
1441 }
1442
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1443 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1444 {
1445 struct file *file = iocb->ki_filp;
1446 struct mnt_idmap *idmap = file_mnt_idmap(file);
1447 struct address_space *mapping = file->f_mapping;
1448 ssize_t written = 0;
1449 struct inode *inode = mapping->host;
1450 ssize_t err, count;
1451 struct fuse_conn *fc = get_fuse_conn(inode);
1452
1453 if (fc->writeback_cache) {
1454 /* Update size (EOF optimization) and mode (SUID clearing) */
1455 err = fuse_update_attributes(mapping->host, file,
1456 STATX_SIZE | STATX_MODE);
1457 if (err)
1458 return err;
1459
1460 if (fc->handle_killpriv_v2 &&
1461 setattr_should_drop_suidgid(idmap,
1462 file_inode(file))) {
1463 goto writethrough;
1464 }
1465
1466 return generic_file_write_iter(iocb, from);
1467 }
1468
1469 writethrough:
1470 inode_lock(inode);
1471
1472 err = count = generic_write_checks(iocb, from);
1473 if (err <= 0)
1474 goto out;
1475
1476 task_io_account_write(count);
1477
1478 err = kiocb_modified(iocb);
1479 if (err)
1480 goto out;
1481
1482 if (iocb->ki_flags & IOCB_DIRECT) {
1483 written = generic_file_direct_write(iocb, from);
1484 if (written < 0 || !iov_iter_count(from))
1485 goto out;
1486 written = direct_write_fallback(iocb, from, written,
1487 fuse_perform_write(iocb, from));
1488 } else {
1489 written = fuse_perform_write(iocb, from);
1490 }
1491 out:
1492 inode_unlock(inode);
1493 if (written > 0)
1494 written = generic_write_sync(iocb, written);
1495
1496 return written ? written : err;
1497 }
1498
fuse_get_user_addr(const struct iov_iter * ii)1499 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1500 {
1501 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1502 }
1503
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1504 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1505 size_t max_size)
1506 {
1507 return min(iov_iter_single_seg_count(ii), max_size);
1508 }
1509
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages,bool use_pages_for_kvec_io)1510 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1511 size_t *nbytesp, int write,
1512 unsigned int max_pages,
1513 bool use_pages_for_kvec_io)
1514 {
1515 bool flush_or_invalidate = false;
1516 unsigned int nr_pages = 0;
1517 size_t nbytes = 0; /* # bytes already packed in req */
1518 ssize_t ret = 0;
1519
1520 /* Special case for kernel I/O: can copy directly into the buffer.
1521 * However if the implementation of fuse_conn requires pages instead of
1522 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead.
1523 */
1524 if (iov_iter_is_kvec(ii)) {
1525 void *user_addr = (void *)fuse_get_user_addr(ii);
1526
1527 if (!use_pages_for_kvec_io) {
1528 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1529
1530 if (write)
1531 ap->args.in_args[1].value = user_addr;
1532 else
1533 ap->args.out_args[0].value = user_addr;
1534
1535 iov_iter_advance(ii, frag_size);
1536 *nbytesp = frag_size;
1537 return 0;
1538 }
1539
1540 if (is_vmalloc_addr(user_addr)) {
1541 ap->args.vmap_base = user_addr;
1542 flush_or_invalidate = true;
1543 }
1544 }
1545
1546 /*
1547 * Until there is support for iov_iter_extract_folios(), we have to
1548 * manually extract pages using iov_iter_extract_pages() and then
1549 * copy that to a folios array.
1550 */
1551 struct page **pages = kzalloc(max_pages * sizeof(struct page *),
1552 GFP_KERNEL);
1553 if (!pages) {
1554 ret = -ENOMEM;
1555 goto out;
1556 }
1557
1558 while (nbytes < *nbytesp && nr_pages < max_pages) {
1559 unsigned nfolios, i;
1560 size_t start;
1561
1562 ret = iov_iter_extract_pages(ii, &pages,
1563 *nbytesp - nbytes,
1564 max_pages - nr_pages,
1565 0, &start);
1566 if (ret < 0)
1567 break;
1568
1569 nbytes += ret;
1570
1571 nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE);
1572
1573 for (i = 0; i < nfolios; i++) {
1574 struct folio *folio = page_folio(pages[i]);
1575 unsigned int offset = start +
1576 (folio_page_idx(folio, pages[i]) << PAGE_SHIFT);
1577 unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start);
1578
1579 ap->descs[ap->num_folios].offset = offset;
1580 ap->descs[ap->num_folios].length = len;
1581 ap->folios[ap->num_folios] = folio;
1582 start = 0;
1583 ret -= len;
1584 ap->num_folios++;
1585 }
1586
1587 nr_pages += nfolios;
1588 }
1589 kfree(pages);
1590
1591 if (write && flush_or_invalidate)
1592 flush_kernel_vmap_range(ap->args.vmap_base, nbytes);
1593
1594 ap->args.invalidate_vmap = !write && flush_or_invalidate;
1595 ap->args.is_pinned = iov_iter_extract_will_pin(ii);
1596 ap->args.user_pages = true;
1597 if (write)
1598 ap->args.in_pages = true;
1599 else
1600 ap->args.out_pages = true;
1601
1602 out:
1603 *nbytesp = nbytes;
1604
1605 return ret < 0 ? ret : 0;
1606 }
1607
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1608 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1609 loff_t *ppos, int flags)
1610 {
1611 int write = flags & FUSE_DIO_WRITE;
1612 int cuse = flags & FUSE_DIO_CUSE;
1613 struct file *file = io->iocb->ki_filp;
1614 struct address_space *mapping = file->f_mapping;
1615 struct inode *inode = mapping->host;
1616 struct fuse_file *ff = file->private_data;
1617 struct fuse_conn *fc = ff->fm->fc;
1618 size_t nmax = write ? fc->max_write : fc->max_read;
1619 loff_t pos = *ppos;
1620 size_t count = iov_iter_count(iter);
1621 pgoff_t idx_from = pos >> PAGE_SHIFT;
1622 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1623 ssize_t res = 0;
1624 int err = 0;
1625 struct fuse_io_args *ia;
1626 unsigned int max_pages;
1627 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1628
1629 max_pages = iov_iter_npages(iter, fc->max_pages);
1630 ia = fuse_io_alloc(io, max_pages);
1631 if (!ia)
1632 return -ENOMEM;
1633
1634 if (fopen_direct_io && fc->direct_io_allow_mmap) {
1635 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1636 if (res) {
1637 fuse_io_free(ia);
1638 return res;
1639 }
1640 }
1641 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1642 if (!write)
1643 inode_lock(inode);
1644 fuse_sync_writes(inode);
1645 if (!write)
1646 inode_unlock(inode);
1647 }
1648
1649 if (fopen_direct_io && write) {
1650 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1651 if (res) {
1652 fuse_io_free(ia);
1653 return res;
1654 }
1655 }
1656
1657 io->should_dirty = !write && user_backed_iter(iter);
1658 while (count) {
1659 ssize_t nres;
1660 fl_owner_t owner = current->files;
1661 size_t nbytes = min(count, nmax);
1662
1663 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1664 max_pages, fc->use_pages_for_kvec_io);
1665 if (err && !nbytes)
1666 break;
1667
1668 if (write) {
1669 if (!capable(CAP_FSETID))
1670 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1671
1672 nres = fuse_send_write(ia, pos, nbytes, owner);
1673 } else {
1674 nres = fuse_send_read(ia, pos, nbytes, owner);
1675 }
1676
1677 if (!io->async || nres < 0) {
1678 fuse_release_user_pages(&ia->ap, nres, io->should_dirty);
1679 fuse_io_free(ia);
1680 }
1681 ia = NULL;
1682 if (nres < 0) {
1683 iov_iter_revert(iter, nbytes);
1684 err = nres;
1685 break;
1686 }
1687 WARN_ON(nres > nbytes);
1688
1689 count -= nres;
1690 res += nres;
1691 pos += nres;
1692 if (nres != nbytes) {
1693 iov_iter_revert(iter, nbytes - nres);
1694 break;
1695 }
1696 if (count) {
1697 max_pages = iov_iter_npages(iter, fc->max_pages);
1698 ia = fuse_io_alloc(io, max_pages);
1699 if (!ia)
1700 break;
1701 }
1702 }
1703 if (ia)
1704 fuse_io_free(ia);
1705 if (res > 0)
1706 *ppos = pos;
1707
1708 return res > 0 ? res : err;
1709 }
1710 EXPORT_SYMBOL_GPL(fuse_direct_io);
1711
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1712 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1713 struct iov_iter *iter,
1714 loff_t *ppos)
1715 {
1716 ssize_t res;
1717 struct inode *inode = file_inode(io->iocb->ki_filp);
1718
1719 res = fuse_direct_io(io, iter, ppos, 0);
1720
1721 fuse_invalidate_atime(inode);
1722
1723 return res;
1724 }
1725
1726 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1727
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1728 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1729 {
1730 ssize_t res;
1731
1732 if (!is_sync_kiocb(iocb)) {
1733 res = fuse_direct_IO(iocb, to);
1734 } else {
1735 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1736
1737 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1738 }
1739
1740 return res;
1741 }
1742
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1743 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1744 {
1745 struct inode *inode = file_inode(iocb->ki_filp);
1746 ssize_t res;
1747 bool exclusive;
1748
1749 fuse_dio_lock(iocb, from, &exclusive);
1750 res = generic_write_checks(iocb, from);
1751 if (res > 0) {
1752 task_io_account_write(res);
1753 if (!is_sync_kiocb(iocb)) {
1754 res = fuse_direct_IO(iocb, from);
1755 } else {
1756 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1757
1758 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1759 FUSE_DIO_WRITE);
1760 fuse_write_update_attr(inode, iocb->ki_pos, res);
1761 }
1762 }
1763 fuse_dio_unlock(iocb, exclusive);
1764
1765 return res;
1766 }
1767
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1768 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1769 {
1770 struct file *file = iocb->ki_filp;
1771 struct fuse_file *ff = file->private_data;
1772 struct inode *inode = file_inode(file);
1773
1774 if (fuse_is_bad(inode))
1775 return -EIO;
1776
1777 if (FUSE_IS_DAX(inode))
1778 return fuse_dax_read_iter(iocb, to);
1779
1780 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1781 if (ff->open_flags & FOPEN_DIRECT_IO)
1782 return fuse_direct_read_iter(iocb, to);
1783 else if (fuse_file_passthrough(ff))
1784 return fuse_passthrough_read_iter(iocb, to);
1785 else
1786 return fuse_cache_read_iter(iocb, to);
1787 }
1788
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1789 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1790 {
1791 struct file *file = iocb->ki_filp;
1792 struct fuse_file *ff = file->private_data;
1793 struct inode *inode = file_inode(file);
1794
1795 if (fuse_is_bad(inode))
1796 return -EIO;
1797
1798 if (FUSE_IS_DAX(inode))
1799 return fuse_dax_write_iter(iocb, from);
1800
1801 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1802 if (ff->open_flags & FOPEN_DIRECT_IO)
1803 return fuse_direct_write_iter(iocb, from);
1804 else if (fuse_file_passthrough(ff))
1805 return fuse_passthrough_write_iter(iocb, from);
1806 else
1807 return fuse_cache_write_iter(iocb, from);
1808 }
1809
fuse_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1810 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos,
1811 struct pipe_inode_info *pipe, size_t len,
1812 unsigned int flags)
1813 {
1814 struct fuse_file *ff = in->private_data;
1815
1816 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1817 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1818 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags);
1819 else
1820 return filemap_splice_read(in, ppos, pipe, len, flags);
1821 }
1822
fuse_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1823 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out,
1824 loff_t *ppos, size_t len, unsigned int flags)
1825 {
1826 struct fuse_file *ff = out->private_data;
1827
1828 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1829 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1830 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags);
1831 else
1832 return iter_file_splice_write(pipe, out, ppos, len, flags);
1833 }
1834
fuse_writepage_free(struct fuse_writepage_args * wpa)1835 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1836 {
1837 struct fuse_args_pages *ap = &wpa->ia.ap;
1838 int i;
1839
1840 if (wpa->bucket)
1841 fuse_sync_bucket_dec(wpa->bucket);
1842
1843 for (i = 0; i < ap->num_folios; i++)
1844 folio_put(ap->folios[i]);
1845
1846 fuse_file_put(wpa->ia.ff, false);
1847
1848 kfree(ap->folios);
1849 kfree(wpa);
1850 }
1851
fuse_writepage_finish_stat(struct inode * inode,struct folio * folio)1852 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio)
1853 {
1854 struct backing_dev_info *bdi = inode_to_bdi(inode);
1855
1856 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1857 node_stat_sub_folio(folio, NR_WRITEBACK_TEMP);
1858 wb_writeout_inc(&bdi->wb);
1859 }
1860
fuse_writepage_finish(struct fuse_writepage_args * wpa)1861 static void fuse_writepage_finish(struct fuse_writepage_args *wpa)
1862 {
1863 struct fuse_args_pages *ap = &wpa->ia.ap;
1864 struct inode *inode = wpa->inode;
1865 struct fuse_inode *fi = get_fuse_inode(inode);
1866 int i;
1867
1868 for (i = 0; i < ap->num_folios; i++)
1869 fuse_writepage_finish_stat(inode, ap->folios[i]);
1870
1871 wake_up(&fi->page_waitq);
1872 }
1873
1874 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1875 static void fuse_send_writepage(struct fuse_mount *fm,
1876 struct fuse_writepage_args *wpa, loff_t size)
1877 __releases(fi->lock)
1878 __acquires(fi->lock)
1879 {
1880 struct fuse_writepage_args *aux, *next;
1881 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1882 struct fuse_write_in *inarg = &wpa->ia.write.in;
1883 struct fuse_args *args = &wpa->ia.ap.args;
1884 /* Currently, all folios in FUSE are one page */
1885 __u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE;
1886 int err;
1887
1888 fi->writectr++;
1889 if (inarg->offset + data_size <= size) {
1890 inarg->size = data_size;
1891 } else if (inarg->offset < size) {
1892 inarg->size = size - inarg->offset;
1893 } else {
1894 /* Got truncated off completely */
1895 goto out_free;
1896 }
1897
1898 args->in_args[1].size = inarg->size;
1899 args->force = true;
1900 args->nocreds = true;
1901
1902 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1903 if (err == -ENOMEM) {
1904 spin_unlock(&fi->lock);
1905 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1906 spin_lock(&fi->lock);
1907 }
1908
1909 /* Fails on broken connection only */
1910 if (unlikely(err))
1911 goto out_free;
1912
1913 return;
1914
1915 out_free:
1916 fi->writectr--;
1917 rb_erase(&wpa->writepages_entry, &fi->writepages);
1918 fuse_writepage_finish(wpa);
1919 spin_unlock(&fi->lock);
1920
1921 /* After rb_erase() aux request list is private */
1922 for (aux = wpa->next; aux; aux = next) {
1923 next = aux->next;
1924 aux->next = NULL;
1925 fuse_writepage_finish_stat(aux->inode,
1926 aux->ia.ap.folios[0]);
1927 fuse_writepage_free(aux);
1928 }
1929
1930 fuse_writepage_free(wpa);
1931 spin_lock(&fi->lock);
1932 }
1933
1934 /*
1935 * If fi->writectr is positive (no truncate or fsync going on) send
1936 * all queued writepage requests.
1937 *
1938 * Called with fi->lock
1939 */
fuse_flush_writepages(struct inode * inode)1940 void fuse_flush_writepages(struct inode *inode)
1941 __releases(fi->lock)
1942 __acquires(fi->lock)
1943 {
1944 struct fuse_mount *fm = get_fuse_mount(inode);
1945 struct fuse_inode *fi = get_fuse_inode(inode);
1946 loff_t crop = i_size_read(inode);
1947 struct fuse_writepage_args *wpa;
1948
1949 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1950 wpa = list_entry(fi->queued_writes.next,
1951 struct fuse_writepage_args, queue_entry);
1952 list_del_init(&wpa->queue_entry);
1953 fuse_send_writepage(fm, wpa, crop);
1954 }
1955 }
1956
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1957 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1958 struct fuse_writepage_args *wpa)
1959 {
1960 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1961 pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1;
1962 struct rb_node **p = &root->rb_node;
1963 struct rb_node *parent = NULL;
1964
1965 WARN_ON(!wpa->ia.ap.num_folios);
1966 while (*p) {
1967 struct fuse_writepage_args *curr;
1968 pgoff_t curr_index;
1969
1970 parent = *p;
1971 curr = rb_entry(parent, struct fuse_writepage_args,
1972 writepages_entry);
1973 WARN_ON(curr->inode != wpa->inode);
1974 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1975
1976 if (idx_from >= curr_index + curr->ia.ap.num_folios)
1977 p = &(*p)->rb_right;
1978 else if (idx_to < curr_index)
1979 p = &(*p)->rb_left;
1980 else
1981 return curr;
1982 }
1983
1984 rb_link_node(&wpa->writepages_entry, parent, p);
1985 rb_insert_color(&wpa->writepages_entry, root);
1986 return NULL;
1987 }
1988
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1989 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1990 {
1991 WARN_ON(fuse_insert_writeback(root, wpa));
1992 }
1993
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1994 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1995 int error)
1996 {
1997 struct fuse_writepage_args *wpa =
1998 container_of(args, typeof(*wpa), ia.ap.args);
1999 struct inode *inode = wpa->inode;
2000 struct fuse_inode *fi = get_fuse_inode(inode);
2001 struct fuse_conn *fc = get_fuse_conn(inode);
2002
2003 mapping_set_error(inode->i_mapping, error);
2004 /*
2005 * A writeback finished and this might have updated mtime/ctime on
2006 * server making local mtime/ctime stale. Hence invalidate attrs.
2007 * Do this only if writeback_cache is not enabled. If writeback_cache
2008 * is enabled, we trust local ctime/mtime.
2009 */
2010 if (!fc->writeback_cache)
2011 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
2012 spin_lock(&fi->lock);
2013 rb_erase(&wpa->writepages_entry, &fi->writepages);
2014 while (wpa->next) {
2015 struct fuse_mount *fm = get_fuse_mount(inode);
2016 struct fuse_write_in *inarg = &wpa->ia.write.in;
2017 struct fuse_writepage_args *next = wpa->next;
2018
2019 wpa->next = next->next;
2020 next->next = NULL;
2021 tree_insert(&fi->writepages, next);
2022
2023 /*
2024 * Skip fuse_flush_writepages() to make it easy to crop requests
2025 * based on primary request size.
2026 *
2027 * 1st case (trivial): there are no concurrent activities using
2028 * fuse_set/release_nowrite. Then we're on safe side because
2029 * fuse_flush_writepages() would call fuse_send_writepage()
2030 * anyway.
2031 *
2032 * 2nd case: someone called fuse_set_nowrite and it is waiting
2033 * now for completion of all in-flight requests. This happens
2034 * rarely and no more than once per page, so this should be
2035 * okay.
2036 *
2037 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
2038 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
2039 * that fuse_set_nowrite returned implies that all in-flight
2040 * requests were completed along with all of their secondary
2041 * requests. Further primary requests are blocked by negative
2042 * writectr. Hence there cannot be any in-flight requests and
2043 * no invocations of fuse_writepage_end() while we're in
2044 * fuse_set_nowrite..fuse_release_nowrite section.
2045 */
2046 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
2047 }
2048 fi->writectr--;
2049 fuse_writepage_finish(wpa);
2050 spin_unlock(&fi->lock);
2051 fuse_writepage_free(wpa);
2052 }
2053
__fuse_write_file_get(struct fuse_inode * fi)2054 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
2055 {
2056 struct fuse_file *ff;
2057
2058 spin_lock(&fi->lock);
2059 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
2060 write_entry);
2061 if (ff)
2062 fuse_file_get(ff);
2063 spin_unlock(&fi->lock);
2064
2065 return ff;
2066 }
2067
fuse_write_file_get(struct fuse_inode * fi)2068 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
2069 {
2070 struct fuse_file *ff = __fuse_write_file_get(fi);
2071 WARN_ON(!ff);
2072 return ff;
2073 }
2074
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)2075 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
2076 {
2077 struct fuse_inode *fi = get_fuse_inode(inode);
2078 struct fuse_file *ff;
2079 int err;
2080
2081 /*
2082 * Inode is always written before the last reference is dropped and
2083 * hence this should not be reached from reclaim.
2084 *
2085 * Writing back the inode from reclaim can deadlock if the request
2086 * processing itself needs an allocation. Allocations triggering
2087 * reclaim while serving a request can't be prevented, because it can
2088 * involve any number of unrelated userspace processes.
2089 */
2090 WARN_ON(wbc->for_reclaim);
2091
2092 ff = __fuse_write_file_get(fi);
2093 err = fuse_flush_times(inode, ff);
2094 if (ff)
2095 fuse_file_put(ff, false);
2096
2097 return err;
2098 }
2099
fuse_writepage_args_alloc(void)2100 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
2101 {
2102 struct fuse_writepage_args *wpa;
2103 struct fuse_args_pages *ap;
2104
2105 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
2106 if (wpa) {
2107 ap = &wpa->ia.ap;
2108 ap->num_folios = 0;
2109 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs);
2110 if (!ap->folios) {
2111 kfree(wpa);
2112 wpa = NULL;
2113 }
2114 }
2115 return wpa;
2116
2117 }
2118
fuse_writepage_add_to_bucket(struct fuse_conn * fc,struct fuse_writepage_args * wpa)2119 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
2120 struct fuse_writepage_args *wpa)
2121 {
2122 if (!fc->sync_fs)
2123 return;
2124
2125 rcu_read_lock();
2126 /* Prevent resurrection of dead bucket in unlikely race with syncfs */
2127 do {
2128 wpa->bucket = rcu_dereference(fc->curr_bucket);
2129 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
2130 rcu_read_unlock();
2131 }
2132
fuse_writepage_args_page_fill(struct fuse_writepage_args * wpa,struct folio * folio,struct folio * tmp_folio,uint32_t folio_index)2133 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio,
2134 struct folio *tmp_folio, uint32_t folio_index)
2135 {
2136 struct inode *inode = folio->mapping->host;
2137 struct fuse_args_pages *ap = &wpa->ia.ap;
2138
2139 folio_copy(tmp_folio, folio);
2140
2141 ap->folios[folio_index] = tmp_folio;
2142 ap->descs[folio_index].offset = 0;
2143 ap->descs[folio_index].length = PAGE_SIZE;
2144
2145 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2146 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP);
2147 }
2148
fuse_writepage_args_setup(struct folio * folio,struct fuse_file * ff)2149 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio,
2150 struct fuse_file *ff)
2151 {
2152 struct inode *inode = folio->mapping->host;
2153 struct fuse_conn *fc = get_fuse_conn(inode);
2154 struct fuse_writepage_args *wpa;
2155 struct fuse_args_pages *ap;
2156
2157 wpa = fuse_writepage_args_alloc();
2158 if (!wpa)
2159 return NULL;
2160
2161 fuse_writepage_add_to_bucket(fc, wpa);
2162 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0);
2163 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2164 wpa->inode = inode;
2165 wpa->ia.ff = ff;
2166
2167 ap = &wpa->ia.ap;
2168 ap->args.in_pages = true;
2169 ap->args.end = fuse_writepage_end;
2170
2171 return wpa;
2172 }
2173
fuse_writepage_locked(struct folio * folio)2174 static int fuse_writepage_locked(struct folio *folio)
2175 {
2176 struct address_space *mapping = folio->mapping;
2177 struct inode *inode = mapping->host;
2178 struct fuse_inode *fi = get_fuse_inode(inode);
2179 struct fuse_writepage_args *wpa;
2180 struct fuse_args_pages *ap;
2181 struct folio *tmp_folio;
2182 struct fuse_file *ff;
2183 int error = -ENOMEM;
2184
2185 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2186 if (!tmp_folio)
2187 goto err;
2188
2189 error = -EIO;
2190 ff = fuse_write_file_get(fi);
2191 if (!ff)
2192 goto err_nofile;
2193
2194 wpa = fuse_writepage_args_setup(folio, ff);
2195 error = -ENOMEM;
2196 if (!wpa)
2197 goto err_writepage_args;
2198
2199 ap = &wpa->ia.ap;
2200 ap->num_folios = 1;
2201
2202 folio_start_writeback(folio);
2203 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0);
2204
2205 spin_lock(&fi->lock);
2206 tree_insert(&fi->writepages, wpa);
2207 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2208 fuse_flush_writepages(inode);
2209 spin_unlock(&fi->lock);
2210
2211 folio_end_writeback(folio);
2212
2213 return 0;
2214
2215 err_writepage_args:
2216 fuse_file_put(ff, false);
2217 err_nofile:
2218 folio_put(tmp_folio);
2219 err:
2220 mapping_set_error(folio->mapping, error);
2221 return error;
2222 }
2223
2224 struct fuse_fill_wb_data {
2225 struct fuse_writepage_args *wpa;
2226 struct fuse_file *ff;
2227 struct inode *inode;
2228 struct folio **orig_folios;
2229 unsigned int max_folios;
2230 };
2231
fuse_pages_realloc(struct fuse_fill_wb_data * data)2232 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2233 {
2234 struct fuse_args_pages *ap = &data->wpa->ia.ap;
2235 struct fuse_conn *fc = get_fuse_conn(data->inode);
2236 struct folio **folios;
2237 struct fuse_folio_desc *descs;
2238 unsigned int nfolios = min_t(unsigned int,
2239 max_t(unsigned int, data->max_folios * 2,
2240 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2241 fc->max_pages);
2242 WARN_ON(nfolios <= data->max_folios);
2243
2244 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs);
2245 if (!folios)
2246 return false;
2247
2248 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios);
2249 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios);
2250 kfree(ap->folios);
2251 ap->folios = folios;
2252 ap->descs = descs;
2253 data->max_folios = nfolios;
2254
2255 return true;
2256 }
2257
fuse_writepages_send(struct fuse_fill_wb_data * data)2258 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2259 {
2260 struct fuse_writepage_args *wpa = data->wpa;
2261 struct inode *inode = data->inode;
2262 struct fuse_inode *fi = get_fuse_inode(inode);
2263 int num_folios = wpa->ia.ap.num_folios;
2264 int i;
2265
2266 spin_lock(&fi->lock);
2267 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2268 fuse_flush_writepages(inode);
2269 spin_unlock(&fi->lock);
2270
2271 for (i = 0; i < num_folios; i++)
2272 folio_end_writeback(data->orig_folios[i]);
2273 }
2274
2275 /*
2276 * Check under fi->lock if the page is under writeback, and insert it onto the
2277 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2278 * one already added for a page at this offset. If there's none, then insert
2279 * this new request onto the auxiliary list, otherwise reuse the existing one by
2280 * swapping the new temp page with the old one.
2281 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct folio * folio)2282 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2283 struct folio *folio)
2284 {
2285 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2286 struct fuse_writepage_args *tmp;
2287 struct fuse_writepage_args *old_wpa;
2288 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2289
2290 WARN_ON(new_ap->num_folios != 0);
2291 new_ap->num_folios = 1;
2292
2293 spin_lock(&fi->lock);
2294 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2295 if (!old_wpa) {
2296 spin_unlock(&fi->lock);
2297 return true;
2298 }
2299
2300 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2301 pgoff_t curr_index;
2302
2303 WARN_ON(tmp->inode != new_wpa->inode);
2304 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2305 if (curr_index == folio->index) {
2306 WARN_ON(tmp->ia.ap.num_folios != 1);
2307 swap(tmp->ia.ap.folios[0], new_ap->folios[0]);
2308 break;
2309 }
2310 }
2311
2312 if (!tmp) {
2313 new_wpa->next = old_wpa->next;
2314 old_wpa->next = new_wpa;
2315 }
2316
2317 spin_unlock(&fi->lock);
2318
2319 if (tmp) {
2320 fuse_writepage_finish_stat(new_wpa->inode,
2321 folio);
2322 fuse_writepage_free(new_wpa);
2323 }
2324
2325 return false;
2326 }
2327
fuse_writepage_need_send(struct fuse_conn * fc,struct folio * folio,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2328 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio,
2329 struct fuse_args_pages *ap,
2330 struct fuse_fill_wb_data *data)
2331 {
2332 WARN_ON(!ap->num_folios);
2333
2334 /*
2335 * Being under writeback is unlikely but possible. For example direct
2336 * read to an mmaped fuse file will set the page dirty twice; once when
2337 * the pages are faulted with get_user_pages(), and then after the read
2338 * completed.
2339 */
2340 if (fuse_folio_is_writeback(data->inode, folio))
2341 return true;
2342
2343 /* Reached max pages */
2344 if (ap->num_folios == fc->max_pages)
2345 return true;
2346
2347 /* Reached max write bytes */
2348 if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write)
2349 return true;
2350
2351 /* Discontinuity */
2352 if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio))
2353 return true;
2354
2355 /* Need to grow the pages array? If so, did the expansion fail? */
2356 if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data))
2357 return true;
2358
2359 return false;
2360 }
2361
fuse_writepages_fill(struct folio * folio,struct writeback_control * wbc,void * _data)2362 static int fuse_writepages_fill(struct folio *folio,
2363 struct writeback_control *wbc, void *_data)
2364 {
2365 struct fuse_fill_wb_data *data = _data;
2366 struct fuse_writepage_args *wpa = data->wpa;
2367 struct fuse_args_pages *ap = &wpa->ia.ap;
2368 struct inode *inode = data->inode;
2369 struct fuse_inode *fi = get_fuse_inode(inode);
2370 struct fuse_conn *fc = get_fuse_conn(inode);
2371 struct folio *tmp_folio;
2372 int err;
2373
2374 if (!data->ff) {
2375 err = -EIO;
2376 data->ff = fuse_write_file_get(fi);
2377 if (!data->ff)
2378 goto out_unlock;
2379 }
2380
2381 if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) {
2382 fuse_writepages_send(data);
2383 data->wpa = NULL;
2384 }
2385
2386 err = -ENOMEM;
2387 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2388 if (!tmp_folio)
2389 goto out_unlock;
2390
2391 /*
2392 * The page must not be redirtied until the writeout is completed
2393 * (i.e. userspace has sent a reply to the write request). Otherwise
2394 * there could be more than one temporary page instance for each real
2395 * page.
2396 *
2397 * This is ensured by holding the page lock in page_mkwrite() while
2398 * checking fuse_page_is_writeback(). We already hold the page lock
2399 * since clear_page_dirty_for_io() and keep it held until we add the
2400 * request to the fi->writepages list and increment ap->num_folios.
2401 * After this fuse_page_is_writeback() will indicate that the page is
2402 * under writeback, so we can release the page lock.
2403 */
2404 if (data->wpa == NULL) {
2405 err = -ENOMEM;
2406 wpa = fuse_writepage_args_setup(folio, data->ff);
2407 if (!wpa) {
2408 folio_put(tmp_folio);
2409 goto out_unlock;
2410 }
2411 fuse_file_get(wpa->ia.ff);
2412 data->max_folios = 1;
2413 ap = &wpa->ia.ap;
2414 }
2415 folio_start_writeback(folio);
2416
2417 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios);
2418 data->orig_folios[ap->num_folios] = folio;
2419
2420 err = 0;
2421 if (data->wpa) {
2422 /*
2423 * Protected by fi->lock against concurrent access by
2424 * fuse_page_is_writeback().
2425 */
2426 spin_lock(&fi->lock);
2427 ap->num_folios++;
2428 spin_unlock(&fi->lock);
2429 } else if (fuse_writepage_add(wpa, folio)) {
2430 data->wpa = wpa;
2431 } else {
2432 folio_end_writeback(folio);
2433 }
2434 out_unlock:
2435 folio_unlock(folio);
2436
2437 return err;
2438 }
2439
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2440 static int fuse_writepages(struct address_space *mapping,
2441 struct writeback_control *wbc)
2442 {
2443 struct inode *inode = mapping->host;
2444 struct fuse_conn *fc = get_fuse_conn(inode);
2445 struct fuse_fill_wb_data data;
2446 int err;
2447
2448 err = -EIO;
2449 if (fuse_is_bad(inode))
2450 goto out;
2451
2452 if (wbc->sync_mode == WB_SYNC_NONE &&
2453 fc->num_background >= fc->congestion_threshold)
2454 return 0;
2455
2456 data.inode = inode;
2457 data.wpa = NULL;
2458 data.ff = NULL;
2459
2460 err = -ENOMEM;
2461 data.orig_folios = kcalloc(fc->max_pages,
2462 sizeof(struct folio *),
2463 GFP_NOFS);
2464 if (!data.orig_folios)
2465 goto out;
2466
2467 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2468 if (data.wpa) {
2469 WARN_ON(!data.wpa->ia.ap.num_folios);
2470 fuse_writepages_send(&data);
2471 }
2472 if (data.ff)
2473 fuse_file_put(data.ff, false);
2474
2475 kfree(data.orig_folios);
2476 out:
2477 return err;
2478 }
2479
2480 /*
2481 * It's worthy to make sure that space is reserved on disk for the write,
2482 * but how to implement it without killing performance need more thinking.
2483 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2484 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2485 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
2486 {
2487 pgoff_t index = pos >> PAGE_SHIFT;
2488 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2489 struct folio *folio;
2490 loff_t fsize;
2491 int err = -ENOMEM;
2492
2493 WARN_ON(!fc->writeback_cache);
2494
2495 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2496 mapping_gfp_mask(mapping));
2497 if (IS_ERR(folio))
2498 goto error;
2499
2500 fuse_wait_on_page_writeback(mapping->host, folio->index);
2501
2502 if (folio_test_uptodate(folio) || len >= folio_size(folio))
2503 goto success;
2504 /*
2505 * Check if the start of this folio comes after the end of file,
2506 * in which case the readpage can be optimized away.
2507 */
2508 fsize = i_size_read(mapping->host);
2509 if (fsize <= folio_pos(folio)) {
2510 size_t off = offset_in_folio(folio, pos);
2511 if (off)
2512 folio_zero_segment(folio, 0, off);
2513 goto success;
2514 }
2515 err = fuse_do_readfolio(file, folio);
2516 if (err)
2517 goto cleanup;
2518 success:
2519 *foliop = folio;
2520 return 0;
2521
2522 cleanup:
2523 folio_unlock(folio);
2524 folio_put(folio);
2525 error:
2526 return err;
2527 }
2528
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2529 static int fuse_write_end(struct file *file, struct address_space *mapping,
2530 loff_t pos, unsigned len, unsigned copied,
2531 struct folio *folio, void *fsdata)
2532 {
2533 struct inode *inode = folio->mapping->host;
2534
2535 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2536 if (!copied)
2537 goto unlock;
2538
2539 pos += copied;
2540 if (!folio_test_uptodate(folio)) {
2541 /* Zero any unwritten bytes at the end of the page */
2542 size_t endoff = pos & ~PAGE_MASK;
2543 if (endoff)
2544 folio_zero_segment(folio, endoff, PAGE_SIZE);
2545 folio_mark_uptodate(folio);
2546 }
2547
2548 if (pos > inode->i_size)
2549 i_size_write(inode, pos);
2550
2551 folio_mark_dirty(folio);
2552
2553 unlock:
2554 folio_unlock(folio);
2555 folio_put(folio);
2556
2557 return copied;
2558 }
2559
fuse_launder_folio(struct folio * folio)2560 static int fuse_launder_folio(struct folio *folio)
2561 {
2562 int err = 0;
2563 if (folio_clear_dirty_for_io(folio)) {
2564 struct inode *inode = folio->mapping->host;
2565
2566 /* Serialize with pending writeback for the same page */
2567 fuse_wait_on_page_writeback(inode, folio->index);
2568 err = fuse_writepage_locked(folio);
2569 if (!err)
2570 fuse_wait_on_page_writeback(inode, folio->index);
2571 }
2572 return err;
2573 }
2574
2575 /*
2576 * Write back dirty data/metadata now (there may not be any suitable
2577 * open files later for data)
2578 */
fuse_vma_close(struct vm_area_struct * vma)2579 static void fuse_vma_close(struct vm_area_struct *vma)
2580 {
2581 int err;
2582
2583 err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2584 mapping_set_error(vma->vm_file->f_mapping, err);
2585 }
2586
2587 /*
2588 * Wait for writeback against this page to complete before allowing it
2589 * to be marked dirty again, and hence written back again, possibly
2590 * before the previous writepage completed.
2591 *
2592 * Block here, instead of in ->writepage(), so that the userspace fs
2593 * can only block processes actually operating on the filesystem.
2594 *
2595 * Otherwise unprivileged userspace fs would be able to block
2596 * unrelated:
2597 *
2598 * - page migration
2599 * - sync(2)
2600 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2601 */
fuse_page_mkwrite(struct vm_fault * vmf)2602 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2603 {
2604 struct folio *folio = page_folio(vmf->page);
2605 struct inode *inode = file_inode(vmf->vma->vm_file);
2606
2607 file_update_time(vmf->vma->vm_file);
2608 folio_lock(folio);
2609 if (folio->mapping != inode->i_mapping) {
2610 folio_unlock(folio);
2611 return VM_FAULT_NOPAGE;
2612 }
2613
2614 fuse_wait_on_folio_writeback(inode, folio);
2615 return VM_FAULT_LOCKED;
2616 }
2617
2618 static const struct vm_operations_struct fuse_file_vm_ops = {
2619 .close = fuse_vma_close,
2620 .fault = filemap_fault,
2621 .map_pages = filemap_map_pages,
2622 .page_mkwrite = fuse_page_mkwrite,
2623 };
2624
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2625 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2626 {
2627 struct fuse_file *ff = file->private_data;
2628 struct fuse_conn *fc = ff->fm->fc;
2629 struct inode *inode = file_inode(file);
2630 int rc;
2631
2632 /* DAX mmap is superior to direct_io mmap */
2633 if (FUSE_IS_DAX(inode))
2634 return fuse_dax_mmap(file, vma);
2635
2636 /*
2637 * If inode is in passthrough io mode, because it has some file open
2638 * in passthrough mode, either mmap to backing file or fail mmap,
2639 * because mixing cached mmap and passthrough io mode is not allowed.
2640 */
2641 if (fuse_file_passthrough(ff))
2642 return fuse_passthrough_mmap(file, vma);
2643 else if (fuse_inode_backing(get_fuse_inode(inode)))
2644 return -ENODEV;
2645
2646 /*
2647 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT,
2648 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP.
2649 */
2650 if (ff->open_flags & FOPEN_DIRECT_IO) {
2651 /*
2652 * Can't provide the coherency needed for MAP_SHARED
2653 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set.
2654 */
2655 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap)
2656 return -ENODEV;
2657
2658 invalidate_inode_pages2(file->f_mapping);
2659
2660 if (!(vma->vm_flags & VM_MAYSHARE)) {
2661 /* MAP_PRIVATE */
2662 return generic_file_mmap(file, vma);
2663 }
2664
2665 /*
2666 * First mmap of direct_io file enters caching inode io mode.
2667 * Also waits for parallel dio writers to go into serial mode
2668 * (exclusive instead of shared lock).
2669 * After first mmap, the inode stays in caching io mode until
2670 * the direct_io file release.
2671 */
2672 rc = fuse_file_cached_io_open(inode, ff);
2673 if (rc)
2674 return rc;
2675 }
2676
2677 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2678 fuse_link_write_file(file);
2679
2680 file_accessed(file);
2681 vma->vm_ops = &fuse_file_vm_ops;
2682 return 0;
2683 }
2684
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2685 static int convert_fuse_file_lock(struct fuse_conn *fc,
2686 const struct fuse_file_lock *ffl,
2687 struct file_lock *fl)
2688 {
2689 switch (ffl->type) {
2690 case F_UNLCK:
2691 break;
2692
2693 case F_RDLCK:
2694 case F_WRLCK:
2695 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2696 ffl->end < ffl->start)
2697 return -EIO;
2698
2699 fl->fl_start = ffl->start;
2700 fl->fl_end = ffl->end;
2701
2702 /*
2703 * Convert pid into init's pid namespace. The locks API will
2704 * translate it into the caller's pid namespace.
2705 */
2706 rcu_read_lock();
2707 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2708 rcu_read_unlock();
2709 break;
2710
2711 default:
2712 return -EIO;
2713 }
2714 fl->c.flc_type = ffl->type;
2715 return 0;
2716 }
2717
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2718 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2719 const struct file_lock *fl, int opcode, pid_t pid,
2720 int flock, struct fuse_lk_in *inarg)
2721 {
2722 struct inode *inode = file_inode(file);
2723 struct fuse_conn *fc = get_fuse_conn(inode);
2724 struct fuse_file *ff = file->private_data;
2725
2726 memset(inarg, 0, sizeof(*inarg));
2727 inarg->fh = ff->fh;
2728 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner);
2729 inarg->lk.start = fl->fl_start;
2730 inarg->lk.end = fl->fl_end;
2731 inarg->lk.type = fl->c.flc_type;
2732 inarg->lk.pid = pid;
2733 if (flock)
2734 inarg->lk_flags |= FUSE_LK_FLOCK;
2735 args->opcode = opcode;
2736 args->nodeid = get_node_id(inode);
2737 args->in_numargs = 1;
2738 args->in_args[0].size = sizeof(*inarg);
2739 args->in_args[0].value = inarg;
2740 }
2741
fuse_getlk(struct file * file,struct file_lock * fl)2742 static int fuse_getlk(struct file *file, struct file_lock *fl)
2743 {
2744 struct inode *inode = file_inode(file);
2745 struct fuse_mount *fm = get_fuse_mount(inode);
2746 FUSE_ARGS(args);
2747 struct fuse_lk_in inarg;
2748 struct fuse_lk_out outarg;
2749 int err;
2750
2751 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2752 args.out_numargs = 1;
2753 args.out_args[0].size = sizeof(outarg);
2754 args.out_args[0].value = &outarg;
2755 err = fuse_simple_request(fm, &args);
2756 if (!err)
2757 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2758
2759 return err;
2760 }
2761
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2762 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2763 {
2764 struct inode *inode = file_inode(file);
2765 struct fuse_mount *fm = get_fuse_mount(inode);
2766 FUSE_ARGS(args);
2767 struct fuse_lk_in inarg;
2768 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2769 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL;
2770 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2771 int err;
2772
2773 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2774 /* NLM needs asynchronous locks, which we don't support yet */
2775 return -ENOLCK;
2776 }
2777
2778 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2779 err = fuse_simple_request(fm, &args);
2780
2781 /* locking is restartable */
2782 if (err == -EINTR)
2783 err = -ERESTARTSYS;
2784
2785 return err;
2786 }
2787
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2788 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2789 {
2790 struct inode *inode = file_inode(file);
2791 struct fuse_conn *fc = get_fuse_conn(inode);
2792 int err;
2793
2794 if (cmd == F_CANCELLK) {
2795 err = 0;
2796 } else if (cmd == F_GETLK) {
2797 if (fc->no_lock) {
2798 posix_test_lock(file, fl);
2799 err = 0;
2800 } else
2801 err = fuse_getlk(file, fl);
2802 } else {
2803 if (fc->no_lock)
2804 err = posix_lock_file(file, fl, NULL);
2805 else
2806 err = fuse_setlk(file, fl, 0);
2807 }
2808 return err;
2809 }
2810
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2811 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2812 {
2813 struct inode *inode = file_inode(file);
2814 struct fuse_conn *fc = get_fuse_conn(inode);
2815 int err;
2816
2817 if (fc->no_flock) {
2818 err = locks_lock_file_wait(file, fl);
2819 } else {
2820 struct fuse_file *ff = file->private_data;
2821
2822 /* emulate flock with POSIX locks */
2823 ff->flock = true;
2824 err = fuse_setlk(file, fl, 1);
2825 }
2826
2827 return err;
2828 }
2829
fuse_bmap(struct address_space * mapping,sector_t block)2830 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2831 {
2832 struct inode *inode = mapping->host;
2833 struct fuse_mount *fm = get_fuse_mount(inode);
2834 FUSE_ARGS(args);
2835 struct fuse_bmap_in inarg;
2836 struct fuse_bmap_out outarg;
2837 int err;
2838
2839 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2840 return 0;
2841
2842 memset(&inarg, 0, sizeof(inarg));
2843 inarg.block = block;
2844 inarg.blocksize = inode->i_sb->s_blocksize;
2845 args.opcode = FUSE_BMAP;
2846 args.nodeid = get_node_id(inode);
2847 args.in_numargs = 1;
2848 args.in_args[0].size = sizeof(inarg);
2849 args.in_args[0].value = &inarg;
2850 args.out_numargs = 1;
2851 args.out_args[0].size = sizeof(outarg);
2852 args.out_args[0].value = &outarg;
2853 err = fuse_simple_request(fm, &args);
2854 if (err == -ENOSYS)
2855 fm->fc->no_bmap = 1;
2856
2857 return err ? 0 : outarg.block;
2858 }
2859
fuse_lseek(struct file * file,loff_t offset,int whence)2860 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2861 {
2862 struct inode *inode = file->f_mapping->host;
2863 struct fuse_mount *fm = get_fuse_mount(inode);
2864 struct fuse_file *ff = file->private_data;
2865 FUSE_ARGS(args);
2866 struct fuse_lseek_in inarg = {
2867 .fh = ff->fh,
2868 .offset = offset,
2869 .whence = whence
2870 };
2871 struct fuse_lseek_out outarg;
2872 int err;
2873
2874 if (fm->fc->no_lseek)
2875 goto fallback;
2876
2877 args.opcode = FUSE_LSEEK;
2878 args.nodeid = ff->nodeid;
2879 args.in_numargs = 1;
2880 args.in_args[0].size = sizeof(inarg);
2881 args.in_args[0].value = &inarg;
2882 args.out_numargs = 1;
2883 args.out_args[0].size = sizeof(outarg);
2884 args.out_args[0].value = &outarg;
2885 err = fuse_simple_request(fm, &args);
2886 if (err) {
2887 if (err == -ENOSYS) {
2888 fm->fc->no_lseek = 1;
2889 goto fallback;
2890 }
2891 return err;
2892 }
2893
2894 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2895
2896 fallback:
2897 err = fuse_update_attributes(inode, file, STATX_SIZE);
2898 if (!err)
2899 return generic_file_llseek(file, offset, whence);
2900 else
2901 return err;
2902 }
2903
fuse_file_llseek(struct file * file,loff_t offset,int whence)2904 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2905 {
2906 loff_t retval;
2907 struct inode *inode = file_inode(file);
2908
2909 switch (whence) {
2910 case SEEK_SET:
2911 case SEEK_CUR:
2912 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2913 retval = generic_file_llseek(file, offset, whence);
2914 break;
2915 case SEEK_END:
2916 inode_lock(inode);
2917 retval = fuse_update_attributes(inode, file, STATX_SIZE);
2918 if (!retval)
2919 retval = generic_file_llseek(file, offset, whence);
2920 inode_unlock(inode);
2921 break;
2922 case SEEK_HOLE:
2923 case SEEK_DATA:
2924 inode_lock(inode);
2925 retval = fuse_lseek(file, offset, whence);
2926 inode_unlock(inode);
2927 break;
2928 default:
2929 retval = -EINVAL;
2930 }
2931
2932 return retval;
2933 }
2934
2935 /*
2936 * All files which have been polled are linked to RB tree
2937 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2938 * find the matching one.
2939 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2940 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2941 struct rb_node **parent_out)
2942 {
2943 struct rb_node **link = &fc->polled_files.rb_node;
2944 struct rb_node *last = NULL;
2945
2946 while (*link) {
2947 struct fuse_file *ff;
2948
2949 last = *link;
2950 ff = rb_entry(last, struct fuse_file, polled_node);
2951
2952 if (kh < ff->kh)
2953 link = &last->rb_left;
2954 else if (kh > ff->kh)
2955 link = &last->rb_right;
2956 else
2957 return link;
2958 }
2959
2960 if (parent_out)
2961 *parent_out = last;
2962 return link;
2963 }
2964
2965 /*
2966 * The file is about to be polled. Make sure it's on the polled_files
2967 * RB tree. Note that files once added to the polled_files tree are
2968 * not removed before the file is released. This is because a file
2969 * polled once is likely to be polled again.
2970 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2971 static void fuse_register_polled_file(struct fuse_conn *fc,
2972 struct fuse_file *ff)
2973 {
2974 spin_lock(&fc->lock);
2975 if (RB_EMPTY_NODE(&ff->polled_node)) {
2976 struct rb_node **link, *parent;
2977
2978 link = fuse_find_polled_node(fc, ff->kh, &parent);
2979 BUG_ON(*link);
2980 rb_link_node(&ff->polled_node, parent, link);
2981 rb_insert_color(&ff->polled_node, &fc->polled_files);
2982 }
2983 spin_unlock(&fc->lock);
2984 }
2985
fuse_file_poll(struct file * file,poll_table * wait)2986 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2987 {
2988 struct fuse_file *ff = file->private_data;
2989 struct fuse_mount *fm = ff->fm;
2990 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2991 struct fuse_poll_out outarg;
2992 FUSE_ARGS(args);
2993 int err;
2994
2995 if (fm->fc->no_poll)
2996 return DEFAULT_POLLMASK;
2997
2998 poll_wait(file, &ff->poll_wait, wait);
2999 inarg.events = mangle_poll(poll_requested_events(wait));
3000
3001 /*
3002 * Ask for notification iff there's someone waiting for it.
3003 * The client may ignore the flag and always notify.
3004 */
3005 if (waitqueue_active(&ff->poll_wait)) {
3006 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3007 fuse_register_polled_file(fm->fc, ff);
3008 }
3009
3010 args.opcode = FUSE_POLL;
3011 args.nodeid = ff->nodeid;
3012 args.in_numargs = 1;
3013 args.in_args[0].size = sizeof(inarg);
3014 args.in_args[0].value = &inarg;
3015 args.out_numargs = 1;
3016 args.out_args[0].size = sizeof(outarg);
3017 args.out_args[0].value = &outarg;
3018 err = fuse_simple_request(fm, &args);
3019
3020 if (!err)
3021 return demangle_poll(outarg.revents);
3022 if (err == -ENOSYS) {
3023 fm->fc->no_poll = 1;
3024 return DEFAULT_POLLMASK;
3025 }
3026 return EPOLLERR;
3027 }
3028 EXPORT_SYMBOL_GPL(fuse_file_poll);
3029
3030 /*
3031 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3032 * wakes up the poll waiters.
3033 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3034 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3035 struct fuse_notify_poll_wakeup_out *outarg)
3036 {
3037 u64 kh = outarg->kh;
3038 struct rb_node **link;
3039
3040 spin_lock(&fc->lock);
3041
3042 link = fuse_find_polled_node(fc, kh, NULL);
3043 if (*link) {
3044 struct fuse_file *ff;
3045
3046 ff = rb_entry(*link, struct fuse_file, polled_node);
3047 wake_up_interruptible_sync(&ff->poll_wait);
3048 }
3049
3050 spin_unlock(&fc->lock);
3051 return 0;
3052 }
3053
fuse_do_truncate(struct file * file)3054 static void fuse_do_truncate(struct file *file)
3055 {
3056 struct inode *inode = file->f_mapping->host;
3057 struct iattr attr;
3058
3059 attr.ia_valid = ATTR_SIZE;
3060 attr.ia_size = i_size_read(inode);
3061
3062 attr.ia_file = file;
3063 attr.ia_valid |= ATTR_FILE;
3064
3065 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file);
3066 }
3067
fuse_round_up(struct fuse_conn * fc,loff_t off)3068 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3069 {
3070 return round_up(off, fc->max_pages << PAGE_SHIFT);
3071 }
3072
3073 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3074 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3075 {
3076 DECLARE_COMPLETION_ONSTACK(wait);
3077 ssize_t ret = 0;
3078 struct file *file = iocb->ki_filp;
3079 struct fuse_file *ff = file->private_data;
3080 loff_t pos = 0;
3081 struct inode *inode;
3082 loff_t i_size;
3083 size_t count = iov_iter_count(iter), shortened = 0;
3084 loff_t offset = iocb->ki_pos;
3085 struct fuse_io_priv *io;
3086
3087 pos = offset;
3088 inode = file->f_mapping->host;
3089 i_size = i_size_read(inode);
3090
3091 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3092 return 0;
3093
3094 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3095 if (!io)
3096 return -ENOMEM;
3097 spin_lock_init(&io->lock);
3098 kref_init(&io->refcnt);
3099 io->reqs = 1;
3100 io->bytes = -1;
3101 io->size = 0;
3102 io->offset = offset;
3103 io->write = (iov_iter_rw(iter) == WRITE);
3104 io->err = 0;
3105 /*
3106 * By default, we want to optimize all I/Os with async request
3107 * submission to the client filesystem if supported.
3108 */
3109 io->async = ff->fm->fc->async_dio;
3110 io->iocb = iocb;
3111 io->blocking = is_sync_kiocb(iocb);
3112
3113 /* optimization for short read */
3114 if (io->async && !io->write && offset + count > i_size) {
3115 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3116 shortened = count - iov_iter_count(iter);
3117 count -= shortened;
3118 }
3119
3120 /*
3121 * We cannot asynchronously extend the size of a file.
3122 * In such case the aio will behave exactly like sync io.
3123 */
3124 if ((offset + count > i_size) && io->write)
3125 io->blocking = true;
3126
3127 if (io->async && io->blocking) {
3128 /*
3129 * Additional reference to keep io around after
3130 * calling fuse_aio_complete()
3131 */
3132 kref_get(&io->refcnt);
3133 io->done = &wait;
3134 }
3135
3136 if (iov_iter_rw(iter) == WRITE) {
3137 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3138 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3139 } else {
3140 ret = __fuse_direct_read(io, iter, &pos);
3141 }
3142 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3143
3144 if (io->async) {
3145 bool blocking = io->blocking;
3146
3147 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3148
3149 /* we have a non-extending, async request, so return */
3150 if (!blocking)
3151 return -EIOCBQUEUED;
3152
3153 wait_for_completion(&wait);
3154 ret = fuse_get_res_by_io(io);
3155 }
3156
3157 kref_put(&io->refcnt, fuse_io_release);
3158
3159 if (iov_iter_rw(iter) == WRITE) {
3160 fuse_write_update_attr(inode, pos, ret);
3161 /* For extending writes we already hold exclusive lock */
3162 if (ret < 0 && offset + count > i_size)
3163 fuse_do_truncate(file);
3164 }
3165
3166 return ret;
3167 }
3168
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3169 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3170 {
3171 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3172
3173 if (!err)
3174 fuse_sync_writes(inode);
3175
3176 return err;
3177 }
3178
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3179 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3180 loff_t length)
3181 {
3182 struct fuse_file *ff = file->private_data;
3183 struct inode *inode = file_inode(file);
3184 struct fuse_inode *fi = get_fuse_inode(inode);
3185 struct fuse_mount *fm = ff->fm;
3186 FUSE_ARGS(args);
3187 struct fuse_fallocate_in inarg = {
3188 .fh = ff->fh,
3189 .offset = offset,
3190 .length = length,
3191 .mode = mode
3192 };
3193 int err;
3194 bool block_faults = FUSE_IS_DAX(inode) &&
3195 (!(mode & FALLOC_FL_KEEP_SIZE) ||
3196 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3197
3198 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3199 FALLOC_FL_ZERO_RANGE))
3200 return -EOPNOTSUPP;
3201
3202 if (fm->fc->no_fallocate)
3203 return -EOPNOTSUPP;
3204
3205 inode_lock(inode);
3206 if (block_faults) {
3207 filemap_invalidate_lock(inode->i_mapping);
3208 err = fuse_dax_break_layouts(inode, 0, 0);
3209 if (err)
3210 goto out;
3211 }
3212
3213 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3214 loff_t endbyte = offset + length - 1;
3215
3216 err = fuse_writeback_range(inode, offset, endbyte);
3217 if (err)
3218 goto out;
3219 }
3220
3221 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3222 offset + length > i_size_read(inode)) {
3223 err = inode_newsize_ok(inode, offset + length);
3224 if (err)
3225 goto out;
3226 }
3227
3228 err = file_modified(file);
3229 if (err)
3230 goto out;
3231
3232 if (!(mode & FALLOC_FL_KEEP_SIZE))
3233 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3234
3235 args.opcode = FUSE_FALLOCATE;
3236 args.nodeid = ff->nodeid;
3237 args.in_numargs = 1;
3238 args.in_args[0].size = sizeof(inarg);
3239 args.in_args[0].value = &inarg;
3240 err = fuse_simple_request(fm, &args);
3241 if (err == -ENOSYS) {
3242 fm->fc->no_fallocate = 1;
3243 err = -EOPNOTSUPP;
3244 }
3245 if (err)
3246 goto out;
3247
3248 /* we could have extended the file */
3249 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3250 if (fuse_write_update_attr(inode, offset + length, length))
3251 file_update_time(file);
3252 }
3253
3254 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3255 truncate_pagecache_range(inode, offset, offset + length - 1);
3256
3257 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3258
3259 out:
3260 if (!(mode & FALLOC_FL_KEEP_SIZE))
3261 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3262
3263 if (block_faults)
3264 filemap_invalidate_unlock(inode->i_mapping);
3265
3266 inode_unlock(inode);
3267
3268 fuse_flush_time_update(inode);
3269
3270 return err;
3271 }
3272
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3273 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3274 struct file *file_out, loff_t pos_out,
3275 size_t len, unsigned int flags)
3276 {
3277 struct fuse_file *ff_in = file_in->private_data;
3278 struct fuse_file *ff_out = file_out->private_data;
3279 struct inode *inode_in = file_inode(file_in);
3280 struct inode *inode_out = file_inode(file_out);
3281 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3282 struct fuse_mount *fm = ff_in->fm;
3283 struct fuse_conn *fc = fm->fc;
3284 FUSE_ARGS(args);
3285 struct fuse_copy_file_range_in inarg = {
3286 .fh_in = ff_in->fh,
3287 .off_in = pos_in,
3288 .nodeid_out = ff_out->nodeid,
3289 .fh_out = ff_out->fh,
3290 .off_out = pos_out,
3291 .len = len,
3292 .flags = flags
3293 };
3294 struct fuse_write_out outarg;
3295 ssize_t err;
3296 /* mark unstable when write-back is not used, and file_out gets
3297 * extended */
3298 bool is_unstable = (!fc->writeback_cache) &&
3299 ((pos_out + len) > inode_out->i_size);
3300
3301 if (fc->no_copy_file_range)
3302 return -EOPNOTSUPP;
3303
3304 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3305 return -EXDEV;
3306
3307 inode_lock(inode_in);
3308 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3309 inode_unlock(inode_in);
3310 if (err)
3311 return err;
3312
3313 inode_lock(inode_out);
3314
3315 err = file_modified(file_out);
3316 if (err)
3317 goto out;
3318
3319 /*
3320 * Write out dirty pages in the destination file before sending the COPY
3321 * request to userspace. After the request is completed, truncate off
3322 * pages (including partial ones) from the cache that have been copied,
3323 * since these contain stale data at that point.
3324 *
3325 * This should be mostly correct, but if the COPY writes to partial
3326 * pages (at the start or end) and the parts not covered by the COPY are
3327 * written through a memory map after calling fuse_writeback_range(),
3328 * then these partial page modifications will be lost on truncation.
3329 *
3330 * It is unlikely that someone would rely on such mixed style
3331 * modifications. Yet this does give less guarantees than if the
3332 * copying was performed with write(2).
3333 *
3334 * To fix this a mapping->invalidate_lock could be used to prevent new
3335 * faults while the copy is ongoing.
3336 */
3337 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3338 if (err)
3339 goto out;
3340
3341 if (is_unstable)
3342 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3343
3344 args.opcode = FUSE_COPY_FILE_RANGE;
3345 args.nodeid = ff_in->nodeid;
3346 args.in_numargs = 1;
3347 args.in_args[0].size = sizeof(inarg);
3348 args.in_args[0].value = &inarg;
3349 args.out_numargs = 1;
3350 args.out_args[0].size = sizeof(outarg);
3351 args.out_args[0].value = &outarg;
3352 err = fuse_simple_request(fm, &args);
3353 if (err == -ENOSYS) {
3354 fc->no_copy_file_range = 1;
3355 err = -EOPNOTSUPP;
3356 }
3357 if (err)
3358 goto out;
3359
3360 truncate_inode_pages_range(inode_out->i_mapping,
3361 ALIGN_DOWN(pos_out, PAGE_SIZE),
3362 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3363
3364 file_update_time(file_out);
3365 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3366
3367 err = outarg.size;
3368 out:
3369 if (is_unstable)
3370 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3371
3372 inode_unlock(inode_out);
3373 file_accessed(file_in);
3374
3375 fuse_flush_time_update(inode_out);
3376
3377 return err;
3378 }
3379
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3380 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3381 struct file *dst_file, loff_t dst_off,
3382 size_t len, unsigned int flags)
3383 {
3384 ssize_t ret;
3385
3386 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3387 len, flags);
3388
3389 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3390 ret = splice_copy_file_range(src_file, src_off, dst_file,
3391 dst_off, len);
3392 return ret;
3393 }
3394
3395 static const struct file_operations fuse_file_operations = {
3396 .llseek = fuse_file_llseek,
3397 .read_iter = fuse_file_read_iter,
3398 .write_iter = fuse_file_write_iter,
3399 .mmap = fuse_file_mmap,
3400 .open = fuse_open,
3401 .flush = fuse_flush,
3402 .release = fuse_release,
3403 .fsync = fuse_fsync,
3404 .lock = fuse_file_lock,
3405 .get_unmapped_area = thp_get_unmapped_area,
3406 .flock = fuse_file_flock,
3407 .splice_read = fuse_splice_read,
3408 .splice_write = fuse_splice_write,
3409 .unlocked_ioctl = fuse_file_ioctl,
3410 .compat_ioctl = fuse_file_compat_ioctl,
3411 .poll = fuse_file_poll,
3412 .fallocate = fuse_file_fallocate,
3413 .copy_file_range = fuse_copy_file_range,
3414 };
3415
3416 static const struct address_space_operations fuse_file_aops = {
3417 .read_folio = fuse_read_folio,
3418 .readahead = fuse_readahead,
3419 .writepages = fuse_writepages,
3420 .launder_folio = fuse_launder_folio,
3421 .dirty_folio = filemap_dirty_folio,
3422 .migrate_folio = filemap_migrate_folio,
3423 .bmap = fuse_bmap,
3424 .direct_IO = fuse_direct_IO,
3425 .write_begin = fuse_write_begin,
3426 .write_end = fuse_write_end,
3427 };
3428
fuse_init_file_inode(struct inode * inode,unsigned int flags)3429 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3430 {
3431 struct fuse_inode *fi = get_fuse_inode(inode);
3432
3433 inode->i_fop = &fuse_file_operations;
3434 inode->i_data.a_ops = &fuse_file_aops;
3435
3436 INIT_LIST_HEAD(&fi->write_files);
3437 INIT_LIST_HEAD(&fi->queued_writes);
3438 fi->writectr = 0;
3439 fi->iocachectr = 0;
3440 init_waitqueue_head(&fi->page_waitq);
3441 init_waitqueue_head(&fi->direct_io_waitq);
3442 fi->writepages = RB_ROOT;
3443
3444 if (IS_ENABLED(CONFIG_FUSE_DAX))
3445 fuse_dax_inode_init(inode, flags);
3446 }
3447