xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/ptrace.h>
37 #include <linux/dma-buf.h>
38 #include <linux/processor.h>
39 #include "kfd_priv.h"
40 #include "kfd_device_queue_manager.h"
41 #include "kfd_svm.h"
42 #include "amdgpu_amdkfd.h"
43 #include "kfd_smi_events.h"
44 #include "amdgpu_dma_buf.h"
45 #include "kfd_debug.h"
46 
47 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
48 static int kfd_open(struct inode *, struct file *);
49 static int kfd_release(struct inode *, struct file *);
50 static int kfd_mmap(struct file *, struct vm_area_struct *);
51 
52 static const char kfd_dev_name[] = "kfd";
53 
54 static const struct file_operations kfd_fops = {
55 	.owner = THIS_MODULE,
56 	.unlocked_ioctl = kfd_ioctl,
57 	.compat_ioctl = compat_ptr_ioctl,
58 	.open = kfd_open,
59 	.release = kfd_release,
60 	.mmap = kfd_mmap,
61 };
62 
63 static int kfd_char_dev_major = -1;
64 struct device *kfd_device;
65 static const struct class kfd_class = {
66 	.name = kfd_dev_name,
67 };
68 
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70 {
71 	struct kfd_process_device *pdd;
72 
73 	mutex_lock(&p->mutex);
74 	pdd = kfd_process_device_data_by_id(p, gpu_id);
75 
76 	if (pdd)
77 		return pdd;
78 
79 	mutex_unlock(&p->mutex);
80 	return NULL;
81 }
82 
kfd_unlock_pdd(struct kfd_process_device * pdd)83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84 {
85 	mutex_unlock(&pdd->process->mutex);
86 }
87 
kfd_chardev_init(void)88 int kfd_chardev_init(void)
89 {
90 	int err = 0;
91 
92 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 	err = kfd_char_dev_major;
94 	if (err < 0)
95 		goto err_register_chrdev;
96 
97 	err = class_register(&kfd_class);
98 	if (err)
99 		goto err_class_create;
100 
101 	kfd_device = device_create(&kfd_class, NULL,
102 				   MKDEV(kfd_char_dev_major, 0),
103 				   NULL, kfd_dev_name);
104 	err = PTR_ERR(kfd_device);
105 	if (IS_ERR(kfd_device))
106 		goto err_device_create;
107 
108 	return 0;
109 
110 err_device_create:
111 	class_unregister(&kfd_class);
112 err_class_create:
113 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 	return err;
116 }
117 
kfd_chardev_exit(void)118 void kfd_chardev_exit(void)
119 {
120 	device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
121 	class_unregister(&kfd_class);
122 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 	kfd_device = NULL;
124 }
125 
126 
kfd_open(struct inode * inode,struct file * filep)127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 	struct kfd_process *process;
130 	bool is_32bit_user_mode;
131 
132 	if (iminor(inode) != 0)
133 		return -ENODEV;
134 
135 	is_32bit_user_mode = in_compat_syscall();
136 
137 	if (is_32bit_user_mode) {
138 		dev_warn(kfd_device,
139 			"Process %d (32-bit) failed to open /dev/kfd\n"
140 			"32-bit processes are not supported by amdkfd\n",
141 			current->pid);
142 		return -EPERM;
143 	}
144 
145 	process = kfd_create_process(current);
146 	if (IS_ERR(process))
147 		return PTR_ERR(process);
148 
149 	if (kfd_process_init_cwsr_apu(process, filep)) {
150 		kfd_unref_process(process);
151 		return -EFAULT;
152 	}
153 
154 	/* filep now owns the reference returned by kfd_create_process */
155 	filep->private_data = process;
156 
157 	dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
158 		process->lead_thread->pid, process->is_32bit_user_mode);
159 
160 	return 0;
161 }
162 
kfd_release(struct inode * inode,struct file * filep)163 static int kfd_release(struct inode *inode, struct file *filep)
164 {
165 	struct kfd_process *process = filep->private_data;
166 
167 	if (process)
168 		kfd_unref_process(process);
169 
170 	return 0;
171 }
172 
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)173 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
174 					void *data)
175 {
176 	struct kfd_ioctl_get_version_args *args = data;
177 
178 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
179 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
180 
181 	return 0;
182 }
183 
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)184 static int set_queue_properties_from_user(struct queue_properties *q_properties,
185 				struct kfd_ioctl_create_queue_args *args)
186 {
187 	/*
188 	 * Repurpose queue percentage to accommodate new features:
189 	 * bit 0-7: queue percentage
190 	 * bit 8-15: pm4_target_xcc
191 	 */
192 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
193 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
194 		return -EINVAL;
195 	}
196 
197 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
198 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
199 		return -EINVAL;
200 	}
201 
202 	if ((args->ring_base_address) &&
203 		(!access_ok((const void __user *) args->ring_base_address,
204 			sizeof(uint64_t)))) {
205 		pr_err("Can't access ring base address\n");
206 		return -EFAULT;
207 	}
208 
209 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
210 		pr_err("Ring size must be a power of 2 or 0\n");
211 		return -EINVAL;
212 	}
213 
214 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
215 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
216 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
217 	}
218 
219 	if (!access_ok((const void __user *) args->read_pointer_address,
220 			sizeof(uint32_t))) {
221 		pr_err("Can't access read pointer\n");
222 		return -EFAULT;
223 	}
224 
225 	if (!access_ok((const void __user *) args->write_pointer_address,
226 			sizeof(uint32_t))) {
227 		pr_err("Can't access write pointer\n");
228 		return -EFAULT;
229 	}
230 
231 	if (args->eop_buffer_address &&
232 		!access_ok((const void __user *) args->eop_buffer_address,
233 			sizeof(uint32_t))) {
234 		pr_debug("Can't access eop buffer");
235 		return -EFAULT;
236 	}
237 
238 	if (args->ctx_save_restore_address &&
239 		!access_ok((const void __user *) args->ctx_save_restore_address,
240 			sizeof(uint32_t))) {
241 		pr_debug("Can't access ctx save restore buffer");
242 		return -EFAULT;
243 	}
244 
245 	q_properties->is_interop = false;
246 	q_properties->is_gws = false;
247 	q_properties->queue_percent = args->queue_percentage & 0xFF;
248 	/* bit 8-15 are repurposed to be PM4 target XCC */
249 	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
250 	q_properties->priority = args->queue_priority;
251 	q_properties->queue_address = args->ring_base_address;
252 	q_properties->queue_size = args->ring_size;
253 	q_properties->read_ptr = (void __user *)args->read_pointer_address;
254 	q_properties->write_ptr = (void __user *)args->write_pointer_address;
255 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
256 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
257 	q_properties->ctx_save_restore_area_address =
258 			args->ctx_save_restore_address;
259 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
260 	q_properties->ctl_stack_size = args->ctl_stack_size;
261 	q_properties->sdma_engine_id = args->sdma_engine_id;
262 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
263 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
264 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
265 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
266 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
267 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
268 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
269 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
270 		q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
271 	else
272 		return -ENOTSUPP;
273 
274 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
275 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
276 	else
277 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
278 
279 	pr_debug("Queue Percentage: %d, %d\n",
280 			q_properties->queue_percent, args->queue_percentage);
281 
282 	pr_debug("Queue Priority: %d, %d\n",
283 			q_properties->priority, args->queue_priority);
284 
285 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
286 			q_properties->queue_address, args->ring_base_address);
287 
288 	pr_debug("Queue Size: 0x%llX, %u\n",
289 			q_properties->queue_size, args->ring_size);
290 
291 	pr_debug("Queue r/w Pointers: %px, %px\n",
292 			q_properties->read_ptr,
293 			q_properties->write_ptr);
294 
295 	pr_debug("Queue Format: %d\n", q_properties->format);
296 
297 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
298 
299 	pr_debug("Queue CTX save area: 0x%llX\n",
300 			q_properties->ctx_save_restore_area_address);
301 
302 	return 0;
303 }
304 
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)305 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
306 					void *data)
307 {
308 	struct kfd_ioctl_create_queue_args *args = data;
309 	struct kfd_node *dev;
310 	int err = 0;
311 	unsigned int queue_id;
312 	struct kfd_process_device *pdd;
313 	struct queue_properties q_properties;
314 	uint32_t doorbell_offset_in_process = 0;
315 
316 	memset(&q_properties, 0, sizeof(struct queue_properties));
317 
318 	pr_debug("Creating queue ioctl\n");
319 
320 	err = set_queue_properties_from_user(&q_properties, args);
321 	if (err)
322 		return err;
323 
324 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
325 
326 	mutex_lock(&p->mutex);
327 
328 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
329 	if (!pdd) {
330 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
331 		err = -EINVAL;
332 		goto err_pdd;
333 	}
334 	dev = pdd->dev;
335 
336 	pdd = kfd_bind_process_to_device(dev, p);
337 	if (IS_ERR(pdd)) {
338 		err = -ESRCH;
339 		goto err_bind_process;
340 	}
341 
342 	if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
343 		int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
344 				      kfd_get_num_xgmi_sdma_engines(dev) - 1;
345 
346 		if (q_properties.sdma_engine_id > max_sdma_eng_id) {
347 			err = -EINVAL;
348 			pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
349 			       q_properties.sdma_engine_id, max_sdma_eng_id);
350 			goto err_sdma_engine_id;
351 		}
352 	}
353 
354 	if (!pdd->qpd.proc_doorbells) {
355 		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
356 		if (err) {
357 			pr_debug("failed to allocate process doorbells\n");
358 			goto err_bind_process;
359 		}
360 	}
361 
362 	err = kfd_queue_acquire_buffers(pdd, &q_properties);
363 	if (err) {
364 		pr_debug("failed to acquire user queue buffers\n");
365 		goto err_acquire_queue_buf;
366 	}
367 
368 	pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
369 			p->lead_thread->pid,
370 			dev->id);
371 
372 	err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
373 			NULL, NULL, NULL, &doorbell_offset_in_process);
374 	if (err != 0)
375 		goto err_create_queue;
376 
377 	args->queue_id = queue_id;
378 
379 
380 	/* Return gpu_id as doorbell offset for mmap usage */
381 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
382 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
383 	if (KFD_IS_SOC15(dev))
384 		/* On SOC15 ASICs, include the doorbell offset within the
385 		 * process doorbell frame, which is 2 pages.
386 		 */
387 		args->doorbell_offset |= doorbell_offset_in_process;
388 
389 	mutex_unlock(&p->mutex);
390 
391 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
392 
393 	pr_debug("Ring buffer address == 0x%016llX\n",
394 			args->ring_base_address);
395 
396 	pr_debug("Read ptr address    == 0x%016llX\n",
397 			args->read_pointer_address);
398 
399 	pr_debug("Write ptr address   == 0x%016llX\n",
400 			args->write_pointer_address);
401 
402 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
403 	return 0;
404 
405 err_create_queue:
406 	kfd_queue_unref_bo_vas(pdd, &q_properties);
407 	kfd_queue_release_buffers(pdd, &q_properties);
408 err_acquire_queue_buf:
409 err_sdma_engine_id:
410 err_bind_process:
411 err_pdd:
412 	mutex_unlock(&p->mutex);
413 	return err;
414 }
415 
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)416 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
417 					void *data)
418 {
419 	int retval;
420 	struct kfd_ioctl_destroy_queue_args *args = data;
421 
422 	pr_debug("Destroying queue id %d for process pid %d\n",
423 				args->queue_id,
424 				p->lead_thread->pid);
425 
426 	mutex_lock(&p->mutex);
427 
428 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
429 
430 	mutex_unlock(&p->mutex);
431 	return retval;
432 }
433 
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)434 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
435 					void *data)
436 {
437 	int retval;
438 	struct kfd_ioctl_update_queue_args *args = data;
439 	struct queue_properties properties;
440 
441 	/*
442 	 * Repurpose queue percentage to accommodate new features:
443 	 * bit 0-7: queue percentage
444 	 * bit 8-15: pm4_target_xcc
445 	 */
446 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
447 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
448 		return -EINVAL;
449 	}
450 
451 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
452 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
453 		return -EINVAL;
454 	}
455 
456 	if ((args->ring_base_address) &&
457 		(!access_ok((const void __user *) args->ring_base_address,
458 			sizeof(uint64_t)))) {
459 		pr_err("Can't access ring base address\n");
460 		return -EFAULT;
461 	}
462 
463 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
464 		pr_err("Ring size must be a power of 2 or 0\n");
465 		return -EINVAL;
466 	}
467 
468 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
469 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
470 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
471 	}
472 
473 	properties.queue_address = args->ring_base_address;
474 	properties.queue_size = args->ring_size;
475 	properties.queue_percent = args->queue_percentage & 0xFF;
476 	/* bit 8-15 are repurposed to be PM4 target XCC */
477 	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
478 	properties.priority = args->queue_priority;
479 
480 	pr_debug("Updating queue id %d for process pid %d\n",
481 			args->queue_id, p->lead_thread->pid);
482 
483 	mutex_lock(&p->mutex);
484 
485 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
486 
487 	mutex_unlock(&p->mutex);
488 
489 	return retval;
490 }
491 
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)492 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
493 					void *data)
494 {
495 	int retval;
496 	const int max_num_cus = 1024;
497 	struct kfd_ioctl_set_cu_mask_args *args = data;
498 	struct mqd_update_info minfo = {0};
499 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
500 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
501 
502 	if ((args->num_cu_mask % 32) != 0) {
503 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
504 				args->num_cu_mask);
505 		return -EINVAL;
506 	}
507 
508 	minfo.cu_mask.count = args->num_cu_mask;
509 	if (minfo.cu_mask.count == 0) {
510 		pr_debug("CU mask cannot be 0");
511 		return -EINVAL;
512 	}
513 
514 	/* To prevent an unreasonably large CU mask size, set an arbitrary
515 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
516 	 * past max_num_cus bits and just use the first max_num_cus bits.
517 	 */
518 	if (minfo.cu_mask.count > max_num_cus) {
519 		pr_debug("CU mask cannot be greater than 1024 bits");
520 		minfo.cu_mask.count = max_num_cus;
521 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
522 	}
523 
524 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
525 	if (!minfo.cu_mask.ptr)
526 		return -ENOMEM;
527 
528 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
529 	if (retval) {
530 		pr_debug("Could not copy CU mask from userspace");
531 		retval = -EFAULT;
532 		goto out;
533 	}
534 
535 	mutex_lock(&p->mutex);
536 
537 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
538 
539 	mutex_unlock(&p->mutex);
540 
541 out:
542 	kfree(minfo.cu_mask.ptr);
543 	return retval;
544 }
545 
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)546 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
547 					  struct kfd_process *p, void *data)
548 {
549 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
550 	int r;
551 
552 	mutex_lock(&p->mutex);
553 
554 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
555 			       (void __user *)args->ctl_stack_address,
556 			       &args->ctl_stack_used_size,
557 			       &args->save_area_used_size);
558 
559 	mutex_unlock(&p->mutex);
560 
561 	return r;
562 }
563 
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)564 static int kfd_ioctl_set_memory_policy(struct file *filep,
565 					struct kfd_process *p, void *data)
566 {
567 	struct kfd_ioctl_set_memory_policy_args *args = data;
568 	int err = 0;
569 	struct kfd_process_device *pdd;
570 	enum cache_policy default_policy, alternate_policy;
571 
572 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
573 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
574 		return -EINVAL;
575 	}
576 
577 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
578 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
579 		return -EINVAL;
580 	}
581 
582 	mutex_lock(&p->mutex);
583 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
584 	if (!pdd) {
585 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
586 		err = -EINVAL;
587 		goto err_pdd;
588 	}
589 
590 	pdd = kfd_bind_process_to_device(pdd->dev, p);
591 	if (IS_ERR(pdd)) {
592 		err = -ESRCH;
593 		goto out;
594 	}
595 
596 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
597 			 ? cache_policy_coherent : cache_policy_noncoherent;
598 
599 	alternate_policy =
600 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
601 		   ? cache_policy_coherent : cache_policy_noncoherent;
602 
603 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
604 				&pdd->qpd,
605 				default_policy,
606 				alternate_policy,
607 				(void __user *)args->alternate_aperture_base,
608 				args->alternate_aperture_size,
609 				args->misc_process_flag))
610 		err = -EINVAL;
611 
612 out:
613 err_pdd:
614 	mutex_unlock(&p->mutex);
615 
616 	return err;
617 }
618 
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)619 static int kfd_ioctl_set_trap_handler(struct file *filep,
620 					struct kfd_process *p, void *data)
621 {
622 	struct kfd_ioctl_set_trap_handler_args *args = data;
623 	int err = 0;
624 	struct kfd_process_device *pdd;
625 
626 	mutex_lock(&p->mutex);
627 
628 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
629 	if (!pdd) {
630 		err = -EINVAL;
631 		goto err_pdd;
632 	}
633 
634 	pdd = kfd_bind_process_to_device(pdd->dev, p);
635 	if (IS_ERR(pdd)) {
636 		err = -ESRCH;
637 		goto out;
638 	}
639 
640 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
641 
642 out:
643 err_pdd:
644 	mutex_unlock(&p->mutex);
645 
646 	return err;
647 }
648 
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)649 static int kfd_ioctl_dbg_register(struct file *filep,
650 				struct kfd_process *p, void *data)
651 {
652 	return -EPERM;
653 }
654 
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)655 static int kfd_ioctl_dbg_unregister(struct file *filep,
656 				struct kfd_process *p, void *data)
657 {
658 	return -EPERM;
659 }
660 
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_address_watch(struct file *filep,
662 					struct kfd_process *p, void *data)
663 {
664 	return -EPERM;
665 }
666 
667 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)668 static int kfd_ioctl_dbg_wave_control(struct file *filep,
669 					struct kfd_process *p, void *data)
670 {
671 	return -EPERM;
672 }
673 
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)674 static int kfd_ioctl_get_clock_counters(struct file *filep,
675 				struct kfd_process *p, void *data)
676 {
677 	struct kfd_ioctl_get_clock_counters_args *args = data;
678 	struct kfd_process_device *pdd;
679 
680 	mutex_lock(&p->mutex);
681 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
682 	mutex_unlock(&p->mutex);
683 	if (pdd)
684 		/* Reading GPU clock counter from KGD */
685 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
686 	else
687 		/* Node without GPU resource */
688 		args->gpu_clock_counter = 0;
689 
690 	/* No access to rdtsc. Using raw monotonic time */
691 	args->cpu_clock_counter = ktime_get_raw_ns();
692 	args->system_clock_counter = ktime_get_boottime_ns();
693 
694 	/* Since the counter is in nano-seconds we use 1GHz frequency */
695 	args->system_clock_freq = 1000000000;
696 
697 	return 0;
698 }
699 
700 
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)701 static int kfd_ioctl_get_process_apertures(struct file *filp,
702 				struct kfd_process *p, void *data)
703 {
704 	struct kfd_ioctl_get_process_apertures_args *args = data;
705 	struct kfd_process_device_apertures *pAperture;
706 	int i;
707 
708 	dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
709 
710 	args->num_of_nodes = 0;
711 
712 	mutex_lock(&p->mutex);
713 	/* Run over all pdd of the process */
714 	for (i = 0; i < p->n_pdds; i++) {
715 		struct kfd_process_device *pdd = p->pdds[i];
716 
717 		pAperture =
718 			&args->process_apertures[args->num_of_nodes];
719 		pAperture->gpu_id = pdd->dev->id;
720 		pAperture->lds_base = pdd->lds_base;
721 		pAperture->lds_limit = pdd->lds_limit;
722 		pAperture->gpuvm_base = pdd->gpuvm_base;
723 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
724 		pAperture->scratch_base = pdd->scratch_base;
725 		pAperture->scratch_limit = pdd->scratch_limit;
726 
727 		dev_dbg(kfd_device,
728 			"node id %u\n", args->num_of_nodes);
729 		dev_dbg(kfd_device,
730 			"gpu id %u\n", pdd->dev->id);
731 		dev_dbg(kfd_device,
732 			"lds_base %llX\n", pdd->lds_base);
733 		dev_dbg(kfd_device,
734 			"lds_limit %llX\n", pdd->lds_limit);
735 		dev_dbg(kfd_device,
736 			"gpuvm_base %llX\n", pdd->gpuvm_base);
737 		dev_dbg(kfd_device,
738 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
739 		dev_dbg(kfd_device,
740 			"scratch_base %llX\n", pdd->scratch_base);
741 		dev_dbg(kfd_device,
742 			"scratch_limit %llX\n", pdd->scratch_limit);
743 
744 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
745 			break;
746 	}
747 	mutex_unlock(&p->mutex);
748 
749 	return 0;
750 }
751 
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)752 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
753 				struct kfd_process *p, void *data)
754 {
755 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
756 	struct kfd_process_device_apertures *pa;
757 	int ret;
758 	int i;
759 
760 	dev_dbg(kfd_device, "get apertures for process pid %d",
761 			p->lead_thread->pid);
762 
763 	if (args->num_of_nodes == 0) {
764 		/* Return number of nodes, so that user space can alloacate
765 		 * sufficient memory
766 		 */
767 		mutex_lock(&p->mutex);
768 		args->num_of_nodes = p->n_pdds;
769 		goto out_unlock;
770 	}
771 
772 	/* Fill in process-aperture information for all available
773 	 * nodes, but not more than args->num_of_nodes as that is
774 	 * the amount of memory allocated by user
775 	 */
776 	pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
777 		     GFP_KERNEL);
778 	if (!pa)
779 		return -ENOMEM;
780 
781 	mutex_lock(&p->mutex);
782 
783 	if (!p->n_pdds) {
784 		args->num_of_nodes = 0;
785 		kfree(pa);
786 		goto out_unlock;
787 	}
788 
789 	/* Run over all pdd of the process */
790 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
791 		struct kfd_process_device *pdd = p->pdds[i];
792 
793 		pa[i].gpu_id = pdd->dev->id;
794 		pa[i].lds_base = pdd->lds_base;
795 		pa[i].lds_limit = pdd->lds_limit;
796 		pa[i].gpuvm_base = pdd->gpuvm_base;
797 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
798 		pa[i].scratch_base = pdd->scratch_base;
799 		pa[i].scratch_limit = pdd->scratch_limit;
800 
801 		dev_dbg(kfd_device,
802 			"gpu id %u\n", pdd->dev->id);
803 		dev_dbg(kfd_device,
804 			"lds_base %llX\n", pdd->lds_base);
805 		dev_dbg(kfd_device,
806 			"lds_limit %llX\n", pdd->lds_limit);
807 		dev_dbg(kfd_device,
808 			"gpuvm_base %llX\n", pdd->gpuvm_base);
809 		dev_dbg(kfd_device,
810 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
811 		dev_dbg(kfd_device,
812 			"scratch_base %llX\n", pdd->scratch_base);
813 		dev_dbg(kfd_device,
814 			"scratch_limit %llX\n", pdd->scratch_limit);
815 	}
816 	mutex_unlock(&p->mutex);
817 
818 	args->num_of_nodes = i;
819 	ret = copy_to_user(
820 			(void __user *)args->kfd_process_device_apertures_ptr,
821 			pa,
822 			(i * sizeof(struct kfd_process_device_apertures)));
823 	kfree(pa);
824 	return ret ? -EFAULT : 0;
825 
826 out_unlock:
827 	mutex_unlock(&p->mutex);
828 	return 0;
829 }
830 
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)831 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
832 					void *data)
833 {
834 	struct kfd_ioctl_create_event_args *args = data;
835 	int err;
836 
837 	/* For dGPUs the event page is allocated in user mode. The
838 	 * handle is passed to KFD with the first call to this IOCTL
839 	 * through the event_page_offset field.
840 	 */
841 	if (args->event_page_offset) {
842 		mutex_lock(&p->mutex);
843 		err = kfd_kmap_event_page(p, args->event_page_offset);
844 		mutex_unlock(&p->mutex);
845 		if (err)
846 			return err;
847 	}
848 
849 	err = kfd_event_create(filp, p, args->event_type,
850 				args->auto_reset != 0, args->node_id,
851 				&args->event_id, &args->event_trigger_data,
852 				&args->event_page_offset,
853 				&args->event_slot_index);
854 
855 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
856 	return err;
857 }
858 
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)859 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
860 					void *data)
861 {
862 	struct kfd_ioctl_destroy_event_args *args = data;
863 
864 	return kfd_event_destroy(p, args->event_id);
865 }
866 
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)867 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
868 				void *data)
869 {
870 	struct kfd_ioctl_set_event_args *args = data;
871 
872 	return kfd_set_event(p, args->event_id);
873 }
874 
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)875 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
876 				void *data)
877 {
878 	struct kfd_ioctl_reset_event_args *args = data;
879 
880 	return kfd_reset_event(p, args->event_id);
881 }
882 
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)883 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
884 				void *data)
885 {
886 	struct kfd_ioctl_wait_events_args *args = data;
887 
888 	return kfd_wait_on_events(p, args->num_events,
889 			(void __user *)args->events_ptr,
890 			(args->wait_for_all != 0),
891 			&args->timeout, &args->wait_result);
892 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)893 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
894 					struct kfd_process *p, void *data)
895 {
896 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
897 	struct kfd_process_device *pdd;
898 	struct kfd_node *dev;
899 	long err;
900 
901 	mutex_lock(&p->mutex);
902 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
903 	if (!pdd) {
904 		err = -EINVAL;
905 		goto err_pdd;
906 	}
907 	dev = pdd->dev;
908 
909 	pdd = kfd_bind_process_to_device(dev, p);
910 	if (IS_ERR(pdd)) {
911 		err = PTR_ERR(pdd);
912 		goto bind_process_to_device_fail;
913 	}
914 
915 	pdd->qpd.sh_hidden_private_base = args->va_addr;
916 
917 	mutex_unlock(&p->mutex);
918 
919 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
920 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
921 		dev->kfd2kgd->set_scratch_backing_va(
922 			dev->adev, args->va_addr, pdd->qpd.vmid);
923 
924 	return 0;
925 
926 bind_process_to_device_fail:
927 err_pdd:
928 	mutex_unlock(&p->mutex);
929 	return err;
930 }
931 
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)932 static int kfd_ioctl_get_tile_config(struct file *filep,
933 		struct kfd_process *p, void *data)
934 {
935 	struct kfd_ioctl_get_tile_config_args *args = data;
936 	struct kfd_process_device *pdd;
937 	struct tile_config config;
938 	int err = 0;
939 
940 	mutex_lock(&p->mutex);
941 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
942 	mutex_unlock(&p->mutex);
943 	if (!pdd)
944 		return -EINVAL;
945 
946 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
947 
948 	args->gb_addr_config = config.gb_addr_config;
949 	args->num_banks = config.num_banks;
950 	args->num_ranks = config.num_ranks;
951 
952 	if (args->num_tile_configs > config.num_tile_configs)
953 		args->num_tile_configs = config.num_tile_configs;
954 	err = copy_to_user((void __user *)args->tile_config_ptr,
955 			config.tile_config_ptr,
956 			args->num_tile_configs * sizeof(uint32_t));
957 	if (err) {
958 		args->num_tile_configs = 0;
959 		return -EFAULT;
960 	}
961 
962 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
963 		args->num_macro_tile_configs =
964 				config.num_macro_tile_configs;
965 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
966 			config.macro_tile_config_ptr,
967 			args->num_macro_tile_configs * sizeof(uint32_t));
968 	if (err) {
969 		args->num_macro_tile_configs = 0;
970 		return -EFAULT;
971 	}
972 
973 	return 0;
974 }
975 
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)976 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
977 				void *data)
978 {
979 	struct kfd_ioctl_acquire_vm_args *args = data;
980 	struct kfd_process_device *pdd;
981 	struct file *drm_file;
982 	int ret;
983 
984 	drm_file = fget(args->drm_fd);
985 	if (!drm_file)
986 		return -EINVAL;
987 
988 	mutex_lock(&p->mutex);
989 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
990 	if (!pdd) {
991 		ret = -EINVAL;
992 		goto err_pdd;
993 	}
994 
995 	if (pdd->drm_file) {
996 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
997 		goto err_drm_file;
998 	}
999 
1000 	ret = kfd_process_device_init_vm(pdd, drm_file);
1001 	if (ret)
1002 		goto err_unlock;
1003 
1004 	/* On success, the PDD keeps the drm_file reference */
1005 	mutex_unlock(&p->mutex);
1006 
1007 	return 0;
1008 
1009 err_unlock:
1010 err_pdd:
1011 err_drm_file:
1012 	mutex_unlock(&p->mutex);
1013 	fput(drm_file);
1014 	return ret;
1015 }
1016 
kfd_dev_is_large_bar(struct kfd_node * dev)1017 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1018 {
1019 	if (dev->kfd->adev->debug_largebar) {
1020 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1021 		return true;
1022 	}
1023 
1024 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1025 	    dev->local_mem_info.local_mem_size_public > 0)
1026 		return true;
1027 
1028 	if (dev->local_mem_info.local_mem_size_public == 0 &&
1029 	    dev->kfd->adev->gmc.is_app_apu) {
1030 		pr_debug("APP APU, Consider like a large bar system\n");
1031 		return true;
1032 	}
1033 
1034 	return false;
1035 }
1036 
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1037 static int kfd_ioctl_get_available_memory(struct file *filep,
1038 					  struct kfd_process *p, void *data)
1039 {
1040 	struct kfd_ioctl_get_available_memory_args *args = data;
1041 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1042 
1043 	if (!pdd)
1044 		return -EINVAL;
1045 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1046 							pdd->dev->node_id);
1047 	kfd_unlock_pdd(pdd);
1048 	return 0;
1049 }
1050 
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1051 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1052 					struct kfd_process *p, void *data)
1053 {
1054 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1055 	struct kfd_process_device *pdd;
1056 	void *mem;
1057 	struct kfd_node *dev;
1058 	int idr_handle;
1059 	long err;
1060 	uint64_t offset = args->mmap_offset;
1061 	uint32_t flags = args->flags;
1062 
1063 	if (args->size == 0)
1064 		return -EINVAL;
1065 
1066 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1067 	/* Flush pending deferred work to avoid racing with deferred actions
1068 	 * from previous memory map changes (e.g. munmap).
1069 	 */
1070 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1071 	mutex_lock(&p->svms.lock);
1072 	mmap_write_unlock(current->mm);
1073 	if (interval_tree_iter_first(&p->svms.objects,
1074 				     args->va_addr >> PAGE_SHIFT,
1075 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1076 		pr_err("Address: 0x%llx already allocated by SVM\n",
1077 			args->va_addr);
1078 		mutex_unlock(&p->svms.lock);
1079 		return -EADDRINUSE;
1080 	}
1081 
1082 	/* When register user buffer check if it has been registered by svm by
1083 	 * buffer cpu virtual address.
1084 	 */
1085 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1086 	    interval_tree_iter_first(&p->svms.objects,
1087 				     args->mmap_offset >> PAGE_SHIFT,
1088 				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1089 		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1090 			args->mmap_offset);
1091 		mutex_unlock(&p->svms.lock);
1092 		return -EADDRINUSE;
1093 	}
1094 
1095 	mutex_unlock(&p->svms.lock);
1096 #endif
1097 	mutex_lock(&p->mutex);
1098 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1099 	if (!pdd) {
1100 		err = -EINVAL;
1101 		goto err_pdd;
1102 	}
1103 
1104 	dev = pdd->dev;
1105 
1106 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1107 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1108 		!kfd_dev_is_large_bar(dev)) {
1109 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1110 		err = -EINVAL;
1111 		goto err_large_bar;
1112 	}
1113 
1114 	pdd = kfd_bind_process_to_device(dev, p);
1115 	if (IS_ERR(pdd)) {
1116 		err = PTR_ERR(pdd);
1117 		goto err_unlock;
1118 	}
1119 
1120 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1121 		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1122 			err = -EINVAL;
1123 			goto err_unlock;
1124 		}
1125 		offset = kfd_get_process_doorbells(pdd);
1126 		if (!offset) {
1127 			err = -ENOMEM;
1128 			goto err_unlock;
1129 		}
1130 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1131 		if (args->size != PAGE_SIZE) {
1132 			err = -EINVAL;
1133 			goto err_unlock;
1134 		}
1135 		offset = dev->adev->rmmio_remap.bus_addr;
1136 		if (!offset || (PAGE_SIZE > 4096)) {
1137 			err = -ENOMEM;
1138 			goto err_unlock;
1139 		}
1140 	}
1141 
1142 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1143 		dev->adev, args->va_addr, args->size,
1144 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1145 		flags, false);
1146 
1147 	if (err)
1148 		goto err_unlock;
1149 
1150 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1151 	if (idr_handle < 0) {
1152 		err = -EFAULT;
1153 		goto err_free;
1154 	}
1155 
1156 	/* Update the VRAM usage count */
1157 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1158 		uint64_t size = args->size;
1159 
1160 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1161 			size >>= 1;
1162 		atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1163 	}
1164 
1165 	mutex_unlock(&p->mutex);
1166 
1167 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1168 	args->mmap_offset = offset;
1169 
1170 	/* MMIO is mapped through kfd device
1171 	 * Generate a kfd mmap offset
1172 	 */
1173 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1174 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1175 					| KFD_MMAP_GPU_ID(args->gpu_id);
1176 
1177 	return 0;
1178 
1179 err_free:
1180 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1181 					       pdd->drm_priv, NULL);
1182 err_unlock:
1183 err_pdd:
1184 err_large_bar:
1185 	mutex_unlock(&p->mutex);
1186 	return err;
1187 }
1188 
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1189 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1190 					struct kfd_process *p, void *data)
1191 {
1192 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1193 	struct kfd_process_device *pdd;
1194 	void *mem;
1195 	int ret;
1196 	uint64_t size = 0;
1197 
1198 	mutex_lock(&p->mutex);
1199 	/*
1200 	 * Safeguard to prevent user space from freeing signal BO.
1201 	 * It will be freed at process termination.
1202 	 */
1203 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1204 		pr_err("Free signal BO is not allowed\n");
1205 		ret = -EPERM;
1206 		goto err_unlock;
1207 	}
1208 
1209 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1210 	if (!pdd) {
1211 		pr_err("Process device data doesn't exist\n");
1212 		ret = -EINVAL;
1213 		goto err_pdd;
1214 	}
1215 
1216 	mem = kfd_process_device_translate_handle(
1217 		pdd, GET_IDR_HANDLE(args->handle));
1218 	if (!mem) {
1219 		ret = -EINVAL;
1220 		goto err_unlock;
1221 	}
1222 
1223 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1224 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1225 
1226 	/* If freeing the buffer failed, leave the handle in place for
1227 	 * clean-up during process tear-down.
1228 	 */
1229 	if (!ret)
1230 		kfd_process_device_remove_obj_handle(
1231 			pdd, GET_IDR_HANDLE(args->handle));
1232 
1233 	atomic64_sub(size, &pdd->vram_usage);
1234 
1235 err_unlock:
1236 err_pdd:
1237 	mutex_unlock(&p->mutex);
1238 	return ret;
1239 }
1240 
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1241 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1242 					struct kfd_process *p, void *data)
1243 {
1244 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1245 	struct kfd_process_device *pdd, *peer_pdd;
1246 	void *mem;
1247 	struct kfd_node *dev;
1248 	long err = 0;
1249 	int i;
1250 	uint32_t *devices_arr = NULL;
1251 
1252 	if (!args->n_devices) {
1253 		pr_debug("Device IDs array empty\n");
1254 		return -EINVAL;
1255 	}
1256 	if (args->n_success > args->n_devices) {
1257 		pr_debug("n_success exceeds n_devices\n");
1258 		return -EINVAL;
1259 	}
1260 
1261 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1262 				    GFP_KERNEL);
1263 	if (!devices_arr)
1264 		return -ENOMEM;
1265 
1266 	err = copy_from_user(devices_arr,
1267 			     (void __user *)args->device_ids_array_ptr,
1268 			     args->n_devices * sizeof(*devices_arr));
1269 	if (err != 0) {
1270 		err = -EFAULT;
1271 		goto copy_from_user_failed;
1272 	}
1273 
1274 	mutex_lock(&p->mutex);
1275 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1276 	if (!pdd) {
1277 		err = -EINVAL;
1278 		goto get_process_device_data_failed;
1279 	}
1280 	dev = pdd->dev;
1281 
1282 	pdd = kfd_bind_process_to_device(dev, p);
1283 	if (IS_ERR(pdd)) {
1284 		err = PTR_ERR(pdd);
1285 		goto bind_process_to_device_failed;
1286 	}
1287 
1288 	mem = kfd_process_device_translate_handle(pdd,
1289 						GET_IDR_HANDLE(args->handle));
1290 	if (!mem) {
1291 		err = -ENOMEM;
1292 		goto get_mem_obj_from_handle_failed;
1293 	}
1294 
1295 	for (i = args->n_success; i < args->n_devices; i++) {
1296 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1297 		if (!peer_pdd) {
1298 			pr_debug("Getting device by id failed for 0x%x\n",
1299 				 devices_arr[i]);
1300 			err = -EINVAL;
1301 			goto get_mem_obj_from_handle_failed;
1302 		}
1303 
1304 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1305 		if (IS_ERR(peer_pdd)) {
1306 			err = PTR_ERR(peer_pdd);
1307 			goto get_mem_obj_from_handle_failed;
1308 		}
1309 
1310 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1311 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1312 			peer_pdd->drm_priv);
1313 		if (err) {
1314 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1315 
1316 			dev_err(dev->adev->dev,
1317 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1318 			       pci_domain_nr(pdev->bus),
1319 			       pdev->bus->number,
1320 			       PCI_SLOT(pdev->devfn),
1321 			       PCI_FUNC(pdev->devfn),
1322 			       ((struct kgd_mem *)mem)->domain);
1323 			goto map_memory_to_gpu_failed;
1324 		}
1325 		args->n_success = i+1;
1326 	}
1327 
1328 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1329 	if (err) {
1330 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1331 		goto sync_memory_failed;
1332 	}
1333 
1334 	mutex_unlock(&p->mutex);
1335 
1336 	/* Flush TLBs after waiting for the page table updates to complete */
1337 	for (i = 0; i < args->n_devices; i++) {
1338 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1339 		if (WARN_ON_ONCE(!peer_pdd))
1340 			continue;
1341 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1342 	}
1343 	kfree(devices_arr);
1344 
1345 	return err;
1346 
1347 get_process_device_data_failed:
1348 bind_process_to_device_failed:
1349 get_mem_obj_from_handle_failed:
1350 map_memory_to_gpu_failed:
1351 sync_memory_failed:
1352 	mutex_unlock(&p->mutex);
1353 copy_from_user_failed:
1354 	kfree(devices_arr);
1355 
1356 	return err;
1357 }
1358 
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1359 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1360 					struct kfd_process *p, void *data)
1361 {
1362 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1363 	struct kfd_process_device *pdd, *peer_pdd;
1364 	void *mem;
1365 	long err = 0;
1366 	uint32_t *devices_arr = NULL, i;
1367 	bool flush_tlb;
1368 
1369 	if (!args->n_devices) {
1370 		pr_debug("Device IDs array empty\n");
1371 		return -EINVAL;
1372 	}
1373 	if (args->n_success > args->n_devices) {
1374 		pr_debug("n_success exceeds n_devices\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1379 				    GFP_KERNEL);
1380 	if (!devices_arr)
1381 		return -ENOMEM;
1382 
1383 	err = copy_from_user(devices_arr,
1384 			     (void __user *)args->device_ids_array_ptr,
1385 			     args->n_devices * sizeof(*devices_arr));
1386 	if (err != 0) {
1387 		err = -EFAULT;
1388 		goto copy_from_user_failed;
1389 	}
1390 
1391 	mutex_lock(&p->mutex);
1392 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1393 	if (!pdd) {
1394 		err = -EINVAL;
1395 		goto bind_process_to_device_failed;
1396 	}
1397 
1398 	mem = kfd_process_device_translate_handle(pdd,
1399 						GET_IDR_HANDLE(args->handle));
1400 	if (!mem) {
1401 		err = -ENOMEM;
1402 		goto get_mem_obj_from_handle_failed;
1403 	}
1404 
1405 	for (i = args->n_success; i < args->n_devices; i++) {
1406 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1407 		if (!peer_pdd) {
1408 			err = -EINVAL;
1409 			goto get_mem_obj_from_handle_failed;
1410 		}
1411 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1412 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1413 		if (err) {
1414 			pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1415 			goto unmap_memory_from_gpu_failed;
1416 		}
1417 		args->n_success = i+1;
1418 	}
1419 
1420 	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1421 	if (flush_tlb) {
1422 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1423 				(struct kgd_mem *) mem, true);
1424 		if (err) {
1425 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1426 			goto sync_memory_failed;
1427 		}
1428 	}
1429 
1430 	/* Flush TLBs after waiting for the page table updates to complete */
1431 	for (i = 0; i < args->n_devices; i++) {
1432 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1433 		if (WARN_ON_ONCE(!peer_pdd))
1434 			continue;
1435 		if (flush_tlb)
1436 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1437 
1438 		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1439 		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1440 		if (err)
1441 			goto sync_memory_failed;
1442 	}
1443 
1444 	mutex_unlock(&p->mutex);
1445 
1446 	kfree(devices_arr);
1447 
1448 	return 0;
1449 
1450 bind_process_to_device_failed:
1451 get_mem_obj_from_handle_failed:
1452 unmap_memory_from_gpu_failed:
1453 sync_memory_failed:
1454 	mutex_unlock(&p->mutex);
1455 copy_from_user_failed:
1456 	kfree(devices_arr);
1457 	return err;
1458 }
1459 
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1460 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1461 		struct kfd_process *p, void *data)
1462 {
1463 	int retval;
1464 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1465 	struct queue *q;
1466 	struct kfd_node *dev;
1467 
1468 	mutex_lock(&p->mutex);
1469 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1470 
1471 	if (q) {
1472 		dev = q->device;
1473 	} else {
1474 		retval = -EINVAL;
1475 		goto out_unlock;
1476 	}
1477 
1478 	if (!dev->gws) {
1479 		retval = -ENODEV;
1480 		goto out_unlock;
1481 	}
1482 
1483 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1484 		retval = -ENODEV;
1485 		goto out_unlock;
1486 	}
1487 
1488 	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1489 				      kfd_dbg_has_cwsr_workaround(dev))) {
1490 		retval = -EBUSY;
1491 		goto out_unlock;
1492 	}
1493 
1494 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1495 	mutex_unlock(&p->mutex);
1496 
1497 	args->first_gws = 0;
1498 	return retval;
1499 
1500 out_unlock:
1501 	mutex_unlock(&p->mutex);
1502 	return retval;
1503 }
1504 
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1505 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1506 		struct kfd_process *p, void *data)
1507 {
1508 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1509 	struct kfd_node *dev = NULL;
1510 	struct amdgpu_device *dmabuf_adev;
1511 	void *metadata_buffer = NULL;
1512 	uint32_t flags;
1513 	int8_t xcp_id;
1514 	unsigned int i;
1515 	int r;
1516 
1517 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1518 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1519 		if (dev && !kfd_devcgroup_check_permission(dev))
1520 			break;
1521 	if (!dev)
1522 		return -EINVAL;
1523 
1524 	if (args->metadata_ptr) {
1525 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1526 		if (!metadata_buffer)
1527 			return -ENOMEM;
1528 	}
1529 
1530 	/* Get dmabuf info from KGD */
1531 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1532 					  &dmabuf_adev, &args->size,
1533 					  metadata_buffer, args->metadata_size,
1534 					  &args->metadata_size, &flags, &xcp_id);
1535 	if (r)
1536 		goto exit;
1537 
1538 	if (xcp_id >= 0)
1539 		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1540 	else
1541 		args->gpu_id = dev->id;
1542 	args->flags = flags;
1543 
1544 	/* Copy metadata buffer to user mode */
1545 	if (metadata_buffer) {
1546 		r = copy_to_user((void __user *)args->metadata_ptr,
1547 				 metadata_buffer, args->metadata_size);
1548 		if (r != 0)
1549 			r = -EFAULT;
1550 	}
1551 
1552 exit:
1553 	kfree(metadata_buffer);
1554 
1555 	return r;
1556 }
1557 
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1558 static int kfd_ioctl_import_dmabuf(struct file *filep,
1559 				   struct kfd_process *p, void *data)
1560 {
1561 	struct kfd_ioctl_import_dmabuf_args *args = data;
1562 	struct kfd_process_device *pdd;
1563 	int idr_handle;
1564 	uint64_t size;
1565 	void *mem;
1566 	int r;
1567 
1568 	mutex_lock(&p->mutex);
1569 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1570 	if (!pdd) {
1571 		r = -EINVAL;
1572 		goto err_unlock;
1573 	}
1574 
1575 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1576 	if (IS_ERR(pdd)) {
1577 		r = PTR_ERR(pdd);
1578 		goto err_unlock;
1579 	}
1580 
1581 	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1582 						 args->va_addr, pdd->drm_priv,
1583 						 (struct kgd_mem **)&mem, &size,
1584 						 NULL);
1585 	if (r)
1586 		goto err_unlock;
1587 
1588 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1589 	if (idr_handle < 0) {
1590 		r = -EFAULT;
1591 		goto err_free;
1592 	}
1593 
1594 	mutex_unlock(&p->mutex);
1595 
1596 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1597 
1598 	return 0;
1599 
1600 err_free:
1601 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1602 					       pdd->drm_priv, NULL);
1603 err_unlock:
1604 	mutex_unlock(&p->mutex);
1605 	return r;
1606 }
1607 
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1608 static int kfd_ioctl_export_dmabuf(struct file *filep,
1609 				   struct kfd_process *p, void *data)
1610 {
1611 	struct kfd_ioctl_export_dmabuf_args *args = data;
1612 	struct kfd_process_device *pdd;
1613 	struct dma_buf *dmabuf;
1614 	struct kfd_node *dev;
1615 	void *mem;
1616 	int ret = 0;
1617 
1618 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1619 	if (!dev)
1620 		return -EINVAL;
1621 
1622 	mutex_lock(&p->mutex);
1623 
1624 	pdd = kfd_get_process_device_data(dev, p);
1625 	if (!pdd) {
1626 		ret = -EINVAL;
1627 		goto err_unlock;
1628 	}
1629 
1630 	mem = kfd_process_device_translate_handle(pdd,
1631 						GET_IDR_HANDLE(args->handle));
1632 	if (!mem) {
1633 		ret = -EINVAL;
1634 		goto err_unlock;
1635 	}
1636 
1637 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1638 	mutex_unlock(&p->mutex);
1639 	if (ret)
1640 		goto err_out;
1641 
1642 	ret = dma_buf_fd(dmabuf, args->flags);
1643 	if (ret < 0) {
1644 		dma_buf_put(dmabuf);
1645 		goto err_out;
1646 	}
1647 	/* dma_buf_fd assigns the reference count to the fd, no need to
1648 	 * put the reference here.
1649 	 */
1650 	args->dmabuf_fd = ret;
1651 
1652 	return 0;
1653 
1654 err_unlock:
1655 	mutex_unlock(&p->mutex);
1656 err_out:
1657 	return ret;
1658 }
1659 
1660 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1661 static int kfd_ioctl_smi_events(struct file *filep,
1662 				struct kfd_process *p, void *data)
1663 {
1664 	struct kfd_ioctl_smi_events_args *args = data;
1665 	struct kfd_process_device *pdd;
1666 
1667 	mutex_lock(&p->mutex);
1668 
1669 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1670 	mutex_unlock(&p->mutex);
1671 	if (!pdd)
1672 		return -EINVAL;
1673 
1674 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1675 }
1676 
1677 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1678 
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1679 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1680 				    struct kfd_process *p, void *data)
1681 {
1682 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1683 	int r = 0;
1684 
1685 	mutex_lock(&p->mutex);
1686 	if (args->xnack_enabled >= 0) {
1687 		if (!list_empty(&p->pqm.queues)) {
1688 			pr_debug("Process has user queues running\n");
1689 			r = -EBUSY;
1690 			goto out_unlock;
1691 		}
1692 
1693 		if (p->xnack_enabled == args->xnack_enabled)
1694 			goto out_unlock;
1695 
1696 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1697 			r = -EPERM;
1698 			goto out_unlock;
1699 		}
1700 
1701 		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1702 	} else {
1703 		args->xnack_enabled = p->xnack_enabled;
1704 	}
1705 
1706 out_unlock:
1707 	mutex_unlock(&p->mutex);
1708 
1709 	return r;
1710 }
1711 
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1712 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1713 {
1714 	struct kfd_ioctl_svm_args *args = data;
1715 	int r = 0;
1716 
1717 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1718 		 args->start_addr, args->size, args->op, args->nattr);
1719 
1720 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1721 		return -EINVAL;
1722 	if (!args->start_addr || !args->size)
1723 		return -EINVAL;
1724 
1725 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1726 		      args->attrs);
1727 
1728 	return r;
1729 }
1730 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1731 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1732 				    struct kfd_process *p, void *data)
1733 {
1734 	return -EPERM;
1735 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1736 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1737 {
1738 	return -EPERM;
1739 }
1740 #endif
1741 
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1742 static int criu_checkpoint_process(struct kfd_process *p,
1743 			     uint8_t __user *user_priv_data,
1744 			     uint64_t *priv_offset)
1745 {
1746 	struct kfd_criu_process_priv_data process_priv;
1747 	int ret;
1748 
1749 	memset(&process_priv, 0, sizeof(process_priv));
1750 
1751 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1752 	/* For CR, we don't consider negative xnack mode which is used for
1753 	 * querying without changing it, here 0 simply means disabled and 1
1754 	 * means enabled so retry for finding a valid PTE.
1755 	 */
1756 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1757 
1758 	ret = copy_to_user(user_priv_data + *priv_offset,
1759 				&process_priv, sizeof(process_priv));
1760 
1761 	if (ret) {
1762 		pr_err("Failed to copy process information to user\n");
1763 		ret = -EFAULT;
1764 	}
1765 
1766 	*priv_offset += sizeof(process_priv);
1767 	return ret;
1768 }
1769 
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1770 static int criu_checkpoint_devices(struct kfd_process *p,
1771 			     uint32_t num_devices,
1772 			     uint8_t __user *user_addr,
1773 			     uint8_t __user *user_priv_data,
1774 			     uint64_t *priv_offset)
1775 {
1776 	struct kfd_criu_device_priv_data *device_priv = NULL;
1777 	struct kfd_criu_device_bucket *device_buckets = NULL;
1778 	int ret = 0, i;
1779 
1780 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1781 	if (!device_buckets) {
1782 		ret = -ENOMEM;
1783 		goto exit;
1784 	}
1785 
1786 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1787 	if (!device_priv) {
1788 		ret = -ENOMEM;
1789 		goto exit;
1790 	}
1791 
1792 	for (i = 0; i < num_devices; i++) {
1793 		struct kfd_process_device *pdd = p->pdds[i];
1794 
1795 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1796 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1797 
1798 		/*
1799 		 * priv_data does not contain useful information for now and is reserved for
1800 		 * future use, so we do not set its contents.
1801 		 */
1802 	}
1803 
1804 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1805 	if (ret) {
1806 		pr_err("Failed to copy device information to user\n");
1807 		ret = -EFAULT;
1808 		goto exit;
1809 	}
1810 
1811 	ret = copy_to_user(user_priv_data + *priv_offset,
1812 			   device_priv,
1813 			   num_devices * sizeof(*device_priv));
1814 	if (ret) {
1815 		pr_err("Failed to copy device information to user\n");
1816 		ret = -EFAULT;
1817 	}
1818 	*priv_offset += num_devices * sizeof(*device_priv);
1819 
1820 exit:
1821 	kvfree(device_buckets);
1822 	kvfree(device_priv);
1823 	return ret;
1824 }
1825 
get_process_num_bos(struct kfd_process * p)1826 static uint32_t get_process_num_bos(struct kfd_process *p)
1827 {
1828 	uint32_t num_of_bos = 0;
1829 	int i;
1830 
1831 	/* Run over all PDDs of the process */
1832 	for (i = 0; i < p->n_pdds; i++) {
1833 		struct kfd_process_device *pdd = p->pdds[i];
1834 		void *mem;
1835 		int id;
1836 
1837 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1838 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1839 
1840 			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1841 				num_of_bos++;
1842 		}
1843 	}
1844 	return num_of_bos;
1845 }
1846 
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd,struct file ** file)1847 static int criu_get_prime_handle(struct kgd_mem *mem,
1848 				 int flags, u32 *shared_fd,
1849 				 struct file **file)
1850 {
1851 	struct dma_buf *dmabuf;
1852 	int ret;
1853 
1854 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1855 	if (ret) {
1856 		pr_err("dmabuf export failed for the BO\n");
1857 		return ret;
1858 	}
1859 
1860 	ret = get_unused_fd_flags(flags);
1861 	if (ret < 0) {
1862 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1863 		goto out_free_dmabuf;
1864 	}
1865 
1866 	*shared_fd = ret;
1867 	*file = dmabuf->file;
1868 	return 0;
1869 
1870 out_free_dmabuf:
1871 	dma_buf_put(dmabuf);
1872 	return ret;
1873 }
1874 
commit_files(struct file ** files,struct kfd_criu_bo_bucket * bo_buckets,unsigned int count,int err)1875 static void commit_files(struct file **files,
1876 			 struct kfd_criu_bo_bucket *bo_buckets,
1877 			 unsigned int count,
1878 			 int err)
1879 {
1880 	while (count--) {
1881 		struct file *file = files[count];
1882 
1883 		if (!file)
1884 			continue;
1885 		if (err) {
1886 			fput(file);
1887 			put_unused_fd(bo_buckets[count].dmabuf_fd);
1888 		} else {
1889 			fd_install(bo_buckets[count].dmabuf_fd, file);
1890 		}
1891 	}
1892 }
1893 
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1894 static int criu_checkpoint_bos(struct kfd_process *p,
1895 			       uint32_t num_bos,
1896 			       uint8_t __user *user_bos,
1897 			       uint8_t __user *user_priv_data,
1898 			       uint64_t *priv_offset)
1899 {
1900 	struct kfd_criu_bo_bucket *bo_buckets;
1901 	struct kfd_criu_bo_priv_data *bo_privs;
1902 	struct file **files = NULL;
1903 	int ret = 0, pdd_index, bo_index = 0, id;
1904 	void *mem;
1905 
1906 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1907 	if (!bo_buckets)
1908 		return -ENOMEM;
1909 
1910 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1911 	if (!bo_privs) {
1912 		ret = -ENOMEM;
1913 		goto exit;
1914 	}
1915 
1916 	files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1917 	if (!files) {
1918 		ret = -ENOMEM;
1919 		goto exit;
1920 	}
1921 
1922 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1923 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1924 		struct amdgpu_bo *dumper_bo;
1925 		struct kgd_mem *kgd_mem;
1926 
1927 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1928 			struct kfd_criu_bo_bucket *bo_bucket;
1929 			struct kfd_criu_bo_priv_data *bo_priv;
1930 			int i, dev_idx = 0;
1931 
1932 			kgd_mem = (struct kgd_mem *)mem;
1933 			dumper_bo = kgd_mem->bo;
1934 
1935 			/* Skip checkpointing BOs that are used for Trap handler
1936 			 * code and state. Currently, these BOs have a VA that
1937 			 * is less GPUVM Base
1938 			 */
1939 			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1940 				continue;
1941 
1942 			bo_bucket = &bo_buckets[bo_index];
1943 			bo_priv = &bo_privs[bo_index];
1944 
1945 			bo_bucket->gpu_id = pdd->user_gpu_id;
1946 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1947 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1948 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1949 			bo_priv->idr_handle = id;
1950 
1951 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1952 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1953 								&bo_priv->user_addr);
1954 				if (ret) {
1955 					pr_err("Failed to obtain user address for user-pointer bo\n");
1956 					goto exit;
1957 				}
1958 			}
1959 			if (bo_bucket->alloc_flags
1960 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1961 				ret = criu_get_prime_handle(kgd_mem,
1962 						bo_bucket->alloc_flags &
1963 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1964 						&bo_bucket->dmabuf_fd, &files[bo_index]);
1965 				if (ret)
1966 					goto exit;
1967 			} else {
1968 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1969 			}
1970 
1971 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1972 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1973 					KFD_MMAP_GPU_ID(pdd->dev->id);
1974 			else if (bo_bucket->alloc_flags &
1975 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1976 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1977 					KFD_MMAP_GPU_ID(pdd->dev->id);
1978 			else
1979 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1980 
1981 			for (i = 0; i < p->n_pdds; i++) {
1982 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1983 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1984 			}
1985 
1986 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1987 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1988 					bo_bucket->size,
1989 					bo_bucket->addr,
1990 					bo_bucket->offset,
1991 					bo_bucket->gpu_id,
1992 					bo_bucket->alloc_flags,
1993 					bo_priv->idr_handle);
1994 			bo_index++;
1995 		}
1996 	}
1997 
1998 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1999 	if (ret) {
2000 		pr_err("Failed to copy BO information to user\n");
2001 		ret = -EFAULT;
2002 		goto exit;
2003 	}
2004 
2005 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2006 	if (ret) {
2007 		pr_err("Failed to copy BO priv information to user\n");
2008 		ret = -EFAULT;
2009 		goto exit;
2010 	}
2011 
2012 	*priv_offset += num_bos * sizeof(*bo_privs);
2013 
2014 exit:
2015 	commit_files(files, bo_buckets, bo_index, ret);
2016 	kvfree(files);
2017 	kvfree(bo_buckets);
2018 	kvfree(bo_privs);
2019 	return ret;
2020 }
2021 
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2022 static int criu_get_process_object_info(struct kfd_process *p,
2023 					uint32_t *num_devices,
2024 					uint32_t *num_bos,
2025 					uint32_t *num_objects,
2026 					uint64_t *objs_priv_size)
2027 {
2028 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2029 	uint32_t num_queues, num_events, num_svm_ranges;
2030 	int ret;
2031 
2032 	*num_devices = p->n_pdds;
2033 	*num_bos = get_process_num_bos(p);
2034 
2035 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2036 	if (ret)
2037 		return ret;
2038 
2039 	num_events = kfd_get_num_events(p);
2040 
2041 	svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2042 
2043 	*num_objects = num_queues + num_events + num_svm_ranges;
2044 
2045 	if (objs_priv_size) {
2046 		priv_size = sizeof(struct kfd_criu_process_priv_data);
2047 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2048 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2049 		priv_size += queues_priv_data_size;
2050 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2051 		priv_size += svm_priv_data_size;
2052 		*objs_priv_size = priv_size;
2053 	}
2054 	return 0;
2055 }
2056 
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2057 static int criu_checkpoint(struct file *filep,
2058 			   struct kfd_process *p,
2059 			   struct kfd_ioctl_criu_args *args)
2060 {
2061 	int ret;
2062 	uint32_t num_devices, num_bos, num_objects;
2063 	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2064 
2065 	if (!args->devices || !args->bos || !args->priv_data)
2066 		return -EINVAL;
2067 
2068 	mutex_lock(&p->mutex);
2069 
2070 	if (!p->n_pdds) {
2071 		pr_err("No pdd for given process\n");
2072 		ret = -ENODEV;
2073 		goto exit_unlock;
2074 	}
2075 
2076 	/* Confirm all process queues are evicted */
2077 	if (!p->queues_paused) {
2078 		pr_err("Cannot dump process when queues are not in evicted state\n");
2079 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2080 		ret = -EINVAL;
2081 		goto exit_unlock;
2082 	}
2083 
2084 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2085 	if (ret)
2086 		goto exit_unlock;
2087 
2088 	if (num_devices != args->num_devices ||
2089 	    num_bos != args->num_bos ||
2090 	    num_objects != args->num_objects ||
2091 	    priv_size != args->priv_data_size) {
2092 
2093 		ret = -EINVAL;
2094 		goto exit_unlock;
2095 	}
2096 
2097 	/* each function will store private data inside priv_data and adjust priv_offset */
2098 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2099 	if (ret)
2100 		goto exit_unlock;
2101 
2102 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2103 				(uint8_t __user *)args->priv_data, &priv_offset);
2104 	if (ret)
2105 		goto exit_unlock;
2106 
2107 	/* Leave room for BOs in the private data. They need to be restored
2108 	 * before events, but we checkpoint them last to simplify the error
2109 	 * handling.
2110 	 */
2111 	bo_priv_offset = priv_offset;
2112 	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2113 
2114 	if (num_objects) {
2115 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2116 						 &priv_offset);
2117 		if (ret)
2118 			goto exit_unlock;
2119 
2120 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2121 						 &priv_offset);
2122 		if (ret)
2123 			goto exit_unlock;
2124 
2125 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2126 		if (ret)
2127 			goto exit_unlock;
2128 	}
2129 
2130 	/* This must be the last thing in this function that can fail.
2131 	 * Otherwise we leak dmabuf file descriptors.
2132 	 */
2133 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2134 			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2135 
2136 exit_unlock:
2137 	mutex_unlock(&p->mutex);
2138 	if (ret)
2139 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2140 	else
2141 		pr_debug("CRIU dump ret:%d\n", ret);
2142 
2143 	return ret;
2144 }
2145 
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2146 static int criu_restore_process(struct kfd_process *p,
2147 				struct kfd_ioctl_criu_args *args,
2148 				uint64_t *priv_offset,
2149 				uint64_t max_priv_data_size)
2150 {
2151 	int ret = 0;
2152 	struct kfd_criu_process_priv_data process_priv;
2153 
2154 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2155 		return -EINVAL;
2156 
2157 	ret = copy_from_user(&process_priv,
2158 				(void __user *)(args->priv_data + *priv_offset),
2159 				sizeof(process_priv));
2160 	if (ret) {
2161 		pr_err("Failed to copy process private information from user\n");
2162 		ret = -EFAULT;
2163 		goto exit;
2164 	}
2165 	*priv_offset += sizeof(process_priv);
2166 
2167 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2168 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2169 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2170 		return -EINVAL;
2171 	}
2172 
2173 	pr_debug("Setting XNACK mode\n");
2174 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2175 		pr_err("xnack mode cannot be set\n");
2176 		ret = -EPERM;
2177 		goto exit;
2178 	} else {
2179 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2180 		p->xnack_enabled = process_priv.xnack_mode;
2181 	}
2182 
2183 exit:
2184 	return ret;
2185 }
2186 
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2187 static int criu_restore_devices(struct kfd_process *p,
2188 				struct kfd_ioctl_criu_args *args,
2189 				uint64_t *priv_offset,
2190 				uint64_t max_priv_data_size)
2191 {
2192 	struct kfd_criu_device_bucket *device_buckets;
2193 	struct kfd_criu_device_priv_data *device_privs;
2194 	int ret = 0;
2195 	uint32_t i;
2196 
2197 	if (args->num_devices != p->n_pdds)
2198 		return -EINVAL;
2199 
2200 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2201 		return -EINVAL;
2202 
2203 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2204 	if (!device_buckets)
2205 		return -ENOMEM;
2206 
2207 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2208 				args->num_devices * sizeof(*device_buckets));
2209 	if (ret) {
2210 		pr_err("Failed to copy devices buckets from user\n");
2211 		ret = -EFAULT;
2212 		goto exit;
2213 	}
2214 
2215 	for (i = 0; i < args->num_devices; i++) {
2216 		struct kfd_node *dev;
2217 		struct kfd_process_device *pdd;
2218 		struct file *drm_file;
2219 
2220 		/* device private data is not currently used */
2221 
2222 		if (!device_buckets[i].user_gpu_id) {
2223 			pr_err("Invalid user gpu_id\n");
2224 			ret = -EINVAL;
2225 			goto exit;
2226 		}
2227 
2228 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2229 		if (!dev) {
2230 			pr_err("Failed to find device with gpu_id = %x\n",
2231 				device_buckets[i].actual_gpu_id);
2232 			ret = -EINVAL;
2233 			goto exit;
2234 		}
2235 
2236 		pdd = kfd_get_process_device_data(dev, p);
2237 		if (!pdd) {
2238 			pr_err("Failed to get pdd for gpu_id = %x\n",
2239 					device_buckets[i].actual_gpu_id);
2240 			ret = -EINVAL;
2241 			goto exit;
2242 		}
2243 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2244 
2245 		drm_file = fget(device_buckets[i].drm_fd);
2246 		if (!drm_file) {
2247 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2248 				device_buckets[i].drm_fd);
2249 			ret = -EINVAL;
2250 			goto exit;
2251 		}
2252 
2253 		if (pdd->drm_file) {
2254 			ret = -EINVAL;
2255 			goto exit;
2256 		}
2257 
2258 		/* create the vm using render nodes for kfd pdd */
2259 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2260 			pr_err("could not init vm for given pdd\n");
2261 			/* On success, the PDD keeps the drm_file reference */
2262 			fput(drm_file);
2263 			ret = -EINVAL;
2264 			goto exit;
2265 		}
2266 		/*
2267 		 * pdd now already has the vm bound to render node so below api won't create a new
2268 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2269 		 * for iommu v2 binding  and runtime pm.
2270 		 */
2271 		pdd = kfd_bind_process_to_device(dev, p);
2272 		if (IS_ERR(pdd)) {
2273 			ret = PTR_ERR(pdd);
2274 			goto exit;
2275 		}
2276 
2277 		if (!pdd->qpd.proc_doorbells) {
2278 			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2279 			if (ret)
2280 				goto exit;
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * We are not copying device private data from user as we are not using the data for now,
2286 	 * but we still adjust for its private data.
2287 	 */
2288 	*priv_offset += args->num_devices * sizeof(*device_privs);
2289 
2290 exit:
2291 	kfree(device_buckets);
2292 	return ret;
2293 }
2294 
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2295 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2296 				      struct kfd_criu_bo_bucket *bo_bucket,
2297 				      struct kfd_criu_bo_priv_data *bo_priv,
2298 				      struct kgd_mem **kgd_mem)
2299 {
2300 	int idr_handle;
2301 	int ret;
2302 	const bool criu_resume = true;
2303 	u64 offset;
2304 
2305 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2306 		if (bo_bucket->size !=
2307 				kfd_doorbell_process_slice(pdd->dev->kfd))
2308 			return -EINVAL;
2309 
2310 		offset = kfd_get_process_doorbells(pdd);
2311 		if (!offset)
2312 			return -ENOMEM;
2313 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2314 		/* MMIO BOs need remapped bus address */
2315 		if (bo_bucket->size != PAGE_SIZE) {
2316 			pr_err("Invalid page size\n");
2317 			return -EINVAL;
2318 		}
2319 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2320 		if (!offset || (PAGE_SIZE > 4096)) {
2321 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2322 			return -ENOMEM;
2323 		}
2324 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2325 		offset = bo_priv->user_addr;
2326 	}
2327 	/* Create the BO */
2328 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2329 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2330 						      &offset, bo_bucket->alloc_flags, criu_resume);
2331 	if (ret) {
2332 		pr_err("Could not create the BO\n");
2333 		return ret;
2334 	}
2335 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2336 		 bo_bucket->size, bo_bucket->addr, offset);
2337 
2338 	/* Restore previous IDR handle */
2339 	pr_debug("Restoring old IDR handle for the BO");
2340 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2341 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2342 
2343 	if (idr_handle < 0) {
2344 		pr_err("Could not allocate idr\n");
2345 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2346 						       NULL);
2347 		return -ENOMEM;
2348 	}
2349 
2350 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2351 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2352 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2353 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2354 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2355 		bo_bucket->restored_offset = offset;
2356 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2357 		bo_bucket->restored_offset = offset;
2358 		/* Update the VRAM usage count */
2359 		atomic64_add(bo_bucket->size, &pdd->vram_usage);
2360 	}
2361 	return 0;
2362 }
2363 
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct file ** file)2364 static int criu_restore_bo(struct kfd_process *p,
2365 			   struct kfd_criu_bo_bucket *bo_bucket,
2366 			   struct kfd_criu_bo_priv_data *bo_priv,
2367 			   struct file **file)
2368 {
2369 	struct kfd_process_device *pdd;
2370 	struct kgd_mem *kgd_mem;
2371 	int ret;
2372 	int j;
2373 
2374 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2375 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2376 		 bo_priv->idr_handle);
2377 
2378 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2379 	if (!pdd) {
2380 		pr_err("Failed to get pdd\n");
2381 		return -ENODEV;
2382 	}
2383 
2384 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2385 	if (ret)
2386 		return ret;
2387 
2388 	/* now map these BOs to GPU/s */
2389 	for (j = 0; j < p->n_pdds; j++) {
2390 		struct kfd_node *peer;
2391 		struct kfd_process_device *peer_pdd;
2392 
2393 		if (!bo_priv->mapped_gpuids[j])
2394 			break;
2395 
2396 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2397 		if (!peer_pdd)
2398 			return -EINVAL;
2399 
2400 		peer = peer_pdd->dev;
2401 
2402 		peer_pdd = kfd_bind_process_to_device(peer, p);
2403 		if (IS_ERR(peer_pdd))
2404 			return PTR_ERR(peer_pdd);
2405 
2406 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2407 							    peer_pdd->drm_priv);
2408 		if (ret) {
2409 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2410 			return ret;
2411 		}
2412 	}
2413 
2414 	pr_debug("map memory was successful for the BO\n");
2415 	/* create the dmabuf object and export the bo */
2416 	if (bo_bucket->alloc_flags
2417 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2418 		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2419 					    &bo_bucket->dmabuf_fd, file);
2420 		if (ret)
2421 			return ret;
2422 	} else {
2423 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2424 	}
2425 
2426 	return 0;
2427 }
2428 
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2429 static int criu_restore_bos(struct kfd_process *p,
2430 			    struct kfd_ioctl_criu_args *args,
2431 			    uint64_t *priv_offset,
2432 			    uint64_t max_priv_data_size)
2433 {
2434 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2435 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2436 	struct file **files = NULL;
2437 	int ret = 0;
2438 	uint32_t i = 0;
2439 
2440 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2441 		return -EINVAL;
2442 
2443 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2444 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2445 
2446 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2447 	if (!bo_buckets)
2448 		return -ENOMEM;
2449 
2450 	files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2451 	if (!files) {
2452 		ret = -ENOMEM;
2453 		goto exit;
2454 	}
2455 
2456 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2457 			     args->num_bos * sizeof(*bo_buckets));
2458 	if (ret) {
2459 		pr_err("Failed to copy BOs information from user\n");
2460 		ret = -EFAULT;
2461 		goto exit;
2462 	}
2463 
2464 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2465 	if (!bo_privs) {
2466 		ret = -ENOMEM;
2467 		goto exit;
2468 	}
2469 
2470 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2471 			     args->num_bos * sizeof(*bo_privs));
2472 	if (ret) {
2473 		pr_err("Failed to copy BOs information from user\n");
2474 		ret = -EFAULT;
2475 		goto exit;
2476 	}
2477 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2478 
2479 	/* Create and map new BOs */
2480 	for (; i < args->num_bos; i++) {
2481 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2482 		if (ret) {
2483 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2484 			goto exit;
2485 		}
2486 	} /* done */
2487 
2488 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2489 	ret = copy_to_user((void __user *)args->bos,
2490 				bo_buckets,
2491 				(args->num_bos * sizeof(*bo_buckets)));
2492 	if (ret)
2493 		ret = -EFAULT;
2494 
2495 exit:
2496 	commit_files(files, bo_buckets, i, ret);
2497 	kvfree(files);
2498 	kvfree(bo_buckets);
2499 	kvfree(bo_privs);
2500 	return ret;
2501 }
2502 
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2503 static int criu_restore_objects(struct file *filep,
2504 				struct kfd_process *p,
2505 				struct kfd_ioctl_criu_args *args,
2506 				uint64_t *priv_offset,
2507 				uint64_t max_priv_data_size)
2508 {
2509 	int ret = 0;
2510 	uint32_t i;
2511 
2512 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2513 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2514 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2515 
2516 	for (i = 0; i < args->num_objects; i++) {
2517 		uint32_t object_type;
2518 
2519 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2520 			pr_err("Invalid private data size\n");
2521 			return -EINVAL;
2522 		}
2523 
2524 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2525 		if (ret) {
2526 			pr_err("Failed to copy private information from user\n");
2527 			goto exit;
2528 		}
2529 
2530 		switch (object_type) {
2531 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2532 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2533 						     priv_offset, max_priv_data_size);
2534 			if (ret)
2535 				goto exit;
2536 			break;
2537 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2538 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2539 						     priv_offset, max_priv_data_size);
2540 			if (ret)
2541 				goto exit;
2542 			break;
2543 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2544 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2545 						     priv_offset, max_priv_data_size);
2546 			if (ret)
2547 				goto exit;
2548 			break;
2549 		default:
2550 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2551 			ret = -EINVAL;
2552 			goto exit;
2553 		}
2554 	}
2555 exit:
2556 	return ret;
2557 }
2558 
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2559 static int criu_restore(struct file *filep,
2560 			struct kfd_process *p,
2561 			struct kfd_ioctl_criu_args *args)
2562 {
2563 	uint64_t priv_offset = 0;
2564 	int ret = 0;
2565 
2566 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2567 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2568 
2569 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2570 	    !args->num_devices || !args->num_bos)
2571 		return -EINVAL;
2572 
2573 	mutex_lock(&p->mutex);
2574 
2575 	/*
2576 	 * Set the process to evicted state to avoid running any new queues before all the memory
2577 	 * mappings are ready.
2578 	 */
2579 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2580 	if (ret)
2581 		goto exit_unlock;
2582 
2583 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2584 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2585 	if (ret)
2586 		goto exit_unlock;
2587 
2588 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2589 	if (ret)
2590 		goto exit_unlock;
2591 
2592 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2593 	if (ret)
2594 		goto exit_unlock;
2595 
2596 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2597 	if (ret)
2598 		goto exit_unlock;
2599 
2600 	if (priv_offset != args->priv_data_size) {
2601 		pr_err("Invalid private data size\n");
2602 		ret = -EINVAL;
2603 	}
2604 
2605 exit_unlock:
2606 	mutex_unlock(&p->mutex);
2607 	if (ret)
2608 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2609 	else
2610 		pr_debug("CRIU restore successful\n");
2611 
2612 	return ret;
2613 }
2614 
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2615 static int criu_unpause(struct file *filep,
2616 			struct kfd_process *p,
2617 			struct kfd_ioctl_criu_args *args)
2618 {
2619 	int ret;
2620 
2621 	mutex_lock(&p->mutex);
2622 
2623 	if (!p->queues_paused) {
2624 		mutex_unlock(&p->mutex);
2625 		return -EINVAL;
2626 	}
2627 
2628 	ret = kfd_process_restore_queues(p);
2629 	if (ret)
2630 		pr_err("Failed to unpause queues ret:%d\n", ret);
2631 	else
2632 		p->queues_paused = false;
2633 
2634 	mutex_unlock(&p->mutex);
2635 
2636 	return ret;
2637 }
2638 
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2639 static int criu_resume(struct file *filep,
2640 			struct kfd_process *p,
2641 			struct kfd_ioctl_criu_args *args)
2642 {
2643 	struct kfd_process *target = NULL;
2644 	struct pid *pid = NULL;
2645 	int ret = 0;
2646 
2647 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2648 		 args->pid);
2649 
2650 	pid = find_get_pid(args->pid);
2651 	if (!pid) {
2652 		pr_err("Cannot find pid info for %i\n", args->pid);
2653 		return -ESRCH;
2654 	}
2655 
2656 	pr_debug("calling kfd_lookup_process_by_pid\n");
2657 	target = kfd_lookup_process_by_pid(pid);
2658 
2659 	put_pid(pid);
2660 
2661 	if (!target) {
2662 		pr_debug("Cannot find process info for %i\n", args->pid);
2663 		return -ESRCH;
2664 	}
2665 
2666 	mutex_lock(&target->mutex);
2667 	ret = kfd_criu_resume_svm(target);
2668 	if (ret) {
2669 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2670 		goto exit;
2671 	}
2672 
2673 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2674 	if (ret)
2675 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2676 
2677 exit:
2678 	mutex_unlock(&target->mutex);
2679 
2680 	kfd_unref_process(target);
2681 	return ret;
2682 }
2683 
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2684 static int criu_process_info(struct file *filep,
2685 				struct kfd_process *p,
2686 				struct kfd_ioctl_criu_args *args)
2687 {
2688 	int ret = 0;
2689 
2690 	mutex_lock(&p->mutex);
2691 
2692 	if (!p->n_pdds) {
2693 		pr_err("No pdd for given process\n");
2694 		ret = -ENODEV;
2695 		goto err_unlock;
2696 	}
2697 
2698 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2699 	if (ret)
2700 		goto err_unlock;
2701 
2702 	p->queues_paused = true;
2703 
2704 	args->pid = task_pid_nr_ns(p->lead_thread,
2705 					task_active_pid_ns(p->lead_thread));
2706 
2707 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2708 					   &args->num_objects, &args->priv_data_size);
2709 	if (ret)
2710 		goto err_unlock;
2711 
2712 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2713 				args->num_devices, args->num_bos, args->num_objects,
2714 				args->priv_data_size);
2715 
2716 err_unlock:
2717 	if (ret) {
2718 		kfd_process_restore_queues(p);
2719 		p->queues_paused = false;
2720 	}
2721 	mutex_unlock(&p->mutex);
2722 	return ret;
2723 }
2724 
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2725 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2726 {
2727 	struct kfd_ioctl_criu_args *args = data;
2728 	int ret;
2729 
2730 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2731 	switch (args->op) {
2732 	case KFD_CRIU_OP_PROCESS_INFO:
2733 		ret = criu_process_info(filep, p, args);
2734 		break;
2735 	case KFD_CRIU_OP_CHECKPOINT:
2736 		ret = criu_checkpoint(filep, p, args);
2737 		break;
2738 	case KFD_CRIU_OP_UNPAUSE:
2739 		ret = criu_unpause(filep, p, args);
2740 		break;
2741 	case KFD_CRIU_OP_RESTORE:
2742 		ret = criu_restore(filep, p, args);
2743 		break;
2744 	case KFD_CRIU_OP_RESUME:
2745 		ret = criu_resume(filep, p, args);
2746 		break;
2747 	default:
2748 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2749 		ret = -EINVAL;
2750 		break;
2751 	}
2752 
2753 	if (ret)
2754 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2755 
2756 	return ret;
2757 }
2758 
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2759 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2760 			bool enable_ttmp_setup)
2761 {
2762 	int i = 0, ret = 0;
2763 
2764 	if (p->is_runtime_retry)
2765 		goto retry;
2766 
2767 	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2768 		return -EBUSY;
2769 
2770 	for (i = 0; i < p->n_pdds; i++) {
2771 		struct kfd_process_device *pdd = p->pdds[i];
2772 
2773 		if (pdd->qpd.queue_count)
2774 			return -EEXIST;
2775 
2776 		/*
2777 		 * Setup TTMPs by default.
2778 		 * Note that this call must remain here for MES ADD QUEUE to
2779 		 * skip_process_ctx_clear unconditionally as the first call to
2780 		 * SET_SHADER_DEBUGGER clears any stale process context data
2781 		 * saved in MES.
2782 		 */
2783 		if (pdd->dev->kfd->shared_resources.enable_mes)
2784 			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2785 	}
2786 
2787 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2788 	p->runtime_info.r_debug = r_debug;
2789 	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2790 
2791 	if (p->runtime_info.ttmp_setup) {
2792 		for (i = 0; i < p->n_pdds; i++) {
2793 			struct kfd_process_device *pdd = p->pdds[i];
2794 
2795 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2796 				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2797 				pdd->dev->kfd2kgd->enable_debug_trap(
2798 						pdd->dev->adev,
2799 						true,
2800 						pdd->dev->vm_info.last_vmid_kfd);
2801 			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2802 				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2803 						pdd->dev->adev,
2804 						false,
2805 						0);
2806 			}
2807 		}
2808 	}
2809 
2810 retry:
2811 	if (p->debug_trap_enabled) {
2812 		if (!p->is_runtime_retry) {
2813 			kfd_dbg_trap_activate(p);
2814 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2815 					p, NULL, 0, false, NULL, 0);
2816 		}
2817 
2818 		mutex_unlock(&p->mutex);
2819 		ret = down_interruptible(&p->runtime_enable_sema);
2820 		mutex_lock(&p->mutex);
2821 
2822 		p->is_runtime_retry = !!ret;
2823 	}
2824 
2825 	return ret;
2826 }
2827 
runtime_disable(struct kfd_process * p)2828 static int runtime_disable(struct kfd_process *p)
2829 {
2830 	int i = 0, ret;
2831 	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2832 
2833 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2834 	p->runtime_info.r_debug = 0;
2835 
2836 	if (p->debug_trap_enabled) {
2837 		if (was_enabled)
2838 			kfd_dbg_trap_deactivate(p, false, 0);
2839 
2840 		if (!p->is_runtime_retry)
2841 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2842 					p, NULL, 0, false, NULL, 0);
2843 
2844 		mutex_unlock(&p->mutex);
2845 		ret = down_interruptible(&p->runtime_enable_sema);
2846 		mutex_lock(&p->mutex);
2847 
2848 		p->is_runtime_retry = !!ret;
2849 		if (ret)
2850 			return ret;
2851 	}
2852 
2853 	if (was_enabled && p->runtime_info.ttmp_setup) {
2854 		for (i = 0; i < p->n_pdds; i++) {
2855 			struct kfd_process_device *pdd = p->pdds[i];
2856 
2857 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2858 				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2859 		}
2860 	}
2861 
2862 	p->runtime_info.ttmp_setup = false;
2863 
2864 	/* disable ttmp setup */
2865 	for (i = 0; i < p->n_pdds; i++) {
2866 		struct kfd_process_device *pdd = p->pdds[i];
2867 
2868 		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2869 			pdd->spi_dbg_override =
2870 					pdd->dev->kfd2kgd->disable_debug_trap(
2871 					pdd->dev->adev,
2872 					false,
2873 					pdd->dev->vm_info.last_vmid_kfd);
2874 
2875 			if (!pdd->dev->kfd->shared_resources.enable_mes)
2876 				debug_refresh_runlist(pdd->dev->dqm);
2877 			else
2878 				kfd_dbg_set_mes_debug_mode(pdd,
2879 							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2880 		}
2881 	}
2882 
2883 	return 0;
2884 }
2885 
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2886 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2887 {
2888 	struct kfd_ioctl_runtime_enable_args *args = data;
2889 	int r;
2890 
2891 	mutex_lock(&p->mutex);
2892 
2893 	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2894 		r = runtime_enable(p, args->r_debug,
2895 				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2896 	else
2897 		r = runtime_disable(p);
2898 
2899 	mutex_unlock(&p->mutex);
2900 
2901 	return r;
2902 }
2903 
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2904 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2905 {
2906 	struct kfd_ioctl_dbg_trap_args *args = data;
2907 	struct task_struct *thread = NULL;
2908 	struct mm_struct *mm = NULL;
2909 	struct pid *pid = NULL;
2910 	struct kfd_process *target = NULL;
2911 	struct kfd_process_device *pdd = NULL;
2912 	int r = 0;
2913 
2914 	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2915 		pr_err("Debugging does not support sched_policy %i", sched_policy);
2916 		return -EINVAL;
2917 	}
2918 
2919 	pid = find_get_pid(args->pid);
2920 	if (!pid) {
2921 		pr_debug("Cannot find pid info for %i\n", args->pid);
2922 		r = -ESRCH;
2923 		goto out;
2924 	}
2925 
2926 	thread = get_pid_task(pid, PIDTYPE_PID);
2927 	if (!thread) {
2928 		r = -ESRCH;
2929 		goto out;
2930 	}
2931 
2932 	mm = get_task_mm(thread);
2933 	if (!mm) {
2934 		r = -ESRCH;
2935 		goto out;
2936 	}
2937 
2938 	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2939 		bool create_process;
2940 
2941 		rcu_read_lock();
2942 		create_process = thread && thread != current && ptrace_parent(thread) == current;
2943 		rcu_read_unlock();
2944 
2945 		target = create_process ? kfd_create_process(thread) :
2946 					kfd_lookup_process_by_pid(pid);
2947 	} else {
2948 		target = kfd_lookup_process_by_pid(pid);
2949 	}
2950 
2951 	if (IS_ERR_OR_NULL(target)) {
2952 		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2953 		r = target ? PTR_ERR(target) : -ESRCH;
2954 		target = NULL;
2955 		goto out;
2956 	}
2957 
2958 	/* Check if target is still PTRACED. */
2959 	rcu_read_lock();
2960 	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2961 				&& ptrace_parent(target->lead_thread) != current) {
2962 		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2963 		r = -EPERM;
2964 	}
2965 	rcu_read_unlock();
2966 
2967 	if (r)
2968 		goto out;
2969 
2970 	mutex_lock(&target->mutex);
2971 
2972 	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2973 		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2974 		r = -EINVAL;
2975 		goto unlock_out;
2976 	}
2977 
2978 	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2979 			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2980 			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2981 			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2982 			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2983 			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2984 			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2985 			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2986 		r = -EPERM;
2987 		goto unlock_out;
2988 	}
2989 
2990 	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2991 	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2992 		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2993 				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2994 					args->set_node_address_watch.gpu_id :
2995 					args->clear_node_address_watch.gpu_id);
2996 
2997 		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2998 		if (user_gpu_id == -EINVAL || !pdd) {
2999 			r = -ENODEV;
3000 			goto unlock_out;
3001 		}
3002 	}
3003 
3004 	switch (args->op) {
3005 	case KFD_IOC_DBG_TRAP_ENABLE:
3006 		if (target != p)
3007 			target->debugger_process = p;
3008 
3009 		r = kfd_dbg_trap_enable(target,
3010 					args->enable.dbg_fd,
3011 					(void __user *)args->enable.rinfo_ptr,
3012 					&args->enable.rinfo_size);
3013 		if (!r)
3014 			target->exception_enable_mask = args->enable.exception_mask;
3015 
3016 		break;
3017 	case KFD_IOC_DBG_TRAP_DISABLE:
3018 		r = kfd_dbg_trap_disable(target);
3019 		break;
3020 	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3021 		r = kfd_dbg_send_exception_to_runtime(target,
3022 				args->send_runtime_event.gpu_id,
3023 				args->send_runtime_event.queue_id,
3024 				args->send_runtime_event.exception_mask);
3025 		break;
3026 	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3027 		kfd_dbg_set_enabled_debug_exception_mask(target,
3028 				args->set_exceptions_enabled.exception_mask);
3029 		break;
3030 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3031 		r = kfd_dbg_trap_set_wave_launch_override(target,
3032 				args->launch_override.override_mode,
3033 				args->launch_override.enable_mask,
3034 				args->launch_override.support_request_mask,
3035 				&args->launch_override.enable_mask,
3036 				&args->launch_override.support_request_mask);
3037 		break;
3038 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3039 		r = kfd_dbg_trap_set_wave_launch_mode(target,
3040 				args->launch_mode.launch_mode);
3041 		break;
3042 	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3043 		r = suspend_queues(target,
3044 				args->suspend_queues.num_queues,
3045 				args->suspend_queues.grace_period,
3046 				args->suspend_queues.exception_mask,
3047 				(uint32_t *)args->suspend_queues.queue_array_ptr);
3048 
3049 		break;
3050 	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3051 		r = resume_queues(target, args->resume_queues.num_queues,
3052 				(uint32_t *)args->resume_queues.queue_array_ptr);
3053 		break;
3054 	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3055 		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3056 				args->set_node_address_watch.address,
3057 				args->set_node_address_watch.mask,
3058 				&args->set_node_address_watch.id,
3059 				args->set_node_address_watch.mode);
3060 		break;
3061 	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3062 		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3063 				args->clear_node_address_watch.id);
3064 		break;
3065 	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3066 		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3067 		break;
3068 	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3069 		r = kfd_dbg_ev_query_debug_event(target,
3070 				&args->query_debug_event.queue_id,
3071 				&args->query_debug_event.gpu_id,
3072 				args->query_debug_event.exception_mask,
3073 				&args->query_debug_event.exception_mask);
3074 		break;
3075 	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3076 		r = kfd_dbg_trap_query_exception_info(target,
3077 				args->query_exception_info.source_id,
3078 				args->query_exception_info.exception_code,
3079 				args->query_exception_info.clear_exception,
3080 				(void __user *)args->query_exception_info.info_ptr,
3081 				&args->query_exception_info.info_size);
3082 		break;
3083 	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3084 		r = pqm_get_queue_snapshot(&target->pqm,
3085 				args->queue_snapshot.exception_mask,
3086 				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3087 				&args->queue_snapshot.num_queues,
3088 				&args->queue_snapshot.entry_size);
3089 		break;
3090 	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3091 		r = kfd_dbg_trap_device_snapshot(target,
3092 				args->device_snapshot.exception_mask,
3093 				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3094 				&args->device_snapshot.num_devices,
3095 				&args->device_snapshot.entry_size);
3096 		break;
3097 	default:
3098 		pr_err("Invalid option: %i\n", args->op);
3099 		r = -EINVAL;
3100 	}
3101 
3102 unlock_out:
3103 	mutex_unlock(&target->mutex);
3104 
3105 out:
3106 	if (thread)
3107 		put_task_struct(thread);
3108 
3109 	if (mm)
3110 		mmput(mm);
3111 
3112 	if (pid)
3113 		put_pid(pid);
3114 
3115 	if (target)
3116 		kfd_unref_process(target);
3117 
3118 	return r;
3119 }
3120 
3121 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3122 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3123 			    .cmd_drv = 0, .name = #ioctl}
3124 
3125 /** Ioctl table */
3126 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3127 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3128 			kfd_ioctl_get_version, 0),
3129 
3130 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3131 			kfd_ioctl_create_queue, 0),
3132 
3133 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3134 			kfd_ioctl_destroy_queue, 0),
3135 
3136 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3137 			kfd_ioctl_set_memory_policy, 0),
3138 
3139 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3140 			kfd_ioctl_get_clock_counters, 0),
3141 
3142 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3143 			kfd_ioctl_get_process_apertures, 0),
3144 
3145 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3146 			kfd_ioctl_update_queue, 0),
3147 
3148 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3149 			kfd_ioctl_create_event, 0),
3150 
3151 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3152 			kfd_ioctl_destroy_event, 0),
3153 
3154 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3155 			kfd_ioctl_set_event, 0),
3156 
3157 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3158 			kfd_ioctl_reset_event, 0),
3159 
3160 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3161 			kfd_ioctl_wait_events, 0),
3162 
3163 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3164 			kfd_ioctl_dbg_register, 0),
3165 
3166 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3167 			kfd_ioctl_dbg_unregister, 0),
3168 
3169 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3170 			kfd_ioctl_dbg_address_watch, 0),
3171 
3172 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3173 			kfd_ioctl_dbg_wave_control, 0),
3174 
3175 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3176 			kfd_ioctl_set_scratch_backing_va, 0),
3177 
3178 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3179 			kfd_ioctl_get_tile_config, 0),
3180 
3181 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3182 			kfd_ioctl_set_trap_handler, 0),
3183 
3184 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3185 			kfd_ioctl_get_process_apertures_new, 0),
3186 
3187 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3188 			kfd_ioctl_acquire_vm, 0),
3189 
3190 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3191 			kfd_ioctl_alloc_memory_of_gpu, 0),
3192 
3193 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3194 			kfd_ioctl_free_memory_of_gpu, 0),
3195 
3196 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3197 			kfd_ioctl_map_memory_to_gpu, 0),
3198 
3199 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3200 			kfd_ioctl_unmap_memory_from_gpu, 0),
3201 
3202 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3203 			kfd_ioctl_set_cu_mask, 0),
3204 
3205 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3206 			kfd_ioctl_get_queue_wave_state, 0),
3207 
3208 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3209 				kfd_ioctl_get_dmabuf_info, 0),
3210 
3211 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3212 				kfd_ioctl_import_dmabuf, 0),
3213 
3214 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3215 			kfd_ioctl_alloc_queue_gws, 0),
3216 
3217 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3218 			kfd_ioctl_smi_events, 0),
3219 
3220 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3221 
3222 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3223 			kfd_ioctl_set_xnack_mode, 0),
3224 
3225 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3226 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3227 
3228 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3229 			kfd_ioctl_get_available_memory, 0),
3230 
3231 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3232 				kfd_ioctl_export_dmabuf, 0),
3233 
3234 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3235 			kfd_ioctl_runtime_enable, 0),
3236 
3237 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3238 			kfd_ioctl_set_debug_trap, 0),
3239 };
3240 
3241 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3242 
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3243 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3244 {
3245 	struct kfd_process *process;
3246 	amdkfd_ioctl_t *func;
3247 	const struct amdkfd_ioctl_desc *ioctl = NULL;
3248 	unsigned int nr = _IOC_NR(cmd);
3249 	char stack_kdata[128];
3250 	char *kdata = NULL;
3251 	unsigned int usize, asize;
3252 	int retcode = -EINVAL;
3253 	bool ptrace_attached = false;
3254 
3255 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3256 		goto err_i1;
3257 
3258 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3259 		u32 amdkfd_size;
3260 
3261 		ioctl = &amdkfd_ioctls[nr];
3262 
3263 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3264 		usize = asize = _IOC_SIZE(cmd);
3265 		if (amdkfd_size > asize)
3266 			asize = amdkfd_size;
3267 
3268 		cmd = ioctl->cmd;
3269 	} else
3270 		goto err_i1;
3271 
3272 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3273 
3274 	/* Get the process struct from the filep. Only the process
3275 	 * that opened /dev/kfd can use the file descriptor. Child
3276 	 * processes need to create their own KFD device context.
3277 	 */
3278 	process = filep->private_data;
3279 
3280 	rcu_read_lock();
3281 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3282 	    ptrace_parent(process->lead_thread) == current)
3283 		ptrace_attached = true;
3284 	rcu_read_unlock();
3285 
3286 	if (process->lead_thread != current->group_leader
3287 	    && !ptrace_attached) {
3288 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3289 		retcode = -EBADF;
3290 		goto err_i1;
3291 	}
3292 
3293 	/* Do not trust userspace, use our own definition */
3294 	func = ioctl->func;
3295 
3296 	if (unlikely(!func)) {
3297 		dev_dbg(kfd_device, "no function\n");
3298 		retcode = -EINVAL;
3299 		goto err_i1;
3300 	}
3301 
3302 	/*
3303 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3304 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3305 	 * more priviledged access.
3306 	 */
3307 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3308 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3309 						!capable(CAP_SYS_ADMIN)) {
3310 			retcode = -EACCES;
3311 			goto err_i1;
3312 		}
3313 	}
3314 
3315 	if (cmd & (IOC_IN | IOC_OUT)) {
3316 		if (asize <= sizeof(stack_kdata)) {
3317 			kdata = stack_kdata;
3318 		} else {
3319 			kdata = kmalloc(asize, GFP_KERNEL);
3320 			if (!kdata) {
3321 				retcode = -ENOMEM;
3322 				goto err_i1;
3323 			}
3324 		}
3325 		if (asize > usize)
3326 			memset(kdata + usize, 0, asize - usize);
3327 	}
3328 
3329 	if (cmd & IOC_IN) {
3330 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3331 			retcode = -EFAULT;
3332 			goto err_i1;
3333 		}
3334 	} else if (cmd & IOC_OUT) {
3335 		memset(kdata, 0, usize);
3336 	}
3337 
3338 	retcode = func(filep, process, kdata);
3339 
3340 	if (cmd & IOC_OUT)
3341 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3342 			retcode = -EFAULT;
3343 
3344 err_i1:
3345 	if (!ioctl)
3346 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3347 			  task_pid_nr(current), cmd, nr);
3348 
3349 	if (kdata != stack_kdata)
3350 		kfree(kdata);
3351 
3352 	if (retcode)
3353 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3354 				nr, arg, retcode);
3355 
3356 	return retcode;
3357 }
3358 
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3359 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3360 		      struct vm_area_struct *vma)
3361 {
3362 	phys_addr_t address;
3363 
3364 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3365 		return -EINVAL;
3366 
3367 	if (PAGE_SIZE > 4096)
3368 		return -EINVAL;
3369 
3370 	address = dev->adev->rmmio_remap.bus_addr;
3371 
3372 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3373 				VM_DONTDUMP | VM_PFNMAP);
3374 
3375 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3376 
3377 	pr_debug("process pid %d mapping mmio page\n"
3378 		 "     target user address == 0x%08llX\n"
3379 		 "     physical address    == 0x%08llX\n"
3380 		 "     vm_flags            == 0x%04lX\n"
3381 		 "     size                == 0x%04lX\n",
3382 		 process->lead_thread->pid, (unsigned long long) vma->vm_start,
3383 		 address, vma->vm_flags, PAGE_SIZE);
3384 
3385 	return io_remap_pfn_range(vma,
3386 				vma->vm_start,
3387 				address >> PAGE_SHIFT,
3388 				PAGE_SIZE,
3389 				vma->vm_page_prot);
3390 }
3391 
3392 
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3393 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3394 {
3395 	struct kfd_process *process;
3396 	struct kfd_node *dev = NULL;
3397 	unsigned long mmap_offset;
3398 	unsigned int gpu_id;
3399 
3400 	process = kfd_get_process(current);
3401 	if (IS_ERR(process))
3402 		return PTR_ERR(process);
3403 
3404 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3405 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3406 	if (gpu_id)
3407 		dev = kfd_device_by_id(gpu_id);
3408 
3409 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3410 	case KFD_MMAP_TYPE_DOORBELL:
3411 		if (!dev)
3412 			return -ENODEV;
3413 		return kfd_doorbell_mmap(dev, process, vma);
3414 
3415 	case KFD_MMAP_TYPE_EVENTS:
3416 		return kfd_event_mmap(process, vma);
3417 
3418 	case KFD_MMAP_TYPE_RESERVED_MEM:
3419 		if (!dev)
3420 			return -ENODEV;
3421 		return kfd_reserved_mem_mmap(dev, process, vma);
3422 	case KFD_MMAP_TYPE_MMIO:
3423 		if (!dev)
3424 			return -ENODEV;
3425 		return kfd_mmio_mmap(dev, process, vma);
3426 	}
3427 
3428 	return -EFAULT;
3429 }
3430