1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/ptrace.h>
37 #include <linux/dma-buf.h>
38 #include <linux/processor.h>
39 #include "kfd_priv.h"
40 #include "kfd_device_queue_manager.h"
41 #include "kfd_svm.h"
42 #include "amdgpu_amdkfd.h"
43 #include "kfd_smi_events.h"
44 #include "amdgpu_dma_buf.h"
45 #include "kfd_debug.h"
46
47 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
48 static int kfd_open(struct inode *, struct file *);
49 static int kfd_release(struct inode *, struct file *);
50 static int kfd_mmap(struct file *, struct vm_area_struct *);
51
52 static const char kfd_dev_name[] = "kfd";
53
54 static const struct file_operations kfd_fops = {
55 .owner = THIS_MODULE,
56 .unlocked_ioctl = kfd_ioctl,
57 .compat_ioctl = compat_ptr_ioctl,
58 .open = kfd_open,
59 .release = kfd_release,
60 .mmap = kfd_mmap,
61 };
62
63 static int kfd_char_dev_major = -1;
64 struct device *kfd_device;
65 static const struct class kfd_class = {
66 .name = kfd_dev_name,
67 };
68
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70 {
71 struct kfd_process_device *pdd;
72
73 mutex_lock(&p->mutex);
74 pdd = kfd_process_device_data_by_id(p, gpu_id);
75
76 if (pdd)
77 return pdd;
78
79 mutex_unlock(&p->mutex);
80 return NULL;
81 }
82
kfd_unlock_pdd(struct kfd_process_device * pdd)83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84 {
85 mutex_unlock(&pdd->process->mutex);
86 }
87
kfd_chardev_init(void)88 int kfd_chardev_init(void)
89 {
90 int err = 0;
91
92 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 err = kfd_char_dev_major;
94 if (err < 0)
95 goto err_register_chrdev;
96
97 err = class_register(&kfd_class);
98 if (err)
99 goto err_class_create;
100
101 kfd_device = device_create(&kfd_class, NULL,
102 MKDEV(kfd_char_dev_major, 0),
103 NULL, kfd_dev_name);
104 err = PTR_ERR(kfd_device);
105 if (IS_ERR(kfd_device))
106 goto err_device_create;
107
108 return 0;
109
110 err_device_create:
111 class_unregister(&kfd_class);
112 err_class_create:
113 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 return err;
116 }
117
kfd_chardev_exit(void)118 void kfd_chardev_exit(void)
119 {
120 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
121 class_unregister(&kfd_class);
122 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 kfd_device = NULL;
124 }
125
126
kfd_open(struct inode * inode,struct file * filep)127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 struct kfd_process *process;
130 bool is_32bit_user_mode;
131
132 if (iminor(inode) != 0)
133 return -ENODEV;
134
135 is_32bit_user_mode = in_compat_syscall();
136
137 if (is_32bit_user_mode) {
138 dev_warn(kfd_device,
139 "Process %d (32-bit) failed to open /dev/kfd\n"
140 "32-bit processes are not supported by amdkfd\n",
141 current->pid);
142 return -EPERM;
143 }
144
145 process = kfd_create_process(current);
146 if (IS_ERR(process))
147 return PTR_ERR(process);
148
149 if (kfd_process_init_cwsr_apu(process, filep)) {
150 kfd_unref_process(process);
151 return -EFAULT;
152 }
153
154 /* filep now owns the reference returned by kfd_create_process */
155 filep->private_data = process;
156
157 dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
158 process->lead_thread->pid, process->is_32bit_user_mode);
159
160 return 0;
161 }
162
kfd_release(struct inode * inode,struct file * filep)163 static int kfd_release(struct inode *inode, struct file *filep)
164 {
165 struct kfd_process *process = filep->private_data;
166
167 if (process)
168 kfd_unref_process(process);
169
170 return 0;
171 }
172
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)173 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
174 void *data)
175 {
176 struct kfd_ioctl_get_version_args *args = data;
177
178 args->major_version = KFD_IOCTL_MAJOR_VERSION;
179 args->minor_version = KFD_IOCTL_MINOR_VERSION;
180
181 return 0;
182 }
183
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)184 static int set_queue_properties_from_user(struct queue_properties *q_properties,
185 struct kfd_ioctl_create_queue_args *args)
186 {
187 /*
188 * Repurpose queue percentage to accommodate new features:
189 * bit 0-7: queue percentage
190 * bit 8-15: pm4_target_xcc
191 */
192 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
193 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
194 return -EINVAL;
195 }
196
197 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
198 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
199 return -EINVAL;
200 }
201
202 if ((args->ring_base_address) &&
203 (!access_ok((const void __user *) args->ring_base_address,
204 sizeof(uint64_t)))) {
205 pr_err("Can't access ring base address\n");
206 return -EFAULT;
207 }
208
209 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
210 pr_err("Ring size must be a power of 2 or 0\n");
211 return -EINVAL;
212 }
213
214 if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
215 args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
216 pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
217 }
218
219 if (!access_ok((const void __user *) args->read_pointer_address,
220 sizeof(uint32_t))) {
221 pr_err("Can't access read pointer\n");
222 return -EFAULT;
223 }
224
225 if (!access_ok((const void __user *) args->write_pointer_address,
226 sizeof(uint32_t))) {
227 pr_err("Can't access write pointer\n");
228 return -EFAULT;
229 }
230
231 if (args->eop_buffer_address &&
232 !access_ok((const void __user *) args->eop_buffer_address,
233 sizeof(uint32_t))) {
234 pr_debug("Can't access eop buffer");
235 return -EFAULT;
236 }
237
238 if (args->ctx_save_restore_address &&
239 !access_ok((const void __user *) args->ctx_save_restore_address,
240 sizeof(uint32_t))) {
241 pr_debug("Can't access ctx save restore buffer");
242 return -EFAULT;
243 }
244
245 q_properties->is_interop = false;
246 q_properties->is_gws = false;
247 q_properties->queue_percent = args->queue_percentage & 0xFF;
248 /* bit 8-15 are repurposed to be PM4 target XCC */
249 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
250 q_properties->priority = args->queue_priority;
251 q_properties->queue_address = args->ring_base_address;
252 q_properties->queue_size = args->ring_size;
253 q_properties->read_ptr = (void __user *)args->read_pointer_address;
254 q_properties->write_ptr = (void __user *)args->write_pointer_address;
255 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
256 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
257 q_properties->ctx_save_restore_area_address =
258 args->ctx_save_restore_address;
259 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
260 q_properties->ctl_stack_size = args->ctl_stack_size;
261 q_properties->sdma_engine_id = args->sdma_engine_id;
262 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
263 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
264 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
265 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
266 q_properties->type = KFD_QUEUE_TYPE_SDMA;
267 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
268 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
269 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
270 q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
271 else
272 return -ENOTSUPP;
273
274 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
275 q_properties->format = KFD_QUEUE_FORMAT_AQL;
276 else
277 q_properties->format = KFD_QUEUE_FORMAT_PM4;
278
279 pr_debug("Queue Percentage: %d, %d\n",
280 q_properties->queue_percent, args->queue_percentage);
281
282 pr_debug("Queue Priority: %d, %d\n",
283 q_properties->priority, args->queue_priority);
284
285 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
286 q_properties->queue_address, args->ring_base_address);
287
288 pr_debug("Queue Size: 0x%llX, %u\n",
289 q_properties->queue_size, args->ring_size);
290
291 pr_debug("Queue r/w Pointers: %px, %px\n",
292 q_properties->read_ptr,
293 q_properties->write_ptr);
294
295 pr_debug("Queue Format: %d\n", q_properties->format);
296
297 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
298
299 pr_debug("Queue CTX save area: 0x%llX\n",
300 q_properties->ctx_save_restore_area_address);
301
302 return 0;
303 }
304
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)305 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
306 void *data)
307 {
308 struct kfd_ioctl_create_queue_args *args = data;
309 struct kfd_node *dev;
310 int err = 0;
311 unsigned int queue_id;
312 struct kfd_process_device *pdd;
313 struct queue_properties q_properties;
314 uint32_t doorbell_offset_in_process = 0;
315
316 memset(&q_properties, 0, sizeof(struct queue_properties));
317
318 pr_debug("Creating queue ioctl\n");
319
320 err = set_queue_properties_from_user(&q_properties, args);
321 if (err)
322 return err;
323
324 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
325
326 mutex_lock(&p->mutex);
327
328 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
329 if (!pdd) {
330 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
331 err = -EINVAL;
332 goto err_pdd;
333 }
334 dev = pdd->dev;
335
336 pdd = kfd_bind_process_to_device(dev, p);
337 if (IS_ERR(pdd)) {
338 err = -ESRCH;
339 goto err_bind_process;
340 }
341
342 if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
343 int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
344 kfd_get_num_xgmi_sdma_engines(dev) - 1;
345
346 if (q_properties.sdma_engine_id > max_sdma_eng_id) {
347 err = -EINVAL;
348 pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
349 q_properties.sdma_engine_id, max_sdma_eng_id);
350 goto err_sdma_engine_id;
351 }
352 }
353
354 if (!pdd->qpd.proc_doorbells) {
355 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
356 if (err) {
357 pr_debug("failed to allocate process doorbells\n");
358 goto err_bind_process;
359 }
360 }
361
362 err = kfd_queue_acquire_buffers(pdd, &q_properties);
363 if (err) {
364 pr_debug("failed to acquire user queue buffers\n");
365 goto err_acquire_queue_buf;
366 }
367
368 pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
369 p->lead_thread->pid,
370 dev->id);
371
372 err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
373 NULL, NULL, NULL, &doorbell_offset_in_process);
374 if (err != 0)
375 goto err_create_queue;
376
377 args->queue_id = queue_id;
378
379
380 /* Return gpu_id as doorbell offset for mmap usage */
381 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
382 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
383 if (KFD_IS_SOC15(dev))
384 /* On SOC15 ASICs, include the doorbell offset within the
385 * process doorbell frame, which is 2 pages.
386 */
387 args->doorbell_offset |= doorbell_offset_in_process;
388
389 mutex_unlock(&p->mutex);
390
391 pr_debug("Queue id %d was created successfully\n", args->queue_id);
392
393 pr_debug("Ring buffer address == 0x%016llX\n",
394 args->ring_base_address);
395
396 pr_debug("Read ptr address == 0x%016llX\n",
397 args->read_pointer_address);
398
399 pr_debug("Write ptr address == 0x%016llX\n",
400 args->write_pointer_address);
401
402 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
403 return 0;
404
405 err_create_queue:
406 kfd_queue_unref_bo_vas(pdd, &q_properties);
407 kfd_queue_release_buffers(pdd, &q_properties);
408 err_acquire_queue_buf:
409 err_sdma_engine_id:
410 err_bind_process:
411 err_pdd:
412 mutex_unlock(&p->mutex);
413 return err;
414 }
415
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)416 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
417 void *data)
418 {
419 int retval;
420 struct kfd_ioctl_destroy_queue_args *args = data;
421
422 pr_debug("Destroying queue id %d for process pid %d\n",
423 args->queue_id,
424 p->lead_thread->pid);
425
426 mutex_lock(&p->mutex);
427
428 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
429
430 mutex_unlock(&p->mutex);
431 return retval;
432 }
433
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)434 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
435 void *data)
436 {
437 int retval;
438 struct kfd_ioctl_update_queue_args *args = data;
439 struct queue_properties properties;
440
441 /*
442 * Repurpose queue percentage to accommodate new features:
443 * bit 0-7: queue percentage
444 * bit 8-15: pm4_target_xcc
445 */
446 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
447 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
448 return -EINVAL;
449 }
450
451 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
452 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
453 return -EINVAL;
454 }
455
456 if ((args->ring_base_address) &&
457 (!access_ok((const void __user *) args->ring_base_address,
458 sizeof(uint64_t)))) {
459 pr_err("Can't access ring base address\n");
460 return -EFAULT;
461 }
462
463 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
464 pr_err("Ring size must be a power of 2 or 0\n");
465 return -EINVAL;
466 }
467
468 if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
469 args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
470 pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
471 }
472
473 properties.queue_address = args->ring_base_address;
474 properties.queue_size = args->ring_size;
475 properties.queue_percent = args->queue_percentage & 0xFF;
476 /* bit 8-15 are repurposed to be PM4 target XCC */
477 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
478 properties.priority = args->queue_priority;
479
480 pr_debug("Updating queue id %d for process pid %d\n",
481 args->queue_id, p->lead_thread->pid);
482
483 mutex_lock(&p->mutex);
484
485 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
486
487 mutex_unlock(&p->mutex);
488
489 return retval;
490 }
491
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)492 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
493 void *data)
494 {
495 int retval;
496 const int max_num_cus = 1024;
497 struct kfd_ioctl_set_cu_mask_args *args = data;
498 struct mqd_update_info minfo = {0};
499 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
500 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
501
502 if ((args->num_cu_mask % 32) != 0) {
503 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
504 args->num_cu_mask);
505 return -EINVAL;
506 }
507
508 minfo.cu_mask.count = args->num_cu_mask;
509 if (minfo.cu_mask.count == 0) {
510 pr_debug("CU mask cannot be 0");
511 return -EINVAL;
512 }
513
514 /* To prevent an unreasonably large CU mask size, set an arbitrary
515 * limit of max_num_cus bits. We can then just drop any CU mask bits
516 * past max_num_cus bits and just use the first max_num_cus bits.
517 */
518 if (minfo.cu_mask.count > max_num_cus) {
519 pr_debug("CU mask cannot be greater than 1024 bits");
520 minfo.cu_mask.count = max_num_cus;
521 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
522 }
523
524 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
525 if (!minfo.cu_mask.ptr)
526 return -ENOMEM;
527
528 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
529 if (retval) {
530 pr_debug("Could not copy CU mask from userspace");
531 retval = -EFAULT;
532 goto out;
533 }
534
535 mutex_lock(&p->mutex);
536
537 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
538
539 mutex_unlock(&p->mutex);
540
541 out:
542 kfree(minfo.cu_mask.ptr);
543 return retval;
544 }
545
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)546 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
547 struct kfd_process *p, void *data)
548 {
549 struct kfd_ioctl_get_queue_wave_state_args *args = data;
550 int r;
551
552 mutex_lock(&p->mutex);
553
554 r = pqm_get_wave_state(&p->pqm, args->queue_id,
555 (void __user *)args->ctl_stack_address,
556 &args->ctl_stack_used_size,
557 &args->save_area_used_size);
558
559 mutex_unlock(&p->mutex);
560
561 return r;
562 }
563
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)564 static int kfd_ioctl_set_memory_policy(struct file *filep,
565 struct kfd_process *p, void *data)
566 {
567 struct kfd_ioctl_set_memory_policy_args *args = data;
568 int err = 0;
569 struct kfd_process_device *pdd;
570 enum cache_policy default_policy, alternate_policy;
571
572 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
573 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
574 return -EINVAL;
575 }
576
577 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
578 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
579 return -EINVAL;
580 }
581
582 mutex_lock(&p->mutex);
583 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
584 if (!pdd) {
585 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
586 err = -EINVAL;
587 goto err_pdd;
588 }
589
590 pdd = kfd_bind_process_to_device(pdd->dev, p);
591 if (IS_ERR(pdd)) {
592 err = -ESRCH;
593 goto out;
594 }
595
596 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
597 ? cache_policy_coherent : cache_policy_noncoherent;
598
599 alternate_policy =
600 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
601 ? cache_policy_coherent : cache_policy_noncoherent;
602
603 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
604 &pdd->qpd,
605 default_policy,
606 alternate_policy,
607 (void __user *)args->alternate_aperture_base,
608 args->alternate_aperture_size,
609 args->misc_process_flag))
610 err = -EINVAL;
611
612 out:
613 err_pdd:
614 mutex_unlock(&p->mutex);
615
616 return err;
617 }
618
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)619 static int kfd_ioctl_set_trap_handler(struct file *filep,
620 struct kfd_process *p, void *data)
621 {
622 struct kfd_ioctl_set_trap_handler_args *args = data;
623 int err = 0;
624 struct kfd_process_device *pdd;
625
626 mutex_lock(&p->mutex);
627
628 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
629 if (!pdd) {
630 err = -EINVAL;
631 goto err_pdd;
632 }
633
634 pdd = kfd_bind_process_to_device(pdd->dev, p);
635 if (IS_ERR(pdd)) {
636 err = -ESRCH;
637 goto out;
638 }
639
640 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
641
642 out:
643 err_pdd:
644 mutex_unlock(&p->mutex);
645
646 return err;
647 }
648
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)649 static int kfd_ioctl_dbg_register(struct file *filep,
650 struct kfd_process *p, void *data)
651 {
652 return -EPERM;
653 }
654
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)655 static int kfd_ioctl_dbg_unregister(struct file *filep,
656 struct kfd_process *p, void *data)
657 {
658 return -EPERM;
659 }
660
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_address_watch(struct file *filep,
662 struct kfd_process *p, void *data)
663 {
664 return -EPERM;
665 }
666
667 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)668 static int kfd_ioctl_dbg_wave_control(struct file *filep,
669 struct kfd_process *p, void *data)
670 {
671 return -EPERM;
672 }
673
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)674 static int kfd_ioctl_get_clock_counters(struct file *filep,
675 struct kfd_process *p, void *data)
676 {
677 struct kfd_ioctl_get_clock_counters_args *args = data;
678 struct kfd_process_device *pdd;
679
680 mutex_lock(&p->mutex);
681 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
682 mutex_unlock(&p->mutex);
683 if (pdd)
684 /* Reading GPU clock counter from KGD */
685 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
686 else
687 /* Node without GPU resource */
688 args->gpu_clock_counter = 0;
689
690 /* No access to rdtsc. Using raw monotonic time */
691 args->cpu_clock_counter = ktime_get_raw_ns();
692 args->system_clock_counter = ktime_get_boottime_ns();
693
694 /* Since the counter is in nano-seconds we use 1GHz frequency */
695 args->system_clock_freq = 1000000000;
696
697 return 0;
698 }
699
700
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)701 static int kfd_ioctl_get_process_apertures(struct file *filp,
702 struct kfd_process *p, void *data)
703 {
704 struct kfd_ioctl_get_process_apertures_args *args = data;
705 struct kfd_process_device_apertures *pAperture;
706 int i;
707
708 dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
709
710 args->num_of_nodes = 0;
711
712 mutex_lock(&p->mutex);
713 /* Run over all pdd of the process */
714 for (i = 0; i < p->n_pdds; i++) {
715 struct kfd_process_device *pdd = p->pdds[i];
716
717 pAperture =
718 &args->process_apertures[args->num_of_nodes];
719 pAperture->gpu_id = pdd->dev->id;
720 pAperture->lds_base = pdd->lds_base;
721 pAperture->lds_limit = pdd->lds_limit;
722 pAperture->gpuvm_base = pdd->gpuvm_base;
723 pAperture->gpuvm_limit = pdd->gpuvm_limit;
724 pAperture->scratch_base = pdd->scratch_base;
725 pAperture->scratch_limit = pdd->scratch_limit;
726
727 dev_dbg(kfd_device,
728 "node id %u\n", args->num_of_nodes);
729 dev_dbg(kfd_device,
730 "gpu id %u\n", pdd->dev->id);
731 dev_dbg(kfd_device,
732 "lds_base %llX\n", pdd->lds_base);
733 dev_dbg(kfd_device,
734 "lds_limit %llX\n", pdd->lds_limit);
735 dev_dbg(kfd_device,
736 "gpuvm_base %llX\n", pdd->gpuvm_base);
737 dev_dbg(kfd_device,
738 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
739 dev_dbg(kfd_device,
740 "scratch_base %llX\n", pdd->scratch_base);
741 dev_dbg(kfd_device,
742 "scratch_limit %llX\n", pdd->scratch_limit);
743
744 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
745 break;
746 }
747 mutex_unlock(&p->mutex);
748
749 return 0;
750 }
751
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)752 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
753 struct kfd_process *p, void *data)
754 {
755 struct kfd_ioctl_get_process_apertures_new_args *args = data;
756 struct kfd_process_device_apertures *pa;
757 int ret;
758 int i;
759
760 dev_dbg(kfd_device, "get apertures for process pid %d",
761 p->lead_thread->pid);
762
763 if (args->num_of_nodes == 0) {
764 /* Return number of nodes, so that user space can alloacate
765 * sufficient memory
766 */
767 mutex_lock(&p->mutex);
768 args->num_of_nodes = p->n_pdds;
769 goto out_unlock;
770 }
771
772 /* Fill in process-aperture information for all available
773 * nodes, but not more than args->num_of_nodes as that is
774 * the amount of memory allocated by user
775 */
776 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
777 GFP_KERNEL);
778 if (!pa)
779 return -ENOMEM;
780
781 mutex_lock(&p->mutex);
782
783 if (!p->n_pdds) {
784 args->num_of_nodes = 0;
785 kfree(pa);
786 goto out_unlock;
787 }
788
789 /* Run over all pdd of the process */
790 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
791 struct kfd_process_device *pdd = p->pdds[i];
792
793 pa[i].gpu_id = pdd->dev->id;
794 pa[i].lds_base = pdd->lds_base;
795 pa[i].lds_limit = pdd->lds_limit;
796 pa[i].gpuvm_base = pdd->gpuvm_base;
797 pa[i].gpuvm_limit = pdd->gpuvm_limit;
798 pa[i].scratch_base = pdd->scratch_base;
799 pa[i].scratch_limit = pdd->scratch_limit;
800
801 dev_dbg(kfd_device,
802 "gpu id %u\n", pdd->dev->id);
803 dev_dbg(kfd_device,
804 "lds_base %llX\n", pdd->lds_base);
805 dev_dbg(kfd_device,
806 "lds_limit %llX\n", pdd->lds_limit);
807 dev_dbg(kfd_device,
808 "gpuvm_base %llX\n", pdd->gpuvm_base);
809 dev_dbg(kfd_device,
810 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
811 dev_dbg(kfd_device,
812 "scratch_base %llX\n", pdd->scratch_base);
813 dev_dbg(kfd_device,
814 "scratch_limit %llX\n", pdd->scratch_limit);
815 }
816 mutex_unlock(&p->mutex);
817
818 args->num_of_nodes = i;
819 ret = copy_to_user(
820 (void __user *)args->kfd_process_device_apertures_ptr,
821 pa,
822 (i * sizeof(struct kfd_process_device_apertures)));
823 kfree(pa);
824 return ret ? -EFAULT : 0;
825
826 out_unlock:
827 mutex_unlock(&p->mutex);
828 return 0;
829 }
830
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)831 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
832 void *data)
833 {
834 struct kfd_ioctl_create_event_args *args = data;
835 int err;
836
837 /* For dGPUs the event page is allocated in user mode. The
838 * handle is passed to KFD with the first call to this IOCTL
839 * through the event_page_offset field.
840 */
841 if (args->event_page_offset) {
842 mutex_lock(&p->mutex);
843 err = kfd_kmap_event_page(p, args->event_page_offset);
844 mutex_unlock(&p->mutex);
845 if (err)
846 return err;
847 }
848
849 err = kfd_event_create(filp, p, args->event_type,
850 args->auto_reset != 0, args->node_id,
851 &args->event_id, &args->event_trigger_data,
852 &args->event_page_offset,
853 &args->event_slot_index);
854
855 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
856 return err;
857 }
858
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)859 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
860 void *data)
861 {
862 struct kfd_ioctl_destroy_event_args *args = data;
863
864 return kfd_event_destroy(p, args->event_id);
865 }
866
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)867 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
868 void *data)
869 {
870 struct kfd_ioctl_set_event_args *args = data;
871
872 return kfd_set_event(p, args->event_id);
873 }
874
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)875 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
876 void *data)
877 {
878 struct kfd_ioctl_reset_event_args *args = data;
879
880 return kfd_reset_event(p, args->event_id);
881 }
882
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)883 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
884 void *data)
885 {
886 struct kfd_ioctl_wait_events_args *args = data;
887
888 return kfd_wait_on_events(p, args->num_events,
889 (void __user *)args->events_ptr,
890 (args->wait_for_all != 0),
891 &args->timeout, &args->wait_result);
892 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)893 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
894 struct kfd_process *p, void *data)
895 {
896 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
897 struct kfd_process_device *pdd;
898 struct kfd_node *dev;
899 long err;
900
901 mutex_lock(&p->mutex);
902 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
903 if (!pdd) {
904 err = -EINVAL;
905 goto err_pdd;
906 }
907 dev = pdd->dev;
908
909 pdd = kfd_bind_process_to_device(dev, p);
910 if (IS_ERR(pdd)) {
911 err = PTR_ERR(pdd);
912 goto bind_process_to_device_fail;
913 }
914
915 pdd->qpd.sh_hidden_private_base = args->va_addr;
916
917 mutex_unlock(&p->mutex);
918
919 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
920 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
921 dev->kfd2kgd->set_scratch_backing_va(
922 dev->adev, args->va_addr, pdd->qpd.vmid);
923
924 return 0;
925
926 bind_process_to_device_fail:
927 err_pdd:
928 mutex_unlock(&p->mutex);
929 return err;
930 }
931
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)932 static int kfd_ioctl_get_tile_config(struct file *filep,
933 struct kfd_process *p, void *data)
934 {
935 struct kfd_ioctl_get_tile_config_args *args = data;
936 struct kfd_process_device *pdd;
937 struct tile_config config;
938 int err = 0;
939
940 mutex_lock(&p->mutex);
941 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
942 mutex_unlock(&p->mutex);
943 if (!pdd)
944 return -EINVAL;
945
946 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
947
948 args->gb_addr_config = config.gb_addr_config;
949 args->num_banks = config.num_banks;
950 args->num_ranks = config.num_ranks;
951
952 if (args->num_tile_configs > config.num_tile_configs)
953 args->num_tile_configs = config.num_tile_configs;
954 err = copy_to_user((void __user *)args->tile_config_ptr,
955 config.tile_config_ptr,
956 args->num_tile_configs * sizeof(uint32_t));
957 if (err) {
958 args->num_tile_configs = 0;
959 return -EFAULT;
960 }
961
962 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
963 args->num_macro_tile_configs =
964 config.num_macro_tile_configs;
965 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
966 config.macro_tile_config_ptr,
967 args->num_macro_tile_configs * sizeof(uint32_t));
968 if (err) {
969 args->num_macro_tile_configs = 0;
970 return -EFAULT;
971 }
972
973 return 0;
974 }
975
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)976 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
977 void *data)
978 {
979 struct kfd_ioctl_acquire_vm_args *args = data;
980 struct kfd_process_device *pdd;
981 struct file *drm_file;
982 int ret;
983
984 drm_file = fget(args->drm_fd);
985 if (!drm_file)
986 return -EINVAL;
987
988 mutex_lock(&p->mutex);
989 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
990 if (!pdd) {
991 ret = -EINVAL;
992 goto err_pdd;
993 }
994
995 if (pdd->drm_file) {
996 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
997 goto err_drm_file;
998 }
999
1000 ret = kfd_process_device_init_vm(pdd, drm_file);
1001 if (ret)
1002 goto err_unlock;
1003
1004 /* On success, the PDD keeps the drm_file reference */
1005 mutex_unlock(&p->mutex);
1006
1007 return 0;
1008
1009 err_unlock:
1010 err_pdd:
1011 err_drm_file:
1012 mutex_unlock(&p->mutex);
1013 fput(drm_file);
1014 return ret;
1015 }
1016
kfd_dev_is_large_bar(struct kfd_node * dev)1017 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1018 {
1019 if (dev->kfd->adev->debug_largebar) {
1020 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1021 return true;
1022 }
1023
1024 if (dev->local_mem_info.local_mem_size_private == 0 &&
1025 dev->local_mem_info.local_mem_size_public > 0)
1026 return true;
1027
1028 if (dev->local_mem_info.local_mem_size_public == 0 &&
1029 dev->kfd->adev->gmc.is_app_apu) {
1030 pr_debug("APP APU, Consider like a large bar system\n");
1031 return true;
1032 }
1033
1034 return false;
1035 }
1036
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1037 static int kfd_ioctl_get_available_memory(struct file *filep,
1038 struct kfd_process *p, void *data)
1039 {
1040 struct kfd_ioctl_get_available_memory_args *args = data;
1041 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1042
1043 if (!pdd)
1044 return -EINVAL;
1045 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1046 pdd->dev->node_id);
1047 kfd_unlock_pdd(pdd);
1048 return 0;
1049 }
1050
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1051 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1052 struct kfd_process *p, void *data)
1053 {
1054 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1055 struct kfd_process_device *pdd;
1056 void *mem;
1057 struct kfd_node *dev;
1058 int idr_handle;
1059 long err;
1060 uint64_t offset = args->mmap_offset;
1061 uint32_t flags = args->flags;
1062
1063 if (args->size == 0)
1064 return -EINVAL;
1065
1066 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1067 /* Flush pending deferred work to avoid racing with deferred actions
1068 * from previous memory map changes (e.g. munmap).
1069 */
1070 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1071 mutex_lock(&p->svms.lock);
1072 mmap_write_unlock(current->mm);
1073 if (interval_tree_iter_first(&p->svms.objects,
1074 args->va_addr >> PAGE_SHIFT,
1075 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1076 pr_err("Address: 0x%llx already allocated by SVM\n",
1077 args->va_addr);
1078 mutex_unlock(&p->svms.lock);
1079 return -EADDRINUSE;
1080 }
1081
1082 /* When register user buffer check if it has been registered by svm by
1083 * buffer cpu virtual address.
1084 */
1085 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1086 interval_tree_iter_first(&p->svms.objects,
1087 args->mmap_offset >> PAGE_SHIFT,
1088 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1089 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1090 args->mmap_offset);
1091 mutex_unlock(&p->svms.lock);
1092 return -EADDRINUSE;
1093 }
1094
1095 mutex_unlock(&p->svms.lock);
1096 #endif
1097 mutex_lock(&p->mutex);
1098 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1099 if (!pdd) {
1100 err = -EINVAL;
1101 goto err_pdd;
1102 }
1103
1104 dev = pdd->dev;
1105
1106 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1107 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1108 !kfd_dev_is_large_bar(dev)) {
1109 pr_err("Alloc host visible vram on small bar is not allowed\n");
1110 err = -EINVAL;
1111 goto err_large_bar;
1112 }
1113
1114 pdd = kfd_bind_process_to_device(dev, p);
1115 if (IS_ERR(pdd)) {
1116 err = PTR_ERR(pdd);
1117 goto err_unlock;
1118 }
1119
1120 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1121 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1122 err = -EINVAL;
1123 goto err_unlock;
1124 }
1125 offset = kfd_get_process_doorbells(pdd);
1126 if (!offset) {
1127 err = -ENOMEM;
1128 goto err_unlock;
1129 }
1130 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1131 if (args->size != PAGE_SIZE) {
1132 err = -EINVAL;
1133 goto err_unlock;
1134 }
1135 offset = dev->adev->rmmio_remap.bus_addr;
1136 if (!offset || (PAGE_SIZE > 4096)) {
1137 err = -ENOMEM;
1138 goto err_unlock;
1139 }
1140 }
1141
1142 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1143 dev->adev, args->va_addr, args->size,
1144 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1145 flags, false);
1146
1147 if (err)
1148 goto err_unlock;
1149
1150 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1151 if (idr_handle < 0) {
1152 err = -EFAULT;
1153 goto err_free;
1154 }
1155
1156 /* Update the VRAM usage count */
1157 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1158 uint64_t size = args->size;
1159
1160 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1161 size >>= 1;
1162 atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1163 }
1164
1165 mutex_unlock(&p->mutex);
1166
1167 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1168 args->mmap_offset = offset;
1169
1170 /* MMIO is mapped through kfd device
1171 * Generate a kfd mmap offset
1172 */
1173 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1174 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1175 | KFD_MMAP_GPU_ID(args->gpu_id);
1176
1177 return 0;
1178
1179 err_free:
1180 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1181 pdd->drm_priv, NULL);
1182 err_unlock:
1183 err_pdd:
1184 err_large_bar:
1185 mutex_unlock(&p->mutex);
1186 return err;
1187 }
1188
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1189 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1190 struct kfd_process *p, void *data)
1191 {
1192 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1193 struct kfd_process_device *pdd;
1194 void *mem;
1195 int ret;
1196 uint64_t size = 0;
1197
1198 mutex_lock(&p->mutex);
1199 /*
1200 * Safeguard to prevent user space from freeing signal BO.
1201 * It will be freed at process termination.
1202 */
1203 if (p->signal_handle && (p->signal_handle == args->handle)) {
1204 pr_err("Free signal BO is not allowed\n");
1205 ret = -EPERM;
1206 goto err_unlock;
1207 }
1208
1209 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1210 if (!pdd) {
1211 pr_err("Process device data doesn't exist\n");
1212 ret = -EINVAL;
1213 goto err_pdd;
1214 }
1215
1216 mem = kfd_process_device_translate_handle(
1217 pdd, GET_IDR_HANDLE(args->handle));
1218 if (!mem) {
1219 ret = -EINVAL;
1220 goto err_unlock;
1221 }
1222
1223 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1224 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1225
1226 /* If freeing the buffer failed, leave the handle in place for
1227 * clean-up during process tear-down.
1228 */
1229 if (!ret)
1230 kfd_process_device_remove_obj_handle(
1231 pdd, GET_IDR_HANDLE(args->handle));
1232
1233 atomic64_sub(size, &pdd->vram_usage);
1234
1235 err_unlock:
1236 err_pdd:
1237 mutex_unlock(&p->mutex);
1238 return ret;
1239 }
1240
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1241 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1242 struct kfd_process *p, void *data)
1243 {
1244 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1245 struct kfd_process_device *pdd, *peer_pdd;
1246 void *mem;
1247 struct kfd_node *dev;
1248 long err = 0;
1249 int i;
1250 uint32_t *devices_arr = NULL;
1251
1252 if (!args->n_devices) {
1253 pr_debug("Device IDs array empty\n");
1254 return -EINVAL;
1255 }
1256 if (args->n_success > args->n_devices) {
1257 pr_debug("n_success exceeds n_devices\n");
1258 return -EINVAL;
1259 }
1260
1261 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1262 GFP_KERNEL);
1263 if (!devices_arr)
1264 return -ENOMEM;
1265
1266 err = copy_from_user(devices_arr,
1267 (void __user *)args->device_ids_array_ptr,
1268 args->n_devices * sizeof(*devices_arr));
1269 if (err != 0) {
1270 err = -EFAULT;
1271 goto copy_from_user_failed;
1272 }
1273
1274 mutex_lock(&p->mutex);
1275 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1276 if (!pdd) {
1277 err = -EINVAL;
1278 goto get_process_device_data_failed;
1279 }
1280 dev = pdd->dev;
1281
1282 pdd = kfd_bind_process_to_device(dev, p);
1283 if (IS_ERR(pdd)) {
1284 err = PTR_ERR(pdd);
1285 goto bind_process_to_device_failed;
1286 }
1287
1288 mem = kfd_process_device_translate_handle(pdd,
1289 GET_IDR_HANDLE(args->handle));
1290 if (!mem) {
1291 err = -ENOMEM;
1292 goto get_mem_obj_from_handle_failed;
1293 }
1294
1295 for (i = args->n_success; i < args->n_devices; i++) {
1296 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1297 if (!peer_pdd) {
1298 pr_debug("Getting device by id failed for 0x%x\n",
1299 devices_arr[i]);
1300 err = -EINVAL;
1301 goto get_mem_obj_from_handle_failed;
1302 }
1303
1304 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1305 if (IS_ERR(peer_pdd)) {
1306 err = PTR_ERR(peer_pdd);
1307 goto get_mem_obj_from_handle_failed;
1308 }
1309
1310 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1311 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1312 peer_pdd->drm_priv);
1313 if (err) {
1314 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1315
1316 dev_err(dev->adev->dev,
1317 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1318 pci_domain_nr(pdev->bus),
1319 pdev->bus->number,
1320 PCI_SLOT(pdev->devfn),
1321 PCI_FUNC(pdev->devfn),
1322 ((struct kgd_mem *)mem)->domain);
1323 goto map_memory_to_gpu_failed;
1324 }
1325 args->n_success = i+1;
1326 }
1327
1328 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1329 if (err) {
1330 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1331 goto sync_memory_failed;
1332 }
1333
1334 mutex_unlock(&p->mutex);
1335
1336 /* Flush TLBs after waiting for the page table updates to complete */
1337 for (i = 0; i < args->n_devices; i++) {
1338 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1339 if (WARN_ON_ONCE(!peer_pdd))
1340 continue;
1341 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1342 }
1343 kfree(devices_arr);
1344
1345 return err;
1346
1347 get_process_device_data_failed:
1348 bind_process_to_device_failed:
1349 get_mem_obj_from_handle_failed:
1350 map_memory_to_gpu_failed:
1351 sync_memory_failed:
1352 mutex_unlock(&p->mutex);
1353 copy_from_user_failed:
1354 kfree(devices_arr);
1355
1356 return err;
1357 }
1358
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1359 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1360 struct kfd_process *p, void *data)
1361 {
1362 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1363 struct kfd_process_device *pdd, *peer_pdd;
1364 void *mem;
1365 long err = 0;
1366 uint32_t *devices_arr = NULL, i;
1367 bool flush_tlb;
1368
1369 if (!args->n_devices) {
1370 pr_debug("Device IDs array empty\n");
1371 return -EINVAL;
1372 }
1373 if (args->n_success > args->n_devices) {
1374 pr_debug("n_success exceeds n_devices\n");
1375 return -EINVAL;
1376 }
1377
1378 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1379 GFP_KERNEL);
1380 if (!devices_arr)
1381 return -ENOMEM;
1382
1383 err = copy_from_user(devices_arr,
1384 (void __user *)args->device_ids_array_ptr,
1385 args->n_devices * sizeof(*devices_arr));
1386 if (err != 0) {
1387 err = -EFAULT;
1388 goto copy_from_user_failed;
1389 }
1390
1391 mutex_lock(&p->mutex);
1392 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1393 if (!pdd) {
1394 err = -EINVAL;
1395 goto bind_process_to_device_failed;
1396 }
1397
1398 mem = kfd_process_device_translate_handle(pdd,
1399 GET_IDR_HANDLE(args->handle));
1400 if (!mem) {
1401 err = -ENOMEM;
1402 goto get_mem_obj_from_handle_failed;
1403 }
1404
1405 for (i = args->n_success; i < args->n_devices; i++) {
1406 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1407 if (!peer_pdd) {
1408 err = -EINVAL;
1409 goto get_mem_obj_from_handle_failed;
1410 }
1411 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1412 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1413 if (err) {
1414 pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1415 goto unmap_memory_from_gpu_failed;
1416 }
1417 args->n_success = i+1;
1418 }
1419
1420 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1421 if (flush_tlb) {
1422 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1423 (struct kgd_mem *) mem, true);
1424 if (err) {
1425 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1426 goto sync_memory_failed;
1427 }
1428 }
1429
1430 /* Flush TLBs after waiting for the page table updates to complete */
1431 for (i = 0; i < args->n_devices; i++) {
1432 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1433 if (WARN_ON_ONCE(!peer_pdd))
1434 continue;
1435 if (flush_tlb)
1436 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1437
1438 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1439 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1440 if (err)
1441 goto sync_memory_failed;
1442 }
1443
1444 mutex_unlock(&p->mutex);
1445
1446 kfree(devices_arr);
1447
1448 return 0;
1449
1450 bind_process_to_device_failed:
1451 get_mem_obj_from_handle_failed:
1452 unmap_memory_from_gpu_failed:
1453 sync_memory_failed:
1454 mutex_unlock(&p->mutex);
1455 copy_from_user_failed:
1456 kfree(devices_arr);
1457 return err;
1458 }
1459
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1460 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1461 struct kfd_process *p, void *data)
1462 {
1463 int retval;
1464 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1465 struct queue *q;
1466 struct kfd_node *dev;
1467
1468 mutex_lock(&p->mutex);
1469 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1470
1471 if (q) {
1472 dev = q->device;
1473 } else {
1474 retval = -EINVAL;
1475 goto out_unlock;
1476 }
1477
1478 if (!dev->gws) {
1479 retval = -ENODEV;
1480 goto out_unlock;
1481 }
1482
1483 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1484 retval = -ENODEV;
1485 goto out_unlock;
1486 }
1487
1488 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1489 kfd_dbg_has_cwsr_workaround(dev))) {
1490 retval = -EBUSY;
1491 goto out_unlock;
1492 }
1493
1494 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1495 mutex_unlock(&p->mutex);
1496
1497 args->first_gws = 0;
1498 return retval;
1499
1500 out_unlock:
1501 mutex_unlock(&p->mutex);
1502 return retval;
1503 }
1504
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1505 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1506 struct kfd_process *p, void *data)
1507 {
1508 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1509 struct kfd_node *dev = NULL;
1510 struct amdgpu_device *dmabuf_adev;
1511 void *metadata_buffer = NULL;
1512 uint32_t flags;
1513 int8_t xcp_id;
1514 unsigned int i;
1515 int r;
1516
1517 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1518 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1519 if (dev && !kfd_devcgroup_check_permission(dev))
1520 break;
1521 if (!dev)
1522 return -EINVAL;
1523
1524 if (args->metadata_ptr) {
1525 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1526 if (!metadata_buffer)
1527 return -ENOMEM;
1528 }
1529
1530 /* Get dmabuf info from KGD */
1531 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1532 &dmabuf_adev, &args->size,
1533 metadata_buffer, args->metadata_size,
1534 &args->metadata_size, &flags, &xcp_id);
1535 if (r)
1536 goto exit;
1537
1538 if (xcp_id >= 0)
1539 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1540 else
1541 args->gpu_id = dev->id;
1542 args->flags = flags;
1543
1544 /* Copy metadata buffer to user mode */
1545 if (metadata_buffer) {
1546 r = copy_to_user((void __user *)args->metadata_ptr,
1547 metadata_buffer, args->metadata_size);
1548 if (r != 0)
1549 r = -EFAULT;
1550 }
1551
1552 exit:
1553 kfree(metadata_buffer);
1554
1555 return r;
1556 }
1557
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1558 static int kfd_ioctl_import_dmabuf(struct file *filep,
1559 struct kfd_process *p, void *data)
1560 {
1561 struct kfd_ioctl_import_dmabuf_args *args = data;
1562 struct kfd_process_device *pdd;
1563 int idr_handle;
1564 uint64_t size;
1565 void *mem;
1566 int r;
1567
1568 mutex_lock(&p->mutex);
1569 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1570 if (!pdd) {
1571 r = -EINVAL;
1572 goto err_unlock;
1573 }
1574
1575 pdd = kfd_bind_process_to_device(pdd->dev, p);
1576 if (IS_ERR(pdd)) {
1577 r = PTR_ERR(pdd);
1578 goto err_unlock;
1579 }
1580
1581 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1582 args->va_addr, pdd->drm_priv,
1583 (struct kgd_mem **)&mem, &size,
1584 NULL);
1585 if (r)
1586 goto err_unlock;
1587
1588 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1589 if (idr_handle < 0) {
1590 r = -EFAULT;
1591 goto err_free;
1592 }
1593
1594 mutex_unlock(&p->mutex);
1595
1596 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1597
1598 return 0;
1599
1600 err_free:
1601 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1602 pdd->drm_priv, NULL);
1603 err_unlock:
1604 mutex_unlock(&p->mutex);
1605 return r;
1606 }
1607
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1608 static int kfd_ioctl_export_dmabuf(struct file *filep,
1609 struct kfd_process *p, void *data)
1610 {
1611 struct kfd_ioctl_export_dmabuf_args *args = data;
1612 struct kfd_process_device *pdd;
1613 struct dma_buf *dmabuf;
1614 struct kfd_node *dev;
1615 void *mem;
1616 int ret = 0;
1617
1618 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1619 if (!dev)
1620 return -EINVAL;
1621
1622 mutex_lock(&p->mutex);
1623
1624 pdd = kfd_get_process_device_data(dev, p);
1625 if (!pdd) {
1626 ret = -EINVAL;
1627 goto err_unlock;
1628 }
1629
1630 mem = kfd_process_device_translate_handle(pdd,
1631 GET_IDR_HANDLE(args->handle));
1632 if (!mem) {
1633 ret = -EINVAL;
1634 goto err_unlock;
1635 }
1636
1637 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1638 mutex_unlock(&p->mutex);
1639 if (ret)
1640 goto err_out;
1641
1642 ret = dma_buf_fd(dmabuf, args->flags);
1643 if (ret < 0) {
1644 dma_buf_put(dmabuf);
1645 goto err_out;
1646 }
1647 /* dma_buf_fd assigns the reference count to the fd, no need to
1648 * put the reference here.
1649 */
1650 args->dmabuf_fd = ret;
1651
1652 return 0;
1653
1654 err_unlock:
1655 mutex_unlock(&p->mutex);
1656 err_out:
1657 return ret;
1658 }
1659
1660 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1661 static int kfd_ioctl_smi_events(struct file *filep,
1662 struct kfd_process *p, void *data)
1663 {
1664 struct kfd_ioctl_smi_events_args *args = data;
1665 struct kfd_process_device *pdd;
1666
1667 mutex_lock(&p->mutex);
1668
1669 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1670 mutex_unlock(&p->mutex);
1671 if (!pdd)
1672 return -EINVAL;
1673
1674 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1675 }
1676
1677 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1678
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1679 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1680 struct kfd_process *p, void *data)
1681 {
1682 struct kfd_ioctl_set_xnack_mode_args *args = data;
1683 int r = 0;
1684
1685 mutex_lock(&p->mutex);
1686 if (args->xnack_enabled >= 0) {
1687 if (!list_empty(&p->pqm.queues)) {
1688 pr_debug("Process has user queues running\n");
1689 r = -EBUSY;
1690 goto out_unlock;
1691 }
1692
1693 if (p->xnack_enabled == args->xnack_enabled)
1694 goto out_unlock;
1695
1696 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1697 r = -EPERM;
1698 goto out_unlock;
1699 }
1700
1701 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1702 } else {
1703 args->xnack_enabled = p->xnack_enabled;
1704 }
1705
1706 out_unlock:
1707 mutex_unlock(&p->mutex);
1708
1709 return r;
1710 }
1711
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1712 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1713 {
1714 struct kfd_ioctl_svm_args *args = data;
1715 int r = 0;
1716
1717 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1718 args->start_addr, args->size, args->op, args->nattr);
1719
1720 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1721 return -EINVAL;
1722 if (!args->start_addr || !args->size)
1723 return -EINVAL;
1724
1725 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1726 args->attrs);
1727
1728 return r;
1729 }
1730 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1731 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1732 struct kfd_process *p, void *data)
1733 {
1734 return -EPERM;
1735 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1736 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1737 {
1738 return -EPERM;
1739 }
1740 #endif
1741
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1742 static int criu_checkpoint_process(struct kfd_process *p,
1743 uint8_t __user *user_priv_data,
1744 uint64_t *priv_offset)
1745 {
1746 struct kfd_criu_process_priv_data process_priv;
1747 int ret;
1748
1749 memset(&process_priv, 0, sizeof(process_priv));
1750
1751 process_priv.version = KFD_CRIU_PRIV_VERSION;
1752 /* For CR, we don't consider negative xnack mode which is used for
1753 * querying without changing it, here 0 simply means disabled and 1
1754 * means enabled so retry for finding a valid PTE.
1755 */
1756 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1757
1758 ret = copy_to_user(user_priv_data + *priv_offset,
1759 &process_priv, sizeof(process_priv));
1760
1761 if (ret) {
1762 pr_err("Failed to copy process information to user\n");
1763 ret = -EFAULT;
1764 }
1765
1766 *priv_offset += sizeof(process_priv);
1767 return ret;
1768 }
1769
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1770 static int criu_checkpoint_devices(struct kfd_process *p,
1771 uint32_t num_devices,
1772 uint8_t __user *user_addr,
1773 uint8_t __user *user_priv_data,
1774 uint64_t *priv_offset)
1775 {
1776 struct kfd_criu_device_priv_data *device_priv = NULL;
1777 struct kfd_criu_device_bucket *device_buckets = NULL;
1778 int ret = 0, i;
1779
1780 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1781 if (!device_buckets) {
1782 ret = -ENOMEM;
1783 goto exit;
1784 }
1785
1786 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1787 if (!device_priv) {
1788 ret = -ENOMEM;
1789 goto exit;
1790 }
1791
1792 for (i = 0; i < num_devices; i++) {
1793 struct kfd_process_device *pdd = p->pdds[i];
1794
1795 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1796 device_buckets[i].actual_gpu_id = pdd->dev->id;
1797
1798 /*
1799 * priv_data does not contain useful information for now and is reserved for
1800 * future use, so we do not set its contents.
1801 */
1802 }
1803
1804 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1805 if (ret) {
1806 pr_err("Failed to copy device information to user\n");
1807 ret = -EFAULT;
1808 goto exit;
1809 }
1810
1811 ret = copy_to_user(user_priv_data + *priv_offset,
1812 device_priv,
1813 num_devices * sizeof(*device_priv));
1814 if (ret) {
1815 pr_err("Failed to copy device information to user\n");
1816 ret = -EFAULT;
1817 }
1818 *priv_offset += num_devices * sizeof(*device_priv);
1819
1820 exit:
1821 kvfree(device_buckets);
1822 kvfree(device_priv);
1823 return ret;
1824 }
1825
get_process_num_bos(struct kfd_process * p)1826 static uint32_t get_process_num_bos(struct kfd_process *p)
1827 {
1828 uint32_t num_of_bos = 0;
1829 int i;
1830
1831 /* Run over all PDDs of the process */
1832 for (i = 0; i < p->n_pdds; i++) {
1833 struct kfd_process_device *pdd = p->pdds[i];
1834 void *mem;
1835 int id;
1836
1837 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1838 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1839
1840 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1841 num_of_bos++;
1842 }
1843 }
1844 return num_of_bos;
1845 }
1846
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd,struct file ** file)1847 static int criu_get_prime_handle(struct kgd_mem *mem,
1848 int flags, u32 *shared_fd,
1849 struct file **file)
1850 {
1851 struct dma_buf *dmabuf;
1852 int ret;
1853
1854 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1855 if (ret) {
1856 pr_err("dmabuf export failed for the BO\n");
1857 return ret;
1858 }
1859
1860 ret = get_unused_fd_flags(flags);
1861 if (ret < 0) {
1862 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1863 goto out_free_dmabuf;
1864 }
1865
1866 *shared_fd = ret;
1867 *file = dmabuf->file;
1868 return 0;
1869
1870 out_free_dmabuf:
1871 dma_buf_put(dmabuf);
1872 return ret;
1873 }
1874
commit_files(struct file ** files,struct kfd_criu_bo_bucket * bo_buckets,unsigned int count,int err)1875 static void commit_files(struct file **files,
1876 struct kfd_criu_bo_bucket *bo_buckets,
1877 unsigned int count,
1878 int err)
1879 {
1880 while (count--) {
1881 struct file *file = files[count];
1882
1883 if (!file)
1884 continue;
1885 if (err) {
1886 fput(file);
1887 put_unused_fd(bo_buckets[count].dmabuf_fd);
1888 } else {
1889 fd_install(bo_buckets[count].dmabuf_fd, file);
1890 }
1891 }
1892 }
1893
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1894 static int criu_checkpoint_bos(struct kfd_process *p,
1895 uint32_t num_bos,
1896 uint8_t __user *user_bos,
1897 uint8_t __user *user_priv_data,
1898 uint64_t *priv_offset)
1899 {
1900 struct kfd_criu_bo_bucket *bo_buckets;
1901 struct kfd_criu_bo_priv_data *bo_privs;
1902 struct file **files = NULL;
1903 int ret = 0, pdd_index, bo_index = 0, id;
1904 void *mem;
1905
1906 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1907 if (!bo_buckets)
1908 return -ENOMEM;
1909
1910 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1911 if (!bo_privs) {
1912 ret = -ENOMEM;
1913 goto exit;
1914 }
1915
1916 files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1917 if (!files) {
1918 ret = -ENOMEM;
1919 goto exit;
1920 }
1921
1922 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1923 struct kfd_process_device *pdd = p->pdds[pdd_index];
1924 struct amdgpu_bo *dumper_bo;
1925 struct kgd_mem *kgd_mem;
1926
1927 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1928 struct kfd_criu_bo_bucket *bo_bucket;
1929 struct kfd_criu_bo_priv_data *bo_priv;
1930 int i, dev_idx = 0;
1931
1932 kgd_mem = (struct kgd_mem *)mem;
1933 dumper_bo = kgd_mem->bo;
1934
1935 /* Skip checkpointing BOs that are used for Trap handler
1936 * code and state. Currently, these BOs have a VA that
1937 * is less GPUVM Base
1938 */
1939 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1940 continue;
1941
1942 bo_bucket = &bo_buckets[bo_index];
1943 bo_priv = &bo_privs[bo_index];
1944
1945 bo_bucket->gpu_id = pdd->user_gpu_id;
1946 bo_bucket->addr = (uint64_t)kgd_mem->va;
1947 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1948 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1949 bo_priv->idr_handle = id;
1950
1951 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1952 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1953 &bo_priv->user_addr);
1954 if (ret) {
1955 pr_err("Failed to obtain user address for user-pointer bo\n");
1956 goto exit;
1957 }
1958 }
1959 if (bo_bucket->alloc_flags
1960 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1961 ret = criu_get_prime_handle(kgd_mem,
1962 bo_bucket->alloc_flags &
1963 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1964 &bo_bucket->dmabuf_fd, &files[bo_index]);
1965 if (ret)
1966 goto exit;
1967 } else {
1968 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1969 }
1970
1971 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1972 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1973 KFD_MMAP_GPU_ID(pdd->dev->id);
1974 else if (bo_bucket->alloc_flags &
1975 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1976 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1977 KFD_MMAP_GPU_ID(pdd->dev->id);
1978 else
1979 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1980
1981 for (i = 0; i < p->n_pdds; i++) {
1982 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1983 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1984 }
1985
1986 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1987 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1988 bo_bucket->size,
1989 bo_bucket->addr,
1990 bo_bucket->offset,
1991 bo_bucket->gpu_id,
1992 bo_bucket->alloc_flags,
1993 bo_priv->idr_handle);
1994 bo_index++;
1995 }
1996 }
1997
1998 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1999 if (ret) {
2000 pr_err("Failed to copy BO information to user\n");
2001 ret = -EFAULT;
2002 goto exit;
2003 }
2004
2005 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2006 if (ret) {
2007 pr_err("Failed to copy BO priv information to user\n");
2008 ret = -EFAULT;
2009 goto exit;
2010 }
2011
2012 *priv_offset += num_bos * sizeof(*bo_privs);
2013
2014 exit:
2015 commit_files(files, bo_buckets, bo_index, ret);
2016 kvfree(files);
2017 kvfree(bo_buckets);
2018 kvfree(bo_privs);
2019 return ret;
2020 }
2021
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2022 static int criu_get_process_object_info(struct kfd_process *p,
2023 uint32_t *num_devices,
2024 uint32_t *num_bos,
2025 uint32_t *num_objects,
2026 uint64_t *objs_priv_size)
2027 {
2028 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2029 uint32_t num_queues, num_events, num_svm_ranges;
2030 int ret;
2031
2032 *num_devices = p->n_pdds;
2033 *num_bos = get_process_num_bos(p);
2034
2035 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2036 if (ret)
2037 return ret;
2038
2039 num_events = kfd_get_num_events(p);
2040
2041 svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2042
2043 *num_objects = num_queues + num_events + num_svm_ranges;
2044
2045 if (objs_priv_size) {
2046 priv_size = sizeof(struct kfd_criu_process_priv_data);
2047 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2048 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2049 priv_size += queues_priv_data_size;
2050 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2051 priv_size += svm_priv_data_size;
2052 *objs_priv_size = priv_size;
2053 }
2054 return 0;
2055 }
2056
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2057 static int criu_checkpoint(struct file *filep,
2058 struct kfd_process *p,
2059 struct kfd_ioctl_criu_args *args)
2060 {
2061 int ret;
2062 uint32_t num_devices, num_bos, num_objects;
2063 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2064
2065 if (!args->devices || !args->bos || !args->priv_data)
2066 return -EINVAL;
2067
2068 mutex_lock(&p->mutex);
2069
2070 if (!p->n_pdds) {
2071 pr_err("No pdd for given process\n");
2072 ret = -ENODEV;
2073 goto exit_unlock;
2074 }
2075
2076 /* Confirm all process queues are evicted */
2077 if (!p->queues_paused) {
2078 pr_err("Cannot dump process when queues are not in evicted state\n");
2079 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2080 ret = -EINVAL;
2081 goto exit_unlock;
2082 }
2083
2084 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2085 if (ret)
2086 goto exit_unlock;
2087
2088 if (num_devices != args->num_devices ||
2089 num_bos != args->num_bos ||
2090 num_objects != args->num_objects ||
2091 priv_size != args->priv_data_size) {
2092
2093 ret = -EINVAL;
2094 goto exit_unlock;
2095 }
2096
2097 /* each function will store private data inside priv_data and adjust priv_offset */
2098 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2099 if (ret)
2100 goto exit_unlock;
2101
2102 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2103 (uint8_t __user *)args->priv_data, &priv_offset);
2104 if (ret)
2105 goto exit_unlock;
2106
2107 /* Leave room for BOs in the private data. They need to be restored
2108 * before events, but we checkpoint them last to simplify the error
2109 * handling.
2110 */
2111 bo_priv_offset = priv_offset;
2112 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2113
2114 if (num_objects) {
2115 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2116 &priv_offset);
2117 if (ret)
2118 goto exit_unlock;
2119
2120 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2121 &priv_offset);
2122 if (ret)
2123 goto exit_unlock;
2124
2125 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2126 if (ret)
2127 goto exit_unlock;
2128 }
2129
2130 /* This must be the last thing in this function that can fail.
2131 * Otherwise we leak dmabuf file descriptors.
2132 */
2133 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2134 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2135
2136 exit_unlock:
2137 mutex_unlock(&p->mutex);
2138 if (ret)
2139 pr_err("Failed to dump CRIU ret:%d\n", ret);
2140 else
2141 pr_debug("CRIU dump ret:%d\n", ret);
2142
2143 return ret;
2144 }
2145
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2146 static int criu_restore_process(struct kfd_process *p,
2147 struct kfd_ioctl_criu_args *args,
2148 uint64_t *priv_offset,
2149 uint64_t max_priv_data_size)
2150 {
2151 int ret = 0;
2152 struct kfd_criu_process_priv_data process_priv;
2153
2154 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2155 return -EINVAL;
2156
2157 ret = copy_from_user(&process_priv,
2158 (void __user *)(args->priv_data + *priv_offset),
2159 sizeof(process_priv));
2160 if (ret) {
2161 pr_err("Failed to copy process private information from user\n");
2162 ret = -EFAULT;
2163 goto exit;
2164 }
2165 *priv_offset += sizeof(process_priv);
2166
2167 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2168 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2169 process_priv.version, KFD_CRIU_PRIV_VERSION);
2170 return -EINVAL;
2171 }
2172
2173 pr_debug("Setting XNACK mode\n");
2174 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2175 pr_err("xnack mode cannot be set\n");
2176 ret = -EPERM;
2177 goto exit;
2178 } else {
2179 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2180 p->xnack_enabled = process_priv.xnack_mode;
2181 }
2182
2183 exit:
2184 return ret;
2185 }
2186
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2187 static int criu_restore_devices(struct kfd_process *p,
2188 struct kfd_ioctl_criu_args *args,
2189 uint64_t *priv_offset,
2190 uint64_t max_priv_data_size)
2191 {
2192 struct kfd_criu_device_bucket *device_buckets;
2193 struct kfd_criu_device_priv_data *device_privs;
2194 int ret = 0;
2195 uint32_t i;
2196
2197 if (args->num_devices != p->n_pdds)
2198 return -EINVAL;
2199
2200 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2201 return -EINVAL;
2202
2203 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2204 if (!device_buckets)
2205 return -ENOMEM;
2206
2207 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2208 args->num_devices * sizeof(*device_buckets));
2209 if (ret) {
2210 pr_err("Failed to copy devices buckets from user\n");
2211 ret = -EFAULT;
2212 goto exit;
2213 }
2214
2215 for (i = 0; i < args->num_devices; i++) {
2216 struct kfd_node *dev;
2217 struct kfd_process_device *pdd;
2218 struct file *drm_file;
2219
2220 /* device private data is not currently used */
2221
2222 if (!device_buckets[i].user_gpu_id) {
2223 pr_err("Invalid user gpu_id\n");
2224 ret = -EINVAL;
2225 goto exit;
2226 }
2227
2228 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2229 if (!dev) {
2230 pr_err("Failed to find device with gpu_id = %x\n",
2231 device_buckets[i].actual_gpu_id);
2232 ret = -EINVAL;
2233 goto exit;
2234 }
2235
2236 pdd = kfd_get_process_device_data(dev, p);
2237 if (!pdd) {
2238 pr_err("Failed to get pdd for gpu_id = %x\n",
2239 device_buckets[i].actual_gpu_id);
2240 ret = -EINVAL;
2241 goto exit;
2242 }
2243 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2244
2245 drm_file = fget(device_buckets[i].drm_fd);
2246 if (!drm_file) {
2247 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2248 device_buckets[i].drm_fd);
2249 ret = -EINVAL;
2250 goto exit;
2251 }
2252
2253 if (pdd->drm_file) {
2254 ret = -EINVAL;
2255 goto exit;
2256 }
2257
2258 /* create the vm using render nodes for kfd pdd */
2259 if (kfd_process_device_init_vm(pdd, drm_file)) {
2260 pr_err("could not init vm for given pdd\n");
2261 /* On success, the PDD keeps the drm_file reference */
2262 fput(drm_file);
2263 ret = -EINVAL;
2264 goto exit;
2265 }
2266 /*
2267 * pdd now already has the vm bound to render node so below api won't create a new
2268 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2269 * for iommu v2 binding and runtime pm.
2270 */
2271 pdd = kfd_bind_process_to_device(dev, p);
2272 if (IS_ERR(pdd)) {
2273 ret = PTR_ERR(pdd);
2274 goto exit;
2275 }
2276
2277 if (!pdd->qpd.proc_doorbells) {
2278 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2279 if (ret)
2280 goto exit;
2281 }
2282 }
2283
2284 /*
2285 * We are not copying device private data from user as we are not using the data for now,
2286 * but we still adjust for its private data.
2287 */
2288 *priv_offset += args->num_devices * sizeof(*device_privs);
2289
2290 exit:
2291 kfree(device_buckets);
2292 return ret;
2293 }
2294
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2295 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2296 struct kfd_criu_bo_bucket *bo_bucket,
2297 struct kfd_criu_bo_priv_data *bo_priv,
2298 struct kgd_mem **kgd_mem)
2299 {
2300 int idr_handle;
2301 int ret;
2302 const bool criu_resume = true;
2303 u64 offset;
2304
2305 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2306 if (bo_bucket->size !=
2307 kfd_doorbell_process_slice(pdd->dev->kfd))
2308 return -EINVAL;
2309
2310 offset = kfd_get_process_doorbells(pdd);
2311 if (!offset)
2312 return -ENOMEM;
2313 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2314 /* MMIO BOs need remapped bus address */
2315 if (bo_bucket->size != PAGE_SIZE) {
2316 pr_err("Invalid page size\n");
2317 return -EINVAL;
2318 }
2319 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2320 if (!offset || (PAGE_SIZE > 4096)) {
2321 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2322 return -ENOMEM;
2323 }
2324 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2325 offset = bo_priv->user_addr;
2326 }
2327 /* Create the BO */
2328 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2329 bo_bucket->size, pdd->drm_priv, kgd_mem,
2330 &offset, bo_bucket->alloc_flags, criu_resume);
2331 if (ret) {
2332 pr_err("Could not create the BO\n");
2333 return ret;
2334 }
2335 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2336 bo_bucket->size, bo_bucket->addr, offset);
2337
2338 /* Restore previous IDR handle */
2339 pr_debug("Restoring old IDR handle for the BO");
2340 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2341 bo_priv->idr_handle + 1, GFP_KERNEL);
2342
2343 if (idr_handle < 0) {
2344 pr_err("Could not allocate idr\n");
2345 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2346 NULL);
2347 return -ENOMEM;
2348 }
2349
2350 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2351 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2352 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2353 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2354 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2355 bo_bucket->restored_offset = offset;
2356 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2357 bo_bucket->restored_offset = offset;
2358 /* Update the VRAM usage count */
2359 atomic64_add(bo_bucket->size, &pdd->vram_usage);
2360 }
2361 return 0;
2362 }
2363
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct file ** file)2364 static int criu_restore_bo(struct kfd_process *p,
2365 struct kfd_criu_bo_bucket *bo_bucket,
2366 struct kfd_criu_bo_priv_data *bo_priv,
2367 struct file **file)
2368 {
2369 struct kfd_process_device *pdd;
2370 struct kgd_mem *kgd_mem;
2371 int ret;
2372 int j;
2373
2374 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2375 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2376 bo_priv->idr_handle);
2377
2378 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2379 if (!pdd) {
2380 pr_err("Failed to get pdd\n");
2381 return -ENODEV;
2382 }
2383
2384 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2385 if (ret)
2386 return ret;
2387
2388 /* now map these BOs to GPU/s */
2389 for (j = 0; j < p->n_pdds; j++) {
2390 struct kfd_node *peer;
2391 struct kfd_process_device *peer_pdd;
2392
2393 if (!bo_priv->mapped_gpuids[j])
2394 break;
2395
2396 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2397 if (!peer_pdd)
2398 return -EINVAL;
2399
2400 peer = peer_pdd->dev;
2401
2402 peer_pdd = kfd_bind_process_to_device(peer, p);
2403 if (IS_ERR(peer_pdd))
2404 return PTR_ERR(peer_pdd);
2405
2406 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2407 peer_pdd->drm_priv);
2408 if (ret) {
2409 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2410 return ret;
2411 }
2412 }
2413
2414 pr_debug("map memory was successful for the BO\n");
2415 /* create the dmabuf object and export the bo */
2416 if (bo_bucket->alloc_flags
2417 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2418 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2419 &bo_bucket->dmabuf_fd, file);
2420 if (ret)
2421 return ret;
2422 } else {
2423 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2424 }
2425
2426 return 0;
2427 }
2428
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2429 static int criu_restore_bos(struct kfd_process *p,
2430 struct kfd_ioctl_criu_args *args,
2431 uint64_t *priv_offset,
2432 uint64_t max_priv_data_size)
2433 {
2434 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2435 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2436 struct file **files = NULL;
2437 int ret = 0;
2438 uint32_t i = 0;
2439
2440 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2441 return -EINVAL;
2442
2443 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2444 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2445
2446 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2447 if (!bo_buckets)
2448 return -ENOMEM;
2449
2450 files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2451 if (!files) {
2452 ret = -ENOMEM;
2453 goto exit;
2454 }
2455
2456 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2457 args->num_bos * sizeof(*bo_buckets));
2458 if (ret) {
2459 pr_err("Failed to copy BOs information from user\n");
2460 ret = -EFAULT;
2461 goto exit;
2462 }
2463
2464 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2465 if (!bo_privs) {
2466 ret = -ENOMEM;
2467 goto exit;
2468 }
2469
2470 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2471 args->num_bos * sizeof(*bo_privs));
2472 if (ret) {
2473 pr_err("Failed to copy BOs information from user\n");
2474 ret = -EFAULT;
2475 goto exit;
2476 }
2477 *priv_offset += args->num_bos * sizeof(*bo_privs);
2478
2479 /* Create and map new BOs */
2480 for (; i < args->num_bos; i++) {
2481 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2482 if (ret) {
2483 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2484 goto exit;
2485 }
2486 } /* done */
2487
2488 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2489 ret = copy_to_user((void __user *)args->bos,
2490 bo_buckets,
2491 (args->num_bos * sizeof(*bo_buckets)));
2492 if (ret)
2493 ret = -EFAULT;
2494
2495 exit:
2496 commit_files(files, bo_buckets, i, ret);
2497 kvfree(files);
2498 kvfree(bo_buckets);
2499 kvfree(bo_privs);
2500 return ret;
2501 }
2502
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2503 static int criu_restore_objects(struct file *filep,
2504 struct kfd_process *p,
2505 struct kfd_ioctl_criu_args *args,
2506 uint64_t *priv_offset,
2507 uint64_t max_priv_data_size)
2508 {
2509 int ret = 0;
2510 uint32_t i;
2511
2512 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2513 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2514 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2515
2516 for (i = 0; i < args->num_objects; i++) {
2517 uint32_t object_type;
2518
2519 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2520 pr_err("Invalid private data size\n");
2521 return -EINVAL;
2522 }
2523
2524 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2525 if (ret) {
2526 pr_err("Failed to copy private information from user\n");
2527 goto exit;
2528 }
2529
2530 switch (object_type) {
2531 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2532 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2533 priv_offset, max_priv_data_size);
2534 if (ret)
2535 goto exit;
2536 break;
2537 case KFD_CRIU_OBJECT_TYPE_EVENT:
2538 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2539 priv_offset, max_priv_data_size);
2540 if (ret)
2541 goto exit;
2542 break;
2543 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2544 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2545 priv_offset, max_priv_data_size);
2546 if (ret)
2547 goto exit;
2548 break;
2549 default:
2550 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2551 ret = -EINVAL;
2552 goto exit;
2553 }
2554 }
2555 exit:
2556 return ret;
2557 }
2558
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2559 static int criu_restore(struct file *filep,
2560 struct kfd_process *p,
2561 struct kfd_ioctl_criu_args *args)
2562 {
2563 uint64_t priv_offset = 0;
2564 int ret = 0;
2565
2566 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2567 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2568
2569 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2570 !args->num_devices || !args->num_bos)
2571 return -EINVAL;
2572
2573 mutex_lock(&p->mutex);
2574
2575 /*
2576 * Set the process to evicted state to avoid running any new queues before all the memory
2577 * mappings are ready.
2578 */
2579 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2580 if (ret)
2581 goto exit_unlock;
2582
2583 /* Each function will adjust priv_offset based on how many bytes they consumed */
2584 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2585 if (ret)
2586 goto exit_unlock;
2587
2588 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2589 if (ret)
2590 goto exit_unlock;
2591
2592 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2593 if (ret)
2594 goto exit_unlock;
2595
2596 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2597 if (ret)
2598 goto exit_unlock;
2599
2600 if (priv_offset != args->priv_data_size) {
2601 pr_err("Invalid private data size\n");
2602 ret = -EINVAL;
2603 }
2604
2605 exit_unlock:
2606 mutex_unlock(&p->mutex);
2607 if (ret)
2608 pr_err("Failed to restore CRIU ret:%d\n", ret);
2609 else
2610 pr_debug("CRIU restore successful\n");
2611
2612 return ret;
2613 }
2614
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2615 static int criu_unpause(struct file *filep,
2616 struct kfd_process *p,
2617 struct kfd_ioctl_criu_args *args)
2618 {
2619 int ret;
2620
2621 mutex_lock(&p->mutex);
2622
2623 if (!p->queues_paused) {
2624 mutex_unlock(&p->mutex);
2625 return -EINVAL;
2626 }
2627
2628 ret = kfd_process_restore_queues(p);
2629 if (ret)
2630 pr_err("Failed to unpause queues ret:%d\n", ret);
2631 else
2632 p->queues_paused = false;
2633
2634 mutex_unlock(&p->mutex);
2635
2636 return ret;
2637 }
2638
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2639 static int criu_resume(struct file *filep,
2640 struct kfd_process *p,
2641 struct kfd_ioctl_criu_args *args)
2642 {
2643 struct kfd_process *target = NULL;
2644 struct pid *pid = NULL;
2645 int ret = 0;
2646
2647 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2648 args->pid);
2649
2650 pid = find_get_pid(args->pid);
2651 if (!pid) {
2652 pr_err("Cannot find pid info for %i\n", args->pid);
2653 return -ESRCH;
2654 }
2655
2656 pr_debug("calling kfd_lookup_process_by_pid\n");
2657 target = kfd_lookup_process_by_pid(pid);
2658
2659 put_pid(pid);
2660
2661 if (!target) {
2662 pr_debug("Cannot find process info for %i\n", args->pid);
2663 return -ESRCH;
2664 }
2665
2666 mutex_lock(&target->mutex);
2667 ret = kfd_criu_resume_svm(target);
2668 if (ret) {
2669 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2670 goto exit;
2671 }
2672
2673 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2674 if (ret)
2675 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2676
2677 exit:
2678 mutex_unlock(&target->mutex);
2679
2680 kfd_unref_process(target);
2681 return ret;
2682 }
2683
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2684 static int criu_process_info(struct file *filep,
2685 struct kfd_process *p,
2686 struct kfd_ioctl_criu_args *args)
2687 {
2688 int ret = 0;
2689
2690 mutex_lock(&p->mutex);
2691
2692 if (!p->n_pdds) {
2693 pr_err("No pdd for given process\n");
2694 ret = -ENODEV;
2695 goto err_unlock;
2696 }
2697
2698 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2699 if (ret)
2700 goto err_unlock;
2701
2702 p->queues_paused = true;
2703
2704 args->pid = task_pid_nr_ns(p->lead_thread,
2705 task_active_pid_ns(p->lead_thread));
2706
2707 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2708 &args->num_objects, &args->priv_data_size);
2709 if (ret)
2710 goto err_unlock;
2711
2712 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2713 args->num_devices, args->num_bos, args->num_objects,
2714 args->priv_data_size);
2715
2716 err_unlock:
2717 if (ret) {
2718 kfd_process_restore_queues(p);
2719 p->queues_paused = false;
2720 }
2721 mutex_unlock(&p->mutex);
2722 return ret;
2723 }
2724
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2725 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2726 {
2727 struct kfd_ioctl_criu_args *args = data;
2728 int ret;
2729
2730 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2731 switch (args->op) {
2732 case KFD_CRIU_OP_PROCESS_INFO:
2733 ret = criu_process_info(filep, p, args);
2734 break;
2735 case KFD_CRIU_OP_CHECKPOINT:
2736 ret = criu_checkpoint(filep, p, args);
2737 break;
2738 case KFD_CRIU_OP_UNPAUSE:
2739 ret = criu_unpause(filep, p, args);
2740 break;
2741 case KFD_CRIU_OP_RESTORE:
2742 ret = criu_restore(filep, p, args);
2743 break;
2744 case KFD_CRIU_OP_RESUME:
2745 ret = criu_resume(filep, p, args);
2746 break;
2747 default:
2748 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2749 ret = -EINVAL;
2750 break;
2751 }
2752
2753 if (ret)
2754 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2755
2756 return ret;
2757 }
2758
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2759 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2760 bool enable_ttmp_setup)
2761 {
2762 int i = 0, ret = 0;
2763
2764 if (p->is_runtime_retry)
2765 goto retry;
2766
2767 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2768 return -EBUSY;
2769
2770 for (i = 0; i < p->n_pdds; i++) {
2771 struct kfd_process_device *pdd = p->pdds[i];
2772
2773 if (pdd->qpd.queue_count)
2774 return -EEXIST;
2775
2776 /*
2777 * Setup TTMPs by default.
2778 * Note that this call must remain here for MES ADD QUEUE to
2779 * skip_process_ctx_clear unconditionally as the first call to
2780 * SET_SHADER_DEBUGGER clears any stale process context data
2781 * saved in MES.
2782 */
2783 if (pdd->dev->kfd->shared_resources.enable_mes)
2784 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2785 }
2786
2787 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2788 p->runtime_info.r_debug = r_debug;
2789 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2790
2791 if (p->runtime_info.ttmp_setup) {
2792 for (i = 0; i < p->n_pdds; i++) {
2793 struct kfd_process_device *pdd = p->pdds[i];
2794
2795 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2796 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2797 pdd->dev->kfd2kgd->enable_debug_trap(
2798 pdd->dev->adev,
2799 true,
2800 pdd->dev->vm_info.last_vmid_kfd);
2801 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2802 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2803 pdd->dev->adev,
2804 false,
2805 0);
2806 }
2807 }
2808 }
2809
2810 retry:
2811 if (p->debug_trap_enabled) {
2812 if (!p->is_runtime_retry) {
2813 kfd_dbg_trap_activate(p);
2814 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2815 p, NULL, 0, false, NULL, 0);
2816 }
2817
2818 mutex_unlock(&p->mutex);
2819 ret = down_interruptible(&p->runtime_enable_sema);
2820 mutex_lock(&p->mutex);
2821
2822 p->is_runtime_retry = !!ret;
2823 }
2824
2825 return ret;
2826 }
2827
runtime_disable(struct kfd_process * p)2828 static int runtime_disable(struct kfd_process *p)
2829 {
2830 int i = 0, ret;
2831 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2832
2833 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2834 p->runtime_info.r_debug = 0;
2835
2836 if (p->debug_trap_enabled) {
2837 if (was_enabled)
2838 kfd_dbg_trap_deactivate(p, false, 0);
2839
2840 if (!p->is_runtime_retry)
2841 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2842 p, NULL, 0, false, NULL, 0);
2843
2844 mutex_unlock(&p->mutex);
2845 ret = down_interruptible(&p->runtime_enable_sema);
2846 mutex_lock(&p->mutex);
2847
2848 p->is_runtime_retry = !!ret;
2849 if (ret)
2850 return ret;
2851 }
2852
2853 if (was_enabled && p->runtime_info.ttmp_setup) {
2854 for (i = 0; i < p->n_pdds; i++) {
2855 struct kfd_process_device *pdd = p->pdds[i];
2856
2857 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2858 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2859 }
2860 }
2861
2862 p->runtime_info.ttmp_setup = false;
2863
2864 /* disable ttmp setup */
2865 for (i = 0; i < p->n_pdds; i++) {
2866 struct kfd_process_device *pdd = p->pdds[i];
2867
2868 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2869 pdd->spi_dbg_override =
2870 pdd->dev->kfd2kgd->disable_debug_trap(
2871 pdd->dev->adev,
2872 false,
2873 pdd->dev->vm_info.last_vmid_kfd);
2874
2875 if (!pdd->dev->kfd->shared_resources.enable_mes)
2876 debug_refresh_runlist(pdd->dev->dqm);
2877 else
2878 kfd_dbg_set_mes_debug_mode(pdd,
2879 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2880 }
2881 }
2882
2883 return 0;
2884 }
2885
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2886 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2887 {
2888 struct kfd_ioctl_runtime_enable_args *args = data;
2889 int r;
2890
2891 mutex_lock(&p->mutex);
2892
2893 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2894 r = runtime_enable(p, args->r_debug,
2895 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2896 else
2897 r = runtime_disable(p);
2898
2899 mutex_unlock(&p->mutex);
2900
2901 return r;
2902 }
2903
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2904 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2905 {
2906 struct kfd_ioctl_dbg_trap_args *args = data;
2907 struct task_struct *thread = NULL;
2908 struct mm_struct *mm = NULL;
2909 struct pid *pid = NULL;
2910 struct kfd_process *target = NULL;
2911 struct kfd_process_device *pdd = NULL;
2912 int r = 0;
2913
2914 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2915 pr_err("Debugging does not support sched_policy %i", sched_policy);
2916 return -EINVAL;
2917 }
2918
2919 pid = find_get_pid(args->pid);
2920 if (!pid) {
2921 pr_debug("Cannot find pid info for %i\n", args->pid);
2922 r = -ESRCH;
2923 goto out;
2924 }
2925
2926 thread = get_pid_task(pid, PIDTYPE_PID);
2927 if (!thread) {
2928 r = -ESRCH;
2929 goto out;
2930 }
2931
2932 mm = get_task_mm(thread);
2933 if (!mm) {
2934 r = -ESRCH;
2935 goto out;
2936 }
2937
2938 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2939 bool create_process;
2940
2941 rcu_read_lock();
2942 create_process = thread && thread != current && ptrace_parent(thread) == current;
2943 rcu_read_unlock();
2944
2945 target = create_process ? kfd_create_process(thread) :
2946 kfd_lookup_process_by_pid(pid);
2947 } else {
2948 target = kfd_lookup_process_by_pid(pid);
2949 }
2950
2951 if (IS_ERR_OR_NULL(target)) {
2952 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2953 r = target ? PTR_ERR(target) : -ESRCH;
2954 target = NULL;
2955 goto out;
2956 }
2957
2958 /* Check if target is still PTRACED. */
2959 rcu_read_lock();
2960 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2961 && ptrace_parent(target->lead_thread) != current) {
2962 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2963 r = -EPERM;
2964 }
2965 rcu_read_unlock();
2966
2967 if (r)
2968 goto out;
2969
2970 mutex_lock(&target->mutex);
2971
2972 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2973 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2974 r = -EINVAL;
2975 goto unlock_out;
2976 }
2977
2978 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2979 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2980 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2981 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2982 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2983 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2984 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2985 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2986 r = -EPERM;
2987 goto unlock_out;
2988 }
2989
2990 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2991 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2992 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2993 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2994 args->set_node_address_watch.gpu_id :
2995 args->clear_node_address_watch.gpu_id);
2996
2997 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2998 if (user_gpu_id == -EINVAL || !pdd) {
2999 r = -ENODEV;
3000 goto unlock_out;
3001 }
3002 }
3003
3004 switch (args->op) {
3005 case KFD_IOC_DBG_TRAP_ENABLE:
3006 if (target != p)
3007 target->debugger_process = p;
3008
3009 r = kfd_dbg_trap_enable(target,
3010 args->enable.dbg_fd,
3011 (void __user *)args->enable.rinfo_ptr,
3012 &args->enable.rinfo_size);
3013 if (!r)
3014 target->exception_enable_mask = args->enable.exception_mask;
3015
3016 break;
3017 case KFD_IOC_DBG_TRAP_DISABLE:
3018 r = kfd_dbg_trap_disable(target);
3019 break;
3020 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3021 r = kfd_dbg_send_exception_to_runtime(target,
3022 args->send_runtime_event.gpu_id,
3023 args->send_runtime_event.queue_id,
3024 args->send_runtime_event.exception_mask);
3025 break;
3026 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3027 kfd_dbg_set_enabled_debug_exception_mask(target,
3028 args->set_exceptions_enabled.exception_mask);
3029 break;
3030 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3031 r = kfd_dbg_trap_set_wave_launch_override(target,
3032 args->launch_override.override_mode,
3033 args->launch_override.enable_mask,
3034 args->launch_override.support_request_mask,
3035 &args->launch_override.enable_mask,
3036 &args->launch_override.support_request_mask);
3037 break;
3038 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3039 r = kfd_dbg_trap_set_wave_launch_mode(target,
3040 args->launch_mode.launch_mode);
3041 break;
3042 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3043 r = suspend_queues(target,
3044 args->suspend_queues.num_queues,
3045 args->suspend_queues.grace_period,
3046 args->suspend_queues.exception_mask,
3047 (uint32_t *)args->suspend_queues.queue_array_ptr);
3048
3049 break;
3050 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3051 r = resume_queues(target, args->resume_queues.num_queues,
3052 (uint32_t *)args->resume_queues.queue_array_ptr);
3053 break;
3054 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3055 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3056 args->set_node_address_watch.address,
3057 args->set_node_address_watch.mask,
3058 &args->set_node_address_watch.id,
3059 args->set_node_address_watch.mode);
3060 break;
3061 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3062 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3063 args->clear_node_address_watch.id);
3064 break;
3065 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3066 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3067 break;
3068 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3069 r = kfd_dbg_ev_query_debug_event(target,
3070 &args->query_debug_event.queue_id,
3071 &args->query_debug_event.gpu_id,
3072 args->query_debug_event.exception_mask,
3073 &args->query_debug_event.exception_mask);
3074 break;
3075 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3076 r = kfd_dbg_trap_query_exception_info(target,
3077 args->query_exception_info.source_id,
3078 args->query_exception_info.exception_code,
3079 args->query_exception_info.clear_exception,
3080 (void __user *)args->query_exception_info.info_ptr,
3081 &args->query_exception_info.info_size);
3082 break;
3083 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3084 r = pqm_get_queue_snapshot(&target->pqm,
3085 args->queue_snapshot.exception_mask,
3086 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3087 &args->queue_snapshot.num_queues,
3088 &args->queue_snapshot.entry_size);
3089 break;
3090 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3091 r = kfd_dbg_trap_device_snapshot(target,
3092 args->device_snapshot.exception_mask,
3093 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3094 &args->device_snapshot.num_devices,
3095 &args->device_snapshot.entry_size);
3096 break;
3097 default:
3098 pr_err("Invalid option: %i\n", args->op);
3099 r = -EINVAL;
3100 }
3101
3102 unlock_out:
3103 mutex_unlock(&target->mutex);
3104
3105 out:
3106 if (thread)
3107 put_task_struct(thread);
3108
3109 if (mm)
3110 mmput(mm);
3111
3112 if (pid)
3113 put_pid(pid);
3114
3115 if (target)
3116 kfd_unref_process(target);
3117
3118 return r;
3119 }
3120
3121 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3122 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3123 .cmd_drv = 0, .name = #ioctl}
3124
3125 /** Ioctl table */
3126 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3128 kfd_ioctl_get_version, 0),
3129
3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3131 kfd_ioctl_create_queue, 0),
3132
3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3134 kfd_ioctl_destroy_queue, 0),
3135
3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3137 kfd_ioctl_set_memory_policy, 0),
3138
3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3140 kfd_ioctl_get_clock_counters, 0),
3141
3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3143 kfd_ioctl_get_process_apertures, 0),
3144
3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3146 kfd_ioctl_update_queue, 0),
3147
3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3149 kfd_ioctl_create_event, 0),
3150
3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3152 kfd_ioctl_destroy_event, 0),
3153
3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3155 kfd_ioctl_set_event, 0),
3156
3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3158 kfd_ioctl_reset_event, 0),
3159
3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3161 kfd_ioctl_wait_events, 0),
3162
3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3164 kfd_ioctl_dbg_register, 0),
3165
3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3167 kfd_ioctl_dbg_unregister, 0),
3168
3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3170 kfd_ioctl_dbg_address_watch, 0),
3171
3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3173 kfd_ioctl_dbg_wave_control, 0),
3174
3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3176 kfd_ioctl_set_scratch_backing_va, 0),
3177
3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3179 kfd_ioctl_get_tile_config, 0),
3180
3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3182 kfd_ioctl_set_trap_handler, 0),
3183
3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3185 kfd_ioctl_get_process_apertures_new, 0),
3186
3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3188 kfd_ioctl_acquire_vm, 0),
3189
3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3191 kfd_ioctl_alloc_memory_of_gpu, 0),
3192
3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3194 kfd_ioctl_free_memory_of_gpu, 0),
3195
3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3197 kfd_ioctl_map_memory_to_gpu, 0),
3198
3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3200 kfd_ioctl_unmap_memory_from_gpu, 0),
3201
3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3203 kfd_ioctl_set_cu_mask, 0),
3204
3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3206 kfd_ioctl_get_queue_wave_state, 0),
3207
3208 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3209 kfd_ioctl_get_dmabuf_info, 0),
3210
3211 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3212 kfd_ioctl_import_dmabuf, 0),
3213
3214 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3215 kfd_ioctl_alloc_queue_gws, 0),
3216
3217 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3218 kfd_ioctl_smi_events, 0),
3219
3220 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3221
3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3223 kfd_ioctl_set_xnack_mode, 0),
3224
3225 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3226 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3227
3228 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3229 kfd_ioctl_get_available_memory, 0),
3230
3231 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3232 kfd_ioctl_export_dmabuf, 0),
3233
3234 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3235 kfd_ioctl_runtime_enable, 0),
3236
3237 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3238 kfd_ioctl_set_debug_trap, 0),
3239 };
3240
3241 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3242
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3243 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3244 {
3245 struct kfd_process *process;
3246 amdkfd_ioctl_t *func;
3247 const struct amdkfd_ioctl_desc *ioctl = NULL;
3248 unsigned int nr = _IOC_NR(cmd);
3249 char stack_kdata[128];
3250 char *kdata = NULL;
3251 unsigned int usize, asize;
3252 int retcode = -EINVAL;
3253 bool ptrace_attached = false;
3254
3255 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3256 goto err_i1;
3257
3258 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3259 u32 amdkfd_size;
3260
3261 ioctl = &amdkfd_ioctls[nr];
3262
3263 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3264 usize = asize = _IOC_SIZE(cmd);
3265 if (amdkfd_size > asize)
3266 asize = amdkfd_size;
3267
3268 cmd = ioctl->cmd;
3269 } else
3270 goto err_i1;
3271
3272 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3273
3274 /* Get the process struct from the filep. Only the process
3275 * that opened /dev/kfd can use the file descriptor. Child
3276 * processes need to create their own KFD device context.
3277 */
3278 process = filep->private_data;
3279
3280 rcu_read_lock();
3281 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3282 ptrace_parent(process->lead_thread) == current)
3283 ptrace_attached = true;
3284 rcu_read_unlock();
3285
3286 if (process->lead_thread != current->group_leader
3287 && !ptrace_attached) {
3288 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3289 retcode = -EBADF;
3290 goto err_i1;
3291 }
3292
3293 /* Do not trust userspace, use our own definition */
3294 func = ioctl->func;
3295
3296 if (unlikely(!func)) {
3297 dev_dbg(kfd_device, "no function\n");
3298 retcode = -EINVAL;
3299 goto err_i1;
3300 }
3301
3302 /*
3303 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3304 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3305 * more priviledged access.
3306 */
3307 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3308 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3309 !capable(CAP_SYS_ADMIN)) {
3310 retcode = -EACCES;
3311 goto err_i1;
3312 }
3313 }
3314
3315 if (cmd & (IOC_IN | IOC_OUT)) {
3316 if (asize <= sizeof(stack_kdata)) {
3317 kdata = stack_kdata;
3318 } else {
3319 kdata = kmalloc(asize, GFP_KERNEL);
3320 if (!kdata) {
3321 retcode = -ENOMEM;
3322 goto err_i1;
3323 }
3324 }
3325 if (asize > usize)
3326 memset(kdata + usize, 0, asize - usize);
3327 }
3328
3329 if (cmd & IOC_IN) {
3330 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3331 retcode = -EFAULT;
3332 goto err_i1;
3333 }
3334 } else if (cmd & IOC_OUT) {
3335 memset(kdata, 0, usize);
3336 }
3337
3338 retcode = func(filep, process, kdata);
3339
3340 if (cmd & IOC_OUT)
3341 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3342 retcode = -EFAULT;
3343
3344 err_i1:
3345 if (!ioctl)
3346 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3347 task_pid_nr(current), cmd, nr);
3348
3349 if (kdata != stack_kdata)
3350 kfree(kdata);
3351
3352 if (retcode)
3353 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3354 nr, arg, retcode);
3355
3356 return retcode;
3357 }
3358
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3359 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3360 struct vm_area_struct *vma)
3361 {
3362 phys_addr_t address;
3363
3364 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3365 return -EINVAL;
3366
3367 if (PAGE_SIZE > 4096)
3368 return -EINVAL;
3369
3370 address = dev->adev->rmmio_remap.bus_addr;
3371
3372 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3373 VM_DONTDUMP | VM_PFNMAP);
3374
3375 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3376
3377 pr_debug("process pid %d mapping mmio page\n"
3378 " target user address == 0x%08llX\n"
3379 " physical address == 0x%08llX\n"
3380 " vm_flags == 0x%04lX\n"
3381 " size == 0x%04lX\n",
3382 process->lead_thread->pid, (unsigned long long) vma->vm_start,
3383 address, vma->vm_flags, PAGE_SIZE);
3384
3385 return io_remap_pfn_range(vma,
3386 vma->vm_start,
3387 address >> PAGE_SHIFT,
3388 PAGE_SIZE,
3389 vma->vm_page_prot);
3390 }
3391
3392
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3393 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3394 {
3395 struct kfd_process *process;
3396 struct kfd_node *dev = NULL;
3397 unsigned long mmap_offset;
3398 unsigned int gpu_id;
3399
3400 process = kfd_get_process(current);
3401 if (IS_ERR(process))
3402 return PTR_ERR(process);
3403
3404 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3405 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3406 if (gpu_id)
3407 dev = kfd_device_by_id(gpu_id);
3408
3409 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3410 case KFD_MMAP_TYPE_DOORBELL:
3411 if (!dev)
3412 return -ENODEV;
3413 return kfd_doorbell_mmap(dev, process, vma);
3414
3415 case KFD_MMAP_TYPE_EVENTS:
3416 return kfd_event_mmap(process, vma);
3417
3418 case KFD_MMAP_TYPE_RESERVED_MEM:
3419 if (!dev)
3420 return -ENODEV;
3421 return kfd_reserved_mem_mmap(dev, process, vma);
3422 case KFD_MMAP_TYPE_MMIO:
3423 if (!dev)
3424 return -ENODEV;
3425 return kfd_mmio_mmap(dev, process, vma);
3426 }
3427
3428 return -EFAULT;
3429 }
3430