xref: /illumos-gate/usr/src/grub/grub-0.97/stage2/fsys_zfs.c (revision 1a065e93eee983124652c3eb0cfdcb4776cd89ab)
1 /*
2  *  GRUB  --  GRand Unified Bootloader
3  *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
4  *  Copyright 2021 RackTop Systems, Inc.
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  */
31 
32 /*
33  * The zfs plug-in routines for GRUB are:
34  *
35  * zfs_mount() - locates a valid uberblock of the root pool and reads
36  *		in its MOS at the memory address MOS.
37  *
38  * zfs_open() - locates a plain file object by following the MOS
39  *		and places its dnode at the memory address DNODE.
40  *
41  * zfs_read() - read in the data blocks pointed by the DNODE.
42  *
43  * ZFS_SCRATCH is used as a working area.
44  *
45  * (memory addr)   MOS      DNODE	ZFS_SCRATCH
46  *		    |         |          |
47  *	    +-------V---------V----------V---------------+
48  *   memory |       | dnode   | dnode    |  scratch      |
49  *	    |       | 512B    | 512B     |  area         |
50  *	    +--------------------------------------------+
51  */
52 
53 #ifdef	FSYS_ZFS
54 
55 #include "shared.h"
56 #include "filesys.h"
57 #include "fsys_zfs.h"
58 
59 /* cache for a file block of the currently zfs_open()-ed file */
60 static void *file_buf = NULL;
61 static uint64_t file_start = 0;
62 static uint64_t file_end = 0;
63 
64 /* cache for a dnode block */
65 static dnode_phys_t *dnode_buf = NULL;
66 static dnode_phys_t *dnode_mdn = NULL;
67 static uint64_t dnode_start = 0;
68 static uint64_t dnode_end = 0;
69 
70 static uint64_t pool_guid = 0;
71 static uberblock_t current_uberblock;
72 static char *stackbase;
73 
74 decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] =
75 {
76 	{"inherit", 0},			/* ZIO_COMPRESS_INHERIT */
77 	{"on", lzjb_decompress}, 	/* ZIO_COMPRESS_ON */
78 	{"off", 0},			/* ZIO_COMPRESS_OFF */
79 	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
80 	{"empty", 0},			/* ZIO_COMPRESS_EMPTY */
81 	{"gzip-1", 0},			/* ZIO_COMPRESS_GZIP_1 */
82 	{"gzip-2", 0},			/* ZIO_COMPRESS_GZIP_2 */
83 	{"gzip-3", 0},			/* ZIO_COMPRESS_GZIP_3 */
84 	{"gzip-4", 0},			/* ZIO_COMPRESS_GZIP_4 */
85 	{"gzip-5", 0},			/* ZIO_COMPRESS_GZIP_5 */
86 	{"gzip-6", 0},			/* ZIO_COMPRESS_GZIP_6 */
87 	{"gzip-7", 0},			/* ZIO_COMPRESS_GZIP_7 */
88 	{"gzip-8", 0},			/* ZIO_COMPRESS_GZIP_8 */
89 	{"gzip-9", 0},			/* ZIO_COMPRESS_GZIP_9 */
90 	{"zle", 0},			/* ZIO_COMPRESS_ZLE */
91 	{"lz4", lz4_decompress}		/* ZIO_COMPRESS_LZ4 */
92 };
93 
94 static int zio_read_data(blkptr_t *bp, void *buf, char *stack);
95 
96 /*
97  * Our own version of bcmp().
98  */
99 static int
zfs_bcmp(const void * s1,const void * s2,size_t n)100 zfs_bcmp(const void *s1, const void *s2, size_t n)
101 {
102 	const uchar_t *ps1 = s1;
103 	const uchar_t *ps2 = s2;
104 
105 	if (s1 != s2 && n != 0) {
106 		do {
107 			if (*ps1++ != *ps2++)
108 				return (1);
109 		} while (--n != 0);
110 	}
111 
112 	return (0);
113 }
114 
115 /*
116  * Our own version of log2().  Same thing as highbit()-1.
117  */
118 static int
zfs_log2(uint64_t num)119 zfs_log2(uint64_t num)
120 {
121 	int i = 0;
122 
123 	while (num > 1) {
124 		i++;
125 		num = num >> 1;
126 	}
127 
128 	return (i);
129 }
130 
131 /* Checksum Functions */
132 static void
zio_checksum_off(const void * buf,uint64_t size,zio_cksum_t * zcp)133 zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
134 {
135 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
136 }
137 
138 /* Checksum Table and Values */
139 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
140 	{{NULL,			NULL},			0, 0,	"inherit"},
141 	{{NULL,			NULL},			0, 0,	"on"},
142 	{{zio_checksum_off,	zio_checksum_off},	0, 0,	"off"},
143 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1,	"label"},
144 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1,	"gang_header"},
145 	{{NULL,			NULL},			0, 0,	"zilog"},
146 	{{fletcher_2_native,	fletcher_2_byteswap},	0, 0,	"fletcher2"},
147 	{{fletcher_4_native,	fletcher_4_byteswap},	1, 0,	"fletcher4"},
148 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 0,	"SHA256"},
149 	{{NULL,			NULL},			0, 0,	"zilog2"},
150 	{{zio_checksum_off,	zio_checksum_off},	0, 0,	"noparity"},
151 	{{zio_checksum_SHA512,	NULL},			0, 0,	"SHA512"}
152 };
153 
154 /*
155  * zio_checksum_verify: Provides support for checksum verification.
156  *
157  * Fletcher2, Fletcher4, SHA-256 and SHA-512/256 are supported.
158  *
159  * Return:
160  * 	-1 = Failure
161  *	 0 = Success
162  */
163 static int
zio_checksum_verify(blkptr_t * bp,char * data,int size)164 zio_checksum_verify(blkptr_t *bp, char *data, int size)
165 {
166 	zio_cksum_t zc = bp->blk_cksum;
167 	uint32_t checksum = BP_GET_CHECKSUM(bp);
168 	int byteswap = BP_SHOULD_BYTESWAP(bp);
169 	zio_eck_t *zec = (zio_eck_t *)(data + size) - 1;
170 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
171 	zio_cksum_t actual_cksum, expected_cksum;
172 
173 	if (byteswap) {
174 		grub_printf("byteswap not supported\n");
175 		return (-1);
176 	}
177 
178 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) {
179 		grub_printf("checksum algorithm %u not supported\n", checksum);
180 		return (-1);
181 	}
182 
183 	if (ci->ci_eck) {
184 		expected_cksum = zec->zec_cksum;
185 		zec->zec_cksum = zc;
186 		ci->ci_func[0](data, size, &actual_cksum);
187 		zec->zec_cksum = expected_cksum;
188 		zc = expected_cksum;
189 	} else {
190 		ci->ci_func[byteswap](data, size, &actual_cksum);
191 	}
192 
193 	if ((actual_cksum.zc_word[0] - zc.zc_word[0]) |
194 	    (actual_cksum.zc_word[1] - zc.zc_word[1]) |
195 	    (actual_cksum.zc_word[2] - zc.zc_word[2]) |
196 	    (actual_cksum.zc_word[3] - zc.zc_word[3]))
197 		return (-1);
198 
199 	return (0);
200 }
201 
202 /*
203  * vdev_label_start returns the physical disk offset (in bytes) of
204  * label "l".
205  */
206 static uint64_t
vdev_label_start(uint64_t psize,int l)207 vdev_label_start(uint64_t psize, int l)
208 {
209 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
210 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
211 }
212 
213 /*
214  * vdev_uberblock_compare takes two uberblock structures and returns an integer
215  * indicating the more recent of the two.
216  * 	Return Value = 1 if ub2 is more recent
217  * 	Return Value = -1 if ub1 is more recent
218  * The most recent uberblock is determined using its transaction number and
219  * timestamp.  The uberblock with the highest transaction number is
220  * considered "newer".  If the transaction numbers of the two blocks match, the
221  * timestamps are compared to determine the "newer" of the two.
222  */
223 static int
vdev_uberblock_compare(uberblock_t * ub1,uberblock_t * ub2)224 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
225 {
226 	if (ub1->ub_txg < ub2->ub_txg)
227 		return (-1);
228 	if (ub1->ub_txg > ub2->ub_txg)
229 		return (1);
230 
231 	if (ub1->ub_timestamp < ub2->ub_timestamp)
232 		return (-1);
233 	if (ub1->ub_timestamp > ub2->ub_timestamp)
234 		return (1);
235 
236 	return (0);
237 }
238 
239 /*
240  * Three pieces of information are needed to verify an uberblock: the magic
241  * number, the version number, and the checksum.
242  *
243  * Return:
244  *     0 - Success
245  *    -1 - Failure
246  */
247 static int
uberblock_verify(uberblock_t * uber,uint64_t ub_size,uint64_t offset)248 uberblock_verify(uberblock_t *uber, uint64_t ub_size, uint64_t offset)
249 {
250 	blkptr_t bp;
251 
252 	BP_ZERO(&bp);
253 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
254 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
255 	ZIO_SET_CHECKSUM(&bp.blk_cksum, offset, 0, 0, 0);
256 
257 	if (zio_checksum_verify(&bp, (char *)uber, ub_size) != 0)
258 		return (-1);
259 
260 	if (uber->ub_magic == UBERBLOCK_MAGIC &&
261 	    SPA_VERSION_IS_SUPPORTED(uber->ub_version))
262 		return (0);
263 
264 	return (-1);
265 }
266 
267 /*
268  * Find the best uberblock.
269  * Return:
270  *    Success - Pointer to the best uberblock.
271  *    Failure - NULL
272  */
273 static uberblock_t *
find_bestub(char * ub_array,uint64_t ashift,uint64_t sector)274 find_bestub(char *ub_array, uint64_t ashift, uint64_t sector)
275 {
276 	uberblock_t *ubbest = NULL;
277 	uberblock_t *ubnext;
278 	uint64_t offset, ub_size;
279 	int i;
280 
281 	ub_size = VDEV_UBERBLOCK_SIZE(ashift);
282 
283 	for (i = 0; i < VDEV_UBERBLOCK_COUNT(ashift); i++) {
284 		ubnext = (uberblock_t *)ub_array;
285 		ub_array += ub_size;
286 		offset = (sector << SPA_MINBLOCKSHIFT) +
287 		    VDEV_UBERBLOCK_OFFSET(ashift, i);
288 
289 		if (uberblock_verify(ubnext, ub_size, offset) != 0)
290 			continue;
291 
292 		if (ubbest == NULL ||
293 		    vdev_uberblock_compare(ubnext, ubbest) > 0)
294 			ubbest = ubnext;
295 	}
296 
297 	return (ubbest);
298 }
299 
300 /*
301  * Read a block of data based on the gang block address dva,
302  * and put its data in buf.
303  *
304  * Return:
305  *	0 - success
306  *	1 - failure
307  */
308 static int
zio_read_gang(blkptr_t * bp,dva_t * dva,void * buf,char * stack)309 zio_read_gang(blkptr_t *bp, dva_t *dva, void *buf, char *stack)
310 {
311 	zio_gbh_phys_t *zio_gb;
312 	uint64_t offset, sector;
313 	blkptr_t tmpbp;
314 	int i;
315 
316 	zio_gb = (zio_gbh_phys_t *)stack;
317 	stack += SPA_GANGBLOCKSIZE;
318 	offset = DVA_GET_OFFSET(dva);
319 	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
320 
321 	/* read in the gang block header */
322 	if (devread(sector, 0, SPA_GANGBLOCKSIZE, (char *)zio_gb) == 0) {
323 		grub_printf("failed to read in a gang block header\n");
324 		return (1);
325 	}
326 
327 	/* self checksuming the gang block header */
328 	BP_ZERO(&tmpbp);
329 	BP_SET_CHECKSUM(&tmpbp, ZIO_CHECKSUM_GANG_HEADER);
330 	BP_SET_BYTEORDER(&tmpbp, ZFS_HOST_BYTEORDER);
331 	ZIO_SET_CHECKSUM(&tmpbp.blk_cksum, DVA_GET_VDEV(dva),
332 	    DVA_GET_OFFSET(dva), bp->blk_birth, 0);
333 	if (zio_checksum_verify(&tmpbp, (char *)zio_gb, SPA_GANGBLOCKSIZE)) {
334 		grub_printf("failed to checksum a gang block header\n");
335 		return (1);
336 	}
337 
338 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
339 		if (BP_IS_HOLE(&zio_gb->zg_blkptr[i]))
340 			continue;
341 
342 		if (zio_read_data(&zio_gb->zg_blkptr[i], buf, stack))
343 			return (1);
344 		buf += BP_GET_PSIZE(&zio_gb->zg_blkptr[i]);
345 	}
346 
347 	return (0);
348 }
349 
350 /*
351  * Read in a block of raw data to buf.
352  *
353  * Return:
354  *	0 - success
355  *	1 - failure
356  */
357 static int
zio_read_data(blkptr_t * bp,void * buf,char * stack)358 zio_read_data(blkptr_t *bp, void *buf, char *stack)
359 {
360 	int i, psize;
361 
362 	psize = BP_GET_PSIZE(bp);
363 
364 	/* pick a good dva from the block pointer */
365 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
366 		uint64_t offset, sector;
367 
368 		if (bp->blk_dva[i].dva_word[0] == 0 &&
369 		    bp->blk_dva[i].dva_word[1] == 0)
370 			continue;
371 
372 		if (DVA_GET_GANG(&bp->blk_dva[i])) {
373 			if (zio_read_gang(bp, &bp->blk_dva[i], buf, stack) != 0)
374 				continue;
375 		} else {
376 			/* read in a data block */
377 			offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
378 			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
379 			if (devread(sector, 0, psize, buf) == 0)
380 				continue;
381 		}
382 
383 		/* verify that the checksum matches */
384 		if (zio_checksum_verify(bp, buf, psize) == 0) {
385 			return (0);
386 		}
387 	}
388 
389 	grub_printf("could not read block due to EIO or ECKSUM\n");
390 	return (1);
391 }
392 
393 /*
394  * buf must be at least BPE_GET_PSIZE(bp) bytes long (which will never be
395  * more than BPE_PAYLOAD_SIZE bytes).
396  */
397 static void
decode_embedded_bp_compressed(const blkptr_t * bp,void * buf)398 decode_embedded_bp_compressed(const blkptr_t *bp, void *buf)
399 {
400 	int psize, i;
401 	uint8_t *buf8 = buf;
402 	uint64_t w = 0;
403 	const uint64_t *bp64 = (const uint64_t *)bp;
404 
405 	psize = BPE_GET_PSIZE(bp);
406 
407 	/*
408 	 * Decode the words of the block pointer into the byte array.
409 	 * Low bits of first word are the first byte (little endian).
410 	 */
411 	for (i = 0; i < psize; i++) {
412 		if (i % sizeof (w) == 0) {
413 			/* beginning of a word */
414 			w = *bp64;
415 			bp64++;
416 			if (!BPE_IS_PAYLOADWORD(bp, bp64))
417 				bp64++;
418 		}
419 		buf8[i] = BF64_GET(w, (i % sizeof (w)) * NBBY, NBBY);
420 	}
421 }
422 
423 /*
424  * Fill in the buffer with the (decompressed) payload of the embedded
425  * blkptr_t.  Takes into account compression and byteorder (the payload is
426  * treated as a stream of bytes).
427  * Return 0 on success, or ENOSPC if it won't fit in the buffer.
428  */
429 static int
decode_embedded_bp(const blkptr_t * bp,void * buf)430 decode_embedded_bp(const blkptr_t *bp, void *buf)
431 {
432 	int comp;
433 	int lsize, psize;
434 	uint8_t *dst = buf;
435 	uint64_t w = 0;
436 
437 	lsize = BPE_GET_LSIZE(bp);
438 	psize = BPE_GET_PSIZE(bp);
439 	comp = BP_GET_COMPRESS(bp);
440 
441 	if (comp != ZIO_COMPRESS_OFF) {
442 		uint8_t dstbuf[BPE_PAYLOAD_SIZE];
443 
444 		if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
445 		    decomp_table[comp].decomp_func == NULL) {
446 			grub_printf("compression algorithm not supported\n");
447 			return (ERR_FSYS_CORRUPT);
448 		}
449 
450 		decode_embedded_bp_compressed(bp, dstbuf);
451 		decomp_table[comp].decomp_func(dstbuf, buf, psize, lsize);
452 	} else {
453 		decode_embedded_bp_compressed(bp, buf);
454 	}
455 
456 	return (0);
457 }
458 
459 /*
460  * Read in a block of data, verify its checksum, decompress if needed,
461  * and put the uncompressed data in buf.
462  *
463  * Return:
464  *	0 - success
465  *	errnum - failure
466  */
467 static int
zio_read(blkptr_t * bp,void * buf,char * stack)468 zio_read(blkptr_t *bp, void *buf, char *stack)
469 {
470 	int lsize, psize, comp;
471 	char *retbuf;
472 
473 	if (BP_IS_EMBEDDED(bp)) {
474 		if (BPE_GET_ETYPE(bp) != BP_EMBEDDED_TYPE_DATA) {
475 			grub_printf("unsupported embedded BP (type=%u)\n",
476 			    (int)BPE_GET_ETYPE(bp));
477 			return (ERR_FSYS_CORRUPT);
478 		}
479 		return (decode_embedded_bp(bp, buf));
480 	}
481 
482 	comp = BP_GET_COMPRESS(bp);
483 	lsize = BP_GET_LSIZE(bp);
484 	psize = BP_GET_PSIZE(bp);
485 
486 	if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
487 	    (comp != ZIO_COMPRESS_OFF &&
488 	    decomp_table[comp].decomp_func == NULL)) {
489 		grub_printf("compression algorithm not supported\n");
490 		return (ERR_FSYS_CORRUPT);
491 	}
492 
493 	if ((char *)buf < stack && ((char *)buf) + lsize > stack) {
494 		grub_printf("not enough memory to fit %u bytes on stack\n",
495 		    lsize);
496 		return (ERR_WONT_FIT);
497 	}
498 
499 	retbuf = buf;
500 	if (comp != ZIO_COMPRESS_OFF) {
501 		buf = stack;
502 		stack += psize;
503 	}
504 
505 	if (zio_read_data(bp, buf, stack) != 0) {
506 		grub_printf("zio_read_data failed\n");
507 		return (ERR_FSYS_CORRUPT);
508 	}
509 
510 	if (comp != ZIO_COMPRESS_OFF) {
511 		if (decomp_table[comp].decomp_func(buf, retbuf, psize,
512 		    lsize) != 0) {
513 			grub_printf("zio_read decompression failed\n");
514 			return (ERR_FSYS_CORRUPT);
515 		}
516 	}
517 
518 	return (0);
519 }
520 
521 /*
522  * Get the block from a block id.
523  * push the block onto the stack.
524  *
525  * Return:
526  * 	0 - success
527  * 	errnum - failure
528  */
529 static int
dmu_read(dnode_phys_t * dn,uint64_t blkid,void * buf,char * stack)530 dmu_read(dnode_phys_t *dn, uint64_t blkid, void *buf, char *stack)
531 {
532 	int idx, level;
533 	blkptr_t *bp_array = dn->dn_blkptr;
534 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
535 	blkptr_t *bp, *tmpbuf;
536 
537 	bp = (blkptr_t *)stack;
538 	stack += sizeof (blkptr_t);
539 
540 	tmpbuf = (blkptr_t *)stack;
541 	stack += 1<<dn->dn_indblkshift;
542 
543 	for (level = dn->dn_nlevels - 1; level >= 0; level--) {
544 		idx = (blkid >> (epbs * level)) & ((1<<epbs)-1);
545 		*bp = bp_array[idx];
546 		if (level == 0)
547 			tmpbuf = buf;
548 		if (BP_IS_HOLE(bp)) {
549 			grub_memset(buf, 0,
550 			    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
551 			break;
552 		} else if (errnum = zio_read(bp, tmpbuf, stack)) {
553 			return (errnum);
554 		}
555 
556 		bp_array = tmpbuf;
557 	}
558 
559 	return (0);
560 }
561 
562 /*
563  * mzap_lookup: Looks up property described by "name" and returns the value
564  * in "value".
565  *
566  * Return:
567  *	0 - success
568  *	errnum - failure
569  */
570 static int
mzap_lookup(mzap_phys_t * zapobj,int objsize,const char * name,uint64_t * value)571 mzap_lookup(mzap_phys_t *zapobj, int objsize, const char *name,
572     uint64_t *value)
573 {
574 	int i, chunks;
575 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
576 
577 	chunks = objsize / MZAP_ENT_LEN - 1;
578 	for (i = 0; i < chunks; i++) {
579 		if (grub_strcmp(mzap_ent[i].mze_name, name) == 0) {
580 			*value = mzap_ent[i].mze_value;
581 			return (0);
582 		}
583 	}
584 
585 	return (ERR_FSYS_CORRUPT);
586 }
587 
588 static uint64_t
zap_hash(uint64_t salt,const char * name)589 zap_hash(uint64_t salt, const char *name)
590 {
591 	static uint64_t table[256];
592 	const uint8_t *cp;
593 	uint8_t c;
594 	uint64_t crc = salt;
595 
596 	if (table[128] == 0) {
597 		uint64_t *ct;
598 		int i, j;
599 		for (i = 0; i < 256; i++) {
600 			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
601 				*ct = (*ct >> 1) ^ (-(*ct & 1) &
602 				    ZFS_CRC64_POLY);
603 		}
604 	}
605 
606 	if (crc == 0 || table[128] != ZFS_CRC64_POLY) {
607 		errnum = ERR_FSYS_CORRUPT;
608 		return (0);
609 	}
610 
611 	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
612 		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
613 
614 	/*
615 	 * Only use 28 bits, since we need 4 bits in the cookie for the
616 	 * collision differentiator.  We MUST use the high bits, since
617 	 * those are the ones that we first pay attention to when
618 	 * choosing the bucket.
619 	 */
620 	crc &= ~((1ULL << (64 - 28)) - 1);
621 
622 	return (crc);
623 }
624 
625 /*
626  * Only to be used on 8-bit arrays.
627  * array_len is actual len in bytes (not encoded le_value_length).
628  * buf is null-terminated.
629  */
630 static int
zap_leaf_array_equal(zap_leaf_phys_t * l,int blksft,int chunk,int array_len,const char * buf)631 zap_leaf_array_equal(zap_leaf_phys_t *l, int blksft, int chunk,
632     int array_len, const char *buf)
633 {
634 	int bseen = 0;
635 
636 	while (bseen < array_len) {
637 		struct zap_leaf_array *la =
638 		    &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
639 		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
640 
641 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
642 			return (0);
643 
644 		if (zfs_bcmp(la->la_array, buf + bseen, toread) != 0)
645 			break;
646 		chunk = la->la_next;
647 		bseen += toread;
648 	}
649 	return (bseen == array_len);
650 }
651 
652 /*
653  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
654  * value for the property "name".
655  *
656  * Return:
657  *	0 - success
658  *	errnum - failure
659  */
660 static int
zap_leaf_lookup(zap_leaf_phys_t * l,int blksft,uint64_t h,const char * name,uint64_t * value)661 zap_leaf_lookup(zap_leaf_phys_t *l, int blksft, uint64_t h,
662     const char *name, uint64_t *value)
663 {
664 	uint16_t chunk;
665 	struct zap_leaf_entry *le;
666 
667 	/* Verify if this is a valid leaf block */
668 	if (l->l_hdr.lh_block_type != ZBT_LEAF)
669 		return (ERR_FSYS_CORRUPT);
670 	if (l->l_hdr.lh_magic != ZAP_LEAF_MAGIC)
671 		return (ERR_FSYS_CORRUPT);
672 
673 	for (chunk = l->l_hash[LEAF_HASH(blksft, h)];
674 	    chunk != CHAIN_END; chunk = le->le_next) {
675 
676 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
677 			return (ERR_FSYS_CORRUPT);
678 
679 		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
680 
681 		/* Verify the chunk entry */
682 		if (le->le_type != ZAP_CHUNK_ENTRY)
683 			return (ERR_FSYS_CORRUPT);
684 
685 		if (le->le_hash != h)
686 			continue;
687 
688 		if (zap_leaf_array_equal(l, blksft, le->le_name_chunk,
689 		    le->le_name_length, name)) {
690 
691 			struct zap_leaf_array *la;
692 			uint8_t *ip;
693 
694 			if (le->le_int_size != 8 || le->le_value_length != 1)
695 				return (ERR_FSYS_CORRUPT);
696 
697 			/* get the uint64_t property value */
698 			la = &ZAP_LEAF_CHUNK(l, blksft,
699 			    le->le_value_chunk).l_array;
700 			ip = la->la_array;
701 
702 			*value = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
703 			    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
704 			    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
705 			    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
706 
707 			return (0);
708 		}
709 	}
710 
711 	return (ERR_FSYS_CORRUPT);
712 }
713 
714 /*
715  * Fat ZAP lookup
716  *
717  * Return:
718  *	0 - success
719  *	errnum - failure
720  */
721 static int
fzap_lookup(dnode_phys_t * zap_dnode,zap_phys_t * zap,const char * name,uint64_t * value,char * stack)722 fzap_lookup(dnode_phys_t *zap_dnode, zap_phys_t *zap,
723     const char *name, uint64_t *value, char *stack)
724 {
725 	zap_leaf_phys_t *l;
726 	uint64_t hash, idx, blkid;
727 	int blksft = zfs_log2(zap_dnode->dn_datablkszsec << DNODE_SHIFT);
728 
729 	/* Verify if this is a fat zap header block */
730 	if (zap->zap_magic != (uint64_t)ZAP_MAGIC ||
731 	    zap->zap_flags != 0)
732 		return (ERR_FSYS_CORRUPT);
733 
734 	hash = zap_hash(zap->zap_salt, name);
735 	if (errnum)
736 		return (errnum);
737 
738 	/* get block id from index */
739 	if (zap->zap_ptrtbl.zt_numblks != 0) {
740 		/* external pointer tables not supported */
741 		return (ERR_FSYS_CORRUPT);
742 	}
743 	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
744 	blkid = ((uint64_t *)zap)[idx + (1<<(blksft-3-1))];
745 
746 	/* Get the leaf block */
747 	l = (zap_leaf_phys_t *)stack;
748 	stack += 1<<blksft;
749 	if ((1<<blksft) < sizeof (zap_leaf_phys_t))
750 		return (ERR_FSYS_CORRUPT);
751 	if (errnum = dmu_read(zap_dnode, blkid, l, stack))
752 		return (errnum);
753 
754 	return (zap_leaf_lookup(l, blksft, hash, name, value));
755 }
756 
757 /*
758  * Read in the data of a zap object and find the value for a matching
759  * property name.
760  *
761  * Return:
762  *	0 - success
763  *	errnum - failure
764  */
765 static int
zap_lookup(dnode_phys_t * zap_dnode,const char * name,uint64_t * val,char * stack)766 zap_lookup(dnode_phys_t *zap_dnode, const char *name, uint64_t *val,
767     char *stack)
768 {
769 	uint64_t block_type;
770 	int size;
771 	void *zapbuf;
772 
773 	/* Read in the first block of the zap object data. */
774 	zapbuf = stack;
775 	size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
776 	stack += size;
777 
778 	if ((errnum = dmu_read(zap_dnode, 0, zapbuf, stack)) != 0)
779 		return (errnum);
780 
781 	block_type = *((uint64_t *)zapbuf);
782 
783 	if (block_type == ZBT_MICRO) {
784 		return (mzap_lookup(zapbuf, size, name, val));
785 	} else if (block_type == ZBT_HEADER) {
786 		/* this is a fat zap */
787 		return (fzap_lookup(zap_dnode, zapbuf, name,
788 		    val, stack));
789 	}
790 
791 	return (ERR_FSYS_CORRUPT);
792 }
793 
794 typedef struct zap_attribute {
795 	int za_integer_length;
796 	uint64_t za_num_integers;
797 	uint64_t za_first_integer;
798 	char *za_name;
799 } zap_attribute_t;
800 
801 typedef int (zap_cb_t)(zap_attribute_t *za, void *arg, char *stack);
802 
803 static int
zap_iterate(dnode_phys_t * zap_dnode,zap_cb_t * cb,void * arg,char * stack)804 zap_iterate(dnode_phys_t *zap_dnode, zap_cb_t *cb, void *arg, char *stack)
805 {
806 	uint32_t size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
807 	zap_attribute_t za;
808 	int i;
809 	mzap_phys_t *mzp = (mzap_phys_t *)stack;
810 	stack += size;
811 
812 	if ((errnum = dmu_read(zap_dnode, 0, mzp, stack)) != 0)
813 		return (errnum);
814 
815 	/*
816 	 * Iteration over fatzap objects has not yet been implemented.
817 	 * If we encounter a pool in which there are more features for
818 	 * read than can fit inside a microzap (i.e., more than 2048
819 	 * features for read), we can add support for fatzap iteration.
820 	 * For now, fail.
821 	 */
822 	if (mzp->mz_block_type != ZBT_MICRO) {
823 		grub_printf("feature information stored in fatzap, pool "
824 		    "version not supported\n");
825 		return (1);
826 	}
827 
828 	za.za_integer_length = 8;
829 	za.za_num_integers = 1;
830 	for (i = 0; i < size / MZAP_ENT_LEN - 1; i++) {
831 		mzap_ent_phys_t *mzep = &mzp->mz_chunk[i];
832 		int err;
833 
834 		za.za_first_integer = mzep->mze_value;
835 		za.za_name = mzep->mze_name;
836 		err = cb(&za, arg, stack);
837 		if (err != 0)
838 			return (err);
839 	}
840 
841 	return (0);
842 }
843 
844 /*
845  * Get the dnode of an object number from the metadnode of an object set.
846  *
847  * Input
848  *	mdn - metadnode to get the object dnode
849  *	objnum - object number for the object dnode
850  *	type - if nonzero, object must be of this type
851  *	buf - data buffer that holds the returning dnode
852  *	stack - scratch area
853  *
854  * Return:
855  *	0 - success
856  *	errnum - failure
857  */
858 static int
dnode_get(dnode_phys_t * mdn,uint64_t objnum,uint8_t type,dnode_phys_t * buf,char * stack)859 dnode_get(dnode_phys_t *mdn, uint64_t objnum, uint8_t type, dnode_phys_t *buf,
860     char *stack)
861 {
862 	uint64_t blkid, blksz; /* the block id this object dnode is in */
863 	int epbs; /* shift of number of dnodes in a block */
864 	int idx; /* index within a block */
865 	dnode_phys_t *dnbuf;
866 
867 	blksz = mdn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
868 	epbs = zfs_log2(blksz) - DNODE_SHIFT;
869 	blkid = objnum >> epbs;
870 	idx = objnum & ((1<<epbs)-1);
871 
872 	if (dnode_buf != NULL && dnode_mdn == mdn &&
873 	    objnum >= dnode_start && objnum < dnode_end) {
874 		grub_memmove(buf, &dnode_buf[idx], DNODE_SIZE);
875 		VERIFY_DN_TYPE(buf, type);
876 		return (0);
877 	}
878 
879 	if (dnode_buf && blksz == 1<<DNODE_BLOCK_SHIFT) {
880 		dnbuf = dnode_buf;
881 		dnode_mdn = mdn;
882 		dnode_start = blkid << epbs;
883 		dnode_end = (blkid + 1) << epbs;
884 	} else {
885 		dnbuf = (dnode_phys_t *)stack;
886 		stack += blksz;
887 	}
888 
889 	if (errnum = dmu_read(mdn, blkid, (char *)dnbuf, stack))
890 		return (errnum);
891 
892 	grub_memmove(buf, &dnbuf[idx], DNODE_SIZE);
893 	VERIFY_DN_TYPE(buf, type);
894 
895 	return (0);
896 }
897 
898 /*
899  * Check if this is a special file that resides at the top
900  * dataset of the pool. Currently this is the GRUB menu,
901  * boot signature and boot signature backup.
902  * str starts with '/'.
903  */
904 static int
is_top_dataset_file(char * str)905 is_top_dataset_file(char *str)
906 {
907 	char *tptr;
908 
909 	if ((tptr = grub_strstr(str, "menu.lst")) &&
910 	    (tptr[8] == '\0' || tptr[8] == ' ') &&
911 	    *(tptr-1) == '/')
912 		return (1);
913 
914 	if (grub_strncmp(str, BOOTSIGN_DIR"/",
915 	    grub_strlen(BOOTSIGN_DIR) + 1) == 0)
916 		return (1);
917 
918 	if (grub_strcmp(str, BOOTSIGN_BACKUP) == 0)
919 		return (1);
920 
921 	return (0);
922 }
923 
924 static int
check_feature(zap_attribute_t * za,void * arg,char * stack)925 check_feature(zap_attribute_t *za, void *arg, char *stack)
926 {
927 	const char **names = arg;
928 	int i;
929 
930 	if (za->za_first_integer == 0)
931 		return (0);
932 
933 	for (i = 0; names[i] != NULL; i++) {
934 		if (grub_strcmp(za->za_name, names[i]) == 0) {
935 			return (0);
936 		}
937 	}
938 	grub_printf("missing feature for read '%s'\n", za->za_name);
939 	return (ERR_NEWER_VERSION);
940 }
941 
942 /*
943  * Get the file dnode for a given file name where mdn is the meta dnode
944  * for this ZFS object set. When found, place the file dnode in dn.
945  * The 'path' argument will be mangled.
946  *
947  * Return:
948  *	0 - success
949  *	errnum - failure
950  */
951 static int
dnode_get_path(dnode_phys_t * mdn,char * path,dnode_phys_t * dn,char * stack)952 dnode_get_path(dnode_phys_t *mdn, char *path, dnode_phys_t *dn,
953     char *stack)
954 {
955 	uint64_t objnum, version;
956 	char *cname, ch;
957 
958 	if (errnum = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
959 	    dn, stack))
960 		return (errnum);
961 
962 	if (errnum = zap_lookup(dn, ZPL_VERSION_STR, &version, stack))
963 		return (errnum);
964 	if (version > ZPL_VERSION)
965 		return (-1);
966 
967 	if (errnum = zap_lookup(dn, ZFS_ROOT_OBJ, &objnum, stack))
968 		return (errnum);
969 
970 	if (errnum = dnode_get(mdn, objnum, DMU_OT_DIRECTORY_CONTENTS,
971 	    dn, stack))
972 		return (errnum);
973 
974 	/* skip leading slashes */
975 	while (*path == '/')
976 		path++;
977 
978 	while (*path && !grub_isspace(*path)) {
979 
980 		/* get the next component name */
981 		cname = path;
982 		while (*path && !grub_isspace(*path) && *path != '/')
983 			path++;
984 		ch = *path;
985 		*path = 0;   /* ensure null termination */
986 
987 		if (errnum = zap_lookup(dn, cname, &objnum, stack))
988 			return (errnum);
989 
990 		objnum = ZFS_DIRENT_OBJ(objnum);
991 		if (errnum = dnode_get(mdn, objnum, 0, dn, stack))
992 			return (errnum);
993 
994 		*path = ch;
995 		while (*path == '/')
996 			path++;
997 	}
998 
999 	/* We found the dnode for this file. Verify if it is a plain file. */
1000 	VERIFY_DN_TYPE(dn, DMU_OT_PLAIN_FILE_CONTENTS);
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Get the default 'bootfs' property value from the rootpool.
1007  *
1008  * Return:
1009  *	0 - success
1010  *	errnum -failure
1011  */
1012 static int
get_default_bootfsobj(dnode_phys_t * mosmdn,uint64_t * obj,char * stack)1013 get_default_bootfsobj(dnode_phys_t *mosmdn, uint64_t *obj, char *stack)
1014 {
1015 	uint64_t objnum = 0;
1016 	dnode_phys_t *dn = (dnode_phys_t *)stack;
1017 	stack += DNODE_SIZE;
1018 
1019 	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1020 	    DMU_OT_OBJECT_DIRECTORY, dn, stack))
1021 		return (errnum);
1022 
1023 	/*
1024 	 * find the object number for 'pool_props', and get the dnode
1025 	 * of the 'pool_props'.
1026 	 */
1027 	if (zap_lookup(dn, DMU_POOL_PROPS, &objnum, stack))
1028 		return (ERR_FILESYSTEM_NOT_FOUND);
1029 
1030 	if (errnum = dnode_get(mosmdn, objnum, DMU_OT_POOL_PROPS, dn, stack))
1031 		return (errnum);
1032 
1033 	if (zap_lookup(dn, ZPOOL_PROP_BOOTFS, &objnum, stack))
1034 		return (ERR_FILESYSTEM_NOT_FOUND);
1035 
1036 	if (!objnum)
1037 		return (ERR_FILESYSTEM_NOT_FOUND);
1038 
1039 	*obj = objnum;
1040 	return (0);
1041 }
1042 
1043 /*
1044  * List of pool features that the grub implementation of ZFS supports for
1045  * read. Note that features that are only required for write do not need
1046  * to be listed here since grub opens pools in read-only mode.
1047  *
1048  * When this list is updated the version number in usr/src/grub/capability
1049  * must be incremented to ensure the new grub gets installed.
1050  */
1051 static const char *spa_feature_names[] = {
1052 	"org.illumos:lz4_compress",
1053 	"com.delphix:hole_birth",
1054 	"com.delphix:extensible_dataset",
1055 	"com.delphix:embedded_data",
1056 	"org.open-zfs:large_blocks",
1057 	"org.illumos:sha512",
1058 	NULL
1059 };
1060 
1061 /*
1062  * Checks whether the MOS features that are active are supported by this
1063  * (GRUB's) implementation of ZFS.
1064  *
1065  * Return:
1066  *	0: Success.
1067  *	errnum: Failure.
1068  */
1069 static int
check_mos_features(dnode_phys_t * mosmdn,char * stack)1070 check_mos_features(dnode_phys_t *mosmdn, char *stack)
1071 {
1072 	uint64_t objnum;
1073 	dnode_phys_t *dn;
1074 	uint8_t error = 0;
1075 
1076 	dn = (dnode_phys_t *)stack;
1077 	stack += DNODE_SIZE;
1078 
1079 	if ((errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1080 	    DMU_OT_OBJECT_DIRECTORY, dn, stack)) != 0)
1081 		return (errnum);
1082 
1083 	/*
1084 	 * Find the object number for 'features_for_read' and retrieve its
1085 	 * corresponding dnode. Note that we don't check features_for_write
1086 	 * because GRUB is not opening the pool for write.
1087 	 */
1088 	if ((errnum = zap_lookup(dn, DMU_POOL_FEATURES_FOR_READ, &objnum,
1089 	    stack)) != 0)
1090 		return (errnum);
1091 
1092 	if ((errnum = dnode_get(mosmdn, objnum, DMU_OTN_ZAP_METADATA,
1093 	    dn, stack)) != 0)
1094 		return (errnum);
1095 
1096 	return (zap_iterate(dn, check_feature, spa_feature_names, stack));
1097 }
1098 
1099 /*
1100  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1101  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1102  * of pool/rootfs.
1103  *
1104  * If no fsname and no obj are given, return the DSL_DIR metadnode.
1105  * If fsname is given, return its metadnode and its matching object number.
1106  * If only obj is given, return the metadnode for this object number.
1107  *
1108  * Return:
1109  *	0 - success
1110  *	errnum - failure
1111  */
1112 static int
get_objset_mdn(dnode_phys_t * mosmdn,char * fsname,uint64_t * obj,dnode_phys_t * mdn,char * stack)1113 get_objset_mdn(dnode_phys_t *mosmdn, char *fsname, uint64_t *obj,
1114     dnode_phys_t *mdn, char *stack)
1115 {
1116 	uint64_t objnum, headobj;
1117 	char *cname, ch;
1118 	blkptr_t *bp;
1119 	objset_phys_t *osp;
1120 	int issnapshot = 0;
1121 	char *snapname;
1122 
1123 	if (fsname == NULL && obj) {
1124 		headobj = *obj;
1125 		goto skip;
1126 	}
1127 
1128 	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1129 	    DMU_OT_OBJECT_DIRECTORY, mdn, stack))
1130 		return (errnum);
1131 
1132 	if (errnum = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum,
1133 	    stack))
1134 		return (errnum);
1135 
1136 	if (errnum = dnode_get(mosmdn, objnum, 0, mdn, stack))
1137 		return (errnum);
1138 
1139 	if (fsname == NULL) {
1140 		headobj =
1141 		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1142 		goto skip;
1143 	}
1144 
1145 	/* take out the pool name */
1146 	while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1147 		fsname++;
1148 
1149 	while (*fsname && !grub_isspace(*fsname)) {
1150 		uint64_t childobj;
1151 
1152 		while (*fsname == '/')
1153 			fsname++;
1154 
1155 		cname = fsname;
1156 		while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1157 			fsname++;
1158 		ch = *fsname;
1159 		*fsname = 0;
1160 
1161 		snapname = cname;
1162 		while (*snapname && !grub_isspace(*snapname) && *snapname !=
1163 		    '@')
1164 			snapname++;
1165 		if (*snapname == '@') {
1166 			issnapshot = 1;
1167 			*snapname = 0;
1168 		}
1169 		childobj =
1170 		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_child_dir_zapobj;
1171 		if (errnum = dnode_get(mosmdn, childobj,
1172 		    DMU_OT_DSL_DIR_CHILD_MAP, mdn, stack))
1173 			return (errnum);
1174 
1175 		if (zap_lookup(mdn, cname, &objnum, stack))
1176 			return (ERR_FILESYSTEM_NOT_FOUND);
1177 
1178 		if (errnum = dnode_get(mosmdn, objnum, 0,
1179 		    mdn, stack))
1180 			return (errnum);
1181 
1182 		*fsname = ch;
1183 		if (issnapshot)
1184 			*snapname = '@';
1185 	}
1186 	headobj = ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1187 	if (obj)
1188 		*obj = headobj;
1189 
1190 skip:
1191 	if (errnum = dnode_get(mosmdn, headobj, 0, mdn, stack))
1192 		return (errnum);
1193 	if (issnapshot) {
1194 		uint64_t snapobj;
1195 
1196 		snapobj = ((dsl_dataset_phys_t *)DN_BONUS(mdn))->
1197 		    ds_snapnames_zapobj;
1198 
1199 		if (errnum = dnode_get(mosmdn, snapobj,
1200 		    DMU_OT_DSL_DS_SNAP_MAP, mdn, stack))
1201 			return (errnum);
1202 		if (zap_lookup(mdn, snapname + 1, &headobj, stack))
1203 			return (ERR_FILESYSTEM_NOT_FOUND);
1204 		if (errnum = dnode_get(mosmdn, headobj, 0, mdn, stack))
1205 			return (errnum);
1206 		if (obj)
1207 			*obj = headobj;
1208 	}
1209 
1210 	bp = &((dsl_dataset_phys_t *)DN_BONUS(mdn))->ds_bp;
1211 	osp = (objset_phys_t *)stack;
1212 	stack += sizeof (objset_phys_t);
1213 	if (errnum = zio_read(bp, osp, stack))
1214 		return (errnum);
1215 
1216 	grub_memmove((char *)mdn, (char *)&osp->os_meta_dnode, DNODE_SIZE);
1217 
1218 	return (0);
1219 }
1220 
1221 /*
1222  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1223  *
1224  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1225  *
1226  *      encoding method/host endian     (4 bytes)
1227  *      nvl_version                     (4 bytes)
1228  *      nvl_nvflag                      (4 bytes)
1229  *	encoded nvpairs:
1230  *		encoded size of the nvpair      (4 bytes)
1231  *		decoded size of the nvpair      (4 bytes)
1232  *		name string size                (4 bytes)
1233  *		name string data                (sizeof(NV_ALIGN4(string))
1234  *		data type                       (4 bytes)
1235  *		# of elements in the nvpair     (4 bytes)
1236  *		data
1237  *      2 zero's for the last nvpair
1238  *		(end of the entire list)	(8 bytes)
1239  *
1240  * Return:
1241  *	0 - success
1242  *	1 - failure
1243  */
1244 static int
nvlist_unpack(char * nvlist,char ** out)1245 nvlist_unpack(char *nvlist, char **out)
1246 {
1247 	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
1248 	if (nvlist[0] != NV_ENCODE_XDR || nvlist[1] != HOST_ENDIAN)
1249 		return (1);
1250 
1251 	*out = nvlist + 4;
1252 	return (0);
1253 }
1254 
1255 static char *
nvlist_array(char * nvlist,int index)1256 nvlist_array(char *nvlist, int index)
1257 {
1258 	int i, encode_size;
1259 
1260 	for (i = 0; i < index; i++) {
1261 		/* skip the header, nvl_version, and nvl_nvflag */
1262 		nvlist = nvlist + 4 * 2;
1263 
1264 		while (encode_size = BSWAP_32(*(uint32_t *)nvlist))
1265 			nvlist += encode_size; /* goto the next nvpair */
1266 
1267 		nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1268 	}
1269 
1270 	return (nvlist);
1271 }
1272 
1273 /*
1274  * The nvlist_next_nvpair() function returns a handle to the next nvpair in the
1275  * list following nvpair. If nvpair is NULL, the first pair is returned. If
1276  * nvpair is the last pair in the nvlist, NULL is returned.
1277  */
1278 static char *
nvlist_next_nvpair(char * nvl,char * nvpair)1279 nvlist_next_nvpair(char *nvl, char *nvpair)
1280 {
1281 	char *cur, *prev;
1282 	int encode_size;
1283 
1284 	if (nvl == NULL)
1285 		return (NULL);
1286 
1287 	if (nvpair == NULL) {
1288 		/* skip over nvl_version and nvl_nvflag */
1289 		nvpair = nvl + 4 * 2;
1290 	} else {
1291 		/* skip to the next nvpair */
1292 		encode_size = BSWAP_32(*(uint32_t *)nvpair);
1293 		nvpair += encode_size;
1294 	}
1295 
1296 	/* 8 bytes of 0 marks the end of the list */
1297 	if (*(uint64_t *)nvpair == 0)
1298 		return (NULL);
1299 
1300 	return (nvpair);
1301 }
1302 
1303 /*
1304  * This function returns 0 on success and 1 on failure. On success, a string
1305  * containing the name of nvpair is saved in buf.
1306  */
1307 static int
nvpair_name(char * nvp,char * buf,int buflen)1308 nvpair_name(char *nvp, char *buf, int buflen)
1309 {
1310 	int len;
1311 
1312 	/* skip over encode/decode size */
1313 	nvp += 4 * 2;
1314 
1315 	len = BSWAP_32(*(uint32_t *)nvp);
1316 	if (buflen < len + 1)
1317 		return (1);
1318 
1319 	grub_memmove(buf, nvp + 4, len);
1320 	buf[len] = '\0';
1321 
1322 	return (0);
1323 }
1324 
1325 /*
1326  * This function retrieves the value of the nvpair in the form of enumerated
1327  * type data_type_t. This is used to determine the appropriate type to pass to
1328  * nvpair_value().
1329  */
1330 static int
nvpair_type(char * nvp)1331 nvpair_type(char *nvp)
1332 {
1333 	int name_len, type;
1334 
1335 	/* skip over encode/decode size */
1336 	nvp += 4 * 2;
1337 
1338 	/* skip over name_len */
1339 	name_len = BSWAP_32(*(uint32_t *)nvp);
1340 	nvp += 4;
1341 
1342 	/* skip over name */
1343 	nvp = nvp + ((name_len + 3) & ~3); /* align */
1344 
1345 	type = BSWAP_32(*(uint32_t *)nvp);
1346 
1347 	return (type);
1348 }
1349 
1350 static int
nvpair_value(char * nvp,void * val,int valtype,int * nelmp)1351 nvpair_value(char *nvp, void *val, int valtype, int *nelmp)
1352 {
1353 	int name_len, type, slen;
1354 	char *strval = val;
1355 	uint64_t *intval = val;
1356 
1357 	/* skip over encode/decode size */
1358 	nvp += 4 * 2;
1359 
1360 	/* skip over name_len */
1361 	name_len = BSWAP_32(*(uint32_t *)nvp);
1362 	nvp += 4;
1363 
1364 	/* skip over name */
1365 	nvp = nvp + ((name_len + 3) & ~3); /* align */
1366 
1367 	/* skip over type */
1368 	type = BSWAP_32(*(uint32_t *)nvp);
1369 	nvp += 4;
1370 
1371 	if (type == valtype) {
1372 		int nelm;
1373 
1374 		nelm = BSWAP_32(*(uint32_t *)nvp);
1375 		if (valtype != DATA_TYPE_BOOLEAN && nelm < 1)
1376 			return (1);
1377 		nvp += 4;
1378 
1379 		switch (valtype) {
1380 		case DATA_TYPE_BOOLEAN:
1381 			return (0);
1382 
1383 		case DATA_TYPE_STRING:
1384 			slen = BSWAP_32(*(uint32_t *)nvp);
1385 			nvp += 4;
1386 			grub_memmove(strval, nvp, slen);
1387 			strval[slen] = '\0';
1388 			return (0);
1389 
1390 		case DATA_TYPE_UINT64:
1391 			*intval = BSWAP_64(*(uint64_t *)nvp);
1392 			return (0);
1393 
1394 		case DATA_TYPE_NVLIST:
1395 			*(void **)val = (void *)nvp;
1396 			return (0);
1397 
1398 		case DATA_TYPE_NVLIST_ARRAY:
1399 			*(void **)val = (void *)nvp;
1400 			if (nelmp)
1401 				*nelmp = nelm;
1402 			return (0);
1403 		}
1404 	}
1405 
1406 	return (1);
1407 }
1408 
1409 static int
nvlist_lookup_value(char * nvlist,char * name,void * val,int valtype,int * nelmp)1410 nvlist_lookup_value(char *nvlist, char *name, void *val, int valtype,
1411     int *nelmp)
1412 {
1413 	char *nvpair;
1414 
1415 	for (nvpair = nvlist_next_nvpair(nvlist, NULL);
1416 	    nvpair != NULL;
1417 	    nvpair = nvlist_next_nvpair(nvlist, nvpair)) {
1418 		int name_len = BSWAP_32(*(uint32_t *)(nvpair + 4 * 2));
1419 		char *nvp_name = nvpair + 4 * 3;
1420 
1421 		if ((grub_strncmp(nvp_name, name, name_len) == 0) &&
1422 		    nvpair_type(nvpair) == valtype) {
1423 			return (nvpair_value(nvpair, val, valtype, nelmp));
1424 		}
1425 	}
1426 	return (1);
1427 }
1428 
1429 /*
1430  * Check if this vdev is online and is in a good state.
1431  */
1432 static int
vdev_validate(char * nv)1433 vdev_validate(char *nv)
1434 {
1435 	uint64_t ival;
1436 
1437 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_OFFLINE, &ival,
1438 	    DATA_TYPE_UINT64, NULL) == 0 ||
1439 	    nvlist_lookup_value(nv, ZPOOL_CONFIG_FAULTED, &ival,
1440 	    DATA_TYPE_UINT64, NULL) == 0 ||
1441 	    nvlist_lookup_value(nv, ZPOOL_CONFIG_REMOVED, &ival,
1442 	    DATA_TYPE_UINT64, NULL) == 0)
1443 		return (ERR_DEV_VALUES);
1444 
1445 	return (0);
1446 }
1447 
1448 /*
1449  * Get a valid vdev pathname/devid from the boot device.
1450  * The caller should already allocate MAXPATHLEN memory for bootpath and devid.
1451  */
1452 static int
vdev_get_bootpath(char * nv,uint64_t inguid,char * devid,char * bootpath,int is_spare)1453 vdev_get_bootpath(char *nv, uint64_t inguid, char *devid, char *bootpath,
1454     int is_spare)
1455 {
1456 	char type[16];
1457 
1458 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_TYPE, &type, DATA_TYPE_STRING,
1459 	    NULL))
1460 		return (ERR_FSYS_CORRUPT);
1461 
1462 	if (grub_strcmp(type, VDEV_TYPE_DISK) == 0) {
1463 		uint64_t guid;
1464 
1465 		if (vdev_validate(nv) != 0)
1466 			return (ERR_NO_BOOTPATH);
1467 
1468 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_GUID,
1469 		    &guid, DATA_TYPE_UINT64, NULL) != 0)
1470 			return (ERR_NO_BOOTPATH);
1471 
1472 		if (guid != inguid)
1473 			return (ERR_NO_BOOTPATH);
1474 
1475 		/* for a spare vdev, pick the disk labeled with "is_spare" */
1476 		if (is_spare) {
1477 			uint64_t spare = 0;
1478 			(void) nvlist_lookup_value(nv, ZPOOL_CONFIG_IS_SPARE,
1479 			    &spare, DATA_TYPE_UINT64, NULL);
1480 			if (!spare)
1481 				return (ERR_NO_BOOTPATH);
1482 		}
1483 
1484 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_PHYS_PATH,
1485 		    bootpath, DATA_TYPE_STRING, NULL) != 0)
1486 			bootpath[0] = '\0';
1487 
1488 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_DEVID,
1489 		    devid, DATA_TYPE_STRING, NULL) != 0)
1490 			devid[0] = '\0';
1491 
1492 		if (grub_strlen(bootpath) >= MAXPATHLEN ||
1493 		    grub_strlen(devid) >= MAXPATHLEN)
1494 			return (ERR_WONT_FIT);
1495 
1496 		return (0);
1497 
1498 	} else if (grub_strcmp(type, VDEV_TYPE_MIRROR) == 0 ||
1499 	    grub_strcmp(type, VDEV_TYPE_REPLACING) == 0 ||
1500 	    (is_spare = (grub_strcmp(type, VDEV_TYPE_SPARE) == 0))) {
1501 		int nelm, i;
1502 		char *child;
1503 
1504 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_CHILDREN, &child,
1505 		    DATA_TYPE_NVLIST_ARRAY, &nelm))
1506 			return (ERR_FSYS_CORRUPT);
1507 
1508 		for (i = 0; i < nelm; i++) {
1509 			char *child_i;
1510 
1511 			child_i = nvlist_array(child, i);
1512 			if (vdev_get_bootpath(child_i, inguid, devid,
1513 			    bootpath, is_spare) == 0)
1514 				return (0);
1515 		}
1516 	}
1517 
1518 	return (ERR_NO_BOOTPATH);
1519 }
1520 
1521 /*
1522  * Check the disk label information and retrieve needed vdev name-value pairs.
1523  *
1524  * Return:
1525  *	0 - success
1526  *	ERR_* - failure
1527  */
1528 static int
check_pool_label(uint64_t sector,char * stack,char * outdevid,char * outpath,uint64_t * outguid,uint64_t * outdiskguid,uint64_t * outashift,uint64_t * outversion)1529 check_pool_label(uint64_t sector, char *stack, char *outdevid, char *outpath,
1530     uint64_t *outguid, uint64_t *outdiskguid, uint64_t *outashift,
1531     uint64_t *outversion)
1532 {
1533 	vdev_phys_t *vdev;
1534 	uint64_t pool_state, txg = 0;
1535 	char *nvlist, *nv, *features;
1536 
1537 	sector += (VDEV_SKIP_SIZE >> SPA_MINBLOCKSHIFT);
1538 
1539 	/* Read in the vdev name-value pair list (112K). */
1540 	if (devread(sector, 0, VDEV_PHYS_SIZE, stack) == 0)
1541 		return (ERR_READ);
1542 
1543 	vdev = (vdev_phys_t *)stack;
1544 	stack += sizeof (vdev_phys_t);
1545 
1546 	if (nvlist_unpack(vdev->vp_nvlist, &nvlist))
1547 		return (ERR_FSYS_CORRUPT);
1548 
1549 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state,
1550 	    DATA_TYPE_UINT64, NULL))
1551 		return (ERR_FSYS_CORRUPT);
1552 
1553 	if (pool_state == POOL_STATE_DESTROYED)
1554 		return (ERR_FILESYSTEM_NOT_FOUND);
1555 
1556 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_NAME,
1557 	    current_rootpool, DATA_TYPE_STRING, NULL))
1558 		return (ERR_FSYS_CORRUPT);
1559 
1560 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_TXG, &txg,
1561 	    DATA_TYPE_UINT64, NULL))
1562 		return (ERR_FSYS_CORRUPT);
1563 
1564 	/* not an active device */
1565 	if (txg == 0)
1566 		return (ERR_NO_BOOTPATH);
1567 
1568 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VERSION, outversion,
1569 	    DATA_TYPE_UINT64, NULL))
1570 		return (ERR_FSYS_CORRUPT);
1571 	if (!SPA_VERSION_IS_SUPPORTED(*outversion))
1572 		return (ERR_NEWER_VERSION);
1573 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VDEV_TREE, &nv,
1574 	    DATA_TYPE_NVLIST, NULL))
1575 		return (ERR_FSYS_CORRUPT);
1576 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_GUID, outdiskguid,
1577 	    DATA_TYPE_UINT64, NULL))
1578 		return (ERR_FSYS_CORRUPT);
1579 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_ASHIFT, outashift,
1580 	    DATA_TYPE_UINT64, NULL) != 0)
1581 		return (ERR_FSYS_CORRUPT);
1582 	if (vdev_get_bootpath(nv, *outdiskguid, outdevid, outpath, 0))
1583 		return (ERR_NO_BOOTPATH);
1584 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_GUID, outguid,
1585 	    DATA_TYPE_UINT64, NULL))
1586 		return (ERR_FSYS_CORRUPT);
1587 
1588 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1589 	    &features, DATA_TYPE_NVLIST, NULL) == 0) {
1590 		char *nvp;
1591 		char *name = stack;
1592 		stack += MAXNAMELEN;
1593 
1594 		for (nvp = nvlist_next_nvpair(features, NULL);
1595 		    nvp != NULL;
1596 		    nvp = nvlist_next_nvpair(features, nvp)) {
1597 			zap_attribute_t za;
1598 
1599 			if (nvpair_name(nvp, name, MAXNAMELEN) != 0)
1600 				return (ERR_FSYS_CORRUPT);
1601 
1602 			za.za_integer_length = 8;
1603 			za.za_num_integers = 1;
1604 			za.za_first_integer = 1;
1605 			za.za_name = name;
1606 			if (check_feature(&za, spa_feature_names, stack) != 0)
1607 				return (ERR_NEWER_VERSION);
1608 		}
1609 	}
1610 
1611 	return (0);
1612 }
1613 
1614 /*
1615  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1616  * to the memory address MOS.
1617  *
1618  * Return:
1619  *	1 - success
1620  *	0 - failure
1621  */
1622 int
zfs_mount(void)1623 zfs_mount(void)
1624 {
1625 	char *stack, *ub_array;
1626 	int label = 0;
1627 	uberblock_t *ubbest;
1628 	objset_phys_t *osp;
1629 	char tmp_bootpath[MAXNAMELEN];
1630 	char tmp_devid[MAXNAMELEN];
1631 	uint64_t tmp_guid, tmp_vdev, ashift, version;
1632 	uint64_t adjpl = (uint64_t)part_length << SPA_MINBLOCKSHIFT;
1633 	int err = errnum; /* preserve previous errnum state */
1634 
1635 	/* if it's our first time here, zero the best uberblock out */
1636 	if (best_drive == 0 && best_part == 0 && find_best_root) {
1637 		grub_memset(&current_uberblock, 0, sizeof (uberblock_t));
1638 		pool_guid = 0;
1639 	}
1640 
1641 	stackbase = ZFS_SCRATCH;
1642 	stack = stackbase;
1643 	ub_array = stack;
1644 	stack += VDEV_UBERBLOCK_RING;
1645 
1646 	osp = (objset_phys_t *)stack;
1647 	stack += sizeof (objset_phys_t);
1648 	adjpl = P2ALIGN(adjpl, (uint64_t)sizeof (vdev_label_t));
1649 
1650 	for (label = 0; label < VDEV_LABELS; label++) {
1651 
1652 		/*
1653 		 * some eltorito stacks don't give us a size and
1654 		 * we end up setting the size to MAXUINT, further
1655 		 * some of these devices stop working once a single
1656 		 * read past the end has been issued. Checking
1657 		 * for a maximum part_length and skipping the backup
1658 		 * labels at the end of the slice/partition/device
1659 		 * avoids breaking down on such devices.
1660 		 */
1661 		if (part_length == MAXUINT && label == 2)
1662 			break;
1663 
1664 		uint64_t sector = vdev_label_start(adjpl,
1665 		    label) >> SPA_MINBLOCKSHIFT;
1666 
1667 		/* Read in the uberblock ring (128K). */
1668 		if (devread(sector  +
1669 		    ((VDEV_SKIP_SIZE + VDEV_PHYS_SIZE) >> SPA_MINBLOCKSHIFT),
1670 		    0, VDEV_UBERBLOCK_RING, ub_array) == 0)
1671 			continue;
1672 
1673 		if (check_pool_label(sector, stack, tmp_devid, tmp_bootpath,
1674 		    &tmp_guid, &tmp_vdev, &ashift, &version))
1675 			continue;
1676 
1677 		if (pool_guid == 0)
1678 			pool_guid = tmp_guid;
1679 
1680 		if ((ubbest = find_bestub(ub_array, ashift, sector)) == NULL ||
1681 		    zio_read(&ubbest->ub_rootbp, osp, stack) != 0)
1682 			continue;
1683 
1684 		VERIFY_OS_TYPE(osp, DMU_OST_META);
1685 
1686 		if (version >= SPA_VERSION_FEATURES &&
1687 		    check_mos_features(&osp->os_meta_dnode, stack) != 0)
1688 			continue;
1689 
1690 		if (find_best_root && ((pool_guid != tmp_guid) ||
1691 		    vdev_uberblock_compare(ubbest, &(current_uberblock)) <= 0))
1692 			continue;
1693 
1694 		/* Got the MOS. Save it at the memory addr MOS. */
1695 		grub_memmove(MOS, &osp->os_meta_dnode, DNODE_SIZE);
1696 		grub_memmove(&current_uberblock, ubbest, sizeof (uberblock_t));
1697 		grub_memmove(current_bootpath, tmp_bootpath, MAXNAMELEN);
1698 		grub_memmove(current_devid, tmp_devid, grub_strlen(tmp_devid));
1699 		current_bootguid = tmp_guid;
1700 		current_bootvdev = tmp_vdev;
1701 		is_zfs_mount = 1;
1702 		return (1);
1703 	}
1704 
1705 	/*
1706 	 * While some fs impls. (tftp) rely on setting and keeping
1707 	 * global errnums set, others won't reset it and will break
1708 	 * when issuing rawreads. The goal here is to simply not
1709 	 * have zfs mount attempts impact the previous state.
1710 	 */
1711 	errnum = err;
1712 	return (0);
1713 }
1714 
1715 /*
1716  * zfs_open() locates a file in the rootpool by following the
1717  * MOS and places the dnode of the file in the memory address DNODE.
1718  *
1719  * Return:
1720  *	1 - success
1721  *	0 - failure
1722  */
1723 int
zfs_open(char * filename)1724 zfs_open(char *filename)
1725 {
1726 	char *stack;
1727 	dnode_phys_t *mdn;
1728 
1729 	file_buf = NULL;
1730 	stackbase = ZFS_SCRATCH;
1731 	stack = stackbase;
1732 
1733 	mdn = (dnode_phys_t *)stack;
1734 	stack += sizeof (dnode_phys_t);
1735 
1736 	dnode_mdn = NULL;
1737 	dnode_buf = (dnode_phys_t *)stack;
1738 	stack += 1<<DNODE_BLOCK_SHIFT;
1739 
1740 	/*
1741 	 * menu.lst is placed at the root pool filesystem level,
1742 	 * do not goto 'current_bootfs'.
1743 	 */
1744 	if (is_top_dataset_file(filename)) {
1745 		if (errnum = get_objset_mdn(MOS, NULL, NULL, mdn, stack))
1746 			return (0);
1747 
1748 		current_bootfs_obj = 0;
1749 	} else {
1750 		if (current_bootfs[0] == '\0') {
1751 			/* Get the default root filesystem object number */
1752 			if (errnum = get_default_bootfsobj(MOS,
1753 			    &current_bootfs_obj, stack))
1754 				return (0);
1755 
1756 			if (errnum = get_objset_mdn(MOS, NULL,
1757 			    &current_bootfs_obj, mdn, stack))
1758 				return (0);
1759 		} else {
1760 			if (errnum = get_objset_mdn(MOS, current_bootfs,
1761 			    &current_bootfs_obj, mdn, stack)) {
1762 				grub_memset(current_bootfs, 0, MAXNAMELEN);
1763 				return (0);
1764 			}
1765 		}
1766 	}
1767 
1768 	if (dnode_get_path(mdn, filename, DNODE, stack)) {
1769 		errnum = ERR_FILE_NOT_FOUND;
1770 		return (0);
1771 	}
1772 
1773 	/* get the file size and set the file position to 0 */
1774 
1775 	/*
1776 	 * For DMU_OT_SA we will need to locate the SIZE attribute
1777 	 * attribute, which could be either in the bonus buffer
1778 	 * or the "spill" block.
1779 	 */
1780 	if (DNODE->dn_bonustype == DMU_OT_SA) {
1781 		sa_hdr_phys_t *sahdrp;
1782 		int hdrsize;
1783 
1784 		if (DNODE->dn_bonuslen != 0) {
1785 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(DNODE);
1786 		} else {
1787 			if (DNODE->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1788 				blkptr_t *bp = &DNODE->dn_spill;
1789 				void *buf;
1790 
1791 				buf = (void *)stack;
1792 				stack += BP_GET_LSIZE(bp);
1793 
1794 				/* reset errnum to rawread() failure */
1795 				errnum = 0;
1796 				if (zio_read(bp, buf, stack) != 0) {
1797 					return (0);
1798 				}
1799 				sahdrp = buf;
1800 			} else {
1801 				errnum = ERR_FSYS_CORRUPT;
1802 				return (0);
1803 			}
1804 		}
1805 		hdrsize = SA_HDR_SIZE(sahdrp);
1806 		filemax = *(uint64_t *)((char *)sahdrp + hdrsize +
1807 		    SA_SIZE_OFFSET);
1808 	} else {
1809 		filemax = ((znode_phys_t *)DN_BONUS(DNODE))->zp_size;
1810 	}
1811 	filepos = 0;
1812 
1813 	dnode_buf = NULL;
1814 	return (1);
1815 }
1816 
1817 /*
1818  * zfs_read reads in the data blocks pointed by the DNODE.
1819  *
1820  * Return:
1821  *	len - the length successfully read in to the buffer
1822  *	0   - failure
1823  */
1824 int
zfs_read(char * buf,int len)1825 zfs_read(char *buf, int len)
1826 {
1827 	char *stack;
1828 	int blksz, length, movesize;
1829 
1830 	if (file_buf == NULL) {
1831 		file_buf = stackbase;
1832 		stackbase += SPA_MAXBLOCKSIZE;
1833 		file_start = file_end = 0;
1834 	}
1835 	stack = stackbase;
1836 
1837 	/*
1838 	 * If offset is in memory, move it into the buffer provided and return.
1839 	 */
1840 	if (filepos >= file_start && filepos+len <= file_end) {
1841 		grub_memmove(buf, file_buf + filepos - file_start, len);
1842 		filepos += len;
1843 		return (len);
1844 	}
1845 
1846 	blksz = DNODE->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1847 
1848 	/*
1849 	 * Note: for GRUB, SPA_MAXBLOCKSIZE is 128KB.  There is not enough
1850 	 * memory to allocate the new max blocksize (16MB), so while
1851 	 * GRUB understands the large_blocks on-disk feature, it can't
1852 	 * actually read large blocks.
1853 	 */
1854 	if (blksz > SPA_MAXBLOCKSIZE) {
1855 		grub_printf("blocks larger than 128K are not supported\n");
1856 		return (0);
1857 	}
1858 
1859 	/*
1860 	 * Entire Dnode is too big to fit into the space available.  We
1861 	 * will need to read it in chunks.  This could be optimized to
1862 	 * read in as large a chunk as there is space available, but for
1863 	 * now, this only reads in one data block at a time.
1864 	 */
1865 	length = len;
1866 	while (length) {
1867 		/*
1868 		 * Find requested blkid and the offset within that block.
1869 		 */
1870 		uint64_t blkid = filepos / blksz;
1871 
1872 		if (errnum = dmu_read(DNODE, blkid, file_buf, stack))
1873 			return (0);
1874 
1875 		file_start = blkid * blksz;
1876 		file_end = file_start + blksz;
1877 
1878 		movesize = MIN(length, file_end - filepos);
1879 
1880 		grub_memmove(buf, file_buf + filepos - file_start,
1881 		    movesize);
1882 		buf += movesize;
1883 		length -= movesize;
1884 		filepos += movesize;
1885 	}
1886 
1887 	return (len);
1888 }
1889 
1890 /*
1891  * No-Op
1892  */
1893 int
zfs_embed(unsigned long long * start_sector,int needed_sectors)1894 zfs_embed(unsigned long long *start_sector, int needed_sectors)
1895 {
1896 	return (1);
1897 }
1898 
1899 #endif /* FSYS_ZFS */
1900