1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, v.1, (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2014-2017 Cavium, Inc.
24 * The contents of this file are subject to the terms of the Common Development
25 * and Distribution License, v.1, (the "License").
26
27 * You may not use this file except in compliance with the License.
28
29 * You can obtain a copy of the License at available
30 * at http://opensource.org/licenses/CDDL-1.0
31
32 * See the License for the specific language governing permissions and
33 * limitations under the License.
34 */
35
36 /*
37 * Copyright 2018 Joyent, Inc.
38 */
39
40 #include "qede.h"
41
42 #define FP_LOCK(ptr) \
43 mutex_enter(&ptr->fp_lock);
44 #define FP_UNLOCK(ptr) \
45 mutex_exit(&ptr->fp_lock);
46
47 int
qede_ucst_find(qede_t * qede,const uint8_t * mac_addr)48 qede_ucst_find(qede_t *qede, const uint8_t *mac_addr)
49 {
50 int slot;
51
52 for(slot = 0; slot < qede->ucst_total; slot++) {
53 if (bcmp(qede->ucst_mac[slot].mac_addr.ether_addr_octet,
54 mac_addr, ETHERADDRL) == 0) {
55 return (slot);
56 }
57 }
58 return (-1);
59
60 }
61
62 static int
qede_set_mac_addr(qede_t * qede,uint8_t * mac_addr,uint8_t fl)63 qede_set_mac_addr(qede_t *qede, uint8_t *mac_addr, uint8_t fl)
64 {
65 struct ecore_filter_ucast params;
66
67 memset(¶ms, 0, sizeof (params));
68
69 params.opcode = fl;
70 params.type = ECORE_FILTER_MAC;
71 params.is_rx_filter = true;
72 params.is_tx_filter = true;
73 COPY_ETH_ADDRESS(mac_addr, params.mac);
74
75 return (ecore_filter_ucast_cmd(&qede->edev,
76 ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL));
77
78
79 }
80 static int
qede_add_macaddr(qede_t * qede,uint8_t * mac_addr)81 qede_add_macaddr(qede_t *qede, uint8_t *mac_addr)
82 {
83 int i, ret = 0;
84
85 i = qede_ucst_find(qede, mac_addr);
86 if (i != -1) {
87 /* LINTED E_ARGUMENT_MISMATCH */
88 qede_info(qede, "mac addr already added %d\n",
89 qede->ucst_avail);
90 return (0);
91 }
92 if (qede->ucst_avail == 0) {
93 qede_info(qede, "add macaddr ignored \n");
94 return (ENOSPC);
95 }
96 for (i = 0; i < qede->ucst_total; i++) {
97 if (qede->ucst_mac[i].set == 0) {
98 break;
99 }
100 }
101 if (i >= qede->ucst_total) {
102 qede_info(qede, "add macaddr ignored no space");
103 return (ENOSPC);
104 }
105 ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_ADD);
106 if (ret == 0) {
107 bcopy(mac_addr,
108 qede->ucst_mac[i].mac_addr.ether_addr_octet,
109 ETHERADDRL);
110 qede->ucst_mac[i].set = 1;
111 qede->ucst_avail--;
112 /* LINTED E_ARGUMENT_MISMATCH */
113 qede_info(qede, " add macaddr passed for addr "
114 "%02x:%02x:%02x:%02x:%02x:%02x",
115 mac_addr[0], mac_addr[1],
116 mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
117 } else {
118 /* LINTED E_ARGUMENT_MISMATCH */
119 qede_info(qede, "add macaddr failed for addr "
120 "%02x:%02x:%02x:%02x:%02x:%02x",
121 mac_addr[0], mac_addr[1],
122 mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
123
124 }
125 if (qede->ucst_avail == (qede->ucst_total -1)) {
126 u8 bcast_addr[] =
127 {
128 0xff, 0xff, 0xff, 0xff, 0xff,
129 0xff
130 };
131 for (i = 0; i < qede->ucst_total; i++) {
132 if (qede->ucst_mac[i].set == 0)
133 break;
134 }
135 ret = qede_set_mac_addr(qede,
136 (uint8_t *)bcast_addr, ECORE_FILTER_ADD);
137 if (ret == 0) {
138 bcopy(bcast_addr,
139 qede->ucst_mac[i].mac_addr.ether_addr_octet,
140 ETHERADDRL);
141 qede->ucst_mac[i].set = 1;
142 qede->ucst_avail--;
143 } else {
144
145 /* LINTED E_ARGUMENT_MISMATCH */
146 qede_info(qede, "add macaddr failed for addr "
147 "%02x:%02x:%02x:%02x:%02x:%02x",
148 mac_addr[0], mac_addr[1],
149 mac_addr[2], mac_addr[3], mac_addr[4],
150 mac_addr[5]);
151 }
152
153 }
154
155 return (ret);
156
157 }
158
159 #ifndef ILLUMOS
160 static int
qede_add_mac_addr(void * arg,const uint8_t * mac_addr,const uint64_t flags)161 qede_add_mac_addr(void *arg, const uint8_t *mac_addr, const uint64_t flags)
162 #else
163 static int
164 qede_add_mac_addr(void *arg, const uint8_t *mac_addr)
165 #endif
166 {
167 qede_mac_group_t *rx_group = (qede_mac_group_t *)arg;
168 qede_t *qede = rx_group->qede;
169 int ret = DDI_SUCCESS;
170
171 /* LINTED E_ARGUMENT_MISMATCH */
172 qede_info(qede, " mac addr :" MAC_STRING, MACTOSTR(mac_addr));
173
174 mutex_enter(&qede->gld_lock);
175 if (qede->qede_state == QEDE_STATE_SUSPENDED) {
176 mutex_exit(&qede->gld_lock);
177 return (ECANCELED);
178 }
179 ret = qede_add_macaddr(qede, (uint8_t *)mac_addr);
180
181 mutex_exit(&qede->gld_lock);
182
183
184 return (ret);
185 }
186
187 static int
qede_rem_macaddr(qede_t * qede,uint8_t * mac_addr)188 qede_rem_macaddr(qede_t *qede, uint8_t *mac_addr)
189 {
190 int ret = 0;
191 int i;
192
193 i = qede_ucst_find(qede, mac_addr);
194 if (i == -1) {
195 /* LINTED E_ARGUMENT_MISMATCH */
196 qede_info(qede,
197 "mac addr not there to remove",
198 MAC_STRING, MACTOSTR(mac_addr));
199 return (0);
200 }
201 if (qede->ucst_mac[i].set == 0) {
202 return (EINVAL);
203 }
204 ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_REMOVE);
205 if (ret == 0) {
206 bzero(qede->ucst_mac[i].mac_addr.ether_addr_octet,ETHERADDRL);
207 qede->ucst_mac[i].set = 0;
208 qede->ucst_avail++;
209 } else {
210 /* LINTED E_ARGUMENT_MISMATCH */
211 qede_info(qede, "mac addr remove failed",
212 MAC_STRING, MACTOSTR(mac_addr));
213 }
214 return (ret);
215
216 }
217
218
219 static int
qede_rem_mac_addr(void * arg,const uint8_t * mac_addr)220 qede_rem_mac_addr(void *arg, const uint8_t *mac_addr)
221 {
222 qede_mac_group_t *rx_group = (qede_mac_group_t *)arg;
223 qede_t *qede = rx_group->qede;
224 int ret = DDI_SUCCESS;
225
226 /* LINTED E_ARGUMENT_MISMATCH */
227 qede_info(qede, "mac addr remove:" MAC_STRING, MACTOSTR(mac_addr));
228 mutex_enter(&qede->gld_lock);
229 if (qede->qede_state == QEDE_STATE_SUSPENDED) {
230 mutex_exit(&qede->gld_lock);
231 return (ECANCELED);
232 }
233 ret = qede_rem_macaddr(qede, (uint8_t *)mac_addr);
234 mutex_exit(&qede->gld_lock);
235 return (ret);
236 }
237
238
239 static int
qede_tx_ring_stat(mac_ring_driver_t rh,uint_t stat,uint64_t * val)240 qede_tx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val)
241 {
242 int ret = 0;
243
244 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
245 qede_tx_ring_t *tx_ring = fp->tx_ring[0];
246 qede_t *qede = fp->qede;
247
248
249 if (qede->qede_state == QEDE_STATE_SUSPENDED)
250 return (ECANCELED);
251
252 switch (stat) {
253 case MAC_STAT_OBYTES:
254 *val = tx_ring->tx_byte_count;
255 break;
256
257 case MAC_STAT_OPACKETS:
258 *val = tx_ring->tx_pkt_count;
259 break;
260
261 default:
262 *val = 0;
263 ret = ENOTSUP;
264 }
265
266 return (ret);
267 }
268
269 #ifndef ILLUMOS
270 static mblk_t *
qede_rx_ring_poll(void * arg,int poll_bytes,int poll_pkts)271 qede_rx_ring_poll(void *arg, int poll_bytes, int poll_pkts)
272 {
273 #else
274 static mblk_t *
275 qede_rx_ring_poll(void *arg, int poll_bytes)
276 {
277 /* XXX pick a value at the moment */
278 int poll_pkts = 100;
279 #endif
280 qede_fastpath_t *fp = (qede_fastpath_t *)arg;
281 mblk_t *mp = NULL;
282 int work_done = 0;
283 qede_t *qede = fp->qede;
284
285 if (poll_bytes == 0) {
286 return (NULL);
287 }
288
289 mutex_enter(&fp->fp_lock);
290 qede->intrSbPollCnt[fp->vect_info->vect_index]++;
291
292 mp = qede_process_fastpath(fp, poll_bytes, poll_pkts, &work_done);
293 if (mp != NULL) {
294 fp->rx_ring->rx_poll_cnt++;
295 } else if ((mp == NULL) && (work_done == 0)) {
296 qede->intrSbPollNoChangeCnt[fp->vect_info->vect_index]++;
297 }
298
299 mutex_exit(&fp->fp_lock);
300 return (mp);
301 }
302
303 #ifndef ILLUMOS
304 static int
305 qede_rx_ring_intr_enable(mac_ring_driver_t rh)
306 #else
307 static int
308 qede_rx_ring_intr_enable(mac_intr_handle_t rh)
309 #endif
310 {
311 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
312
313 mutex_enter(&fp->qede->drv_lock);
314 if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) {
315 mutex_exit(&fp->qede->drv_lock);
316 return (DDI_FAILURE);
317 }
318
319 fp->rx_ring->intrEnableCnt++;
320 qede_enable_hw_intr(fp);
321 fp->disabled_by_poll = 0;
322 mutex_exit(&fp->qede->drv_lock);
323
324 return (DDI_SUCCESS);
325 }
326
327 #ifndef ILLUMOS
328 static int
329 qede_rx_ring_intr_disable(mac_ring_driver_t rh)
330 #else
331 static int
332 qede_rx_ring_intr_disable(mac_intr_handle_t rh)
333 #endif
334 {
335 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
336
337 mutex_enter(&fp->qede->drv_lock);
338 if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) {
339 mutex_exit(&fp->qede->drv_lock);
340 return (DDI_FAILURE);
341 }
342 fp->rx_ring->intrDisableCnt++;
343 qede_disable_hw_intr(fp);
344 fp->disabled_by_poll = 1;
345 mutex_exit(&fp->qede->drv_lock);
346 return (DDI_SUCCESS);
347 }
348
349 static int
350 qede_rx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val)
351 {
352
353 int ret = 0;
354
355 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
356 qede_t *qede = fp->qede;
357 qede_rx_ring_t *rx_ring = fp->rx_ring;
358
359 if (qede->qede_state == QEDE_STATE_SUSPENDED) {
360 return (ECANCELED);
361 }
362
363 switch (stat) {
364 case MAC_STAT_RBYTES:
365 *val = rx_ring->rx_byte_cnt;
366 break;
367 case MAC_STAT_IPACKETS:
368 *val = rx_ring->rx_pkt_cnt;
369 break;
370 default:
371 *val = 0;
372 ret = ENOTSUP;
373 break;
374 }
375
376 return (ret);
377 }
378
379 static int
380 qede_get_global_ring_index(qede_t *qede, int gindex, int rindex)
381 {
382 qede_fastpath_t *fp;
383 qede_rx_ring_t *rx_ring;
384 int i = 0;
385
386 for (i = 0; i < qede->num_fp; i++) {
387 fp = &qede->fp_array[i];
388 rx_ring = fp->rx_ring;
389
390 if (rx_ring->group_index == gindex) {
391 rindex--;
392 }
393 if (rindex < 0) {
394 return (i);
395 }
396 }
397
398 return (-1);
399 }
400
401 static void
402 qede_rx_ring_stop(mac_ring_driver_t rh)
403 {
404 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
405 qede_rx_ring_t *rx_ring = fp->rx_ring;
406
407 qede_print("!%s(%d): called", __func__,fp->qede->instance);
408 mutex_enter(&fp->fp_lock);
409 rx_ring->mac_ring_started = B_FALSE;
410 mutex_exit(&fp->fp_lock);
411 }
412
413 static int
414 qede_rx_ring_start(mac_ring_driver_t rh, u64 mr_gen_num)
415 {
416 qede_fastpath_t *fp = (qede_fastpath_t *)rh;
417 qede_rx_ring_t *rx_ring = fp->rx_ring;
418
419 qede_print("!%s(%d): called", __func__,fp->qede->instance);
420 mutex_enter(&fp->fp_lock);
421 rx_ring->mr_gen_num = mr_gen_num;
422 rx_ring->mac_ring_started = B_TRUE;
423 rx_ring->intrDisableCnt = 0;
424 rx_ring->intrEnableCnt = 0;
425 fp->disabled_by_poll = 0;
426
427 mutex_exit(&fp->fp_lock);
428
429 return (DDI_SUCCESS);
430 }
431
432 /* Callback function from mac layer to register rings */
433 void
434 qede_fill_ring(void *arg, mac_ring_type_t rtype, const int group_index,
435 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
436 {
437 qede_t *qede = (qede_t *)arg;
438 mac_intr_t *mintr = &infop->mri_intr;
439
440 switch (rtype) {
441 case MAC_RING_TYPE_RX: {
442 /*
443 * Index passed as a param is the ring index within the
444 * given group index. If multiple groups are supported
445 * then need to search into all groups to find out the
446 * global ring index for the passed group relative
447 * ring index
448 */
449 int global_ring_index = qede_get_global_ring_index(qede,
450 group_index, ring_index);
451 qede_fastpath_t *fp;
452 qede_rx_ring_t *rx_ring;
453 int i;
454
455 /*
456 * global_ring_index < 0 means group index passed
457 * was registered by our driver
458 */
459 ASSERT(global_ring_index >= 0);
460
461 if (rh == NULL) {
462 cmn_err(CE_WARN, "!rx ring(%d) ring handle NULL",
463 global_ring_index);
464 }
465
466 fp = &qede->fp_array[global_ring_index];
467 rx_ring = fp->rx_ring;
468 fp->qede = qede;
469
470 rx_ring->mac_ring_handle = rh;
471
472 qede_info(qede, "rx_ring %d mac_ring_handle %p",
473 rx_ring->rss_id, rh);
474
475 /* mri_driver passed as arg to mac_ring* callbacks */
476 infop->mri_driver = (mac_ring_driver_t)fp;
477 /*
478 * mri_start callback will supply a mac rings generation
479 * number which is needed while indicating packets
480 * upstream via mac_ring_rx() call
481 */
482 infop->mri_start = qede_rx_ring_start;
483 infop->mri_stop = qede_rx_ring_stop;
484 infop->mri_poll = qede_rx_ring_poll;
485 infop->mri_stat = qede_rx_ring_stat;
486
487 mintr->mi_handle = (mac_intr_handle_t)fp;
488 mintr->mi_enable = qede_rx_ring_intr_enable;
489 mintr->mi_disable = qede_rx_ring_intr_disable;
490 if (qede->intr_ctx.intr_type_in_use &
491 (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) {
492 mintr->mi_ddi_handle =
493 qede->intr_ctx.
494 intr_hdl_array[global_ring_index + qede->num_hwfns];
495 }
496 break;
497 }
498 case MAC_RING_TYPE_TX: {
499 qede_fastpath_t *fp;
500 qede_tx_ring_t *tx_ring;
501 int i, tc;
502
503 ASSERT(ring_index < qede->num_fp);
504
505 fp = &qede->fp_array[ring_index];
506 fp->qede = qede;
507 tx_ring = fp->tx_ring[0];
508 tx_ring->mac_ring_handle = rh;
509 qede_info(qede, "tx_ring %d mac_ring_handle %p",
510 tx_ring->tx_queue_index, rh);
511 infop->mri_driver = (mac_ring_driver_t)fp;
512 infop->mri_start = NULL;
513 infop->mri_stop = NULL;
514 infop->mri_tx = qede_ring_tx;
515 infop->mri_stat = qede_tx_ring_stat;
516 if (qede->intr_ctx.intr_type_in_use &
517 (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) {
518 mintr->mi_ddi_handle =
519 qede->intr_ctx.
520 intr_hdl_array[ring_index + qede->num_hwfns];
521 }
522 break;
523 }
524 default:
525 break;
526 }
527 }
528
529 /*
530 * Callback function from mac layer to register group
531 */
532 void
533 qede_fill_group(void *arg, mac_ring_type_t rtype, const int index,
534 mac_group_info_t *infop, mac_group_handle_t gh)
535 {
536 qede_t *qede = (qede_t *)arg;
537
538 switch (rtype) {
539 case MAC_RING_TYPE_RX: {
540 qede_mac_group_t *rx_group;
541
542 rx_group = &qede->rx_groups[index];
543 rx_group->group_handle = gh;
544 rx_group->group_index = index;
545 rx_group->qede = qede;
546 infop->mgi_driver = (mac_group_driver_t)rx_group;
547 infop->mgi_start = NULL;
548 infop->mgi_stop = NULL;
549 #ifndef ILLUMOS
550 infop->mgi_addvlan = NULL;
551 infop->mgi_remvlan = NULL;
552 infop->mgi_getsriov_info = NULL;
553 infop->mgi_setmtu = NULL;
554 #endif
555 infop->mgi_addmac = qede_add_mac_addr;
556 infop->mgi_remmac = qede_rem_mac_addr;
557 infop->mgi_count = qede->num_fp;
558 #ifndef ILLUMOS
559 if (index == 0) {
560 infop->mgi_flags = MAC_GROUP_DEFAULT;
561 }
562 #endif
563
564 break;
565 }
566 case MAC_RING_TYPE_TX: {
567 qede_mac_group_t *tx_group;
568
569 tx_group = &qede->tx_groups[index];
570 tx_group->group_handle = gh;
571 tx_group->group_index = index;
572 tx_group->qede = qede;
573
574 infop->mgi_driver = (mac_group_driver_t)tx_group;
575 infop->mgi_start = NULL;
576 infop->mgi_stop = NULL;
577 infop->mgi_addmac = NULL;
578 infop->mgi_remmac = NULL;
579 #ifndef ILLUMOS
580 infop->mgi_addvlan = NULL;
581 infop->mgi_remvlan = NULL;
582 infop->mgi_setmtu = NULL;
583 infop->mgi_getsriov_info = NULL;
584 #endif
585
586 infop->mgi_count = qede->num_fp;
587
588 #ifndef ILLUMOS
589 if (index == 0) {
590 infop->mgi_flags = MAC_GROUP_DEFAULT;
591 }
592 #endif
593 break;
594 }
595 default:
596 break;
597 }
598 }
599
600 #ifdef ILLUMOS
601 static int
602 qede_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop)
603 {
604 qede_t *qede = arg;
605 struct ecore_dev *edev = &qede->edev;
606 struct ecore_hwfn *hwfn;
607 struct ecore_ptt *ptt;
608 uint32_t transceiver_state;
609
610 if (id >= edev->num_hwfns || arg == NULL || infop == NULL)
611 return (EINVAL);
612
613 hwfn = &edev->hwfns[id];
614 ptt = ecore_ptt_acquire(hwfn);
615 if (ptt == NULL) {
616 return (EIO);
617 }
618 /*
619 * Use the underlying raw API to get this information. While the
620 * ecore_phy routines have some ways of getting to this information, it
621 * ends up writing the raw data as ASCII characters which doesn't help
622 * us one bit.
623 */
624 transceiver_state = ecore_rd(hwfn, ptt, hwfn->mcp_info->port_addr +
625 offsetof(struct public_port, transceiver_data));
626 transceiver_state = GET_FIELD(transceiver_state, ETH_TRANSCEIVER_STATE);
627 ecore_ptt_release(hwfn, ptt);
628
629 if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) != 0) {
630 mac_transceiver_info_set_present(infop, B_TRUE);
631 /*
632 * Based on our testing, the ETH_TRANSCEIVER_STATE_VALID flag is
633 * not set, so we cannot rely on it. Instead, we have found that
634 * the ETH_TRANSCEIVER_STATE_UPDATING will be set when we cannot
635 * use the transceiver.
636 */
637 if ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) != 0) {
638 mac_transceiver_info_set_usable(infop, B_FALSE);
639 } else {
640 mac_transceiver_info_set_usable(infop, B_TRUE);
641 }
642 } else {
643 mac_transceiver_info_set_present(infop, B_FALSE);
644 mac_transceiver_info_set_usable(infop, B_FALSE);
645 }
646
647 return (0);
648 }
649
650 static int
651 qede_transceiver_read(void *arg, uint_t id, uint_t page, void *buf,
652 size_t nbytes, off_t offset, size_t *nread)
653 {
654 qede_t *qede = arg;
655 struct ecore_dev *edev = &qede->edev;
656 struct ecore_hwfn *hwfn;
657 uint32_t port, lane;
658 struct ecore_ptt *ptt;
659 enum _ecore_status_t ret;
660
661 if (id >= edev->num_hwfns || buf == NULL || nbytes == 0 || nread == NULL ||
662 (page != 0xa0 && page != 0xa2) || offset < 0)
663 return (EINVAL);
664
665 /*
666 * Both supported pages have a length of 256 bytes, ensure nothing asks
667 * us to go beyond that.
668 */
669 if (nbytes > 256 || offset >= 256 || (offset + nbytes > 256)) {
670 return (EINVAL);
671 }
672
673 hwfn = &edev->hwfns[id];
674 ptt = ecore_ptt_acquire(hwfn);
675 if (ptt == NULL) {
676 return (EIO);
677 }
678
679 ret = ecore_mcp_phy_sfp_read(hwfn, ptt, hwfn->port_id, page, offset,
680 nbytes, buf);
681 ecore_ptt_release(hwfn, ptt);
682 if (ret != ECORE_SUCCESS) {
683 return (EIO);
684 }
685 *nread = nbytes;
686 return (0);
687 }
688 #endif /* ILLUMOS */
689
690
691 static int
692 qede_mac_stats(void * arg,
693 uint_t stat,
694 uint64_t * value)
695 {
696 qede_t * qede = (qede_t *)arg;
697 struct ecore_eth_stats vstats;
698 struct ecore_dev *edev = &qede->edev;
699 struct qede_link_cfg lnkcfg;
700 int rc = 0;
701 qede_fastpath_t *fp = &qede->fp_array[0];
702 qede_rx_ring_t *rx_ring;
703 qede_tx_ring_t *tx_ring;
704
705 if ((qede == NULL) || (value == NULL)) {
706 return EINVAL;
707 }
708
709
710 mutex_enter(&qede->gld_lock);
711
712 if(qede->qede_state != QEDE_STATE_STARTED) {
713 mutex_exit(&qede->gld_lock);
714 return EAGAIN;
715 }
716
717 *value = 0;
718
719 memset(&vstats, 0, sizeof(struct ecore_eth_stats));
720 ecore_get_vport_stats(edev, &vstats);
721
722
723 memset(&qede->curcfg, 0, sizeof(struct qede_link_cfg));
724 qede_get_link_info(&edev->hwfns[0], &qede->curcfg);
725
726
727
728 switch (stat)
729 {
730 case MAC_STAT_IFSPEED:
731 *value = (qede->props.link_speed * 1000000ULL);
732 break;
733 case MAC_STAT_MULTIRCV:
734 *value = vstats.common.rx_mcast_pkts;
735 break;
736 case MAC_STAT_BRDCSTRCV:
737 *value = vstats.common.rx_bcast_pkts;
738 break;
739 case MAC_STAT_MULTIXMT:
740 *value = vstats.common.tx_mcast_pkts;
741 break;
742 case MAC_STAT_BRDCSTXMT:
743 *value = vstats.common.tx_bcast_pkts;
744 break;
745 case MAC_STAT_NORCVBUF:
746 *value = vstats.common.no_buff_discards;
747 break;
748 case MAC_STAT_NOXMTBUF:
749 *value = 0;
750 break;
751 case MAC_STAT_IERRORS:
752 case ETHER_STAT_MACRCV_ERRORS:
753 *value = vstats.common.mac_filter_discards +
754 vstats.common.packet_too_big_discard +
755 vstats.common.rx_crc_errors;
756 break;
757
758 case MAC_STAT_OERRORS:
759 break;
760
761 case MAC_STAT_COLLISIONS:
762 *value = vstats.bb.tx_total_collisions;
763 break;
764
765 case MAC_STAT_RBYTES:
766 *value = vstats.common.rx_ucast_bytes +
767 vstats.common.rx_mcast_bytes +
768 vstats.common.rx_bcast_bytes;
769 break;
770
771 case MAC_STAT_IPACKETS:
772 *value = vstats.common.rx_ucast_pkts +
773 vstats.common.rx_mcast_pkts +
774 vstats.common.rx_bcast_pkts;
775 break;
776
777 case MAC_STAT_OBYTES:
778 *value = vstats.common.tx_ucast_bytes +
779 vstats.common.tx_mcast_bytes +
780 vstats.common.tx_bcast_bytes;
781 break;
782
783 case MAC_STAT_OPACKETS:
784 *value = vstats.common.tx_ucast_pkts +
785 vstats.common.tx_mcast_pkts +
786 vstats.common.tx_bcast_pkts;
787 break;
788
789 case ETHER_STAT_ALIGN_ERRORS:
790 *value = vstats.common.rx_align_errors;
791 break;
792
793 case ETHER_STAT_FCS_ERRORS:
794 *value = vstats.common.rx_crc_errors;
795 break;
796
797 case ETHER_STAT_FIRST_COLLISIONS:
798 break;
799
800 case ETHER_STAT_MULTI_COLLISIONS:
801 break;
802
803 case ETHER_STAT_DEFER_XMTS:
804 break;
805
806 case ETHER_STAT_TX_LATE_COLLISIONS:
807 break;
808
809 case ETHER_STAT_EX_COLLISIONS:
810 break;
811
812 case ETHER_STAT_MACXMT_ERRORS:
813 *value = 0;
814 break;
815
816 case ETHER_STAT_CARRIER_ERRORS:
817 break;
818
819 case ETHER_STAT_TOOLONG_ERRORS:
820 *value = vstats.common.rx_oversize_packets;
821 break;
822
823 #if (MAC_VERSION > 1)
824 case ETHER_STAT_TOOSHORT_ERRORS:
825 *value = vstats.common.rx_undersize_packets;
826 break;
827 #endif
828
829 case ETHER_STAT_XCVR_ADDR:
830 *value = 0;
831 break;
832
833 case ETHER_STAT_XCVR_ID:
834 *value = 0;
835 break;
836
837 case ETHER_STAT_XCVR_INUSE:
838 switch (qede->props.link_speed) {
839 default:
840 *value = XCVR_UNDEFINED;
841 }
842 break;
843 #if (MAC_VERSION > 1)
844 case ETHER_STAT_CAP_10GFDX:
845 *value = 0;
846 break;
847 #endif
848 case ETHER_STAT_CAP_100FDX:
849 *value = 0;
850 break;
851 case ETHER_STAT_CAP_100HDX:
852 *value = 0;
853 break;
854 case ETHER_STAT_CAP_ASMPAUSE:
855 *value = 1;
856 break;
857 case ETHER_STAT_CAP_PAUSE:
858 *value = 1;
859 break;
860 case ETHER_STAT_CAP_AUTONEG:
861 *value = 1;
862 break;
863
864 #if (MAC_VERSION > 1)
865 case ETHER_STAT_CAP_REMFAULT:
866 *value = 0;
867 break;
868 #endif
869
870 #if (MAC_VERSION > 1)
871 case ETHER_STAT_ADV_CAP_10GFDX:
872 *value = 0;
873 break;
874 #endif
875 case ETHER_STAT_ADV_CAP_ASMPAUSE:
876 *value = 1;
877 break;
878
879 case ETHER_STAT_ADV_CAP_PAUSE:
880 *value = 1;
881 break;
882
883 case ETHER_STAT_ADV_CAP_AUTONEG:
884 *value = qede->curcfg.adv_capab.autoneg;
885 break;
886
887 #if (MAC_VERSION > 1)
888 case ETHER_STAT_ADV_REMFAULT:
889 *value = 0;
890 break;
891 #endif
892
893 case ETHER_STAT_LINK_AUTONEG:
894 *value = qede->curcfg.autoneg;
895 break;
896
897 case ETHER_STAT_LINK_DUPLEX:
898 *value = (qede->props.link_duplex == DUPLEX_FULL) ?
899 LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
900 break;
901 /*
902 * Supported speeds. These indicate what hardware is capable of.
903 */
904 case ETHER_STAT_CAP_1000HDX:
905 *value = qede->curcfg.supp_capab.param_1000hdx;
906 break;
907
908 case ETHER_STAT_CAP_1000FDX:
909 *value = qede->curcfg.supp_capab.param_1000fdx;
910 break;
911
912 case ETHER_STAT_CAP_10GFDX:
913 *value = qede->curcfg.supp_capab.param_10000fdx;
914 break;
915
916 case ETHER_STAT_CAP_25GFDX:
917 *value = qede->curcfg.supp_capab.param_25000fdx;
918 break;
919
920 case ETHER_STAT_CAP_40GFDX:
921 *value = qede->curcfg.supp_capab.param_40000fdx;
922 break;
923
924 case ETHER_STAT_CAP_50GFDX:
925 *value = qede->curcfg.supp_capab.param_50000fdx;
926 break;
927
928 case ETHER_STAT_CAP_100GFDX:
929 *value = qede->curcfg.supp_capab.param_100000fdx;
930 break;
931
932 /*
933 * Advertised speeds. These indicate what hardware is currently sending.
934 */
935 case ETHER_STAT_ADV_CAP_1000HDX:
936 *value = qede->curcfg.adv_capab.param_1000hdx;
937 break;
938
939 case ETHER_STAT_ADV_CAP_1000FDX:
940 *value = qede->curcfg.adv_capab.param_1000fdx;
941 break;
942
943 case ETHER_STAT_ADV_CAP_10GFDX:
944 *value = qede->curcfg.adv_capab.param_10000fdx;
945 break;
946
947 case ETHER_STAT_ADV_CAP_25GFDX:
948 *value = qede->curcfg.adv_capab.param_25000fdx;
949 break;
950
951 case ETHER_STAT_ADV_CAP_40GFDX:
952 *value = qede->curcfg.adv_capab.param_40000fdx;
953 break;
954
955 case ETHER_STAT_ADV_CAP_50GFDX:
956 *value = qede->curcfg.adv_capab.param_50000fdx;
957 break;
958
959 case ETHER_STAT_ADV_CAP_100GFDX:
960 *value = qede->curcfg.adv_capab.param_100000fdx;
961 break;
962
963 default:
964 rc = ENOTSUP;
965 }
966
967 mutex_exit(&qede->gld_lock);
968 return (rc);
969 }
970
971 /* (flag) TRUE = on, FALSE = off */
972 static int
973 qede_mac_promiscuous(void *arg,
974 boolean_t on)
975 {
976 qede_t *qede = (qede_t *)arg;
977 qede_print("!%s(%d): called", __func__,qede->instance);
978 int ret = DDI_SUCCESS;
979 enum qede_filter_rx_mode_type mode;
980
981 mutex_enter(&qede->drv_lock);
982
983 if (qede->qede_state == QEDE_STATE_SUSPENDED) {
984 ret = ECANCELED;
985 goto exit;
986 }
987
988 if (on) {
989 qede_info(qede, "Entering promiscuous mode");
990 mode = QEDE_FILTER_RX_MODE_PROMISC;
991 qede->params.promisc_fl = B_TRUE;
992 } else {
993 qede_info(qede, "Leaving promiscuous mode");
994 if(qede->params.multi_promisc_fl == B_TRUE) {
995 mode = QEDE_FILTER_RX_MODE_MULTI_PROMISC;
996 } else {
997 mode = QEDE_FILTER_RX_MODE_REGULAR;
998 }
999 qede->params.promisc_fl = B_FALSE;
1000 }
1001
1002 ret = qede_set_filter_rx_mode(qede, mode);
1003
1004 exit:
1005 mutex_exit(&qede->drv_lock);
1006 return (ret);
1007 }
1008
1009 int qede_set_rx_mac_mcast(qede_t *qede, enum ecore_filter_opcode opcode,
1010 uint8_t *mac, int mc_cnt)
1011 {
1012 struct ecore_filter_mcast cmd;
1013 int i;
1014 memset(&cmd, 0, sizeof(cmd));
1015 cmd.opcode = opcode;
1016 cmd.num_mc_addrs = mc_cnt;
1017
1018 for (i = 0; i < mc_cnt; i++, mac += ETH_ALLEN) {
1019 COPY_ETH_ADDRESS(mac, cmd.mac[i]);
1020 }
1021
1022
1023 return (ecore_filter_mcast_cmd(&qede->edev, &cmd,
1024 ECORE_SPQ_MODE_CB, NULL));
1025
1026 }
1027
1028 int
1029 qede_set_filter_rx_mode(qede_t * qede, enum qede_filter_rx_mode_type type)
1030 {
1031 struct ecore_filter_accept_flags flg;
1032
1033 memset(&flg, 0, sizeof(flg));
1034
1035 flg.update_rx_mode_config = 1;
1036 flg.update_tx_mode_config = 1;
1037 flg.rx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
1038 ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST;
1039 flg.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
1040 ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST;
1041
1042 if (type == QEDE_FILTER_RX_MODE_PROMISC)
1043 flg.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED |
1044 ECORE_ACCEPT_MCAST_UNMATCHED;
1045 else if (type == QEDE_FILTER_RX_MODE_MULTI_PROMISC)
1046 flg.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
1047 qede_info(qede, "rx_mode rx_filter=0x%x tx_filter=0x%x type=0x%x\n",
1048 flg.rx_accept_filter, flg.tx_accept_filter, type);
1049 return (ecore_filter_accept_cmd(&qede->edev, 0, flg,
1050 0, /* update_accept_any_vlan */
1051 0, /* accept_any_vlan */
1052 ECORE_SPQ_MODE_CB, NULL));
1053 }
1054
1055 int
1056 qede_multicast(qede_t *qede, boolean_t flag, const uint8_t *ptr_mcaddr)
1057 {
1058 int i, ret = DDI_SUCCESS;
1059 qede_mcast_list_entry_t *ptr_mlist;
1060 qede_mcast_list_entry_t *ptr_entry;
1061 int mc_cnt;
1062 unsigned char *mc_macs, *tmpmc;
1063 size_t size;
1064 boolean_t mcmac_exists = B_FALSE;
1065 enum qede_filter_rx_mode_type mode;
1066
1067 if (!ptr_mcaddr) {
1068 cmn_err(CE_NOTE, "Removing all multicast");
1069 } else {
1070 cmn_err(CE_NOTE,
1071 "qede=%p %s multicast: %02x:%02x:%02x:%02x:%02x:%02x",
1072 qede, (flag) ? "Adding" : "Removing", ptr_mcaddr[0],
1073 ptr_mcaddr[1],ptr_mcaddr[2],ptr_mcaddr[3],ptr_mcaddr[4],
1074 ptr_mcaddr[5]);
1075 }
1076
1077
1078 if (flag && (ptr_mcaddr == NULL)) {
1079 cmn_err(CE_WARN, "ERROR: Multicast address not specified");
1080 return EINVAL;
1081 }
1082
1083
1084 /* exceeds addition of mcaddr above limit */
1085 if (flag && (qede->mc_cnt >= MAX_MC_SOFT_LIMIT)) {
1086 qede_info(qede, "Cannot add more than MAX_MC_SOFT_LIMIT");
1087 return ENOENT;
1088 }
1089
1090 size = MAX_MC_SOFT_LIMIT * ETH_ALLEN;
1091
1092 mc_macs = kmem_zalloc(size, KM_NOSLEEP);
1093 if (!mc_macs) {
1094 cmn_err(CE_WARN, "ERROR: Failed to allocate for mc_macs");
1095 return EINVAL;
1096 }
1097
1098 tmpmc = mc_macs;
1099
1100 /* remove all multicast - as flag not set and mcaddr not specified*/
1101 if (!flag && (ptr_mcaddr == NULL)) {
1102 QEDE_LIST_FOR_EACH_ENTRY(ptr_entry,
1103 &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry)
1104 {
1105 if (ptr_entry != NULL) {
1106 QEDE_LIST_REMOVE(&ptr_entry->mclist_entry,
1107 &qede->mclist.head);
1108 kmem_free(ptr_entry,
1109 sizeof (qede_mcast_list_entry_t) + ETH_ALLEN);
1110 }
1111 }
1112
1113 ret = qede_set_rx_mac_mcast(qede,
1114 ECORE_FILTER_REMOVE, mc_macs, 1);
1115 qede->mc_cnt = 0;
1116 goto exit;
1117 }
1118
1119 QEDE_LIST_FOR_EACH_ENTRY(ptr_entry,
1120 &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry)
1121 {
1122 if ((ptr_entry != NULL) &&
1123 IS_ETH_ADDRESS_EQUAL(ptr_mcaddr, ptr_entry->mac)) {
1124 mcmac_exists = B_TRUE;
1125 break;
1126 }
1127 }
1128 if (flag && mcmac_exists) {
1129 ret = DDI_SUCCESS;
1130 goto exit;
1131 } else if (!flag && !mcmac_exists) {
1132 ret = DDI_SUCCESS;
1133 goto exit;
1134 }
1135
1136 if (flag) {
1137 ptr_entry = kmem_zalloc((sizeof (qede_mcast_list_entry_t) +
1138 ETH_ALLEN), KM_NOSLEEP);
1139 ptr_entry->mac = (uint8_t *)ptr_entry +
1140 sizeof (qede_mcast_list_entry_t);
1141 COPY_ETH_ADDRESS(ptr_mcaddr, ptr_entry->mac);
1142 QEDE_LIST_ADD(&ptr_entry->mclist_entry, &qede->mclist.head);
1143 } else {
1144 QEDE_LIST_REMOVE(&ptr_entry->mclist_entry, &qede->mclist.head);
1145 kmem_free(ptr_entry, sizeof(qede_mcast_list_entry_t) +
1146 ETH_ALLEN);
1147 }
1148
1149 mc_cnt = 0;
1150 QEDE_LIST_FOR_EACH_ENTRY(ptr_entry, &qede->mclist.head,
1151 qede_mcast_list_entry_t, mclist_entry) {
1152 COPY_ETH_ADDRESS(ptr_entry->mac, tmpmc);
1153 tmpmc += ETH_ALLEN;
1154 mc_cnt++;
1155 }
1156 qede->mc_cnt = mc_cnt;
1157 if (mc_cnt <=64) {
1158 ret = qede_set_rx_mac_mcast(qede, ECORE_FILTER_ADD,
1159 (unsigned char *)mc_macs, mc_cnt);
1160 if ((qede->params.multi_promisc_fl == B_TRUE) &&
1161 (qede->params.promisc_fl == B_FALSE)) {
1162 mode = QEDE_FILTER_RX_MODE_REGULAR;
1163 ret = qede_set_filter_rx_mode(qede, mode);
1164 }
1165 qede->params.multi_promisc_fl = B_FALSE;
1166 } else {
1167 if ((qede->params.multi_promisc_fl == B_FALSE) &&
1168 (qede->params.promisc_fl == B_FALSE)) {
1169 ret = qede_set_filter_rx_mode(qede,
1170 QEDE_FILTER_RX_MODE_MULTI_PROMISC);
1171 }
1172 qede->params.multi_promisc_fl = B_TRUE;
1173 qede_info(qede, "mode is MULTI_PROMISC");
1174 }
1175 exit:
1176 kmem_free(mc_macs, size);
1177 qede_info(qede, "multicast ret %d mc_cnt %d\n", ret, qede->mc_cnt);
1178 return (ret);
1179 }
1180
1181 /*
1182 * This function is used to enable or disable multicast packet reception for
1183 * particular multicast addresses.
1184 * (flag) TRUE = add, FALSE = remove
1185 */
1186 static int
1187 qede_mac_multicast(void *arg,
1188 boolean_t flag,
1189 const uint8_t * mcast_addr)
1190 {
1191 qede_t *qede = (qede_t *)arg;
1192 int ret = DDI_SUCCESS;
1193
1194
1195 mutex_enter(&qede->gld_lock);
1196 if(qede->qede_state != QEDE_STATE_STARTED) {
1197 mutex_exit(&qede->gld_lock);
1198 return (EAGAIN);
1199 }
1200 ret = qede_multicast(qede, flag, mcast_addr);
1201
1202 mutex_exit(&qede->gld_lock);
1203
1204 return (ret);
1205 }
1206 int
1207 qede_clear_filters(qede_t *qede)
1208 {
1209 int ret = 0;
1210 int i;
1211 if ((qede->params.promisc_fl == B_TRUE) ||
1212 (qede->params.multi_promisc_fl == B_TRUE)) {
1213 ret = qede_set_filter_rx_mode(qede,
1214 QEDE_FILTER_RX_MODE_REGULAR);
1215 if (ret) {
1216 qede_info(qede,
1217 "qede_clear_filters failed to set rx_mode");
1218 }
1219 }
1220 for (i=0; i < qede->ucst_total; i++)
1221 {
1222 if (qede->ucst_mac[i].set) {
1223 qede_rem_macaddr(qede,
1224 qede->ucst_mac[i].mac_addr.ether_addr_octet);
1225 }
1226 }
1227 qede_multicast(qede, B_FALSE, NULL);
1228 return (ret);
1229 }
1230
1231
1232 #ifdef NO_CROSSBOW
1233 static int
1234 qede_mac_unicast(void *arg,
1235 const uint8_t * mac_addr)
1236 {
1237 qede_t *qede = (qede_t *)arg;
1238 return 0;
1239 }
1240
1241
1242 static mblk_t *
1243 qede_mac_tx(void *arg,
1244 mblk_t * mblk)
1245 {
1246 qede_t *qede = (qede_t *)arg;
1247 qede_fastpath_t *fp = &qede->fp_array[0];
1248
1249 mblk = qede_ring_tx((void *)fp, mblk);
1250
1251 return (mblk);
1252 }
1253 #endif /* NO_CROSSBOW */
1254
1255
1256 static lb_property_t loopmodes[] = {
1257 { normal, "normal", QEDE_LOOP_NONE },
1258 { internal, "internal", QEDE_LOOP_INTERNAL },
1259 { external, "external", QEDE_LOOP_EXTERNAL },
1260 };
1261
1262 /*
1263 * Set Loopback mode
1264 */
1265
1266 static enum ioc_reply
1267 qede_set_loopback_mode(qede_t *qede, uint32_t mode)
1268 {
1269 int i = 0;
1270 struct ecore_dev *edev = &qede->edev;
1271 struct ecore_hwfn *hwfn;
1272 struct ecore_ptt *ptt = NULL;
1273 struct ecore_mcp_link_params *link_params;
1274
1275 hwfn = &edev->hwfns[0];
1276 link_params = ecore_mcp_get_link_params(hwfn);
1277 ptt = ecore_ptt_acquire(hwfn);
1278
1279 switch(mode) {
1280 default:
1281 qede_info(qede, "unknown loopback mode !!");
1282 ecore_ptt_release(hwfn, ptt);
1283 return IOC_INVAL;
1284
1285 case QEDE_LOOP_NONE:
1286 ecore_mcp_set_link(hwfn, ptt, 0);
1287
1288 while (qede->params.link_state && i < 5000) {
1289 OSAL_MSLEEP(1);
1290 i++;
1291 }
1292 i = 0;
1293
1294 link_params->loopback_mode = ETH_LOOPBACK_NONE;
1295 qede->loop_back_mode = QEDE_LOOP_NONE;
1296 (void) ecore_mcp_set_link(hwfn, ptt, 1);
1297 ecore_ptt_release(hwfn, ptt);
1298
1299 while (!qede->params.link_state && i < 5000) {
1300 OSAL_MSLEEP(1);
1301 i++;
1302 }
1303 return IOC_REPLY;
1304
1305 case QEDE_LOOP_INTERNAL:
1306 qede_print("!%s(%d) : loopback mode (INTERNAL) is set!",
1307 __func__, qede->instance);
1308 ecore_mcp_set_link(hwfn, ptt, 0);
1309
1310 while(qede->params.link_state && i < 5000) {
1311 OSAL_MSLEEP(1);
1312 i++;
1313 }
1314 i = 0;
1315 link_params->loopback_mode = ETH_LOOPBACK_INT_PHY;
1316 qede->loop_back_mode = QEDE_LOOP_INTERNAL;
1317 (void) ecore_mcp_set_link(hwfn, ptt, 1);
1318 ecore_ptt_release(hwfn, ptt);
1319
1320 while(!qede->params.link_state && i < 5000) {
1321 OSAL_MSLEEP(1);
1322 i++;
1323 }
1324 return IOC_REPLY;
1325
1326 case QEDE_LOOP_EXTERNAL:
1327 qede_print("!%s(%d) : External loopback mode is not supported",
1328 __func__, qede->instance);
1329 ecore_ptt_release(hwfn, ptt);
1330 return IOC_INVAL;
1331 }
1332 }
1333
1334 static int
1335 qede_ioctl_pcicfg_rd(qede_t *qede, u32 addr, void *data,
1336 int len)
1337 {
1338 u32 crb, actual_crb;
1339 uint32_t ret = 0;
1340 int cap_offset = 0, cap_id = 0, next_cap = 0;
1341 ddi_acc_handle_t pci_cfg_handle = qede->pci_cfg_handle;
1342 qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data;
1343
1344 cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR);
1345 while (cap_offset != 0) {
1346 /* Check for an invalid PCI read. */
1347 if (cap_offset == PCI_EINVAL8) {
1348 return DDI_FAILURE;
1349 }
1350 cap_id = pci_config_get8(pci_cfg_handle, cap_offset);
1351 if (cap_id == PCI_CAP_ID_PCI_E) {
1352 /* PCIe expr capab struct found */
1353 break;
1354 } else {
1355 next_cap = pci_config_get8(pci_cfg_handle,
1356 cap_offset + 1);
1357 cap_offset = next_cap;
1358 }
1359 }
1360
1361 switch (len) {
1362 case 1:
1363 ret = pci_config_get8(qede->pci_cfg_handle, addr);
1364 (void) memcpy(data, &ret, sizeof(uint8_t));
1365 break;
1366 case 2:
1367 ret = pci_config_get16(qede->pci_cfg_handle, addr);
1368 (void) memcpy(data, &ret, sizeof(uint16_t));
1369 break;
1370 case 4:
1371 ret = pci_config_get32(qede->pci_cfg_handle, addr);
1372 (void) memcpy(data, &ret, sizeof(uint32_t));
1373 break;
1374 default:
1375 cmn_err(CE_WARN, "bad length for pci config read\n");
1376 return (1);
1377 }
1378 return (0);
1379 }
1380
1381 static int
1382 qede_ioctl_pcicfg_wr(qede_t *qede, u32 addr, void *data,
1383 int len)
1384 {
1385 uint16_t ret = 0;
1386 int cap_offset = 0, cap_id = 0, next_cap = 0;
1387 qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data;
1388 ddi_acc_handle_t pci_cfg_handle = qede->pci_cfg_handle;
1389 #if 1
1390 cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR);
1391 while (cap_offset != 0) {
1392 cap_id = pci_config_get8(pci_cfg_handle, cap_offset);
1393 if (cap_id == PCI_CAP_ID_PCI_E) {
1394 /* PCIe expr capab struct found */
1395 break;
1396 } else {
1397 next_cap = pci_config_get8(pci_cfg_handle,
1398 cap_offset + 1);
1399 cap_offset = next_cap;
1400 }
1401 }
1402 #endif
1403
1404 switch(len) {
1405 case 1:
1406 pci_config_put8(qede->pci_cfg_handle, addr,
1407 *(char *)&(data));
1408 break;
1409 case 2:
1410 ret = pci_config_get16(qede->pci_cfg_handle, addr);
1411 ret = ret | *(uint16_t *)data1->uabc;
1412
1413 pci_config_put16(qede->pci_cfg_handle, addr,
1414 ret);
1415 break;
1416 case 4:
1417 pci_config_put32(qede->pci_cfg_handle, addr, *(uint32_t *)data1->uabc);
1418 break;
1419
1420 default:
1421 return (1);
1422 }
1423 return (0);
1424 }
1425
1426 static int
1427 qede_ioctl_rd_wr_reg(qede_t *qede, void *data)
1428 {
1429 struct ecore_hwfn *p_hwfn;
1430 struct ecore_dev *edev = &qede->edev;
1431 struct ecore_ptt *ptt;
1432 qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data;
1433 uint32_t ret = 0;
1434 uint8_t cmd = (uint8_t) data1->unused1;
1435 uint32_t addr = data1->off;
1436 uint32_t val = *(uint32_t *)&data1->uabc[1];
1437 uint32_t hwfn_index = *(uint32_t *)&data1->uabc[5];
1438 uint32_t *reg_addr;
1439
1440 if (hwfn_index > qede->num_hwfns) {
1441 cmn_err(CE_WARN, "invalid hwfn index from application\n");
1442 return (EINVAL);
1443 }
1444 p_hwfn = &edev->hwfns[hwfn_index];
1445
1446 switch(cmd) {
1447 case QEDE_REG_READ:
1448 ret = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, addr);
1449 (void) memcpy(data1->uabc, &ret, sizeof(uint32_t));
1450 break;
1451
1452 case QEDE_REG_WRITE:
1453 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, addr, val);
1454 break;
1455
1456 default:
1457 cmn_err(CE_WARN,
1458 "wrong command in register read/write from application\n");
1459 break;
1460 }
1461 return (ret);
1462 }
1463
1464 static int
1465 qede_ioctl_rd_wr_nvram(qede_t *qede, mblk_t *mp)
1466 {
1467 qede_nvram_data_t *data1 = (qede_nvram_data_t *)(mp->b_cont->b_rptr);
1468 qede_nvram_data_t *data2, *next_data;
1469 struct ecore_dev *edev = &qede->edev;
1470 uint32_t hdr_size = 24, bytes_to_copy, copy_len = 0;
1471 uint32_t copy_len1 = 0;
1472 uint32_t addr = data1->off;
1473 uint32_t size = data1->size, i, buf_size;
1474 uint8_t cmd, cmd2;
1475 uint8_t *buf, *tmp_buf;
1476 mblk_t *mp1;
1477
1478 cmd = (uint8_t)data1->unused1;
1479
1480 switch(cmd) {
1481 case QEDE_NVRAM_CMD_READ:
1482 buf = kmem_zalloc(size, GFP_KERNEL);
1483 if(buf == NULL) {
1484 cmn_err(CE_WARN, "memory allocation failed"
1485 " in nvram read ioctl\n");
1486 return (DDI_FAILURE);
1487 }
1488 (void) ecore_mcp_nvm_read(edev, addr, buf, data1->size);
1489
1490 copy_len = (MBLKL(mp->b_cont)) - hdr_size;
1491 if(copy_len > size) {
1492 (void) memcpy(data1->uabc, buf, size);
1493 kmem_free(buf, size);
1494 //OSAL_FREE(edev, buf);
1495 break;
1496 }
1497 (void) memcpy(data1->uabc, buf, copy_len);
1498 bytes_to_copy = size - copy_len;
1499 tmp_buf = ((uint8_t *)buf) + copy_len;
1500 copy_len1 = copy_len;
1501 mp1 = mp->b_cont;
1502 mp1 = mp1->b_cont;
1503
1504 while (mp1) {
1505 copy_len = MBLKL(mp1);
1506 if(mp1->b_cont == NULL) {
1507 copy_len = MBLKL(mp1) - 4;
1508 }
1509 data2 = (qede_nvram_data_t *)mp1->b_rptr;
1510 if (copy_len > bytes_to_copy) {
1511 (void) memcpy(data2->uabc, tmp_buf,
1512 bytes_to_copy);
1513 kmem_free(buf, size);
1514 //OSAL_FREE(edev, buf);
1515 break;
1516 }
1517 (void) memcpy(data2->uabc, tmp_buf, copy_len);
1518 tmp_buf = tmp_buf + copy_len;
1519 copy_len += copy_len;
1520 mp1 = mp1->b_cont;
1521 bytes_to_copy = bytes_to_copy - copy_len;
1522 }
1523
1524 kmem_free(buf, size);
1525 //OSAL_FREE(edev, buf);
1526 break;
1527
1528 case QEDE_NVRAM_CMD_WRITE:
1529 cmd2 = (uint8_t )data1->cmd2;
1530 size = data1->size;
1531 addr = data1->off;
1532 buf_size = size; //data1->buf_size;
1533 //buf_size = data1->buf_size;
1534
1535 switch(cmd2){
1536 case START_NVM_WRITE:
1537 buf = kmem_zalloc(size, GFP_KERNEL);
1538 //buf = qede->reserved_buf;
1539 qede->nvm_buf_size = data1->size;
1540 if(buf == NULL) {
1541 cmn_err(CE_WARN,
1542 "memory allocation failed in START_NVM_WRITE\n");
1543 return DDI_FAILURE;
1544 }
1545 qede->nvm_buf_start = buf;
1546 cmn_err(CE_NOTE,
1547 "buf = %p, size = %x\n", qede->nvm_buf_start, size);
1548 qede->nvm_buf = buf;
1549 qede->copy_len = 0;
1550 //tmp_buf = buf + addr;
1551 break;
1552
1553 case ACCUMULATE_NVM_BUF:
1554 tmp_buf = qede->nvm_buf;
1555 copy_len = MBLKL(mp->b_cont) - hdr_size;
1556 if(copy_len > buf_size) {
1557 if (buf_size < qede->nvm_buf_size) {
1558 (void) memcpy(tmp_buf, data1->uabc, buf_size);
1559 qede->copy_len = qede->copy_len +
1560 buf_size;
1561 } else {
1562 (void) memcpy(tmp_buf,
1563 data1->uabc, qede->nvm_buf_size);
1564 qede->copy_len =
1565 qede->copy_len + qede->nvm_buf_size;
1566 }
1567 tmp_buf = tmp_buf + buf_size;
1568 qede->nvm_buf = tmp_buf;
1569 //qede->copy_len = qede->copy_len + buf_size;
1570 cmn_err(CE_NOTE,
1571 "buf_size from app = %x\n", copy_len);
1572 break;
1573 }
1574 (void) memcpy(tmp_buf, data1->uabc, copy_len);
1575 tmp_buf = tmp_buf + copy_len;
1576 bytes_to_copy = buf_size - copy_len;
1577 mp1 = mp->b_cont;
1578 mp1 = mp1->b_cont;
1579 copy_len1 = copy_len;
1580
1581 while (mp1) {
1582 copy_len = MBLKL(mp1);
1583 if (mp1->b_cont == NULL) {
1584 copy_len = MBLKL(mp1) - 4;
1585 }
1586 next_data = (qede_nvram_data_t *) mp1->b_rptr;
1587 if (copy_len > bytes_to_copy){
1588 (void) memcpy(tmp_buf, next_data->uabc,
1589 bytes_to_copy);
1590 qede->copy_len = qede->copy_len +
1591 bytes_to_copy;
1592 break;
1593 }
1594 (void) memcpy(tmp_buf, next_data->uabc,
1595 copy_len);
1596 qede->copy_len = qede->copy_len + copy_len;
1597 tmp_buf = tmp_buf + copy_len;
1598 copy_len = copy_len1 + copy_len;
1599 bytes_to_copy = bytes_to_copy - copy_len;
1600 mp1 = mp1->b_cont;
1601 }
1602 qede->nvm_buf = tmp_buf;
1603 break;
1604
1605 case STOP_NVM_WRITE:
1606 //qede->nvm_buf = tmp_buf;
1607 break;
1608 case READ_BUF:
1609 tmp_buf = (uint8_t *)qede->nvm_buf_start;
1610 for(i = 0; i < size ; i++){
1611 cmn_err(CE_NOTE,
1612 "buff (%d) : %d\n", i, *tmp_buf);
1613 tmp_buf ++;
1614 }
1615 break;
1616 }
1617 break;
1618 case QEDE_NVRAM_CMD_PUT_FILE_DATA:
1619 tmp_buf = qede->nvm_buf_start;
1620 (void) ecore_mcp_nvm_write(edev, ECORE_PUT_FILE_DATA,
1621 addr, tmp_buf, size);
1622 kmem_free(qede->nvm_buf_start, size);
1623 //OSAL_FREE(edev, tmp_buf);
1624 cmn_err(CE_NOTE, "total size = %x, copied size = %x\n",
1625 qede->nvm_buf_size, qede->copy_len);
1626 tmp_buf = NULL;
1627 qede->nvm_buf = NULL;
1628 qede->nvm_buf_start = NULL;
1629 break;
1630
1631 case QEDE_NVRAM_CMD_SET_SECURE_MODE:
1632 (void) ecore_mcp_nvm_set_secure_mode(edev, addr);
1633 break;
1634
1635 case QEDE_NVRAM_CMD_DEL_FILE:
1636 (void) ecore_mcp_nvm_del_file(edev, addr);
1637 break;
1638
1639 case QEDE_NVRAM_CMD_PUT_FILE_BEGIN:
1640 (void) ecore_mcp_nvm_put_file_begin(edev, addr);
1641 break;
1642
1643 case QEDE_NVRAM_CMD_GET_NVRAM_RESP:
1644 buf = kmem_zalloc(size, KM_SLEEP);
1645 (void) ecore_mcp_nvm_resp(edev, buf);
1646 (void)memcpy(data1->uabc, buf, size);
1647 kmem_free(buf, size);
1648 break;
1649
1650 default:
1651 cmn_err(CE_WARN,
1652 "wrong command in NVRAM read/write from application\n");
1653 break;
1654 }
1655 return (DDI_SUCCESS);
1656 }
1657
1658 static int
1659 qede_get_func_info(qede_t *qede, void *data)
1660 {
1661 qede_link_output_t link_op;
1662 qede_func_info_t func_info;
1663 qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data;
1664 struct ecore_dev *edev = &qede->edev;
1665 struct ecore_hwfn *hwfn;
1666 struct ecore_mcp_link_params params;
1667 struct ecore_mcp_link_state link;
1668
1669 hwfn = &edev->hwfns[0];
1670
1671 if(hwfn == NULL){
1672 cmn_err(CE_WARN, "(%s) : cannot acquire hwfn\n",
1673 __func__);
1674 return (DDI_FAILURE);
1675 }
1676 memcpy(¶ms, &hwfn->mcp_info->link_input, sizeof(params));
1677 memcpy(&link, &hwfn->mcp_info->link_output, sizeof(link));
1678
1679 if(link.link_up) {
1680 link_op.link_up = true;
1681 }
1682
1683 link_op.supported_caps = SUPPORTED_FIBRE;
1684 if(params.speed.autoneg) {
1685 link_op.supported_caps |= SUPPORTED_Autoneg;
1686 }
1687
1688 if(params.pause.autoneg ||
1689 (params.pause.forced_rx && params.pause.forced_tx)) {
1690 link_op.supported_caps |= SUPPORTED_Asym_Pause;
1691 }
1692
1693 if (params.pause.autoneg || params.pause.forced_rx ||
1694 params.pause.forced_tx) {
1695 link_op.supported_caps |= SUPPORTED_Pause;
1696 }
1697
1698 if (params.speed.advertised_speeds &
1699 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) {
1700 link_op.supported_caps |= SUPPORTED_1000baseT_Half |
1701 SUPPORTED_1000baseT_Full;
1702 }
1703
1704 if (params.speed.advertised_speeds &
1705 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) {
1706 link_op.supported_caps |= SUPPORTED_10000baseKR_Full;
1707 }
1708
1709 if (params.speed.advertised_speeds &
1710 NVM_CFG1_PORT_DRV_LINK_SPEED_40G) {
1711 link_op.supported_caps |= SUPPORTED_40000baseLR4_Full;
1712 }
1713
1714 link_op.advertised_caps = link_op.supported_caps;
1715
1716 if(link.link_up) {
1717 link_op.speed = link.speed;
1718 } else {
1719 link_op.speed = 0;
1720 }
1721
1722 link_op.duplex = DUPLEX_FULL;
1723 link_op.port = PORT_FIBRE;
1724
1725 link_op.autoneg = params.speed.autoneg;
1726
1727 /* Link partner capabilities */
1728 if (link.partner_adv_speed &
1729 ECORE_LINK_PARTNER_SPEED_1G_HD) {
1730 link_op.lp_caps |= SUPPORTED_1000baseT_Half;
1731 }
1732
1733 if (link.partner_adv_speed &
1734 ECORE_LINK_PARTNER_SPEED_1G_FD) {
1735 link_op.lp_caps |= SUPPORTED_1000baseT_Full;
1736 }
1737
1738 if (link.partner_adv_speed &
1739 ECORE_LINK_PARTNER_SPEED_10G) {
1740 link_op.lp_caps |= SUPPORTED_10000baseKR_Full;
1741 }
1742
1743 if (link.partner_adv_speed &
1744 ECORE_LINK_PARTNER_SPEED_20G) {
1745 link_op.lp_caps |= SUPPORTED_20000baseKR2_Full;
1746 }
1747
1748 if (link.partner_adv_speed &
1749 ECORE_LINK_PARTNER_SPEED_40G) {
1750 link_op.lp_caps |= SUPPORTED_40000baseLR4_Full;
1751 }
1752
1753 if (link.an_complete) {
1754 link_op.lp_caps |= SUPPORTED_Autoneg;
1755 }
1756
1757 if (link.partner_adv_pause) {
1758 link_op.lp_caps |= SUPPORTED_Pause;
1759 }
1760
1761 if (link.partner_adv_pause == ECORE_LINK_PARTNER_ASYMMETRIC_PAUSE ||
1762 link.partner_adv_pause == ECORE_LINK_PARTNER_BOTH_PAUSE) {
1763 link_op.lp_caps |= SUPPORTED_Asym_Pause;
1764 }
1765
1766 func_info.supported = link_op.supported_caps;
1767 func_info.advertising = link_op.advertised_caps;
1768 func_info.speed = link_op.speed;
1769 func_info.duplex = link_op.duplex;
1770 func_info.port = qede->pci_func & 0x1;
1771 func_info.autoneg = link_op.autoneg;
1772
1773 (void) memcpy(data1->uabc, &func_info, sizeof(qede_func_info_t));
1774
1775 return (0);
1776 }
1777
1778 static int
1779 qede_do_ioctl(qede_t *qede, queue_t *q, mblk_t *mp)
1780 {
1781 qede_ioctl_data_t *up_data;
1782 qede_driver_info_t driver_info;
1783 struct ecore_dev *edev = &qede->edev;
1784 struct ecore_hwfn *hwfn;
1785 struct ecore_ptt *ptt = NULL;
1786 struct mcp_file_att attrib;
1787 uint32_t flash_size;
1788 uint32_t mcp_resp, mcp_param, txn_size;
1789 uint32_t cmd, size, ret = 0;
1790 uint64_t off;
1791 int * up_data1;
1792 void * ptr;
1793 mblk_t *mp1 = mp;
1794 char mac_addr[32];
1795
1796 up_data = (qede_ioctl_data_t *)(mp->b_cont->b_rptr);
1797
1798 cmd = up_data->cmd;
1799 off = up_data->off;
1800 size = up_data->size;
1801
1802 switch (cmd) {
1803 case QEDE_DRV_INFO:
1804 hwfn = &edev->hwfns[0];
1805 ptt = ecore_ptt_acquire(hwfn);
1806
1807 snprintf(driver_info.drv_name, MAX_QEDE_NAME_LEN, "%s", "qede");
1808 snprintf(driver_info.drv_version, QEDE_STR_SIZE,
1809 "v:%s", qede->version);
1810 snprintf(driver_info.mfw_version, QEDE_STR_SIZE,
1811 "%s", qede->versionMFW);
1812 snprintf(driver_info.stormfw_version, QEDE_STR_SIZE,
1813 "%s", qede->versionFW);
1814 snprintf(driver_info.bus_info, QEDE_STR_SIZE,
1815 "%s", qede->bus_dev_func);
1816
1817
1818 /*
1819 * calling ecore_mcp_nvm_rd_cmd to find the flash length, i
1820 * 0x08 is equivalent of NVM_TYPE_MFW_TRACE1
1821 */
1822 ecore_mcp_get_flash_size(hwfn, ptt, &flash_size);
1823 driver_info.eeprom_dump_len = flash_size;
1824 (void) memcpy(up_data->uabc, &driver_info,
1825 sizeof (qede_driver_info_t));
1826 up_data->size = sizeof (qede_driver_info_t);
1827
1828 ecore_ptt_release(hwfn, ptt);
1829 break;
1830
1831 case QEDE_RD_PCICFG:
1832 ret = qede_ioctl_pcicfg_rd(qede, off, up_data->uabc, size);
1833 break;
1834
1835 case QEDE_WR_PCICFG:
1836 ret = qede_ioctl_pcicfg_wr(qede, off, up_data, size);
1837 break;
1838
1839 case QEDE_RW_REG:
1840 ret = qede_ioctl_rd_wr_reg(qede, (void *)up_data);
1841 break;
1842
1843 case QEDE_RW_NVRAM:
1844 ret = qede_ioctl_rd_wr_nvram(qede, mp1);
1845 break;
1846
1847 case QEDE_FUNC_INFO:
1848 ret = qede_get_func_info(qede, (void *)up_data);
1849 break;
1850
1851 case QEDE_MAC_ADDR:
1852 snprintf(mac_addr, sizeof(mac_addr),
1853 "%02x:%02x:%02x:%02x:%02x:%02x",
1854 qede->ether_addr[0], qede->ether_addr[1],
1855 qede->ether_addr[2], qede->ether_addr[3],
1856 qede->ether_addr[4], qede->ether_addr[5]);
1857 (void) memcpy(up_data->uabc, &mac_addr, sizeof(mac_addr));
1858 break;
1859
1860 }
1861 //if (cmd == QEDE_RW_NVRAM) {
1862 // miocack (q, mp, (sizeof(qede_ioctl_data_t)), 0);
1863 // return IOC_REPLY;
1864 //}
1865 miocack (q, mp, (sizeof(qede_ioctl_data_t)), ret);
1866 //miocack (q, mp, 0, ret);
1867 return (IOC_REPLY);
1868 }
1869
1870 static void
1871 qede_ioctl(qede_t *qede, int cmd, queue_t *q, mblk_t *mp)
1872 {
1873 void *ptr;
1874
1875 switch(cmd) {
1876 case QEDE_CMD:
1877 (void) qede_do_ioctl(qede, q, mp);
1878 break;
1879 default :
1880 cmn_err(CE_WARN, "qede ioctl command %x not supported\n", cmd);
1881 break;
1882 }
1883 return;
1884 }
1885 enum ioc_reply
1886 qede_loopback_ioctl(qede_t *qede, queue_t *wq, mblk_t *mp,
1887 struct iocblk *iocp)
1888 {
1889 lb_info_sz_t *lb_info_size;
1890 lb_property_t *lb_prop;
1891 uint32_t *lb_mode;
1892 int cmd;
1893
1894 /*
1895 * Validate format of ioctl
1896 */
1897 if(mp->b_cont == NULL) {
1898 return IOC_INVAL;
1899 }
1900
1901 cmd = iocp->ioc_cmd;
1902
1903 switch(cmd) {
1904 default:
1905 qede_print("!%s(%d): unknown ioctl command %x\n",
1906 __func__, qede->instance, cmd);
1907 return IOC_INVAL;
1908 case LB_GET_INFO_SIZE:
1909 if (iocp->ioc_count != sizeof(lb_info_sz_t)) {
1910 qede_info(qede, "error: ioc_count %d, sizeof %d",
1911 iocp->ioc_count, sizeof(lb_info_sz_t));
1912 return IOC_INVAL;
1913 }
1914 lb_info_size = (void *)mp->b_cont->b_rptr;
1915 *lb_info_size = sizeof(loopmodes);
1916 return IOC_REPLY;
1917 case LB_GET_INFO:
1918 if (iocp->ioc_count != sizeof (loopmodes)) {
1919 qede_info(qede, "error: iocp->ioc_count %d, sizepof %d",
1920 iocp->ioc_count, sizeof (loopmodes));
1921 return (IOC_INVAL);
1922 }
1923 lb_prop = (void *)mp->b_cont->b_rptr;
1924 bcopy(loopmodes, lb_prop, sizeof (loopmodes));
1925 return IOC_REPLY;
1926 case LB_GET_MODE:
1927 if (iocp->ioc_count != sizeof (uint32_t)) {
1928 qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n",
1929 iocp->ioc_count, sizeof (uint32_t));
1930 return (IOC_INVAL);
1931 }
1932 lb_mode = (void *)mp->b_cont->b_rptr;
1933 *lb_mode = qede->loop_back_mode;
1934 return IOC_REPLY;
1935 case LB_SET_MODE:
1936 if (iocp->ioc_count != sizeof (uint32_t)) {
1937 qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n",
1938 iocp->ioc_count, sizeof (uint32_t));
1939 return (IOC_INVAL);
1940 }
1941 lb_mode = (void *)mp->b_cont->b_rptr;
1942 return (qede_set_loopback_mode(qede,*lb_mode));
1943 }
1944 }
1945
1946 static void
1947 qede_mac_ioctl(void * arg,
1948 queue_t * wq,
1949 mblk_t * mp)
1950 {
1951 int err, cmd;
1952 qede_t * qede = (qede_t *)arg;
1953 struct iocblk *iocp = (struct iocblk *) (uintptr_t)mp->b_rptr;
1954 enum ioc_reply status = IOC_DONE;
1955 boolean_t need_privilege = B_TRUE;
1956
1957 iocp->ioc_error = 0;
1958 cmd = iocp->ioc_cmd;
1959
1960 mutex_enter(&qede->drv_lock);
1961 if ((qede->qede_state == QEDE_STATE_SUSPENDING) ||
1962 (qede->qede_state == QEDE_STATE_SUSPENDED)) {
1963 mutex_exit(&qede->drv_lock);
1964 miocnak(wq, mp, 0, EINVAL);
1965 return;
1966 }
1967
1968 switch(cmd) {
1969 case QEDE_CMD:
1970 break;
1971 case LB_GET_INFO_SIZE:
1972 case LB_GET_INFO:
1973 case LB_GET_MODE:
1974 need_privilege = B_FALSE;
1975 case LB_SET_MODE:
1976 break;
1977 default:
1978 qede_print("!%s(%d) unknown ioctl command %x\n",
1979 __func__, qede->instance, cmd);
1980 miocnak(wq, mp, 0, EINVAL);
1981 mutex_exit(&qede->drv_lock);
1982 return;
1983 }
1984
1985 if(need_privilege) {
1986 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1987 if(err){
1988 qede_info(qede, "secpolicy() failed");
1989 miocnak(wq, mp, 0, err);
1990 mutex_exit(&qede->drv_lock);
1991 return;
1992 }
1993 }
1994
1995 switch (cmd) {
1996 default:
1997 qede_print("!%s(%d) : unknown ioctl command %x\n",
1998 __func__, qede->instance, cmd);
1999 status = IOC_INVAL;
2000 mutex_exit(&qede->drv_lock);
2001 return;
2002 case LB_GET_INFO_SIZE:
2003 case LB_GET_INFO:
2004 case LB_GET_MODE:
2005 case LB_SET_MODE:
2006 status = qede_loopback_ioctl(qede, wq, mp, iocp);
2007 break;
2008 case QEDE_CMD:
2009 qede_ioctl(qede, cmd, wq, mp);
2010 status = IOC_DONE;
2011 break;
2012 }
2013
2014 switch(status){
2015 default:
2016 qede_print("!%s(%d) : invalid status from ioctl",
2017 __func__,qede->instance);
2018 break;
2019 case IOC_DONE:
2020 /*
2021 * OK, Reply already sent
2022 */
2023
2024 break;
2025 case IOC_REPLY:
2026 mp->b_datap->db_type = iocp->ioc_error == 0 ?
2027 M_IOCACK : M_IOCNAK;
2028 qreply(wq, mp);
2029 break;
2030 case IOC_INVAL:
2031 mutex_exit(&qede->drv_lock);
2032 //miocack(wq, mp, 0, 0);
2033 miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
2034 EINVAL : iocp->ioc_error);
2035 return;
2036 }
2037 mutex_exit(&qede->drv_lock);
2038 }
2039
2040 extern ddi_dma_attr_t qede_buf2k_dma_attr_txbuf;
2041 extern ddi_dma_attr_t qede_dma_attr_rxbuf;
2042 extern ddi_dma_attr_t qede_dma_attr_desc;
2043
2044 static boolean_t
2045 qede_mac_get_capability(void *arg,
2046 mac_capab_t capability,
2047 void * cap_data)
2048 {
2049 qede_t * qede = (qede_t *)arg;
2050 uint32_t *txflags = cap_data;
2051 boolean_t ret = B_FALSE;
2052
2053 switch (capability) {
2054 case MAC_CAPAB_HCKSUM: {
2055 u32 *tx_flags = cap_data;
2056 /*
2057 * Check if checksum is enabled on
2058 * tx and advertise the cksum capab
2059 * to mac layer accordingly. On Rx
2060 * side checksummed packets are
2061 * reveiced anyway
2062 */
2063 qede_info(qede, "%s tx checksum offload",
2064 (qede->checksum == DEFAULT_CKSUM_OFFLOAD) ?
2065 "Enabling":
2066 "Disabling");
2067
2068 if (qede->checksum != DEFAULT_CKSUM_OFFLOAD) {
2069 ret = B_FALSE;
2070 break;
2071 }
2072 /*
2073 * Hardware does not support ICMPv6 checksumming. Right now the
2074 * GLDv3 doesn't provide us a way to specify that we don't
2075 * support that. As such, we cannot indicate
2076 * HCKSUM_INET_FULL_V6.
2077 */
2078
2079 *tx_flags = HCKSUM_INET_FULL_V4 |
2080 HCKSUM_IPHDRCKSUM;
2081 ret = B_TRUE;
2082 break;
2083 }
2084 case MAC_CAPAB_LSO: {
2085 mac_capab_lso_t *cap_lso = (mac_capab_lso_t *)cap_data;
2086
2087 qede_info(qede, "%s large segmentation offload",
2088 qede->lso_enable ? "Enabling": "Disabling");
2089 if (qede->lso_enable) {
2090 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2091 cap_lso->lso_basic_tcp_ipv4.lso_max = QEDE_LSO_MAXLEN;
2092 ret = B_TRUE;
2093 }
2094 break;
2095 }
2096 case MAC_CAPAB_RINGS: {
2097 #ifndef NO_CROSSBOW
2098 mac_capab_rings_t *cap_rings = cap_data;
2099 #ifndef ILLUMOS
2100 cap_rings->mr_version = MAC_RINGS_VERSION_1;
2101 #endif
2102
2103 switch (cap_rings->mr_type) {
2104 case MAC_RING_TYPE_RX:
2105 #ifndef ILLUMOS
2106 cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT;
2107 #endif
2108 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2109 //cap_rings->mr_rnum = 1; /* qede variable */
2110 cap_rings->mr_rnum = qede->num_fp; /* qede variable */
2111 cap_rings->mr_gnum = 1;
2112 cap_rings->mr_rget = qede_fill_ring;
2113 cap_rings->mr_gget = qede_fill_group;
2114 cap_rings->mr_gaddring = NULL;
2115 cap_rings->mr_gremring = NULL;
2116 #ifndef ILLUMOS
2117 cap_rings->mr_ggetringtc = NULL;
2118 #endif
2119 ret = B_TRUE;
2120 break;
2121 case MAC_RING_TYPE_TX:
2122 #ifndef ILLUMOS
2123 cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT;
2124 #endif
2125 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2126 //cap_rings->mr_rnum = 1;
2127 cap_rings->mr_rnum = qede->num_fp;
2128 cap_rings->mr_gnum = 0;
2129 cap_rings->mr_rget = qede_fill_ring;
2130 cap_rings->mr_gget = qede_fill_group;
2131 cap_rings->mr_gaddring = NULL;
2132 cap_rings->mr_gremring = NULL;
2133 #ifndef ILLUMOS
2134 cap_rings->mr_ggetringtc = NULL;
2135 #endif
2136 ret = B_TRUE;
2137 break;
2138 default:
2139 ret = B_FALSE;
2140 break;
2141 }
2142 #endif
2143 break; /* CASE MAC_CAPAB_RINGS */
2144 }
2145 #ifdef ILLUMOS
2146 case MAC_CAPAB_TRANSCEIVER: {
2147 mac_capab_transceiver_t *mct = cap_data;
2148
2149 mct->mct_flags = 0;
2150 mct->mct_ntransceivers = qede->edev.num_hwfns;
2151 mct->mct_info = qede_transceiver_info;
2152 mct->mct_read = qede_transceiver_read;
2153
2154 ret = B_TRUE;
2155 break;
2156 }
2157 #endif
2158 default:
2159 break;
2160 }
2161
2162 return (ret);
2163 }
2164
2165 int
2166 qede_configure_link(qede_t *qede, bool op);
2167
2168 static int
2169 qede_mac_set_property(void * arg,
2170 const char * pr_name,
2171 mac_prop_id_t pr_num,
2172 uint_t pr_valsize,
2173 const void * pr_val)
2174 {
2175 qede_t * qede = (qede_t *)arg;
2176 struct ecore_mcp_link_params *link_params;
2177 struct ecore_dev *edev = &qede->edev;
2178 struct ecore_hwfn *hwfn;
2179 int ret_val = 0, i;
2180 uint32_t option;
2181
2182 mutex_enter(&qede->gld_lock);
2183 switch (pr_num)
2184 {
2185 case MAC_PROP_MTU:
2186 bcopy(pr_val, &option, sizeof (option));
2187
2188 if(option == qede->mtu) {
2189 ret_val = 0;
2190 break;
2191 }
2192 if ((option != DEFAULT_JUMBO_MTU) &&
2193 (option != DEFAULT_MTU)) {
2194 ret_val = EINVAL;
2195 break;
2196 }
2197 if(qede->qede_state == QEDE_STATE_STARTED) {
2198 ret_val = EBUSY;
2199 break;
2200 }
2201
2202 ret_val = mac_maxsdu_update(qede->mac_handle, qede->mtu);
2203 if (ret_val == 0) {
2204
2205 qede->mtu = option;
2206 if (option == DEFAULT_JUMBO_MTU) {
2207 qede->jumbo_enable = B_TRUE;
2208 } else {
2209 qede->jumbo_enable = B_FALSE;
2210 }
2211
2212 hwfn = ECORE_LEADING_HWFN(edev);
2213 hwfn->hw_info.mtu = qede->mtu;
2214 ret_val = ecore_mcp_ov_update_mtu(hwfn,
2215 hwfn->p_main_ptt,
2216 hwfn->hw_info.mtu);
2217 if (ret_val != ECORE_SUCCESS) {
2218 qede_print("!%s(%d): MTU change %d option %d"
2219 "FAILED",
2220 __func__,qede->instance, qede->mtu, option);
2221 break;
2222 }
2223 qede_print("!%s(%d): MTU changed %d MTU option"
2224 " %d hwfn %d",
2225 __func__,qede->instance, qede->mtu,
2226 option, hwfn->hw_info.mtu);
2227 }
2228 break;
2229
2230 case MAC_PROP_EN_10GFDX_CAP:
2231 hwfn = &edev->hwfns[0];
2232 link_params = ecore_mcp_get_link_params(hwfn);
2233 if (*(uint8_t *) pr_val) {
2234 link_params->speed.autoneg = 0;
2235 link_params->speed.forced_speed = 10000;
2236 link_params->speed.advertised_speeds =
2237 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2238 qede->forced_speed_10G = *(uint8_t *)pr_val;
2239 }
2240 else {
2241 memcpy(link_params,
2242 &qede->link_input_params.default_link_params,
2243 sizeof (struct ecore_mcp_link_params));
2244 qede->forced_speed_10G = *(uint8_t *)pr_val;
2245 }
2246 if (qede->qede_state == QEDE_STATE_STARTED) {
2247 qede_configure_link(qede,1);
2248 } else {
2249 mutex_exit(&qede->gld_lock);
2250 return (0);
2251 }
2252 break;
2253 default:
2254 ret_val = ENOTSUP;
2255 break;
2256 }
2257 mutex_exit(&qede->gld_lock);
2258 return (ret_val);
2259 }
2260
2261 static void
2262 qede_mac_stop(void *arg)
2263 {
2264 qede_t *qede = (qede_t *)arg;
2265 int status;
2266
2267 qede_print("!%s(%d): called",
2268 __func__,qede->instance);
2269 mutex_enter(&qede->drv_lock);
2270 status = qede_stop(qede);
2271 if (status != DDI_SUCCESS) {
2272 qede_print("!%s(%d): qede_stop "
2273 "FAILED",
2274 __func__,qede->instance);
2275 }
2276
2277 mac_link_update(qede->mac_handle, LINK_STATE_UNKNOWN);
2278 mutex_exit(&qede->drv_lock);
2279 }
2280
2281 static int
2282 qede_mac_start(void *arg)
2283 {
2284 qede_t *qede = (qede_t *)arg;
2285 int status;
2286
2287 qede_print("!%s(%d): called", __func__,qede->instance);
2288 if (!mutex_tryenter(&qede->drv_lock)) {
2289 return (EAGAIN);
2290 }
2291
2292 if (qede->qede_state == QEDE_STATE_SUSPENDED) {
2293 mutex_exit(&qede->drv_lock);
2294 return (ECANCELED);
2295 }
2296
2297 status = qede_start(qede);
2298 if (status != DDI_SUCCESS) {
2299 mutex_exit(&qede->drv_lock);
2300 return (EIO);
2301 }
2302
2303 mutex_exit(&qede->drv_lock);
2304
2305 #ifdef DBLK_DMA_PREMAP
2306 qede->pm_handle = mac_pmh_tx_get(qede->mac_handle);
2307 #endif
2308 return (0);
2309 }
2310
2311 static int
2312 qede_mac_get_property(void *arg,
2313 const char *pr_name,
2314 mac_prop_id_t pr_num,
2315 uint_t pr_valsize,
2316 void *pr_val)
2317 {
2318 qede_t *qede = (qede_t *)arg;
2319 struct ecore_dev *edev = &qede->edev;
2320 link_state_t link_state;
2321 link_duplex_t link_duplex;
2322 uint64_t link_speed;
2323 link_flowctrl_t link_flowctrl;
2324 struct qede_link_cfg link_cfg;
2325 qede_link_cfg_t *hw_cfg = &qede->hwinit;
2326 int ret_val = 0;
2327
2328 memset(&link_cfg, 0, sizeof (struct qede_link_cfg));
2329 qede_get_link_info(&edev->hwfns[0], &link_cfg);
2330
2331
2332
2333 switch (pr_num)
2334 {
2335 case MAC_PROP_MTU:
2336
2337 ASSERT(pr_valsize >= sizeof(uint32_t));
2338 bcopy(&qede->mtu, pr_val, sizeof(uint32_t));
2339 break;
2340
2341 case MAC_PROP_DUPLEX:
2342
2343 ASSERT(pr_valsize >= sizeof(link_duplex_t));
2344 link_duplex = (qede->props.link_duplex) ?
2345 LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
2346 bcopy(&link_duplex, pr_val, sizeof(link_duplex_t));
2347 break;
2348
2349 case MAC_PROP_SPEED:
2350
2351 ASSERT(pr_valsize >= sizeof(link_speed));
2352
2353 link_speed = (qede->props.link_speed * 1000000ULL);
2354 bcopy(&link_speed, pr_val, sizeof(link_speed));
2355 break;
2356
2357 case MAC_PROP_STATUS:
2358
2359 ASSERT(pr_valsize >= sizeof(link_state_t));
2360
2361 link_state = (qede->params.link_state) ?
2362 LINK_STATE_UP : LINK_STATE_DOWN;
2363 bcopy(&link_state, pr_val, sizeof(link_state_t));
2364 qede_info(qede, "mac_prop_status %d\n", link_state);
2365 break;
2366
2367 case MAC_PROP_AUTONEG:
2368
2369 *(uint8_t *)pr_val = link_cfg.autoneg;
2370 break;
2371
2372 case MAC_PROP_FLOWCTRL:
2373
2374 ASSERT(pr_valsize >= sizeof(link_flowctrl_t));
2375
2376 /*
2377 * illumos does not have the notion of LINK_FLOWCTRL_AUTO at this time.
2378 */
2379 #ifndef ILLUMOS
2380 if (link_cfg.pause_cfg & QEDE_LINK_PAUSE_AUTONEG_ENABLE) {
2381 link_flowctrl = LINK_FLOWCTRL_AUTO;
2382 }
2383 #endif
2384
2385 if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2386 !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2387 link_flowctrl = LINK_FLOWCTRL_NONE;
2388 }
2389 if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2390 !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2391 link_flowctrl = LINK_FLOWCTRL_RX;
2392 }
2393 if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2394 (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2395 link_flowctrl = LINK_FLOWCTRL_TX;
2396 }
2397 if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) &&
2398 (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) {
2399 link_flowctrl = LINK_FLOWCTRL_BI;
2400 }
2401
2402 bcopy(&link_flowctrl, pr_val, sizeof (link_flowctrl_t));
2403 break;
2404
2405 case MAC_PROP_ADV_10GFDX_CAP:
2406 *(uint8_t *)pr_val = link_cfg.adv_capab.param_10000fdx;
2407 break;
2408
2409 case MAC_PROP_EN_10GFDX_CAP:
2410 *(uint8_t *)pr_val = qede->forced_speed_10G;
2411 break;
2412
2413 case MAC_PROP_PRIVATE:
2414 default:
2415 return (ENOTSUP);
2416
2417 }
2418
2419 return (0);
2420 }
2421
2422 static void
2423 qede_mac_property_info(void *arg,
2424 const char *pr_name,
2425 mac_prop_id_t pr_num,
2426 mac_prop_info_handle_t prh)
2427 {
2428 qede_t *qede = (qede_t *)arg;
2429 qede_link_props_t *def_cfg = &qede_def_link_props;
2430 link_flowctrl_t link_flowctrl;
2431
2432
2433 switch (pr_num)
2434 {
2435
2436 case MAC_PROP_STATUS:
2437 case MAC_PROP_SPEED:
2438 case MAC_PROP_DUPLEX:
2439 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2440 break;
2441
2442 case MAC_PROP_MTU:
2443
2444 mac_prop_info_set_range_uint32(prh,
2445 MIN_MTU,
2446 MAX_MTU);
2447 break;
2448
2449 case MAC_PROP_AUTONEG:
2450
2451 mac_prop_info_set_default_uint8(prh, def_cfg->autoneg);
2452 break;
2453
2454 case MAC_PROP_FLOWCTRL:
2455
2456 if (!def_cfg->pause) {
2457 link_flowctrl = LINK_FLOWCTRL_NONE;
2458 } else {
2459 link_flowctrl = LINK_FLOWCTRL_BI;
2460 }
2461
2462 mac_prop_info_set_default_link_flowctrl(prh, link_flowctrl);
2463 break;
2464
2465 case MAC_PROP_EN_10GFDX_CAP:
2466 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
2467 break;
2468
2469 case MAC_PROP_ADV_10GFDX_CAP:
2470 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2471 break;
2472
2473 default:
2474 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2475 break;
2476
2477 }
2478 }
2479
2480 static mac_callbacks_t qede_callbacks =
2481 {
2482 (
2483 MC_IOCTL
2484 /* | MC_RESOURCES */
2485 | MC_SETPROP
2486 | MC_GETPROP
2487 | MC_PROPINFO
2488 | MC_GETCAPAB
2489 ),
2490 qede_mac_stats,
2491 qede_mac_start,
2492 qede_mac_stop,
2493 qede_mac_promiscuous,
2494 qede_mac_multicast,
2495 NULL,
2496 #ifndef NO_CROSSBOW
2497 NULL,
2498 #else
2499 qede_mac_tx,
2500 #endif
2501 NULL, /* qede_mac_resources, */
2502 qede_mac_ioctl,
2503 qede_mac_get_capability,
2504 NULL,
2505 NULL,
2506 qede_mac_set_property,
2507 qede_mac_get_property,
2508 #ifdef MC_PROPINFO
2509 qede_mac_property_info
2510 #endif
2511 };
2512
2513 boolean_t
2514 qede_gld_init(qede_t *qede)
2515 {
2516 int status, ret;
2517 mac_register_t *macp;
2518
2519 macp = mac_alloc(MAC_VERSION);
2520 if (macp == NULL) {
2521 cmn_err(CE_NOTE, "%s: mac_alloc() failed\n", __func__);
2522 return (B_FALSE);
2523 }
2524
2525 macp->m_driver = qede;
2526 macp->m_dip = qede->dip;
2527 macp->m_instance = qede->instance;
2528 macp->m_priv_props = NULL;
2529 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2530 macp->m_src_addr = qede->ether_addr;
2531 macp->m_callbacks = &qede_callbacks;
2532 macp->m_min_sdu = 0;
2533 macp->m_max_sdu = qede->mtu;
2534 macp->m_margin = VLAN_TAGSZ;
2535 #ifdef ILLUMOS
2536 macp->m_v12n = MAC_VIRT_LEVEL1;
2537 #endif
2538
2539 status = mac_register(macp, &qede->mac_handle);
2540 if (status != 0) {
2541 cmn_err(CE_NOTE, "%s: mac_register() failed\n", __func__);
2542 }
2543
2544 mac_free(macp);
2545 if (status == 0) {
2546 return (B_TRUE);
2547 }
2548 return (B_FALSE);
2549 }
2550
2551 boolean_t qede_gld_fini(qede_t * qede)
2552 {
2553 return (B_TRUE);
2554 }
2555
2556
2557 void qede_link_update(qede_t * qede,
2558 link_state_t state)
2559 {
2560 mac_link_update(qede->mac_handle, state);
2561 }
2562
2563