1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2020 Joyent, Inc.
30 * Copyright 2024 Oxide Computer Company
31 */
32
33 /*
34 * This file contains the functionality that mimics the boot operations
35 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
36 * The x86 kernel now does everything on its own.
37 */
38
39 #include <sys/types.h>
40 #include <sys/bootconf.h>
41 #include <sys/bootsvcs.h>
42 #include <sys/bootinfo.h>
43 #include <sys/multiboot.h>
44 #include <sys/multiboot2.h>
45 #include <sys/multiboot2_impl.h>
46 #include <sys/bootvfs.h>
47 #include <sys/bootprops.h>
48 #include <sys/varargs.h>
49 #include <sys/param.h>
50 #include <sys/machparam.h>
51 #include <sys/machsystm.h>
52 #include <sys/archsystm.h>
53 #include <sys/boot_console.h>
54 #include <sys/framebuffer.h>
55 #include <sys/cmn_err.h>
56 #include <sys/systm.h>
57 #include <sys/promif.h>
58 #include <sys/archsystm.h>
59 #include <sys/x86_archext.h>
60 #include <sys/kobj.h>
61 #include <sys/privregs.h>
62 #include <sys/sysmacros.h>
63 #include <sys/ctype.h>
64 #include <sys/fastboot.h>
65 #ifdef __xpv
66 #include <sys/hypervisor.h>
67 #include <net/if.h>
68 #endif
69 #include <vm/kboot_mmu.h>
70 #include <vm/hat_pte.h>
71 #include <sys/kobj.h>
72 #include <sys/kobj_lex.h>
73 #include <sys/pci_cfgspace_impl.h>
74 #include <sys/fastboot_impl.h>
75 #include <sys/acpi/acconfig.h>
76 #include <sys/acpi/acpi.h>
77 #include <sys/ddipropdefs.h> /* For DDI prop types */
78
79 static int have_console = 0; /* set once primitive console is initialized */
80 static char *boot_args = "";
81
82 /*
83 * Debugging macros
84 */
85 static uint_t kbm_debug = 0;
86 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
87 #define DBG(x) { if (kbm_debug) \
88 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
89 }
90
91 #define PUT_STRING(s) { \
92 char *cp; \
93 for (cp = (s); *cp; ++cp) \
94 bcons_putchar(*cp); \
95 }
96
97 /* callback to boot_fb to set shadow frame buffer */
98 extern void boot_fb_shadow_init(bootops_t *);
99
100 bootops_t bootop; /* simple bootops we'll pass on to kernel */
101 struct bsys_mem bm;
102
103 /*
104 * Boot info from "glue" code in low memory. xbootp is used by:
105 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc().
106 */
107 static struct xboot_info *xbootp;
108 static uintptr_t next_virt; /* next available virtual address */
109 static paddr_t next_phys; /* next available physical address from dboot */
110 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
111
112 /*
113 * buffer for vsnprintf for console I/O
114 */
115 #define BUFFERSIZE 512
116 static char buffer[BUFFERSIZE];
117
118 /*
119 * stuff to store/report/manipulate boot property settings.
120 */
121 typedef struct bootprop {
122 struct bootprop *bp_next;
123 char *bp_name;
124 int bp_flags; /* DDI prop type */
125 uint_t bp_vlen; /* 0 for boolean */
126 char *bp_value;
127 } bootprop_t;
128
129 static bootprop_t *bprops = NULL;
130 static char *curr_page = NULL; /* ptr to avail bprop memory */
131 static int curr_space = 0; /* amount of memory at curr_page */
132
133 #ifdef __xpv
134 extern start_info_t *xen_info;
135 extern shared_info_t *HYPERVISOR_shared_info;
136 #endif
137
138 /*
139 * some allocator statistics
140 */
141 static ulong_t total_bop_alloc_scratch = 0;
142 static ulong_t total_bop_alloc_kernel = 0;
143
144 static void build_firmware_properties(struct xboot_info *);
145
146 static int early_allocation = 1;
147
148 int force_fastreboot = 0;
149 volatile int fastreboot_onpanic = 0;
150 int post_fastreboot = 0;
151 #ifdef __xpv
152 volatile int fastreboot_capable = 0;
153 #else
154 volatile int fastreboot_capable = 1;
155 #endif
156
157 /*
158 * Information saved from current boot for fast reboot.
159 * If the information size exceeds what we have allocated, fast reboot
160 * will not be supported.
161 */
162 multiboot_info_t saved_mbi;
163 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
164 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
165 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166 int saved_cmdline_len = 0;
167 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
168
169 /*
170 * Turn off fastreboot_onpanic to avoid panic loop.
171 */
172 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
173 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
174
175 /*
176 * Pointers to where System Resource Affinity Table (SRAT), System Locality
177 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
178 * are mapped into virtual memory
179 */
180 ACPI_TABLE_SRAT *srat_ptr = NULL;
181 ACPI_TABLE_SLIT *slit_ptr = NULL;
182 ACPI_TABLE_MSCT *msct_ptr = NULL;
183
184 /*
185 * Arbitrary limit on number of localities we handle; if
186 * this limit is raised to more than UINT16_MAX, make sure
187 * process_slit() knows how to handle it.
188 */
189 #define SLIT_LOCALITIES_MAX (4096)
190
191 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
192 #define SLIT_PROPNAME "acpi-slit"
193
194 /*
195 * Allocate aligned physical memory at boot time. This allocator allocates
196 * from the highest possible addresses. This avoids exhausting memory that
197 * would be useful for DMA buffers.
198 */
199 paddr_t
do_bop_phys_alloc(uint64_t size,uint64_t align)200 do_bop_phys_alloc(uint64_t size, uint64_t align)
201 {
202 paddr_t pa = 0;
203 paddr_t start;
204 paddr_t end;
205 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
206
207 /*
208 * Be careful if high memory usage is limited in startup.c
209 * Since there are holes in the low part of the physical address
210 * space we can treat physmem as a pfn (not just a pgcnt) and
211 * get a conservative upper limit.
212 */
213 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
214 high_phys = pfn_to_pa(physmem);
215
216 /*
217 * find the highest available memory in physinstalled
218 */
219 size = P2ROUNDUP(size, align);
220 for (; ml; ml = ml->ml_next) {
221 start = P2ROUNDUP(ml->ml_address, align);
222 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
223 if (start < next_phys)
224 start = P2ROUNDUP(next_phys, align);
225 if (end > high_phys)
226 end = P2ALIGN(high_phys, align);
227
228 if (end <= start)
229 continue;
230 if (end - start < size)
231 continue;
232
233 /*
234 * Early allocations need to use low memory, since
235 * physmem might be further limited by bootenv.rc
236 */
237 if (early_allocation) {
238 if (pa == 0 || start < pa)
239 pa = start;
240 } else {
241 if (end - size > pa)
242 pa = end - size;
243 }
244 }
245 if (pa != 0) {
246 if (early_allocation)
247 next_phys = pa + size;
248 else
249 high_phys = pa;
250 return (pa);
251 }
252 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
253 ") Out of memory\n", size, align);
254 /*NOTREACHED*/
255 }
256
257 uintptr_t
alloc_vaddr(size_t size,paddr_t align)258 alloc_vaddr(size_t size, paddr_t align)
259 {
260 uintptr_t rv;
261
262 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
263 rv = (uintptr_t)next_virt;
264 next_virt += size;
265 return (rv);
266 }
267
268 /*
269 * Allocate virtual memory. The size is always rounded up to a multiple
270 * of base pagesize.
271 */
272
273 /*ARGSUSED*/
274 static caddr_t
do_bsys_alloc(bootops_t * bop,caddr_t virthint,size_t size,int align)275 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
276 {
277 paddr_t a = align; /* same type as pa for masking */
278 uint_t pgsize;
279 paddr_t pa;
280 uintptr_t va;
281 ssize_t s; /* the aligned size */
282 uint_t level;
283 uint_t is_kernel = (virthint != 0);
284
285 if (a < MMU_PAGESIZE)
286 a = MMU_PAGESIZE;
287 else if (!ISP2(a))
288 prom_panic("do_bsys_alloc() incorrect alignment");
289 size = P2ROUNDUP(size, MMU_PAGESIZE);
290
291 /*
292 * Use the next aligned virtual address if we weren't given one.
293 */
294 if (virthint == NULL) {
295 virthint = (caddr_t)alloc_vaddr(size, a);
296 total_bop_alloc_scratch += size;
297 } else {
298 total_bop_alloc_kernel += size;
299 }
300
301 /*
302 * allocate the physical memory
303 */
304 pa = do_bop_phys_alloc(size, a);
305
306 /*
307 * Add the mappings to the page tables, try large pages first.
308 */
309 va = (uintptr_t)virthint;
310 s = size;
311 level = 1;
312 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
313 if (xbootp->bi_use_largepage && a == pgsize) {
314 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
315 s >= pgsize) {
316 kbm_map(va, pa, level, is_kernel);
317 va += pgsize;
318 pa += pgsize;
319 s -= pgsize;
320 }
321 }
322
323 /*
324 * Map remaining pages use small mappings
325 */
326 level = 0;
327 pgsize = MMU_PAGESIZE;
328 while (s > 0) {
329 kbm_map(va, pa, level, is_kernel);
330 va += pgsize;
331 pa += pgsize;
332 s -= pgsize;
333 }
334 return (virthint);
335 }
336
337 /*
338 * Free virtual memory - we'll just ignore these.
339 */
340 /*ARGSUSED*/
341 static void
do_bsys_free(bootops_t * bop,caddr_t virt,size_t size)342 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
343 {
344 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
345 (void *)virt, size);
346 }
347
348 /*
349 * Old interface
350 */
351 /*ARGSUSED*/
352 static caddr_t
do_bsys_ealloc(bootops_t * bop,caddr_t virthint,size_t size,int align,int flags)353 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
354 int align, int flags)
355 {
356 prom_panic("unsupported call to BOP_EALLOC()\n");
357 return (0);
358 }
359
360
361 static void
bsetprop(int flags,char * name,int nlen,void * value,int vlen)362 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
363 {
364 uint_t size;
365 uint_t need_size;
366 bootprop_t *b;
367
368 /*
369 * align the size to 16 byte boundary
370 */
371 size = sizeof (bootprop_t) + nlen + 1 + vlen;
372 size = (size + 0xf) & ~0xf;
373 if (size > curr_space) {
374 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
375 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
376 curr_space = need_size;
377 }
378
379 /*
380 * use a bootprop_t at curr_page and link into list
381 */
382 b = (bootprop_t *)curr_page;
383 curr_page += sizeof (bootprop_t);
384 curr_space -= sizeof (bootprop_t);
385 b->bp_next = bprops;
386 bprops = b;
387
388 /*
389 * follow by name and ending zero byte
390 */
391 b->bp_name = curr_page;
392 bcopy(name, curr_page, nlen);
393 curr_page += nlen;
394 *curr_page++ = 0;
395 curr_space -= nlen + 1;
396
397 /*
398 * set the property type
399 */
400 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
401
402 /*
403 * copy in value, but no ending zero byte
404 */
405 b->bp_value = curr_page;
406 b->bp_vlen = vlen;
407 if (vlen > 0) {
408 bcopy(value, curr_page, vlen);
409 curr_page += vlen;
410 curr_space -= vlen;
411 }
412
413 /*
414 * align new values of curr_page, curr_space
415 */
416 while (curr_space & 0xf) {
417 ++curr_page;
418 --curr_space;
419 }
420 }
421
422 static void
bsetprops(char * name,char * value)423 bsetprops(char *name, char *value)
424 {
425 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
426 value, strlen(value) + 1);
427 }
428
429 static void
bsetprop32(char * name,uint32_t value)430 bsetprop32(char *name, uint32_t value)
431 {
432 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
433 (void *)&value, sizeof (value));
434 }
435
436 static void
bsetprop64(char * name,uint64_t value)437 bsetprop64(char *name, uint64_t value)
438 {
439 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
440 (void *)&value, sizeof (value));
441 }
442
443 static void
bsetpropsi(char * name,int value)444 bsetpropsi(char *name, int value)
445 {
446 char prop_val[32];
447
448 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
449 bsetprops(name, prop_val);
450 }
451
452 /*
453 * to find the type of the value associated with this name
454 */
455 /*ARGSUSED*/
456 int
do_bsys_getproptype(bootops_t * bop,const char * name)457 do_bsys_getproptype(bootops_t *bop, const char *name)
458 {
459 bootprop_t *b;
460
461 for (b = bprops; b != NULL; b = b->bp_next) {
462 if (strcmp(name, b->bp_name) != 0)
463 continue;
464 return (b->bp_flags);
465 }
466 return (-1);
467 }
468
469 /*
470 * to find the size of the buffer to allocate
471 */
472 /*ARGSUSED*/
473 int
do_bsys_getproplen(bootops_t * bop,const char * name)474 do_bsys_getproplen(bootops_t *bop, const char *name)
475 {
476 bootprop_t *b;
477
478 for (b = bprops; b; b = b->bp_next) {
479 if (strcmp(name, b->bp_name) != 0)
480 continue;
481 return (b->bp_vlen);
482 }
483 return (-1);
484 }
485
486 /*
487 * get the value associated with this name
488 */
489 /*ARGSUSED*/
490 int
do_bsys_getprop(bootops_t * bop,const char * name,void * value)491 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
492 {
493 bootprop_t *b;
494
495 for (b = bprops; b; b = b->bp_next) {
496 if (strcmp(name, b->bp_name) != 0)
497 continue;
498 bcopy(b->bp_value, value, b->bp_vlen);
499 return (0);
500 }
501 return (-1);
502 }
503
504 /*
505 * get the name of the next property in succession from the standalone
506 */
507 /*ARGSUSED*/
508 static char *
do_bsys_nextprop(bootops_t * bop,char * name)509 do_bsys_nextprop(bootops_t *bop, char *name)
510 {
511 bootprop_t *b;
512
513 /*
514 * A null name is a special signal for the 1st boot property
515 */
516 if (name == NULL || strlen(name) == 0) {
517 if (bprops == NULL)
518 return (NULL);
519 return (bprops->bp_name);
520 }
521
522 for (b = bprops; b; b = b->bp_next) {
523 if (name != b->bp_name)
524 continue;
525 b = b->bp_next;
526 if (b == NULL)
527 return (NULL);
528 return (b->bp_name);
529 }
530 return (NULL);
531 }
532
533 /*
534 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
535 */
536 static int
parse_value(char * p,uint64_t * retval)537 parse_value(char *p, uint64_t *retval)
538 {
539 int adjust = 0;
540 uint64_t tmp = 0;
541 int digit;
542 int radix = 10;
543
544 *retval = 0;
545 if (*p == '-' || *p == '~')
546 adjust = *p++;
547
548 if (*p == '0') {
549 ++p;
550 if (*p == 0)
551 return (0);
552 if (*p == 'x' || *p == 'X') {
553 radix = 16;
554 ++p;
555 } else {
556 radix = 8;
557 ++p;
558 }
559 }
560 while (*p) {
561 if ('0' <= *p && *p <= '9')
562 digit = *p - '0';
563 else if ('a' <= *p && *p <= 'f')
564 digit = 10 + *p - 'a';
565 else if ('A' <= *p && *p <= 'F')
566 digit = 10 + *p - 'A';
567 else
568 return (-1);
569 if (digit >= radix)
570 return (-1);
571 tmp = tmp * radix + digit;
572 ++p;
573 }
574 if (adjust == '-')
575 tmp = -tmp;
576 else if (adjust == '~')
577 tmp = ~tmp;
578 *retval = tmp;
579 return (0);
580 }
581
582 static boolean_t
unprintable(char * value,int size)583 unprintable(char *value, int size)
584 {
585 int i;
586
587 if (size <= 0 || value[0] == '\0')
588 return (B_TRUE);
589
590 for (i = 0; i < size; i++) {
591 if (value[i] == '\0')
592 return (i != (size - 1));
593
594 if (!isprint(value[i]))
595 return (B_TRUE);
596 }
597 return (B_FALSE);
598 }
599
600 /*
601 * Print out information about all boot properties.
602 * buffer is pointer to pre-allocated space to be used as temporary
603 * space for property values.
604 */
605 static void
boot_prop_display(char * buffer)606 boot_prop_display(char *buffer)
607 {
608 char *name = "";
609 int i, len, flags, *buf32;
610 int64_t *buf64;
611
612 bop_printf(NULL, "\nBoot properties:\n");
613
614 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
615 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
616 (void) do_bsys_getprop(NULL, name, buffer);
617 len = do_bsys_getproplen(NULL, name);
618 flags = do_bsys_getproptype(NULL, name);
619 bop_printf(NULL, "len=%d ", len);
620
621 switch (flags) {
622 case DDI_PROP_TYPE_INT:
623 len = len / sizeof (int);
624 buf32 = (int *)buffer;
625 for (i = 0; i < len; i++) {
626 bop_printf(NULL, "%08x", buf32[i]);
627 if (i < len - 1)
628 bop_printf(NULL, ".");
629 }
630 break;
631 case DDI_PROP_TYPE_STRING:
632 bop_printf(NULL, "%s", buffer);
633 break;
634 case DDI_PROP_TYPE_INT64:
635 len = len / sizeof (int64_t);
636 buf64 = (int64_t *)buffer;
637 for (i = 0; i < len; i++) {
638 bop_printf(NULL, "%016" PRIx64, buf64[i]);
639 if (i < len - 1)
640 bop_printf(NULL, ".");
641 }
642 break;
643 default:
644 if (!unprintable(buffer, len)) {
645 buffer[len] = 0;
646 bop_printf(NULL, "%s", buffer);
647 break;
648 }
649 for (i = 0; i < len; i++) {
650 bop_printf(NULL, "%02x", buffer[i] & 0xff);
651 if (i < len - 1)
652 bop_printf(NULL, ".");
653 }
654 break;
655 }
656 bop_printf(NULL, "\n");
657 }
658 }
659
660 /*
661 * 2nd part of building the table of boot properties. This includes:
662 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values)
663 *
664 * lines look like one of:
665 * ^$
666 * ^# comment till end of line
667 * setprop name 'value'
668 * setprop name value
669 * setprop name "value"
670 *
671 * we do single character I/O since this is really just looking at memory
672 */
673 void
read_bootenvrc(void)674 read_bootenvrc(void)
675 {
676 int fd;
677 char *line;
678 int c;
679 int bytes_read;
680 char *name;
681 int n_len;
682 char *value;
683 int v_len;
684 char *inputdev; /* these override the command line if serial ports */
685 char *outputdev;
686 char *consoledev;
687 uint64_t lvalue;
688 int use_xencons = 0;
689 extern int bootrd_debug;
690
691 #ifdef __xpv
692 if (!DOMAIN_IS_INITDOMAIN(xen_info))
693 use_xencons = 1;
694 #endif /* __xpv */
695
696 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
697 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
698 DBG(fd);
699
700 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
701 while (fd >= 0) {
702
703 /*
704 * get a line
705 */
706 for (c = 0; ; ++c) {
707 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
708 if (bytes_read == 0) {
709 if (c == 0)
710 goto done;
711 break;
712 }
713 if (line[c] == '\n')
714 break;
715 }
716 line[c] = 0;
717
718 /*
719 * ignore comment lines
720 */
721 c = 0;
722 while (ISSPACE(line[c]))
723 ++c;
724 if (line[c] == '#' || line[c] == 0)
725 continue;
726
727 /*
728 * must have "setprop " or "setprop\t"
729 */
730 if (strncmp(line + c, "setprop ", 8) != 0 &&
731 strncmp(line + c, "setprop\t", 8) != 0)
732 continue;
733 c += 8;
734 while (ISSPACE(line[c]))
735 ++c;
736 if (line[c] == 0)
737 continue;
738
739 /*
740 * gather up the property name
741 */
742 name = line + c;
743 n_len = 0;
744 while (line[c] && !ISSPACE(line[c]))
745 ++n_len, ++c;
746
747 /*
748 * gather up the value, if any
749 */
750 value = "";
751 v_len = 0;
752 while (ISSPACE(line[c]))
753 ++c;
754 if (line[c] != 0) {
755 value = line + c;
756 while (line[c] && !ISSPACE(line[c]))
757 ++v_len, ++c;
758 }
759
760 if (v_len >= 2 && value[0] == value[v_len - 1] &&
761 (value[0] == '\'' || value[0] == '"')) {
762 ++value;
763 v_len -= 2;
764 }
765 name[n_len] = 0;
766 if (v_len > 0)
767 value[v_len] = 0;
768 else
769 continue;
770
771 /*
772 * ignore "boot-file" property, it's now meaningless
773 */
774 if (strcmp(name, "boot-file") == 0)
775 continue;
776 if (strcmp(name, "boot-args") == 0 &&
777 strlen(boot_args) > 0)
778 continue;
779
780 /*
781 * If a property was explicitly set on the command line
782 * it will override a setting in bootenv.rc. We make an
783 * exception for a property from the bootloader such as:
784 *
785 * console="text,ttya,ttyb,ttyc,ttyd"
786 *
787 * In such a case, picking the first value here (as
788 * lookup_console_devices() does) is at best a guess; if
789 * bootenv.rc has a value, it's probably better.
790 */
791 if (strcmp(name, "console") == 0) {
792 char propval[BP_MAX_STRLEN] = "";
793
794 if (do_bsys_getprop(NULL, name, propval) == -1 ||
795 strchr(propval, ',') != NULL)
796 bsetprops(name, value);
797 continue;
798 }
799
800 if (do_bsys_getproplen(NULL, name) == -1)
801 bsetprops(name, value);
802 }
803 done:
804 if (fd >= 0)
805 (void) BRD_CLOSE(bfs_ops, fd);
806
807
808 /*
809 * Check if we have to limit the boot time allocator
810 */
811 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
812 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
813 parse_value(line, &lvalue) != -1) {
814 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
815 physmem = (pgcnt_t)lvalue;
816 DBG(physmem);
817 }
818 }
819 early_allocation = 0;
820
821 /*
822 * Check for bootrd_debug.
823 */
824 if (find_boot_prop("bootrd_debug"))
825 bootrd_debug = 1;
826
827 /*
828 * check to see if we have to override the default value of the console
829 */
830 if (!use_xencons) {
831 inputdev = line;
832 v_len = do_bsys_getproplen(NULL, "input-device");
833 if (v_len > 0)
834 (void) do_bsys_getprop(NULL, "input-device", inputdev);
835 else
836 v_len = 0;
837 inputdev[v_len] = 0;
838
839 outputdev = inputdev + v_len + 1;
840 v_len = do_bsys_getproplen(NULL, "output-device");
841 if (v_len > 0)
842 (void) do_bsys_getprop(NULL, "output-device",
843 outputdev);
844 else
845 v_len = 0;
846 outputdev[v_len] = 0;
847
848 consoledev = outputdev + v_len + 1;
849 v_len = do_bsys_getproplen(NULL, "console");
850 if (v_len > 0) {
851 (void) do_bsys_getprop(NULL, "console", consoledev);
852 if (post_fastreboot &&
853 strcmp(consoledev, "graphics") == 0) {
854 bsetprops("console", "text");
855 v_len = strlen("text");
856 bcopy("text", consoledev, v_len);
857 }
858 } else {
859 v_len = 0;
860 }
861 consoledev[v_len] = 0;
862 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
863 } else {
864 /*
865 * Ensure console property exists
866 * If not create it as "hypervisor"
867 */
868 v_len = do_bsys_getproplen(NULL, "console");
869 if (v_len < 0)
870 bsetprops("console", "hypervisor");
871 inputdev = outputdev = consoledev = "hypervisor";
872 bcons_post_bootenvrc(inputdev, outputdev, consoledev);
873 }
874
875 if (find_boot_prop("prom_debug") || kbm_debug)
876 boot_prop_display(line);
877 }
878
879 /*
880 * print formatted output
881 */
882 /*ARGSUSED*/
883 void
vbop_printf(void * ptr,const char * fmt,va_list ap)884 vbop_printf(void *ptr, const char *fmt, va_list ap)
885 {
886 if (have_console == 0)
887 return;
888
889 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
890 PUT_STRING(buffer);
891 }
892
893 /*PRINTFLIKE2*/
894 void
bop_printf(void * bop,const char * fmt,...)895 bop_printf(void *bop, const char *fmt, ...)
896 {
897 va_list ap;
898
899 va_start(ap, fmt);
900 vbop_printf(bop, fmt, ap);
901 va_end(ap);
902 }
903
904 /*
905 * Another panic() variant; this one can be used even earlier during boot than
906 * prom_panic().
907 */
908 /*PRINTFLIKE1*/
909 void
bop_panic(const char * fmt,...)910 bop_panic(const char *fmt, ...)
911 {
912 va_list ap;
913
914 va_start(ap, fmt);
915 vbop_printf(NULL, fmt, ap);
916 va_end(ap);
917
918 bop_printf(NULL, "\nPress any key to reboot.\n");
919 (void) bcons_getchar();
920 bop_printf(NULL, "Resetting...\n");
921 pc_reset();
922 }
923
924 /*
925 * Do a real mode interrupt BIOS call
926 */
927 typedef struct bios_regs {
928 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
929 } bios_regs_t;
930 typedef int (*bios_func_t)(int, bios_regs_t *);
931
932 /*ARGSUSED*/
933 static void
do_bsys_doint(bootops_t * bop,int intnum,struct bop_regs * rp)934 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
935 {
936 #if defined(__xpv)
937 prom_panic("unsupported call to BOP_DOINT()\n");
938 #else /* __xpv */
939 static int firsttime = 1;
940 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
941 bios_regs_t br;
942
943 /*
944 * We're about to disable paging; we shouldn't be PCID enabled.
945 */
946 if (getcr4() & CR4_PCIDE)
947 prom_panic("do_bsys_doint() with PCID enabled\n");
948
949 /*
950 * The first time we do this, we have to copy the pre-packaged
951 * low memory bios call code image into place.
952 */
953 if (firsttime) {
954 extern char bios_image[];
955 extern uint32_t bios_size;
956
957 bcopy(bios_image, (void *)bios_func, bios_size);
958 firsttime = 0;
959 }
960
961 br.ax = rp->eax.word.ax;
962 br.bx = rp->ebx.word.bx;
963 br.cx = rp->ecx.word.cx;
964 br.dx = rp->edx.word.dx;
965 br.bp = rp->ebp.word.bp;
966 br.si = rp->esi.word.si;
967 br.di = rp->edi.word.di;
968 br.ds = rp->ds;
969 br.es = rp->es;
970
971 DBG_MSG("Doing BIOS call...\n");
972 DBG(br.ax);
973 DBG(br.bx);
974 DBG(br.dx);
975 rp->eflags = bios_func(intnum, &br);
976 DBG_MSG("done\n");
977 DBG(rp->eflags);
978 DBG(br.ax);
979 DBG(br.bx);
980 DBG(br.dx);
981
982 rp->eax.word.ax = br.ax;
983 rp->ebx.word.bx = br.bx;
984 rp->ecx.word.cx = br.cx;
985 rp->edx.word.dx = br.dx;
986 rp->ebp.word.bp = br.bp;
987 rp->esi.word.si = br.si;
988 rp->edi.word.di = br.di;
989 rp->ds = br.ds;
990 rp->es = br.es;
991 #endif /* __xpv */
992 }
993
994 static struct boot_syscalls bop_sysp = {
995 bcons_getchar,
996 bcons_putchar,
997 bcons_ischar,
998 };
999
1000 static char *whoami;
1001
1002 #define BUFLEN 64
1003
1004 #if defined(__xpv)
1005
1006 static char namebuf[32];
1007
1008 static void
xen_parse_props(char * s,char * prop_map[],int n_prop)1009 xen_parse_props(char *s, char *prop_map[], int n_prop)
1010 {
1011 char **prop_name = prop_map;
1012 char *cp = s, *scp;
1013
1014 do {
1015 scp = cp;
1016 while ((*cp != '\0') && (*cp != ':'))
1017 cp++;
1018
1019 if ((scp != cp) && (*prop_name != NULL)) {
1020 *cp = '\0';
1021 bsetprops(*prop_name, scp);
1022 }
1023
1024 cp++;
1025 prop_name++;
1026 n_prop--;
1027 } while (n_prop > 0);
1028 }
1029
1030 #define VBDPATHLEN 64
1031
1032 /*
1033 * parse the 'xpv-root' property to create properties used by
1034 * ufs_mountroot.
1035 */
1036 static void
xen_vbdroot_props(char * s)1037 xen_vbdroot_props(char *s)
1038 {
1039 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1040 const char lnamefix[] = "/dev/dsk/c0d";
1041 char *pnp;
1042 char *prop_p;
1043 char mi;
1044 short minor;
1045 long addr = 0;
1046
1047 mi = '\0';
1048 pnp = vbdpath + strlen(vbdpath);
1049 prop_p = s + strlen(lnamefix);
1050 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1051 addr = addr * 10 + *prop_p++ - '0';
1052 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1053 pnp = vbdpath + strlen(vbdpath);
1054 if (*prop_p == 's')
1055 mi = 'a';
1056 else if (*prop_p == 'p')
1057 mi = 'q';
1058 else
1059 ASSERT(0); /* shouldn't be here */
1060 prop_p++;
1061 ASSERT(*prop_p != '\0');
1062 if (ISDIGIT(*prop_p)) {
1063 minor = *prop_p - '0';
1064 prop_p++;
1065 if (ISDIGIT(*prop_p)) {
1066 minor = minor * 10 + *prop_p - '0';
1067 }
1068 } else {
1069 /* malformed root path, use 0 as default */
1070 minor = 0;
1071 }
1072 ASSERT(minor < 16); /* at most 16 partitions */
1073 mi += minor;
1074 *pnp++ = ':';
1075 *pnp++ = mi;
1076 *pnp++ = '\0';
1077 bsetprops("fstype", "ufs");
1078 bsetprops("bootpath", vbdpath);
1079
1080 DBG_MSG("VBD bootpath set to ");
1081 DBG_MSG(vbdpath);
1082 DBG_MSG("\n");
1083 }
1084
1085 /*
1086 * parse the xpv-nfsroot property to create properties used by
1087 * nfs_mountroot.
1088 */
1089 static void
xen_nfsroot_props(char * s)1090 xen_nfsroot_props(char *s)
1091 {
1092 char *prop_map[] = {
1093 BP_SERVER_IP, /* server IP address */
1094 BP_SERVER_NAME, /* server hostname */
1095 BP_SERVER_PATH, /* root path */
1096 };
1097 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1098
1099 bsetprops("fstype", "nfs");
1100
1101 xen_parse_props(s, prop_map, n_prop);
1102
1103 /*
1104 * If a server name wasn't specified, use a default.
1105 */
1106 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1107 bsetprops(BP_SERVER_NAME, "unknown");
1108 }
1109
1110 /*
1111 * Extract our IP address, etc. from the "xpv-ip" property.
1112 */
1113 static void
xen_ip_props(char * s)1114 xen_ip_props(char *s)
1115 {
1116 char *prop_map[] = {
1117 BP_HOST_IP, /* IP address */
1118 NULL, /* NFS server IP address (ignored in */
1119 /* favour of xpv-nfsroot) */
1120 BP_ROUTER_IP, /* IP gateway */
1121 BP_SUBNET_MASK, /* IP subnet mask */
1122 "xpv-hostname", /* hostname (ignored) */
1123 BP_NETWORK_INTERFACE, /* interface name */
1124 "xpv-hcp", /* host configuration protocol */
1125 };
1126 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1127 char ifname[IFNAMSIZ];
1128
1129 xen_parse_props(s, prop_map, n_prop);
1130
1131 /*
1132 * A Linux dom0 administrator expects all interfaces to be
1133 * called "ethX", which is not the case here.
1134 *
1135 * If the interface name specified is "eth0", presume that
1136 * this is really intended to be "xnf0" (the first domU ->
1137 * dom0 interface for this domain).
1138 */
1139 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1140 (strcmp("eth0", ifname) == 0)) {
1141 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1142 bop_printf(NULL,
1143 "network interface name 'eth0' replaced with 'xnf0'\n");
1144 }
1145 }
1146
1147 #else /* __xpv */
1148
1149 static void
setup_rarp_props(struct sol_netinfo * sip)1150 setup_rarp_props(struct sol_netinfo *sip)
1151 {
1152 char buf[BUFLEN]; /* to hold ip/mac addrs */
1153 uint8_t *val;
1154
1155 val = (uint8_t *)&sip->sn_ciaddr;
1156 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1157 val[0], val[1], val[2], val[3]);
1158 bsetprops(BP_HOST_IP, buf);
1159
1160 val = (uint8_t *)&sip->sn_siaddr;
1161 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1162 val[0], val[1], val[2], val[3]);
1163 bsetprops(BP_SERVER_IP, buf);
1164
1165 if (sip->sn_giaddr != 0) {
1166 val = (uint8_t *)&sip->sn_giaddr;
1167 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1168 val[0], val[1], val[2], val[3]);
1169 bsetprops(BP_ROUTER_IP, buf);
1170 }
1171
1172 if (sip->sn_netmask != 0) {
1173 val = (uint8_t *)&sip->sn_netmask;
1174 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1175 val[0], val[1], val[2], val[3]);
1176 bsetprops(BP_SUBNET_MASK, buf);
1177 }
1178
1179 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1180 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1181 sip->sn_mactype, sip->sn_maclen);
1182 } else {
1183 val = sip->sn_macaddr;
1184 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1185 val[0], val[1], val[2], val[3], val[4], val[5]);
1186 bsetprops(BP_BOOT_MAC, buf);
1187 }
1188 }
1189
1190 #endif /* __xpv */
1191
1192 static void
build_panic_cmdline(const char * cmd,int cmdlen)1193 build_panic_cmdline(const char *cmd, int cmdlen)
1194 {
1195 int proplen;
1196 size_t arglen;
1197
1198 arglen = sizeof (fastreboot_onpanic_args);
1199 /*
1200 * If we allready have fastreboot-onpanic set to zero,
1201 * don't add them again.
1202 */
1203 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1204 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1205 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1206 fastreboot_onpanic_cmdline);
1207 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1208 arglen = 1;
1209 }
1210
1211 /*
1212 * construct fastreboot_onpanic_cmdline
1213 */
1214 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1215 DBG_MSG("Command line too long: clearing "
1216 FASTREBOOT_ONPANIC "\n");
1217 fastreboot_onpanic = 0;
1218 } else {
1219 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1220 if (arglen != 1)
1221 bcopy(fastreboot_onpanic_args,
1222 fastreboot_onpanic_cmdline + cmdlen, arglen);
1223 else
1224 fastreboot_onpanic_cmdline[cmdlen] = 0;
1225 }
1226 }
1227
1228
1229 #ifndef __xpv
1230 /*
1231 * Construct boot command line for Fast Reboot. The saved_cmdline
1232 * is also reported by "eeprom bootcmd".
1233 */
1234 static void
build_fastboot_cmdline(struct xboot_info * xbp)1235 build_fastboot_cmdline(struct xboot_info *xbp)
1236 {
1237 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1238 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1239 DBG(saved_cmdline_len);
1240 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1241 fastreboot_capable = 0;
1242 } else {
1243 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1244 saved_cmdline_len);
1245 saved_cmdline[saved_cmdline_len - 1] = '\0';
1246 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1247 }
1248 }
1249
1250 /*
1251 * Save memory layout, disk drive information, unix and boot archive sizes for
1252 * Fast Reboot.
1253 */
1254 static void
save_boot_info(struct xboot_info * xbi)1255 save_boot_info(struct xboot_info *xbi)
1256 {
1257 multiboot_info_t *mbi = xbi->bi_mb_info;
1258 struct boot_modules *modp;
1259 int i;
1260
1261 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1262 if (mbi->mmap_length > sizeof (saved_mmap)) {
1263 DBG_MSG("mbi->mmap_length too big: clearing "
1264 "fastreboot_capable\n");
1265 fastreboot_capable = 0;
1266 } else {
1267 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1268 mbi->mmap_length);
1269 }
1270
1271 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1272 if (mbi->drives_length > sizeof (saved_drives)) {
1273 DBG(mbi->drives_length);
1274 DBG_MSG("mbi->drives_length too big: clearing "
1275 "fastreboot_capable\n");
1276 fastreboot_capable = 0;
1277 } else {
1278 bcopy((void *)(uintptr_t)mbi->drives_addr,
1279 (void *)saved_drives, mbi->drives_length);
1280 }
1281 } else {
1282 saved_mbi.drives_length = 0;
1283 saved_mbi.drives_addr = 0;
1284 }
1285
1286 /*
1287 * Current file sizes. Used by fastboot.c to figure out how much
1288 * memory to reserve for panic reboot.
1289 * Use the module list from the dboot-constructed xboot_info
1290 * instead of the list referenced by the multiboot structure
1291 * because that structure may not be addressable now.
1292 */
1293 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1294 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1295 i < xbi->bi_module_cnt; i++, modp++) {
1296 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1297 }
1298 }
1299 #endif /* __xpv */
1300
1301 /*
1302 * Import boot environment module variables as properties, applying
1303 * blacklist filter for variables we know we will not use.
1304 *
1305 * Since the environment can be relatively large, containing many variables
1306 * used only for boot loader purposes, we will use a blacklist based filter.
1307 * To keep the blacklist from growing too large, we use prefix based filtering.
1308 * This is possible because in many cases, the loader variable names are
1309 * using a structured layout.
1310 *
1311 * We will not overwrite already set properties.
1312 *
1313 * Note that the menu items in particular can contain characters not
1314 * well-handled as bootparams, such as spaces, brackets, and the like, so that's
1315 * another reason.
1316 */
1317 static struct bop_blacklist {
1318 const char *bl_name;
1319 int bl_name_len;
1320 } bop_prop_blacklist[] = {
1321 { "ISADIR", sizeof ("ISADIR") },
1322 { "acpi", sizeof ("acpi") },
1323 { "autoboot_delay", sizeof ("autoboot_delay") },
1324 { "beansi_", sizeof ("beansi_") },
1325 { "beastie", sizeof ("beastie") },
1326 { "bemenu", sizeof ("bemenu") },
1327 { "boot.", sizeof ("boot.") },
1328 { "bootenv", sizeof ("bootenv") },
1329 { "currdev", sizeof ("currdev") },
1330 { "dhcp.", sizeof ("dhcp.") },
1331 { "interpret", sizeof ("interpret") },
1332 { "kernel", sizeof ("kernel") },
1333 { "loaddev", sizeof ("loaddev") },
1334 { "loader_", sizeof ("loader_") },
1335 { "mainansi_", sizeof ("mainansi_") },
1336 { "mainmenu_", sizeof ("mainmenu_") },
1337 { "maintoggled_", sizeof ("maintoggled_") },
1338 { "menu_timeout_command", sizeof ("menu_timeout_command") },
1339 { "menuset_", sizeof ("menuset_") },
1340 { "module_path", sizeof ("module_path") },
1341 { "nfs.", sizeof ("nfs.") },
1342 { "optionsansi_", sizeof ("optionsansi_") },
1343 { "optionsmenu_", sizeof ("optionsmenu_") },
1344 { "optionstoggled_", sizeof ("optionstoggled_") },
1345 { "pcibios", sizeof ("pcibios") },
1346 { "prompt", sizeof ("prompt") },
1347 { "smbios", sizeof ("smbios") },
1348 { "tem", sizeof ("tem") },
1349 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1350 { "zfs_be", sizeof ("zfs_be") },
1351 };
1352
1353 /*
1354 * Match the name against prefixes in above blacklist. If the match was
1355 * found, this name is blacklisted.
1356 */
1357 static boolean_t
name_is_blacklisted(const char * name)1358 name_is_blacklisted(const char *name)
1359 {
1360 int i, n;
1361
1362 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1363 for (i = 0; i < n; i++) {
1364 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1365 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1366 return (B_TRUE);
1367 }
1368 }
1369 return (B_FALSE);
1370 }
1371
1372 static void
process_boot_environment(struct boot_modules * benv)1373 process_boot_environment(struct boot_modules *benv)
1374 {
1375 char *env, *ptr, *name, *value;
1376 uint32_t size, name_len, value_len;
1377
1378 if (benv == NULL || benv->bm_type != BMT_ENV)
1379 return;
1380 ptr = env = benv->bm_addr;
1381 size = benv->bm_size;
1382 do {
1383 name = ptr;
1384 /* find '=' */
1385 while (*ptr != '=') {
1386 ptr++;
1387 if (ptr > env + size) /* Something is very wrong. */
1388 return;
1389 }
1390 name_len = ptr - name;
1391 if (sizeof (buffer) <= name_len)
1392 continue;
1393
1394 (void) strncpy(buffer, name, sizeof (buffer));
1395 buffer[name_len] = '\0';
1396 name = buffer;
1397
1398 value_len = 0;
1399 value = ++ptr;
1400 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1401 if (*ptr == '\0') {
1402 ptr++;
1403 value_len = (uintptr_t)ptr - (uintptr_t)env;
1404 break;
1405 }
1406 ptr++;
1407 }
1408
1409 /* Did we reach the end of the module? */
1410 if (value_len == 0)
1411 return;
1412
1413 if (*value == '\0')
1414 continue;
1415
1416 /* Is this property already set? */
1417 if (do_bsys_getproplen(NULL, name) >= 0)
1418 continue;
1419
1420 /* Translate netboot variables */
1421 if (strcmp(name, "boot.netif.gateway") == 0) {
1422 bsetprops(BP_ROUTER_IP, value);
1423 continue;
1424 }
1425 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1426 bsetprops(BP_BOOT_MAC, value);
1427 continue;
1428 }
1429 if (strcmp(name, "boot.netif.ip") == 0) {
1430 bsetprops(BP_HOST_IP, value);
1431 continue;
1432 }
1433 if (strcmp(name, "boot.netif.netmask") == 0) {
1434 bsetprops(BP_SUBNET_MASK, value);
1435 continue;
1436 }
1437 if (strcmp(name, "boot.netif.server") == 0) {
1438 bsetprops(BP_SERVER_IP, value);
1439 continue;
1440 }
1441 if (strcmp(name, "boot.netif.server") == 0) {
1442 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1443 bsetprops(BP_SERVER_IP, value);
1444 continue;
1445 }
1446 if (strcmp(name, "boot.nfsroot.server") == 0) {
1447 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1448 bsetprops(BP_SERVER_IP, value);
1449 continue;
1450 }
1451 if (strcmp(name, "boot.nfsroot.path") == 0) {
1452 bsetprops(BP_SERVER_PATH, value);
1453 continue;
1454 }
1455
1456 /*
1457 * The loader allows multiple console devices to be specified
1458 * as a comma-separated list, but the kernel does not yet
1459 * support multiple console devices. If a list is provided,
1460 * ignore all but the first entry:
1461 */
1462 if (strcmp(name, "console") == 0) {
1463 char propval[BP_MAX_STRLEN];
1464
1465 for (uint32_t i = 0; i < BP_MAX_STRLEN; i++) {
1466 propval[i] = value[i];
1467 if (value[i] == ' ' ||
1468 value[i] == ',' ||
1469 value[i] == '\0') {
1470 propval[i] = '\0';
1471 break;
1472 }
1473
1474 if (i + 1 == BP_MAX_STRLEN)
1475 propval[i] = '\0';
1476 }
1477 bsetprops(name, propval);
1478 continue;
1479 }
1480 if (name_is_blacklisted(name) == B_TRUE)
1481 continue;
1482
1483 /* Create new property. */
1484 bsetprops(name, value);
1485
1486 /* Avoid reading past the module end. */
1487 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1488 return;
1489 } while (*ptr != '\0');
1490 }
1491
1492 /*
1493 * 1st pass at building the table of boot properties. This includes:
1494 * - values set on the command line: -B a=x,b=y,c=z ....
1495 * - known values we just compute (ie. from xbp)
1496 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values)
1497 *
1498 * the grub command line looked like:
1499 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1500 *
1501 * whoami is the same as boot-file
1502 */
1503 static void
build_boot_properties(struct xboot_info * xbp)1504 build_boot_properties(struct xboot_info *xbp)
1505 {
1506 char *name;
1507 int name_len;
1508 char *value;
1509 int value_len;
1510 struct boot_modules *bm, *rdbm, *benv = NULL;
1511 char *propbuf;
1512 int quoted = 0;
1513 int boot_arg_len;
1514 uint_t i, midx;
1515 char modid[32];
1516 #ifndef __xpv
1517 static int stdout_val = 0;
1518 uchar_t boot_device;
1519 char str[3];
1520 #endif
1521
1522 /*
1523 * These have to be done first, so that kobj_mount_root() works
1524 */
1525 DBG_MSG("Building boot properties\n");
1526 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1527 DBG((uintptr_t)propbuf);
1528 if (xbp->bi_module_cnt > 0) {
1529 bm = xbp->bi_modules;
1530 rdbm = NULL;
1531 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1532 if (bm[i].bm_type == BMT_ROOTFS) {
1533 rdbm = &bm[i];
1534 continue;
1535 }
1536 if (bm[i].bm_type == BMT_HASH ||
1537 bm[i].bm_type == BMT_FONT ||
1538 bm[i].bm_name == NULL)
1539 continue;
1540
1541 if (bm[i].bm_type == BMT_ENV) {
1542 if (benv == NULL)
1543 benv = &bm[i];
1544 else
1545 continue;
1546 }
1547
1548 (void) snprintf(modid, sizeof (modid),
1549 "module-name-%u", midx);
1550 bsetprops(modid, (char *)bm[i].bm_name);
1551 (void) snprintf(modid, sizeof (modid),
1552 "module-addr-%u", midx);
1553 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1554 (void) snprintf(modid, sizeof (modid),
1555 "module-size-%u", midx);
1556 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1557 ++midx;
1558 }
1559 if (rdbm != NULL) {
1560 bsetprop64("ramdisk_start",
1561 (uint64_t)(uintptr_t)rdbm->bm_addr);
1562 bsetprop64("ramdisk_end",
1563 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1564 }
1565 }
1566
1567 /*
1568 * If there are any boot time modules or hashes present, then disable
1569 * fast reboot.
1570 */
1571 if (xbp->bi_module_cnt > 1) {
1572 fastreboot_disable(FBNS_BOOTMOD);
1573 }
1574
1575 #ifndef __xpv
1576 /*
1577 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1578 * since we don't currently support MB2 info and module relocation.
1579 * Note that fast reboot will have already been disabled if multiple
1580 * modules are present, since the current implementation assumes that
1581 * we only have a single module, the boot_archive.
1582 */
1583 if (xbp->bi_mb_version != 1) {
1584 fastreboot_disable(FBNS_MULTIBOOT2);
1585 }
1586 #endif
1587
1588 DBG_MSG("Parsing command line for boot properties\n");
1589 value = xbp->bi_cmdline;
1590
1591 /*
1592 * allocate memory to collect boot_args into
1593 */
1594 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1595 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1596 boot_args[0] = 0;
1597 boot_arg_len = 0;
1598
1599 #ifdef __xpv
1600 /*
1601 * Xen puts a lot of device information in front of the kernel name
1602 * let's grab them and make them boot properties. The first
1603 * string w/o an "=" in it will be the boot-file property.
1604 */
1605 (void) strcpy(namebuf, "xpv-");
1606 for (;;) {
1607 /*
1608 * get to next property
1609 */
1610 while (ISSPACE(*value))
1611 ++value;
1612 name = value;
1613 /*
1614 * look for an "="
1615 */
1616 while (*value && !ISSPACE(*value) && *value != '=') {
1617 value++;
1618 }
1619 if (*value != '=') { /* no "=" in the property */
1620 value = name;
1621 break;
1622 }
1623 name_len = value - name;
1624 value_len = 0;
1625 /*
1626 * skip over the "="
1627 */
1628 value++;
1629 while (value[value_len] && !ISSPACE(value[value_len])) {
1630 ++value_len;
1631 }
1632 /*
1633 * build property name with "xpv-" prefix
1634 */
1635 if (name_len + 4 > 32) { /* skip if name too long */
1636 value += value_len;
1637 continue;
1638 }
1639 bcopy(name, &namebuf[4], name_len);
1640 name_len += 4;
1641 namebuf[name_len] = 0;
1642 bcopy(value, propbuf, value_len);
1643 propbuf[value_len] = 0;
1644 bsetprops(namebuf, propbuf);
1645
1646 /*
1647 * xpv-root is set to the logical disk name of the xen
1648 * VBD when booting from a disk-based filesystem.
1649 */
1650 if (strcmp(namebuf, "xpv-root") == 0)
1651 xen_vbdroot_props(propbuf);
1652 /*
1653 * While we're here, if we have a "xpv-nfsroot" property
1654 * then we need to set "fstype" to "nfs" so we mount
1655 * our root from the nfs server. Also parse the xpv-nfsroot
1656 * property to create the properties that nfs_mountroot will
1657 * need to find the root and mount it.
1658 */
1659 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1660 xen_nfsroot_props(propbuf);
1661
1662 if (strcmp(namebuf, "xpv-ip") == 0)
1663 xen_ip_props(propbuf);
1664 value += value_len;
1665 }
1666 #endif
1667
1668 while (ISSPACE(*value))
1669 ++value;
1670 /*
1671 * value now points at the boot-file
1672 */
1673 value_len = 0;
1674 while (value[value_len] && !ISSPACE(value[value_len]))
1675 ++value_len;
1676 if (value_len > 0) {
1677 whoami = propbuf;
1678 bcopy(value, whoami, value_len);
1679 whoami[value_len] = 0;
1680 bsetprops("boot-file", whoami);
1681 /*
1682 * strip leading path stuff from whoami, so running from
1683 * PXE/miniroot makes sense.
1684 */
1685 if (strstr(whoami, "/platform/") != NULL)
1686 whoami = strstr(whoami, "/platform/");
1687 bsetprops("whoami", whoami);
1688 }
1689
1690 /*
1691 * Values forcibly set boot properties on the command line via -B.
1692 * Allow use of quotes in values. Other stuff goes on kernel
1693 * command line.
1694 */
1695 name = value + value_len;
1696 while (*name != 0) {
1697 /*
1698 * anything not " -B" is copied to the command line
1699 */
1700 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1701 boot_args[boot_arg_len++] = *name;
1702 boot_args[boot_arg_len] = 0;
1703 ++name;
1704 continue;
1705 }
1706
1707 /*
1708 * skip the " -B" and following white space
1709 */
1710 name += 3;
1711 while (ISSPACE(*name))
1712 ++name;
1713 while (*name && !ISSPACE(*name)) {
1714 value = strstr(name, "=");
1715 if (value == NULL)
1716 break;
1717 name_len = value - name;
1718 ++value;
1719 value_len = 0;
1720 quoted = 0;
1721 for (; ; ++value_len) {
1722 if (!value[value_len])
1723 break;
1724
1725 /*
1726 * is this value quoted?
1727 */
1728 if (value_len == 0 &&
1729 (value[0] == '\'' || value[0] == '"')) {
1730 quoted = value[0];
1731 ++value_len;
1732 }
1733
1734 /*
1735 * In the quote accept any character,
1736 * but look for ending quote.
1737 */
1738 if (quoted) {
1739 if (value[value_len] == quoted)
1740 quoted = 0;
1741 continue;
1742 }
1743
1744 /*
1745 * a comma or white space ends the value
1746 */
1747 if (value[value_len] == ',' ||
1748 ISSPACE(value[value_len]))
1749 break;
1750 }
1751
1752 if (value_len == 0) {
1753 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1754 NULL, 0);
1755 } else {
1756 char *v = value;
1757 int l = value_len;
1758 if (v[0] == v[l - 1] &&
1759 (v[0] == '\'' || v[0] == '"')) {
1760 ++v;
1761 l -= 2;
1762 }
1763 bcopy(v, propbuf, l);
1764 propbuf[l] = '\0';
1765 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1766 propbuf, l + 1);
1767 }
1768 name = value + value_len;
1769 while (*name == ',')
1770 ++name;
1771 }
1772 }
1773
1774 /*
1775 * set boot-args property
1776 * 1275 name is bootargs, so set
1777 * that too
1778 */
1779 bsetprops("boot-args", boot_args);
1780 bsetprops("bootargs", boot_args);
1781
1782 process_boot_environment(benv);
1783
1784 #ifndef __xpv
1785 /*
1786 * Build boot command line for Fast Reboot
1787 */
1788 build_fastboot_cmdline(xbp);
1789
1790 if (xbp->bi_mb_version == 1) {
1791 multiboot_info_t *mbi = xbp->bi_mb_info;
1792 int netboot;
1793 struct sol_netinfo *sip;
1794
1795 /*
1796 * set the BIOS boot device from GRUB
1797 */
1798 netboot = 0;
1799
1800 /*
1801 * Save various boot information for Fast Reboot
1802 */
1803 save_boot_info(xbp);
1804
1805 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1806 boot_device = mbi->boot_device >> 24;
1807 if (boot_device == 0x20)
1808 netboot++;
1809 str[0] = (boot_device >> 4) + '0';
1810 str[1] = (boot_device & 0xf) + '0';
1811 str[2] = 0;
1812 bsetprops("bios-boot-device", str);
1813 } else {
1814 netboot = 1;
1815 }
1816
1817 /*
1818 * In the netboot case, drives_info is overloaded with the
1819 * dhcp ack. This is not multiboot compliant and requires
1820 * special pxegrub!
1821 */
1822 if (netboot && mbi->drives_length != 0) {
1823 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1824 if (sip->sn_infotype == SN_TYPE_BOOTP)
1825 bsetprop(DDI_PROP_TYPE_BYTE,
1826 "bootp-response",
1827 sizeof ("bootp-response"),
1828 (void *)(uintptr_t)mbi->drives_addr,
1829 mbi->drives_length);
1830 else if (sip->sn_infotype == SN_TYPE_RARP)
1831 setup_rarp_props(sip);
1832 }
1833 } else {
1834 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1835 multiboot_tag_bootdev_t *bootdev = NULL;
1836 multiboot_tag_network_t *netdev = NULL;
1837
1838 if (mbi != NULL) {
1839 bootdev = dboot_multiboot2_find_tag(mbi,
1840 MULTIBOOT_TAG_TYPE_BOOTDEV);
1841 netdev = dboot_multiboot2_find_tag(mbi,
1842 MULTIBOOT_TAG_TYPE_NETWORK);
1843 }
1844 if (bootdev != NULL) {
1845 DBG(bootdev->mb_biosdev);
1846 boot_device = bootdev->mb_biosdev;
1847 str[0] = (boot_device >> 4) + '0';
1848 str[1] = (boot_device & 0xf) + '0';
1849 str[2] = 0;
1850 bsetprops("bios-boot-device", str);
1851 }
1852 if (netdev != NULL) {
1853 bsetprop(DDI_PROP_TYPE_BYTE,
1854 "bootp-response", sizeof ("bootp-response"),
1855 (void *)(uintptr_t)netdev->mb_dhcpack,
1856 netdev->mb_size -
1857 sizeof (multiboot_tag_network_t));
1858 }
1859 }
1860
1861 bsetprop32("stdout", stdout_val);
1862 #endif /* __xpv */
1863
1864 /*
1865 * more conjured up values for made up things....
1866 */
1867 #if defined(__xpv)
1868 bsetprops("mfg-name", "i86xpv");
1869 bsetprops("impl-arch-name", "i86xpv");
1870 #else
1871 bsetprops("mfg-name", "i86pc");
1872 bsetprops("impl-arch-name", "i86pc");
1873 #endif
1874
1875 /*
1876 * Build firmware-provided system properties
1877 */
1878 build_firmware_properties(xbp);
1879
1880 /*
1881 * XXPV
1882 *
1883 * Find out what these are:
1884 * - cpuid_feature_ecx_include
1885 * - cpuid_feature_ecx_exclude
1886 * - cpuid_feature_edx_include
1887 * - cpuid_feature_edx_exclude
1888 *
1889 * Find out what these are in multiboot:
1890 * - netdev-path
1891 * - fstype
1892 */
1893 }
1894
1895 #ifdef __xpv
1896 /*
1897 * Under the Hypervisor, memory usable for DMA may be scarce. One
1898 * very likely large pool of DMA friendly memory is occupied by
1899 * the boot_archive, as it was loaded by grub into low MFNs.
1900 *
1901 * Here we free up that memory by copying the boot archive to what are
1902 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1903 */
1904 #define PFN_2GIG 0x80000
1905 static void
relocate_boot_archive(struct xboot_info * xbp)1906 relocate_boot_archive(struct xboot_info *xbp)
1907 {
1908 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1909 struct boot_modules *bm = xbp->bi_modules;
1910 uintptr_t va;
1911 pfn_t va_pfn;
1912 mfn_t va_mfn;
1913 caddr_t copy;
1914 pfn_t copy_pfn;
1915 mfn_t copy_mfn;
1916 size_t len;
1917 int slop;
1918 int total = 0;
1919 int relocated = 0;
1920 int mmu_update_return;
1921 mmu_update_t t[2];
1922 x86pte_t pte;
1923
1924 /*
1925 * If all MFN's are below 2Gig, don't bother doing this.
1926 */
1927 if (max_mfn < PFN_2GIG)
1928 return;
1929 if (xbp->bi_module_cnt < 1) {
1930 DBG_MSG("no boot_archive!");
1931 return;
1932 }
1933
1934 DBG_MSG("moving boot_archive to high MFN memory\n");
1935 va = (uintptr_t)bm->bm_addr;
1936 len = bm->bm_size;
1937 slop = va & MMU_PAGEOFFSET;
1938 if (slop) {
1939 va += MMU_PAGESIZE - slop;
1940 len -= MMU_PAGESIZE - slop;
1941 }
1942 len = P2ALIGN(len, MMU_PAGESIZE);
1943
1944 /*
1945 * Go through all boot_archive pages, swapping any low MFN pages
1946 * with memory at next_phys.
1947 */
1948 while (len != 0) {
1949 ++total;
1950 va_pfn = mmu_btop(va - ONE_GIG);
1951 va_mfn = mfn_list[va_pfn];
1952 if (mfn_list[va_pfn] < PFN_2GIG) {
1953 copy = kbm_remap_window(next_phys, 1);
1954 bcopy((void *)va, copy, MMU_PAGESIZE);
1955 copy_pfn = mmu_btop(next_phys);
1956 copy_mfn = mfn_list[copy_pfn];
1957
1958 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1959 if (HYPERVISOR_update_va_mapping(va, pte,
1960 UVMF_INVLPG | UVMF_LOCAL))
1961 bop_panic("relocate_boot_archive(): "
1962 "HYPERVISOR_update_va_mapping() failed");
1963
1964 mfn_list[va_pfn] = copy_mfn;
1965 mfn_list[copy_pfn] = va_mfn;
1966
1967 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1968 t[0].val = va_pfn;
1969 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1970 t[1].val = copy_pfn;
1971 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1972 DOMID_SELF) != 0 || mmu_update_return != 2)
1973 bop_panic("relocate_boot_archive(): "
1974 "HYPERVISOR_mmu_update() failed");
1975
1976 next_phys += MMU_PAGESIZE;
1977 ++relocated;
1978 }
1979 len -= MMU_PAGESIZE;
1980 va += MMU_PAGESIZE;
1981 }
1982 DBG_MSG("Relocated pages:\n");
1983 DBG(relocated);
1984 DBG_MSG("Out of total pages:\n");
1985 DBG(total);
1986 }
1987 #endif /* __xpv */
1988
1989 #if !defined(__xpv)
1990 /*
1991 * simple description of a stack frame (args are 32 bit only currently)
1992 */
1993 typedef struct bop_frame {
1994 struct bop_frame *old_frame;
1995 pc_t retaddr;
1996 long arg[1];
1997 } bop_frame_t;
1998
1999 void
bop_traceback(bop_frame_t * frame)2000 bop_traceback(bop_frame_t *frame)
2001 {
2002 pc_t pc;
2003 int cnt;
2004 char *ksym;
2005 ulong_t off;
2006
2007 bop_printf(NULL, "Stack traceback:\n");
2008 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
2009 pc = frame->retaddr;
2010 if (pc == 0)
2011 break;
2012 ksym = kobj_getsymname(pc, &off);
2013 if (ksym)
2014 bop_printf(NULL, " %s+%lx", ksym, off);
2015 else
2016 bop_printf(NULL, " 0x%lx", pc);
2017
2018 frame = frame->old_frame;
2019 if (frame == 0) {
2020 bop_printf(NULL, "\n");
2021 break;
2022 }
2023 bop_printf(NULL, "\n");
2024 }
2025 }
2026
2027 struct trapframe {
2028 ulong_t error_code; /* optional */
2029 ulong_t inst_ptr;
2030 ulong_t code_seg;
2031 ulong_t flags_reg;
2032 ulong_t stk_ptr;
2033 ulong_t stk_seg;
2034 };
2035
2036 void
bop_trap(ulong_t * tfp)2037 bop_trap(ulong_t *tfp)
2038 {
2039 struct trapframe *tf = (struct trapframe *)tfp;
2040 bop_frame_t fakeframe;
2041 static int depth = 0;
2042
2043 /*
2044 * Check for an infinite loop of traps.
2045 */
2046 if (++depth > 2)
2047 bop_panic("Nested trap");
2048
2049 bop_printf(NULL, "Unexpected trap\n");
2050
2051 /*
2052 * adjust the tf for optional error_code by detecting the code selector
2053 */
2054 if (tf->code_seg != B64CODE_SEL)
2055 tf = (struct trapframe *)(tfp - 1);
2056 else
2057 bop_printf(NULL, "error code 0x%lx\n",
2058 tf->error_code & 0xffffffff);
2059
2060 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
2061 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
2062 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
2063 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
2064 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
2065 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2());
2066
2067 /* grab %[er]bp pushed by our code from the stack */
2068 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2069 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2070 bop_printf(NULL, "Attempting stack backtrace:\n");
2071 bop_traceback(&fakeframe);
2072 bop_panic("unexpected trap in early boot");
2073 }
2074
2075 extern void bop_trap_handler(void);
2076
2077 static gate_desc_t *bop_idt;
2078
2079 static desctbr_t bop_idt_info;
2080
2081 /*
2082 * Install a temporary IDT that lets us catch errors in the boot time code.
2083 * We shouldn't get any faults at all while this is installed, so we'll
2084 * just generate a traceback and exit.
2085 */
2086 static void
bop_idt_init(void)2087 bop_idt_init(void)
2088 {
2089 int t;
2090
2091 bop_idt = (gate_desc_t *)
2092 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2093 bzero(bop_idt, MMU_PAGESIZE);
2094 for (t = 0; t < NIDT; ++t) {
2095 /*
2096 * Note that since boot runs without a TSS, the
2097 * double fault handler cannot use an alternate stack (64-bit).
2098 */
2099 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2100 SDT_SYSIGT, TRP_KPL, 0);
2101 }
2102 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2103 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2104 wr_idtr(&bop_idt_info);
2105 }
2106 #endif /* !defined(__xpv) */
2107
2108 /*
2109 * This is where we enter the kernel. It dummies up the boot_ops and
2110 * boot_syscalls vectors and jumps off to _kobj_boot()
2111 */
2112 void
_start(struct xboot_info * xbp)2113 _start(struct xboot_info *xbp)
2114 {
2115 bootops_t *bops = &bootop;
2116 extern void _kobj_boot();
2117
2118 /*
2119 * 1st off - initialize the console for any error messages
2120 */
2121 xbootp = xbp;
2122 #ifdef __xpv
2123 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2124 xen_info = xbp->bi_xen_start_info;
2125 #endif
2126
2127 #ifndef __xpv
2128 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2129 FASTBOOT_MAGIC) {
2130 post_fastreboot = 1;
2131 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2132 }
2133 #endif
2134
2135 bcons_init(xbp);
2136 have_console = 1;
2137
2138 /*
2139 * enable debugging
2140 */
2141 if (find_boot_prop("kbm_debug") != NULL)
2142 kbm_debug = 1;
2143
2144 DBG_MSG("\n\n*** Entered illumos in _start() cmdline is: ");
2145 DBG_MSG((char *)xbp->bi_cmdline);
2146 DBG_MSG("\n\n\n");
2147
2148 /*
2149 * physavail is no longer used by startup
2150 */
2151 bm.physinstalled = xbp->bi_phys_install;
2152 bm.pcimem = xbp->bi_pcimem;
2153 bm.rsvdmem = xbp->bi_rsvdmem;
2154 bm.physavail = NULL;
2155
2156 /*
2157 * initialize the boot time allocator
2158 */
2159 next_phys = xbp->bi_next_paddr;
2160 DBG(next_phys);
2161 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2162 DBG(next_virt);
2163 DBG_MSG("Initializing boot time memory management...");
2164 #ifdef __xpv
2165 {
2166 xen_platform_parameters_t p;
2167
2168 /* This call shouldn't fail, dboot already did it once. */
2169 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2170 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2171 DBG(xen_virt_start);
2172 }
2173 #endif
2174 kbm_init(xbp);
2175 DBG_MSG("done\n");
2176
2177 /*
2178 * Fill in the bootops vector
2179 */
2180 bops->bsys_version = BO_VERSION;
2181 bops->boot_mem = &bm;
2182 bops->bsys_alloc = do_bsys_alloc;
2183 bops->bsys_free = do_bsys_free;
2184 bops->bsys_getproplen = do_bsys_getproplen;
2185 bops->bsys_getprop = do_bsys_getprop;
2186 bops->bsys_nextprop = do_bsys_nextprop;
2187 bops->bsys_printf = bop_printf;
2188 bops->bsys_doint = do_bsys_doint;
2189
2190 /*
2191 * BOP_EALLOC() is no longer needed
2192 */
2193 bops->bsys_ealloc = do_bsys_ealloc;
2194
2195 #ifdef __xpv
2196 /*
2197 * On domain 0 we need to free up some physical memory that is
2198 * usable for DMA. Since GRUB loaded the boot_archive, it is
2199 * sitting in low MFN memory. We'll relocated the boot archive
2200 * pages to high PFN memory.
2201 */
2202 if (DOMAIN_IS_INITDOMAIN(xen_info))
2203 relocate_boot_archive(xbp);
2204 #endif
2205
2206 #ifndef __xpv
2207 /*
2208 * Install an IDT to catch early pagefaults (shouldn't have any).
2209 * Also needed for kmdb.
2210 */
2211 bop_idt_init();
2212 #endif
2213 /* Set up the shadow fb for framebuffer console */
2214 boot_fb_shadow_init(bops);
2215
2216 /*
2217 * Start building the boot properties from the command line
2218 */
2219 DBG_MSG("Initializing boot properties:\n");
2220 build_boot_properties(xbp);
2221
2222 if (find_boot_prop("prom_debug") || kbm_debug) {
2223 char *value;
2224
2225 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2226 boot_prop_display(value);
2227 }
2228
2229 /*
2230 * jump into krtld...
2231 */
2232 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2233 }
2234
2235
2236 /*ARGSUSED*/
2237 static caddr_t
no_more_alloc(bootops_t * bop,caddr_t virthint,size_t size,int align)2238 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2239 {
2240 panic("Attempt to bsys_alloc() too late\n");
2241 return (NULL);
2242 }
2243
2244 /*ARGSUSED*/
2245 static void
no_more_free(bootops_t * bop,caddr_t virt,size_t size)2246 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2247 {
2248 panic("Attempt to bsys_free() too late\n");
2249 }
2250
2251 void
bop_no_more_mem(void)2252 bop_no_more_mem(void)
2253 {
2254 DBG(total_bop_alloc_scratch);
2255 DBG(total_bop_alloc_kernel);
2256 bootops->bsys_alloc = no_more_alloc;
2257 bootops->bsys_free = no_more_free;
2258 }
2259
2260
2261 /*
2262 * Set ACPI firmware properties
2263 */
2264
2265 static caddr_t
vmap_phys(size_t length,paddr_t pa)2266 vmap_phys(size_t length, paddr_t pa)
2267 {
2268 paddr_t start, end;
2269 caddr_t va;
2270 size_t len, page;
2271
2272 #ifdef __xpv
2273 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2274 #endif
2275 start = P2ALIGN(pa, MMU_PAGESIZE);
2276 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2277 len = end - start;
2278 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2279 for (page = 0; page < len; page += MMU_PAGESIZE)
2280 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2281 return (va + (pa & MMU_PAGEOFFSET));
2282 }
2283
2284 static uint8_t
checksum_table(uint8_t * tp,size_t len)2285 checksum_table(uint8_t *tp, size_t len)
2286 {
2287 uint8_t sum = 0;
2288
2289 while (len-- > 0)
2290 sum += *tp++;
2291
2292 return (sum);
2293 }
2294
2295 static int
valid_rsdp(ACPI_TABLE_RSDP * rp)2296 valid_rsdp(ACPI_TABLE_RSDP *rp)
2297 {
2298
2299 /* validate the V1.x checksum */
2300 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2301 return (0);
2302
2303 /* If pre-ACPI 2.0, this is a valid RSDP */
2304 if (rp->Revision < 2)
2305 return (1);
2306
2307 /* validate the V2.x checksum */
2308 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2309 return (0);
2310
2311 return (1);
2312 }
2313
2314 /*
2315 * Scan memory range for an RSDP;
2316 * see ACPI 3.0 Spec, 5.2.5.1
2317 */
2318 static ACPI_TABLE_RSDP *
scan_rsdp(paddr_t * paddrp,size_t len)2319 scan_rsdp(paddr_t *paddrp, size_t len)
2320 {
2321 paddr_t paddr = *paddrp;
2322 caddr_t ptr;
2323
2324 ptr = vmap_phys(len, paddr);
2325
2326 while (len > 0) {
2327 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2328 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) {
2329 *paddrp = paddr;
2330 return ((ACPI_TABLE_RSDP *)ptr);
2331 }
2332
2333 ptr += ACPI_RSDP_SCAN_STEP;
2334 paddr += ACPI_RSDP_SCAN_STEP;
2335 len -= ACPI_RSDP_SCAN_STEP;
2336 }
2337
2338 return (NULL);
2339 }
2340
2341 /*
2342 * Locate the ACPI RSDP. We search in a particular order:
2343 *
2344 * - If the bootloader told us the location of the RSDP (via the EFI system
2345 * table), try that first.
2346 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy
2347 * case).
2348 * - Finally, our bootloader may have a copy of the RSDP in its info: this might
2349 * get freed after boot, so we always prefer to find the original RSDP first.
2350 *
2351 * Once found, we set acpi-root-tab property (a physical address) for the
2352 * benefit of acpica, acpidump etc.
2353 */
2354
2355 static ACPI_TABLE_RSDP *
find_rsdp(struct xboot_info * xbp)2356 find_rsdp(struct xboot_info *xbp)
2357 {
2358 ACPI_TABLE_RSDP *rsdp = NULL;
2359 paddr_t paddr = 0;
2360
2361 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2362 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr);
2363 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2364 }
2365
2366 #ifndef __xpv
2367 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) {
2368 paddr = (uintptr_t)xbp->bi_acpi_rsdp;
2369 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2370 }
2371 #endif
2372
2373 if (rsdp == NULL) {
2374 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2375 ACPI_EBDA_PTR_LOCATION);
2376 paddr = *ebda_seg << 4;
2377 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE);
2378 }
2379
2380 if (rsdp == NULL) {
2381 paddr = ACPI_HI_RSDP_WINDOW_BASE;
2382 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE);
2383 }
2384
2385 #ifndef __xpv
2386 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) {
2387 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy;
2388 rsdp = scan_rsdp(&paddr, sizeof (*rsdp));
2389 }
2390 #endif
2391
2392 if (rsdp == NULL) {
2393 bop_printf(NULL, "no RSDP found!\n");
2394 return (NULL);
2395 }
2396
2397 if (kbm_debug)
2398 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr);
2399
2400 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t))
2401 bsetprop64("acpi-root-tab", paddr);
2402
2403 return (rsdp);
2404 }
2405
2406 static ACPI_TABLE_HEADER *
map_fw_table(paddr_t table_addr)2407 map_fw_table(paddr_t table_addr)
2408 {
2409 ACPI_TABLE_HEADER *tp;
2410 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2411
2412 /*
2413 * Map at least a page; if the table is larger than this, remap it
2414 */
2415 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2416 if (tp->Length > len)
2417 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2418 return (tp);
2419 }
2420
2421 static ACPI_TABLE_HEADER *
find_fw_table(ACPI_TABLE_RSDP * rsdp,char * signature)2422 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature)
2423 {
2424 static int revision = 0;
2425 static ACPI_TABLE_XSDT *xsdt;
2426 static int len;
2427 paddr_t xsdt_addr;
2428 ACPI_TABLE_HEADER *tp;
2429 paddr_t table_addr;
2430 int n;
2431
2432 if (strlen(signature) != ACPI_NAME_SIZE)
2433 return (NULL);
2434
2435 /*
2436 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2437 * understand this code. If we haven't already found the RSDT/XSDT,
2438 * revision will be 0. Find the RSDP and check the revision
2439 * to find out whether to use the RSDT or XSDT. If revision is
2440 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2441 * use the XSDT. If the XSDT address is 0, though, fall back to
2442 * revision 1 and use the RSDT.
2443 */
2444 xsdt_addr = 0;
2445 if (revision == 0) {
2446 if (rsdp == NULL)
2447 return (NULL);
2448
2449 revision = rsdp->Revision;
2450 /*
2451 * ACPI 6.0 states that current revision is 2
2452 * from acpi_table_rsdp definition:
2453 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2454 */
2455 if (revision > 2)
2456 revision = 2;
2457 switch (revision) {
2458 case 2:
2459 /*
2460 * Use the XSDT unless BIOS is buggy and
2461 * claims to be rev 2 but has a null XSDT
2462 * address
2463 */
2464 xsdt_addr = rsdp->XsdtPhysicalAddress;
2465 if (xsdt_addr != 0)
2466 break;
2467 /* FALLTHROUGH */
2468 case 0:
2469 /* treat RSDP rev 0 as revision 1 internally */
2470 revision = 1;
2471 /* FALLTHROUGH */
2472 case 1:
2473 /* use the RSDT for rev 0/1 */
2474 xsdt_addr = rsdp->RsdtPhysicalAddress;
2475 break;
2476 default:
2477 /* unknown revision */
2478 revision = 0;
2479 break;
2480 }
2481
2482 if (revision == 0)
2483 return (NULL);
2484
2485 /* cache the XSDT info */
2486 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2487 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2488 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2489 }
2490
2491 /*
2492 * Scan the table headers looking for a signature match
2493 */
2494 for (n = 0; n < len; n++) {
2495 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2496 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2497 xsdt->TableOffsetEntry[n];
2498
2499 if (table_addr == 0)
2500 continue;
2501 tp = map_fw_table(table_addr);
2502 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2503 return (tp);
2504 }
2505 }
2506 return (NULL);
2507 }
2508
2509 static void
process_mcfg(ACPI_TABLE_MCFG * tp)2510 process_mcfg(ACPI_TABLE_MCFG *tp)
2511 {
2512 ACPI_MCFG_ALLOCATION *cfg_baap;
2513 char *cfg_baa_endp;
2514 int64_t ecfginfo[4];
2515
2516 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2517 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2518 while ((char *)cfg_baap < cfg_baa_endp) {
2519 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2520 ecfginfo[0] = cfg_baap->Address;
2521 ecfginfo[1] = cfg_baap->PciSegment;
2522 ecfginfo[2] = cfg_baap->StartBusNumber;
2523 ecfginfo[3] = cfg_baap->EndBusNumber;
2524 bsetprop(DDI_PROP_TYPE_INT64,
2525 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2526 ecfginfo, sizeof (ecfginfo));
2527 break;
2528 }
2529 cfg_baap++;
2530 }
2531 }
2532
2533 #ifndef __xpv
2534 static void
process_madt_entries(ACPI_TABLE_MADT * tp,uint32_t * cpu_countp,uint32_t * cpu_possible_countp,uint32_t * cpu_apicid_array)2535 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2536 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2537 {
2538 ACPI_SUBTABLE_HEADER *item, *end;
2539 uint32_t cpu_count = 0;
2540 uint32_t cpu_possible_count = 0;
2541
2542 /*
2543 * Determine number of CPUs and keep track of "final" APIC ID
2544 * for each CPU by walking through ACPI MADT processor list
2545 */
2546 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2547 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2548
2549 while (item < end) {
2550 switch (item->Type) {
2551 case ACPI_MADT_TYPE_LOCAL_APIC: {
2552 ACPI_MADT_LOCAL_APIC *cpu =
2553 (ACPI_MADT_LOCAL_APIC *) item;
2554
2555 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2556 if (cpu_apicid_array != NULL)
2557 cpu_apicid_array[cpu_count] = cpu->Id;
2558 cpu_count++;
2559 }
2560 cpu_possible_count++;
2561 break;
2562 }
2563 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2564 ACPI_MADT_LOCAL_X2APIC *cpu =
2565 (ACPI_MADT_LOCAL_X2APIC *) item;
2566
2567 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2568 if (cpu_apicid_array != NULL)
2569 cpu_apicid_array[cpu_count] =
2570 cpu->LocalApicId;
2571 cpu_count++;
2572 }
2573 cpu_possible_count++;
2574 break;
2575 }
2576 default:
2577 if (kbm_debug)
2578 bop_printf(NULL, "MADT type %d\n", item->Type);
2579 break;
2580 }
2581
2582 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2583 }
2584 if (cpu_countp)
2585 *cpu_countp = cpu_count;
2586 if (cpu_possible_countp)
2587 *cpu_possible_countp = cpu_possible_count;
2588 }
2589
2590 static void
process_madt(ACPI_TABLE_MADT * tp)2591 process_madt(ACPI_TABLE_MADT *tp)
2592 {
2593 uint32_t cpu_count = 0;
2594 uint32_t cpu_possible_count = 0;
2595 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2596
2597 if (tp != NULL) {
2598 /* count cpu's */
2599 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2600
2601 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2602 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2603 if (cpu_apicid_array == NULL)
2604 bop_panic("Not enough memory for APIC ID array");
2605
2606 /* copy IDs */
2607 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2608
2609 /*
2610 * Make boot property for array of "final" APIC IDs for each
2611 * CPU
2612 */
2613 bsetprop(DDI_PROP_TYPE_INT,
2614 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2615 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2616 }
2617
2618 /*
2619 * Check whether property plat-max-ncpus is already set.
2620 */
2621 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2622 /*
2623 * Set plat-max-ncpus to number of maximum possible CPUs given
2624 * in MADT if it hasn't been set.
2625 * There's no formal way to detect max possible CPUs supported
2626 * by platform according to ACPI spec3.0b. So current CPU
2627 * hotplug implementation expects that all possible CPUs will
2628 * have an entry in MADT table and set plat-max-ncpus to number
2629 * of entries in MADT.
2630 * With introducing of ACPI4.0, Maximum System Capability Table
2631 * (MSCT) provides maximum number of CPUs supported by platform.
2632 * If MSCT is unavailable, fall back to old way.
2633 */
2634 if (tp != NULL)
2635 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2636 }
2637
2638 /*
2639 * Set boot property boot-max-ncpus to number of CPUs existing at
2640 * boot time. boot-max-ncpus is mainly used for optimization.
2641 */
2642 if (tp != NULL)
2643 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2644
2645 /*
2646 * User-set boot-ncpus overrides firmware count
2647 */
2648 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2649 return;
2650
2651 /*
2652 * Set boot property boot-ncpus to number of active CPUs given in MADT
2653 * if it hasn't been set yet.
2654 */
2655 if (tp != NULL)
2656 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2657 }
2658
2659 static void
process_srat(ACPI_TABLE_SRAT * tp)2660 process_srat(ACPI_TABLE_SRAT *tp)
2661 {
2662 ACPI_SUBTABLE_HEADER *item, *end;
2663 int i;
2664 int proc_num, mem_num;
2665 #pragma pack(1)
2666 struct {
2667 uint32_t domain;
2668 uint32_t apic_id;
2669 uint32_t sapic_id;
2670 } processor;
2671 struct {
2672 uint32_t domain;
2673 uint32_t x2apic_id;
2674 } x2apic;
2675 struct {
2676 uint32_t domain;
2677 uint64_t addr;
2678 uint64_t length;
2679 uint32_t flags;
2680 } memory;
2681 #pragma pack()
2682 char prop_name[30];
2683 uint64_t maxmem = 0;
2684
2685 if (tp == NULL)
2686 return;
2687
2688 proc_num = mem_num = 0;
2689 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2690 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2691 while (item < end) {
2692 switch (item->Type) {
2693 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2694 ACPI_SRAT_CPU_AFFINITY *cpu =
2695 (ACPI_SRAT_CPU_AFFINITY *) item;
2696
2697 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2698 break;
2699 processor.domain = cpu->ProximityDomainLo;
2700 for (i = 0; i < 3; i++)
2701 processor.domain +=
2702 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2703 processor.apic_id = cpu->ApicId;
2704 processor.sapic_id = cpu->LocalSapicEid;
2705 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2706 proc_num);
2707 bsetprop(DDI_PROP_TYPE_INT,
2708 prop_name, strlen(prop_name), &processor,
2709 sizeof (processor));
2710 proc_num++;
2711 break;
2712 }
2713 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2714 ACPI_SRAT_MEM_AFFINITY *mem =
2715 (ACPI_SRAT_MEM_AFFINITY *)item;
2716
2717 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2718 break;
2719 memory.domain = mem->ProximityDomain;
2720 memory.addr = mem->BaseAddress;
2721 memory.length = mem->Length;
2722 memory.flags = mem->Flags;
2723 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2724 mem_num);
2725 bsetprop(DDI_PROP_TYPE_INT,
2726 prop_name, strlen(prop_name), &memory,
2727 sizeof (memory));
2728 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2729 (memory.addr + memory.length > maxmem)) {
2730 maxmem = memory.addr + memory.length;
2731 }
2732 mem_num++;
2733 break;
2734 }
2735 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2736 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2737 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2738
2739 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2740 break;
2741 x2apic.domain = x2cpu->ProximityDomain;
2742 x2apic.x2apic_id = x2cpu->ApicId;
2743 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2744 proc_num);
2745 bsetprop(DDI_PROP_TYPE_INT,
2746 prop_name, strlen(prop_name), &x2apic,
2747 sizeof (x2apic));
2748 proc_num++;
2749 break;
2750 }
2751 default:
2752 if (kbm_debug)
2753 bop_printf(NULL, "SRAT type %d\n", item->Type);
2754 break;
2755 }
2756
2757 item = (ACPI_SUBTABLE_HEADER *)
2758 (item->Length + (uintptr_t)item);
2759 }
2760
2761 /*
2762 * The maximum physical address calculated from the SRAT table is more
2763 * accurate than that calculated from the MSCT table.
2764 */
2765 if (maxmem != 0) {
2766 plat_dr_physmax = btop(maxmem);
2767 }
2768 }
2769
2770 static void
process_slit(ACPI_TABLE_SLIT * tp)2771 process_slit(ACPI_TABLE_SLIT *tp)
2772 {
2773
2774 /*
2775 * Check the number of localities; if it's too huge, we just
2776 * return and locality enumeration code will handle this later,
2777 * if possible.
2778 *
2779 * Note that the size of the table is the square of the
2780 * number of localities; if the number of localities exceeds
2781 * UINT16_MAX, the table size may overflow an int when being
2782 * passed to bsetprop() below.
2783 */
2784 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2785 return;
2786
2787 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2788 bsetprop(DDI_PROP_TYPE_BYTE,
2789 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2790 tp->LocalityCount * tp->LocalityCount);
2791 }
2792
2793 static ACPI_TABLE_MSCT *
process_msct(ACPI_TABLE_MSCT * tp)2794 process_msct(ACPI_TABLE_MSCT *tp)
2795 {
2796 int last_seen = 0;
2797 int proc_num = 0;
2798 ACPI_MSCT_PROXIMITY *item, *end;
2799 extern uint64_t plat_dr_options;
2800
2801 ASSERT(tp != NULL);
2802
2803 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2804 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2805 item < end;
2806 item = (void *)(item->Length + (uintptr_t)item)) {
2807 /*
2808 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2809 * Revision 1
2810 * Length 22
2811 */
2812 if (item->Revision != 1 || item->Length != 22) {
2813 cmn_err(CE_CONT,
2814 "?boot: unknown proximity domain structure in MSCT "
2815 "with Revision(%d), Length(%d).\n",
2816 (int)item->Revision, (int)item->Length);
2817 return (NULL);
2818 } else if (item->RangeStart > item->RangeEnd) {
2819 cmn_err(CE_CONT,
2820 "?boot: invalid proximity domain structure in MSCT "
2821 "with RangeStart(%u), RangeEnd(%u).\n",
2822 item->RangeStart, item->RangeEnd);
2823 return (NULL);
2824 } else if (item->RangeStart != last_seen) {
2825 /*
2826 * Items must be organized in ascending order of the
2827 * proximity domain enumerations.
2828 */
2829 cmn_err(CE_CONT,
2830 "?boot: invalid proximity domain structure in MSCT,"
2831 " items are not orginized in ascending order.\n");
2832 return (NULL);
2833 }
2834
2835 /*
2836 * If ProcessorCapacity is 0 then there would be no CPUs in this
2837 * domain.
2838 */
2839 if (item->ProcessorCapacity != 0) {
2840 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2841 item->ProcessorCapacity;
2842 }
2843
2844 last_seen = item->RangeEnd - item->RangeStart + 1;
2845 /*
2846 * Break out if all proximity domains have been processed.
2847 * Some BIOSes may have unused items at the end of MSCT table.
2848 */
2849 if (last_seen > tp->MaxProximityDomains) {
2850 break;
2851 }
2852 }
2853 if (last_seen != tp->MaxProximityDomains + 1) {
2854 cmn_err(CE_CONT,
2855 "?boot: invalid proximity domain structure in MSCT, "
2856 "proximity domain count doesn't match.\n");
2857 return (NULL);
2858 }
2859
2860 /*
2861 * Set plat-max-ncpus property if it hasn't been set yet.
2862 */
2863 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2864 if (proc_num != 0) {
2865 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2866 }
2867 }
2868
2869 /*
2870 * Use Maximum Physical Address from the MSCT table as upper limit for
2871 * memory hot-adding by default. It may be overridden by value from
2872 * the SRAT table or the "plat-dr-physmax" boot option.
2873 */
2874 plat_dr_physmax = btop(tp->MaxAddress + 1);
2875
2876 /*
2877 * Existence of MSCT implies CPU/memory hotplug-capability for the
2878 * platform.
2879 */
2880 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2881 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2882
2883 return (tp);
2884 }
2885
2886 #else /* __xpv */
2887 static void
enumerate_xen_cpus()2888 enumerate_xen_cpus()
2889 {
2890 processorid_t id, max_id;
2891
2892 /*
2893 * User-set boot-ncpus overrides enumeration
2894 */
2895 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2896 return;
2897
2898 /*
2899 * Probe every possible virtual CPU id and remember the
2900 * highest id present; the count of CPUs is one greater
2901 * than this. This tacitly assumes at least cpu 0 is present.
2902 */
2903 max_id = 0;
2904 for (id = 0; id < MAX_VIRT_CPUS; id++)
2905 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2906 max_id = id;
2907
2908 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2909
2910 }
2911 #endif /* __xpv */
2912
2913 /*ARGSUSED*/
2914 static void
build_firmware_properties(struct xboot_info * xbp)2915 build_firmware_properties(struct xboot_info *xbp)
2916 {
2917 ACPI_TABLE_HEADER *tp = NULL;
2918 ACPI_TABLE_RSDP *rsdp;
2919
2920 #ifndef __xpv
2921 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2922 bsetprops("efi-systype", "64");
2923 bsetprop64("efi-systab",
2924 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2925 if (kbm_debug)
2926 bop_printf(NULL, "64-bit UEFI detected.\n");
2927 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2928 bsetprops("efi-systype", "32");
2929 bsetprop64("efi-systab",
2930 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2931 if (kbm_debug)
2932 bop_printf(NULL, "32-bit UEFI detected.\n");
2933 }
2934
2935 if (xbp->bi_smbios != NULL) {
2936 bsetprop64("smbios-address",
2937 (uint64_t)(uintptr_t)xbp->bi_smbios);
2938 }
2939
2940 rsdp = find_rsdp(xbp);
2941
2942 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL)
2943 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2944 else
2945 msct_ptr = NULL;
2946
2947 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL)
2948 process_madt((ACPI_TABLE_MADT *)tp);
2949
2950 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2951 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL)
2952 process_srat(srat_ptr);
2953
2954 if ((slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp,
2955 ACPI_SIG_SLIT)) != NULL)
2956 process_slit(slit_ptr);
2957
2958 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2959 #else /* __xpv */
2960 enumerate_xen_cpus();
2961 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2962 rsdp = find_rsdp(xbp);
2963 tp = find_fw_table(rsdp, ACPI_SIG_MCFG);
2964 }
2965 #endif /* __xpv */
2966 if (tp != NULL)
2967 process_mcfg((ACPI_TABLE_MCFG *)tp);
2968
2969 /*
2970 * Map the first HPET table (if it exists) and save the address.
2971 * If the HPET is required to calibrate the TSC, we require the
2972 * HPET table prior to being able to load modules, so we cannot use
2973 * the acpica module (and thus AcpiGetTable()) to locate it.
2974 */
2975 if ((tp = find_fw_table(rsdp, ACPI_SIG_HPET)) != NULL)
2976 bsetprop64("hpet-table", (uint64_t)(uintptr_t)tp);
2977 }
2978
2979 /*
2980 * fake up a boot property for deferred early console output
2981 * this is used by both graphical boot and the (developer only)
2982 * USB serial console
2983 */
2984 void *
defcons_init(size_t size)2985 defcons_init(size_t size)
2986 {
2987 static char *p = NULL;
2988
2989 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2990 *p = 0;
2991 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2992 return (p);
2993 }
2994
2995 /*ARGSUSED*/
2996 int
boot_compinfo(int fd,struct compinfo * cbp)2997 boot_compinfo(int fd, struct compinfo *cbp)
2998 {
2999 cbp->iscmp = 0;
3000 cbp->blksize = MAXBSIZE;
3001 return (0);
3002 }
3003
3004 /*
3005 * Get an integer value for given boot property
3006 */
3007 int
bootprop_getval(const char * prop_name,u_longlong_t * prop_value)3008 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
3009 {
3010 int boot_prop_len;
3011 char str[BP_MAX_STRLEN];
3012 u_longlong_t value;
3013
3014 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
3015 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) ||
3016 BOP_GETPROP(bootops, prop_name, str) < 0 ||
3017 kobj_getvalue(str, &value) == -1)
3018 return (-1);
3019
3020 if (prop_value)
3021 *prop_value = value;
3022
3023 return (0);
3024 }
3025
3026 int
bootprop_getstr(const char * prop_name,char * buf,size_t buflen)3027 bootprop_getstr(const char *prop_name, char *buf, size_t buflen)
3028 {
3029 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
3030
3031 if (boot_prop_len < 0 || boot_prop_len >= buflen ||
3032 BOP_GETPROP(bootops, prop_name, buf) < 0)
3033 return (-1);
3034
3035 return (0);
3036 }
3037