1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/linker_set.h>
31 #include <sys/mman.h>
32
33 #include <ctype.h>
34 #include <err.h>
35 #include <errno.h>
36 #include <pthread.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <strings.h>
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <sysexits.h>
44
45 #include <machine/vmm.h>
46 #include <machine/vmm_snapshot.h>
47 #include <vmmapi.h>
48
49 #include "acpi.h"
50 #include "bhyverun.h"
51 #include "bootrom.h"
52 #include "config.h"
53 #include "debug.h"
54 #ifdef __amd64__
55 #include "amd64/inout.h"
56 #endif
57 #include "mem.h"
58 #include "pci_emul.h"
59 #ifdef __amd64__
60 #include "amd64/pci_lpc.h"
61 #include "pci_passthru.h"
62 #endif
63 #include "qemu_fwcfg.h"
64
65 #define CONF1_ADDR_PORT 0x0cf8
66 #define CONF1_DATA_PORT 0x0cfc
67
68 #define CONF1_ENABLE 0x80000000ul
69
70 #define MAXBUSES (PCI_BUSMAX + 1)
71 #define MAXSLOTS (PCI_SLOTMAX + 1)
72 #define MAXFUNCS (PCI_FUNCMAX + 1)
73
74 #define GB (1024 * 1024 * 1024UL)
75
76 struct funcinfo {
77 nvlist_t *fi_config;
78 struct pci_devemu *fi_pde;
79 struct pci_devinst *fi_devi;
80 };
81
82 struct intxinfo {
83 int ii_count;
84 struct pci_irq ii_irq;
85 };
86
87 struct slotinfo {
88 struct intxinfo si_intpins[4];
89 struct funcinfo si_funcs[MAXFUNCS];
90 };
91
92 struct businfo {
93 uint16_t iobase, iolimit; /* I/O window */
94 uint32_t membase32, memlimit32; /* mmio window below 4GB */
95 uint64_t membase64, memlimit64; /* mmio window above 4GB */
96 struct slotinfo slotinfo[MAXSLOTS];
97 };
98
99 static struct businfo *pci_businfo[MAXBUSES];
100
101 SET_DECLARE(pci_devemu_set, struct pci_devemu);
102
103 static uint64_t pci_emul_iobase;
104 static uint8_t *pci_emul_rombase;
105 static uint64_t pci_emul_romoffset;
106 static uint8_t *pci_emul_romlim;
107 static uint64_t pci_emul_membase32;
108 static uint64_t pci_emul_membase64;
109 static uint64_t pci_emul_memlim64;
110
111 struct pci_bar_allocation {
112 TAILQ_ENTRY(pci_bar_allocation) chain;
113 struct pci_devinst *pdi;
114 int idx;
115 enum pcibar_type type;
116 uint64_t size;
117 };
118
119 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
120 TAILQ_HEAD_INITIALIZER(pci_bars);
121
122 struct boot_device {
123 TAILQ_ENTRY(boot_device) boot_device_chain;
124 struct pci_devinst *pdi;
125 int bootindex;
126 };
127 static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
128 boot_devices);
129
130 #if defined(__amd64__)
131 #define PCI_EMUL_IOBASE 0x2000
132 #define PCI_EMUL_IOLIMIT 0x10000
133 #define PCI_EMUL_IOMASK 0xffff
134 /*
135 * OVMF always uses 0xc0000000 as base address for 32 bit PCI MMIO. Don't
136 * change this address without changing it in OVMF.
137 */
138 #define PCI_EMUL_MEMBASE32 0xc0000000
139 #elif defined(__aarch64__) || defined(__riscv)
140 #define PCI_EMUL_IOBASE 0xdf000000UL
141 #define PCI_EMUL_IOLIMIT 0xe0000000UL
142 #define PCI_EMUL_MEMBASE32 0xa0000000UL
143 #else
144 #error Unsupported platform
145 #endif
146
147 #define PCI_EMUL_ROMSIZE 0x10000000
148
149 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */
150 #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
151 #ifdef __amd64__
152 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
153 #endif
154
155 #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE
156 #define PCI_EMUL_MEMSIZE64 (32*GB)
157
158 static void pci_lintr_route(struct pci_devinst *pi);
159 static void pci_lintr_update(struct pci_devinst *pi);
160
161 static struct pci_devemu *pci_emul_finddev(const char *name);
162 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
163 int bytes, uint32_t *val);
164
165 static __inline void
CFGWRITE(struct pci_devinst * pi,int coff,uint32_t val,int bytes)166 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
167 {
168
169 if (bytes == 1)
170 pci_set_cfgdata8(pi, coff, val);
171 else if (bytes == 2)
172 pci_set_cfgdata16(pi, coff, val);
173 else
174 pci_set_cfgdata32(pi, coff, val);
175 }
176
177 static __inline uint32_t
CFGREAD(struct pci_devinst * pi,int coff,int bytes)178 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
179 {
180
181 if (bytes == 1)
182 return (pci_get_cfgdata8(pi, coff));
183 else if (bytes == 2)
184 return (pci_get_cfgdata16(pi, coff));
185 else
186 return (pci_get_cfgdata32(pi, coff));
187 }
188
189 static int
is_pcir_bar(int coff)190 is_pcir_bar(int coff)
191 {
192 return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
193 }
194
195 static int
is_pcir_bios(int coff)196 is_pcir_bios(int coff)
197 {
198 return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
199 }
200
201 /*
202 * I/O access
203 */
204
205 /*
206 * Slot options are in the form:
207 *
208 * <bus>:<slot>:<func>,<emul>[,<config>]
209 * <slot>[:<func>],<emul>[,<config>]
210 *
211 * slot is 0..31
212 * func is 0..7
213 * emul is a string describing the type of PCI device e.g. virtio-net
214 * config is an optional string, depending on the device, that can be
215 * used for configuration.
216 * Examples are:
217 * 1,virtio-net,tap0
218 * 3:0,dummy
219 */
220 static void
pci_parse_slot_usage(char * aopt)221 pci_parse_slot_usage(char *aopt)
222 {
223
224 EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
225 }
226
227 /*
228 * Helper function to parse a list of comma-separated options where
229 * each option is formatted as "name[=value]". If no value is
230 * provided, the option is treated as a boolean and is given a value
231 * of true.
232 */
233 int
pci_parse_legacy_config(nvlist_t * nvl,const char * opt)234 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
235 {
236 char *config, *name, *tofree, *value;
237
238 if (opt == NULL)
239 return (0);
240
241 config = tofree = strdup(opt);
242 while ((name = strsep(&config, ",")) != NULL) {
243 value = strchr(name, '=');
244 if (value != NULL) {
245 *value = '\0';
246 value++;
247 set_config_value_node(nvl, name, value);
248 } else
249 set_config_bool_node(nvl, name, true);
250 }
251 free(tofree);
252 return (0);
253 }
254
255 /*
256 * PCI device configuration is stored in MIBs that encode the device's
257 * location:
258 *
259 * pci.<bus>.<slot>.<func>
260 *
261 * Where "bus", "slot", and "func" are all decimal values without
262 * leading zeroes. Each valid device must have a "device" node which
263 * identifies the driver model of the device.
264 *
265 * Device backends can provide a parser for the "config" string. If
266 * a custom parser is not provided, pci_parse_legacy_config() is used
267 * to parse the string.
268 */
269 int
pci_parse_slot(char * opt)270 pci_parse_slot(char *opt)
271 {
272 char node_name[sizeof("pci.XXX.XX.X")];
273 struct pci_devemu *pde;
274 char *emul, *config, *str, *cp;
275 int error, bnum, snum, fnum;
276 nvlist_t *nvl;
277
278 error = -1;
279 str = strdup(opt);
280
281 emul = config = NULL;
282 if ((cp = strchr(str, ',')) != NULL) {
283 *cp = '\0';
284 emul = cp + 1;
285 if ((cp = strchr(emul, ',')) != NULL) {
286 *cp = '\0';
287 config = cp + 1;
288 }
289 } else {
290 pci_parse_slot_usage(opt);
291 goto done;
292 }
293
294 /* <bus>:<slot>:<func> */
295 if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
296 bnum = 0;
297 /* <slot>:<func> */
298 if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
299 fnum = 0;
300 /* <slot> */
301 if (sscanf(str, "%d", &snum) != 1) {
302 snum = -1;
303 }
304 }
305 }
306
307 if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
308 fnum < 0 || fnum >= MAXFUNCS) {
309 pci_parse_slot_usage(opt);
310 goto done;
311 }
312
313 pde = pci_emul_finddev(emul);
314 if (pde == NULL) {
315 EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
316 fnum, emul);
317 goto done;
318 }
319
320 snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
321 fnum);
322 nvl = find_config_node(node_name);
323 if (nvl != NULL) {
324 EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
325 fnum);
326 goto done;
327 }
328 nvl = create_config_node(node_name);
329 if (pde->pe_alias != NULL)
330 set_config_value_node(nvl, "device", pde->pe_alias);
331 else
332 set_config_value_node(nvl, "device", pde->pe_emu);
333
334 if (pde->pe_legacy_config != NULL)
335 error = pde->pe_legacy_config(nvl, config);
336 else
337 error = pci_parse_legacy_config(nvl, config);
338 done:
339 free(str);
340 return (error);
341 }
342
343 void
pci_print_supported_devices(void)344 pci_print_supported_devices(void)
345 {
346 struct pci_devemu **pdpp, *pdp;
347
348 SET_FOREACH(pdpp, pci_devemu_set) {
349 pdp = *pdpp;
350 printf("%s\n", pdp->pe_emu);
351 }
352 }
353
354 uint32_t
pci_config_read_reg(const struct pcisel * const host_sel,nvlist_t * nvl,const uint32_t reg,const uint8_t size,const uint32_t def)355 pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
356 const uint32_t reg, const uint8_t size, const uint32_t def)
357 {
358 const char *config;
359 const nvlist_t *pci_regs;
360
361 assert(size == 1 || size == 2 || size == 4);
362
363 pci_regs = find_relative_config_node(nvl, "pcireg");
364 if (pci_regs == NULL) {
365 return def;
366 }
367
368 switch (reg) {
369 case PCIR_DEVICE:
370 config = get_config_value_node(pci_regs, "device");
371 break;
372 case PCIR_VENDOR:
373 config = get_config_value_node(pci_regs, "vendor");
374 break;
375 case PCIR_REVID:
376 config = get_config_value_node(pci_regs, "revid");
377 break;
378 case PCIR_SUBVEND_0:
379 config = get_config_value_node(pci_regs, "subvendor");
380 break;
381 case PCIR_SUBDEV_0:
382 config = get_config_value_node(pci_regs, "subdevice");
383 break;
384 default:
385 return (-1);
386 }
387
388 if (config == NULL) {
389 return def;
390 } else if (host_sel != NULL && strcmp(config, "host") == 0) {
391 #ifdef __amd64__
392 return pci_host_read_config(host_sel, reg, size);
393 #else
394 errx(1, "cannot fetch host PCI configuration");
395 #endif
396 } else {
397 return strtol(config, NULL, 16);
398 }
399 }
400
401 static int
pci_valid_pba_offset(struct pci_devinst * pi,uint64_t offset)402 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
403 {
404
405 if (offset < pi->pi_msix.pba_offset)
406 return (0);
407
408 if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
409 return (0);
410 }
411
412 return (1);
413 }
414
415 int
pci_emul_msix_twrite(struct pci_devinst * pi,uint64_t offset,int size,uint64_t value)416 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
417 uint64_t value)
418 {
419 int msix_entry_offset;
420 int tab_index;
421 char *dest;
422
423 /* support only 4 or 8 byte writes */
424 if (size != 4 && size != 8)
425 return (-1);
426
427 /*
428 * Return if table index is beyond what device supports
429 */
430 tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
431 if (tab_index >= pi->pi_msix.table_count)
432 return (-1);
433
434 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
435
436 /* support only aligned writes */
437 if ((msix_entry_offset % size) != 0)
438 return (-1);
439
440 dest = (char *)(pi->pi_msix.table + tab_index);
441 dest += msix_entry_offset;
442
443 if (size == 4)
444 *((uint32_t *)dest) = value;
445 else
446 *((uint64_t *)dest) = value;
447
448 return (0);
449 }
450
451 uint64_t
pci_emul_msix_tread(struct pci_devinst * pi,uint64_t offset,int size)452 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
453 {
454 char *dest;
455 int msix_entry_offset;
456 int tab_index;
457 uint64_t retval = ~0;
458
459 /*
460 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
461 * table but we also allow 1 byte access to accommodate reads from
462 * ddb.
463 */
464 if (size != 1 && size != 4 && size != 8)
465 return (retval);
466
467 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
468
469 /* support only aligned reads */
470 if ((msix_entry_offset % size) != 0) {
471 return (retval);
472 }
473
474 tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
475
476 if (tab_index < pi->pi_msix.table_count) {
477 /* valid MSI-X Table access */
478 dest = (char *)(pi->pi_msix.table + tab_index);
479 dest += msix_entry_offset;
480
481 if (size == 1)
482 retval = *((uint8_t *)dest);
483 else if (size == 4)
484 retval = *((uint32_t *)dest);
485 else
486 retval = *((uint64_t *)dest);
487 } else if (pci_valid_pba_offset(pi, offset)) {
488 /* return 0 for PBA access */
489 retval = 0;
490 }
491
492 return (retval);
493 }
494
495 int
pci_msix_table_bar(struct pci_devinst * pi)496 pci_msix_table_bar(struct pci_devinst *pi)
497 {
498
499 if (pi->pi_msix.table != NULL)
500 return (pi->pi_msix.table_bar);
501 else
502 return (-1);
503 }
504
505 int
pci_msix_pba_bar(struct pci_devinst * pi)506 pci_msix_pba_bar(struct pci_devinst *pi)
507 {
508
509 if (pi->pi_msix.table != NULL)
510 return (pi->pi_msix.pba_bar);
511 else
512 return (-1);
513 }
514
515 #ifdef __amd64__
516 static int
pci_emul_io_handler(struct vmctx * ctx __unused,int in,int port,int bytes,uint32_t * eax,void * arg)517 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
518 int bytes, uint32_t *eax, void *arg)
519 {
520 struct pci_devinst *pdi = arg;
521 struct pci_devemu *pe = pdi->pi_d;
522 uint64_t offset;
523 int i;
524
525 assert(port >= 0);
526
527 for (i = 0; i <= PCI_BARMAX; i++) {
528 if (pdi->pi_bar[i].type == PCIBAR_IO &&
529 (uint64_t)port >= pdi->pi_bar[i].addr &&
530 (uint64_t)port + bytes <=
531 pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
532 offset = port - pdi->pi_bar[i].addr;
533 if (in)
534 *eax = (*pe->pe_barread)(pdi, i,
535 offset, bytes);
536 else
537 (*pe->pe_barwrite)(pdi, i, offset,
538 bytes, *eax);
539 return (0);
540 }
541 }
542 return (-1);
543 }
544 #else
545 static int
pci_emul_iomem_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int size,uint64_t * val,void * arg1,long arg2)546 pci_emul_iomem_handler(struct vcpu *vcpu __unused, int dir,
547 uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
548 {
549 struct pci_devinst *pdi = arg1;
550 struct pci_devemu *pe = pdi->pi_d;
551 uint64_t offset;
552 int bidx = (int)arg2;
553
554 assert(bidx <= PCI_BARMAX);
555 assert(pdi->pi_bar[bidx].type == PCIBAR_IO);
556 assert(addr >= pdi->pi_bar[bidx].addr &&
557 addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
558 assert(size == 1 || size == 2 || size == 4);
559
560 offset = addr - pdi->pi_bar[bidx].addr;
561 if (dir == MEM_F_READ)
562 *val = (*pe->pe_barread)(pdi, bidx, offset, size);
563 else
564 (*pe->pe_barwrite)(pdi, bidx, offset, size, *val);
565
566 return (0);
567 }
568 #endif /* !__amd64__ */
569
570 static int
pci_emul_mem_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int size,uint64_t * val,void * arg1,long arg2)571 pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
572 uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
573 {
574 struct pci_devinst *pdi = arg1;
575 struct pci_devemu *pe = pdi->pi_d;
576 uint64_t offset;
577 int bidx = (int)arg2;
578
579 assert(bidx <= PCI_BARMAX);
580 assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
581 pdi->pi_bar[bidx].type == PCIBAR_MEM64);
582 assert(addr >= pdi->pi_bar[bidx].addr &&
583 addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
584
585 offset = addr - pdi->pi_bar[bidx].addr;
586
587 if (dir == MEM_F_WRITE) {
588 if (size == 8) {
589 (*pe->pe_barwrite)(pdi, bidx, offset,
590 4, *val & 0xffffffff);
591 (*pe->pe_barwrite)(pdi, bidx, offset + 4,
592 4, *val >> 32);
593 } else {
594 (*pe->pe_barwrite)(pdi, bidx, offset,
595 size, *val);
596 }
597 } else {
598 if (size == 8) {
599 *val = (*pe->pe_barread)(pdi, bidx,
600 offset, 4);
601 *val |= (*pe->pe_barread)(pdi, bidx,
602 offset + 4, 4) << 32;
603 } else {
604 *val = (*pe->pe_barread)(pdi, bidx,
605 offset, size);
606 }
607 }
608
609 return (0);
610 }
611
612
613 static int
pci_emul_alloc_resource(uint64_t * baseptr,uint64_t limit,uint64_t size,uint64_t * addr)614 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
615 uint64_t *addr)
616 {
617 uint64_t base;
618
619 assert((size & (size - 1)) == 0); /* must be a power of 2 */
620
621 base = roundup2(*baseptr, size);
622
623 if (base + size <= limit) {
624 *addr = base;
625 *baseptr = base + size;
626 return (0);
627 } else
628 return (-1);
629 }
630
631 /*
632 * Register (or unregister) the MMIO or I/O region associated with the BAR
633 * register 'idx' of an emulated pci device.
634 */
635 static void
modify_bar_registration(struct pci_devinst * pi,int idx,int registration)636 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
637 {
638 struct pci_devemu *pe;
639 int error;
640 enum pcibar_type type;
641
642 pe = pi->pi_d;
643 type = pi->pi_bar[idx].type;
644 switch (type) {
645 case PCIBAR_IO:
646 {
647 #ifdef __amd64__
648 struct inout_port iop;
649
650 bzero(&iop, sizeof(struct inout_port));
651 iop.name = pi->pi_name;
652 iop.port = pi->pi_bar[idx].addr;
653 iop.size = pi->pi_bar[idx].size;
654 if (registration) {
655 iop.flags = IOPORT_F_INOUT;
656 iop.handler = pci_emul_io_handler;
657 iop.arg = pi;
658 error = register_inout(&iop);
659 } else
660 error = unregister_inout(&iop);
661 #else
662 struct mem_range mr;
663
664 bzero(&mr, sizeof(struct mem_range));
665 mr.name = pi->pi_name;
666 mr.base = pi->pi_bar[idx].addr;
667 mr.size = pi->pi_bar[idx].size;
668 if (registration) {
669 mr.flags = MEM_F_RW;
670 mr.handler = pci_emul_iomem_handler;
671 mr.arg1 = pi;
672 mr.arg2 = idx;
673 error = register_mem(&mr);
674 } else
675 error = unregister_mem(&mr);
676 #endif
677 break;
678 }
679 case PCIBAR_MEM32:
680 case PCIBAR_MEM64:
681 {
682 struct mem_range mr;
683
684 bzero(&mr, sizeof(struct mem_range));
685 mr.name = pi->pi_name;
686 mr.base = pi->pi_bar[idx].addr;
687 mr.size = pi->pi_bar[idx].size;
688 if (registration) {
689 mr.flags = MEM_F_RW;
690 mr.handler = pci_emul_mem_handler;
691 mr.arg1 = pi;
692 mr.arg2 = idx;
693 error = register_mem(&mr);
694 } else
695 error = unregister_mem(&mr);
696 break;
697 }
698 case PCIBAR_ROM:
699 error = 0;
700 break;
701 default:
702 error = EINVAL;
703 break;
704 }
705 assert(error == 0);
706
707 if (pe->pe_baraddr != NULL)
708 (*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
709 }
710
711 static void
unregister_bar(struct pci_devinst * pi,int idx)712 unregister_bar(struct pci_devinst *pi, int idx)
713 {
714
715 modify_bar_registration(pi, idx, 0);
716 }
717
718 static void
register_bar(struct pci_devinst * pi,int idx)719 register_bar(struct pci_devinst *pi, int idx)
720 {
721
722 modify_bar_registration(pi, idx, 1);
723 }
724
725 /* Is the ROM enabled for the emulated pci device? */
726 static int
romen(struct pci_devinst * pi)727 romen(struct pci_devinst *pi)
728 {
729 return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
730 PCIM_BIOS_ENABLE;
731 }
732
733 /* Are we decoding i/o port accesses for the emulated pci device? */
734 static int
porten(struct pci_devinst * pi)735 porten(struct pci_devinst *pi)
736 {
737 uint16_t cmd;
738
739 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
740
741 return (cmd & PCIM_CMD_PORTEN);
742 }
743
744 /* Are we decoding memory accesses for the emulated pci device? */
745 static int
memen(struct pci_devinst * pi)746 memen(struct pci_devinst *pi)
747 {
748 uint16_t cmd;
749
750 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
751
752 return (cmd & PCIM_CMD_MEMEN);
753 }
754
755 /*
756 * Update the MMIO or I/O address that is decoded by the BAR register.
757 *
758 * If the pci device has enabled the address space decoding then intercept
759 * the address range decoded by the BAR register.
760 */
761 static void
update_bar_address(struct pci_devinst * pi,uint64_t addr,int idx,int type)762 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
763 {
764 int decode;
765
766 if (pi->pi_bar[idx].type == PCIBAR_IO)
767 decode = porten(pi);
768 else
769 decode = memen(pi);
770
771 if (decode)
772 unregister_bar(pi, idx);
773
774 switch (type) {
775 case PCIBAR_IO:
776 case PCIBAR_MEM32:
777 pi->pi_bar[idx].addr = addr;
778 break;
779 case PCIBAR_MEM64:
780 pi->pi_bar[idx].addr &= ~0xffffffffUL;
781 pi->pi_bar[idx].addr |= addr;
782 break;
783 case PCIBAR_MEMHI64:
784 pi->pi_bar[idx].addr &= 0xffffffff;
785 pi->pi_bar[idx].addr |= addr;
786 break;
787 default:
788 assert(0);
789 }
790
791 if (decode)
792 register_bar(pi, idx);
793 }
794
795 int
pci_emul_alloc_bar(struct pci_devinst * pdi,int idx,enum pcibar_type type,uint64_t size)796 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
797 uint64_t size)
798 {
799 assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
800 assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
801
802 if ((size & (size - 1)) != 0)
803 size = 1UL << flsl(size); /* round up to a power of 2 */
804
805 /* Enforce minimum BAR sizes required by the PCI standard */
806 if (type == PCIBAR_IO) {
807 if (size < 4)
808 size = 4;
809 } else if (type == PCIBAR_ROM) {
810 if (size < ~PCIM_BIOS_ADDR_MASK + 1)
811 size = ~PCIM_BIOS_ADDR_MASK + 1;
812 } else {
813 if (size < 16)
814 size = 16;
815 }
816
817 /*
818 * To reduce fragmentation of the MMIO space, we allocate the BARs by
819 * size. Therefore, don't allocate the BAR yet. We create a list of all
820 * BAR allocation which is sorted by BAR size. When all PCI devices are
821 * initialized, we will assign an address to the BARs.
822 */
823
824 /* create a new list entry */
825 struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
826 memset(new_bar, 0, sizeof(*new_bar));
827 new_bar->pdi = pdi;
828 new_bar->idx = idx;
829 new_bar->type = type;
830 new_bar->size = size;
831
832 /*
833 * Search for a BAR which size is lower than the size of our newly
834 * allocated BAR.
835 */
836 struct pci_bar_allocation *bar = NULL;
837 TAILQ_FOREACH(bar, &pci_bars, chain) {
838 if (bar->size < size) {
839 break;
840 }
841 }
842
843 if (bar == NULL) {
844 /*
845 * Either the list is empty or new BAR is the smallest BAR of
846 * the list. Append it to the end of our list.
847 */
848 TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
849 } else {
850 /*
851 * The found BAR is smaller than our new BAR. For that reason,
852 * insert our new BAR before the found BAR.
853 */
854 TAILQ_INSERT_BEFORE(bar, new_bar, chain);
855 }
856
857 /*
858 * Enable PCI BARs only if we don't have a boot ROM, i.e., bhyveload was
859 * used to load the initial guest image. Otherwise, we rely on the boot
860 * ROM to handle this.
861 */
862 if (!get_config_bool_default("pci.enable_bars", !bootrom_boot()))
863 return (0);
864
865 /*
866 * pci_passthru devices synchronize their physical and virtual command
867 * register on init. For that reason, the virtual cmd reg should be
868 * updated as early as possible.
869 */
870 uint16_t enbit = 0;
871 switch (type) {
872 case PCIBAR_IO:
873 enbit = PCIM_CMD_PORTEN;
874 break;
875 case PCIBAR_MEM64:
876 case PCIBAR_MEM32:
877 enbit = PCIM_CMD_MEMEN;
878 break;
879 default:
880 enbit = 0;
881 break;
882 }
883
884 const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
885 pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
886
887 return (0);
888 }
889
890 static int
pci_emul_assign_bar(struct pci_devinst * const pdi,const int idx,const enum pcibar_type type,const uint64_t size)891 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
892 const enum pcibar_type type, const uint64_t size)
893 {
894 int error;
895 uint64_t *baseptr, limit, addr, mask, lobits, bar;
896
897 switch (type) {
898 case PCIBAR_NONE:
899 baseptr = NULL;
900 addr = mask = lobits = 0;
901 break;
902 case PCIBAR_IO:
903 baseptr = &pci_emul_iobase;
904 limit = PCI_EMUL_IOLIMIT;
905 mask = PCIM_BAR_IO_BASE;
906 lobits = PCIM_BAR_IO_SPACE;
907 break;
908 case PCIBAR_MEM64:
909 /*
910 * XXX
911 * Some drivers do not work well if the 64-bit BAR is allocated
912 * above 4GB. Allow for this by allocating small requests under
913 * 4GB unless then allocation size is larger than some arbitrary
914 * number (128MB currently).
915 */
916 if (size > 128 * 1024 * 1024) {
917 baseptr = &pci_emul_membase64;
918 limit = pci_emul_memlim64;
919 mask = PCIM_BAR_MEM_BASE;
920 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
921 PCIM_BAR_MEM_PREFETCH;
922 } else {
923 baseptr = &pci_emul_membase32;
924 limit = PCI_EMUL_MEMLIMIT32;
925 mask = PCIM_BAR_MEM_BASE;
926 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
927 }
928 break;
929 case PCIBAR_MEM32:
930 baseptr = &pci_emul_membase32;
931 limit = PCI_EMUL_MEMLIMIT32;
932 mask = PCIM_BAR_MEM_BASE;
933 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
934 break;
935 case PCIBAR_ROM:
936 /* do not claim memory for ROM. OVMF will do it for us. */
937 baseptr = NULL;
938 limit = 0;
939 mask = PCIM_BIOS_ADDR_MASK;
940 lobits = 0;
941 break;
942 default:
943 printf("pci_emul_alloc_base: invalid bar type %d\n", type);
944 assert(0);
945 }
946
947 if (baseptr != NULL) {
948 error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
949 if (error != 0)
950 return (error);
951 } else {
952 addr = 0;
953 }
954
955 pdi->pi_bar[idx].type = type;
956 pdi->pi_bar[idx].addr = addr;
957 pdi->pi_bar[idx].size = size;
958 /*
959 * passthru devices are using same lobits as physical device they set
960 * this property
961 */
962 if (pdi->pi_bar[idx].lobits != 0) {
963 lobits = pdi->pi_bar[idx].lobits;
964 } else {
965 pdi->pi_bar[idx].lobits = lobits;
966 }
967
968 /* Initialize the BAR register in config space */
969 bar = (addr & mask) | lobits;
970 pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
971
972 if (type == PCIBAR_MEM64) {
973 assert(idx + 1 <= PCI_BARMAX);
974 pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
975 pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
976 }
977
978 switch (type) {
979 case PCIBAR_IO:
980 if (porten(pdi))
981 register_bar(pdi, idx);
982 break;
983 case PCIBAR_MEM32:
984 case PCIBAR_MEM64:
985 case PCIBAR_MEMHI64:
986 if (memen(pdi))
987 register_bar(pdi, idx);
988 break;
989 default:
990 break;
991 }
992
993 return (0);
994 }
995
996 int
pci_emul_alloc_rom(struct pci_devinst * const pdi,const uint64_t size,void ** const addr)997 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
998 void **const addr)
999 {
1000 /* allocate ROM space once on first call */
1001 if (pci_emul_rombase == 0) {
1002 pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
1003 "pcirom", PCI_EMUL_ROMSIZE);
1004 if (pci_emul_rombase == MAP_FAILED) {
1005 warnx("%s: failed to create rom segment", __func__);
1006 return (-1);
1007 }
1008 pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
1009 pci_emul_romoffset = 0;
1010 }
1011
1012 /* ROM size should be a power of 2 and greater than 2 KB */
1013 const uint64_t rom_size = MAX(1UL << flsl(size),
1014 ~PCIM_BIOS_ADDR_MASK + 1);
1015
1016 /* check if ROM fits into ROM space */
1017 if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
1018 warnx("%s: no space left in rom segment:", __func__);
1019 warnx("%16lu bytes left",
1020 PCI_EMUL_ROMSIZE - pci_emul_romoffset);
1021 warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
1022 pdi->pi_slot, pdi->pi_func);
1023 return (-1);
1024 }
1025
1026 /* allocate ROM BAR */
1027 const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
1028 rom_size);
1029 if (error)
1030 return error;
1031
1032 /* return address */
1033 *addr = pci_emul_rombase + pci_emul_romoffset;
1034
1035 /* save offset into ROM Space */
1036 pdi->pi_romoffset = pci_emul_romoffset;
1037
1038 /* increase offset for next ROM */
1039 pci_emul_romoffset += rom_size;
1040
1041 return (0);
1042 }
1043
1044 int
pci_emul_add_boot_device(struct pci_devinst * pi,int bootindex)1045 pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
1046 {
1047 struct boot_device *new_device, *device;
1048
1049 /* don't permit a negative bootindex */
1050 if (bootindex < 0) {
1051 errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
1052 }
1053
1054 /* alloc new boot device */
1055 new_device = calloc(1, sizeof(struct boot_device));
1056 if (new_device == NULL) {
1057 return (ENOMEM);
1058 }
1059 new_device->pdi = pi;
1060 new_device->bootindex = bootindex;
1061
1062 /* search for boot device with higher boot index */
1063 TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1064 if (device->bootindex == bootindex) {
1065 errx(4,
1066 "Could not set bootindex %d for %s. Bootindex already occupied by %s",
1067 bootindex, pi->pi_name, device->pdi->pi_name);
1068 } else if (device->bootindex > bootindex) {
1069 break;
1070 }
1071 }
1072
1073 /* add boot device to queue */
1074 if (device == NULL) {
1075 TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
1076 } else {
1077 TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
1078 }
1079
1080 return (0);
1081 }
1082
1083 #define CAP_START_OFFSET 0x40
1084 static int
pci_emul_add_capability(struct pci_devinst * pi,u_char * capdata,int caplen)1085 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
1086 {
1087 int i, capoff, reallen;
1088 uint16_t sts;
1089
1090 assert(caplen > 0);
1091
1092 reallen = roundup2(caplen, 4); /* dword aligned */
1093
1094 sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1095 if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
1096 capoff = CAP_START_OFFSET;
1097 else
1098 capoff = pi->pi_capend + 1;
1099
1100 /* Check if we have enough space */
1101 if (capoff + reallen > PCI_REGMAX + 1)
1102 return (-1);
1103
1104 /* Set the previous capability pointer */
1105 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
1106 pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
1107 pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
1108 } else
1109 pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
1110
1111 /* Copy the capability */
1112 for (i = 0; i < caplen; i++)
1113 pci_set_cfgdata8(pi, capoff + i, capdata[i]);
1114
1115 /* Set the next capability pointer */
1116 pci_set_cfgdata8(pi, capoff + 1, 0);
1117
1118 pi->pi_prevcap = capoff;
1119 pi->pi_capend = capoff + reallen - 1;
1120 return (0);
1121 }
1122
1123 static struct pci_devemu *
pci_emul_finddev(const char * name)1124 pci_emul_finddev(const char *name)
1125 {
1126 struct pci_devemu **pdpp, *pdp;
1127
1128 SET_FOREACH(pdpp, pci_devemu_set) {
1129 pdp = *pdpp;
1130 if (!strcmp(pdp->pe_emu, name)) {
1131 return (pdp);
1132 }
1133 }
1134
1135 return (NULL);
1136 }
1137
1138 static int
pci_emul_init(struct vmctx * ctx,struct pci_devemu * pde,int bus,int slot,int func,struct funcinfo * fi)1139 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
1140 int func, struct funcinfo *fi)
1141 {
1142 struct pci_devinst *pdi;
1143 int err;
1144
1145 pdi = calloc(1, sizeof(struct pci_devinst));
1146
1147 pdi->pi_vmctx = ctx;
1148 pdi->pi_bus = bus;
1149 pdi->pi_slot = slot;
1150 pdi->pi_func = func;
1151 pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
1152 pdi->pi_lintr.pin = 0;
1153 pdi->pi_lintr.state = IDLE;
1154 pci_irq_init_irq(&pdi->pi_lintr.irq);
1155 pdi->pi_d = pde;
1156 snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
1157 slot, func);
1158
1159 /* Disable legacy interrupts */
1160 pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1161 pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1162
1163 if (get_config_bool_default("pci.enable_bars", !bootrom_boot()))
1164 pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1165
1166 err = (*pde->pe_init)(pdi, fi->fi_config);
1167 if (err == 0)
1168 fi->fi_devi = pdi;
1169 else
1170 free(pdi);
1171
1172 return (err);
1173 }
1174
1175 void
pci_populate_msicap(struct msicap * msicap,int msgnum,int nextptr)1176 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1177 {
1178 int mmc;
1179
1180 /* Number of msi messages must be a power of 2 between 1 and 32 */
1181 assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1182 mmc = ffs(msgnum) - 1;
1183
1184 bzero(msicap, sizeof(struct msicap));
1185 msicap->capid = PCIY_MSI;
1186 msicap->nextptr = nextptr;
1187 msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1188 }
1189
1190 int
pci_emul_add_msicap(struct pci_devinst * pi,int msgnum)1191 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1192 {
1193 struct msicap msicap;
1194
1195 pci_populate_msicap(&msicap, msgnum, 0);
1196
1197 return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1198 }
1199
1200 static void
pci_populate_msixcap(struct msixcap * msixcap,int msgnum,int barnum,uint32_t msix_tab_size)1201 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1202 uint32_t msix_tab_size)
1203 {
1204
1205 assert(msix_tab_size % 4096 == 0);
1206
1207 bzero(msixcap, sizeof(struct msixcap));
1208 msixcap->capid = PCIY_MSIX;
1209
1210 /*
1211 * Message Control Register, all fields set to
1212 * zero except for the Table Size.
1213 * Note: Table size N is encoded as N-1
1214 */
1215 msixcap->msgctrl = msgnum - 1;
1216
1217 /*
1218 * MSI-X BAR setup:
1219 * - MSI-X table start at offset 0
1220 * - PBA table starts at a 4K aligned offset after the MSI-X table
1221 */
1222 msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1223 msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1224 }
1225
1226 static void
pci_msix_table_init(struct pci_devinst * pi,int table_entries)1227 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1228 {
1229 int i, table_size;
1230
1231 assert(table_entries > 0);
1232 assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1233
1234 table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1235 pi->pi_msix.table = calloc(1, table_size);
1236
1237 /* set mask bit of vector control register */
1238 for (i = 0; i < table_entries; i++)
1239 pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1240 }
1241
1242 int
pci_emul_add_msixcap(struct pci_devinst * pi,int msgnum,int barnum)1243 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1244 {
1245 uint32_t tab_size;
1246 struct msixcap msixcap;
1247
1248 assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1249 assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1250
1251 tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1252
1253 /* Align table size to nearest 4K */
1254 tab_size = roundup2(tab_size, 4096);
1255
1256 pi->pi_msix.table_bar = barnum;
1257 pi->pi_msix.pba_bar = barnum;
1258 pi->pi_msix.table_offset = 0;
1259 pi->pi_msix.table_count = msgnum;
1260 pi->pi_msix.pba_offset = tab_size;
1261 pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1262
1263 pci_msix_table_init(pi, msgnum);
1264
1265 pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1266
1267 /* allocate memory for MSI-X Table and PBA */
1268 pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1269 tab_size + pi->pi_msix.pba_size);
1270
1271 return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1272 sizeof(msixcap)));
1273 }
1274
1275 static void
msixcap_cfgwrite(struct pci_devinst * pi,int capoff,int offset,int bytes,uint32_t val)1276 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1277 int bytes, uint32_t val)
1278 {
1279 uint16_t msgctrl, rwmask;
1280 int off;
1281
1282 off = offset - capoff;
1283 /* Message Control Register */
1284 if (off == 2 && bytes == 2) {
1285 rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1286 msgctrl = pci_get_cfgdata16(pi, offset);
1287 msgctrl &= ~rwmask;
1288 msgctrl |= val & rwmask;
1289 val = msgctrl;
1290
1291 pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1292 pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1293 pci_lintr_update(pi);
1294 }
1295
1296 CFGWRITE(pi, offset, val, bytes);
1297 }
1298
1299 static void
msicap_cfgwrite(struct pci_devinst * pi,int capoff,int offset,int bytes,uint32_t val)1300 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1301 int bytes, uint32_t val)
1302 {
1303 uint16_t msgctrl, rwmask, msgdata, mme;
1304 uint32_t addrlo;
1305
1306 /*
1307 * If guest is writing to the message control register make sure
1308 * we do not overwrite read-only fields.
1309 */
1310 if ((offset - capoff) == 2 && bytes == 2) {
1311 rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1312 msgctrl = pci_get_cfgdata16(pi, offset);
1313 msgctrl &= ~rwmask;
1314 msgctrl |= val & rwmask;
1315 val = msgctrl;
1316 }
1317 CFGWRITE(pi, offset, val, bytes);
1318
1319 msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1320 addrlo = pci_get_cfgdata32(pi, capoff + 4);
1321 if (msgctrl & PCIM_MSICTRL_64BIT)
1322 msgdata = pci_get_cfgdata16(pi, capoff + 12);
1323 else
1324 msgdata = pci_get_cfgdata16(pi, capoff + 8);
1325
1326 mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1327 pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1328 if (pi->pi_msi.enabled) {
1329 pi->pi_msi.addr = addrlo;
1330 pi->pi_msi.msg_data = msgdata;
1331 pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1332 } else {
1333 pi->pi_msi.maxmsgnum = 0;
1334 }
1335 pci_lintr_update(pi);
1336 }
1337
1338 static void
pciecap_cfgwrite(struct pci_devinst * pi,int capoff __unused,int offset,int bytes,uint32_t val)1339 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1340 int bytes, uint32_t val)
1341 {
1342
1343 /* XXX don't write to the readonly parts */
1344 CFGWRITE(pi, offset, val, bytes);
1345 }
1346
1347 #define PCIECAP_VERSION 0x2
1348 int
pci_emul_add_pciecap(struct pci_devinst * pi,int type)1349 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1350 {
1351 int err;
1352 struct pciecap pciecap;
1353
1354 bzero(&pciecap, sizeof(pciecap));
1355
1356 /*
1357 * Use the integrated endpoint type for endpoints on a root complex bus.
1358 *
1359 * NB: bhyve currently only supports a single PCI bus that is the root
1360 * complex bus, so all endpoints are integrated.
1361 */
1362 if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1363 type = PCIEM_TYPE_ROOT_INT_EP;
1364
1365 pciecap.capid = PCIY_EXPRESS;
1366 pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1367 if (type != PCIEM_TYPE_ROOT_INT_EP) {
1368 pciecap.link_capabilities = 0x411; /* gen1, x1 */
1369 pciecap.link_status = 0x11; /* gen1, x1 */
1370 }
1371
1372 err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1373 return (err);
1374 }
1375
1376 /*
1377 * This function assumes that 'coff' is in the capabilities region of the
1378 * config space. A capoff parameter of zero will force a search for the
1379 * offset and type.
1380 */
1381 void
pci_emul_capwrite(struct pci_devinst * pi,int offset,int bytes,uint32_t val,uint8_t capoff,int capid)1382 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1383 uint8_t capoff, int capid)
1384 {
1385 uint8_t nextoff;
1386
1387 /* Do not allow un-aligned writes */
1388 if ((offset & (bytes - 1)) != 0)
1389 return;
1390
1391 if (capoff == 0) {
1392 /* Find the capability that we want to update */
1393 capoff = CAP_START_OFFSET;
1394 while (1) {
1395 nextoff = pci_get_cfgdata8(pi, capoff + 1);
1396 if (nextoff == 0)
1397 break;
1398 if (offset >= capoff && offset < nextoff)
1399 break;
1400
1401 capoff = nextoff;
1402 }
1403 assert(offset >= capoff);
1404 capid = pci_get_cfgdata8(pi, capoff);
1405 }
1406
1407 /*
1408 * Capability ID and Next Capability Pointer are readonly.
1409 * However, some o/s's do 4-byte writes that include these.
1410 * For this case, trim the write back to 2 bytes and adjust
1411 * the data.
1412 */
1413 if (offset == capoff || offset == capoff + 1) {
1414 if (offset == capoff && bytes == 4) {
1415 bytes = 2;
1416 offset += 2;
1417 val >>= 16;
1418 } else
1419 return;
1420 }
1421
1422 switch (capid) {
1423 case PCIY_MSI:
1424 msicap_cfgwrite(pi, capoff, offset, bytes, val);
1425 break;
1426 case PCIY_MSIX:
1427 msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1428 break;
1429 case PCIY_EXPRESS:
1430 pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1431 break;
1432 default:
1433 break;
1434 }
1435 }
1436
1437 static int
pci_emul_iscap(struct pci_devinst * pi,int offset)1438 pci_emul_iscap(struct pci_devinst *pi, int offset)
1439 {
1440 uint16_t sts;
1441
1442 sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1443 if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1444 if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1445 return (1);
1446 }
1447 return (0);
1448 }
1449
1450 static int
pci_emul_fallback_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr __unused,int size __unused,uint64_t * val,void * arg1 __unused,long arg2 __unused)1451 pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
1452 uint64_t addr __unused, int size __unused, uint64_t *val,
1453 void *arg1 __unused, long arg2 __unused)
1454 {
1455 /*
1456 * Ignore writes; return 0xff's for reads. The mem read code
1457 * will take care of truncating to the correct size.
1458 */
1459 if (dir == MEM_F_READ) {
1460 *val = 0xffffffffffffffff;
1461 }
1462
1463 return (0);
1464 }
1465
1466 static int
pci_emul_ecfg_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int bytes,uint64_t * val,void * arg1 __unused,long arg2 __unused)1467 pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
1468 int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1469 {
1470 int bus, slot, func, coff, in;
1471
1472 coff = addr & 0xfff;
1473 func = (addr >> 12) & 0x7;
1474 slot = (addr >> 15) & 0x1f;
1475 bus = (addr >> 20) & 0xff;
1476 in = (dir == MEM_F_READ);
1477 if (in)
1478 *val = ~0UL;
1479 pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1480 return (0);
1481 }
1482
1483 uint64_t
pci_ecfg_base(void)1484 pci_ecfg_base(void)
1485 {
1486
1487 return (PCI_EMUL_ECFG_BASE);
1488 }
1489
1490 static int
init_bootorder(void)1491 init_bootorder(void)
1492 {
1493 struct boot_device *device;
1494 FILE *fp;
1495 char *bootorder;
1496 size_t bootorder_len;
1497
1498 if (TAILQ_EMPTY(&boot_devices))
1499 return (0);
1500
1501 fp = open_memstream(&bootorder, &bootorder_len);
1502 TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1503 fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
1504 device->pdi->pi_slot, device->pdi->pi_func);
1505 }
1506 fclose(fp);
1507
1508 return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
1509 }
1510
1511 #define BUSIO_ROUNDUP 32
1512 #define BUSMEM32_ROUNDUP (1024 * 1024)
1513 #define BUSMEM64_ROUNDUP (512 * 1024 * 1024)
1514
1515 int
init_pci(struct vmctx * ctx)1516 init_pci(struct vmctx *ctx)
1517 {
1518 char node_name[sizeof("pci.XXX.XX.X")];
1519 struct mem_range mr;
1520 struct pci_devemu *pde;
1521 struct businfo *bi;
1522 struct slotinfo *si;
1523 struct funcinfo *fi;
1524 nvlist_t *nvl;
1525 const char *emul;
1526 size_t lowmem;
1527 int bus, slot, func;
1528 int error;
1529
1530 if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1531 errx(EX_OSERR, "Invalid lowmem limit");
1532
1533 pci_emul_iobase = PCI_EMUL_IOBASE;
1534 pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1535
1536 pci_emul_membase64 = vm_get_highmem_base(ctx) +
1537 vm_get_highmem_size(ctx);
1538 pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1539 pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1540
1541 TAILQ_INIT(&boot_devices);
1542
1543 for (bus = 0; bus < MAXBUSES; bus++) {
1544 snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1545 nvl = find_config_node(node_name);
1546 if (nvl == NULL)
1547 continue;
1548 pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1549 bi = pci_businfo[bus];
1550
1551 /*
1552 * Keep track of the i/o and memory resources allocated to
1553 * this bus.
1554 */
1555 bi->iobase = pci_emul_iobase;
1556 bi->membase32 = pci_emul_membase32;
1557 bi->membase64 = pci_emul_membase64;
1558
1559 /* first run: init devices */
1560 for (slot = 0; slot < MAXSLOTS; slot++) {
1561 si = &bi->slotinfo[slot];
1562 for (func = 0; func < MAXFUNCS; func++) {
1563 fi = &si->si_funcs[func];
1564 snprintf(node_name, sizeof(node_name),
1565 "pci.%d.%d.%d", bus, slot, func);
1566 nvl = find_config_node(node_name);
1567 if (nvl == NULL)
1568 continue;
1569
1570 fi->fi_config = nvl;
1571 emul = get_config_value_node(nvl, "device");
1572 if (emul == NULL) {
1573 EPRINTLN("pci slot %d:%d:%d: missing "
1574 "\"device\" value", bus, slot, func);
1575 return (EINVAL);
1576 }
1577 pde = pci_emul_finddev(emul);
1578 if (pde == NULL) {
1579 EPRINTLN("pci slot %d:%d:%d: unknown "
1580 "device \"%s\"", bus, slot, func,
1581 emul);
1582 return (EINVAL);
1583 }
1584 if (pde->pe_alias != NULL) {
1585 EPRINTLN("pci slot %d:%d:%d: legacy "
1586 "device \"%s\", use \"%s\" instead",
1587 bus, slot, func, emul,
1588 pde->pe_alias);
1589 return (EINVAL);
1590 }
1591 fi->fi_pde = pde;
1592 error = pci_emul_init(ctx, pde, bus, slot,
1593 func, fi);
1594 if (error)
1595 return (error);
1596 }
1597 }
1598
1599 /* second run: assign BARs and free list */
1600 struct pci_bar_allocation *bar;
1601 struct pci_bar_allocation *bar_tmp;
1602 TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1603 pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1604 bar->size);
1605 free(bar);
1606 }
1607 TAILQ_INIT(&pci_bars);
1608
1609 /*
1610 * Add some slop to the I/O and memory resources decoded by
1611 * this bus to give a guest some flexibility if it wants to
1612 * reprogram the BARs.
1613 */
1614 pci_emul_iobase += BUSIO_ROUNDUP;
1615 pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1616 bi->iolimit = pci_emul_iobase;
1617
1618 pci_emul_membase32 += BUSMEM32_ROUNDUP;
1619 pci_emul_membase32 = roundup2(pci_emul_membase32,
1620 BUSMEM32_ROUNDUP);
1621 bi->memlimit32 = pci_emul_membase32;
1622
1623 pci_emul_membase64 += BUSMEM64_ROUNDUP;
1624 pci_emul_membase64 = roundup2(pci_emul_membase64,
1625 BUSMEM64_ROUNDUP);
1626 bi->memlimit64 = pci_emul_membase64;
1627 }
1628
1629 /*
1630 * PCI backends are initialized before routing INTx interrupts
1631 * so that LPC devices are able to reserve ISA IRQs before
1632 * routing PIRQ pins.
1633 */
1634 for (bus = 0; bus < MAXBUSES; bus++) {
1635 if ((bi = pci_businfo[bus]) == NULL)
1636 continue;
1637
1638 for (slot = 0; slot < MAXSLOTS; slot++) {
1639 si = &bi->slotinfo[slot];
1640 for (func = 0; func < MAXFUNCS; func++) {
1641 fi = &si->si_funcs[func];
1642 if (fi->fi_devi == NULL)
1643 continue;
1644 pci_lintr_route(fi->fi_devi);
1645 }
1646 }
1647 }
1648 #ifdef __amd64__
1649 lpc_pirq_routed();
1650 #endif
1651
1652 if ((error = init_bootorder()) != 0) {
1653 warnx("%s: Unable to init bootorder", __func__);
1654 return (error);
1655 }
1656
1657 /*
1658 * The guest physical memory map looks like the following on amd64:
1659 * [0, lowmem) guest system memory
1660 * [lowmem, 0xC0000000) memory hole (may be absent)
1661 * [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation)
1662 * [0xE0000000, 0xF0000000) PCI extended config window
1663 * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
1664 * [4GB, 4GB + highmem) guest system memory
1665 * [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation
1666 *
1667 * On arm64 the guest physical memory map looks like this:
1668 * [0x0DF00000, 0x10000000) PCI I/O memory
1669 * [0xA0000000, 0xE0000000) PCI 32-bit BAR allocation
1670 * [0xE0000000, 0xF0000000) PCI extended config window
1671 * [4GB, 4GB + highmem) guest system memory
1672 * [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation
1673 *
1674 * "lowmem" is guest memory below 0xC0000000. amd64 guests provisioned
1675 * with less than 3GB of RAM will have no memory above the 4GB boundary.
1676 * System memory for arm64 guests is all above the 4GB boundary.
1677 */
1678
1679 /*
1680 * Accesses to memory addresses that are not allocated to system
1681 * memory or PCI devices return 0xff's.
1682 */
1683 lowmem = vm_get_lowmem_size(ctx);
1684 bzero(&mr, sizeof(struct mem_range));
1685 mr.name = "PCI hole";
1686 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1687 mr.base = lowmem;
1688 mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1689 mr.handler = pci_emul_fallback_handler;
1690 error = register_mem_fallback(&mr);
1691 assert(error == 0);
1692
1693 /* PCI extended config space */
1694 bzero(&mr, sizeof(struct mem_range));
1695 mr.name = "PCI ECFG";
1696 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1697 mr.base = PCI_EMUL_ECFG_BASE;
1698 mr.size = PCI_EMUL_ECFG_SIZE;
1699 mr.handler = pci_emul_ecfg_handler;
1700 error = register_mem(&mr);
1701 assert(error == 0);
1702
1703 return (0);
1704 }
1705
1706 #ifdef __amd64__
1707 static void
pci_apic_prt_entry(int bus __unused,int slot,int pin,struct pci_irq * irq,void * arg __unused)1708 pci_apic_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
1709 void *arg __unused)
1710 {
1711
1712 dsdt_line(" Package ()");
1713 dsdt_line(" {");
1714 dsdt_line(" 0x%X,", slot << 16 | 0xffff);
1715 dsdt_line(" 0x%02X,", pin - 1);
1716 dsdt_line(" Zero,");
1717 dsdt_line(" 0x%X", irq->ioapic_irq);
1718 dsdt_line(" },");
1719 }
1720
1721 static void
pci_pirq_prt_entry(int bus __unused,int slot,int pin,struct pci_irq * irq,void * arg __unused)1722 pci_pirq_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
1723 void *arg __unused)
1724 {
1725 char *name;
1726
1727 name = lpc_pirq_name(irq->pirq_pin);
1728 if (name == NULL)
1729 return;
1730 dsdt_line(" Package ()");
1731 dsdt_line(" {");
1732 dsdt_line(" 0x%X,", slot << 16 | 0xffff);
1733 dsdt_line(" 0x%02X,", pin - 1);
1734 dsdt_line(" %s,", name);
1735 dsdt_line(" 0x00");
1736 dsdt_line(" },");
1737 free(name);
1738 }
1739 #endif
1740
1741 /*
1742 * A bhyve virtual machine has a flat PCI hierarchy with a root port
1743 * corresponding to each PCI bus.
1744 */
1745 static void
pci_bus_write_dsdt(int bus)1746 pci_bus_write_dsdt(int bus)
1747 {
1748 struct businfo *bi;
1749 struct slotinfo *si;
1750 struct pci_devinst *pi;
1751 int func, slot;
1752
1753 /*
1754 * If there are no devices on this 'bus' then just return.
1755 */
1756 if ((bi = pci_businfo[bus]) == NULL) {
1757 /*
1758 * Bus 0 is special because it decodes the I/O ports used
1759 * for PCI config space access even if there are no devices
1760 * on it.
1761 */
1762 if (bus != 0)
1763 return;
1764 }
1765
1766 dsdt_line(" Device (PC%02X)", bus);
1767 dsdt_line(" {");
1768 dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
1769
1770 dsdt_line(" Method (_BBN, 0, NotSerialized)");
1771 dsdt_line(" {");
1772 dsdt_line(" Return (0x%08X)", bus);
1773 dsdt_line(" }");
1774 dsdt_line(" Name (_CRS, ResourceTemplate ()");
1775 dsdt_line(" {");
1776 dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
1777 "MaxFixed, PosDecode,");
1778 dsdt_line(" 0x0000, // Granularity");
1779 dsdt_line(" 0x%04X, // Range Minimum", bus);
1780 dsdt_line(" 0x%04X, // Range Maximum", bus);
1781 dsdt_line(" 0x0000, // Translation Offset");
1782 dsdt_line(" 0x0001, // Length");
1783 dsdt_line(" ,, )");
1784
1785 #ifdef __amd64__
1786 if (bus == 0) {
1787 dsdt_indent(3);
1788 dsdt_fixed_ioport(0xCF8, 8);
1789 dsdt_unindent(3);
1790
1791 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1792 "PosDecode, EntireRange,");
1793 dsdt_line(" 0x0000, // Granularity");
1794 dsdt_line(" 0x0000, // Range Minimum");
1795 dsdt_line(" 0x0CF7, // Range Maximum");
1796 dsdt_line(" 0x0000, // Translation Offset");
1797 dsdt_line(" 0x0CF8, // Length");
1798 dsdt_line(" ,, , TypeStatic)");
1799
1800 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1801 "PosDecode, EntireRange,");
1802 dsdt_line(" 0x0000, // Granularity");
1803 dsdt_line(" 0x0D00, // Range Minimum");
1804 dsdt_line(" 0x%04X, // Range Maximum",
1805 PCI_EMUL_IOBASE - 1);
1806 dsdt_line(" 0x0000, // Translation Offset");
1807 dsdt_line(" 0x%04X, // Length",
1808 PCI_EMUL_IOBASE - 0x0D00);
1809 dsdt_line(" ,, , TypeStatic)");
1810
1811 if (bi == NULL) {
1812 dsdt_line(" })");
1813 goto done;
1814 }
1815 }
1816 #endif
1817 assert(bi != NULL);
1818
1819 /* i/o window */
1820 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
1821 "PosDecode, EntireRange,");
1822 dsdt_line(" 0x0000, // Granularity");
1823 dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
1824 dsdt_line(" 0x%04X, // Range Maximum",
1825 bi->iolimit - 1);
1826 dsdt_line(" 0x0000, // Translation Offset");
1827 dsdt_line(" 0x%04X, // Length",
1828 bi->iolimit - bi->iobase);
1829 dsdt_line(" ,, , TypeStatic)");
1830
1831 /* mmio window (32-bit) */
1832 dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
1833 "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1834 dsdt_line(" 0x00000000, // Granularity");
1835 dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32);
1836 dsdt_line(" 0x%08X, // Range Maximum\n",
1837 bi->memlimit32 - 1);
1838 dsdt_line(" 0x00000000, // Translation Offset");
1839 dsdt_line(" 0x%08X, // Length\n",
1840 bi->memlimit32 - bi->membase32);
1841 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
1842
1843 /* mmio window (64-bit) */
1844 dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
1845 "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1846 dsdt_line(" 0x0000000000000000, // Granularity");
1847 dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64);
1848 dsdt_line(" 0x%016lX, // Range Maximum\n",
1849 bi->memlimit64 - 1);
1850 dsdt_line(" 0x0000000000000000, // Translation Offset");
1851 dsdt_line(" 0x%016lX, // Length\n",
1852 bi->memlimit64 - bi->membase64);
1853 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
1854 dsdt_line(" })");
1855
1856 #ifdef __amd64__
1857 if (pci_count_lintr(bus) != 0) {
1858 dsdt_indent(2);
1859 dsdt_line("Name (PPRT, Package ()");
1860 dsdt_line("{");
1861 pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1862 dsdt_line("})");
1863 dsdt_line("Name (APRT, Package ()");
1864 dsdt_line("{");
1865 pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1866 dsdt_line("})");
1867 dsdt_line("Method (_PRT, 0, NotSerialized)");
1868 dsdt_line("{");
1869 dsdt_line(" If (PICM)");
1870 dsdt_line(" {");
1871 dsdt_line(" Return (APRT)");
1872 dsdt_line(" }");
1873 dsdt_line(" Else");
1874 dsdt_line(" {");
1875 dsdt_line(" Return (PPRT)");
1876 dsdt_line(" }");
1877 dsdt_line("}");
1878 dsdt_unindent(2);
1879 }
1880 #endif
1881
1882 dsdt_indent(2);
1883 for (slot = 0; slot < MAXSLOTS; slot++) {
1884 si = &bi->slotinfo[slot];
1885 for (func = 0; func < MAXFUNCS; func++) {
1886 pi = si->si_funcs[func].fi_devi;
1887 if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1888 pi->pi_d->pe_write_dsdt(pi);
1889 }
1890 }
1891 dsdt_unindent(2);
1892 #ifdef __amd64__
1893 done:
1894 #endif
1895 dsdt_line(" }");
1896 }
1897
1898 void
pci_write_dsdt(void)1899 pci_write_dsdt(void)
1900 {
1901 int bus;
1902
1903 dsdt_indent(1);
1904 dsdt_line("Name (PICM, 0x00)");
1905 dsdt_line("Method (_PIC, 1, NotSerialized)");
1906 dsdt_line("{");
1907 dsdt_line(" Store (Arg0, PICM)");
1908 dsdt_line("}");
1909 dsdt_line("");
1910 dsdt_line("Scope (_SB)");
1911 dsdt_line("{");
1912 for (bus = 0; bus < MAXBUSES; bus++)
1913 pci_bus_write_dsdt(bus);
1914 dsdt_line("}");
1915 dsdt_unindent(1);
1916 }
1917
1918 int
pci_bus_configured(int bus)1919 pci_bus_configured(int bus)
1920 {
1921 assert(bus >= 0 && bus < MAXBUSES);
1922 return (pci_businfo[bus] != NULL);
1923 }
1924
1925 int
pci_msi_enabled(struct pci_devinst * pi)1926 pci_msi_enabled(struct pci_devinst *pi)
1927 {
1928 return (pi->pi_msi.enabled);
1929 }
1930
1931 int
pci_msi_maxmsgnum(struct pci_devinst * pi)1932 pci_msi_maxmsgnum(struct pci_devinst *pi)
1933 {
1934 if (pi->pi_msi.enabled)
1935 return (pi->pi_msi.maxmsgnum);
1936 else
1937 return (0);
1938 }
1939
1940 int
pci_msix_enabled(struct pci_devinst * pi)1941 pci_msix_enabled(struct pci_devinst *pi)
1942 {
1943
1944 return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1945 }
1946
1947 void
pci_generate_msix(struct pci_devinst * pi,int index)1948 pci_generate_msix(struct pci_devinst *pi, int index)
1949 {
1950 struct msix_table_entry *mte;
1951
1952 if (!pci_msix_enabled(pi))
1953 return;
1954
1955 if (pi->pi_msix.function_mask)
1956 return;
1957
1958 if (index >= pi->pi_msix.table_count)
1959 return;
1960
1961 mte = &pi->pi_msix.table[index];
1962 if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1963 /* XXX Set PBA bit if interrupt is disabled */
1964 vm_raise_msi(pi->pi_vmctx, mte->addr, mte->msg_data,
1965 pi->pi_bus, pi->pi_slot, pi->pi_func);
1966 }
1967 }
1968
1969 void
pci_generate_msi(struct pci_devinst * pi,int index)1970 pci_generate_msi(struct pci_devinst *pi, int index)
1971 {
1972
1973 if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1974 vm_raise_msi(pi->pi_vmctx, pi->pi_msi.addr,
1975 pi->pi_msi.msg_data + index,
1976 pi->pi_bus, pi->pi_slot, pi->pi_func);
1977 }
1978 }
1979
1980 static bool
pci_lintr_permitted(struct pci_devinst * pi)1981 pci_lintr_permitted(struct pci_devinst *pi)
1982 {
1983 uint16_t cmd;
1984
1985 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1986 return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1987 (cmd & PCIM_CMD_INTxDIS)));
1988 }
1989
1990 void
pci_lintr_request(struct pci_devinst * pi)1991 pci_lintr_request(struct pci_devinst *pi)
1992 {
1993 struct businfo *bi;
1994 struct slotinfo *si;
1995 int bestpin, bestcount, pin;
1996
1997 bi = pci_businfo[pi->pi_bus];
1998 assert(bi != NULL);
1999
2000 /*
2001 * Just allocate a pin from our slot. The pin will be
2002 * assigned IRQs later when interrupts are routed.
2003 */
2004 si = &bi->slotinfo[pi->pi_slot];
2005 bestpin = 0;
2006 bestcount = si->si_intpins[0].ii_count;
2007 for (pin = 1; pin < 4; pin++) {
2008 if (si->si_intpins[pin].ii_count < bestcount) {
2009 bestpin = pin;
2010 bestcount = si->si_intpins[pin].ii_count;
2011 }
2012 }
2013
2014 si->si_intpins[bestpin].ii_count++;
2015 pi->pi_lintr.pin = bestpin + 1;
2016 pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
2017 }
2018
2019 static void
pci_lintr_route(struct pci_devinst * pi)2020 pci_lintr_route(struct pci_devinst *pi)
2021 {
2022 struct businfo *bi;
2023 struct intxinfo *ii;
2024 struct pci_irq *irq;
2025
2026 if (pi->pi_lintr.pin == 0)
2027 return;
2028
2029 bi = pci_businfo[pi->pi_bus];
2030 assert(bi != NULL);
2031 ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
2032 irq = &ii->ii_irq;
2033 pci_irq_route(pi, irq);
2034 pi->pi_lintr.irq = *irq;
2035 pci_set_cfgdata8(pi, PCIR_INTLINE, pci_irq_intline(irq));
2036 }
2037
2038 void
pci_lintr_assert(struct pci_devinst * pi)2039 pci_lintr_assert(struct pci_devinst *pi)
2040 {
2041
2042 assert(pi->pi_lintr.pin > 0);
2043
2044 pthread_mutex_lock(&pi->pi_lintr.lock);
2045 if (pi->pi_lintr.state == IDLE) {
2046 if (pci_lintr_permitted(pi)) {
2047 pi->pi_lintr.state = ASSERTED;
2048 pci_irq_assert(pi);
2049 } else
2050 pi->pi_lintr.state = PENDING;
2051 }
2052 pthread_mutex_unlock(&pi->pi_lintr.lock);
2053 }
2054
2055 void
pci_lintr_deassert(struct pci_devinst * pi)2056 pci_lintr_deassert(struct pci_devinst *pi)
2057 {
2058
2059 assert(pi->pi_lintr.pin > 0);
2060
2061 pthread_mutex_lock(&pi->pi_lintr.lock);
2062 if (pi->pi_lintr.state == ASSERTED) {
2063 pi->pi_lintr.state = IDLE;
2064 pci_irq_deassert(pi);
2065 } else if (pi->pi_lintr.state == PENDING)
2066 pi->pi_lintr.state = IDLE;
2067 pthread_mutex_unlock(&pi->pi_lintr.lock);
2068 }
2069
2070 static void
pci_lintr_update(struct pci_devinst * pi)2071 pci_lintr_update(struct pci_devinst *pi)
2072 {
2073
2074 pthread_mutex_lock(&pi->pi_lintr.lock);
2075 if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
2076 pci_irq_deassert(pi);
2077 pi->pi_lintr.state = PENDING;
2078 } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
2079 pi->pi_lintr.state = ASSERTED;
2080 pci_irq_assert(pi);
2081 }
2082 pthread_mutex_unlock(&pi->pi_lintr.lock);
2083 }
2084
2085 int
pci_count_lintr(int bus)2086 pci_count_lintr(int bus)
2087 {
2088 int count, slot, pin;
2089 struct slotinfo *slotinfo;
2090
2091 count = 0;
2092 if (pci_businfo[bus] != NULL) {
2093 for (slot = 0; slot < MAXSLOTS; slot++) {
2094 slotinfo = &pci_businfo[bus]->slotinfo[slot];
2095 for (pin = 0; pin < 4; pin++) {
2096 if (slotinfo->si_intpins[pin].ii_count != 0)
2097 count++;
2098 }
2099 }
2100 }
2101 return (count);
2102 }
2103
2104 void
pci_walk_lintr(int bus,pci_lintr_cb cb,void * arg)2105 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
2106 {
2107 struct businfo *bi;
2108 struct slotinfo *si;
2109 struct intxinfo *ii;
2110 int slot, pin;
2111
2112 if ((bi = pci_businfo[bus]) == NULL)
2113 return;
2114
2115 for (slot = 0; slot < MAXSLOTS; slot++) {
2116 si = &bi->slotinfo[slot];
2117 for (pin = 0; pin < 4; pin++) {
2118 ii = &si->si_intpins[pin];
2119 if (ii->ii_count != 0)
2120 cb(bus, slot, pin + 1, &ii->ii_irq, arg);
2121 }
2122 }
2123 }
2124
2125 /*
2126 * Return 1 if the emulated device in 'slot' is a multi-function device.
2127 * Return 0 otherwise.
2128 */
2129 static int
pci_emul_is_mfdev(int bus,int slot)2130 pci_emul_is_mfdev(int bus, int slot)
2131 {
2132 struct businfo *bi;
2133 struct slotinfo *si;
2134 int f, numfuncs;
2135
2136 numfuncs = 0;
2137 if ((bi = pci_businfo[bus]) != NULL) {
2138 si = &bi->slotinfo[slot];
2139 for (f = 0; f < MAXFUNCS; f++) {
2140 if (si->si_funcs[f].fi_devi != NULL) {
2141 numfuncs++;
2142 }
2143 }
2144 }
2145 return (numfuncs > 1);
2146 }
2147
2148 /*
2149 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
2150 * whether or not is a multi-function being emulated in the pci 'slot'.
2151 */
2152 static void
pci_emul_hdrtype_fixup(int bus,int slot,int off,int bytes,uint32_t * rv)2153 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
2154 {
2155 int mfdev;
2156
2157 if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
2158 mfdev = pci_emul_is_mfdev(bus, slot);
2159 switch (bytes) {
2160 case 1:
2161 case 2:
2162 *rv &= ~PCIM_MFDEV;
2163 if (mfdev) {
2164 *rv |= PCIM_MFDEV;
2165 }
2166 break;
2167 case 4:
2168 *rv &= ~(PCIM_MFDEV << 16);
2169 if (mfdev) {
2170 *rv |= (PCIM_MFDEV << 16);
2171 }
2172 break;
2173 }
2174 }
2175 }
2176
2177 /*
2178 * Update device state in response to changes to the PCI command
2179 * register.
2180 */
2181 void
pci_emul_cmd_changed(struct pci_devinst * pi,uint16_t old)2182 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2183 {
2184 int i;
2185 uint16_t changed, new;
2186
2187 new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2188 changed = old ^ new;
2189
2190 /*
2191 * If the MMIO or I/O address space decoding has changed then
2192 * register/unregister all BARs that decode that address space.
2193 */
2194 for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2195 switch (pi->pi_bar[i].type) {
2196 case PCIBAR_NONE:
2197 case PCIBAR_MEMHI64:
2198 break;
2199 case PCIBAR_IO:
2200 /* I/O address space decoding changed? */
2201 if (changed & PCIM_CMD_PORTEN) {
2202 if (new & PCIM_CMD_PORTEN)
2203 register_bar(pi, i);
2204 else
2205 unregister_bar(pi, i);
2206 }
2207 break;
2208 case PCIBAR_ROM:
2209 /* skip (un-)register of ROM if it disabled */
2210 if (!romen(pi))
2211 break;
2212 /* fallthrough */
2213 case PCIBAR_MEM32:
2214 case PCIBAR_MEM64:
2215 /* MMIO address space decoding changed? */
2216 if (changed & PCIM_CMD_MEMEN) {
2217 if (new & PCIM_CMD_MEMEN)
2218 register_bar(pi, i);
2219 else
2220 unregister_bar(pi, i);
2221 }
2222 break;
2223 default:
2224 assert(0);
2225 }
2226 }
2227
2228 /*
2229 * If INTx has been unmasked and is pending, assert the
2230 * interrupt.
2231 */
2232 pci_lintr_update(pi);
2233 }
2234
2235 static void
pci_emul_cmdsts_write(struct pci_devinst * pi,int coff,uint32_t new,int bytes)2236 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2237 {
2238 int rshift;
2239 uint32_t cmd, old, readonly;
2240
2241 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
2242
2243 /*
2244 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2245 *
2246 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2247 * 'write 1 to clear'. However these bits are not set to '1' by
2248 * any device emulation so it is simpler to treat them as readonly.
2249 */
2250 rshift = (coff & 0x3) * 8;
2251 readonly = 0xFFFFF880 >> rshift;
2252
2253 old = CFGREAD(pi, coff, bytes);
2254 new &= ~readonly;
2255 new |= (old & readonly);
2256 CFGWRITE(pi, coff, new, bytes); /* update config */
2257
2258 pci_emul_cmd_changed(pi, cmd);
2259 }
2260
2261 static void
pci_cfgrw(int in,int bus,int slot,int func,int coff,int bytes,uint32_t * valp)2262 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2263 uint32_t *valp)
2264 {
2265 struct businfo *bi;
2266 struct slotinfo *si;
2267 struct pci_devinst *pi;
2268 struct pci_devemu *pe;
2269 int idx, needcfg;
2270 uint64_t addr, bar, mask;
2271
2272 if ((bi = pci_businfo[bus]) != NULL) {
2273 si = &bi->slotinfo[slot];
2274 pi = si->si_funcs[func].fi_devi;
2275 } else
2276 pi = NULL;
2277
2278 /*
2279 * Just return if there is no device at this slot:func or if the
2280 * guest is doing an un-aligned access.
2281 */
2282 if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2283 (coff & (bytes - 1)) != 0) {
2284 if (in)
2285 *valp = 0xffffffff;
2286 return;
2287 }
2288
2289 /*
2290 * Ignore all writes beyond the standard config space and return all
2291 * ones on reads.
2292 */
2293 if (coff >= PCI_REGMAX + 1) {
2294 if (in) {
2295 *valp = 0xffffffff;
2296 /*
2297 * Extended capabilities begin at offset 256 in config
2298 * space. Absence of extended capabilities is signaled
2299 * with all 0s in the extended capability header at
2300 * offset 256.
2301 */
2302 if (coff <= PCI_REGMAX + 4)
2303 *valp = 0x00000000;
2304 }
2305 return;
2306 }
2307
2308 pe = pi->pi_d;
2309
2310 /*
2311 * Config read
2312 */
2313 if (in) {
2314 /* Let the device emulation override the default handler */
2315 if (pe->pe_cfgread != NULL) {
2316 needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
2317 } else {
2318 needcfg = 1;
2319 }
2320
2321 if (needcfg)
2322 *valp = CFGREAD(pi, coff, bytes);
2323
2324 pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
2325 } else {
2326 /* Let the device emulation override the default handler */
2327 if (pe->pe_cfgwrite != NULL &&
2328 (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
2329 return;
2330
2331 /*
2332 * Special handling for write to BAR and ROM registers
2333 */
2334 if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2335 /*
2336 * Ignore writes to BAR registers that are not
2337 * 4-byte aligned.
2338 */
2339 if (bytes != 4 || (coff & 0x3) != 0)
2340 return;
2341
2342 if (is_pcir_bar(coff)) {
2343 idx = (coff - PCIR_BAR(0)) / 4;
2344 } else if (is_pcir_bios(coff)) {
2345 idx = PCI_ROM_IDX;
2346 } else {
2347 errx(4, "%s: invalid BAR offset %d", __func__,
2348 coff);
2349 }
2350
2351 mask = ~(pi->pi_bar[idx].size - 1);
2352 switch (pi->pi_bar[idx].type) {
2353 case PCIBAR_NONE:
2354 pi->pi_bar[idx].addr = bar = 0;
2355 break;
2356 case PCIBAR_IO:
2357 addr = *valp & mask;
2358 #if defined(PCI_EMUL_IOMASK)
2359 addr &= PCI_EMUL_IOMASK;
2360 #endif
2361 bar = addr | pi->pi_bar[idx].lobits;
2362 /*
2363 * Register the new BAR value for interception
2364 */
2365 if (addr != pi->pi_bar[idx].addr) {
2366 update_bar_address(pi, addr, idx,
2367 PCIBAR_IO);
2368 }
2369 break;
2370 case PCIBAR_MEM32:
2371 addr = bar = *valp & mask;
2372 bar |= pi->pi_bar[idx].lobits;
2373 if (addr != pi->pi_bar[idx].addr) {
2374 update_bar_address(pi, addr, idx,
2375 PCIBAR_MEM32);
2376 }
2377 break;
2378 case PCIBAR_MEM64:
2379 addr = bar = *valp & mask;
2380 bar |= pi->pi_bar[idx].lobits;
2381 if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2382 update_bar_address(pi, addr, idx,
2383 PCIBAR_MEM64);
2384 }
2385 break;
2386 case PCIBAR_MEMHI64:
2387 mask = ~(pi->pi_bar[idx - 1].size - 1);
2388 addr = ((uint64_t)*valp << 32) & mask;
2389 bar = addr >> 32;
2390 if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2391 update_bar_address(pi, addr, idx - 1,
2392 PCIBAR_MEMHI64);
2393 }
2394 break;
2395 case PCIBAR_ROM:
2396 addr = bar = *valp & mask;
2397 if (memen(pi) && romen(pi)) {
2398 unregister_bar(pi, idx);
2399 }
2400 pi->pi_bar[idx].addr = addr;
2401 pi->pi_bar[idx].lobits = *valp &
2402 PCIM_BIOS_ENABLE;
2403 /* romen could have changed it value */
2404 if (memen(pi) && romen(pi)) {
2405 register_bar(pi, idx);
2406 }
2407 bar |= pi->pi_bar[idx].lobits;
2408 break;
2409 default:
2410 assert(0);
2411 }
2412 pci_set_cfgdata32(pi, coff, bar);
2413
2414 } else if (pci_emul_iscap(pi, coff)) {
2415 pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
2416 } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2417 pci_emul_cmdsts_write(pi, coff, *valp, bytes);
2418 } else {
2419 CFGWRITE(pi, coff, *valp, bytes);
2420 }
2421 }
2422 }
2423
2424 #ifdef __amd64__
2425 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2426
2427 static int
pci_emul_cfgaddr(struct vmctx * ctx __unused,int in,int port __unused,int bytes,uint32_t * eax,void * arg __unused)2428 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2429 int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2430 {
2431 uint32_t x;
2432
2433 if (bytes != 4) {
2434 if (in)
2435 *eax = (bytes == 2) ? 0xffff : 0xff;
2436 return (0);
2437 }
2438
2439 if (in) {
2440 x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2441 if (cfgenable)
2442 x |= CONF1_ENABLE;
2443 *eax = x;
2444 } else {
2445 x = *eax;
2446 cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2447 cfgoff = (x & PCI_REGMAX) & ~0x03;
2448 cfgfunc = (x >> 8) & PCI_FUNCMAX;
2449 cfgslot = (x >> 11) & PCI_SLOTMAX;
2450 cfgbus = (x >> 16) & PCI_BUSMAX;
2451 }
2452
2453 return (0);
2454 }
2455 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2456
2457 static int
pci_emul_cfgdata(struct vmctx * ctx __unused,int in,int port,int bytes,uint32_t * eax,void * arg __unused)2458 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2459 int bytes, uint32_t *eax, void *arg __unused)
2460 {
2461 int coff;
2462
2463 assert(bytes == 1 || bytes == 2 || bytes == 4);
2464
2465 coff = cfgoff + (port - CONF1_DATA_PORT);
2466 if (cfgenable) {
2467 pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2468 } else {
2469 /* Ignore accesses to cfgdata if not enabled by cfgaddr */
2470 if (in)
2471 *eax = 0xffffffff;
2472 }
2473 return (0);
2474 }
2475
2476 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2477 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2478 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2479 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2480 #endif
2481
2482 #ifdef BHYVE_SNAPSHOT
2483 /*
2484 * Saves/restores PCI device emulated state. Returns 0 on success.
2485 */
2486 static int
pci_snapshot_pci_dev(struct vm_snapshot_meta * meta)2487 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2488 {
2489 struct pci_devinst *pi;
2490 int i;
2491 int ret;
2492
2493 pi = meta->dev_data;
2494
2495 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2496 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2497 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2498 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2499
2500 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2501 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2502 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2503 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2504 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2505 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2506 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2507 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2508
2509 SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2510 meta, ret, done);
2511
2512 for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2513 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2514 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2515 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2516 }
2517
2518 /* Restore MSI-X table. */
2519 for (i = 0; i < pi->pi_msix.table_count; i++) {
2520 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2521 meta, ret, done);
2522 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2523 meta, ret, done);
2524 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2525 meta, ret, done);
2526 }
2527
2528 done:
2529 return (ret);
2530 }
2531
2532 int
pci_snapshot(struct vm_snapshot_meta * meta)2533 pci_snapshot(struct vm_snapshot_meta *meta)
2534 {
2535 struct pci_devemu *pde;
2536 struct pci_devinst *pdi;
2537 int ret;
2538
2539 assert(meta->dev_name != NULL);
2540
2541 pdi = meta->dev_data;
2542 pde = pdi->pi_d;
2543
2544 if (pde->pe_snapshot == NULL)
2545 return (ENOTSUP);
2546
2547 ret = pci_snapshot_pci_dev(meta);
2548 if (ret == 0)
2549 ret = (*pde->pe_snapshot)(meta);
2550
2551 return (ret);
2552 }
2553
2554 int
pci_pause(struct pci_devinst * pdi)2555 pci_pause(struct pci_devinst *pdi)
2556 {
2557 struct pci_devemu *pde = pdi->pi_d;
2558
2559 if (pde->pe_pause == NULL) {
2560 /* The pause/resume functionality is optional. */
2561 return (0);
2562 }
2563
2564 return (*pde->pe_pause)(pdi);
2565 }
2566
2567 int
pci_resume(struct pci_devinst * pdi)2568 pci_resume(struct pci_devinst *pdi)
2569 {
2570 struct pci_devemu *pde = pdi->pi_d;
2571
2572 if (pde->pe_resume == NULL) {
2573 /* The pause/resume functionality is optional. */
2574 return (0);
2575 }
2576
2577 return (*pde->pe_resume)(pdi);
2578 }
2579 #endif
2580
2581 #define PCI_EMUL_TEST
2582 #ifdef PCI_EMUL_TEST
2583 /*
2584 * Define a dummy test device
2585 */
2586 #define DIOSZ 8
2587 #define DMEMSZ 4096
2588 struct pci_emul_dsoftc {
2589 uint8_t ioregs[DIOSZ];
2590 uint8_t memregs[2][DMEMSZ];
2591 };
2592
2593 #define PCI_EMUL_MSI_MSGS 4
2594 #define PCI_EMUL_MSIX_MSGS 16
2595
2596 static int
pci_emul_dinit(struct pci_devinst * pi,nvlist_t * nvl __unused)2597 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2598 {
2599 int error;
2600 struct pci_emul_dsoftc *sc;
2601
2602 sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2603
2604 pi->pi_arg = sc;
2605
2606 pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2607 pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2608 pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2609
2610 error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2611 assert(error == 0);
2612
2613 error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2614 assert(error == 0);
2615
2616 error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2617 assert(error == 0);
2618
2619 error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2620 assert(error == 0);
2621
2622 return (0);
2623 }
2624
2625 static void
pci_emul_diow(struct pci_devinst * pi,int baridx,uint64_t offset,int size,uint64_t value)2626 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2627 uint64_t value)
2628 {
2629 int i;
2630 struct pci_emul_dsoftc *sc = pi->pi_arg;
2631
2632 if (baridx == 0) {
2633 if (offset + size > DIOSZ) {
2634 printf("diow: iow too large, offset %ld size %d\n",
2635 offset, size);
2636 return;
2637 }
2638
2639 if (size == 1) {
2640 sc->ioregs[offset] = value & 0xff;
2641 } else if (size == 2) {
2642 *(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2643 } else if (size == 4) {
2644 *(uint32_t *)&sc->ioregs[offset] = value;
2645 } else {
2646 printf("diow: iow unknown size %d\n", size);
2647 }
2648
2649 /*
2650 * Special magic value to generate an interrupt
2651 */
2652 if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2653 pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2654
2655 if (value == 0xabcdef) {
2656 for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2657 pci_generate_msi(pi, i);
2658 }
2659 }
2660
2661 if (baridx == 1 || baridx == 2) {
2662 if (offset + size > DMEMSZ) {
2663 printf("diow: memw too large, offset %ld size %d\n",
2664 offset, size);
2665 return;
2666 }
2667
2668 i = baridx - 1; /* 'memregs' index */
2669
2670 if (size == 1) {
2671 sc->memregs[i][offset] = value;
2672 } else if (size == 2) {
2673 *(uint16_t *)&sc->memregs[i][offset] = value;
2674 } else if (size == 4) {
2675 *(uint32_t *)&sc->memregs[i][offset] = value;
2676 } else if (size == 8) {
2677 *(uint64_t *)&sc->memregs[i][offset] = value;
2678 } else {
2679 printf("diow: memw unknown size %d\n", size);
2680 }
2681
2682 /*
2683 * magic interrupt ??
2684 */
2685 }
2686
2687 if (baridx > 2 || baridx < 0) {
2688 printf("diow: unknown bar idx %d\n", baridx);
2689 }
2690 }
2691
2692 static uint64_t
pci_emul_dior(struct pci_devinst * pi,int baridx,uint64_t offset,int size)2693 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2694 {
2695 struct pci_emul_dsoftc *sc = pi->pi_arg;
2696 uint32_t value;
2697 int i;
2698
2699 if (baridx == 0) {
2700 if (offset + size > DIOSZ) {
2701 printf("dior: ior too large, offset %ld size %d\n",
2702 offset, size);
2703 return (0);
2704 }
2705
2706 value = 0;
2707 if (size == 1) {
2708 value = sc->ioregs[offset];
2709 } else if (size == 2) {
2710 value = *(uint16_t *) &sc->ioregs[offset];
2711 } else if (size == 4) {
2712 value = *(uint32_t *) &sc->ioregs[offset];
2713 } else {
2714 printf("dior: ior unknown size %d\n", size);
2715 }
2716 }
2717
2718 if (baridx == 1 || baridx == 2) {
2719 if (offset + size > DMEMSZ) {
2720 printf("dior: memr too large, offset %ld size %d\n",
2721 offset, size);
2722 return (0);
2723 }
2724
2725 i = baridx - 1; /* 'memregs' index */
2726
2727 if (size == 1) {
2728 value = sc->memregs[i][offset];
2729 } else if (size == 2) {
2730 value = *(uint16_t *) &sc->memregs[i][offset];
2731 } else if (size == 4) {
2732 value = *(uint32_t *) &sc->memregs[i][offset];
2733 } else if (size == 8) {
2734 value = *(uint64_t *) &sc->memregs[i][offset];
2735 } else {
2736 printf("dior: ior unknown size %d\n", size);
2737 }
2738 }
2739
2740
2741 if (baridx > 2 || baridx < 0) {
2742 printf("dior: unknown bar idx %d\n", baridx);
2743 return (0);
2744 }
2745
2746 return (value);
2747 }
2748
2749 #ifdef BHYVE_SNAPSHOT
2750 struct pci_devinst *
pci_next(const struct pci_devinst * cursor)2751 pci_next(const struct pci_devinst *cursor)
2752 {
2753 unsigned bus = 0, slot = 0, func = 0;
2754 struct businfo *bi;
2755 struct slotinfo *si;
2756 struct funcinfo *fi;
2757
2758 bus = cursor ? cursor->pi_bus : 0;
2759 slot = cursor ? cursor->pi_slot : 0;
2760 func = cursor ? (cursor->pi_func + 1) : 0;
2761
2762 for (; bus < MAXBUSES; bus++) {
2763 if ((bi = pci_businfo[bus]) == NULL)
2764 continue;
2765
2766 if (slot >= MAXSLOTS)
2767 slot = 0;
2768
2769 for (; slot < MAXSLOTS; slot++) {
2770 si = &bi->slotinfo[slot];
2771 if (func >= MAXFUNCS)
2772 func = 0;
2773 for (; func < MAXFUNCS; func++) {
2774 fi = &si->si_funcs[func];
2775 if (fi->fi_devi == NULL)
2776 continue;
2777
2778 return (fi->fi_devi);
2779 }
2780 }
2781 }
2782
2783 return (NULL);
2784 }
2785
2786 static int
pci_emul_snapshot(struct vm_snapshot_meta * meta __unused)2787 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2788 {
2789 return (0);
2790 }
2791 #endif
2792
2793 static const struct pci_devemu pci_dummy = {
2794 .pe_emu = "dummy",
2795 .pe_init = pci_emul_dinit,
2796 .pe_barwrite = pci_emul_diow,
2797 .pe_barread = pci_emul_dior,
2798 #ifdef BHYVE_SNAPSHOT
2799 .pe_snapshot = pci_emul_snapshot,
2800 #endif
2801 };
2802 PCI_EMUL_SET(pci_dummy);
2803
2804 #endif /* PCI_EMUL_TEST */
2805