1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 struct folio_batch;
42
43 void mm_core_init(void);
44 void init_mm_internals(void);
45
46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 max_mapnr = limit;
52 }
53 #else
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56
57 extern atomic_long_t _totalram_pages;
totalram_pages(void)58 static inline unsigned long totalram_pages(void)
59 {
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62
totalram_pages_inc(void)63 static inline void totalram_pages_inc(void)
64 {
65 atomic_long_inc(&_totalram_pages);
66 }
67
totalram_pages_dec(void)68 static inline void totalram_pages_dec(void)
69 {
70 atomic_long_dec(&_totalram_pages);
71 }
72
totalram_pages_add(long count)73 static inline void totalram_pages_add(long count)
74 {
75 atomic_long_add(count, &_totalram_pages);
76 }
77
78 extern void * high_memory;
79
80 #ifdef CONFIG_SYSCTL
81 extern int sysctl_legacy_va_layout;
82 #else
83 #define sysctl_legacy_va_layout 0
84 #endif
85
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern int mmap_rnd_bits_max __ro_after_init;
89 extern int mmap_rnd_bits __read_mostly;
90 #endif
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
95 #endif
96
97 #ifndef DIRECT_MAP_PHYSMEM_END
98 # ifdef MAX_PHYSMEM_BITS
99 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
100 # else
101 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
102 # endif
103 #endif
104
105 #include <asm/page.h>
106 #include <asm/processor.h>
107
108 #ifndef __pa_symbol
109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110 #endif
111
112 #ifndef page_to_virt
113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114 #endif
115
116 #ifndef lm_alias
117 #define lm_alias(x) __va(__pa_symbol(x))
118 #endif
119
120 /*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127 #ifndef mm_forbids_zeropage
128 #define mm_forbids_zeropage(X) (0)
129 #endif
130
131 /*
132 * On some architectures it is expensive to call memset() for small sizes.
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
136 */
137 #if BITS_PER_LONG == 64
138 /* This function must be updated when the size of struct page grows above 96
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
141 * combine write statements if they are both assignments and can be reordered,
142 * this can result in several of the writes here being dropped.
143 */
144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)145 static inline void __mm_zero_struct_page(struct page *page)
146 {
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 96);
153
154 switch (sizeof(struct page)) {
155 case 96:
156 _pp[11] = 0;
157 fallthrough;
158 case 88:
159 _pp[10] = 0;
160 fallthrough;
161 case 80:
162 _pp[9] = 0;
163 fallthrough;
164 case 72:
165 _pp[8] = 0;
166 fallthrough;
167 case 64:
168 _pp[7] = 0;
169 fallthrough;
170 case 56:
171 _pp[6] = 0;
172 _pp[5] = 0;
173 _pp[4] = 0;
174 _pp[3] = 0;
175 _pp[2] = 0;
176 _pp[1] = 0;
177 _pp[0] = 0;
178 }
179 }
180 #else
181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
182 #endif
183
184 /*
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * problem.
188 *
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 *
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
198 * that.
199 */
200 #define MAPCOUNT_ELF_CORE_MARGIN (5)
201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202
203 extern int sysctl_max_map_count;
204
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
207
208 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
211 #else
212 #define nth_page(page,n) ((page) + (n))
213 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
214 #endif
215
216 /* to align the pointer to the (next) page boundary */
217 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
218
219 /* to align the pointer to the (prev) page boundary */
220 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
221
222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
223 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
224
lru_to_folio(struct list_head * head)225 static inline struct folio *lru_to_folio(struct list_head *head)
226 {
227 return list_entry((head)->prev, struct folio, lru);
228 }
229
230 void setup_initial_init_mm(void *start_code, void *end_code,
231 void *end_data, void *brk);
232
233 /*
234 * Linux kernel virtual memory manager primitives.
235 * The idea being to have a "virtual" mm in the same way
236 * we have a virtual fs - giving a cleaner interface to the
237 * mm details, and allowing different kinds of memory mappings
238 * (from shared memory to executable loading to arbitrary
239 * mmap() functions).
240 */
241
242 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
243 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
244 void vm_area_free(struct vm_area_struct *);
245 /* Use only if VMA has no other users */
246 void __vm_area_free(struct vm_area_struct *vma);
247
248 #ifndef CONFIG_MMU
249 extern struct rb_root nommu_region_tree;
250 extern struct rw_semaphore nommu_region_sem;
251
252 extern unsigned int kobjsize(const void *objp);
253 #endif
254
255 /*
256 * vm_flags in vm_area_struct, see mm_types.h.
257 * When changing, update also include/trace/events/mmflags.h
258 */
259 #define VM_NONE 0x00000000
260
261 #define VM_READ 0x00000001 /* currently active flags */
262 #define VM_WRITE 0x00000002
263 #define VM_EXEC 0x00000004
264 #define VM_SHARED 0x00000008
265
266 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
267 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
268 #define VM_MAYWRITE 0x00000020
269 #define VM_MAYEXEC 0x00000040
270 #define VM_MAYSHARE 0x00000080
271
272 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
273 #ifdef CONFIG_MMU
274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
275 #else /* CONFIG_MMU */
276 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
277 #define VM_UFFD_MISSING 0
278 #endif /* CONFIG_MMU */
279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
281
282 #define VM_LOCKED 0x00002000
283 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
284
285 /* Used by sys_madvise() */
286 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
287 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
288
289 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
290 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
291 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
292 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
293 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
294 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
295 #define VM_SYNC 0x00800000 /* Synchronous page faults */
296 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
297 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
298 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
299
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
302 #else
303 # define VM_SOFTDIRTY 0
304 #endif
305
306 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
307 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
308 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
309 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
310
311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
320 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
321 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
322 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
323 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
324 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
325 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327
328 #ifdef CONFIG_ARCH_HAS_PKEYS
329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
331 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
332 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
333 #if CONFIG_ARCH_PKEY_BITS > 3
334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
335 #else
336 # define VM_PKEY_BIT3 0
337 #endif
338 #if CONFIG_ARCH_PKEY_BITS > 4
339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4 0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348 * support core mm.
349 *
350 * These VMAs will get a single end guard page. This helps userspace protect
351 * itself from attacks. A single page is enough for current shadow stack archs
352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353 * for more details on the guard size.
354 */
355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
356 #endif
357
358 #if defined(CONFIG_ARM64_GCS)
359 /*
360 * arm64's Guarded Control Stack implements similar functionality and
361 * has similar constraints to shadow stacks.
362 */
363 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
364 #endif
365
366 #ifndef VM_SHADOW_STACK
367 # define VM_SHADOW_STACK VM_NONE
368 #endif
369
370 #if defined(CONFIG_X86)
371 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
372 #elif defined(CONFIG_PPC64)
373 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
374 #elif defined(CONFIG_PARISC)
375 # define VM_GROWSUP VM_ARCH_1
376 #elif defined(CONFIG_SPARC64)
377 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
378 # define VM_ARCH_CLEAR VM_SPARC_ADI
379 #elif defined(CONFIG_ARM64)
380 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
381 # define VM_ARCH_CLEAR VM_ARM64_BTI
382 #elif !defined(CONFIG_MMU)
383 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
384 #endif
385
386 #if defined(CONFIG_ARM64_MTE)
387 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
388 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
389 #else
390 # define VM_MTE VM_NONE
391 # define VM_MTE_ALLOWED VM_NONE
392 #endif
393
394 #ifndef VM_GROWSUP
395 # define VM_GROWSUP VM_NONE
396 #endif
397
398 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
399 # define VM_UFFD_MINOR_BIT 38
400 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
401 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
402 # define VM_UFFD_MINOR VM_NONE
403 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404
405 /*
406 * This flag is used to connect VFIO to arch specific KVM code. It
407 * indicates that the memory under this VMA is safe for use with any
408 * non-cachable memory type inside KVM. Some VFIO devices, on some
409 * platforms, are thought to be unsafe and can cause machine crashes
410 * if KVM does not lock down the memory type.
411 */
412 #ifdef CONFIG_64BIT
413 #define VM_ALLOW_ANY_UNCACHED_BIT 39
414 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
415 #else
416 #define VM_ALLOW_ANY_UNCACHED VM_NONE
417 #endif
418
419 #ifdef CONFIG_64BIT
420 #define VM_DROPPABLE_BIT 40
421 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
422 #elif defined(CONFIG_PPC32)
423 #define VM_DROPPABLE VM_ARCH_1
424 #else
425 #define VM_DROPPABLE VM_NONE
426 #endif
427
428 #ifdef CONFIG_64BIT
429 /* VM is sealed, in vm_flags */
430 #define VM_SEALED _BITUL(63)
431 #endif
432
433 /* Bits set in the VMA until the stack is in its final location */
434 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
435
436 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
437
438 /* Common data flag combinations */
439 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
440 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
441 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
442 VM_MAYWRITE | VM_MAYEXEC)
443 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
444 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
445
446 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
447 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
448 #endif
449
450 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
451 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
452 #endif
453
454 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
455
456 #ifdef CONFIG_STACK_GROWSUP
457 #define VM_STACK VM_GROWSUP
458 #define VM_STACK_EARLY VM_GROWSDOWN
459 #else
460 #define VM_STACK VM_GROWSDOWN
461 #define VM_STACK_EARLY 0
462 #endif
463
464 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
465
466 /* VMA basic access permission flags */
467 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
468
469
470 /*
471 * Special vmas that are non-mergable, non-mlock()able.
472 */
473 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
474
475 /* This mask prevents VMA from being scanned with khugepaged */
476 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
477
478 /* This mask defines which mm->def_flags a process can inherit its parent */
479 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
480
481 /* This mask represents all the VMA flag bits used by mlock */
482 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
483
484 /* Arch-specific flags to clear when updating VM flags on protection change */
485 #ifndef VM_ARCH_CLEAR
486 # define VM_ARCH_CLEAR VM_NONE
487 #endif
488 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
489
490 /*
491 * mapping from the currently active vm_flags protection bits (the
492 * low four bits) to a page protection mask..
493 */
494
495 /*
496 * The default fault flags that should be used by most of the
497 * arch-specific page fault handlers.
498 */
499 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
500 FAULT_FLAG_KILLABLE | \
501 FAULT_FLAG_INTERRUPTIBLE)
502
503 /**
504 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
505 * @flags: Fault flags.
506 *
507 * This is mostly used for places where we want to try to avoid taking
508 * the mmap_lock for too long a time when waiting for another condition
509 * to change, in which case we can try to be polite to release the
510 * mmap_lock in the first round to avoid potential starvation of other
511 * processes that would also want the mmap_lock.
512 *
513 * Return: true if the page fault allows retry and this is the first
514 * attempt of the fault handling; false otherwise.
515 */
fault_flag_allow_retry_first(enum fault_flag flags)516 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
517 {
518 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
519 (!(flags & FAULT_FLAG_TRIED));
520 }
521
522 #define FAULT_FLAG_TRACE \
523 { FAULT_FLAG_WRITE, "WRITE" }, \
524 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
525 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
526 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
527 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
528 { FAULT_FLAG_TRIED, "TRIED" }, \
529 { FAULT_FLAG_USER, "USER" }, \
530 { FAULT_FLAG_REMOTE, "REMOTE" }, \
531 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
532 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
533 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
534
535 /*
536 * vm_fault is filled by the pagefault handler and passed to the vma's
537 * ->fault function. The vma's ->fault is responsible for returning a bitmask
538 * of VM_FAULT_xxx flags that give details about how the fault was handled.
539 *
540 * MM layer fills up gfp_mask for page allocations but fault handler might
541 * alter it if its implementation requires a different allocation context.
542 *
543 * pgoff should be used in favour of virtual_address, if possible.
544 */
545 struct vm_fault {
546 const struct {
547 struct vm_area_struct *vma; /* Target VMA */
548 gfp_t gfp_mask; /* gfp mask to be used for allocations */
549 pgoff_t pgoff; /* Logical page offset based on vma */
550 unsigned long address; /* Faulting virtual address - masked */
551 unsigned long real_address; /* Faulting virtual address - unmasked */
552 };
553 enum fault_flag flags; /* FAULT_FLAG_xxx flags
554 * XXX: should really be 'const' */
555 pmd_t *pmd; /* Pointer to pmd entry matching
556 * the 'address' */
557 pud_t *pud; /* Pointer to pud entry matching
558 * the 'address'
559 */
560 union {
561 pte_t orig_pte; /* Value of PTE at the time of fault */
562 pmd_t orig_pmd; /* Value of PMD at the time of fault,
563 * used by PMD fault only.
564 */
565 };
566
567 struct page *cow_page; /* Page handler may use for COW fault */
568 struct page *page; /* ->fault handlers should return a
569 * page here, unless VM_FAULT_NOPAGE
570 * is set (which is also implied by
571 * VM_FAULT_ERROR).
572 */
573 /* These three entries are valid only while holding ptl lock */
574 pte_t *pte; /* Pointer to pte entry matching
575 * the 'address'. NULL if the page
576 * table hasn't been allocated.
577 */
578 spinlock_t *ptl; /* Page table lock.
579 * Protects pte page table if 'pte'
580 * is not NULL, otherwise pmd.
581 */
582 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
583 * vm_ops->map_pages() sets up a page
584 * table from atomic context.
585 * do_fault_around() pre-allocates
586 * page table to avoid allocation from
587 * atomic context.
588 */
589 };
590
591 /*
592 * These are the virtual MM functions - opening of an area, closing and
593 * unmapping it (needed to keep files on disk up-to-date etc), pointer
594 * to the functions called when a no-page or a wp-page exception occurs.
595 */
596 struct vm_operations_struct {
597 void (*open)(struct vm_area_struct * area);
598 /**
599 * @close: Called when the VMA is being removed from the MM.
600 * Context: User context. May sleep. Caller holds mmap_lock.
601 */
602 void (*close)(struct vm_area_struct * area);
603 /* Called any time before splitting to check if it's allowed */
604 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
605 int (*mremap)(struct vm_area_struct *area);
606 /*
607 * Called by mprotect() to make driver-specific permission
608 * checks before mprotect() is finalised. The VMA must not
609 * be modified. Returns 0 if mprotect() can proceed.
610 */
611 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
612 unsigned long end, unsigned long newflags);
613 vm_fault_t (*fault)(struct vm_fault *vmf);
614 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
615 vm_fault_t (*map_pages)(struct vm_fault *vmf,
616 pgoff_t start_pgoff, pgoff_t end_pgoff);
617 unsigned long (*pagesize)(struct vm_area_struct * area);
618
619 /* notification that a previously read-only page is about to become
620 * writable, if an error is returned it will cause a SIGBUS */
621 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
622
623 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
624 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
625
626 /* called by access_process_vm when get_user_pages() fails, typically
627 * for use by special VMAs. See also generic_access_phys() for a generic
628 * implementation useful for any iomem mapping.
629 */
630 int (*access)(struct vm_area_struct *vma, unsigned long addr,
631 void *buf, int len, int write);
632
633 /* Called by the /proc/PID/maps code to ask the vma whether it
634 * has a special name. Returning non-NULL will also cause this
635 * vma to be dumped unconditionally. */
636 const char *(*name)(struct vm_area_struct *vma);
637
638 #ifdef CONFIG_NUMA
639 /*
640 * set_policy() op must add a reference to any non-NULL @new mempolicy
641 * to hold the policy upon return. Caller should pass NULL @new to
642 * remove a policy and fall back to surrounding context--i.e. do not
643 * install a MPOL_DEFAULT policy, nor the task or system default
644 * mempolicy.
645 */
646 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
647
648 /*
649 * get_policy() op must add reference [mpol_get()] to any policy at
650 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
651 * in mm/mempolicy.c will do this automatically.
652 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
653 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
654 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
655 * must return NULL--i.e., do not "fallback" to task or system default
656 * policy.
657 */
658 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
659 unsigned long addr, pgoff_t *ilx);
660 #endif
661 /*
662 * Called by vm_normal_page() for special PTEs to find the
663 * page for @addr. This is useful if the default behavior
664 * (using pte_page()) would not find the correct page.
665 */
666 struct page *(*find_special_page)(struct vm_area_struct *vma,
667 unsigned long addr);
668 };
669
670 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)671 static inline void vma_numab_state_init(struct vm_area_struct *vma)
672 {
673 vma->numab_state = NULL;
674 }
vma_numab_state_free(struct vm_area_struct * vma)675 static inline void vma_numab_state_free(struct vm_area_struct *vma)
676 {
677 kfree(vma->numab_state);
678 }
679 #else
vma_numab_state_init(struct vm_area_struct * vma)680 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)681 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
682 #endif /* CONFIG_NUMA_BALANCING */
683
684 #ifdef CONFIG_PER_VMA_LOCK
685 /*
686 * Try to read-lock a vma. The function is allowed to occasionally yield false
687 * locked result to avoid performance overhead, in which case we fall back to
688 * using mmap_lock. The function should never yield false unlocked result.
689 */
vma_start_read(struct vm_area_struct * vma)690 static inline bool vma_start_read(struct vm_area_struct *vma)
691 {
692 /*
693 * Check before locking. A race might cause false locked result.
694 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
695 * ACQUIRE semantics, because this is just a lockless check whose result
696 * we don't rely on for anything - the mm_lock_seq read against which we
697 * need ordering is below.
698 */
699 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
700 return false;
701
702 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
703 return false;
704
705 /*
706 * Overflow might produce false locked result.
707 * False unlocked result is impossible because we modify and check
708 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
709 * modification invalidates all existing locks.
710 *
711 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
712 * racing with vma_end_write_all(), we only start reading from the VMA
713 * after it has been unlocked.
714 * This pairs with RELEASE semantics in vma_end_write_all().
715 */
716 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
717 up_read(&vma->vm_lock->lock);
718 return false;
719 }
720 return true;
721 }
722
vma_end_read(struct vm_area_struct * vma)723 static inline void vma_end_read(struct vm_area_struct *vma)
724 {
725 rcu_read_lock(); /* keeps vma alive till the end of up_read */
726 up_read(&vma->vm_lock->lock);
727 rcu_read_unlock();
728 }
729
730 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,unsigned int * mm_lock_seq)731 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
732 {
733 mmap_assert_write_locked(vma->vm_mm);
734
735 /*
736 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
737 * mm->mm_lock_seq can't be concurrently modified.
738 */
739 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
740 return (vma->vm_lock_seq == *mm_lock_seq);
741 }
742
743 /*
744 * Begin writing to a VMA.
745 * Exclude concurrent readers under the per-VMA lock until the currently
746 * write-locked mmap_lock is dropped or downgraded.
747 */
vma_start_write(struct vm_area_struct * vma)748 static inline void vma_start_write(struct vm_area_struct *vma)
749 {
750 unsigned int mm_lock_seq;
751
752 if (__is_vma_write_locked(vma, &mm_lock_seq))
753 return;
754
755 down_write(&vma->vm_lock->lock);
756 /*
757 * We should use WRITE_ONCE() here because we can have concurrent reads
758 * from the early lockless pessimistic check in vma_start_read().
759 * We don't really care about the correctness of that early check, but
760 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
761 */
762 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
763 up_write(&vma->vm_lock->lock);
764 }
765
vma_assert_write_locked(struct vm_area_struct * vma)766 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
767 {
768 unsigned int mm_lock_seq;
769
770 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
771 }
772
vma_assert_locked(struct vm_area_struct * vma)773 static inline void vma_assert_locked(struct vm_area_struct *vma)
774 {
775 if (!rwsem_is_locked(&vma->vm_lock->lock))
776 vma_assert_write_locked(vma);
777 }
778
vma_mark_detached(struct vm_area_struct * vma,bool detached)779 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
780 {
781 /* When detaching vma should be write-locked */
782 if (detached)
783 vma_assert_write_locked(vma);
784 vma->detached = detached;
785 }
786
release_fault_lock(struct vm_fault * vmf)787 static inline void release_fault_lock(struct vm_fault *vmf)
788 {
789 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
790 vma_end_read(vmf->vma);
791 else
792 mmap_read_unlock(vmf->vma->vm_mm);
793 }
794
assert_fault_locked(struct vm_fault * vmf)795 static inline void assert_fault_locked(struct vm_fault *vmf)
796 {
797 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
798 vma_assert_locked(vmf->vma);
799 else
800 mmap_assert_locked(vmf->vma->vm_mm);
801 }
802
803 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
804 unsigned long address);
805
806 #else /* CONFIG_PER_VMA_LOCK */
807
vma_start_read(struct vm_area_struct * vma)808 static inline bool vma_start_read(struct vm_area_struct *vma)
809 { return false; }
vma_end_read(struct vm_area_struct * vma)810 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)811 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)812 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
813 { mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)814 static inline void vma_mark_detached(struct vm_area_struct *vma,
815 bool detached) {}
816
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)817 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 unsigned long address)
819 {
820 return NULL;
821 }
822
vma_assert_locked(struct vm_area_struct * vma)823 static inline void vma_assert_locked(struct vm_area_struct *vma)
824 {
825 mmap_assert_locked(vma->vm_mm);
826 }
827
release_fault_lock(struct vm_fault * vmf)828 static inline void release_fault_lock(struct vm_fault *vmf)
829 {
830 mmap_read_unlock(vmf->vma->vm_mm);
831 }
832
assert_fault_locked(struct vm_fault * vmf)833 static inline void assert_fault_locked(struct vm_fault *vmf)
834 {
835 mmap_assert_locked(vmf->vma->vm_mm);
836 }
837
838 #endif /* CONFIG_PER_VMA_LOCK */
839
840 extern const struct vm_operations_struct vma_dummy_vm_ops;
841
842 /*
843 * WARNING: vma_init does not initialize vma->vm_lock.
844 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
845 */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)846 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
847 {
848 memset(vma, 0, sizeof(*vma));
849 vma->vm_mm = mm;
850 vma->vm_ops = &vma_dummy_vm_ops;
851 INIT_LIST_HEAD(&vma->anon_vma_chain);
852 vma_mark_detached(vma, false);
853 vma_numab_state_init(vma);
854 }
855
856 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)857 static inline void vm_flags_init(struct vm_area_struct *vma,
858 vm_flags_t flags)
859 {
860 ACCESS_PRIVATE(vma, __vm_flags) = flags;
861 }
862
863 /*
864 * Use when VMA is part of the VMA tree and modifications need coordination
865 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
866 * it should be locked explicitly beforehand.
867 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)868 static inline void vm_flags_reset(struct vm_area_struct *vma,
869 vm_flags_t flags)
870 {
871 vma_assert_write_locked(vma);
872 vm_flags_init(vma, flags);
873 }
874
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)875 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
876 vm_flags_t flags)
877 {
878 vma_assert_write_locked(vma);
879 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
880 }
881
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)882 static inline void vm_flags_set(struct vm_area_struct *vma,
883 vm_flags_t flags)
884 {
885 vma_start_write(vma);
886 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
887 }
888
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)889 static inline void vm_flags_clear(struct vm_area_struct *vma,
890 vm_flags_t flags)
891 {
892 vma_start_write(vma);
893 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
894 }
895
896 /*
897 * Use only if VMA is not part of the VMA tree or has no other users and
898 * therefore needs no locking.
899 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)900 static inline void __vm_flags_mod(struct vm_area_struct *vma,
901 vm_flags_t set, vm_flags_t clear)
902 {
903 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
904 }
905
906 /*
907 * Use only when the order of set/clear operations is unimportant, otherwise
908 * use vm_flags_{set|clear} explicitly.
909 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)910 static inline void vm_flags_mod(struct vm_area_struct *vma,
911 vm_flags_t set, vm_flags_t clear)
912 {
913 vma_start_write(vma);
914 __vm_flags_mod(vma, set, clear);
915 }
916
vma_set_anonymous(struct vm_area_struct * vma)917 static inline void vma_set_anonymous(struct vm_area_struct *vma)
918 {
919 vma->vm_ops = NULL;
920 }
921
vma_is_anonymous(struct vm_area_struct * vma)922 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
923 {
924 return !vma->vm_ops;
925 }
926
927 /*
928 * Indicate if the VMA is a heap for the given task; for
929 * /proc/PID/maps that is the heap of the main task.
930 */
vma_is_initial_heap(const struct vm_area_struct * vma)931 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
932 {
933 return vma->vm_start < vma->vm_mm->brk &&
934 vma->vm_end > vma->vm_mm->start_brk;
935 }
936
937 /*
938 * Indicate if the VMA is a stack for the given task; for
939 * /proc/PID/maps that is the stack of the main task.
940 */
vma_is_initial_stack(const struct vm_area_struct * vma)941 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
942 {
943 /*
944 * We make no effort to guess what a given thread considers to be
945 * its "stack". It's not even well-defined for programs written
946 * languages like Go.
947 */
948 return vma->vm_start <= vma->vm_mm->start_stack &&
949 vma->vm_end >= vma->vm_mm->start_stack;
950 }
951
vma_is_temporary_stack(struct vm_area_struct * vma)952 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
953 {
954 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
955
956 if (!maybe_stack)
957 return false;
958
959 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
960 VM_STACK_INCOMPLETE_SETUP)
961 return true;
962
963 return false;
964 }
965
vma_is_foreign(struct vm_area_struct * vma)966 static inline bool vma_is_foreign(struct vm_area_struct *vma)
967 {
968 if (!current->mm)
969 return true;
970
971 if (current->mm != vma->vm_mm)
972 return true;
973
974 return false;
975 }
976
vma_is_accessible(struct vm_area_struct * vma)977 static inline bool vma_is_accessible(struct vm_area_struct *vma)
978 {
979 return vma->vm_flags & VM_ACCESS_FLAGS;
980 }
981
is_shared_maywrite(vm_flags_t vm_flags)982 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
983 {
984 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
985 (VM_SHARED | VM_MAYWRITE);
986 }
987
vma_is_shared_maywrite(struct vm_area_struct * vma)988 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
989 {
990 return is_shared_maywrite(vma->vm_flags);
991 }
992
993 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)994 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
995 {
996 return mas_find(&vmi->mas, max - 1);
997 }
998
vma_next(struct vma_iterator * vmi)999 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1000 {
1001 /*
1002 * Uses mas_find() to get the first VMA when the iterator starts.
1003 * Calling mas_next() could skip the first entry.
1004 */
1005 return mas_find(&vmi->mas, ULONG_MAX);
1006 }
1007
1008 static inline
vma_iter_next_range(struct vma_iterator * vmi)1009 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1010 {
1011 return mas_next_range(&vmi->mas, ULONG_MAX);
1012 }
1013
1014
vma_prev(struct vma_iterator * vmi)1015 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1016 {
1017 return mas_prev(&vmi->mas, 0);
1018 }
1019
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1020 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1021 unsigned long start, unsigned long end, gfp_t gfp)
1022 {
1023 __mas_set_range(&vmi->mas, start, end - 1);
1024 mas_store_gfp(&vmi->mas, NULL, gfp);
1025 if (unlikely(mas_is_err(&vmi->mas)))
1026 return -ENOMEM;
1027
1028 return 0;
1029 }
1030
1031 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1032 static inline void vma_iter_free(struct vma_iterator *vmi)
1033 {
1034 mas_destroy(&vmi->mas);
1035 }
1036
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1037 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1038 struct vm_area_struct *vma)
1039 {
1040 vmi->mas.index = vma->vm_start;
1041 vmi->mas.last = vma->vm_end - 1;
1042 mas_store(&vmi->mas, vma);
1043 if (unlikely(mas_is_err(&vmi->mas)))
1044 return -ENOMEM;
1045
1046 return 0;
1047 }
1048
vma_iter_invalidate(struct vma_iterator * vmi)1049 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1050 {
1051 mas_pause(&vmi->mas);
1052 }
1053
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1054 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1055 {
1056 mas_set(&vmi->mas, addr);
1057 }
1058
1059 #define for_each_vma(__vmi, __vma) \
1060 while (((__vma) = vma_next(&(__vmi))) != NULL)
1061
1062 /* The MM code likes to work with exclusive end addresses */
1063 #define for_each_vma_range(__vmi, __vma, __end) \
1064 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1065
1066 #ifdef CONFIG_SHMEM
1067 /*
1068 * The vma_is_shmem is not inline because it is used only by slow
1069 * paths in userfault.
1070 */
1071 bool vma_is_shmem(struct vm_area_struct *vma);
1072 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1073 #else
vma_is_shmem(struct vm_area_struct * vma)1074 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1075 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1076 #endif
1077
1078 int vma_is_stack_for_current(struct vm_area_struct *vma);
1079
1080 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1081 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1082
1083 struct mmu_gather;
1084 struct inode;
1085
1086 /*
1087 * compound_order() can be called without holding a reference, which means
1088 * that niceties like page_folio() don't work. These callers should be
1089 * prepared to handle wild return values. For example, PG_head may be
1090 * set before the order is initialised, or this may be a tail page.
1091 * See compaction.c for some good examples.
1092 */
compound_order(struct page * page)1093 static inline unsigned int compound_order(struct page *page)
1094 {
1095 struct folio *folio = (struct folio *)page;
1096
1097 if (!test_bit(PG_head, &folio->flags))
1098 return 0;
1099 return folio->_flags_1 & 0xff;
1100 }
1101
1102 /**
1103 * folio_order - The allocation order of a folio.
1104 * @folio: The folio.
1105 *
1106 * A folio is composed of 2^order pages. See get_order() for the definition
1107 * of order.
1108 *
1109 * Return: The order of the folio.
1110 */
folio_order(const struct folio * folio)1111 static inline unsigned int folio_order(const struct folio *folio)
1112 {
1113 if (!folio_test_large(folio))
1114 return 0;
1115 return folio->_flags_1 & 0xff;
1116 }
1117
1118 #include <linux/huge_mm.h>
1119
1120 /*
1121 * Methods to modify the page usage count.
1122 *
1123 * What counts for a page usage:
1124 * - cache mapping (page->mapping)
1125 * - private data (page->private)
1126 * - page mapped in a task's page tables, each mapping
1127 * is counted separately
1128 *
1129 * Also, many kernel routines increase the page count before a critical
1130 * routine so they can be sure the page doesn't go away from under them.
1131 */
1132
1133 /*
1134 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1135 */
put_page_testzero(struct page * page)1136 static inline int put_page_testzero(struct page *page)
1137 {
1138 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1139 return page_ref_dec_and_test(page);
1140 }
1141
folio_put_testzero(struct folio * folio)1142 static inline int folio_put_testzero(struct folio *folio)
1143 {
1144 return put_page_testzero(&folio->page);
1145 }
1146
1147 /*
1148 * Try to grab a ref unless the page has a refcount of zero, return false if
1149 * that is the case.
1150 * This can be called when MMU is off so it must not access
1151 * any of the virtual mappings.
1152 */
get_page_unless_zero(struct page * page)1153 static inline bool get_page_unless_zero(struct page *page)
1154 {
1155 return page_ref_add_unless(page, 1, 0);
1156 }
1157
folio_get_nontail_page(struct page * page)1158 static inline struct folio *folio_get_nontail_page(struct page *page)
1159 {
1160 if (unlikely(!get_page_unless_zero(page)))
1161 return NULL;
1162 return (struct folio *)page;
1163 }
1164
1165 extern int page_is_ram(unsigned long pfn);
1166
1167 enum {
1168 REGION_INTERSECTS,
1169 REGION_DISJOINT,
1170 REGION_MIXED,
1171 };
1172
1173 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1174 unsigned long desc);
1175
1176 /* Support for virtually mapped pages */
1177 struct page *vmalloc_to_page(const void *addr);
1178 unsigned long vmalloc_to_pfn(const void *addr);
1179
1180 /*
1181 * Determine if an address is within the vmalloc range
1182 *
1183 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1184 * is no special casing required.
1185 */
1186 #ifdef CONFIG_MMU
1187 extern bool is_vmalloc_addr(const void *x);
1188 extern int is_vmalloc_or_module_addr(const void *x);
1189 #else
is_vmalloc_addr(const void * x)1190 static inline bool is_vmalloc_addr(const void *x)
1191 {
1192 return false;
1193 }
is_vmalloc_or_module_addr(const void * x)1194 static inline int is_vmalloc_or_module_addr(const void *x)
1195 {
1196 return 0;
1197 }
1198 #endif
1199
1200 /*
1201 * How many times the entire folio is mapped as a single unit (eg by a
1202 * PMD or PUD entry). This is probably not what you want, except for
1203 * debugging purposes or implementation of other core folio_*() primitives.
1204 */
folio_entire_mapcount(const struct folio * folio)1205 static inline int folio_entire_mapcount(const struct folio *folio)
1206 {
1207 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1208 return atomic_read(&folio->_entire_mapcount) + 1;
1209 }
1210
folio_large_mapcount(const struct folio * folio)1211 static inline int folio_large_mapcount(const struct folio *folio)
1212 {
1213 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1214 return atomic_read(&folio->_large_mapcount) + 1;
1215 }
1216
1217 /**
1218 * folio_mapcount() - Number of mappings of this folio.
1219 * @folio: The folio.
1220 *
1221 * The folio mapcount corresponds to the number of present user page table
1222 * entries that reference any part of a folio. Each such present user page
1223 * table entry must be paired with exactly on folio reference.
1224 *
1225 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1226 * exactly once.
1227 *
1228 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1229 * references the entire folio counts exactly once, even when such special
1230 * page table entries are comprised of multiple ordinary page table entries.
1231 *
1232 * Will report 0 for pages which cannot be mapped into userspace, such as
1233 * slab, page tables and similar.
1234 *
1235 * Return: The number of times this folio is mapped.
1236 */
folio_mapcount(const struct folio * folio)1237 static inline int folio_mapcount(const struct folio *folio)
1238 {
1239 int mapcount;
1240
1241 if (likely(!folio_test_large(folio))) {
1242 mapcount = atomic_read(&folio->_mapcount) + 1;
1243 if (page_mapcount_is_type(mapcount))
1244 mapcount = 0;
1245 return mapcount;
1246 }
1247 return folio_large_mapcount(folio);
1248 }
1249
1250 /**
1251 * folio_mapped - Is this folio mapped into userspace?
1252 * @folio: The folio.
1253 *
1254 * Return: True if any page in this folio is referenced by user page tables.
1255 */
folio_mapped(const struct folio * folio)1256 static inline bool folio_mapped(const struct folio *folio)
1257 {
1258 return folio_mapcount(folio) >= 1;
1259 }
1260
1261 /*
1262 * Return true if this page is mapped into pagetables.
1263 * For compound page it returns true if any sub-page of compound page is mapped,
1264 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1265 */
page_mapped(const struct page * page)1266 static inline bool page_mapped(const struct page *page)
1267 {
1268 return folio_mapped(page_folio(page));
1269 }
1270
virt_to_head_page(const void * x)1271 static inline struct page *virt_to_head_page(const void *x)
1272 {
1273 struct page *page = virt_to_page(x);
1274
1275 return compound_head(page);
1276 }
1277
virt_to_folio(const void * x)1278 static inline struct folio *virt_to_folio(const void *x)
1279 {
1280 struct page *page = virt_to_page(x);
1281
1282 return page_folio(page);
1283 }
1284
1285 void __folio_put(struct folio *folio);
1286
1287 void split_page(struct page *page, unsigned int order);
1288 void folio_copy(struct folio *dst, struct folio *src);
1289 int folio_mc_copy(struct folio *dst, struct folio *src);
1290
1291 unsigned long nr_free_buffer_pages(void);
1292
1293 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1294 static inline unsigned long page_size(struct page *page)
1295 {
1296 return PAGE_SIZE << compound_order(page);
1297 }
1298
1299 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1300 static inline unsigned int page_shift(struct page *page)
1301 {
1302 return PAGE_SHIFT + compound_order(page);
1303 }
1304
1305 /**
1306 * thp_order - Order of a transparent huge page.
1307 * @page: Head page of a transparent huge page.
1308 */
thp_order(struct page * page)1309 static inline unsigned int thp_order(struct page *page)
1310 {
1311 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1312 return compound_order(page);
1313 }
1314
1315 /**
1316 * thp_size - Size of a transparent huge page.
1317 * @page: Head page of a transparent huge page.
1318 *
1319 * Return: Number of bytes in this page.
1320 */
thp_size(struct page * page)1321 static inline unsigned long thp_size(struct page *page)
1322 {
1323 return PAGE_SIZE << thp_order(page);
1324 }
1325
1326 #ifdef CONFIG_MMU
1327 /*
1328 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1329 * servicing faults for write access. In the normal case, do always want
1330 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1331 * that do not have writing enabled, when used by access_process_vm.
1332 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1333 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1334 {
1335 if (likely(vma->vm_flags & VM_WRITE))
1336 pte = pte_mkwrite(pte, vma);
1337 return pte;
1338 }
1339
1340 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1341 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1342 struct page *page, unsigned int nr, unsigned long addr);
1343
1344 vm_fault_t finish_fault(struct vm_fault *vmf);
1345 #endif
1346
1347 /*
1348 * Multiple processes may "see" the same page. E.g. for untouched
1349 * mappings of /dev/null, all processes see the same page full of
1350 * zeroes, and text pages of executables and shared libraries have
1351 * only one copy in memory, at most, normally.
1352 *
1353 * For the non-reserved pages, page_count(page) denotes a reference count.
1354 * page_count() == 0 means the page is free. page->lru is then used for
1355 * freelist management in the buddy allocator.
1356 * page_count() > 0 means the page has been allocated.
1357 *
1358 * Pages are allocated by the slab allocator in order to provide memory
1359 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1360 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1361 * unless a particular usage is carefully commented. (the responsibility of
1362 * freeing the kmalloc memory is the caller's, of course).
1363 *
1364 * A page may be used by anyone else who does a __get_free_page().
1365 * In this case, page_count still tracks the references, and should only
1366 * be used through the normal accessor functions. The top bits of page->flags
1367 * and page->virtual store page management information, but all other fields
1368 * are unused and could be used privately, carefully. The management of this
1369 * page is the responsibility of the one who allocated it, and those who have
1370 * subsequently been given references to it.
1371 *
1372 * The other pages (we may call them "pagecache pages") are completely
1373 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1374 * The following discussion applies only to them.
1375 *
1376 * A pagecache page contains an opaque `private' member, which belongs to the
1377 * page's address_space. Usually, this is the address of a circular list of
1378 * the page's disk buffers. PG_private must be set to tell the VM to call
1379 * into the filesystem to release these pages.
1380 *
1381 * A page may belong to an inode's memory mapping. In this case, page->mapping
1382 * is the pointer to the inode, and page->index is the file offset of the page,
1383 * in units of PAGE_SIZE.
1384 *
1385 * If pagecache pages are not associated with an inode, they are said to be
1386 * anonymous pages. These may become associated with the swapcache, and in that
1387 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1388 *
1389 * In either case (swapcache or inode backed), the pagecache itself holds one
1390 * reference to the page. Setting PG_private should also increment the
1391 * refcount. The each user mapping also has a reference to the page.
1392 *
1393 * The pagecache pages are stored in a per-mapping radix tree, which is
1394 * rooted at mapping->i_pages, and indexed by offset.
1395 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1396 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1397 *
1398 * All pagecache pages may be subject to I/O:
1399 * - inode pages may need to be read from disk,
1400 * - inode pages which have been modified and are MAP_SHARED may need
1401 * to be written back to the inode on disk,
1402 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1403 * modified may need to be swapped out to swap space and (later) to be read
1404 * back into memory.
1405 */
1406
1407 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1408 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1409
1410 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
put_devmap_managed_folio_refs(struct folio * folio,int refs)1411 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1412 {
1413 if (!static_branch_unlikely(&devmap_managed_key))
1414 return false;
1415 if (!folio_is_zone_device(folio))
1416 return false;
1417 return __put_devmap_managed_folio_refs(folio, refs);
1418 }
1419 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_folio_refs(struct folio * folio,int refs)1420 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1421 {
1422 return false;
1423 }
1424 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1425
1426 /* 127: arbitrary random number, small enough to assemble well */
1427 #define folio_ref_zero_or_close_to_overflow(folio) \
1428 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1429
1430 /**
1431 * folio_get - Increment the reference count on a folio.
1432 * @folio: The folio.
1433 *
1434 * Context: May be called in any context, as long as you know that
1435 * you have a refcount on the folio. If you do not already have one,
1436 * folio_try_get() may be the right interface for you to use.
1437 */
folio_get(struct folio * folio)1438 static inline void folio_get(struct folio *folio)
1439 {
1440 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1441 folio_ref_inc(folio);
1442 }
1443
get_page(struct page * page)1444 static inline void get_page(struct page *page)
1445 {
1446 struct folio *folio = page_folio(page);
1447 if (WARN_ON_ONCE(folio_test_slab(folio)))
1448 return;
1449 folio_get(folio);
1450 }
1451
try_get_page(struct page * page)1452 static inline __must_check bool try_get_page(struct page *page)
1453 {
1454 page = compound_head(page);
1455 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1456 return false;
1457 page_ref_inc(page);
1458 return true;
1459 }
1460
1461 /**
1462 * folio_put - Decrement the reference count on a folio.
1463 * @folio: The folio.
1464 *
1465 * If the folio's reference count reaches zero, the memory will be
1466 * released back to the page allocator and may be used by another
1467 * allocation immediately. Do not access the memory or the struct folio
1468 * after calling folio_put() unless you can be sure that it wasn't the
1469 * last reference.
1470 *
1471 * Context: May be called in process or interrupt context, but not in NMI
1472 * context. May be called while holding a spinlock.
1473 */
folio_put(struct folio * folio)1474 static inline void folio_put(struct folio *folio)
1475 {
1476 if (folio_put_testzero(folio))
1477 __folio_put(folio);
1478 }
1479
1480 /**
1481 * folio_put_refs - Reduce the reference count on a folio.
1482 * @folio: The folio.
1483 * @refs: The amount to subtract from the folio's reference count.
1484 *
1485 * If the folio's reference count reaches zero, the memory will be
1486 * released back to the page allocator and may be used by another
1487 * allocation immediately. Do not access the memory or the struct folio
1488 * after calling folio_put_refs() unless you can be sure that these weren't
1489 * the last references.
1490 *
1491 * Context: May be called in process or interrupt context, but not in NMI
1492 * context. May be called while holding a spinlock.
1493 */
folio_put_refs(struct folio * folio,int refs)1494 static inline void folio_put_refs(struct folio *folio, int refs)
1495 {
1496 if (folio_ref_sub_and_test(folio, refs))
1497 __folio_put(folio);
1498 }
1499
1500 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1501
1502 /*
1503 * union release_pages_arg - an array of pages or folios
1504 *
1505 * release_pages() releases a simple array of multiple pages, and
1506 * accepts various different forms of said page array: either
1507 * a regular old boring array of pages, an array of folios, or
1508 * an array of encoded page pointers.
1509 *
1510 * The transparent union syntax for this kind of "any of these
1511 * argument types" is all kinds of ugly, so look away.
1512 */
1513 typedef union {
1514 struct page **pages;
1515 struct folio **folios;
1516 struct encoded_page **encoded_pages;
1517 } release_pages_arg __attribute__ ((__transparent_union__));
1518
1519 void release_pages(release_pages_arg, int nr);
1520
1521 /**
1522 * folios_put - Decrement the reference count on an array of folios.
1523 * @folios: The folios.
1524 *
1525 * Like folio_put(), but for a batch of folios. This is more efficient
1526 * than writing the loop yourself as it will optimise the locks which need
1527 * to be taken if the folios are freed. The folios batch is returned
1528 * empty and ready to be reused for another batch; there is no need to
1529 * reinitialise it.
1530 *
1531 * Context: May be called in process or interrupt context, but not in NMI
1532 * context. May be called while holding a spinlock.
1533 */
folios_put(struct folio_batch * folios)1534 static inline void folios_put(struct folio_batch *folios)
1535 {
1536 folios_put_refs(folios, NULL);
1537 }
1538
put_page(struct page * page)1539 static inline void put_page(struct page *page)
1540 {
1541 struct folio *folio = page_folio(page);
1542
1543 if (folio_test_slab(folio))
1544 return;
1545
1546 /*
1547 * For some devmap managed pages we need to catch refcount transition
1548 * from 2 to 1:
1549 */
1550 if (put_devmap_managed_folio_refs(folio, 1))
1551 return;
1552 folio_put(folio);
1553 }
1554
1555 /*
1556 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1557 * the page's refcount so that two separate items are tracked: the original page
1558 * reference count, and also a new count of how many pin_user_pages() calls were
1559 * made against the page. ("gup-pinned" is another term for the latter).
1560 *
1561 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1562 * distinct from normal pages. As such, the unpin_user_page() call (and its
1563 * variants) must be used in order to release gup-pinned pages.
1564 *
1565 * Choice of value:
1566 *
1567 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1568 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1569 * simpler, due to the fact that adding an even power of two to the page
1570 * refcount has the effect of using only the upper N bits, for the code that
1571 * counts up using the bias value. This means that the lower bits are left for
1572 * the exclusive use of the original code that increments and decrements by one
1573 * (or at least, by much smaller values than the bias value).
1574 *
1575 * Of course, once the lower bits overflow into the upper bits (and this is
1576 * OK, because subtraction recovers the original values), then visual inspection
1577 * no longer suffices to directly view the separate counts. However, for normal
1578 * applications that don't have huge page reference counts, this won't be an
1579 * issue.
1580 *
1581 * Locking: the lockless algorithm described in folio_try_get_rcu()
1582 * provides safe operation for get_user_pages(), folio_mkclean() and
1583 * other calls that race to set up page table entries.
1584 */
1585 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1586
1587 void unpin_user_page(struct page *page);
1588 void unpin_folio(struct folio *folio);
1589 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1590 bool make_dirty);
1591 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1592 bool make_dirty);
1593 void unpin_user_pages(struct page **pages, unsigned long npages);
1594 void unpin_user_folio(struct folio *folio, unsigned long npages);
1595 void unpin_folios(struct folio **folios, unsigned long nfolios);
1596
is_cow_mapping(vm_flags_t flags)1597 static inline bool is_cow_mapping(vm_flags_t flags)
1598 {
1599 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1600 }
1601
1602 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1603 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1604 {
1605 /*
1606 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1607 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1608 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1609 * underlying memory if ptrace is active, so this is only possible if
1610 * ptrace does not apply. Note that there is no mprotect() to upgrade
1611 * write permissions later.
1612 */
1613 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1614 }
1615 #endif
1616
1617 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1618 #define SECTION_IN_PAGE_FLAGS
1619 #endif
1620
1621 /*
1622 * The identification function is mainly used by the buddy allocator for
1623 * determining if two pages could be buddies. We are not really identifying
1624 * the zone since we could be using the section number id if we do not have
1625 * node id available in page flags.
1626 * We only guarantee that it will return the same value for two combinable
1627 * pages in a zone.
1628 */
page_zone_id(struct page * page)1629 static inline int page_zone_id(struct page *page)
1630 {
1631 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1632 }
1633
1634 #ifdef NODE_NOT_IN_PAGE_FLAGS
1635 int page_to_nid(const struct page *page);
1636 #else
page_to_nid(const struct page * page)1637 static inline int page_to_nid(const struct page *page)
1638 {
1639 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1640 }
1641 #endif
1642
folio_nid(const struct folio * folio)1643 static inline int folio_nid(const struct folio *folio)
1644 {
1645 return page_to_nid(&folio->page);
1646 }
1647
1648 #ifdef CONFIG_NUMA_BALANCING
1649 /* page access time bits needs to hold at least 4 seconds */
1650 #define PAGE_ACCESS_TIME_MIN_BITS 12
1651 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1652 #define PAGE_ACCESS_TIME_BUCKETS \
1653 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1654 #else
1655 #define PAGE_ACCESS_TIME_BUCKETS 0
1656 #endif
1657
1658 #define PAGE_ACCESS_TIME_MASK \
1659 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1660
cpu_pid_to_cpupid(int cpu,int pid)1661 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1662 {
1663 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1664 }
1665
cpupid_to_pid(int cpupid)1666 static inline int cpupid_to_pid(int cpupid)
1667 {
1668 return cpupid & LAST__PID_MASK;
1669 }
1670
cpupid_to_cpu(int cpupid)1671 static inline int cpupid_to_cpu(int cpupid)
1672 {
1673 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1674 }
1675
cpupid_to_nid(int cpupid)1676 static inline int cpupid_to_nid(int cpupid)
1677 {
1678 return cpu_to_node(cpupid_to_cpu(cpupid));
1679 }
1680
cpupid_pid_unset(int cpupid)1681 static inline bool cpupid_pid_unset(int cpupid)
1682 {
1683 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1684 }
1685
cpupid_cpu_unset(int cpupid)1686 static inline bool cpupid_cpu_unset(int cpupid)
1687 {
1688 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1689 }
1690
__cpupid_match_pid(pid_t task_pid,int cpupid)1691 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1692 {
1693 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1694 }
1695
1696 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1697 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1698 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1699 {
1700 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1701 }
1702
folio_last_cpupid(struct folio * folio)1703 static inline int folio_last_cpupid(struct folio *folio)
1704 {
1705 return folio->_last_cpupid;
1706 }
page_cpupid_reset_last(struct page * page)1707 static inline void page_cpupid_reset_last(struct page *page)
1708 {
1709 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1710 }
1711 #else
folio_last_cpupid(struct folio * folio)1712 static inline int folio_last_cpupid(struct folio *folio)
1713 {
1714 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1715 }
1716
1717 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1718
page_cpupid_reset_last(struct page * page)1719 static inline void page_cpupid_reset_last(struct page *page)
1720 {
1721 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1722 }
1723 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1724
folio_xchg_access_time(struct folio * folio,int time)1725 static inline int folio_xchg_access_time(struct folio *folio, int time)
1726 {
1727 int last_time;
1728
1729 last_time = folio_xchg_last_cpupid(folio,
1730 time >> PAGE_ACCESS_TIME_BUCKETS);
1731 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1732 }
1733
vma_set_access_pid_bit(struct vm_area_struct * vma)1734 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1735 {
1736 unsigned int pid_bit;
1737
1738 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1739 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1740 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1741 }
1742 }
1743
1744 bool folio_use_access_time(struct folio *folio);
1745 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1746 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1747 {
1748 return folio_nid(folio); /* XXX */
1749 }
1750
folio_xchg_access_time(struct folio * folio,int time)1751 static inline int folio_xchg_access_time(struct folio *folio, int time)
1752 {
1753 return 0;
1754 }
1755
folio_last_cpupid(struct folio * folio)1756 static inline int folio_last_cpupid(struct folio *folio)
1757 {
1758 return folio_nid(folio); /* XXX */
1759 }
1760
cpupid_to_nid(int cpupid)1761 static inline int cpupid_to_nid(int cpupid)
1762 {
1763 return -1;
1764 }
1765
cpupid_to_pid(int cpupid)1766 static inline int cpupid_to_pid(int cpupid)
1767 {
1768 return -1;
1769 }
1770
cpupid_to_cpu(int cpupid)1771 static inline int cpupid_to_cpu(int cpupid)
1772 {
1773 return -1;
1774 }
1775
cpu_pid_to_cpupid(int nid,int pid)1776 static inline int cpu_pid_to_cpupid(int nid, int pid)
1777 {
1778 return -1;
1779 }
1780
cpupid_pid_unset(int cpupid)1781 static inline bool cpupid_pid_unset(int cpupid)
1782 {
1783 return true;
1784 }
1785
page_cpupid_reset_last(struct page * page)1786 static inline void page_cpupid_reset_last(struct page *page)
1787 {
1788 }
1789
cpupid_match_pid(struct task_struct * task,int cpupid)1790 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1791 {
1792 return false;
1793 }
1794
vma_set_access_pid_bit(struct vm_area_struct * vma)1795 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1796 {
1797 }
folio_use_access_time(struct folio * folio)1798 static inline bool folio_use_access_time(struct folio *folio)
1799 {
1800 return false;
1801 }
1802 #endif /* CONFIG_NUMA_BALANCING */
1803
1804 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1805
1806 /*
1807 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1808 * setting tags for all pages to native kernel tag value 0xff, as the default
1809 * value 0x00 maps to 0xff.
1810 */
1811
page_kasan_tag(const struct page * page)1812 static inline u8 page_kasan_tag(const struct page *page)
1813 {
1814 u8 tag = KASAN_TAG_KERNEL;
1815
1816 if (kasan_enabled()) {
1817 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1818 tag ^= 0xff;
1819 }
1820
1821 return tag;
1822 }
1823
page_kasan_tag_set(struct page * page,u8 tag)1824 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1825 {
1826 unsigned long old_flags, flags;
1827
1828 if (!kasan_enabled())
1829 return;
1830
1831 tag ^= 0xff;
1832 old_flags = READ_ONCE(page->flags);
1833 do {
1834 flags = old_flags;
1835 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1836 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1837 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1838 }
1839
page_kasan_tag_reset(struct page * page)1840 static inline void page_kasan_tag_reset(struct page *page)
1841 {
1842 if (kasan_enabled())
1843 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1844 }
1845
1846 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1847
page_kasan_tag(const struct page * page)1848 static inline u8 page_kasan_tag(const struct page *page)
1849 {
1850 return 0xff;
1851 }
1852
page_kasan_tag_set(struct page * page,u8 tag)1853 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1854 static inline void page_kasan_tag_reset(struct page *page) { }
1855
1856 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1857
page_zone(const struct page * page)1858 static inline struct zone *page_zone(const struct page *page)
1859 {
1860 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1861 }
1862
page_pgdat(const struct page * page)1863 static inline pg_data_t *page_pgdat(const struct page *page)
1864 {
1865 return NODE_DATA(page_to_nid(page));
1866 }
1867
folio_zone(const struct folio * folio)1868 static inline struct zone *folio_zone(const struct folio *folio)
1869 {
1870 return page_zone(&folio->page);
1871 }
1872
folio_pgdat(const struct folio * folio)1873 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1874 {
1875 return page_pgdat(&folio->page);
1876 }
1877
1878 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1879 static inline void set_page_section(struct page *page, unsigned long section)
1880 {
1881 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1882 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1883 }
1884
page_to_section(const struct page * page)1885 static inline unsigned long page_to_section(const struct page *page)
1886 {
1887 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1888 }
1889 #endif
1890
1891 /**
1892 * folio_pfn - Return the Page Frame Number of a folio.
1893 * @folio: The folio.
1894 *
1895 * A folio may contain multiple pages. The pages have consecutive
1896 * Page Frame Numbers.
1897 *
1898 * Return: The Page Frame Number of the first page in the folio.
1899 */
folio_pfn(const struct folio * folio)1900 static inline unsigned long folio_pfn(const struct folio *folio)
1901 {
1902 return page_to_pfn(&folio->page);
1903 }
1904
pfn_folio(unsigned long pfn)1905 static inline struct folio *pfn_folio(unsigned long pfn)
1906 {
1907 return page_folio(pfn_to_page(pfn));
1908 }
1909
1910 /**
1911 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1912 * @folio: The folio.
1913 *
1914 * This function checks if a folio has been pinned via a call to
1915 * a function in the pin_user_pages() family.
1916 *
1917 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1918 * because it means "definitely not pinned for DMA", but true means "probably
1919 * pinned for DMA, but possibly a false positive due to having at least
1920 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1921 *
1922 * False positives are OK, because: a) it's unlikely for a folio to
1923 * get that many refcounts, and b) all the callers of this routine are
1924 * expected to be able to deal gracefully with a false positive.
1925 *
1926 * For large folios, the result will be exactly correct. That's because
1927 * we have more tracking data available: the _pincount field is used
1928 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1929 *
1930 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1931 *
1932 * Return: True, if it is likely that the folio has been "dma-pinned".
1933 * False, if the folio is definitely not dma-pinned.
1934 */
folio_maybe_dma_pinned(struct folio * folio)1935 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1936 {
1937 if (folio_test_large(folio))
1938 return atomic_read(&folio->_pincount) > 0;
1939
1940 /*
1941 * folio_ref_count() is signed. If that refcount overflows, then
1942 * folio_ref_count() returns a negative value, and callers will avoid
1943 * further incrementing the refcount.
1944 *
1945 * Here, for that overflow case, use the sign bit to count a little
1946 * bit higher via unsigned math, and thus still get an accurate result.
1947 */
1948 return ((unsigned int)folio_ref_count(folio)) >=
1949 GUP_PIN_COUNTING_BIAS;
1950 }
1951
1952 /*
1953 * This should most likely only be called during fork() to see whether we
1954 * should break the cow immediately for an anon page on the src mm.
1955 *
1956 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1957 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1958 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1959 struct folio *folio)
1960 {
1961 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1962
1963 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1964 return false;
1965
1966 return folio_maybe_dma_pinned(folio);
1967 }
1968
1969 /**
1970 * is_zero_page - Query if a page is a zero page
1971 * @page: The page to query
1972 *
1973 * This returns true if @page is one of the permanent zero pages.
1974 */
is_zero_page(const struct page * page)1975 static inline bool is_zero_page(const struct page *page)
1976 {
1977 return is_zero_pfn(page_to_pfn(page));
1978 }
1979
1980 /**
1981 * is_zero_folio - Query if a folio is a zero page
1982 * @folio: The folio to query
1983 *
1984 * This returns true if @folio is one of the permanent zero pages.
1985 */
is_zero_folio(const struct folio * folio)1986 static inline bool is_zero_folio(const struct folio *folio)
1987 {
1988 return is_zero_page(&folio->page);
1989 }
1990
1991 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1992 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1993 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1994 {
1995 #ifdef CONFIG_CMA
1996 int mt = folio_migratetype(folio);
1997
1998 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1999 return false;
2000 #endif
2001 /* The zero page can be "pinned" but gets special handling. */
2002 if (is_zero_folio(folio))
2003 return true;
2004
2005 /* Coherent device memory must always allow eviction. */
2006 if (folio_is_device_coherent(folio))
2007 return false;
2008
2009 /* Otherwise, non-movable zone folios can be pinned. */
2010 return !folio_is_zone_movable(folio);
2011
2012 }
2013 #else
folio_is_longterm_pinnable(struct folio * folio)2014 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2015 {
2016 return true;
2017 }
2018 #endif
2019
set_page_zone(struct page * page,enum zone_type zone)2020 static inline void set_page_zone(struct page *page, enum zone_type zone)
2021 {
2022 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2023 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2024 }
2025
set_page_node(struct page * page,unsigned long node)2026 static inline void set_page_node(struct page *page, unsigned long node)
2027 {
2028 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2029 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2030 }
2031
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2032 static inline void set_page_links(struct page *page, enum zone_type zone,
2033 unsigned long node, unsigned long pfn)
2034 {
2035 set_page_zone(page, zone);
2036 set_page_node(page, node);
2037 #ifdef SECTION_IN_PAGE_FLAGS
2038 set_page_section(page, pfn_to_section_nr(pfn));
2039 #endif
2040 }
2041
2042 /**
2043 * folio_nr_pages - The number of pages in the folio.
2044 * @folio: The folio.
2045 *
2046 * Return: A positive power of two.
2047 */
folio_nr_pages(const struct folio * folio)2048 static inline long folio_nr_pages(const struct folio *folio)
2049 {
2050 if (!folio_test_large(folio))
2051 return 1;
2052 #ifdef CONFIG_64BIT
2053 return folio->_folio_nr_pages;
2054 #else
2055 return 1L << (folio->_flags_1 & 0xff);
2056 #endif
2057 }
2058
2059 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2060 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2061 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2062 #else
2063 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2064 #endif
2065
2066 /*
2067 * compound_nr() returns the number of pages in this potentially compound
2068 * page. compound_nr() can be called on a tail page, and is defined to
2069 * return 1 in that case.
2070 */
compound_nr(struct page * page)2071 static inline unsigned long compound_nr(struct page *page)
2072 {
2073 struct folio *folio = (struct folio *)page;
2074
2075 if (!test_bit(PG_head, &folio->flags))
2076 return 1;
2077 #ifdef CONFIG_64BIT
2078 return folio->_folio_nr_pages;
2079 #else
2080 return 1L << (folio->_flags_1 & 0xff);
2081 #endif
2082 }
2083
2084 /**
2085 * thp_nr_pages - The number of regular pages in this huge page.
2086 * @page: The head page of a huge page.
2087 */
thp_nr_pages(struct page * page)2088 static inline int thp_nr_pages(struct page *page)
2089 {
2090 return folio_nr_pages((struct folio *)page);
2091 }
2092
2093 /**
2094 * folio_next - Move to the next physical folio.
2095 * @folio: The folio we're currently operating on.
2096 *
2097 * If you have physically contiguous memory which may span more than
2098 * one folio (eg a &struct bio_vec), use this function to move from one
2099 * folio to the next. Do not use it if the memory is only virtually
2100 * contiguous as the folios are almost certainly not adjacent to each
2101 * other. This is the folio equivalent to writing ``page++``.
2102 *
2103 * Context: We assume that the folios are refcounted and/or locked at a
2104 * higher level and do not adjust the reference counts.
2105 * Return: The next struct folio.
2106 */
folio_next(struct folio * folio)2107 static inline struct folio *folio_next(struct folio *folio)
2108 {
2109 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2110 }
2111
2112 /**
2113 * folio_shift - The size of the memory described by this folio.
2114 * @folio: The folio.
2115 *
2116 * A folio represents a number of bytes which is a power-of-two in size.
2117 * This function tells you which power-of-two the folio is. See also
2118 * folio_size() and folio_order().
2119 *
2120 * Context: The caller should have a reference on the folio to prevent
2121 * it from being split. It is not necessary for the folio to be locked.
2122 * Return: The base-2 logarithm of the size of this folio.
2123 */
folio_shift(const struct folio * folio)2124 static inline unsigned int folio_shift(const struct folio *folio)
2125 {
2126 return PAGE_SHIFT + folio_order(folio);
2127 }
2128
2129 /**
2130 * folio_size - The number of bytes in a folio.
2131 * @folio: The folio.
2132 *
2133 * Context: The caller should have a reference on the folio to prevent
2134 * it from being split. It is not necessary for the folio to be locked.
2135 * Return: The number of bytes in this folio.
2136 */
folio_size(const struct folio * folio)2137 static inline size_t folio_size(const struct folio *folio)
2138 {
2139 return PAGE_SIZE << folio_order(folio);
2140 }
2141
2142 /**
2143 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2144 * tables of more than one MM
2145 * @folio: The folio.
2146 *
2147 * This function checks if the folio is currently mapped into more than one
2148 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2149 * ("mapped exclusively").
2150 *
2151 * For KSM folios, this function also returns "mapped shared" when a folio is
2152 * mapped multiple times into the same MM, because the individual page mappings
2153 * are independent.
2154 *
2155 * As precise information is not easily available for all folios, this function
2156 * estimates the number of MMs ("sharers") that are currently mapping a folio
2157 * using the number of times the first page of the folio is currently mapped
2158 * into page tables.
2159 *
2160 * For small anonymous folios and anonymous hugetlb folios, the return
2161 * value will be exactly correct: non-KSM folios can only be mapped at most once
2162 * into an MM, and they cannot be partially mapped. KSM folios are
2163 * considered shared even if mapped multiple times into the same MM.
2164 *
2165 * For other folios, the result can be fuzzy:
2166 * #. For partially-mappable large folios (THP), the return value can wrongly
2167 * indicate "mapped exclusively" (false negative) when the folio is
2168 * only partially mapped into at least one MM.
2169 * #. For pagecache folios (including hugetlb), the return value can wrongly
2170 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2171 * cover the same file range.
2172 *
2173 * Further, this function only considers current page table mappings that
2174 * are tracked using the folio mapcount(s).
2175 *
2176 * This function does not consider:
2177 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2178 * pagecache, temporary unmapping for migration).
2179 * #. If the folio is mapped differently (VM_PFNMAP).
2180 * #. If hugetlb page table sharing applies. Callers might want to check
2181 * hugetlb_pmd_shared().
2182 *
2183 * Return: Whether the folio is estimated to be mapped into more than one MM.
2184 */
folio_likely_mapped_shared(struct folio * folio)2185 static inline bool folio_likely_mapped_shared(struct folio *folio)
2186 {
2187 int mapcount = folio_mapcount(folio);
2188
2189 /* Only partially-mappable folios require more care. */
2190 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2191 return mapcount > 1;
2192
2193 /* A single mapping implies "mapped exclusively". */
2194 if (mapcount <= 1)
2195 return false;
2196
2197 /* If any page is mapped more than once we treat it "mapped shared". */
2198 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2199 return true;
2200
2201 /* Let's guess based on the first subpage. */
2202 return atomic_read(&folio->_mapcount) > 0;
2203 }
2204
2205 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2206 static inline int arch_make_folio_accessible(struct folio *folio)
2207 {
2208 return 0;
2209 }
2210 #endif
2211
2212 /*
2213 * Some inline functions in vmstat.h depend on page_zone()
2214 */
2215 #include <linux/vmstat.h>
2216
2217 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2218 #define HASHED_PAGE_VIRTUAL
2219 #endif
2220
2221 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2222 static inline void *page_address(const struct page *page)
2223 {
2224 return page->virtual;
2225 }
set_page_address(struct page * page,void * address)2226 static inline void set_page_address(struct page *page, void *address)
2227 {
2228 page->virtual = address;
2229 }
2230 #define page_address_init() do { } while(0)
2231 #endif
2232
2233 #if defined(HASHED_PAGE_VIRTUAL)
2234 void *page_address(const struct page *page);
2235 void set_page_address(struct page *page, void *virtual);
2236 void page_address_init(void);
2237 #endif
2238
lowmem_page_address(const struct page * page)2239 static __always_inline void *lowmem_page_address(const struct page *page)
2240 {
2241 return page_to_virt(page);
2242 }
2243
2244 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2245 #define page_address(page) lowmem_page_address(page)
2246 #define set_page_address(page, address) do { } while(0)
2247 #define page_address_init() do { } while(0)
2248 #endif
2249
folio_address(const struct folio * folio)2250 static inline void *folio_address(const struct folio *folio)
2251 {
2252 return page_address(&folio->page);
2253 }
2254
2255 /*
2256 * Return true only if the page has been allocated with
2257 * ALLOC_NO_WATERMARKS and the low watermark was not
2258 * met implying that the system is under some pressure.
2259 */
page_is_pfmemalloc(const struct page * page)2260 static inline bool page_is_pfmemalloc(const struct page *page)
2261 {
2262 /*
2263 * lru.next has bit 1 set if the page is allocated from the
2264 * pfmemalloc reserves. Callers may simply overwrite it if
2265 * they do not need to preserve that information.
2266 */
2267 return (uintptr_t)page->lru.next & BIT(1);
2268 }
2269
2270 /*
2271 * Return true only if the folio has been allocated with
2272 * ALLOC_NO_WATERMARKS and the low watermark was not
2273 * met implying that the system is under some pressure.
2274 */
folio_is_pfmemalloc(const struct folio * folio)2275 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2276 {
2277 /*
2278 * lru.next has bit 1 set if the page is allocated from the
2279 * pfmemalloc reserves. Callers may simply overwrite it if
2280 * they do not need to preserve that information.
2281 */
2282 return (uintptr_t)folio->lru.next & BIT(1);
2283 }
2284
2285 /*
2286 * Only to be called by the page allocator on a freshly allocated
2287 * page.
2288 */
set_page_pfmemalloc(struct page * page)2289 static inline void set_page_pfmemalloc(struct page *page)
2290 {
2291 page->lru.next = (void *)BIT(1);
2292 }
2293
clear_page_pfmemalloc(struct page * page)2294 static inline void clear_page_pfmemalloc(struct page *page)
2295 {
2296 page->lru.next = NULL;
2297 }
2298
2299 /*
2300 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2301 */
2302 extern void pagefault_out_of_memory(void);
2303
2304 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2305 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2306 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2307
2308 /*
2309 * Parameter block passed down to zap_pte_range in exceptional cases.
2310 */
2311 struct zap_details {
2312 struct folio *single_folio; /* Locked folio to be unmapped */
2313 bool even_cows; /* Zap COWed private pages too? */
2314 bool reclaim_pt; /* Need reclaim page tables? */
2315 zap_flags_t zap_flags; /* Extra flags for zapping */
2316 };
2317
2318 /*
2319 * Whether to drop the pte markers, for example, the uffd-wp information for
2320 * file-backed memory. This should only be specified when we will completely
2321 * drop the page in the mm, either by truncation or unmapping of the vma. By
2322 * default, the flag is not set.
2323 */
2324 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2325 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2326 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2327
2328 #ifdef CONFIG_SCHED_MM_CID
2329 void sched_mm_cid_before_execve(struct task_struct *t);
2330 void sched_mm_cid_after_execve(struct task_struct *t);
2331 void sched_mm_cid_fork(struct task_struct *t);
2332 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2333 static inline int task_mm_cid(struct task_struct *t)
2334 {
2335 return t->mm_cid;
2336 }
2337 #else
sched_mm_cid_before_execve(struct task_struct * t)2338 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2339 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2340 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2341 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2342 static inline int task_mm_cid(struct task_struct *t)
2343 {
2344 /*
2345 * Use the processor id as a fall-back when the mm cid feature is
2346 * disabled. This provides functional per-cpu data structure accesses
2347 * in user-space, althrough it won't provide the memory usage benefits.
2348 */
2349 return raw_smp_processor_id();
2350 }
2351 #endif
2352
2353 #ifdef CONFIG_MMU
2354 extern bool can_do_mlock(void);
2355 #else
can_do_mlock(void)2356 static inline bool can_do_mlock(void) { return false; }
2357 #endif
2358 extern int user_shm_lock(size_t, struct ucounts *);
2359 extern void user_shm_unlock(size_t, struct ucounts *);
2360
2361 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2362 pte_t pte);
2363 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2364 pte_t pte);
2365 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2366 unsigned long addr, pmd_t pmd);
2367 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2368 pmd_t pmd);
2369
2370 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2371 unsigned long size);
2372 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2373 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2374 static inline void zap_vma_pages(struct vm_area_struct *vma)
2375 {
2376 zap_page_range_single(vma, vma->vm_start,
2377 vma->vm_end - vma->vm_start, NULL);
2378 }
2379 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2380 struct vm_area_struct *start_vma, unsigned long start,
2381 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2382
2383 struct mmu_notifier_range;
2384
2385 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2386 unsigned long end, unsigned long floor, unsigned long ceiling);
2387 int
2388 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2389 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2390 void *buf, int len, int write);
2391
2392 struct follow_pfnmap_args {
2393 /**
2394 * Inputs:
2395 * @vma: Pointer to @vm_area_struct struct
2396 * @address: the virtual address to walk
2397 */
2398 struct vm_area_struct *vma;
2399 unsigned long address;
2400 /**
2401 * Internals:
2402 *
2403 * The caller shouldn't touch any of these.
2404 */
2405 spinlock_t *lock;
2406 pte_t *ptep;
2407 /**
2408 * Outputs:
2409 *
2410 * @pfn: the PFN of the address
2411 * @pgprot: the pgprot_t of the mapping
2412 * @writable: whether the mapping is writable
2413 * @special: whether the mapping is a special mapping (real PFN maps)
2414 */
2415 unsigned long pfn;
2416 pgprot_t pgprot;
2417 bool writable;
2418 bool special;
2419 };
2420 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2421 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2422
2423 extern void truncate_pagecache(struct inode *inode, loff_t new);
2424 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2425 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2426 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2427 int generic_error_remove_folio(struct address_space *mapping,
2428 struct folio *folio);
2429
2430 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2431 unsigned long address, struct pt_regs *regs);
2432
2433 #ifdef CONFIG_MMU
2434 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2435 unsigned long address, unsigned int flags,
2436 struct pt_regs *regs);
2437 extern int fixup_user_fault(struct mm_struct *mm,
2438 unsigned long address, unsigned int fault_flags,
2439 bool *unlocked);
2440 void unmap_mapping_pages(struct address_space *mapping,
2441 pgoff_t start, pgoff_t nr, bool even_cows);
2442 void unmap_mapping_range(struct address_space *mapping,
2443 loff_t const holebegin, loff_t const holelen, int even_cows);
2444 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2445 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2446 unsigned long address, unsigned int flags,
2447 struct pt_regs *regs)
2448 {
2449 /* should never happen if there's no MMU */
2450 BUG();
2451 return VM_FAULT_SIGBUS;
2452 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2453 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2454 unsigned int fault_flags, bool *unlocked)
2455 {
2456 /* should never happen if there's no MMU */
2457 BUG();
2458 return -EFAULT;
2459 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2460 static inline void unmap_mapping_pages(struct address_space *mapping,
2461 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2462 static inline void unmap_mapping_range(struct address_space *mapping,
2463 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2464 #endif
2465
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2466 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2467 loff_t const holebegin, loff_t const holelen)
2468 {
2469 unmap_mapping_range(mapping, holebegin, holelen, 0);
2470 }
2471
2472 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2473 unsigned long addr);
2474
2475 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2476 void *buf, int len, unsigned int gup_flags);
2477 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2478 void *buf, int len, unsigned int gup_flags);
2479
2480 long get_user_pages_remote(struct mm_struct *mm,
2481 unsigned long start, unsigned long nr_pages,
2482 unsigned int gup_flags, struct page **pages,
2483 int *locked);
2484 long pin_user_pages_remote(struct mm_struct *mm,
2485 unsigned long start, unsigned long nr_pages,
2486 unsigned int gup_flags, struct page **pages,
2487 int *locked);
2488
2489 /*
2490 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2491 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2492 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2493 unsigned long addr,
2494 int gup_flags,
2495 struct vm_area_struct **vmap)
2496 {
2497 struct page *page;
2498 struct vm_area_struct *vma;
2499 int got;
2500
2501 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2502 return ERR_PTR(-EINVAL);
2503
2504 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2505
2506 if (got < 0)
2507 return ERR_PTR(got);
2508
2509 vma = vma_lookup(mm, addr);
2510 if (WARN_ON_ONCE(!vma)) {
2511 put_page(page);
2512 return ERR_PTR(-EINVAL);
2513 }
2514
2515 *vmap = vma;
2516 return page;
2517 }
2518
2519 long get_user_pages(unsigned long start, unsigned long nr_pages,
2520 unsigned int gup_flags, struct page **pages);
2521 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2522 unsigned int gup_flags, struct page **pages);
2523 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2524 struct page **pages, unsigned int gup_flags);
2525 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2526 struct page **pages, unsigned int gup_flags);
2527 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2528 struct folio **folios, unsigned int max_folios,
2529 pgoff_t *offset);
2530 int folio_add_pins(struct folio *folio, unsigned int pins);
2531
2532 int get_user_pages_fast(unsigned long start, int nr_pages,
2533 unsigned int gup_flags, struct page **pages);
2534 int pin_user_pages_fast(unsigned long start, int nr_pages,
2535 unsigned int gup_flags, struct page **pages);
2536 void folio_add_pin(struct folio *folio);
2537
2538 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2539 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2540 struct task_struct *task, bool bypass_rlim);
2541
2542 struct kvec;
2543 struct page *get_dump_page(unsigned long addr, int *locked);
2544
2545 bool folio_mark_dirty(struct folio *folio);
2546 bool folio_mark_dirty_lock(struct folio *folio);
2547 bool set_page_dirty(struct page *page);
2548 int set_page_dirty_lock(struct page *page);
2549
2550 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2551
2552 /*
2553 * Flags used by change_protection(). For now we make it a bitmap so
2554 * that we can pass in multiple flags just like parameters. However
2555 * for now all the callers are only use one of the flags at the same
2556 * time.
2557 */
2558 /*
2559 * Whether we should manually check if we can map individual PTEs writable,
2560 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2561 * PTEs automatically in a writable mapping.
2562 */
2563 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2564 /* Whether this protection change is for NUMA hints */
2565 #define MM_CP_PROT_NUMA (1UL << 1)
2566 /* Whether this change is for write protecting */
2567 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2568 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2569 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2570 MM_CP_UFFD_WP_RESOLVE)
2571
2572 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2573 pte_t pte);
2574 extern long change_protection(struct mmu_gather *tlb,
2575 struct vm_area_struct *vma, unsigned long start,
2576 unsigned long end, unsigned long cp_flags);
2577 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2578 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2579 unsigned long start, unsigned long end, unsigned long newflags);
2580
2581 /*
2582 * doesn't attempt to fault and will return short.
2583 */
2584 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2585 unsigned int gup_flags, struct page **pages);
2586
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2587 static inline bool get_user_page_fast_only(unsigned long addr,
2588 unsigned int gup_flags, struct page **pagep)
2589 {
2590 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2591 }
2592 /*
2593 * per-process(per-mm_struct) statistics.
2594 */
get_mm_counter(struct mm_struct * mm,int member)2595 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2596 {
2597 return percpu_counter_read_positive(&mm->rss_stat[member]);
2598 }
2599
2600 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2601
add_mm_counter(struct mm_struct * mm,int member,long value)2602 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2603 {
2604 percpu_counter_add(&mm->rss_stat[member], value);
2605
2606 mm_trace_rss_stat(mm, member);
2607 }
2608
inc_mm_counter(struct mm_struct * mm,int member)2609 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2610 {
2611 percpu_counter_inc(&mm->rss_stat[member]);
2612
2613 mm_trace_rss_stat(mm, member);
2614 }
2615
dec_mm_counter(struct mm_struct * mm,int member)2616 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2617 {
2618 percpu_counter_dec(&mm->rss_stat[member]);
2619
2620 mm_trace_rss_stat(mm, member);
2621 }
2622
2623 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2624 static inline int mm_counter_file(struct folio *folio)
2625 {
2626 if (folio_test_swapbacked(folio))
2627 return MM_SHMEMPAGES;
2628 return MM_FILEPAGES;
2629 }
2630
mm_counter(struct folio * folio)2631 static inline int mm_counter(struct folio *folio)
2632 {
2633 if (folio_test_anon(folio))
2634 return MM_ANONPAGES;
2635 return mm_counter_file(folio);
2636 }
2637
get_mm_rss(struct mm_struct * mm)2638 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2639 {
2640 return get_mm_counter(mm, MM_FILEPAGES) +
2641 get_mm_counter(mm, MM_ANONPAGES) +
2642 get_mm_counter(mm, MM_SHMEMPAGES);
2643 }
2644
get_mm_hiwater_rss(struct mm_struct * mm)2645 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2646 {
2647 return max(mm->hiwater_rss, get_mm_rss(mm));
2648 }
2649
get_mm_hiwater_vm(struct mm_struct * mm)2650 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2651 {
2652 return max(mm->hiwater_vm, mm->total_vm);
2653 }
2654
update_hiwater_rss(struct mm_struct * mm)2655 static inline void update_hiwater_rss(struct mm_struct *mm)
2656 {
2657 unsigned long _rss = get_mm_rss(mm);
2658
2659 if ((mm)->hiwater_rss < _rss)
2660 (mm)->hiwater_rss = _rss;
2661 }
2662
update_hiwater_vm(struct mm_struct * mm)2663 static inline void update_hiwater_vm(struct mm_struct *mm)
2664 {
2665 if (mm->hiwater_vm < mm->total_vm)
2666 mm->hiwater_vm = mm->total_vm;
2667 }
2668
reset_mm_hiwater_rss(struct mm_struct * mm)2669 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2670 {
2671 mm->hiwater_rss = get_mm_rss(mm);
2672 }
2673
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2674 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2675 struct mm_struct *mm)
2676 {
2677 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2678
2679 if (*maxrss < hiwater_rss)
2680 *maxrss = hiwater_rss;
2681 }
2682
2683 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2684 static inline int pte_special(pte_t pte)
2685 {
2686 return 0;
2687 }
2688
pte_mkspecial(pte_t pte)2689 static inline pte_t pte_mkspecial(pte_t pte)
2690 {
2691 return pte;
2692 }
2693 #endif
2694
2695 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2696 static inline bool pmd_special(pmd_t pmd)
2697 {
2698 return false;
2699 }
2700
pmd_mkspecial(pmd_t pmd)2701 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2702 {
2703 return pmd;
2704 }
2705 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2706
2707 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2708 static inline bool pud_special(pud_t pud)
2709 {
2710 return false;
2711 }
2712
pud_mkspecial(pud_t pud)2713 static inline pud_t pud_mkspecial(pud_t pud)
2714 {
2715 return pud;
2716 }
2717 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2718
2719 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2720 static inline int pte_devmap(pte_t pte)
2721 {
2722 return 0;
2723 }
2724 #endif
2725
2726 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2727 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2728 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2729 spinlock_t **ptl)
2730 {
2731 pte_t *ptep;
2732 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2733 return ptep;
2734 }
2735
2736 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2737 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2738 unsigned long address)
2739 {
2740 return 0;
2741 }
2742 #else
2743 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2744 #endif
2745
2746 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2747 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2748 unsigned long address)
2749 {
2750 return 0;
2751 }
mm_inc_nr_puds(struct mm_struct * mm)2752 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2753 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2754
2755 #else
2756 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2757
mm_inc_nr_puds(struct mm_struct * mm)2758 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2759 {
2760 if (mm_pud_folded(mm))
2761 return;
2762 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2763 }
2764
mm_dec_nr_puds(struct mm_struct * mm)2765 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2766 {
2767 if (mm_pud_folded(mm))
2768 return;
2769 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2770 }
2771 #endif
2772
2773 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2774 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2775 unsigned long address)
2776 {
2777 return 0;
2778 }
2779
mm_inc_nr_pmds(struct mm_struct * mm)2780 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2782
2783 #else
2784 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2785
mm_inc_nr_pmds(struct mm_struct * mm)2786 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2787 {
2788 if (mm_pmd_folded(mm))
2789 return;
2790 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2791 }
2792
mm_dec_nr_pmds(struct mm_struct * mm)2793 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2794 {
2795 if (mm_pmd_folded(mm))
2796 return;
2797 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2798 }
2799 #endif
2800
2801 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2802 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2803 {
2804 atomic_long_set(&mm->pgtables_bytes, 0);
2805 }
2806
mm_pgtables_bytes(const struct mm_struct * mm)2807 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2808 {
2809 return atomic_long_read(&mm->pgtables_bytes);
2810 }
2811
mm_inc_nr_ptes(struct mm_struct * mm)2812 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2813 {
2814 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2815 }
2816
mm_dec_nr_ptes(struct mm_struct * mm)2817 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2818 {
2819 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2820 }
2821 #else
2822
mm_pgtables_bytes_init(struct mm_struct * mm)2823 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2825 {
2826 return 0;
2827 }
2828
mm_inc_nr_ptes(struct mm_struct * mm)2829 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2830 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2831 #endif
2832
2833 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2834 int __pte_alloc_kernel(pmd_t *pmd);
2835
2836 #if defined(CONFIG_MMU)
2837
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2838 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2839 unsigned long address)
2840 {
2841 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2842 NULL : p4d_offset(pgd, address);
2843 }
2844
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2845 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2846 unsigned long address)
2847 {
2848 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2849 NULL : pud_offset(p4d, address);
2850 }
2851
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2852 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2853 {
2854 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2855 NULL: pmd_offset(pud, address);
2856 }
2857 #endif /* CONFIG_MMU */
2858
virt_to_ptdesc(const void * x)2859 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2860 {
2861 return page_ptdesc(virt_to_page(x));
2862 }
2863
ptdesc_to_virt(const struct ptdesc * pt)2864 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2865 {
2866 return page_to_virt(ptdesc_page(pt));
2867 }
2868
ptdesc_address(const struct ptdesc * pt)2869 static inline void *ptdesc_address(const struct ptdesc *pt)
2870 {
2871 return folio_address(ptdesc_folio(pt));
2872 }
2873
pagetable_is_reserved(struct ptdesc * pt)2874 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2875 {
2876 return folio_test_reserved(ptdesc_folio(pt));
2877 }
2878
2879 /**
2880 * pagetable_alloc - Allocate pagetables
2881 * @gfp: GFP flags
2882 * @order: desired pagetable order
2883 *
2884 * pagetable_alloc allocates memory for page tables as well as a page table
2885 * descriptor to describe that memory.
2886 *
2887 * Return: The ptdesc describing the allocated page tables.
2888 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2889 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2890 {
2891 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2892
2893 return page_ptdesc(page);
2894 }
2895 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2896
2897 /**
2898 * pagetable_free - Free pagetables
2899 * @pt: The page table descriptor
2900 *
2901 * pagetable_free frees the memory of all page tables described by a page
2902 * table descriptor and the memory for the descriptor itself.
2903 */
pagetable_free(struct ptdesc * pt)2904 static inline void pagetable_free(struct ptdesc *pt)
2905 {
2906 struct page *page = ptdesc_page(pt);
2907
2908 __free_pages(page, compound_order(page));
2909 }
2910
2911 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2912 #if ALLOC_SPLIT_PTLOCKS
2913 void __init ptlock_cache_init(void);
2914 bool ptlock_alloc(struct ptdesc *ptdesc);
2915 void ptlock_free(struct ptdesc *ptdesc);
2916
ptlock_ptr(struct ptdesc * ptdesc)2917 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2918 {
2919 return ptdesc->ptl;
2920 }
2921 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2922 static inline void ptlock_cache_init(void)
2923 {
2924 }
2925
ptlock_alloc(struct ptdesc * ptdesc)2926 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2927 {
2928 return true;
2929 }
2930
ptlock_free(struct ptdesc * ptdesc)2931 static inline void ptlock_free(struct ptdesc *ptdesc)
2932 {
2933 }
2934
ptlock_ptr(struct ptdesc * ptdesc)2935 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2936 {
2937 return &ptdesc->ptl;
2938 }
2939 #endif /* ALLOC_SPLIT_PTLOCKS */
2940
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2941 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2942 {
2943 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2944 }
2945
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2946 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2947 {
2948 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2949 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2950 return ptlock_ptr(virt_to_ptdesc(pte));
2951 }
2952
ptlock_init(struct ptdesc * ptdesc)2953 static inline bool ptlock_init(struct ptdesc *ptdesc)
2954 {
2955 /*
2956 * prep_new_page() initialize page->private (and therefore page->ptl)
2957 * with 0. Make sure nobody took it in use in between.
2958 *
2959 * It can happen if arch try to use slab for page table allocation:
2960 * slab code uses page->slab_cache, which share storage with page->ptl.
2961 */
2962 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2963 if (!ptlock_alloc(ptdesc))
2964 return false;
2965 spin_lock_init(ptlock_ptr(ptdesc));
2966 return true;
2967 }
2968
2969 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2970 /*
2971 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2972 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2973 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2974 {
2975 return &mm->page_table_lock;
2976 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2977 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2978 {
2979 return &mm->page_table_lock;
2980 }
ptlock_cache_init(void)2981 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2982 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2983 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2984 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2985
__pagetable_ctor(struct ptdesc * ptdesc)2986 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2987 {
2988 struct folio *folio = ptdesc_folio(ptdesc);
2989
2990 __folio_set_pgtable(folio);
2991 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2992 }
2993
pagetable_dtor(struct ptdesc * ptdesc)2994 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2995 {
2996 struct folio *folio = ptdesc_folio(ptdesc);
2997
2998 ptlock_free(ptdesc);
2999 __folio_clear_pgtable(folio);
3000 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3001 }
3002
pagetable_dtor_free(struct ptdesc * ptdesc)3003 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3004 {
3005 pagetable_dtor(ptdesc);
3006 pagetable_free(ptdesc);
3007 }
3008
pagetable_pte_ctor(struct ptdesc * ptdesc)3009 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3010 {
3011 if (!ptlock_init(ptdesc))
3012 return false;
3013 __pagetable_ctor(ptdesc);
3014 return true;
3015 }
3016
3017 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3018 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3019 pmd_t *pmdvalp)
3020 {
3021 pte_t *pte;
3022
3023 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3024 return pte;
3025 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3026 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3027 {
3028 return __pte_offset_map(pmd, addr, NULL);
3029 }
3030
3031 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3032 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3033 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3034 unsigned long addr, spinlock_t **ptlp)
3035 {
3036 pte_t *pte;
3037
3038 __cond_lock(RCU, __cond_lock(*ptlp,
3039 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3040 return pte;
3041 }
3042
3043 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3044 unsigned long addr, spinlock_t **ptlp);
3045 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3046 unsigned long addr, pmd_t *pmdvalp,
3047 spinlock_t **ptlp);
3048
3049 #define pte_unmap_unlock(pte, ptl) do { \
3050 spin_unlock(ptl); \
3051 pte_unmap(pte); \
3052 } while (0)
3053
3054 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3055
3056 #define pte_alloc_map(mm, pmd, address) \
3057 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3058
3059 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3060 (pte_alloc(mm, pmd) ? \
3061 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3062
3063 #define pte_alloc_kernel(pmd, address) \
3064 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3065 NULL: pte_offset_kernel(pmd, address))
3066
3067 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3068
pmd_pgtable_page(pmd_t * pmd)3069 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3070 {
3071 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3072 return virt_to_page((void *)((unsigned long) pmd & mask));
3073 }
3074
pmd_ptdesc(pmd_t * pmd)3075 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3076 {
3077 return page_ptdesc(pmd_pgtable_page(pmd));
3078 }
3079
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3080 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3081 {
3082 return ptlock_ptr(pmd_ptdesc(pmd));
3083 }
3084
pmd_ptlock_init(struct ptdesc * ptdesc)3085 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3086 {
3087 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3088 ptdesc->pmd_huge_pte = NULL;
3089 #endif
3090 return ptlock_init(ptdesc);
3091 }
3092
3093 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3094
3095 #else
3096
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3097 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3098 {
3099 return &mm->page_table_lock;
3100 }
3101
pmd_ptlock_init(struct ptdesc * ptdesc)3102 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3103
3104 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3105
3106 #endif
3107
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3108 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3109 {
3110 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3111 spin_lock(ptl);
3112 return ptl;
3113 }
3114
pagetable_pmd_ctor(struct ptdesc * ptdesc)3115 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3116 {
3117 if (!pmd_ptlock_init(ptdesc))
3118 return false;
3119 ptdesc_pmd_pts_init(ptdesc);
3120 __pagetable_ctor(ptdesc);
3121 return true;
3122 }
3123
3124 /*
3125 * No scalability reason to split PUD locks yet, but follow the same pattern
3126 * as the PMD locks to make it easier if we decide to. The VM should not be
3127 * considered ready to switch to split PUD locks yet; there may be places
3128 * which need to be converted from page_table_lock.
3129 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3130 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3131 {
3132 return &mm->page_table_lock;
3133 }
3134
pud_lock(struct mm_struct * mm,pud_t * pud)3135 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3136 {
3137 spinlock_t *ptl = pud_lockptr(mm, pud);
3138
3139 spin_lock(ptl);
3140 return ptl;
3141 }
3142
pagetable_pud_ctor(struct ptdesc * ptdesc)3143 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3144 {
3145 __pagetable_ctor(ptdesc);
3146 }
3147
pagetable_p4d_ctor(struct ptdesc * ptdesc)3148 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3149 {
3150 __pagetable_ctor(ptdesc);
3151 }
3152
pagetable_pgd_ctor(struct ptdesc * ptdesc)3153 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3154 {
3155 __pagetable_ctor(ptdesc);
3156 }
3157
3158 extern void __init pagecache_init(void);
3159 extern void free_initmem(void);
3160
3161 /*
3162 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3163 * into the buddy system. The freed pages will be poisoned with pattern
3164 * "poison" if it's within range [0, UCHAR_MAX].
3165 * Return pages freed into the buddy system.
3166 */
3167 extern unsigned long free_reserved_area(void *start, void *end,
3168 int poison, const char *s);
3169
3170 extern void adjust_managed_page_count(struct page *page, long count);
3171
3172 extern void reserve_bootmem_region(phys_addr_t start,
3173 phys_addr_t end, int nid);
3174
3175 /* Free the reserved page into the buddy system, so it gets managed. */
3176 void free_reserved_page(struct page *page);
3177 #define free_highmem_page(page) free_reserved_page(page)
3178
mark_page_reserved(struct page * page)3179 static inline void mark_page_reserved(struct page *page)
3180 {
3181 SetPageReserved(page);
3182 adjust_managed_page_count(page, -1);
3183 }
3184
free_reserved_ptdesc(struct ptdesc * pt)3185 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3186 {
3187 free_reserved_page(ptdesc_page(pt));
3188 }
3189
3190 /*
3191 * Default method to free all the __init memory into the buddy system.
3192 * The freed pages will be poisoned with pattern "poison" if it's within
3193 * range [0, UCHAR_MAX].
3194 * Return pages freed into the buddy system.
3195 */
free_initmem_default(int poison)3196 static inline unsigned long free_initmem_default(int poison)
3197 {
3198 extern char __init_begin[], __init_end[];
3199
3200 return free_reserved_area(&__init_begin, &__init_end,
3201 poison, "unused kernel image (initmem)");
3202 }
3203
get_num_physpages(void)3204 static inline unsigned long get_num_physpages(void)
3205 {
3206 int nid;
3207 unsigned long phys_pages = 0;
3208
3209 for_each_online_node(nid)
3210 phys_pages += node_present_pages(nid);
3211
3212 return phys_pages;
3213 }
3214
3215 /*
3216 * Using memblock node mappings, an architecture may initialise its
3217 * zones, allocate the backing mem_map and account for memory holes in an
3218 * architecture independent manner.
3219 *
3220 * An architecture is expected to register range of page frames backed by
3221 * physical memory with memblock_add[_node]() before calling
3222 * free_area_init() passing in the PFN each zone ends at. At a basic
3223 * usage, an architecture is expected to do something like
3224 *
3225 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3226 * max_highmem_pfn};
3227 * for_each_valid_physical_page_range()
3228 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3229 * free_area_init(max_zone_pfns);
3230 */
3231 void free_area_init(unsigned long *max_zone_pfn);
3232 unsigned long node_map_pfn_alignment(void);
3233 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3234 unsigned long end_pfn);
3235 extern void get_pfn_range_for_nid(unsigned int nid,
3236 unsigned long *start_pfn, unsigned long *end_pfn);
3237
3238 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3239 static inline int early_pfn_to_nid(unsigned long pfn)
3240 {
3241 return 0;
3242 }
3243 #else
3244 /* please see mm/page_alloc.c */
3245 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3246 #endif
3247
3248 extern void mem_init(void);
3249 extern void __init mmap_init(void);
3250
3251 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3252 static inline void show_mem(void)
3253 {
3254 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3255 }
3256 extern long si_mem_available(void);
3257 extern void si_meminfo(struct sysinfo * val);
3258 extern void si_meminfo_node(struct sysinfo *val, int nid);
3259
3260 extern __printf(3, 4)
3261 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3262
3263 extern void setup_per_cpu_pageset(void);
3264
3265 /* nommu.c */
3266 extern atomic_long_t mmap_pages_allocated;
3267 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3268
3269 /* interval_tree.c */
3270 void vma_interval_tree_insert(struct vm_area_struct *node,
3271 struct rb_root_cached *root);
3272 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3273 struct vm_area_struct *prev,
3274 struct rb_root_cached *root);
3275 void vma_interval_tree_remove(struct vm_area_struct *node,
3276 struct rb_root_cached *root);
3277 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3278 unsigned long start, unsigned long last);
3279 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3280 unsigned long start, unsigned long last);
3281
3282 #define vma_interval_tree_foreach(vma, root, start, last) \
3283 for (vma = vma_interval_tree_iter_first(root, start, last); \
3284 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3285
3286 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3287 struct rb_root_cached *root);
3288 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3289 struct rb_root_cached *root);
3290 struct anon_vma_chain *
3291 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3292 unsigned long start, unsigned long last);
3293 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3294 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3295 #ifdef CONFIG_DEBUG_VM_RB
3296 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3297 #endif
3298
3299 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3300 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3301 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3302
3303 /* mmap.c */
3304 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3305 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3306 extern void exit_mmap(struct mm_struct *);
3307 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3308 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3309 unsigned long addr, bool write);
3310
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3311 static inline int check_data_rlimit(unsigned long rlim,
3312 unsigned long new,
3313 unsigned long start,
3314 unsigned long end_data,
3315 unsigned long start_data)
3316 {
3317 if (rlim < RLIM_INFINITY) {
3318 if (((new - start) + (end_data - start_data)) > rlim)
3319 return -ENOSPC;
3320 }
3321
3322 return 0;
3323 }
3324
3325 extern int mm_take_all_locks(struct mm_struct *mm);
3326 extern void mm_drop_all_locks(struct mm_struct *mm);
3327
3328 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3329 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3330 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3331 extern struct file *get_task_exe_file(struct task_struct *task);
3332
3333 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3334 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3335
3336 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3337 const struct vm_special_mapping *sm);
3338 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3339 unsigned long addr, unsigned long len,
3340 unsigned long flags,
3341 const struct vm_special_mapping *spec);
3342
3343 unsigned long randomize_stack_top(unsigned long stack_top);
3344 unsigned long randomize_page(unsigned long start, unsigned long range);
3345
3346 unsigned long
3347 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3348 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3349
3350 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3351 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3352 unsigned long pgoff, unsigned long flags)
3353 {
3354 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3355 }
3356
3357 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3358 unsigned long len, unsigned long prot, unsigned long flags,
3359 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3360 struct list_head *uf);
3361 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3362 unsigned long start, size_t len, struct list_head *uf,
3363 bool unlock);
3364 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3365 struct mm_struct *mm, unsigned long start,
3366 unsigned long end, struct list_head *uf, bool unlock);
3367 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3368 struct list_head *uf);
3369 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3370
3371 #ifdef CONFIG_MMU
3372 extern int __mm_populate(unsigned long addr, unsigned long len,
3373 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3374 static inline void mm_populate(unsigned long addr, unsigned long len)
3375 {
3376 /* Ignore errors */
3377 (void) __mm_populate(addr, len, 1);
3378 }
3379 #else
mm_populate(unsigned long addr,unsigned long len)3380 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3381 #endif
3382
3383 /* This takes the mm semaphore itself */
3384 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3385 extern int vm_munmap(unsigned long, size_t);
3386 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3387 unsigned long, unsigned long,
3388 unsigned long, unsigned long);
3389
3390 struct vm_unmapped_area_info {
3391 #define VM_UNMAPPED_AREA_TOPDOWN 1
3392 unsigned long flags;
3393 unsigned long length;
3394 unsigned long low_limit;
3395 unsigned long high_limit;
3396 unsigned long align_mask;
3397 unsigned long align_offset;
3398 unsigned long start_gap;
3399 };
3400
3401 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3402
3403 /* truncate.c */
3404 extern void truncate_inode_pages(struct address_space *, loff_t);
3405 extern void truncate_inode_pages_range(struct address_space *,
3406 loff_t lstart, loff_t lend);
3407 extern void truncate_inode_pages_final(struct address_space *);
3408
3409 /* generic vm_area_ops exported for stackable file systems */
3410 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3411 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3412 pgoff_t start_pgoff, pgoff_t end_pgoff);
3413 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3414
3415 extern unsigned long stack_guard_gap;
3416 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3417 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3418 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3419
3420 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3421 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3422 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3423 struct vm_area_struct **pprev);
3424
3425 /*
3426 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3427 * NULL if none. Assume start_addr < end_addr.
3428 */
3429 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3430 unsigned long start_addr, unsigned long end_addr);
3431
3432 /**
3433 * vma_lookup() - Find a VMA at a specific address
3434 * @mm: The process address space.
3435 * @addr: The user address.
3436 *
3437 * Return: The vm_area_struct at the given address, %NULL otherwise.
3438 */
3439 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3440 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3441 {
3442 return mtree_load(&mm->mm_mt, addr);
3443 }
3444
stack_guard_start_gap(struct vm_area_struct * vma)3445 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3446 {
3447 if (vma->vm_flags & VM_GROWSDOWN)
3448 return stack_guard_gap;
3449
3450 /* See reasoning around the VM_SHADOW_STACK definition */
3451 if (vma->vm_flags & VM_SHADOW_STACK)
3452 return PAGE_SIZE;
3453
3454 return 0;
3455 }
3456
vm_start_gap(struct vm_area_struct * vma)3457 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3458 {
3459 unsigned long gap = stack_guard_start_gap(vma);
3460 unsigned long vm_start = vma->vm_start;
3461
3462 vm_start -= gap;
3463 if (vm_start > vma->vm_start)
3464 vm_start = 0;
3465 return vm_start;
3466 }
3467
vm_end_gap(struct vm_area_struct * vma)3468 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3469 {
3470 unsigned long vm_end = vma->vm_end;
3471
3472 if (vma->vm_flags & VM_GROWSUP) {
3473 vm_end += stack_guard_gap;
3474 if (vm_end < vma->vm_end)
3475 vm_end = -PAGE_SIZE;
3476 }
3477 return vm_end;
3478 }
3479
vma_pages(struct vm_area_struct * vma)3480 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3481 {
3482 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3483 }
3484
3485 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3486 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3487 unsigned long vm_start, unsigned long vm_end)
3488 {
3489 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3490
3491 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3492 vma = NULL;
3493
3494 return vma;
3495 }
3496
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3497 static inline bool range_in_vma(struct vm_area_struct *vma,
3498 unsigned long start, unsigned long end)
3499 {
3500 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3501 }
3502
3503 #ifdef CONFIG_MMU
3504 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3505 void vma_set_page_prot(struct vm_area_struct *vma);
3506 #else
vm_get_page_prot(unsigned long vm_flags)3507 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3508 {
3509 return __pgprot(0);
3510 }
vma_set_page_prot(struct vm_area_struct * vma)3511 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3512 {
3513 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3514 }
3515 #endif
3516
3517 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3518
3519 #ifdef CONFIG_NUMA_BALANCING
3520 unsigned long change_prot_numa(struct vm_area_struct *vma,
3521 unsigned long start, unsigned long end);
3522 #endif
3523
3524 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3525 unsigned long addr);
3526 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3527 unsigned long pfn, unsigned long size, pgprot_t);
3528 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3529 unsigned long pfn, unsigned long size, pgprot_t prot);
3530 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3531 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3532 struct page **pages, unsigned long *num);
3533 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3534 unsigned long num);
3535 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3536 unsigned long num);
3537 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3538 unsigned long pfn);
3539 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3540 unsigned long pfn, pgprot_t pgprot);
3541 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3542 pfn_t pfn);
3543 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3544 unsigned long addr, pfn_t pfn);
3545 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3546
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3547 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3548 unsigned long addr, struct page *page)
3549 {
3550 int err = vm_insert_page(vma, addr, page);
3551
3552 if (err == -ENOMEM)
3553 return VM_FAULT_OOM;
3554 if (err < 0 && err != -EBUSY)
3555 return VM_FAULT_SIGBUS;
3556
3557 return VM_FAULT_NOPAGE;
3558 }
3559
3560 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3561 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3562 unsigned long addr, unsigned long pfn,
3563 unsigned long size, pgprot_t prot)
3564 {
3565 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3566 }
3567 #endif
3568
vmf_error(int err)3569 static inline vm_fault_t vmf_error(int err)
3570 {
3571 if (err == -ENOMEM)
3572 return VM_FAULT_OOM;
3573 else if (err == -EHWPOISON)
3574 return VM_FAULT_HWPOISON;
3575 return VM_FAULT_SIGBUS;
3576 }
3577
3578 /*
3579 * Convert errno to return value for ->page_mkwrite() calls.
3580 *
3581 * This should eventually be merged with vmf_error() above, but will need a
3582 * careful audit of all vmf_error() callers.
3583 */
vmf_fs_error(int err)3584 static inline vm_fault_t vmf_fs_error(int err)
3585 {
3586 if (err == 0)
3587 return VM_FAULT_LOCKED;
3588 if (err == -EFAULT || err == -EAGAIN)
3589 return VM_FAULT_NOPAGE;
3590 if (err == -ENOMEM)
3591 return VM_FAULT_OOM;
3592 /* -ENOSPC, -EDQUOT, -EIO ... */
3593 return VM_FAULT_SIGBUS;
3594 }
3595
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3596 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3597 {
3598 if (vm_fault & VM_FAULT_OOM)
3599 return -ENOMEM;
3600 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3601 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3602 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3603 return -EFAULT;
3604 return 0;
3605 }
3606
3607 /*
3608 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3609 * a (NUMA hinting) fault is required.
3610 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3611 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3612 unsigned int flags)
3613 {
3614 /*
3615 * If callers don't want to honor NUMA hinting faults, no need to
3616 * determine if we would actually have to trigger a NUMA hinting fault.
3617 */
3618 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3619 return true;
3620
3621 /*
3622 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3623 *
3624 * Requiring a fault here even for inaccessible VMAs would mean that
3625 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3626 * refuses to process NUMA hinting faults in inaccessible VMAs.
3627 */
3628 return !vma_is_accessible(vma);
3629 }
3630
3631 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3632 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3633 unsigned long size, pte_fn_t fn, void *data);
3634 extern int apply_to_existing_page_range(struct mm_struct *mm,
3635 unsigned long address, unsigned long size,
3636 pte_fn_t fn, void *data);
3637
3638 #ifdef CONFIG_PAGE_POISONING
3639 extern void __kernel_poison_pages(struct page *page, int numpages);
3640 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3641 extern bool _page_poisoning_enabled_early;
3642 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3643 static inline bool page_poisoning_enabled(void)
3644 {
3645 return _page_poisoning_enabled_early;
3646 }
3647 /*
3648 * For use in fast paths after init_mem_debugging() has run, or when a
3649 * false negative result is not harmful when called too early.
3650 */
page_poisoning_enabled_static(void)3651 static inline bool page_poisoning_enabled_static(void)
3652 {
3653 return static_branch_unlikely(&_page_poisoning_enabled);
3654 }
kernel_poison_pages(struct page * page,int numpages)3655 static inline void kernel_poison_pages(struct page *page, int numpages)
3656 {
3657 if (page_poisoning_enabled_static())
3658 __kernel_poison_pages(page, numpages);
3659 }
kernel_unpoison_pages(struct page * page,int numpages)3660 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3661 {
3662 if (page_poisoning_enabled_static())
3663 __kernel_unpoison_pages(page, numpages);
3664 }
3665 #else
page_poisoning_enabled(void)3666 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3667 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3668 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3669 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3670 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3671 #endif
3672
3673 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3674 static inline bool want_init_on_alloc(gfp_t flags)
3675 {
3676 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3677 &init_on_alloc))
3678 return true;
3679 return flags & __GFP_ZERO;
3680 }
3681
3682 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3683 static inline bool want_init_on_free(void)
3684 {
3685 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3686 &init_on_free);
3687 }
3688
3689 extern bool _debug_pagealloc_enabled_early;
3690 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3691
debug_pagealloc_enabled(void)3692 static inline bool debug_pagealloc_enabled(void)
3693 {
3694 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3695 _debug_pagealloc_enabled_early;
3696 }
3697
3698 /*
3699 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3700 * or when a false negative result is not harmful when called too early.
3701 */
debug_pagealloc_enabled_static(void)3702 static inline bool debug_pagealloc_enabled_static(void)
3703 {
3704 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3705 return false;
3706
3707 return static_branch_unlikely(&_debug_pagealloc_enabled);
3708 }
3709
3710 /*
3711 * To support DEBUG_PAGEALLOC architecture must ensure that
3712 * __kernel_map_pages() never fails
3713 */
3714 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3715 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3716 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3717 {
3718 if (debug_pagealloc_enabled_static())
3719 __kernel_map_pages(page, numpages, 1);
3720 }
3721
debug_pagealloc_unmap_pages(struct page * page,int numpages)3722 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3723 {
3724 if (debug_pagealloc_enabled_static())
3725 __kernel_map_pages(page, numpages, 0);
3726 }
3727
3728 extern unsigned int _debug_guardpage_minorder;
3729 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3730
debug_guardpage_minorder(void)3731 static inline unsigned int debug_guardpage_minorder(void)
3732 {
3733 return _debug_guardpage_minorder;
3734 }
3735
debug_guardpage_enabled(void)3736 static inline bool debug_guardpage_enabled(void)
3737 {
3738 return static_branch_unlikely(&_debug_guardpage_enabled);
3739 }
3740
page_is_guard(struct page * page)3741 static inline bool page_is_guard(struct page *page)
3742 {
3743 if (!debug_guardpage_enabled())
3744 return false;
3745
3746 return PageGuard(page);
3747 }
3748
3749 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3750 static inline bool set_page_guard(struct zone *zone, struct page *page,
3751 unsigned int order)
3752 {
3753 if (!debug_guardpage_enabled())
3754 return false;
3755 return __set_page_guard(zone, page, order);
3756 }
3757
3758 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3759 static inline void clear_page_guard(struct zone *zone, struct page *page,
3760 unsigned int order)
3761 {
3762 if (!debug_guardpage_enabled())
3763 return;
3764 __clear_page_guard(zone, page, order);
3765 }
3766
3767 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3768 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3769 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3770 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3771 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3772 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3773 static inline bool set_page_guard(struct zone *zone, struct page *page,
3774 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3775 static inline void clear_page_guard(struct zone *zone, struct page *page,
3776 unsigned int order) {}
3777 #endif /* CONFIG_DEBUG_PAGEALLOC */
3778
3779 #ifdef __HAVE_ARCH_GATE_AREA
3780 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3781 extern int in_gate_area_no_mm(unsigned long addr);
3782 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3783 #else
get_gate_vma(struct mm_struct * mm)3784 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3785 {
3786 return NULL;
3787 }
in_gate_area_no_mm(unsigned long addr)3788 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3789 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3790 {
3791 return 0;
3792 }
3793 #endif /* __HAVE_ARCH_GATE_AREA */
3794
3795 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3796
3797 void drop_slab(void);
3798
3799 #ifndef CONFIG_MMU
3800 #define randomize_va_space 0
3801 #else
3802 extern int randomize_va_space;
3803 #endif
3804
3805 const char * arch_vma_name(struct vm_area_struct *vma);
3806 #ifdef CONFIG_MMU
3807 void print_vma_addr(char *prefix, unsigned long rip);
3808 #else
print_vma_addr(char * prefix,unsigned long rip)3809 static inline void print_vma_addr(char *prefix, unsigned long rip)
3810 {
3811 }
3812 #endif
3813
3814 void *sparse_buffer_alloc(unsigned long size);
3815 struct page * __populate_section_memmap(unsigned long pfn,
3816 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3817 struct dev_pagemap *pgmap);
3818 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3819 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3820 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3821 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3822 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3823 struct vmem_altmap *altmap, struct page *reuse);
3824 void *vmemmap_alloc_block(unsigned long size, int node);
3825 struct vmem_altmap;
3826 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3827 struct vmem_altmap *altmap);
3828 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3829 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3830 unsigned long addr, unsigned long next);
3831 int vmemmap_check_pmd(pmd_t *pmd, int node,
3832 unsigned long addr, unsigned long next);
3833 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3834 int node, struct vmem_altmap *altmap);
3835 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3836 int node, struct vmem_altmap *altmap);
3837 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3838 struct vmem_altmap *altmap);
3839 void vmemmap_populate_print_last(void);
3840 #ifdef CONFIG_MEMORY_HOTPLUG
3841 void vmemmap_free(unsigned long start, unsigned long end,
3842 struct vmem_altmap *altmap);
3843 #endif
3844
3845 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3846 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847 {
3848 /* number of pfns from base where pfn_to_page() is valid */
3849 if (altmap)
3850 return altmap->reserve + altmap->free;
3851 return 0;
3852 }
3853
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3854 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3855 unsigned long nr_pfns)
3856 {
3857 altmap->alloc -= nr_pfns;
3858 }
3859 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3860 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3861 {
3862 return 0;
3863 }
3864
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3865 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3866 unsigned long nr_pfns)
3867 {
3868 }
3869 #endif
3870
3871 #define VMEMMAP_RESERVE_NR 2
3872 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3873 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3874 struct dev_pagemap *pgmap)
3875 {
3876 unsigned long nr_pages;
3877 unsigned long nr_vmemmap_pages;
3878
3879 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3880 return false;
3881
3882 nr_pages = pgmap_vmemmap_nr(pgmap);
3883 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3884 /*
3885 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3886 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3887 */
3888 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3889 }
3890 /*
3891 * If we don't have an architecture override, use the generic rule
3892 */
3893 #ifndef vmemmap_can_optimize
3894 #define vmemmap_can_optimize __vmemmap_can_optimize
3895 #endif
3896
3897 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3898 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3899 struct dev_pagemap *pgmap)
3900 {
3901 return false;
3902 }
3903 #endif
3904
3905 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3906 unsigned long nr_pages);
3907
3908 enum mf_flags {
3909 MF_COUNT_INCREASED = 1 << 0,
3910 MF_ACTION_REQUIRED = 1 << 1,
3911 MF_MUST_KILL = 1 << 2,
3912 MF_SOFT_OFFLINE = 1 << 3,
3913 MF_UNPOISON = 1 << 4,
3914 MF_SW_SIMULATED = 1 << 5,
3915 MF_NO_RETRY = 1 << 6,
3916 MF_MEM_PRE_REMOVE = 1 << 7,
3917 };
3918 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3919 unsigned long count, int mf_flags);
3920 extern int memory_failure(unsigned long pfn, int flags);
3921 extern void memory_failure_queue_kick(int cpu);
3922 extern int unpoison_memory(unsigned long pfn);
3923 extern atomic_long_t num_poisoned_pages __read_mostly;
3924 extern int soft_offline_page(unsigned long pfn, int flags);
3925 #ifdef CONFIG_MEMORY_FAILURE
3926 /*
3927 * Sysfs entries for memory failure handling statistics.
3928 */
3929 extern const struct attribute_group memory_failure_attr_group;
3930 extern void memory_failure_queue(unsigned long pfn, int flags);
3931 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3932 bool *migratable_cleared);
3933 void num_poisoned_pages_inc(unsigned long pfn);
3934 void num_poisoned_pages_sub(unsigned long pfn, long i);
3935 #else
memory_failure_queue(unsigned long pfn,int flags)3936 static inline void memory_failure_queue(unsigned long pfn, int flags)
3937 {
3938 }
3939
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3940 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3941 bool *migratable_cleared)
3942 {
3943 return 0;
3944 }
3945
num_poisoned_pages_inc(unsigned long pfn)3946 static inline void num_poisoned_pages_inc(unsigned long pfn)
3947 {
3948 }
3949
num_poisoned_pages_sub(unsigned long pfn,long i)3950 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3951 {
3952 }
3953 #endif
3954
3955 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3956 extern void memblk_nr_poison_inc(unsigned long pfn);
3957 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3958 #else
memblk_nr_poison_inc(unsigned long pfn)3959 static inline void memblk_nr_poison_inc(unsigned long pfn)
3960 {
3961 }
3962
memblk_nr_poison_sub(unsigned long pfn,long i)3963 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3964 {
3965 }
3966 #endif
3967
3968 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3969 static inline int arch_memory_failure(unsigned long pfn, int flags)
3970 {
3971 return -ENXIO;
3972 }
3973 #endif
3974
3975 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3976 static inline bool arch_is_platform_page(u64 paddr)
3977 {
3978 return false;
3979 }
3980 #endif
3981
3982 /*
3983 * Error handlers for various types of pages.
3984 */
3985 enum mf_result {
3986 MF_IGNORED, /* Error: cannot be handled */
3987 MF_FAILED, /* Error: handling failed */
3988 MF_DELAYED, /* Will be handled later */
3989 MF_RECOVERED, /* Successfully recovered */
3990 };
3991
3992 enum mf_action_page_type {
3993 MF_MSG_KERNEL,
3994 MF_MSG_KERNEL_HIGH_ORDER,
3995 MF_MSG_DIFFERENT_COMPOUND,
3996 MF_MSG_HUGE,
3997 MF_MSG_FREE_HUGE,
3998 MF_MSG_GET_HWPOISON,
3999 MF_MSG_UNMAP_FAILED,
4000 MF_MSG_DIRTY_SWAPCACHE,
4001 MF_MSG_CLEAN_SWAPCACHE,
4002 MF_MSG_DIRTY_MLOCKED_LRU,
4003 MF_MSG_CLEAN_MLOCKED_LRU,
4004 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4005 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4006 MF_MSG_DIRTY_LRU,
4007 MF_MSG_CLEAN_LRU,
4008 MF_MSG_TRUNCATED_LRU,
4009 MF_MSG_BUDDY,
4010 MF_MSG_DAX,
4011 MF_MSG_UNSPLIT_THP,
4012 MF_MSG_ALREADY_POISONED,
4013 MF_MSG_UNKNOWN,
4014 };
4015
4016 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4017 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4018 int copy_user_large_folio(struct folio *dst, struct folio *src,
4019 unsigned long addr_hint,
4020 struct vm_area_struct *vma);
4021 long copy_folio_from_user(struct folio *dst_folio,
4022 const void __user *usr_src,
4023 bool allow_pagefault);
4024
4025 /**
4026 * vma_is_special_huge - Are transhuge page-table entries considered special?
4027 * @vma: Pointer to the struct vm_area_struct to consider
4028 *
4029 * Whether transhuge page-table entries are considered "special" following
4030 * the definition in vm_normal_page().
4031 *
4032 * Return: true if transhuge page-table entries should be considered special,
4033 * false otherwise.
4034 */
vma_is_special_huge(const struct vm_area_struct * vma)4035 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4036 {
4037 return vma_is_dax(vma) || (vma->vm_file &&
4038 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4039 }
4040
4041 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4042
4043 #if MAX_NUMNODES > 1
4044 void __init setup_nr_node_ids(void);
4045 #else
setup_nr_node_ids(void)4046 static inline void setup_nr_node_ids(void) {}
4047 #endif
4048
4049 extern int memcmp_pages(struct page *page1, struct page *page2);
4050
pages_identical(struct page * page1,struct page * page2)4051 static inline int pages_identical(struct page *page1, struct page *page2)
4052 {
4053 return !memcmp_pages(page1, page2);
4054 }
4055
4056 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4057 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4058 pgoff_t first_index, pgoff_t nr,
4059 pgoff_t bitmap_pgoff,
4060 unsigned long *bitmap,
4061 pgoff_t *start,
4062 pgoff_t *end);
4063
4064 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4065 pgoff_t first_index, pgoff_t nr);
4066 #endif
4067
4068 #ifdef CONFIG_ANON_VMA_NAME
4069 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4070 unsigned long len_in,
4071 struct anon_vma_name *anon_name);
4072 #else
4073 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4074 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4075 unsigned long len_in, struct anon_vma_name *anon_name) {
4076 return 0;
4077 }
4078 #endif
4079
4080 #ifdef CONFIG_UNACCEPTED_MEMORY
4081
4082 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4083 void accept_memory(phys_addr_t start, unsigned long size);
4084
4085 #else
4086
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4087 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4088 unsigned long size)
4089 {
4090 return false;
4091 }
4092
accept_memory(phys_addr_t start,unsigned long size)4093 static inline void accept_memory(phys_addr_t start, unsigned long size)
4094 {
4095 }
4096
4097 #endif
4098
pfn_is_unaccepted_memory(unsigned long pfn)4099 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4100 {
4101 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4102 }
4103
4104 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4105 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4106
4107 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4108
4109 #ifdef CONFIG_64BIT
4110 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4111 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4112 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4113 {
4114 /* noop on 32 bit */
4115 return 0;
4116 }
4117 #endif
4118
4119 /*
4120 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4121 * be zeroed or not.
4122 */
user_alloc_needs_zeroing(void)4123 static inline bool user_alloc_needs_zeroing(void)
4124 {
4125 /*
4126 * for user folios, arch with cache aliasing requires cache flush and
4127 * arc changes folio->flags to make icache coherent with dcache, so
4128 * always return false to make caller use
4129 * clear_user_page()/clear_user_highpage().
4130 */
4131 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4132 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4133 &init_on_alloc);
4134 }
4135
4136 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4137 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4138 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4139
4140 #endif /* _LINUX_MM_H */
4141