1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2017, Intel Corporation.
32 * Copyright (c) 2014 Integros [integros.com]
33 */
34
35 /* Portions Copyright 2010 Robert Milkowski */
36
37 #ifndef _SYS_DMU_H
38 #define _SYS_DMU_H
39
40 /*
41 * This file describes the interface that the DMU provides for its
42 * consumers.
43 *
44 * The DMU also interacts with the SPA. That interface is described in
45 * dmu_spa.h.
46 */
47
48 #include <sys/zfs_context.h>
49 #include <sys/inttypes.h>
50 #include <sys/cred.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zio_compress.h>
53 #include <sys/zio_priority.h>
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 struct uio;
60 struct xuio;
61 struct page;
62 struct vnode;
63 struct spa;
64 struct zilog;
65 struct zio;
66 struct blkptr;
67 struct zap_cursor;
68 struct dsl_dataset;
69 struct dsl_pool;
70 struct dnode;
71 struct drr_begin;
72 struct drr_end;
73 struct zbookmark_phys;
74 struct spa;
75 struct nvlist;
76 struct arc_buf;
77 struct zio_prop;
78 struct sa_handle;
79 struct locked_range;
80 struct dsl_crypto_params;
81
82 typedef struct objset objset_t;
83 typedef struct dmu_tx dmu_tx_t;
84 typedef struct dsl_dir dsl_dir_t;
85 typedef struct dnode dnode_t;
86
87 typedef enum dmu_object_byteswap {
88 DMU_BSWAP_UINT8,
89 DMU_BSWAP_UINT16,
90 DMU_BSWAP_UINT32,
91 DMU_BSWAP_UINT64,
92 DMU_BSWAP_ZAP,
93 DMU_BSWAP_DNODE,
94 DMU_BSWAP_OBJSET,
95 DMU_BSWAP_ZNODE,
96 DMU_BSWAP_OLDACL,
97 DMU_BSWAP_ACL,
98 /*
99 * Allocating a new byteswap type number makes the on-disk format
100 * incompatible with any other format that uses the same number.
101 *
102 * Data can usually be structured to work with one of the
103 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
104 */
105 DMU_BSWAP_NUMFUNCS
106 } dmu_object_byteswap_t;
107
108 #define DMU_OT_NEWTYPE 0x80
109 #define DMU_OT_METADATA 0x40
110 #define DMU_OT_ENCRYPTED 0x20
111 #define DMU_OT_BYTESWAP_MASK 0x1f
112
113 /*
114 * Defines a uint8_t object type. Object types specify if the data
115 * in the object is metadata (boolean) and how to byteswap the data
116 * (dmu_object_byteswap_t). All of the types created by this method
117 * are cached in the dbuf metadata cache.
118 */
119 #define DMU_OT(byteswap, metadata, encrypted) \
120 (DMU_OT_NEWTYPE | \
121 ((metadata) ? DMU_OT_METADATA : 0) | \
122 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
123 ((byteswap) & DMU_OT_BYTESWAP_MASK))
124
125 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
126 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
127 (ot) < DMU_OT_NUMTYPES)
128
129 /*
130 * MDB doesn't have dmu_ot; it defines these macros itself.
131 */
132 #ifndef ZFS_MDB
133 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
134 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
135 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
136 #endif
137
138 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
139 ((ot) & DMU_OT_METADATA) : \
140 DMU_OT_IS_METADATA_IMPL(ot))
141
142 #define DMU_OT_IS_DDT(ot) \
143 ((ot) == DMU_OT_DDT_ZAP)
144
145 #define DMU_OT_IS_ZIL(ot) \
146 ((ot) == DMU_OT_INTENT_LOG)
147
148 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
149 #define DMU_OT_IS_FILE(ot) \
150 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
151
152 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
153 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
154
155 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
156 ((ot) & DMU_OT_ENCRYPTED) : \
157 DMU_OT_IS_ENCRYPTED_IMPL(ot))
158
159 /*
160 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
161 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
162 * is repurposed for embedded BPs.
163 */
164 #define DMU_OT_HAS_FILL(ot) \
165 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
166
167 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
168 ((ot) & DMU_OT_BYTESWAP_MASK) : \
169 DMU_OT_BYTESWAP_IMPL(ot))
170
171 typedef enum dmu_object_type {
172 DMU_OT_NONE,
173 /* general: */
174 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
175 DMU_OT_OBJECT_ARRAY, /* UINT64 */
176 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
177 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
178 DMU_OT_BPOBJ, /* UINT64 */
179 DMU_OT_BPOBJ_HDR, /* UINT64 */
180 /* spa: */
181 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
182 DMU_OT_SPACE_MAP, /* UINT64 */
183 /* zil: */
184 DMU_OT_INTENT_LOG, /* UINT64 */
185 /* dmu: */
186 DMU_OT_DNODE, /* DNODE */
187 DMU_OT_OBJSET, /* OBJSET */
188 /* dsl: */
189 DMU_OT_DSL_DIR, /* UINT64 */
190 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
191 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
192 DMU_OT_DSL_PROPS, /* ZAP */
193 DMU_OT_DSL_DATASET, /* UINT64 */
194 /* zpl: */
195 DMU_OT_ZNODE, /* ZNODE */
196 DMU_OT_OLDACL, /* Old ACL */
197 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
198 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
199 DMU_OT_MASTER_NODE, /* ZAP */
200 DMU_OT_UNLINKED_SET, /* ZAP */
201 /* zvol: */
202 DMU_OT_ZVOL, /* UINT8 */
203 DMU_OT_ZVOL_PROP, /* ZAP */
204 /* other; for testing only! */
205 DMU_OT_PLAIN_OTHER, /* UINT8 */
206 DMU_OT_UINT64_OTHER, /* UINT64 */
207 DMU_OT_ZAP_OTHER, /* ZAP */
208 /* new object types: */
209 DMU_OT_ERROR_LOG, /* ZAP */
210 DMU_OT_SPA_HISTORY, /* UINT8 */
211 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
212 DMU_OT_POOL_PROPS, /* ZAP */
213 DMU_OT_DSL_PERMS, /* ZAP */
214 DMU_OT_ACL, /* ACL */
215 DMU_OT_SYSACL, /* SYSACL */
216 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
217 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
218 DMU_OT_NEXT_CLONES, /* ZAP */
219 DMU_OT_SCAN_QUEUE, /* ZAP */
220 DMU_OT_USERGROUP_USED, /* ZAP */
221 DMU_OT_USERGROUP_QUOTA, /* ZAP */
222 DMU_OT_USERREFS, /* ZAP */
223 DMU_OT_DDT_ZAP, /* ZAP */
224 DMU_OT_DDT_STATS, /* ZAP */
225 DMU_OT_SA, /* System attr */
226 DMU_OT_SA_MASTER_NODE, /* ZAP */
227 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
228 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
229 DMU_OT_SCAN_XLATE, /* ZAP */
230 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
231 DMU_OT_DEADLIST, /* ZAP */
232 DMU_OT_DEADLIST_HDR, /* UINT64 */
233 DMU_OT_DSL_CLONES, /* ZAP */
234 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
235 /*
236 * Do not allocate new object types here. Doing so makes the on-disk
237 * format incompatible with any other format that uses the same object
238 * type number.
239 *
240 * When creating an object which does not have one of the above types
241 * use the DMU_OTN_* type with the correct byteswap and metadata
242 * values.
243 *
244 * The DMU_OTN_* types do not have entries in the dmu_ot table,
245 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
248 * and DMU_OTN_* types).
249 */
250 DMU_OT_NUMTYPES,
251
252 /*
253 * Names for valid types declared with DMU_OT().
254 */
255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
265
266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
276 } dmu_object_type_t;
277
278 /*
279 * These flags are intended to be used to specify the "txg_how"
280 * parameter when calling the dmu_tx_assign() function. See the comment
281 * above dmu_tx_assign() for more details on the meaning of these flags.
282 */
283 #define TXG_NOWAIT (0ULL)
284 #define TXG_WAIT (1ULL<<0)
285 #define TXG_NOTHROTTLE (1ULL<<1)
286
287 void byteswap_uint64_array(void *buf, size_t size);
288 void byteswap_uint32_array(void *buf, size_t size);
289 void byteswap_uint16_array(void *buf, size_t size);
290 void byteswap_uint8_array(void *buf, size_t size);
291 void zap_byteswap(void *buf, size_t size);
292 void zfs_oldacl_byteswap(void *buf, size_t size);
293 void zfs_acl_byteswap(void *buf, size_t size);
294 void zfs_znode_byteswap(void *buf, size_t size);
295
296 #define DS_FIND_SNAPSHOTS (1<<0)
297 #define DS_FIND_CHILDREN (1<<1)
298 #define DS_FIND_SERIALIZE (1<<2)
299
300 /*
301 * The maximum number of bytes that can be accessed as part of one
302 * operation, including metadata.
303 */
304 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
306
307 #define DMU_USERUSED_OBJECT (-1ULL)
308 #define DMU_GROUPUSED_OBJECT (-2ULL)
309 #define DMU_PROJECTUSED_OBJECT (-3ULL)
310
311 /*
312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
313 */
314 #define DMU_OBJACCT_PREFIX "obj-"
315 #define DMU_OBJACCT_PREFIX_LEN 4
316
317 /*
318 * artificial blkids for bonus buffer and spill blocks
319 */
320 #define DMU_BONUS_BLKID (-1ULL)
321 #define DMU_SPILL_BLKID (-2ULL)
322
323 /*
324 * Public routines to create, destroy, open, and close objsets.
325 */
326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
327 cred_t *cr, dmu_tx_t *tx);
328
329 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
330 int dmu_objset_own(const char *name, dmu_objset_type_t type,
331 boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
332 void dmu_objset_rele(objset_t *os, void *tag);
333 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
334 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
335
336 void dmu_objset_evict_dbufs(objset_t *os);
337 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
338 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
339 void *arg);
340 int dmu_objset_clone(const char *name, const char *origin);
341 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
342 struct nvlist *errlist);
343 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
344 int dmu_objset_snapshot_tmp(const char *, const char *, int);
345 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
346 int flags);
347 void dmu_objset_byteswap(void *buf, size_t size);
348 int dsl_dataset_rename_snapshot(const char *fsname,
349 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
350 int dmu_objset_remap_indirects(const char *fsname);
351
352 typedef struct dmu_buf {
353 uint64_t db_object; /* object that this buffer is part of */
354 uint64_t db_offset; /* byte offset in this object */
355 uint64_t db_size; /* size of buffer in bytes */
356 void *db_data; /* data in buffer */
357 } dmu_buf_t;
358
359 /*
360 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361 */
362 #define DMU_POOL_DIRECTORY_OBJECT 1
363 #define DMU_POOL_CONFIG "config"
364 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
365 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
366 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
367 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
368 #define DMU_POOL_ROOT_DATASET "root_dataset"
369 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
370 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
371 #define DMU_POOL_ERRLOG_LAST "errlog_last"
372 #define DMU_POOL_SPARES "spares"
373 #define DMU_POOL_DEFLATE "deflate"
374 #define DMU_POOL_HISTORY "history"
375 #define DMU_POOL_PROPS "pool_props"
376 #define DMU_POOL_L2CACHE "l2cache"
377 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
378 #define DMU_POOL_DDT "DDT-%s-%s-%s"
379 #define DMU_POOL_DDT_STATS "DDT-statistics"
380 #define DMU_POOL_CREATION_VERSION "creation_version"
381 #define DMU_POOL_SCAN "scan"
382 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
383 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
384 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
385 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
386 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
387 #define DMU_POOL_REMOVING "com.delphix:removing"
388 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
389 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
390 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
391 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
392
393 /*
394 * Allocate an object from this objset. The range of object numbers
395 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
396 *
397 * The transaction must be assigned to a txg. The newly allocated
398 * object will be "held" in the transaction (ie. you can modify the
399 * newly allocated object in this transaction).
400 *
401 * dmu_object_alloc() chooses an object and returns it in *objectp.
402 *
403 * dmu_object_claim() allocates a specific object number. If that
404 * number is already allocated, it fails and returns EEXIST.
405 *
406 * Return 0 on success, or ENOSPC or EEXIST as specified above.
407 */
408 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
409 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
410 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
411 int indirect_blockshift,
412 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
413 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
414 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
415 int dnodesize, dmu_tx_t *tx);
416 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
417 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
418 int dnodesize, dmu_tx_t *tx);
419 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
420 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
421 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *txp);
422 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
423 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
424 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
425 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
426 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
427
428 /*
429 * Free an object from this objset.
430 *
431 * The object's data will be freed as well (ie. you don't need to call
432 * dmu_free(object, 0, -1, tx)).
433 *
434 * The object need not be held in the transaction.
435 *
436 * If there are any holds on this object's buffers (via dmu_buf_hold()),
437 * or tx holds on the object (via dmu_tx_hold_object()), you can not
438 * free it; it fails and returns EBUSY.
439 *
440 * If the object is not allocated, it fails and returns ENOENT.
441 *
442 * Return 0 on success, or EBUSY or ENOENT as specified above.
443 */
444 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
445
446 /*
447 * Find the next allocated or free object.
448 *
449 * The objectp parameter is in-out. It will be updated to be the next
450 * object which is allocated. Ignore objects which have not been
451 * modified since txg.
452 *
453 * XXX Can only be called on a objset with no dirty data.
454 *
455 * Returns 0 on success, or ENOENT if there are no more objects.
456 */
457 int dmu_object_next(objset_t *os, uint64_t *objectp,
458 boolean_t hole, uint64_t txg);
459
460 /*
461 * Set the number of levels on a dnode. nlevels must be greater than the
462 * current number of levels or an EINVAL will be returned.
463 */
464 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
465 dmu_tx_t *tx);
466
467 /*
468 * Set the data blocksize for an object.
469 *
470 * The object cannot have any blocks allcated beyond the first. If
471 * the first block is allocated already, the new size must be greater
472 * than the current block size. If these conditions are not met,
473 * ENOTSUP will be returned.
474 *
475 * Returns 0 on success, or EBUSY if there are any holds on the object
476 * contents, or ENOTSUP as described above.
477 */
478 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
479 int ibs, dmu_tx_t *tx);
480
481 /*
482 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
483 * to accommodate the change. When calling this function, the caller must
484 * ensure that the object's nlevels can sufficiently support the new maxblkid.
485 */
486 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
487 dmu_tx_t *tx);
488
489 /*
490 * Set the checksum property on a dnode. The new checksum algorithm will
491 * apply to all newly written blocks; existing blocks will not be affected.
492 */
493 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
494 dmu_tx_t *tx);
495
496 /*
497 * Set the compress property on a dnode. The new compression algorithm will
498 * apply to all newly written blocks; existing blocks will not be affected.
499 */
500 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
501 dmu_tx_t *tx);
502
503 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
504
505 void
506 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
507 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
508 int compressed_size, int byteorder, dmu_tx_t *tx);
509
510 /*
511 * Decide how to write a block: checksum, compression, number of copies, etc.
512 */
513 #define WP_NOFILL 0x1
514 #define WP_DMU_SYNC 0x2
515 #define WP_SPILL 0x4
516
517 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
518 struct zio_prop *zp);
519 void dmu_write_policy_override_compress(struct zio_prop *zp,
520 enum zio_compress compress);
521 void dmu_write_policy_override_encrypt(struct zio_prop *zp,
522 dmu_object_type_t ot, boolean_t byteorder, enum zio_compress compress,
523 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac);
524 /*
525 * The bonus data is accessed more or less like a regular buffer.
526 * You must dmu_bonus_hold() to get the buffer, which will give you a
527 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
528 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
529 * before modifying it, and the
530 * object must be held in an assigned transaction before calling
531 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
532 * buffer as well. You must release your hold with dmu_buf_rele().
533 *
534 * Returns ENOENT, EIO, or 0.
535 */
536 int dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag,
537 uint32_t flags, dmu_buf_t **dbp);
538 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
539 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
540 uint32_t flags);
541 int dmu_bonus_max(void);
542 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
543 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
544 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
545 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
546
547 /*
548 * Special spill buffer support used by "SA" framework
549 */
550
551 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
552 dmu_buf_t **dbp);
553 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
554 void *tag, dmu_buf_t **dbp);
555 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
556
557 /*
558 * Obtain the DMU buffer from the specified object which contains the
559 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
560 * that it will remain in memory. You must release the hold with
561 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your
562 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
563 *
564 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
565 * on the returned buffer before reading or writing the buffer's
566 * db_data. The comments for those routines describe what particular
567 * operations are valid after calling them.
568 *
569 * The object number must be a valid, allocated object number.
570 */
571 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
572 void *tag, dmu_buf_t **, int flags);
573 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
574 void *tag, dmu_buf_t **dbp, int flags);
575
576 /*
577 * Add a reference to a dmu buffer that has already been held via
578 * dmu_buf_hold() in the current context.
579 */
580 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
581
582 /*
583 * Attempt to add a reference to a dmu buffer that is in an unknown state,
584 * using a pointer that may have been invalidated by eviction processing.
585 * The request will succeed if the passed in dbuf still represents the
586 * same os/object/blkid, is ineligible for eviction, and has at least
587 * one hold by a user other than the syncer.
588 */
589 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
590 uint64_t blkid, void *tag);
591
592 void dmu_buf_rele(dmu_buf_t *db, void *tag);
593 uint64_t dmu_buf_refcount(dmu_buf_t *db);
594 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
595
596 /*
597 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
598 * range of an object. A pointer to an array of dmu_buf_t*'s is
599 * returned (in *dbpp).
600 *
601 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
602 * frees the array. The hold on the array of buffers MUST be released
603 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
604 * individually with dmu_buf_rele.
605 */
606 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
607 uint64_t length, boolean_t read, void *tag,
608 int *numbufsp, dmu_buf_t ***dbpp);
609 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
610 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
611 uint32_t flags);
612 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
613
614 typedef void dmu_buf_evict_func_t(void *user_ptr);
615
616 /*
617 * A DMU buffer user object may be associated with a dbuf for the
618 * duration of its lifetime. This allows the user of a dbuf (client)
619 * to attach private data to a dbuf (e.g. in-core only data such as a
620 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
621 * when that dbuf has been evicted. Clients typically respond to the
622 * eviction notification by freeing their private data, thus ensuring
623 * the same lifetime for both dbuf and private data.
624 *
625 * The mapping from a dmu_buf_user_t to any client private data is the
626 * client's responsibility. All current consumers of the API with private
627 * data embed a dmu_buf_user_t as the first member of the structure for
628 * their private data. This allows conversions between the two types
629 * with a simple cast. Since the DMU buf user API never needs access
630 * to the private data, other strategies can be employed if necessary
631 * or convenient for the client (e.g. using __containerof() to do the
632 * conversion for private data that cannot have the dmu_buf_user_t as
633 * its first member).
634 *
635 * Eviction callbacks are executed without the dbuf mutex held or any
636 * other type of mechanism to guarantee that the dbuf is still available.
637 * For this reason, users must assume the dbuf has already been freed
638 * and not reference the dbuf from the callback context.
639 *
640 * Users requesting "immediate eviction" are notified as soon as the dbuf
641 * is only referenced by dirty records (dirties == holds). Otherwise the
642 * notification occurs after eviction processing for the dbuf begins.
643 */
644 typedef struct dmu_buf_user {
645 /*
646 * Asynchronous user eviction callback state.
647 */
648 taskq_ent_t dbu_tqent;
649
650 /*
651 * This instance's eviction function pointers.
652 *
653 * dbu_evict_func_sync is called synchronously and then
654 * dbu_evict_func_async is executed asynchronously on a taskq.
655 */
656 dmu_buf_evict_func_t *dbu_evict_func_sync;
657 dmu_buf_evict_func_t *dbu_evict_func_async;
658 #ifdef ZFS_DEBUG
659 /*
660 * Pointer to user's dbuf pointer. NULL for clients that do
661 * not associate a dbuf with their user data.
662 *
663 * The dbuf pointer is cleared upon eviction so as to catch
664 * use-after-evict bugs in clients.
665 */
666 dmu_buf_t **dbu_clear_on_evict_dbufp;
667 #endif
668 } dmu_buf_user_t;
669
670 /*
671 * Initialize the given dmu_buf_user_t instance with the eviction function
672 * evict_func, to be called when the user is evicted.
673 *
674 * NOTE: This function should only be called once on a given dmu_buf_user_t.
675 * To allow enforcement of this, dbu must already be zeroed on entry.
676 */
677 /*ARGSUSED*/
678 inline void
dmu_buf_init_user(dmu_buf_user_t * dbu,dmu_buf_evict_func_t * evict_func_sync,dmu_buf_evict_func_t * evict_func_async,dmu_buf_t ** clear_on_evict_dbufp)679 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
680 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
681 {
682 ASSERT(dbu->dbu_evict_func_sync == NULL);
683 ASSERT(dbu->dbu_evict_func_async == NULL);
684
685 /* must have at least one evict func */
686 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
687 dbu->dbu_evict_func_sync = evict_func_sync;
688 dbu->dbu_evict_func_async = evict_func_async;
689 #ifdef ZFS_DEBUG
690 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
691 #endif
692 }
693
694 /*
695 * Attach user data to a dbuf and mark it for normal (when the dbuf's
696 * data is cleared or its reference count goes to zero) eviction processing.
697 *
698 * Returns NULL on success, or the existing user if another user currently
699 * owns the buffer.
700 */
701 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
702
703 /*
704 * Attach user data to a dbuf and mark it for immediate (its dirty and
705 * reference counts are equal) eviction processing.
706 *
707 * Returns NULL on success, or the existing user if another user currently
708 * owns the buffer.
709 */
710 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
711
712 /*
713 * Replace the current user of a dbuf.
714 *
715 * If given the current user of a dbuf, replaces the dbuf's user with
716 * "new_user" and returns the user data pointer that was replaced.
717 * Otherwise returns the current, and unmodified, dbuf user pointer.
718 */
719 void *dmu_buf_replace_user(dmu_buf_t *db,
720 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
721
722 /*
723 * Remove the specified user data for a DMU buffer.
724 *
725 * Returns the user that was removed on success, or the current user if
726 * another user currently owns the buffer.
727 */
728 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
729
730 /*
731 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
732 */
733 void *dmu_buf_get_user(dmu_buf_t *db);
734
735 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
736 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
737 void dmu_buf_dnode_exit(dmu_buf_t *db);
738
739 /* Block until any in-progress dmu buf user evictions complete. */
740 void dmu_buf_user_evict_wait(void);
741
742 /*
743 * Returns the blkptr associated with this dbuf, or NULL if not set.
744 */
745 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
746
747 /*
748 * Indicate that you are going to modify the buffer's data (db_data).
749 *
750 * The transaction (tx) must be assigned to a txg (ie. you've called
751 * dmu_tx_assign()). The buffer's object must be held in the tx
752 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
753 */
754 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
755 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
756 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
757
758 /*
759 * You must create a transaction, then hold the objects which you will
760 * (or might) modify as part of this transaction. Then you must assign
761 * the transaction to a transaction group. Once the transaction has
762 * been assigned, you can modify buffers which belong to held objects as
763 * part of this transaction. You can't modify buffers before the
764 * transaction has been assigned; you can't modify buffers which don't
765 * belong to objects which this transaction holds; you can't hold
766 * objects once the transaction has been assigned. You may hold an
767 * object which you are going to free (with dmu_object_free()), but you
768 * don't have to.
769 *
770 * You can abort the transaction before it has been assigned.
771 *
772 * Note that you may hold buffers (with dmu_buf_hold) at any time,
773 * regardless of transaction state.
774 */
775
776 #define DMU_NEW_OBJECT (-1ULL)
777 #define DMU_OBJECT_END (-1ULL)
778
779 dmu_tx_t *dmu_tx_create(objset_t *os);
780 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
781 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
782 int len);
783 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
784 uint64_t len);
785 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
786 uint64_t len);
787 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
788 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
789 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
790 const char *name);
791 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
792 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
793 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
794 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
795 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
796 void dmu_tx_abort(dmu_tx_t *tx);
797 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
798 void dmu_tx_wait(dmu_tx_t *tx);
799 void dmu_tx_commit(dmu_tx_t *tx);
800 void dmu_tx_mark_netfree(dmu_tx_t *tx);
801
802 /*
803 * To register a commit callback, dmu_tx_callback_register() must be called.
804 *
805 * dcb_data is a pointer to caller private data that is passed on as a
806 * callback parameter. The caller is responsible for properly allocating and
807 * freeing it.
808 *
809 * When registering a callback, the transaction must be already created, but
810 * it cannot be committed or aborted. It can be assigned to a txg or not.
811 *
812 * The callback will be called after the transaction has been safely written
813 * to stable storage and will also be called if the dmu_tx is aborted.
814 * If there is any error which prevents the transaction from being committed to
815 * disk, the callback will be called with a value of error != 0.
816 */
817 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
818
819 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
820 void *dcb_data);
821
822 /*
823 * Free up the data blocks for a defined range of a file. If size is
824 * -1, the range from offset to end-of-file is freed.
825 */
826 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
827 uint64_t size, dmu_tx_t *tx);
828 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
829 uint64_t size);
830 int dmu_free_long_object(objset_t *os, uint64_t object);
831
832 /*
833 * Convenience functions.
834 *
835 * Canfail routines will return 0 on success, or an errno if there is a
836 * nonrecoverable I/O error.
837 */
838 #define DMU_READ_PREFETCH 0 /* prefetch */
839 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
840 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
841 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
842 void *buf, uint32_t flags);
843 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
844 uint32_t flags);
845 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
846 const void *buf, dmu_tx_t *tx);
847 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
848 const void *buf, dmu_tx_t *tx);
849 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
850 dmu_tx_t *tx);
851 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
852 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
853 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
854 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
855 dmu_tx_t *tx);
856 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
857 dmu_tx_t *tx);
858 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
859 dmu_tx_t *tx);
860 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
861 uint64_t size, struct page *pp, dmu_tx_t *tx);
862 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
863 void dmu_return_arcbuf(struct arc_buf *buf);
864 int dmu_assign_arcbuf_by_dnode(dnode_t *handle, uint64_t offset,
865 struct arc_buf *buf, dmu_tx_t *tx);
866 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
867 struct arc_buf *buf, dmu_tx_t *tx);
868 void dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder,
869 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
870 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
871 void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
872 dmu_buf_t *handle, dmu_tx_t *tx);
873 int dmu_xuio_init(struct xuio *uio, int niov);
874 void dmu_xuio_fini(struct xuio *uio);
875 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
876 size_t n);
877 int dmu_xuio_cnt(struct xuio *uio);
878 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
879 void dmu_xuio_clear(struct xuio *uio, int i);
880 void xuio_stat_wbuf_copied(void);
881 void xuio_stat_wbuf_nocopy(void);
882
883 extern boolean_t zfs_prefetch_disable;
884 extern int zfs_max_recordsize;
885
886 /*
887 * Asynchronously try to read in the data.
888 */
889 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
890 uint64_t len, enum zio_priority pri);
891
892 typedef struct dmu_object_info {
893 /* All sizes are in bytes unless otherwise indicated. */
894 uint32_t doi_data_block_size;
895 uint32_t doi_metadata_block_size;
896 dmu_object_type_t doi_type;
897 dmu_object_type_t doi_bonus_type;
898 uint64_t doi_bonus_size;
899 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
900 uint8_t doi_checksum;
901 uint8_t doi_compress;
902 uint8_t doi_nblkptr;
903 int8_t doi_pad[4];
904 uint64_t doi_dnodesize;
905 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
906 uint64_t doi_max_offset;
907 uint64_t doi_fill_count; /* number of non-empty blocks */
908 } dmu_object_info_t;
909
910 typedef void arc_byteswap_func_t(void *buf, size_t size);
911
912 typedef struct dmu_object_type_info {
913 dmu_object_byteswap_t ot_byteswap;
914 boolean_t ot_metadata;
915 boolean_t ot_dbuf_metadata_cache;
916 boolean_t ot_encrypt;
917 char *ot_name;
918 } dmu_object_type_info_t;
919
920 typedef struct dmu_object_byteswap_info {
921 arc_byteswap_func_t *ob_func;
922 char *ob_name;
923 } dmu_object_byteswap_info_t;
924
925 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
926 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
927
928 /*
929 * Get information on a DMU object.
930 *
931 * Return 0 on success or ENOENT if object is not allocated.
932 *
933 * If doi is NULL, just indicates whether the object exists.
934 */
935 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
936 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
937 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
938 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
939 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
940 /*
941 * Like dmu_object_info_from_db, but faster still when you only care about
942 * the size. This is specifically optimized for zfs_getattr().
943 */
944 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
945 u_longlong_t *nblk512);
946
947 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
948
949 typedef struct dmu_objset_stats {
950 uint64_t dds_num_clones; /* number of clones of this */
951 uint64_t dds_creation_txg;
952 uint64_t dds_guid;
953 dmu_objset_type_t dds_type;
954 uint8_t dds_is_snapshot;
955 uint8_t dds_inconsistent;
956 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
957 } dmu_objset_stats_t;
958
959 /*
960 * Get stats on a dataset.
961 */
962 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
963
964 /*
965 * Add entries to the nvlist for all the objset's properties. See
966 * zfs_prop_table[] and zfs(8) for details on the properties.
967 */
968 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
969
970 /*
971 * Get the space usage statistics for statvfs().
972 *
973 * refdbytes is the amount of space "referenced" by this objset.
974 * availbytes is the amount of space available to this objset, taking
975 * into account quotas & reservations, assuming that no other objsets
976 * use the space first. These values correspond to the 'referenced' and
977 * 'available' properties, described in the zfs(8) manpage.
978 *
979 * usedobjs and availobjs are the number of objects currently allocated,
980 * and available.
981 */
982 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
983 uint64_t *usedobjsp, uint64_t *availobjsp);
984
985 /*
986 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
987 * (Contrast with the ds_guid which is a 64-bit ID that will never
988 * change, so there is a small probability that it will collide.)
989 */
990 uint64_t dmu_objset_fsid_guid(objset_t *os);
991
992 /*
993 * Get the [cm]time for an objset's snapshot dir
994 */
995 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
996
997 int dmu_objset_is_snapshot(objset_t *os);
998
999 extern struct spa *dmu_objset_spa(objset_t *os);
1000 extern struct zilog *dmu_objset_zil(objset_t *os);
1001 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1002 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1003 extern void dmu_objset_name(objset_t *os, char *buf);
1004 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1005 extern uint64_t dmu_objset_id(objset_t *os);
1006 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1007 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1008 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1009 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1010 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1011 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
1012 int maxlen, boolean_t *conflict);
1013 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1014 uint64_t *idp, uint64_t *offp);
1015
1016 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
1017 void *bonus, uint64_t *userp, uint64_t *groupp, uint64_t *projectp);
1018 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1019 objset_used_cb_t *cb);
1020 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1021 extern void *dmu_objset_get_user(objset_t *os);
1022
1023 /*
1024 * Return the txg number for the given assigned transaction.
1025 */
1026 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1027
1028 /*
1029 * Synchronous write.
1030 * If a parent zio is provided this function initiates a write on the
1031 * provided buffer as a child of the parent zio.
1032 * In the absence of a parent zio, the write is completed synchronously.
1033 * At write completion, blk is filled with the bp of the written block.
1034 * Note that while the data covered by this function will be on stable
1035 * storage when the write completes this new data does not become a
1036 * permanent part of the file until the associated transaction commits.
1037 */
1038
1039 /*
1040 * {zfs,zvol,ztest}_get_done() args
1041 */
1042 typedef struct zgd {
1043 struct lwb *zgd_lwb;
1044 struct blkptr *zgd_bp;
1045 dmu_buf_t *zgd_db;
1046 struct locked_range *zgd_lr;
1047 void *zgd_private;
1048 } zgd_t;
1049
1050 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1051 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1052
1053 /*
1054 * Find the next hole or data block in file starting at *off
1055 * Return found offset in *off. Return ESRCH for end of file.
1056 */
1057 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1058 uint64_t *off);
1059
1060 /*
1061 * Check if a DMU object has any dirty blocks. If so, sync out
1062 * all pending transaction groups. Otherwise, this function
1063 * does not alter DMU state. This could be improved to only sync
1064 * out the necessary transaction groups for this particular
1065 * object.
1066 */
1067 int dmu_object_wait_synced(objset_t *os, uint64_t object);
1068
1069 /*
1070 * Initial setup and final teardown.
1071 */
1072 extern void dmu_init(void);
1073 extern void dmu_fini(void);
1074
1075 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1076 uint64_t object, uint64_t offset, int len);
1077 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1078 dmu_traverse_cb_t cb, void *arg);
1079
1080 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1081 struct vnode *vp, offset_t *offp);
1082
1083 /* CRC64 table */
1084 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1085 extern uint64_t zfs_crc64_table[256];
1086
1087 #ifdef __cplusplus
1088 }
1089 #endif
1090
1091 #endif /* _SYS_DMU_H */
1092