xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 7ab1a32cd43cbae61ad4dd435d6a482bbf61cb52)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/linker_set.h>
31 #include <sys/mman.h>
32 
33 #include <ctype.h>
34 #include <err.h>
35 #include <errno.h>
36 #include <pthread.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <strings.h>
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <sysexits.h>
44 
45 #include <machine/vmm.h>
46 #include <machine/vmm_snapshot.h>
47 #include <vmmapi.h>
48 
49 #include "acpi.h"
50 #include "bhyverun.h"
51 #include "bootrom.h"
52 #include "config.h"
53 #include "debug.h"
54 #ifdef __amd64__
55 #include "amd64/inout.h"
56 #endif
57 #include "mem.h"
58 #include "pci_emul.h"
59 #ifdef __amd64__
60 #include "amd64/pci_lpc.h"
61 #include "pci_passthru.h"
62 #endif
63 #include "qemu_fwcfg.h"
64 
65 #define CONF1_ADDR_PORT	   0x0cf8
66 #define CONF1_DATA_PORT	   0x0cfc
67 
68 #define CONF1_ENABLE	   0x80000000ul
69 
70 #define	MAXBUSES	(PCI_BUSMAX + 1)
71 #define MAXSLOTS	(PCI_SLOTMAX + 1)
72 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
73 
74 #define GB		(1024 * 1024 * 1024UL)
75 
76 struct funcinfo {
77 	nvlist_t *fi_config;
78 	struct pci_devemu *fi_pde;
79 	struct pci_devinst *fi_devi;
80 };
81 
82 struct intxinfo {
83 	int		ii_count;
84 	struct pci_irq	ii_irq;
85 };
86 
87 struct slotinfo {
88 	struct intxinfo si_intpins[4];
89 	struct funcinfo si_funcs[MAXFUNCS];
90 };
91 
92 struct businfo {
93 	uint16_t iobase, iolimit;		/* I/O window */
94 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
95 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
96 	struct slotinfo slotinfo[MAXSLOTS];
97 };
98 
99 static struct businfo *pci_businfo[MAXBUSES];
100 
101 SET_DECLARE(pci_devemu_set, struct pci_devemu);
102 
103 static uint64_t pci_emul_iobase;
104 static uint8_t *pci_emul_rombase;
105 static uint64_t pci_emul_romoffset;
106 static uint8_t *pci_emul_romlim;
107 static uint64_t pci_emul_membase32;
108 static uint64_t pci_emul_membase64;
109 static uint64_t pci_emul_memlim64;
110 
111 struct pci_bar_allocation {
112 	TAILQ_ENTRY(pci_bar_allocation) chain;
113 	struct pci_devinst *pdi;
114 	int idx;
115 	enum pcibar_type type;
116 	uint64_t size;
117 };
118 
119 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
120     TAILQ_HEAD_INITIALIZER(pci_bars);
121 
122 struct boot_device {
123 	TAILQ_ENTRY(boot_device) boot_device_chain;
124 	struct pci_devinst *pdi;
125 	int bootindex;
126 };
127 static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
128     boot_devices);
129 
130 #if defined(__amd64__)
131 #define	PCI_EMUL_IOBASE		0x2000
132 #define	PCI_EMUL_IOLIMIT	0x10000
133 #define	PCI_EMUL_IOMASK		0xffff
134 /*
135  * OVMF always uses 0xc0000000 as base address for 32 bit PCI MMIO. Don't
136  * change this address without changing it in OVMF.
137  */
138 #define	PCI_EMUL_MEMBASE32	0xc0000000
139 #elif defined(__aarch64__) || defined(__riscv)
140 #define	PCI_EMUL_IOBASE		0xdf000000UL
141 #define	PCI_EMUL_IOLIMIT	0xe0000000UL
142 #define	PCI_EMUL_MEMBASE32	0xa0000000UL
143 #else
144 #error Unsupported platform
145 #endif
146 
147 #define	PCI_EMUL_ROMSIZE	0x10000000
148 
149 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
150 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
151 #ifdef __amd64__
152 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
153 #endif
154 
155 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
156 #define PCI_EMUL_MEMSIZE64	(32*GB)
157 
158 static void pci_lintr_route(struct pci_devinst *pi);
159 static void pci_lintr_update(struct pci_devinst *pi);
160 
161 static struct pci_devemu *pci_emul_finddev(const char *name);
162 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
163     int bytes, uint32_t *val);
164 
165 static __inline void
CFGWRITE(struct pci_devinst * pi,int coff,uint32_t val,int bytes)166 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
167 {
168 
169 	if (bytes == 1)
170 		pci_set_cfgdata8(pi, coff, val);
171 	else if (bytes == 2)
172 		pci_set_cfgdata16(pi, coff, val);
173 	else
174 		pci_set_cfgdata32(pi, coff, val);
175 }
176 
177 static __inline uint32_t
CFGREAD(struct pci_devinst * pi,int coff,int bytes)178 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
179 {
180 
181 	if (bytes == 1)
182 		return (pci_get_cfgdata8(pi, coff));
183 	else if (bytes == 2)
184 		return (pci_get_cfgdata16(pi, coff));
185 	else
186 		return (pci_get_cfgdata32(pi, coff));
187 }
188 
189 static int
is_pcir_bar(int coff)190 is_pcir_bar(int coff)
191 {
192 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
193 }
194 
195 static int
is_pcir_bios(int coff)196 is_pcir_bios(int coff)
197 {
198 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
199 }
200 
201 /*
202  * I/O access
203  */
204 
205 /*
206  * Slot options are in the form:
207  *
208  *  <bus>:<slot>:<func>,<emul>[,<config>]
209  *  <slot>[:<func>],<emul>[,<config>]
210  *
211  *  slot is 0..31
212  *  func is 0..7
213  *  emul is a string describing the type of PCI device e.g. virtio-net
214  *  config is an optional string, depending on the device, that can be
215  *  used for configuration.
216  *   Examples are:
217  *     1,virtio-net,tap0
218  *     3:0,dummy
219  */
220 static void
pci_parse_slot_usage(char * aopt)221 pci_parse_slot_usage(char *aopt)
222 {
223 
224 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
225 }
226 
227 /*
228  * Helper function to parse a list of comma-separated options where
229  * each option is formatted as "name[=value]".  If no value is
230  * provided, the option is treated as a boolean and is given a value
231  * of true.
232  */
233 int
pci_parse_legacy_config(nvlist_t * nvl,const char * opt)234 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
235 {
236 	char *config, *name, *tofree, *value;
237 
238 	if (opt == NULL)
239 		return (0);
240 
241 	config = tofree = strdup(opt);
242 	while ((name = strsep(&config, ",")) != NULL) {
243 		value = strchr(name, '=');
244 		if (value != NULL) {
245 			*value = '\0';
246 			value++;
247 			set_config_value_node(nvl, name, value);
248 		} else
249 			set_config_bool_node(nvl, name, true);
250 	}
251 	free(tofree);
252 	return (0);
253 }
254 
255 /*
256  * PCI device configuration is stored in MIBs that encode the device's
257  * location:
258  *
259  * pci.<bus>.<slot>.<func>
260  *
261  * Where "bus", "slot", and "func" are all decimal values without
262  * leading zeroes.  Each valid device must have a "device" node which
263  * identifies the driver model of the device.
264  *
265  * Device backends can provide a parser for the "config" string.  If
266  * a custom parser is not provided, pci_parse_legacy_config() is used
267  * to parse the string.
268  */
269 int
pci_parse_slot(char * opt)270 pci_parse_slot(char *opt)
271 {
272 	char node_name[sizeof("pci.XXX.XX.X")];
273 	struct pci_devemu *pde;
274 	char *emul, *config, *str, *cp;
275 	int error, bnum, snum, fnum;
276 	nvlist_t *nvl;
277 
278 	error = -1;
279 	str = strdup(opt);
280 
281 	emul = config = NULL;
282 	if ((cp = strchr(str, ',')) != NULL) {
283 		*cp = '\0';
284 		emul = cp + 1;
285 		if ((cp = strchr(emul, ',')) != NULL) {
286 			*cp = '\0';
287 			config = cp + 1;
288 		}
289 	} else {
290 		pci_parse_slot_usage(opt);
291 		goto done;
292 	}
293 
294 	/* <bus>:<slot>:<func> */
295 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
296 		bnum = 0;
297 		/* <slot>:<func> */
298 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
299 			fnum = 0;
300 			/* <slot> */
301 			if (sscanf(str, "%d", &snum) != 1) {
302 				snum = -1;
303 			}
304 		}
305 	}
306 
307 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
308 	    fnum < 0 || fnum >= MAXFUNCS) {
309 		pci_parse_slot_usage(opt);
310 		goto done;
311 	}
312 
313 	pde = pci_emul_finddev(emul);
314 	if (pde == NULL) {
315 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
316 		    fnum, emul);
317 		goto done;
318 	}
319 
320 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
321 	    fnum);
322 	nvl = find_config_node(node_name);
323 	if (nvl != NULL) {
324 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
325 		    fnum);
326 		goto done;
327 	}
328 	nvl = create_config_node(node_name);
329 	if (pde->pe_alias != NULL)
330 		set_config_value_node(nvl, "device", pde->pe_alias);
331 	else
332 		set_config_value_node(nvl, "device", pde->pe_emu);
333 
334 	if (pde->pe_legacy_config != NULL)
335 		error = pde->pe_legacy_config(nvl, config);
336 	else
337 		error = pci_parse_legacy_config(nvl, config);
338 done:
339 	free(str);
340 	return (error);
341 }
342 
343 void
pci_print_supported_devices(void)344 pci_print_supported_devices(void)
345 {
346 	struct pci_devemu **pdpp, *pdp;
347 
348 	SET_FOREACH(pdpp, pci_devemu_set) {
349 		pdp = *pdpp;
350 		printf("%s\n", pdp->pe_emu);
351 	}
352 }
353 
354 uint32_t
pci_config_read_reg(const struct pcisel * const host_sel,nvlist_t * nvl,const uint32_t reg,const uint8_t size,const uint32_t def)355 pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
356     const uint32_t reg, const uint8_t size, const uint32_t def)
357 {
358 	const char *config;
359 	const nvlist_t *pci_regs;
360 
361 	assert(size == 1 || size == 2 || size == 4);
362 
363 	pci_regs = find_relative_config_node(nvl, "pcireg");
364 	if (pci_regs == NULL) {
365 		return def;
366 	}
367 
368 	switch (reg) {
369 	case PCIR_DEVICE:
370 		config = get_config_value_node(pci_regs, "device");
371 		break;
372 	case PCIR_VENDOR:
373 		config = get_config_value_node(pci_regs, "vendor");
374 		break;
375 	case PCIR_REVID:
376 		config = get_config_value_node(pci_regs, "revid");
377 		break;
378 	case PCIR_SUBVEND_0:
379 		config = get_config_value_node(pci_regs, "subvendor");
380 		break;
381 	case PCIR_SUBDEV_0:
382 		config = get_config_value_node(pci_regs, "subdevice");
383 		break;
384 	default:
385 		return (-1);
386 	}
387 
388 	if (config == NULL) {
389 		return def;
390 	} else if (host_sel != NULL && strcmp(config, "host") == 0) {
391 #ifdef __amd64__
392 		return pci_host_read_config(host_sel, reg, size);
393 #else
394 		errx(1, "cannot fetch host PCI configuration");
395 #endif
396 	} else {
397 		return strtol(config, NULL, 16);
398 	}
399 }
400 
401 static int
pci_valid_pba_offset(struct pci_devinst * pi,uint64_t offset)402 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
403 {
404 
405 	if (offset < pi->pi_msix.pba_offset)
406 		return (0);
407 
408 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
409 		return (0);
410 	}
411 
412 	return (1);
413 }
414 
415 int
pci_emul_msix_twrite(struct pci_devinst * pi,uint64_t offset,int size,uint64_t value)416 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
417 		     uint64_t value)
418 {
419 	int msix_entry_offset;
420 	int tab_index;
421 	char *dest;
422 
423 	/* support only 4 or 8 byte writes */
424 	if (size != 4 && size != 8)
425 		return (-1);
426 
427 	/*
428 	 * Return if table index is beyond what device supports
429 	 */
430 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
431 	if (tab_index >= pi->pi_msix.table_count)
432 		return (-1);
433 
434 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
435 
436 	/* support only aligned writes */
437 	if ((msix_entry_offset % size) != 0)
438 		return (-1);
439 
440 	dest = (char *)(pi->pi_msix.table + tab_index);
441 	dest += msix_entry_offset;
442 
443 	if (size == 4)
444 		*((uint32_t *)dest) = value;
445 	else
446 		*((uint64_t *)dest) = value;
447 
448 	return (0);
449 }
450 
451 uint64_t
pci_emul_msix_tread(struct pci_devinst * pi,uint64_t offset,int size)452 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
453 {
454 	char *dest;
455 	int msix_entry_offset;
456 	int tab_index;
457 	uint64_t retval = ~0;
458 
459 	/*
460 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
461 	 * table but we also allow 1 byte access to accommodate reads from
462 	 * ddb.
463 	 */
464 	if (size != 1 && size != 4 && size != 8)
465 		return (retval);
466 
467 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
468 
469 	/* support only aligned reads */
470 	if ((msix_entry_offset % size) != 0) {
471 		return (retval);
472 	}
473 
474 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
475 
476 	if (tab_index < pi->pi_msix.table_count) {
477 		/* valid MSI-X Table access */
478 		dest = (char *)(pi->pi_msix.table + tab_index);
479 		dest += msix_entry_offset;
480 
481 		if (size == 1)
482 			retval = *((uint8_t *)dest);
483 		else if (size == 4)
484 			retval = *((uint32_t *)dest);
485 		else
486 			retval = *((uint64_t *)dest);
487 	} else if (pci_valid_pba_offset(pi, offset)) {
488 		/* return 0 for PBA access */
489 		retval = 0;
490 	}
491 
492 	return (retval);
493 }
494 
495 int
pci_msix_table_bar(struct pci_devinst * pi)496 pci_msix_table_bar(struct pci_devinst *pi)
497 {
498 
499 	if (pi->pi_msix.table != NULL)
500 		return (pi->pi_msix.table_bar);
501 	else
502 		return (-1);
503 }
504 
505 int
pci_msix_pba_bar(struct pci_devinst * pi)506 pci_msix_pba_bar(struct pci_devinst *pi)
507 {
508 
509 	if (pi->pi_msix.table != NULL)
510 		return (pi->pi_msix.pba_bar);
511 	else
512 		return (-1);
513 }
514 
515 #ifdef __amd64__
516 static int
pci_emul_io_handler(struct vmctx * ctx __unused,int in,int port,int bytes,uint32_t * eax,void * arg)517 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
518     int bytes, uint32_t *eax, void *arg)
519 {
520 	struct pci_devinst *pdi = arg;
521 	struct pci_devemu *pe = pdi->pi_d;
522 	uint64_t offset;
523 	int i;
524 
525 	assert(port >= 0);
526 
527 	for (i = 0; i <= PCI_BARMAX; i++) {
528 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
529 		    (uint64_t)port >= pdi->pi_bar[i].addr &&
530 		    (uint64_t)port + bytes <=
531 		    pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
532 			offset = port - pdi->pi_bar[i].addr;
533 			if (in)
534 				*eax = (*pe->pe_barread)(pdi, i,
535 							 offset, bytes);
536 			else
537 				(*pe->pe_barwrite)(pdi, i, offset,
538 						   bytes, *eax);
539 			return (0);
540 		}
541 	}
542 	return (-1);
543 }
544 #else
545 static int
pci_emul_iomem_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int size,uint64_t * val,void * arg1,long arg2)546 pci_emul_iomem_handler(struct vcpu *vcpu __unused, int dir,
547     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
548 {
549 	struct pci_devinst *pdi = arg1;
550 	struct pci_devemu *pe = pdi->pi_d;
551 	uint64_t offset;
552 	int bidx = (int)arg2;
553 
554 	assert(bidx <= PCI_BARMAX);
555 	assert(pdi->pi_bar[bidx].type == PCIBAR_IO);
556 	assert(addr >= pdi->pi_bar[bidx].addr &&
557 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
558 	assert(size == 1 || size == 2 || size == 4);
559 
560 	offset = addr - pdi->pi_bar[bidx].addr;
561 	if (dir == MEM_F_READ)
562 		*val = (*pe->pe_barread)(pdi, bidx, offset, size);
563 	else
564 		(*pe->pe_barwrite)(pdi, bidx, offset, size, *val);
565 
566 	return (0);
567 }
568 #endif /* !__amd64__ */
569 
570 static int
pci_emul_mem_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int size,uint64_t * val,void * arg1,long arg2)571 pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
572     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
573 {
574 	struct pci_devinst *pdi = arg1;
575 	struct pci_devemu *pe = pdi->pi_d;
576 	uint64_t offset;
577 	int bidx = (int)arg2;
578 
579 	assert(bidx <= PCI_BARMAX);
580 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
581 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
582 	assert(addr >= pdi->pi_bar[bidx].addr &&
583 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
584 
585 	offset = addr - pdi->pi_bar[bidx].addr;
586 
587 	if (dir == MEM_F_WRITE) {
588 		if (size == 8) {
589 			(*pe->pe_barwrite)(pdi, bidx, offset,
590 					   4, *val & 0xffffffff);
591 			(*pe->pe_barwrite)(pdi, bidx, offset + 4,
592 					   4, *val >> 32);
593 		} else {
594 			(*pe->pe_barwrite)(pdi, bidx, offset,
595 					   size, *val);
596 		}
597 	} else {
598 		if (size == 8) {
599 			*val = (*pe->pe_barread)(pdi, bidx,
600 						 offset, 4);
601 			*val |= (*pe->pe_barread)(pdi, bidx,
602 						  offset + 4, 4) << 32;
603 		} else {
604 			*val = (*pe->pe_barread)(pdi, bidx,
605 						 offset, size);
606 		}
607 	}
608 
609 	return (0);
610 }
611 
612 
613 static int
pci_emul_alloc_resource(uint64_t * baseptr,uint64_t limit,uint64_t size,uint64_t * addr)614 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
615 			uint64_t *addr)
616 {
617 	uint64_t base;
618 
619 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
620 
621 	base = roundup2(*baseptr, size);
622 
623 	if (base + size <= limit) {
624 		*addr = base;
625 		*baseptr = base + size;
626 		return (0);
627 	} else
628 		return (-1);
629 }
630 
631 /*
632  * Register (or unregister) the MMIO or I/O region associated with the BAR
633  * register 'idx' of an emulated pci device.
634  */
635 static void
modify_bar_registration(struct pci_devinst * pi,int idx,int registration)636 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
637 {
638 	struct pci_devemu *pe;
639 	int error;
640 	enum pcibar_type type;
641 
642 	pe = pi->pi_d;
643 	type = pi->pi_bar[idx].type;
644 	switch (type) {
645 	case PCIBAR_IO:
646 	{
647 #ifdef __amd64__
648 		struct inout_port iop;
649 
650 		bzero(&iop, sizeof(struct inout_port));
651 		iop.name = pi->pi_name;
652 		iop.port = pi->pi_bar[idx].addr;
653 		iop.size = pi->pi_bar[idx].size;
654 		if (registration) {
655 			iop.flags = IOPORT_F_INOUT;
656 			iop.handler = pci_emul_io_handler;
657 			iop.arg = pi;
658 			error = register_inout(&iop);
659 		} else
660 			error = unregister_inout(&iop);
661 #else
662 		struct mem_range mr;
663 
664 		bzero(&mr, sizeof(struct mem_range));
665 		mr.name = pi->pi_name;
666 		mr.base = pi->pi_bar[idx].addr;
667 		mr.size = pi->pi_bar[idx].size;
668 		if (registration) {
669 			mr.flags = MEM_F_RW;
670 			mr.handler = pci_emul_iomem_handler;
671 			mr.arg1 = pi;
672 			mr.arg2 = idx;
673 			error = register_mem(&mr);
674 		} else
675 			error = unregister_mem(&mr);
676 #endif
677 		break;
678 	}
679 	case PCIBAR_MEM32:
680 	case PCIBAR_MEM64:
681 	{
682 		struct mem_range mr;
683 
684 		bzero(&mr, sizeof(struct mem_range));
685 		mr.name = pi->pi_name;
686 		mr.base = pi->pi_bar[idx].addr;
687 		mr.size = pi->pi_bar[idx].size;
688 		if (registration) {
689 			mr.flags = MEM_F_RW;
690 			mr.handler = pci_emul_mem_handler;
691 			mr.arg1 = pi;
692 			mr.arg2 = idx;
693 			error = register_mem(&mr);
694 		} else
695 			error = unregister_mem(&mr);
696 		break;
697 	}
698 	case PCIBAR_ROM:
699 		error = 0;
700 		break;
701 	default:
702 		error = EINVAL;
703 		break;
704 	}
705 	assert(error == 0);
706 
707 	if (pe->pe_baraddr != NULL)
708 		(*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
709 }
710 
711 static void
unregister_bar(struct pci_devinst * pi,int idx)712 unregister_bar(struct pci_devinst *pi, int idx)
713 {
714 
715 	modify_bar_registration(pi, idx, 0);
716 }
717 
718 static void
register_bar(struct pci_devinst * pi,int idx)719 register_bar(struct pci_devinst *pi, int idx)
720 {
721 
722 	modify_bar_registration(pi, idx, 1);
723 }
724 
725 /* Is the ROM enabled for the emulated pci device? */
726 static int
romen(struct pci_devinst * pi)727 romen(struct pci_devinst *pi)
728 {
729 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
730 	    PCIM_BIOS_ENABLE;
731 }
732 
733 /* Are we decoding i/o port accesses for the emulated pci device? */
734 static int
porten(struct pci_devinst * pi)735 porten(struct pci_devinst *pi)
736 {
737 	uint16_t cmd;
738 
739 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
740 
741 	return (cmd & PCIM_CMD_PORTEN);
742 }
743 
744 /* Are we decoding memory accesses for the emulated pci device? */
745 static int
memen(struct pci_devinst * pi)746 memen(struct pci_devinst *pi)
747 {
748 	uint16_t cmd;
749 
750 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
751 
752 	return (cmd & PCIM_CMD_MEMEN);
753 }
754 
755 /*
756  * Update the MMIO or I/O address that is decoded by the BAR register.
757  *
758  * If the pci device has enabled the address space decoding then intercept
759  * the address range decoded by the BAR register.
760  */
761 static void
update_bar_address(struct pci_devinst * pi,uint64_t addr,int idx,int type)762 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
763 {
764 	int decode;
765 
766 	if (pi->pi_bar[idx].type == PCIBAR_IO)
767 		decode = porten(pi);
768 	else
769 		decode = memen(pi);
770 
771 	if (decode)
772 		unregister_bar(pi, idx);
773 
774 	switch (type) {
775 	case PCIBAR_IO:
776 	case PCIBAR_MEM32:
777 		pi->pi_bar[idx].addr = addr;
778 		break;
779 	case PCIBAR_MEM64:
780 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
781 		pi->pi_bar[idx].addr |= addr;
782 		break;
783 	case PCIBAR_MEMHI64:
784 		pi->pi_bar[idx].addr &= 0xffffffff;
785 		pi->pi_bar[idx].addr |= addr;
786 		break;
787 	default:
788 		assert(0);
789 	}
790 
791 	if (decode)
792 		register_bar(pi, idx);
793 }
794 
795 int
pci_emul_alloc_bar(struct pci_devinst * pdi,int idx,enum pcibar_type type,uint64_t size)796 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
797     uint64_t size)
798 {
799 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
800 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
801 
802 	if ((size & (size - 1)) != 0)
803 		size = 1UL << flsl(size);	/* round up to a power of 2 */
804 
805 	/* Enforce minimum BAR sizes required by the PCI standard */
806 	if (type == PCIBAR_IO) {
807 		if (size < 4)
808 			size = 4;
809 	} else if (type == PCIBAR_ROM) {
810 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
811 			size = ~PCIM_BIOS_ADDR_MASK + 1;
812 	} else {
813 		if (size < 16)
814 			size = 16;
815 	}
816 
817 	/*
818 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
819 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
820 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
821 	 * initialized, we will assign an address to the BARs.
822 	 */
823 
824 	/* create a new list entry */
825 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
826 	memset(new_bar, 0, sizeof(*new_bar));
827 	new_bar->pdi = pdi;
828 	new_bar->idx = idx;
829 	new_bar->type = type;
830 	new_bar->size = size;
831 
832 	/*
833 	 * Search for a BAR which size is lower than the size of our newly
834 	 * allocated BAR.
835 	 */
836 	struct pci_bar_allocation *bar = NULL;
837 	TAILQ_FOREACH(bar, &pci_bars, chain) {
838 		if (bar->size < size) {
839 			break;
840 		}
841 	}
842 
843 	if (bar == NULL) {
844 		/*
845 		 * Either the list is empty or new BAR is the smallest BAR of
846 		 * the list. Append it to the end of our list.
847 		 */
848 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
849 	} else {
850 		/*
851 		 * The found BAR is smaller than our new BAR. For that reason,
852 		 * insert our new BAR before the found BAR.
853 		 */
854 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
855 	}
856 
857 	/*
858 	 * Enable PCI BARs only if we don't have a boot ROM, i.e., bhyveload was
859 	 * used to load the initial guest image.  Otherwise, we rely on the boot
860 	 * ROM to handle this.
861 	 */
862 	if (!get_config_bool_default("pci.enable_bars", !bootrom_boot()))
863 		return (0);
864 
865 	/*
866 	 * pci_passthru devices synchronize their physical and virtual command
867 	 * register on init. For that reason, the virtual cmd reg should be
868 	 * updated as early as possible.
869 	 */
870 	uint16_t enbit = 0;
871 	switch (type) {
872 	case PCIBAR_IO:
873 		enbit = PCIM_CMD_PORTEN;
874 		break;
875 	case PCIBAR_MEM64:
876 	case PCIBAR_MEM32:
877 		enbit = PCIM_CMD_MEMEN;
878 		break;
879 	default:
880 		enbit = 0;
881 		break;
882 	}
883 
884 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
885 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
886 
887 	return (0);
888 }
889 
890 static int
pci_emul_assign_bar(struct pci_devinst * const pdi,const int idx,const enum pcibar_type type,const uint64_t size)891 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
892     const enum pcibar_type type, const uint64_t size)
893 {
894 	int error;
895 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
896 
897 	switch (type) {
898 	case PCIBAR_NONE:
899 		baseptr = NULL;
900 		addr = mask = lobits = 0;
901 		break;
902 	case PCIBAR_IO:
903 		baseptr = &pci_emul_iobase;
904 		limit = PCI_EMUL_IOLIMIT;
905 		mask = PCIM_BAR_IO_BASE;
906 		lobits = PCIM_BAR_IO_SPACE;
907 		break;
908 	case PCIBAR_MEM64:
909 		/*
910 		 * XXX
911 		 * Some drivers do not work well if the 64-bit BAR is allocated
912 		 * above 4GB. Allow for this by allocating small requests under
913 		 * 4GB unless then allocation size is larger than some arbitrary
914 		 * number (128MB currently).
915 		 */
916 		if (size > 128 * 1024 * 1024) {
917 			baseptr = &pci_emul_membase64;
918 			limit = pci_emul_memlim64;
919 			mask = PCIM_BAR_MEM_BASE;
920 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
921 				 PCIM_BAR_MEM_PREFETCH;
922 		} else {
923 			baseptr = &pci_emul_membase32;
924 			limit = PCI_EMUL_MEMLIMIT32;
925 			mask = PCIM_BAR_MEM_BASE;
926 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
927 		}
928 		break;
929 	case PCIBAR_MEM32:
930 		baseptr = &pci_emul_membase32;
931 		limit = PCI_EMUL_MEMLIMIT32;
932 		mask = PCIM_BAR_MEM_BASE;
933 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
934 		break;
935 	case PCIBAR_ROM:
936 		/* do not claim memory for ROM. OVMF will do it for us. */
937 		baseptr = NULL;
938 		limit = 0;
939 		mask = PCIM_BIOS_ADDR_MASK;
940 		lobits = 0;
941 		break;
942 	default:
943 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
944 		assert(0);
945 	}
946 
947 	if (baseptr != NULL) {
948 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
949 		if (error != 0)
950 			return (error);
951 	} else {
952 		addr = 0;
953 	}
954 
955 	pdi->pi_bar[idx].type = type;
956 	pdi->pi_bar[idx].addr = addr;
957 	pdi->pi_bar[idx].size = size;
958 	/*
959 	 * passthru devices are using same lobits as physical device they set
960 	 * this property
961 	 */
962 	if (pdi->pi_bar[idx].lobits != 0) {
963 		lobits = pdi->pi_bar[idx].lobits;
964 	} else {
965 		pdi->pi_bar[idx].lobits = lobits;
966 	}
967 
968 	/* Initialize the BAR register in config space */
969 	bar = (addr & mask) | lobits;
970 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
971 
972 	if (type == PCIBAR_MEM64) {
973 		assert(idx + 1 <= PCI_BARMAX);
974 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
975 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
976 	}
977 
978 	switch (type) {
979 	case PCIBAR_IO:
980 		if (porten(pdi))
981 			register_bar(pdi, idx);
982 		break;
983 	case PCIBAR_MEM32:
984 	case PCIBAR_MEM64:
985 	case PCIBAR_MEMHI64:
986 		if (memen(pdi))
987 			register_bar(pdi, idx);
988 		break;
989 	default:
990 		break;
991 	}
992 
993 	return (0);
994 }
995 
996 int
pci_emul_alloc_rom(struct pci_devinst * const pdi,const uint64_t size,void ** const addr)997 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
998     void **const addr)
999 {
1000 	/* allocate ROM space once on first call */
1001 	if (pci_emul_rombase == 0) {
1002 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
1003 		    "pcirom", PCI_EMUL_ROMSIZE);
1004 		if (pci_emul_rombase == MAP_FAILED) {
1005 			warnx("%s: failed to create rom segment", __func__);
1006 			return (-1);
1007 		}
1008 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
1009 		pci_emul_romoffset = 0;
1010 	}
1011 
1012 	/* ROM size should be a power of 2 and greater than 2 KB */
1013 	const uint64_t rom_size = MAX(1UL << flsl(size),
1014 	    ~PCIM_BIOS_ADDR_MASK + 1);
1015 
1016 	/* check if ROM fits into ROM space */
1017 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
1018 		warnx("%s: no space left in rom segment:", __func__);
1019 		warnx("%16lu bytes left",
1020 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
1021 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
1022 		    pdi->pi_slot, pdi->pi_func);
1023 		return (-1);
1024 	}
1025 
1026 	/* allocate ROM BAR */
1027 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
1028 	    rom_size);
1029 	if (error)
1030 		return error;
1031 
1032 	/* return address */
1033 	*addr = pci_emul_rombase + pci_emul_romoffset;
1034 
1035 	/* save offset into ROM Space */
1036 	pdi->pi_romoffset = pci_emul_romoffset;
1037 
1038 	/* increase offset for next ROM */
1039 	pci_emul_romoffset += rom_size;
1040 
1041 	return (0);
1042 }
1043 
1044 int
pci_emul_add_boot_device(struct pci_devinst * pi,int bootindex)1045 pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
1046 {
1047 	struct boot_device *new_device, *device;
1048 
1049 	/* don't permit a negative bootindex */
1050 	if (bootindex < 0) {
1051 		errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
1052 	}
1053 
1054 	/* alloc new boot device */
1055 	new_device = calloc(1, sizeof(struct boot_device));
1056 	if (new_device == NULL) {
1057 		return (ENOMEM);
1058 	}
1059 	new_device->pdi = pi;
1060 	new_device->bootindex = bootindex;
1061 
1062 	/* search for boot device with higher boot index */
1063 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1064 		if (device->bootindex == bootindex) {
1065 			errx(4,
1066 			    "Could not set bootindex %d for %s. Bootindex already occupied by %s",
1067 			    bootindex, pi->pi_name, device->pdi->pi_name);
1068 		} else if (device->bootindex > bootindex) {
1069 			break;
1070 		}
1071 	}
1072 
1073 	/* add boot device to queue */
1074 	if (device == NULL) {
1075 		TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
1076 	} else {
1077 		TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
1078 	}
1079 
1080 	return (0);
1081 }
1082 
1083 #define	CAP_START_OFFSET	0x40
1084 static int
pci_emul_add_capability(struct pci_devinst * pi,u_char * capdata,int caplen)1085 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
1086 {
1087 	int i, capoff, reallen;
1088 	uint16_t sts;
1089 
1090 	assert(caplen > 0);
1091 
1092 	reallen = roundup2(caplen, 4);		/* dword aligned */
1093 
1094 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1095 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
1096 		capoff = CAP_START_OFFSET;
1097 	else
1098 		capoff = pi->pi_capend + 1;
1099 
1100 	/* Check if we have enough space */
1101 	if (capoff + reallen > PCI_REGMAX + 1)
1102 		return (-1);
1103 
1104 	/* Set the previous capability pointer */
1105 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
1106 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
1107 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
1108 	} else
1109 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
1110 
1111 	/* Copy the capability */
1112 	for (i = 0; i < caplen; i++)
1113 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
1114 
1115 	/* Set the next capability pointer */
1116 	pci_set_cfgdata8(pi, capoff + 1, 0);
1117 
1118 	pi->pi_prevcap = capoff;
1119 	pi->pi_capend = capoff + reallen - 1;
1120 	return (0);
1121 }
1122 
1123 static struct pci_devemu *
pci_emul_finddev(const char * name)1124 pci_emul_finddev(const char *name)
1125 {
1126 	struct pci_devemu **pdpp, *pdp;
1127 
1128 	SET_FOREACH(pdpp, pci_devemu_set) {
1129 		pdp = *pdpp;
1130 		if (!strcmp(pdp->pe_emu, name)) {
1131 			return (pdp);
1132 		}
1133 	}
1134 
1135 	return (NULL);
1136 }
1137 
1138 static int
pci_emul_init(struct vmctx * ctx,struct pci_devemu * pde,int bus,int slot,int func,struct funcinfo * fi)1139 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
1140     int func, struct funcinfo *fi)
1141 {
1142 	struct pci_devinst *pdi;
1143 	int err;
1144 
1145 	pdi = calloc(1, sizeof(struct pci_devinst));
1146 
1147 	pdi->pi_vmctx = ctx;
1148 	pdi->pi_bus = bus;
1149 	pdi->pi_slot = slot;
1150 	pdi->pi_func = func;
1151 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
1152 	pdi->pi_lintr.pin = 0;
1153 	pdi->pi_lintr.state = IDLE;
1154 	pci_irq_init_irq(&pdi->pi_lintr.irq);
1155 	pdi->pi_d = pde;
1156 	snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
1157 	    slot, func);
1158 
1159 	/* Disable legacy interrupts */
1160 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1161 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1162 
1163 	if (get_config_bool_default("pci.enable_bars", !bootrom_boot()))
1164 		pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1165 
1166 	err = (*pde->pe_init)(pdi, fi->fi_config);
1167 	if (err == 0)
1168 		fi->fi_devi = pdi;
1169 	else
1170 		free(pdi);
1171 
1172 	return (err);
1173 }
1174 
1175 void
pci_populate_msicap(struct msicap * msicap,int msgnum,int nextptr)1176 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1177 {
1178 	int mmc;
1179 
1180 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1181 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1182 	mmc = ffs(msgnum) - 1;
1183 
1184 	bzero(msicap, sizeof(struct msicap));
1185 	msicap->capid = PCIY_MSI;
1186 	msicap->nextptr = nextptr;
1187 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1188 }
1189 
1190 int
pci_emul_add_msicap(struct pci_devinst * pi,int msgnum)1191 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1192 {
1193 	struct msicap msicap;
1194 
1195 	pci_populate_msicap(&msicap, msgnum, 0);
1196 
1197 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1198 }
1199 
1200 static void
pci_populate_msixcap(struct msixcap * msixcap,int msgnum,int barnum,uint32_t msix_tab_size)1201 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1202 		     uint32_t msix_tab_size)
1203 {
1204 
1205 	assert(msix_tab_size % 4096 == 0);
1206 
1207 	bzero(msixcap, sizeof(struct msixcap));
1208 	msixcap->capid = PCIY_MSIX;
1209 
1210 	/*
1211 	 * Message Control Register, all fields set to
1212 	 * zero except for the Table Size.
1213 	 * Note: Table size N is encoded as N-1
1214 	 */
1215 	msixcap->msgctrl = msgnum - 1;
1216 
1217 	/*
1218 	 * MSI-X BAR setup:
1219 	 * - MSI-X table start at offset 0
1220 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1221 	 */
1222 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1223 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1224 }
1225 
1226 static void
pci_msix_table_init(struct pci_devinst * pi,int table_entries)1227 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1228 {
1229 	int i, table_size;
1230 
1231 	assert(table_entries > 0);
1232 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1233 
1234 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1235 	pi->pi_msix.table = calloc(1, table_size);
1236 
1237 	/* set mask bit of vector control register */
1238 	for (i = 0; i < table_entries; i++)
1239 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1240 }
1241 
1242 int
pci_emul_add_msixcap(struct pci_devinst * pi,int msgnum,int barnum)1243 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1244 {
1245 	uint32_t tab_size;
1246 	struct msixcap msixcap;
1247 
1248 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1249 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1250 
1251 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1252 
1253 	/* Align table size to nearest 4K */
1254 	tab_size = roundup2(tab_size, 4096);
1255 
1256 	pi->pi_msix.table_bar = barnum;
1257 	pi->pi_msix.pba_bar   = barnum;
1258 	pi->pi_msix.table_offset = 0;
1259 	pi->pi_msix.table_count = msgnum;
1260 	pi->pi_msix.pba_offset = tab_size;
1261 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1262 
1263 	pci_msix_table_init(pi, msgnum);
1264 
1265 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1266 
1267 	/* allocate memory for MSI-X Table and PBA */
1268 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1269 				tab_size + pi->pi_msix.pba_size);
1270 
1271 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1272 					sizeof(msixcap)));
1273 }
1274 
1275 static void
msixcap_cfgwrite(struct pci_devinst * pi,int capoff,int offset,int bytes,uint32_t val)1276 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1277 		 int bytes, uint32_t val)
1278 {
1279 	uint16_t msgctrl, rwmask;
1280 	int off;
1281 
1282 	off = offset - capoff;
1283 	/* Message Control Register */
1284 	if (off == 2 && bytes == 2) {
1285 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1286 		msgctrl = pci_get_cfgdata16(pi, offset);
1287 		msgctrl &= ~rwmask;
1288 		msgctrl |= val & rwmask;
1289 		val = msgctrl;
1290 
1291 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1292 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1293 		pci_lintr_update(pi);
1294 	}
1295 
1296 	CFGWRITE(pi, offset, val, bytes);
1297 }
1298 
1299 static void
msicap_cfgwrite(struct pci_devinst * pi,int capoff,int offset,int bytes,uint32_t val)1300 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1301 		int bytes, uint32_t val)
1302 {
1303 	uint16_t msgctrl, rwmask, msgdata, mme;
1304 	uint32_t addrlo;
1305 
1306 	/*
1307 	 * If guest is writing to the message control register make sure
1308 	 * we do not overwrite read-only fields.
1309 	 */
1310 	if ((offset - capoff) == 2 && bytes == 2) {
1311 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1312 		msgctrl = pci_get_cfgdata16(pi, offset);
1313 		msgctrl &= ~rwmask;
1314 		msgctrl |= val & rwmask;
1315 		val = msgctrl;
1316 	}
1317 	CFGWRITE(pi, offset, val, bytes);
1318 
1319 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1320 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1321 	if (msgctrl & PCIM_MSICTRL_64BIT)
1322 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1323 	else
1324 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1325 
1326 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1327 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1328 	if (pi->pi_msi.enabled) {
1329 		pi->pi_msi.addr = addrlo;
1330 		pi->pi_msi.msg_data = msgdata;
1331 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1332 	} else {
1333 		pi->pi_msi.maxmsgnum = 0;
1334 	}
1335 	pci_lintr_update(pi);
1336 }
1337 
1338 static void
pciecap_cfgwrite(struct pci_devinst * pi,int capoff __unused,int offset,int bytes,uint32_t val)1339 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1340     int bytes, uint32_t val)
1341 {
1342 
1343 	/* XXX don't write to the readonly parts */
1344 	CFGWRITE(pi, offset, val, bytes);
1345 }
1346 
1347 #define	PCIECAP_VERSION	0x2
1348 int
pci_emul_add_pciecap(struct pci_devinst * pi,int type)1349 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1350 {
1351 	int err;
1352 	struct pciecap pciecap;
1353 
1354 	bzero(&pciecap, sizeof(pciecap));
1355 
1356 	/*
1357 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1358 	 *
1359 	 * NB: bhyve currently only supports a single PCI bus that is the root
1360 	 * complex bus, so all endpoints are integrated.
1361 	 */
1362 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1363 		type = PCIEM_TYPE_ROOT_INT_EP;
1364 
1365 	pciecap.capid = PCIY_EXPRESS;
1366 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1367 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1368 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1369 		pciecap.link_status = 0x11;		/* gen1, x1 */
1370 	}
1371 
1372 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1373 	return (err);
1374 }
1375 
1376 /*
1377  * This function assumes that 'coff' is in the capabilities region of the
1378  * config space. A capoff parameter of zero will force a search for the
1379  * offset and type.
1380  */
1381 void
pci_emul_capwrite(struct pci_devinst * pi,int offset,int bytes,uint32_t val,uint8_t capoff,int capid)1382 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1383     uint8_t capoff, int capid)
1384 {
1385 	uint8_t nextoff;
1386 
1387 	/* Do not allow un-aligned writes */
1388 	if ((offset & (bytes - 1)) != 0)
1389 		return;
1390 
1391 	if (capoff == 0) {
1392 		/* Find the capability that we want to update */
1393 		capoff = CAP_START_OFFSET;
1394 		while (1) {
1395 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1396 			if (nextoff == 0)
1397 				break;
1398 			if (offset >= capoff && offset < nextoff)
1399 				break;
1400 
1401 			capoff = nextoff;
1402 		}
1403 		assert(offset >= capoff);
1404 		capid = pci_get_cfgdata8(pi, capoff);
1405 	}
1406 
1407 	/*
1408 	 * Capability ID and Next Capability Pointer are readonly.
1409 	 * However, some o/s's do 4-byte writes that include these.
1410 	 * For this case, trim the write back to 2 bytes and adjust
1411 	 * the data.
1412 	 */
1413 	if (offset == capoff || offset == capoff + 1) {
1414 		if (offset == capoff && bytes == 4) {
1415 			bytes = 2;
1416 			offset += 2;
1417 			val >>= 16;
1418 		} else
1419 			return;
1420 	}
1421 
1422 	switch (capid) {
1423 	case PCIY_MSI:
1424 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1425 		break;
1426 	case PCIY_MSIX:
1427 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1428 		break;
1429 	case PCIY_EXPRESS:
1430 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1431 		break;
1432 	default:
1433 		break;
1434 	}
1435 }
1436 
1437 static int
pci_emul_iscap(struct pci_devinst * pi,int offset)1438 pci_emul_iscap(struct pci_devinst *pi, int offset)
1439 {
1440 	uint16_t sts;
1441 
1442 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1443 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1444 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1445 			return (1);
1446 	}
1447 	return (0);
1448 }
1449 
1450 static int
pci_emul_fallback_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr __unused,int size __unused,uint64_t * val,void * arg1 __unused,long arg2 __unused)1451 pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
1452     uint64_t addr __unused, int size __unused, uint64_t *val,
1453     void *arg1 __unused, long arg2 __unused)
1454 {
1455 	/*
1456 	 * Ignore writes; return 0xff's for reads. The mem read code
1457 	 * will take care of truncating to the correct size.
1458 	 */
1459 	if (dir == MEM_F_READ) {
1460 		*val = 0xffffffffffffffff;
1461 	}
1462 
1463 	return (0);
1464 }
1465 
1466 static int
pci_emul_ecfg_handler(struct vcpu * vcpu __unused,int dir,uint64_t addr,int bytes,uint64_t * val,void * arg1 __unused,long arg2 __unused)1467 pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
1468     int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1469 {
1470 	int bus, slot, func, coff, in;
1471 
1472 	coff = addr & 0xfff;
1473 	func = (addr >> 12) & 0x7;
1474 	slot = (addr >> 15) & 0x1f;
1475 	bus = (addr >> 20) & 0xff;
1476 	in = (dir == MEM_F_READ);
1477 	if (in)
1478 		*val = ~0UL;
1479 	pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1480 	return (0);
1481 }
1482 
1483 uint64_t
pci_ecfg_base(void)1484 pci_ecfg_base(void)
1485 {
1486 
1487 	return (PCI_EMUL_ECFG_BASE);
1488 }
1489 
1490 static int
init_bootorder(void)1491 init_bootorder(void)
1492 {
1493 	struct boot_device *device;
1494 	FILE *fp;
1495 	char *bootorder;
1496 	size_t bootorder_len;
1497 
1498 	if (TAILQ_EMPTY(&boot_devices))
1499 		return (0);
1500 
1501 	fp = open_memstream(&bootorder, &bootorder_len);
1502 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1503 		fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
1504 		    device->pdi->pi_slot, device->pdi->pi_func);
1505 	}
1506 	fclose(fp);
1507 
1508 	return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
1509 }
1510 
1511 #define	BUSIO_ROUNDUP		32
1512 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1513 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1514 
1515 int
init_pci(struct vmctx * ctx)1516 init_pci(struct vmctx *ctx)
1517 {
1518 	char node_name[sizeof("pci.XXX.XX.X")];
1519 	struct mem_range mr;
1520 	struct pci_devemu *pde;
1521 	struct businfo *bi;
1522 	struct slotinfo *si;
1523 	struct funcinfo *fi;
1524 	nvlist_t *nvl;
1525 	const char *emul;
1526 	size_t lowmem;
1527 	int bus, slot, func;
1528 	int error;
1529 
1530 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1531 		errx(EX_OSERR, "Invalid lowmem limit");
1532 
1533 	pci_emul_iobase = PCI_EMUL_IOBASE;
1534 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1535 
1536 	pci_emul_membase64 = vm_get_highmem_base(ctx) +
1537 	    vm_get_highmem_size(ctx);
1538 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1539 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1540 
1541 	TAILQ_INIT(&boot_devices);
1542 
1543 	for (bus = 0; bus < MAXBUSES; bus++) {
1544 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1545 		nvl = find_config_node(node_name);
1546 		if (nvl == NULL)
1547 			continue;
1548 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1549 		bi = pci_businfo[bus];
1550 
1551 		/*
1552 		 * Keep track of the i/o and memory resources allocated to
1553 		 * this bus.
1554 		 */
1555 		bi->iobase = pci_emul_iobase;
1556 		bi->membase32 = pci_emul_membase32;
1557 		bi->membase64 = pci_emul_membase64;
1558 
1559 		/* first run: init devices */
1560 		for (slot = 0; slot < MAXSLOTS; slot++) {
1561 			si = &bi->slotinfo[slot];
1562 			for (func = 0; func < MAXFUNCS; func++) {
1563 				fi = &si->si_funcs[func];
1564 				snprintf(node_name, sizeof(node_name),
1565 				    "pci.%d.%d.%d", bus, slot, func);
1566 				nvl = find_config_node(node_name);
1567 				if (nvl == NULL)
1568 					continue;
1569 
1570 				fi->fi_config = nvl;
1571 				emul = get_config_value_node(nvl, "device");
1572 				if (emul == NULL) {
1573 					EPRINTLN("pci slot %d:%d:%d: missing "
1574 					    "\"device\" value", bus, slot, func);
1575 					return (EINVAL);
1576 				}
1577 				pde = pci_emul_finddev(emul);
1578 				if (pde == NULL) {
1579 					EPRINTLN("pci slot %d:%d:%d: unknown "
1580 					    "device \"%s\"", bus, slot, func,
1581 					    emul);
1582 					return (EINVAL);
1583 				}
1584 				if (pde->pe_alias != NULL) {
1585 					EPRINTLN("pci slot %d:%d:%d: legacy "
1586 					    "device \"%s\", use \"%s\" instead",
1587 					    bus, slot, func, emul,
1588 					    pde->pe_alias);
1589 					return (EINVAL);
1590 				}
1591 				fi->fi_pde = pde;
1592 				error = pci_emul_init(ctx, pde, bus, slot,
1593 				    func, fi);
1594 				if (error)
1595 					return (error);
1596 			}
1597 		}
1598 
1599 		/* second run: assign BARs and free list */
1600 		struct pci_bar_allocation *bar;
1601 		struct pci_bar_allocation *bar_tmp;
1602 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1603 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1604 			    bar->size);
1605 			free(bar);
1606 		}
1607 		TAILQ_INIT(&pci_bars);
1608 
1609 		/*
1610 		 * Add some slop to the I/O and memory resources decoded by
1611 		 * this bus to give a guest some flexibility if it wants to
1612 		 * reprogram the BARs.
1613 		 */
1614 		pci_emul_iobase += BUSIO_ROUNDUP;
1615 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1616 		bi->iolimit = pci_emul_iobase;
1617 
1618 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1619 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1620 		    BUSMEM32_ROUNDUP);
1621 		bi->memlimit32 = pci_emul_membase32;
1622 
1623 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1624 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1625 		    BUSMEM64_ROUNDUP);
1626 		bi->memlimit64 = pci_emul_membase64;
1627 	}
1628 
1629 	/*
1630 	 * PCI backends are initialized before routing INTx interrupts
1631 	 * so that LPC devices are able to reserve ISA IRQs before
1632 	 * routing PIRQ pins.
1633 	 */
1634 	for (bus = 0; bus < MAXBUSES; bus++) {
1635 		if ((bi = pci_businfo[bus]) == NULL)
1636 			continue;
1637 
1638 		for (slot = 0; slot < MAXSLOTS; slot++) {
1639 			si = &bi->slotinfo[slot];
1640 			for (func = 0; func < MAXFUNCS; func++) {
1641 				fi = &si->si_funcs[func];
1642 				if (fi->fi_devi == NULL)
1643 					continue;
1644 				pci_lintr_route(fi->fi_devi);
1645 			}
1646 		}
1647 	}
1648 #ifdef __amd64__
1649 	lpc_pirq_routed();
1650 #endif
1651 
1652 	if ((error = init_bootorder()) != 0) {
1653 		warnx("%s: Unable to init bootorder", __func__);
1654 		return (error);
1655 	}
1656 
1657 	/*
1658 	 * The guest physical memory map looks like the following on amd64:
1659 	 * [0,		    lowmem)		guest system memory
1660 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1661 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1662 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1663 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1664 	 * [4GB,	    4GB + highmem)	guest system memory
1665 	 * [roundup(4GB + highmem, 32GB), ...)	PCI 64-bit BAR allocation
1666 	 *
1667 	 * On arm64 the guest physical memory map looks like this:
1668 	 * [0x0DF00000,	    0x10000000)		PCI I/O memory
1669 	 * [0xA0000000,	    0xE0000000)		PCI 32-bit BAR allocation
1670 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1671 	 * [4GB,	    4GB + highmem)	guest system memory
1672 	 * [roundup(4GB + highmem, 32GB), ...)	PCI 64-bit BAR allocation
1673 	 *
1674 	 * "lowmem" is guest memory below 0xC0000000.  amd64 guests provisioned
1675 	 * with less than 3GB of RAM will have no memory above the 4GB boundary.
1676 	 * System memory for arm64 guests is all above the 4GB boundary.
1677 	 */
1678 
1679 	/*
1680 	 * Accesses to memory addresses that are not allocated to system
1681 	 * memory or PCI devices return 0xff's.
1682 	 */
1683 	lowmem = vm_get_lowmem_size(ctx);
1684 	bzero(&mr, sizeof(struct mem_range));
1685 	mr.name = "PCI hole";
1686 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1687 	mr.base = lowmem;
1688 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1689 	mr.handler = pci_emul_fallback_handler;
1690 	error = register_mem_fallback(&mr);
1691 	assert(error == 0);
1692 
1693 	/* PCI extended config space */
1694 	bzero(&mr, sizeof(struct mem_range));
1695 	mr.name = "PCI ECFG";
1696 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1697 	mr.base = PCI_EMUL_ECFG_BASE;
1698 	mr.size = PCI_EMUL_ECFG_SIZE;
1699 	mr.handler = pci_emul_ecfg_handler;
1700 	error = register_mem(&mr);
1701 	assert(error == 0);
1702 
1703 	return (0);
1704 }
1705 
1706 #ifdef __amd64__
1707 static void
pci_apic_prt_entry(int bus __unused,int slot,int pin,struct pci_irq * irq,void * arg __unused)1708 pci_apic_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
1709     void *arg __unused)
1710 {
1711 
1712 	dsdt_line("  Package ()");
1713 	dsdt_line("  {");
1714 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1715 	dsdt_line("    0x%02X,", pin - 1);
1716 	dsdt_line("    Zero,");
1717 	dsdt_line("    0x%X", irq->ioapic_irq);
1718 	dsdt_line("  },");
1719 }
1720 
1721 static void
pci_pirq_prt_entry(int bus __unused,int slot,int pin,struct pci_irq * irq,void * arg __unused)1722 pci_pirq_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
1723     void *arg __unused)
1724 {
1725 	char *name;
1726 
1727 	name = lpc_pirq_name(irq->pirq_pin);
1728 	if (name == NULL)
1729 		return;
1730 	dsdt_line("  Package ()");
1731 	dsdt_line("  {");
1732 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1733 	dsdt_line("    0x%02X,", pin - 1);
1734 	dsdt_line("    %s,", name);
1735 	dsdt_line("    0x00");
1736 	dsdt_line("  },");
1737 	free(name);
1738 }
1739 #endif
1740 
1741 /*
1742  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1743  * corresponding to each PCI bus.
1744  */
1745 static void
pci_bus_write_dsdt(int bus)1746 pci_bus_write_dsdt(int bus)
1747 {
1748 	struct businfo *bi;
1749 	struct slotinfo *si;
1750 	struct pci_devinst *pi;
1751 	int func, slot;
1752 
1753 	/*
1754 	 * If there are no devices on this 'bus' then just return.
1755 	 */
1756 	if ((bi = pci_businfo[bus]) == NULL) {
1757 		/*
1758 		 * Bus 0 is special because it decodes the I/O ports used
1759 		 * for PCI config space access even if there are no devices
1760 		 * on it.
1761 		 */
1762 		if (bus != 0)
1763 			return;
1764 	}
1765 
1766 	dsdt_line("  Device (PC%02X)", bus);
1767 	dsdt_line("  {");
1768 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1769 
1770 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1771 	dsdt_line("    {");
1772 	dsdt_line("        Return (0x%08X)", bus);
1773 	dsdt_line("    }");
1774 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1775 	dsdt_line("    {");
1776 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1777 	    "MaxFixed, PosDecode,");
1778 	dsdt_line("        0x0000,             // Granularity");
1779 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1780 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1781 	dsdt_line("        0x0000,             // Translation Offset");
1782 	dsdt_line("        0x0001,             // Length");
1783 	dsdt_line("        ,, )");
1784 
1785 #ifdef __amd64__
1786 	if (bus == 0) {
1787 		dsdt_indent(3);
1788 		dsdt_fixed_ioport(0xCF8, 8);
1789 		dsdt_unindent(3);
1790 
1791 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1792 		    "PosDecode, EntireRange,");
1793 		dsdt_line("        0x0000,             // Granularity");
1794 		dsdt_line("        0x0000,             // Range Minimum");
1795 		dsdt_line("        0x0CF7,             // Range Maximum");
1796 		dsdt_line("        0x0000,             // Translation Offset");
1797 		dsdt_line("        0x0CF8,             // Length");
1798 		dsdt_line("        ,, , TypeStatic)");
1799 
1800 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1801 		    "PosDecode, EntireRange,");
1802 		dsdt_line("        0x0000,             // Granularity");
1803 		dsdt_line("        0x0D00,             // Range Minimum");
1804 		dsdt_line("        0x%04X,             // Range Maximum",
1805 		    PCI_EMUL_IOBASE - 1);
1806 		dsdt_line("        0x0000,             // Translation Offset");
1807 		dsdt_line("        0x%04X,             // Length",
1808 		    PCI_EMUL_IOBASE - 0x0D00);
1809 		dsdt_line("        ,, , TypeStatic)");
1810 
1811 		if (bi == NULL) {
1812 			dsdt_line("    })");
1813 			goto done;
1814 		}
1815 	}
1816 #endif
1817 	assert(bi != NULL);
1818 
1819 	/* i/o window */
1820 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1821 	    "PosDecode, EntireRange,");
1822 	dsdt_line("        0x0000,             // Granularity");
1823 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1824 	dsdt_line("        0x%04X,             // Range Maximum",
1825 	    bi->iolimit - 1);
1826 	dsdt_line("        0x0000,             // Translation Offset");
1827 	dsdt_line("        0x%04X,             // Length",
1828 	    bi->iolimit - bi->iobase);
1829 	dsdt_line("        ,, , TypeStatic)");
1830 
1831 	/* mmio window (32-bit) */
1832 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1833 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1834 	dsdt_line("        0x00000000,         // Granularity");
1835 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1836 	dsdt_line("        0x%08X,         // Range Maximum\n",
1837 	    bi->memlimit32 - 1);
1838 	dsdt_line("        0x00000000,         // Translation Offset");
1839 	dsdt_line("        0x%08X,         // Length\n",
1840 	    bi->memlimit32 - bi->membase32);
1841 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1842 
1843 	/* mmio window (64-bit) */
1844 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1845 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1846 	dsdt_line("        0x0000000000000000, // Granularity");
1847 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1848 	dsdt_line("        0x%016lX, // Range Maximum\n",
1849 	    bi->memlimit64 - 1);
1850 	dsdt_line("        0x0000000000000000, // Translation Offset");
1851 	dsdt_line("        0x%016lX, // Length\n",
1852 	    bi->memlimit64 - bi->membase64);
1853 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1854 	dsdt_line("    })");
1855 
1856 #ifdef __amd64__
1857 	if (pci_count_lintr(bus) != 0) {
1858 		dsdt_indent(2);
1859 		dsdt_line("Name (PPRT, Package ()");
1860 		dsdt_line("{");
1861 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1862 		dsdt_line("})");
1863 		dsdt_line("Name (APRT, Package ()");
1864 		dsdt_line("{");
1865 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1866 		dsdt_line("})");
1867 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1868 		dsdt_line("{");
1869 		dsdt_line("  If (PICM)");
1870 		dsdt_line("  {");
1871 		dsdt_line("    Return (APRT)");
1872 		dsdt_line("  }");
1873 		dsdt_line("  Else");
1874 		dsdt_line("  {");
1875 		dsdt_line("    Return (PPRT)");
1876 		dsdt_line("  }");
1877 		dsdt_line("}");
1878 		dsdt_unindent(2);
1879 	}
1880 #endif
1881 
1882 	dsdt_indent(2);
1883 	for (slot = 0; slot < MAXSLOTS; slot++) {
1884 		si = &bi->slotinfo[slot];
1885 		for (func = 0; func < MAXFUNCS; func++) {
1886 			pi = si->si_funcs[func].fi_devi;
1887 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1888 				pi->pi_d->pe_write_dsdt(pi);
1889 		}
1890 	}
1891 	dsdt_unindent(2);
1892 #ifdef __amd64__
1893 done:
1894 #endif
1895 	dsdt_line("  }");
1896 }
1897 
1898 void
pci_write_dsdt(void)1899 pci_write_dsdt(void)
1900 {
1901 	int bus;
1902 
1903 	dsdt_indent(1);
1904 	dsdt_line("Name (PICM, 0x00)");
1905 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1906 	dsdt_line("{");
1907 	dsdt_line("  Store (Arg0, PICM)");
1908 	dsdt_line("}");
1909 	dsdt_line("");
1910 	dsdt_line("Scope (_SB)");
1911 	dsdt_line("{");
1912 	for (bus = 0; bus < MAXBUSES; bus++)
1913 		pci_bus_write_dsdt(bus);
1914 	dsdt_line("}");
1915 	dsdt_unindent(1);
1916 }
1917 
1918 int
pci_bus_configured(int bus)1919 pci_bus_configured(int bus)
1920 {
1921 	assert(bus >= 0 && bus < MAXBUSES);
1922 	return (pci_businfo[bus] != NULL);
1923 }
1924 
1925 int
pci_msi_enabled(struct pci_devinst * pi)1926 pci_msi_enabled(struct pci_devinst *pi)
1927 {
1928 	return (pi->pi_msi.enabled);
1929 }
1930 
1931 int
pci_msi_maxmsgnum(struct pci_devinst * pi)1932 pci_msi_maxmsgnum(struct pci_devinst *pi)
1933 {
1934 	if (pi->pi_msi.enabled)
1935 		return (pi->pi_msi.maxmsgnum);
1936 	else
1937 		return (0);
1938 }
1939 
1940 int
pci_msix_enabled(struct pci_devinst * pi)1941 pci_msix_enabled(struct pci_devinst *pi)
1942 {
1943 
1944 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1945 }
1946 
1947 void
pci_generate_msix(struct pci_devinst * pi,int index)1948 pci_generate_msix(struct pci_devinst *pi, int index)
1949 {
1950 	struct msix_table_entry *mte;
1951 
1952 	if (!pci_msix_enabled(pi))
1953 		return;
1954 
1955 	if (pi->pi_msix.function_mask)
1956 		return;
1957 
1958 	if (index >= pi->pi_msix.table_count)
1959 		return;
1960 
1961 	mte = &pi->pi_msix.table[index];
1962 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1963 		/* XXX Set PBA bit if interrupt is disabled */
1964 		vm_raise_msi(pi->pi_vmctx, mte->addr, mte->msg_data,
1965 		    pi->pi_bus, pi->pi_slot, pi->pi_func);
1966 	}
1967 }
1968 
1969 void
pci_generate_msi(struct pci_devinst * pi,int index)1970 pci_generate_msi(struct pci_devinst *pi, int index)
1971 {
1972 
1973 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1974 		vm_raise_msi(pi->pi_vmctx, pi->pi_msi.addr,
1975 		    pi->pi_msi.msg_data + index,
1976 		    pi->pi_bus, pi->pi_slot, pi->pi_func);
1977 	}
1978 }
1979 
1980 static bool
pci_lintr_permitted(struct pci_devinst * pi)1981 pci_lintr_permitted(struct pci_devinst *pi)
1982 {
1983 	uint16_t cmd;
1984 
1985 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1986 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1987 		(cmd & PCIM_CMD_INTxDIS)));
1988 }
1989 
1990 void
pci_lintr_request(struct pci_devinst * pi)1991 pci_lintr_request(struct pci_devinst *pi)
1992 {
1993 	struct businfo *bi;
1994 	struct slotinfo *si;
1995 	int bestpin, bestcount, pin;
1996 
1997 	bi = pci_businfo[pi->pi_bus];
1998 	assert(bi != NULL);
1999 
2000 	/*
2001 	 * Just allocate a pin from our slot.  The pin will be
2002 	 * assigned IRQs later when interrupts are routed.
2003 	 */
2004 	si = &bi->slotinfo[pi->pi_slot];
2005 	bestpin = 0;
2006 	bestcount = si->si_intpins[0].ii_count;
2007 	for (pin = 1; pin < 4; pin++) {
2008 		if (si->si_intpins[pin].ii_count < bestcount) {
2009 			bestpin = pin;
2010 			bestcount = si->si_intpins[pin].ii_count;
2011 		}
2012 	}
2013 
2014 	si->si_intpins[bestpin].ii_count++;
2015 	pi->pi_lintr.pin = bestpin + 1;
2016 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
2017 }
2018 
2019 static void
pci_lintr_route(struct pci_devinst * pi)2020 pci_lintr_route(struct pci_devinst *pi)
2021 {
2022 	struct businfo *bi;
2023 	struct intxinfo *ii;
2024 	struct pci_irq *irq;
2025 
2026 	if (pi->pi_lintr.pin == 0)
2027 		return;
2028 
2029 	bi = pci_businfo[pi->pi_bus];
2030 	assert(bi != NULL);
2031 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
2032 	irq = &ii->ii_irq;
2033 	pci_irq_route(pi, irq);
2034 	pi->pi_lintr.irq = *irq;
2035 	pci_set_cfgdata8(pi, PCIR_INTLINE, pci_irq_intline(irq));
2036 }
2037 
2038 void
pci_lintr_assert(struct pci_devinst * pi)2039 pci_lintr_assert(struct pci_devinst *pi)
2040 {
2041 
2042 	assert(pi->pi_lintr.pin > 0);
2043 
2044 	pthread_mutex_lock(&pi->pi_lintr.lock);
2045 	if (pi->pi_lintr.state == IDLE) {
2046 		if (pci_lintr_permitted(pi)) {
2047 			pi->pi_lintr.state = ASSERTED;
2048 			pci_irq_assert(pi);
2049 		} else
2050 			pi->pi_lintr.state = PENDING;
2051 	}
2052 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2053 }
2054 
2055 void
pci_lintr_deassert(struct pci_devinst * pi)2056 pci_lintr_deassert(struct pci_devinst *pi)
2057 {
2058 
2059 	assert(pi->pi_lintr.pin > 0);
2060 
2061 	pthread_mutex_lock(&pi->pi_lintr.lock);
2062 	if (pi->pi_lintr.state == ASSERTED) {
2063 		pi->pi_lintr.state = IDLE;
2064 		pci_irq_deassert(pi);
2065 	} else if (pi->pi_lintr.state == PENDING)
2066 		pi->pi_lintr.state = IDLE;
2067 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2068 }
2069 
2070 static void
pci_lintr_update(struct pci_devinst * pi)2071 pci_lintr_update(struct pci_devinst *pi)
2072 {
2073 
2074 	pthread_mutex_lock(&pi->pi_lintr.lock);
2075 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
2076 		pci_irq_deassert(pi);
2077 		pi->pi_lintr.state = PENDING;
2078 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
2079 		pi->pi_lintr.state = ASSERTED;
2080 		pci_irq_assert(pi);
2081 	}
2082 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2083 }
2084 
2085 int
pci_count_lintr(int bus)2086 pci_count_lintr(int bus)
2087 {
2088 	int count, slot, pin;
2089 	struct slotinfo *slotinfo;
2090 
2091 	count = 0;
2092 	if (pci_businfo[bus] != NULL) {
2093 		for (slot = 0; slot < MAXSLOTS; slot++) {
2094 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
2095 			for (pin = 0; pin < 4; pin++) {
2096 				if (slotinfo->si_intpins[pin].ii_count != 0)
2097 					count++;
2098 			}
2099 		}
2100 	}
2101 	return (count);
2102 }
2103 
2104 void
pci_walk_lintr(int bus,pci_lintr_cb cb,void * arg)2105 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
2106 {
2107 	struct businfo *bi;
2108 	struct slotinfo *si;
2109 	struct intxinfo *ii;
2110 	int slot, pin;
2111 
2112 	if ((bi = pci_businfo[bus]) == NULL)
2113 		return;
2114 
2115 	for (slot = 0; slot < MAXSLOTS; slot++) {
2116 		si = &bi->slotinfo[slot];
2117 		for (pin = 0; pin < 4; pin++) {
2118 			ii = &si->si_intpins[pin];
2119 			if (ii->ii_count != 0)
2120 				cb(bus, slot, pin + 1, &ii->ii_irq, arg);
2121 		}
2122 	}
2123 }
2124 
2125 /*
2126  * Return 1 if the emulated device in 'slot' is a multi-function device.
2127  * Return 0 otherwise.
2128  */
2129 static int
pci_emul_is_mfdev(int bus,int slot)2130 pci_emul_is_mfdev(int bus, int slot)
2131 {
2132 	struct businfo *bi;
2133 	struct slotinfo *si;
2134 	int f, numfuncs;
2135 
2136 	numfuncs = 0;
2137 	if ((bi = pci_businfo[bus]) != NULL) {
2138 		si = &bi->slotinfo[slot];
2139 		for (f = 0; f < MAXFUNCS; f++) {
2140 			if (si->si_funcs[f].fi_devi != NULL) {
2141 				numfuncs++;
2142 			}
2143 		}
2144 	}
2145 	return (numfuncs > 1);
2146 }
2147 
2148 /*
2149  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
2150  * whether or not is a multi-function being emulated in the pci 'slot'.
2151  */
2152 static void
pci_emul_hdrtype_fixup(int bus,int slot,int off,int bytes,uint32_t * rv)2153 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
2154 {
2155 	int mfdev;
2156 
2157 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
2158 		mfdev = pci_emul_is_mfdev(bus, slot);
2159 		switch (bytes) {
2160 		case 1:
2161 		case 2:
2162 			*rv &= ~PCIM_MFDEV;
2163 			if (mfdev) {
2164 				*rv |= PCIM_MFDEV;
2165 			}
2166 			break;
2167 		case 4:
2168 			*rv &= ~(PCIM_MFDEV << 16);
2169 			if (mfdev) {
2170 				*rv |= (PCIM_MFDEV << 16);
2171 			}
2172 			break;
2173 		}
2174 	}
2175 }
2176 
2177 /*
2178  * Update device state in response to changes to the PCI command
2179  * register.
2180  */
2181 void
pci_emul_cmd_changed(struct pci_devinst * pi,uint16_t old)2182 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2183 {
2184 	int i;
2185 	uint16_t changed, new;
2186 
2187 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2188 	changed = old ^ new;
2189 
2190 	/*
2191 	 * If the MMIO or I/O address space decoding has changed then
2192 	 * register/unregister all BARs that decode that address space.
2193 	 */
2194 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2195 		switch (pi->pi_bar[i].type) {
2196 			case PCIBAR_NONE:
2197 			case PCIBAR_MEMHI64:
2198 				break;
2199 			case PCIBAR_IO:
2200 				/* I/O address space decoding changed? */
2201 				if (changed & PCIM_CMD_PORTEN) {
2202 					if (new & PCIM_CMD_PORTEN)
2203 						register_bar(pi, i);
2204 					else
2205 						unregister_bar(pi, i);
2206 				}
2207 				break;
2208 			case PCIBAR_ROM:
2209 				/* skip (un-)register of ROM if it disabled */
2210 				if (!romen(pi))
2211 					break;
2212 				/* fallthrough */
2213 			case PCIBAR_MEM32:
2214 			case PCIBAR_MEM64:
2215 				/* MMIO address space decoding changed? */
2216 				if (changed & PCIM_CMD_MEMEN) {
2217 					if (new & PCIM_CMD_MEMEN)
2218 						register_bar(pi, i);
2219 					else
2220 						unregister_bar(pi, i);
2221 				}
2222 				break;
2223 			default:
2224 				assert(0);
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * If INTx has been unmasked and is pending, assert the
2230 	 * interrupt.
2231 	 */
2232 	pci_lintr_update(pi);
2233 }
2234 
2235 static void
pci_emul_cmdsts_write(struct pci_devinst * pi,int coff,uint32_t new,int bytes)2236 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2237 {
2238 	int rshift;
2239 	uint32_t cmd, old, readonly;
2240 
2241 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2242 
2243 	/*
2244 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2245 	 *
2246 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2247 	 * 'write 1 to clear'. However these bits are not set to '1' by
2248 	 * any device emulation so it is simpler to treat them as readonly.
2249 	 */
2250 	rshift = (coff & 0x3) * 8;
2251 	readonly = 0xFFFFF880 >> rshift;
2252 
2253 	old = CFGREAD(pi, coff, bytes);
2254 	new &= ~readonly;
2255 	new |= (old & readonly);
2256 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2257 
2258 	pci_emul_cmd_changed(pi, cmd);
2259 }
2260 
2261 static void
pci_cfgrw(int in,int bus,int slot,int func,int coff,int bytes,uint32_t * valp)2262 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2263     uint32_t *valp)
2264 {
2265 	struct businfo *bi;
2266 	struct slotinfo *si;
2267 	struct pci_devinst *pi;
2268 	struct pci_devemu *pe;
2269 	int idx, needcfg;
2270 	uint64_t addr, bar, mask;
2271 
2272 	if ((bi = pci_businfo[bus]) != NULL) {
2273 		si = &bi->slotinfo[slot];
2274 		pi = si->si_funcs[func].fi_devi;
2275 	} else
2276 		pi = NULL;
2277 
2278 	/*
2279 	 * Just return if there is no device at this slot:func or if the
2280 	 * guest is doing an un-aligned access.
2281 	 */
2282 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2283 	    (coff & (bytes - 1)) != 0) {
2284 		if (in)
2285 			*valp = 0xffffffff;
2286 		return;
2287 	}
2288 
2289 	/*
2290 	 * Ignore all writes beyond the standard config space and return all
2291 	 * ones on reads.
2292 	 */
2293 	if (coff >= PCI_REGMAX + 1) {
2294 		if (in) {
2295 			*valp = 0xffffffff;
2296 			/*
2297 			 * Extended capabilities begin at offset 256 in config
2298 			 * space. Absence of extended capabilities is signaled
2299 			 * with all 0s in the extended capability header at
2300 			 * offset 256.
2301 			 */
2302 			if (coff <= PCI_REGMAX + 4)
2303 				*valp = 0x00000000;
2304 		}
2305 		return;
2306 	}
2307 
2308 	pe = pi->pi_d;
2309 
2310 	/*
2311 	 * Config read
2312 	 */
2313 	if (in) {
2314 		/* Let the device emulation override the default handler */
2315 		if (pe->pe_cfgread != NULL) {
2316 			needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
2317 		} else {
2318 			needcfg = 1;
2319 		}
2320 
2321 		if (needcfg)
2322 			*valp = CFGREAD(pi, coff, bytes);
2323 
2324 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
2325 	} else {
2326 		/* Let the device emulation override the default handler */
2327 		if (pe->pe_cfgwrite != NULL &&
2328 		    (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
2329 			return;
2330 
2331 		/*
2332 		 * Special handling for write to BAR and ROM registers
2333 		 */
2334 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2335 			/*
2336 			 * Ignore writes to BAR registers that are not
2337 			 * 4-byte aligned.
2338 			 */
2339 			if (bytes != 4 || (coff & 0x3) != 0)
2340 				return;
2341 
2342 			if (is_pcir_bar(coff)) {
2343 				idx = (coff - PCIR_BAR(0)) / 4;
2344 			} else if (is_pcir_bios(coff)) {
2345 				idx = PCI_ROM_IDX;
2346 			} else {
2347 				errx(4, "%s: invalid BAR offset %d", __func__,
2348 				    coff);
2349 			}
2350 
2351 			mask = ~(pi->pi_bar[idx].size - 1);
2352 			switch (pi->pi_bar[idx].type) {
2353 			case PCIBAR_NONE:
2354 				pi->pi_bar[idx].addr = bar = 0;
2355 				break;
2356 			case PCIBAR_IO:
2357 				addr = *valp & mask;
2358 #if defined(PCI_EMUL_IOMASK)
2359 				addr &= PCI_EMUL_IOMASK;
2360 #endif
2361 				bar = addr | pi->pi_bar[idx].lobits;
2362 				/*
2363 				 * Register the new BAR value for interception
2364 				 */
2365 				if (addr != pi->pi_bar[idx].addr) {
2366 					update_bar_address(pi, addr, idx,
2367 							   PCIBAR_IO);
2368 				}
2369 				break;
2370 			case PCIBAR_MEM32:
2371 				addr = bar = *valp & mask;
2372 				bar |= pi->pi_bar[idx].lobits;
2373 				if (addr != pi->pi_bar[idx].addr) {
2374 					update_bar_address(pi, addr, idx,
2375 							   PCIBAR_MEM32);
2376 				}
2377 				break;
2378 			case PCIBAR_MEM64:
2379 				addr = bar = *valp & mask;
2380 				bar |= pi->pi_bar[idx].lobits;
2381 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2382 					update_bar_address(pi, addr, idx,
2383 							   PCIBAR_MEM64);
2384 				}
2385 				break;
2386 			case PCIBAR_MEMHI64:
2387 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2388 				addr = ((uint64_t)*valp << 32) & mask;
2389 				bar = addr >> 32;
2390 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2391 					update_bar_address(pi, addr, idx - 1,
2392 							   PCIBAR_MEMHI64);
2393 				}
2394 				break;
2395 			case PCIBAR_ROM:
2396 				addr = bar = *valp & mask;
2397 				if (memen(pi) && romen(pi)) {
2398 					unregister_bar(pi, idx);
2399 				}
2400 				pi->pi_bar[idx].addr = addr;
2401 				pi->pi_bar[idx].lobits = *valp &
2402 				    PCIM_BIOS_ENABLE;
2403 				/* romen could have changed it value */
2404 				if (memen(pi) && romen(pi)) {
2405 					register_bar(pi, idx);
2406 				}
2407 				bar |= pi->pi_bar[idx].lobits;
2408 				break;
2409 			default:
2410 				assert(0);
2411 			}
2412 			pci_set_cfgdata32(pi, coff, bar);
2413 
2414 		} else if (pci_emul_iscap(pi, coff)) {
2415 			pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
2416 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2417 			pci_emul_cmdsts_write(pi, coff, *valp, bytes);
2418 		} else {
2419 			CFGWRITE(pi, coff, *valp, bytes);
2420 		}
2421 	}
2422 }
2423 
2424 #ifdef __amd64__
2425 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2426 
2427 static int
pci_emul_cfgaddr(struct vmctx * ctx __unused,int in,int port __unused,int bytes,uint32_t * eax,void * arg __unused)2428 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2429     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2430 {
2431 	uint32_t x;
2432 
2433 	if (bytes != 4) {
2434 		if (in)
2435 			*eax = (bytes == 2) ? 0xffff : 0xff;
2436 		return (0);
2437 	}
2438 
2439 	if (in) {
2440 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2441 		if (cfgenable)
2442 			x |= CONF1_ENABLE;
2443 		*eax = x;
2444 	} else {
2445 		x = *eax;
2446 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2447 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2448 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2449 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2450 		cfgbus = (x >> 16) & PCI_BUSMAX;
2451 	}
2452 
2453 	return (0);
2454 }
2455 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2456 
2457 static int
pci_emul_cfgdata(struct vmctx * ctx __unused,int in,int port,int bytes,uint32_t * eax,void * arg __unused)2458 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2459     int bytes, uint32_t *eax, void *arg __unused)
2460 {
2461 	int coff;
2462 
2463 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2464 
2465 	coff = cfgoff + (port - CONF1_DATA_PORT);
2466 	if (cfgenable) {
2467 		pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2468 	} else {
2469 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2470 		if (in)
2471 			*eax = 0xffffffff;
2472 	}
2473 	return (0);
2474 }
2475 
2476 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2477 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2478 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2479 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2480 #endif
2481 
2482 #ifdef BHYVE_SNAPSHOT
2483 /*
2484  * Saves/restores PCI device emulated state. Returns 0 on success.
2485  */
2486 static int
pci_snapshot_pci_dev(struct vm_snapshot_meta * meta)2487 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2488 {
2489 	struct pci_devinst *pi;
2490 	int i;
2491 	int ret;
2492 
2493 	pi = meta->dev_data;
2494 
2495 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2496 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2497 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2498 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2499 
2500 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2501 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2502 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2503 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2504 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2505 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2506 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2507 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2508 
2509 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2510 			      meta, ret, done);
2511 
2512 	for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2513 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2514 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2515 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2516 	}
2517 
2518 	/* Restore MSI-X table. */
2519 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2520 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2521 				      meta, ret, done);
2522 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2523 				      meta, ret, done);
2524 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2525 				      meta, ret, done);
2526 	}
2527 
2528 done:
2529 	return (ret);
2530 }
2531 
2532 int
pci_snapshot(struct vm_snapshot_meta * meta)2533 pci_snapshot(struct vm_snapshot_meta *meta)
2534 {
2535 	struct pci_devemu *pde;
2536 	struct pci_devinst *pdi;
2537 	int ret;
2538 
2539 	assert(meta->dev_name != NULL);
2540 
2541 	pdi = meta->dev_data;
2542 	pde = pdi->pi_d;
2543 
2544 	if (pde->pe_snapshot == NULL)
2545 		return (ENOTSUP);
2546 
2547 	ret = pci_snapshot_pci_dev(meta);
2548 	if (ret == 0)
2549 		ret = (*pde->pe_snapshot)(meta);
2550 
2551 	return (ret);
2552 }
2553 
2554 int
pci_pause(struct pci_devinst * pdi)2555 pci_pause(struct pci_devinst *pdi)
2556 {
2557 	struct pci_devemu *pde = pdi->pi_d;
2558 
2559 	if (pde->pe_pause == NULL) {
2560 		/* The pause/resume functionality is optional. */
2561 		return (0);
2562 	}
2563 
2564 	return (*pde->pe_pause)(pdi);
2565 }
2566 
2567 int
pci_resume(struct pci_devinst * pdi)2568 pci_resume(struct pci_devinst *pdi)
2569 {
2570 	struct pci_devemu *pde = pdi->pi_d;
2571 
2572 	if (pde->pe_resume == NULL) {
2573 		/* The pause/resume functionality is optional. */
2574 		return (0);
2575 	}
2576 
2577 	return (*pde->pe_resume)(pdi);
2578 }
2579 #endif
2580 
2581 #define PCI_EMUL_TEST
2582 #ifdef PCI_EMUL_TEST
2583 /*
2584  * Define a dummy test device
2585  */
2586 #define DIOSZ	8
2587 #define DMEMSZ	4096
2588 struct pci_emul_dsoftc {
2589 	uint8_t   ioregs[DIOSZ];
2590 	uint8_t	  memregs[2][DMEMSZ];
2591 };
2592 
2593 #define	PCI_EMUL_MSI_MSGS	 4
2594 #define	PCI_EMUL_MSIX_MSGS	16
2595 
2596 static int
pci_emul_dinit(struct pci_devinst * pi,nvlist_t * nvl __unused)2597 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2598 {
2599 	int error;
2600 	struct pci_emul_dsoftc *sc;
2601 
2602 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2603 
2604 	pi->pi_arg = sc;
2605 
2606 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2607 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2608 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2609 
2610 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2611 	assert(error == 0);
2612 
2613 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2614 	assert(error == 0);
2615 
2616 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2617 	assert(error == 0);
2618 
2619 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2620 	assert(error == 0);
2621 
2622 	return (0);
2623 }
2624 
2625 static void
pci_emul_diow(struct pci_devinst * pi,int baridx,uint64_t offset,int size,uint64_t value)2626 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2627     uint64_t value)
2628 {
2629 	int i;
2630 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2631 
2632 	if (baridx == 0) {
2633 		if (offset + size > DIOSZ) {
2634 			printf("diow: iow too large, offset %ld size %d\n",
2635 			       offset, size);
2636 			return;
2637 		}
2638 
2639 		if (size == 1) {
2640 			sc->ioregs[offset] = value & 0xff;
2641 		} else if (size == 2) {
2642 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2643 		} else if (size == 4) {
2644 			*(uint32_t *)&sc->ioregs[offset] = value;
2645 		} else {
2646 			printf("diow: iow unknown size %d\n", size);
2647 		}
2648 
2649 		/*
2650 		 * Special magic value to generate an interrupt
2651 		 */
2652 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2653 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2654 
2655 		if (value == 0xabcdef) {
2656 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2657 				pci_generate_msi(pi, i);
2658 		}
2659 	}
2660 
2661 	if (baridx == 1 || baridx == 2) {
2662 		if (offset + size > DMEMSZ) {
2663 			printf("diow: memw too large, offset %ld size %d\n",
2664 			       offset, size);
2665 			return;
2666 		}
2667 
2668 		i = baridx - 1;		/* 'memregs' index */
2669 
2670 		if (size == 1) {
2671 			sc->memregs[i][offset] = value;
2672 		} else if (size == 2) {
2673 			*(uint16_t *)&sc->memregs[i][offset] = value;
2674 		} else if (size == 4) {
2675 			*(uint32_t *)&sc->memregs[i][offset] = value;
2676 		} else if (size == 8) {
2677 			*(uint64_t *)&sc->memregs[i][offset] = value;
2678 		} else {
2679 			printf("diow: memw unknown size %d\n", size);
2680 		}
2681 
2682 		/*
2683 		 * magic interrupt ??
2684 		 */
2685 	}
2686 
2687 	if (baridx > 2 || baridx < 0) {
2688 		printf("diow: unknown bar idx %d\n", baridx);
2689 	}
2690 }
2691 
2692 static uint64_t
pci_emul_dior(struct pci_devinst * pi,int baridx,uint64_t offset,int size)2693 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2694 {
2695 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2696 	uint32_t value;
2697 	int i;
2698 
2699 	if (baridx == 0) {
2700 		if (offset + size > DIOSZ) {
2701 			printf("dior: ior too large, offset %ld size %d\n",
2702 			       offset, size);
2703 			return (0);
2704 		}
2705 
2706 		value = 0;
2707 		if (size == 1) {
2708 			value = sc->ioregs[offset];
2709 		} else if (size == 2) {
2710 			value = *(uint16_t *) &sc->ioregs[offset];
2711 		} else if (size == 4) {
2712 			value = *(uint32_t *) &sc->ioregs[offset];
2713 		} else {
2714 			printf("dior: ior unknown size %d\n", size);
2715 		}
2716 	}
2717 
2718 	if (baridx == 1 || baridx == 2) {
2719 		if (offset + size > DMEMSZ) {
2720 			printf("dior: memr too large, offset %ld size %d\n",
2721 			       offset, size);
2722 			return (0);
2723 		}
2724 
2725 		i = baridx - 1;		/* 'memregs' index */
2726 
2727 		if (size == 1) {
2728 			value = sc->memregs[i][offset];
2729 		} else if (size == 2) {
2730 			value = *(uint16_t *) &sc->memregs[i][offset];
2731 		} else if (size == 4) {
2732 			value = *(uint32_t *) &sc->memregs[i][offset];
2733 		} else if (size == 8) {
2734 			value = *(uint64_t *) &sc->memregs[i][offset];
2735 		} else {
2736 			printf("dior: ior unknown size %d\n", size);
2737 		}
2738 	}
2739 
2740 
2741 	if (baridx > 2 || baridx < 0) {
2742 		printf("dior: unknown bar idx %d\n", baridx);
2743 		return (0);
2744 	}
2745 
2746 	return (value);
2747 }
2748 
2749 #ifdef BHYVE_SNAPSHOT
2750 struct pci_devinst *
pci_next(const struct pci_devinst * cursor)2751 pci_next(const struct pci_devinst *cursor)
2752 {
2753 	unsigned bus = 0, slot = 0, func = 0;
2754 	struct businfo *bi;
2755 	struct slotinfo *si;
2756 	struct funcinfo *fi;
2757 
2758 	bus = cursor ? cursor->pi_bus : 0;
2759 	slot = cursor ? cursor->pi_slot : 0;
2760 	func = cursor ? (cursor->pi_func + 1) : 0;
2761 
2762 	for (; bus < MAXBUSES; bus++) {
2763 		if ((bi = pci_businfo[bus]) == NULL)
2764 			continue;
2765 
2766 		if (slot >= MAXSLOTS)
2767 			slot = 0;
2768 
2769 		for (; slot < MAXSLOTS; slot++) {
2770 			si = &bi->slotinfo[slot];
2771 			if (func >= MAXFUNCS)
2772 				func = 0;
2773 			for (; func < MAXFUNCS; func++) {
2774 				fi = &si->si_funcs[func];
2775 				if (fi->fi_devi == NULL)
2776 					continue;
2777 
2778 				return (fi->fi_devi);
2779 			}
2780 		}
2781 	}
2782 
2783 	return (NULL);
2784 }
2785 
2786 static int
pci_emul_snapshot(struct vm_snapshot_meta * meta __unused)2787 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2788 {
2789 	return (0);
2790 }
2791 #endif
2792 
2793 static const struct pci_devemu pci_dummy = {
2794 	.pe_emu = "dummy",
2795 	.pe_init = pci_emul_dinit,
2796 	.pe_barwrite = pci_emul_diow,
2797 	.pe_barread = pci_emul_dior,
2798 #ifdef BHYVE_SNAPSHOT
2799 	.pe_snapshot = pci_emul_snapshot,
2800 #endif
2801 };
2802 PCI_EMUL_SET(pci_dummy);
2803 
2804 #endif /* PCI_EMUL_TEST */
2805