1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2017 by Lawrence Livermore National Security, LLC.
24 */
25
26 #include <sys/abd.h>
27 #include <sys/mmp.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/time.h>
31 #include <sys/vdev.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zfs_context.h>
34 #include <sys/callb.h>
35
36 /*
37 * Multi-Modifier Protection (MMP) attempts to prevent a user from importing
38 * or opening a pool on more than one host at a time. In particular, it
39 * prevents "zpool import -f" on a host from succeeding while the pool is
40 * already imported on another host. There are many other ways in which a
41 * device could be used by two hosts for different purposes at the same time
42 * resulting in pool damage. This implementation does not attempt to detect
43 * those cases.
44 *
45 * MMP operates by ensuring there are frequent visible changes on disk (a
46 * "heartbeat") at all times. And by altering the import process to check
47 * for these changes and failing the import when they are detected. This
48 * functionality is enabled by setting the 'multihost' pool property to on.
49 *
50 * Uberblocks written by the txg_sync thread always go into the first
51 * (N-MMP_BLOCKS_PER_LABEL) slots, the remaining slots are reserved for MMP.
52 * They are used to hold uberblocks which are exactly the same as the last
53 * synced uberblock except that the ub_timestamp and mmp_config are frequently
54 * updated. Like all other uberblocks, the slot is written with an embedded
55 * checksum, and slots with invalid checksums are ignored. This provides the
56 * "heartbeat", with no risk of overwriting good uberblocks that must be
57 * preserved, e.g. previous txgs and associated block pointers.
58 *
59 * Three optional fields are added to uberblock structure; ub_mmp_magic,
60 * ub_mmp_config, and ub_mmp_delay. The ub_mmp_magic value allows zfs to tell
61 * whether the other ub_mmp_* fields are valid. The ub_mmp_config field tells
62 * the importing host the settings of zfs_multihost_interval and
63 * zfs_multihost_fail_intervals on the host which last had (or currently has)
64 * the pool imported. These determine how long a host must wait to detect
65 * activity in the pool, before concluding the pool is not in use. The
66 * mmp_delay field is a decaying average of the amount of time between
67 * completion of successive MMP writes, in nanoseconds. It indicates whether
68 * MMP is enabled.
69 *
70 * During import an activity test may now be performed to determine if
71 * the pool is in use. The activity test is typically required if the
72 * ZPOOL_CONFIG_HOSTID does not match the system hostid, the pool state is
73 * POOL_STATE_ACTIVE, and the pool is not a root pool.
74 *
75 * The activity test finds the "best" uberblock (highest txg, timestamp, and, if
76 * ub_mmp_magic is valid, sequence number from ub_mmp_config). It then waits
77 * some time, and finds the "best" uberblock again. If any of the mentioned
78 * fields have different values in the newly read uberblock, the pool is in use
79 * by another host and the import fails. In order to assure the accuracy of the
80 * activity test, the default values result in an activity test duration of 20x
81 * the mmp write interval.
82 *
83 * The duration of the "zpool import" activity test depends on the information
84 * available in the "best" uberblock:
85 *
86 * 1) If uberblock was written by zfs-0.8 or newer and fail_intervals > 0:
87 * ub_mmp_config.fail_intervals * ub_mmp_config.multihost_interval * 2
88 *
89 * In this case, a weak guarantee is provided. Since the host which last had
90 * the pool imported will suspend the pool if no mmp writes land within
91 * fail_intervals * multihost_interval ms, the absence of writes during that
92 * time means either the pool is not imported, or it is imported but the pool
93 * is suspended and no further writes will occur.
94 *
95 * Note that resuming the suspended pool on the remote host would invalidate
96 * this guarantee, and so it is not allowed.
97 *
98 * The factor of 2 provides a conservative safety factor and derives from
99 * MMP_IMPORT_SAFETY_FACTOR;
100 *
101 * 2) If uberblock was written by zfs-0.8 or newer and fail_intervals == 0:
102 * (ub_mmp_config.multihost_interval + ub_mmp_delay) *
103 * zfs_multihost_import_intervals
104 *
105 * In this case no guarantee can provided. However, as long as some devices
106 * are healthy and connected, it is likely that at least one write will land
107 * within (multihost_interval + mmp_delay) because multihost_interval is
108 * enough time for a write to be attempted to each leaf vdev, and mmp_delay
109 * is enough for one to land, based on past delays. Multiplying by
110 * zfs_multihost_import_intervals provides a conservative safety factor.
111 *
112 * 3) If uberblock was written by zfs-0.7:
113 * (zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals
114 *
115 * The same logic as case #2 applies, but we do not know remote tunables.
116 *
117 * We use the local value for zfs_multihost_interval because the original MMP
118 * did not record this value in the uberblock.
119 *
120 * ub_mmp_delay >= (zfs_multihost_interval / leaves), so if the other host
121 * has a much larger zfs_multihost_interval set, ub_mmp_delay will reflect
122 * that. We will have waited enough time for zfs_multihost_import_intervals
123 * writes to be issued and all but one to land.
124 *
125 * single device pool example delays
126 *
127 * import_delay = (1 + 1) * 20 = 40s #defaults, no I/O delay
128 * import_delay = (1 + 10) * 20 = 220s #defaults, 10s I/O delay
129 * import_delay = (10 + 10) * 20 = 400s #10s multihost_interval,
130 * no I/O delay
131 * 100 device pool example delays
132 *
133 * import_delay = (1 + .01) * 20 = 20s #defaults, no I/O delay
134 * import_delay = (1 + 10) * 20 = 220s #defaults, 10s I/O delay
135 * import_delay = (10 + .1) * 20 = 202s #10s multihost_interval,
136 * no I/O delay
137 *
138 * 4) Otherwise, this uberblock was written by a pre-MMP zfs:
139 * zfs_multihost_import_intervals * zfs_multihost_interval
140 *
141 * In this case local tunables are used. By default this product = 10s, long
142 * enough for a pool with any activity at all to write at least one
143 * uberblock. No guarantee can be provided.
144 *
145 * Additionally, the duration is then extended by a random 25% to attempt to to
146 * detect simultaneous imports. For example, if both partner hosts are rebooted
147 * at the same time and automatically attempt to import the pool.
148 */
149
150 /*
151 * Used to control the frequency of mmp writes which are performed when the
152 * 'multihost' pool property is on. This is one factor used to determine the
153 * length of the activity check during import.
154 *
155 * On average an mmp write will be issued for each leaf vdev every
156 * zfs_multihost_interval milliseconds. In practice, the observed period can
157 * vary with the I/O load and this observed value is the ub_mmp_delay which is
158 * stored in the uberblock. The minimum allowed value is 100 ms.
159 */
160 uint64_t zfs_multihost_interval = MMP_DEFAULT_INTERVAL;
161
162 /*
163 * Used to control the duration of the activity test on import. Smaller values
164 * of zfs_multihost_import_intervals will reduce the import time but increase
165 * the risk of failing to detect an active pool. The total activity check time
166 * is never allowed to drop below one second. A value of 0 is ignored and
167 * treated as if it was set to 1.
168 */
169 uint_t zfs_multihost_import_intervals = MMP_DEFAULT_IMPORT_INTERVALS;
170
171 /*
172 * Controls the behavior of the pool when mmp write failures or delays are
173 * detected.
174 *
175 * When zfs_multihost_fail_intervals = 0, mmp write failures or delays are
176 * ignored. The failures will still be reported to the ZED which depending on
177 * its configuration may take action such as suspending the pool or taking a
178 * device offline.
179 *
180 * When zfs_multihost_fail_intervals > 0, the pool will be suspended if
181 * zfs_multihost_fail_intervals * zfs_multihost_interval milliseconds pass
182 * without a successful mmp write. This guarantees the activity test will see
183 * mmp writes if the pool is imported. A value of 1 is ignored and treated as
184 * if it was set to 2, because a single leaf vdev pool will issue a write once
185 * per multihost_interval and thus any variation in latency would cause the
186 * pool to be suspended.
187 */
188 uint_t zfs_multihost_fail_intervals = MMP_DEFAULT_FAIL_INTERVALS;
189
190 static const void *const mmp_tag = "mmp_write_uberblock";
191 static __attribute__((noreturn)) void mmp_thread(void *arg);
192
193 void
mmp_init(spa_t * spa)194 mmp_init(spa_t *spa)
195 {
196 mmp_thread_t *mmp = &spa->spa_mmp;
197
198 mutex_init(&mmp->mmp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
199 cv_init(&mmp->mmp_thread_cv, NULL, CV_DEFAULT, NULL);
200 mutex_init(&mmp->mmp_io_lock, NULL, MUTEX_DEFAULT, NULL);
201 mmp->mmp_kstat_id = 1;
202 }
203
204 void
mmp_fini(spa_t * spa)205 mmp_fini(spa_t *spa)
206 {
207 mmp_thread_t *mmp = &spa->spa_mmp;
208
209 mutex_destroy(&mmp->mmp_thread_lock);
210 cv_destroy(&mmp->mmp_thread_cv);
211 mutex_destroy(&mmp->mmp_io_lock);
212 }
213
214 static void
mmp_thread_enter(mmp_thread_t * mmp,callb_cpr_t * cpr)215 mmp_thread_enter(mmp_thread_t *mmp, callb_cpr_t *cpr)
216 {
217 CALLB_CPR_INIT(cpr, &mmp->mmp_thread_lock, callb_generic_cpr, FTAG);
218 mutex_enter(&mmp->mmp_thread_lock);
219 }
220
221 static void
mmp_thread_exit(mmp_thread_t * mmp,kthread_t ** mpp,callb_cpr_t * cpr)222 mmp_thread_exit(mmp_thread_t *mmp, kthread_t **mpp, callb_cpr_t *cpr)
223 {
224 ASSERT(*mpp != NULL);
225 *mpp = NULL;
226 cv_broadcast(&mmp->mmp_thread_cv);
227 CALLB_CPR_EXIT(cpr); /* drops &mmp->mmp_thread_lock */
228 }
229
230 void
mmp_thread_start(spa_t * spa)231 mmp_thread_start(spa_t *spa)
232 {
233 mmp_thread_t *mmp = &spa->spa_mmp;
234
235 if (spa_writeable(spa)) {
236 mutex_enter(&mmp->mmp_thread_lock);
237 if (!mmp->mmp_thread) {
238 mmp->mmp_thread = thread_create(NULL, 0, mmp_thread,
239 spa, 0, &p0, TS_RUN, defclsyspri);
240 zfs_dbgmsg("MMP thread started pool '%s' "
241 "gethrtime %llu", spa_name(spa), gethrtime());
242 }
243 mutex_exit(&mmp->mmp_thread_lock);
244 }
245 }
246
247 void
mmp_thread_stop(spa_t * spa)248 mmp_thread_stop(spa_t *spa)
249 {
250 mmp_thread_t *mmp = &spa->spa_mmp;
251
252 mutex_enter(&mmp->mmp_thread_lock);
253 mmp->mmp_thread_exiting = 1;
254 cv_broadcast(&mmp->mmp_thread_cv);
255
256 while (mmp->mmp_thread) {
257 cv_wait(&mmp->mmp_thread_cv, &mmp->mmp_thread_lock);
258 }
259 mutex_exit(&mmp->mmp_thread_lock);
260 zfs_dbgmsg("MMP thread stopped pool '%s' gethrtime %llu",
261 spa_name(spa), gethrtime());
262
263 ASSERT(mmp->mmp_thread == NULL);
264 mmp->mmp_thread_exiting = 0;
265 }
266
267 typedef enum mmp_vdev_state_flag {
268 MMP_FAIL_NOT_WRITABLE = (1 << 0),
269 MMP_FAIL_WRITE_PENDING = (1 << 1),
270 } mmp_vdev_state_flag_t;
271
272 /*
273 * Find a leaf vdev to write an MMP block to. It must not have an outstanding
274 * mmp write (if so a new write will also likely block). If there is no usable
275 * leaf, a nonzero error value is returned. The error value returned is a bit
276 * field.
277 *
278 * MMP_FAIL_WRITE_PENDING One or more leaf vdevs are writeable, but have an
279 * outstanding MMP write.
280 * MMP_FAIL_NOT_WRITABLE One or more leaf vdevs are not writeable.
281 */
282
283 static int
mmp_next_leaf(spa_t * spa)284 mmp_next_leaf(spa_t *spa)
285 {
286 vdev_t *leaf;
287 vdev_t *starting_leaf;
288 int fail_mask = 0;
289
290 ASSERT(MUTEX_HELD(&spa->spa_mmp.mmp_io_lock));
291 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER));
292 ASSERT(list_link_active(&spa->spa_leaf_list.list_head) == B_TRUE);
293 ASSERT(!list_is_empty(&spa->spa_leaf_list));
294
295 if (spa->spa_mmp.mmp_leaf_last_gen != spa->spa_leaf_list_gen) {
296 spa->spa_mmp.mmp_last_leaf = list_head(&spa->spa_leaf_list);
297 spa->spa_mmp.mmp_leaf_last_gen = spa->spa_leaf_list_gen;
298 }
299
300 leaf = spa->spa_mmp.mmp_last_leaf;
301 if (leaf == NULL)
302 leaf = list_head(&spa->spa_leaf_list);
303 starting_leaf = leaf;
304
305 do {
306 leaf = list_next(&spa->spa_leaf_list, leaf);
307 if (leaf == NULL) {
308 leaf = list_head(&spa->spa_leaf_list);
309 ASSERT3P(leaf, !=, NULL);
310 }
311
312 /*
313 * We skip unwritable, offline, detached, and dRAID spare
314 * devices as they are either not legal targets or the write
315 * may fail or not be seen by other hosts. Skipped dRAID
316 * spares can never be written so the fail mask is not set.
317 */
318 if (!vdev_writeable(leaf) || leaf->vdev_offline ||
319 leaf->vdev_detached) {
320 fail_mask |= MMP_FAIL_NOT_WRITABLE;
321 } else if (leaf->vdev_ops == &vdev_draid_spare_ops) {
322 continue;
323 } else if (leaf->vdev_mmp_pending != 0) {
324 fail_mask |= MMP_FAIL_WRITE_PENDING;
325 } else {
326 spa->spa_mmp.mmp_last_leaf = leaf;
327 return (0);
328 }
329 } while (leaf != starting_leaf);
330
331 ASSERT(fail_mask);
332
333 return (fail_mask);
334 }
335
336 /*
337 * MMP writes are issued on a fixed schedule, but may complete at variable,
338 * much longer, intervals. The mmp_delay captures long periods between
339 * successful writes for any reason, including disk latency, scheduling delays,
340 * etc.
341 *
342 * The mmp_delay is usually calculated as a decaying average, but if the latest
343 * delay is higher we do not average it, so that we do not hide sudden spikes
344 * which the importing host must wait for.
345 *
346 * If writes are occurring frequently, such as due to a high rate of txg syncs,
347 * the mmp_delay could become very small. Since those short delays depend on
348 * activity we cannot count on, we never allow mmp_delay to get lower than rate
349 * expected if only mmp_thread writes occur.
350 *
351 * If an mmp write was skipped or fails, and we have already waited longer than
352 * mmp_delay, we need to update it so the next write reflects the longer delay.
353 *
354 * Do not set mmp_delay if the multihost property is not on, so as not to
355 * trigger an activity check on import.
356 */
357 static void
mmp_delay_update(spa_t * spa,boolean_t write_completed)358 mmp_delay_update(spa_t *spa, boolean_t write_completed)
359 {
360 mmp_thread_t *mts = &spa->spa_mmp;
361 hrtime_t delay = gethrtime() - mts->mmp_last_write;
362
363 ASSERT(MUTEX_HELD(&mts->mmp_io_lock));
364
365 if (spa_multihost(spa) == B_FALSE) {
366 mts->mmp_delay = 0;
367 return;
368 }
369
370 if (delay > mts->mmp_delay)
371 mts->mmp_delay = delay;
372
373 if (write_completed == B_FALSE)
374 return;
375
376 mts->mmp_last_write = gethrtime();
377
378 /*
379 * strictly less than, in case delay was changed above.
380 */
381 if (delay < mts->mmp_delay) {
382 hrtime_t min_delay =
383 MSEC2NSEC(MMP_INTERVAL_OK(zfs_multihost_interval)) /
384 MAX(1, vdev_count_leaves(spa));
385 mts->mmp_delay = MAX(((delay + mts->mmp_delay * 127) / 128),
386 min_delay);
387 }
388 }
389
390 static void
mmp_write_done(zio_t * zio)391 mmp_write_done(zio_t *zio)
392 {
393 spa_t *spa = zio->io_spa;
394 vdev_t *vd = zio->io_vd;
395 mmp_thread_t *mts = zio->io_private;
396
397 mutex_enter(&mts->mmp_io_lock);
398 uint64_t mmp_kstat_id = vd->vdev_mmp_kstat_id;
399 hrtime_t mmp_write_duration = gethrtime() - vd->vdev_mmp_pending;
400
401 mmp_delay_update(spa, (zio->io_error == 0));
402
403 vd->vdev_mmp_pending = 0;
404 vd->vdev_mmp_kstat_id = 0;
405
406 mutex_exit(&mts->mmp_io_lock);
407 spa_config_exit(spa, SCL_STATE, mmp_tag);
408
409 spa_mmp_history_set(spa, mmp_kstat_id, zio->io_error,
410 mmp_write_duration);
411
412 abd_free(zio->io_abd);
413 }
414
415 /*
416 * When the uberblock on-disk is updated by a spa_sync,
417 * creating a new "best" uberblock, update the one stored
418 * in the mmp thread state, used for mmp writes.
419 */
420 void
mmp_update_uberblock(spa_t * spa,uberblock_t * ub)421 mmp_update_uberblock(spa_t *spa, uberblock_t *ub)
422 {
423 mmp_thread_t *mmp = &spa->spa_mmp;
424
425 mutex_enter(&mmp->mmp_io_lock);
426 mmp->mmp_ub = *ub;
427 mmp->mmp_seq = 1;
428 mmp->mmp_ub.ub_timestamp = gethrestime_sec();
429 mmp_delay_update(spa, B_TRUE);
430 mutex_exit(&mmp->mmp_io_lock);
431 }
432
433 /*
434 * Choose a random vdev, label, and MMP block, and write over it
435 * with a copy of the last-synced uberblock, whose timestamp
436 * has been updated to reflect that the pool is in use.
437 */
438 static void
mmp_write_uberblock(spa_t * spa)439 mmp_write_uberblock(spa_t *spa)
440 {
441 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
442 mmp_thread_t *mmp = &spa->spa_mmp;
443 uberblock_t *ub;
444 vdev_t *vd = NULL;
445 int label, error;
446 uint64_t offset;
447
448 hrtime_t lock_acquire_time = gethrtime();
449 spa_config_enter_mmp(spa, SCL_STATE, mmp_tag, RW_READER);
450 lock_acquire_time = gethrtime() - lock_acquire_time;
451 if (lock_acquire_time > (MSEC2NSEC(MMP_MIN_INTERVAL) / 10))
452 zfs_dbgmsg("MMP SCL_STATE acquisition pool '%s' took %llu ns "
453 "gethrtime %llu", spa_name(spa), lock_acquire_time,
454 gethrtime());
455
456 mutex_enter(&mmp->mmp_io_lock);
457
458 error = mmp_next_leaf(spa);
459
460 /*
461 * spa_mmp_history has two types of entries:
462 * Issued MMP write: records time issued, error status, etc.
463 * Skipped MMP write: an MMP write could not be issued because no
464 * suitable leaf vdev was available. See comment above struct
465 * spa_mmp_history for details.
466 */
467
468 if (error) {
469 mmp_delay_update(spa, B_FALSE);
470 if (mmp->mmp_skip_error == error) {
471 spa_mmp_history_set_skip(spa, mmp->mmp_kstat_id - 1);
472 } else {
473 mmp->mmp_skip_error = error;
474 spa_mmp_history_add(spa, mmp->mmp_ub.ub_txg,
475 gethrestime_sec(), mmp->mmp_delay, NULL, 0,
476 mmp->mmp_kstat_id++, error);
477 zfs_dbgmsg("MMP error choosing leaf pool '%s' "
478 "gethrtime %llu fail_mask %#x", spa_name(spa),
479 gethrtime(), error);
480 }
481 mutex_exit(&mmp->mmp_io_lock);
482 spa_config_exit(spa, SCL_STATE, mmp_tag);
483 return;
484 }
485
486 vd = spa->spa_mmp.mmp_last_leaf;
487 if (mmp->mmp_skip_error != 0) {
488 mmp->mmp_skip_error = 0;
489 zfs_dbgmsg("MMP write after skipping due to unavailable "
490 "leaves, pool '%s' gethrtime %llu leaf %llu",
491 spa_name(spa), (u_longlong_t)gethrtime(),
492 (u_longlong_t)vd->vdev_guid);
493 }
494
495 if (mmp->mmp_zio_root == NULL)
496 mmp->mmp_zio_root = zio_root(spa, NULL, NULL,
497 flags | ZIO_FLAG_GODFATHER);
498
499 if (mmp->mmp_ub.ub_timestamp != gethrestime_sec()) {
500 /*
501 * Want to reset mmp_seq when timestamp advances because after
502 * an mmp_seq wrap new values will not be chosen by
503 * uberblock_compare() as the "best".
504 */
505 mmp->mmp_ub.ub_timestamp = gethrestime_sec();
506 mmp->mmp_seq = 1;
507 }
508
509 ub = &mmp->mmp_ub;
510 ub->ub_mmp_magic = MMP_MAGIC;
511 ub->ub_mmp_delay = mmp->mmp_delay;
512 ub->ub_mmp_config = MMP_SEQ_SET(mmp->mmp_seq) |
513 MMP_INTERVAL_SET(MMP_INTERVAL_OK(zfs_multihost_interval)) |
514 MMP_FAIL_INT_SET(MMP_FAIL_INTVS_OK(
515 zfs_multihost_fail_intervals));
516 vd->vdev_mmp_pending = gethrtime();
517 vd->vdev_mmp_kstat_id = mmp->mmp_kstat_id;
518
519 zio_t *zio = zio_null(mmp->mmp_zio_root, spa, NULL, NULL, NULL, flags);
520 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
521 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
522 abd_zero_off(ub_abd, sizeof (uberblock_t),
523 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t));
524
525 mmp->mmp_seq++;
526 mmp->mmp_kstat_id++;
527 mutex_exit(&mmp->mmp_io_lock);
528
529 offset = VDEV_UBERBLOCK_OFFSET(vd, VDEV_UBERBLOCK_COUNT(vd) -
530 MMP_BLOCKS_PER_LABEL + random_in_range(MMP_BLOCKS_PER_LABEL));
531
532 label = random_in_range(VDEV_LABELS);
533 vdev_label_write(zio, vd, label, ub_abd, offset,
534 VDEV_UBERBLOCK_SIZE(vd), mmp_write_done, mmp,
535 flags | ZIO_FLAG_DONT_PROPAGATE);
536
537 (void) spa_mmp_history_add(spa, ub->ub_txg, ub->ub_timestamp,
538 ub->ub_mmp_delay, vd, label, vd->vdev_mmp_kstat_id, 0);
539
540 zio_nowait(zio);
541 }
542
543 static __attribute__((noreturn)) void
mmp_thread(void * arg)544 mmp_thread(void *arg)
545 {
546 spa_t *spa = (spa_t *)arg;
547 mmp_thread_t *mmp = &spa->spa_mmp;
548 boolean_t suspended = spa_suspended(spa);
549 boolean_t multihost = spa_multihost(spa);
550 uint64_t mmp_interval = MSEC2NSEC(MMP_INTERVAL_OK(
551 zfs_multihost_interval));
552 uint32_t mmp_fail_intervals = MMP_FAIL_INTVS_OK(
553 zfs_multihost_fail_intervals);
554 hrtime_t mmp_fail_ns = mmp_fail_intervals * mmp_interval;
555 boolean_t last_spa_suspended;
556 boolean_t last_spa_multihost;
557 uint64_t last_mmp_interval;
558 uint32_t last_mmp_fail_intervals;
559 hrtime_t last_mmp_fail_ns;
560 callb_cpr_t cpr;
561 int skip_wait = 0;
562
563 mmp_thread_enter(mmp, &cpr);
564
565 /*
566 * There have been no MMP writes yet. Setting mmp_last_write here gives
567 * us one mmp_fail_ns period, which is consistent with the activity
568 * check duration, to try to land an MMP write before MMP suspends the
569 * pool (if so configured).
570 */
571
572 mutex_enter(&mmp->mmp_io_lock);
573 mmp->mmp_last_write = gethrtime();
574 mmp->mmp_delay = MSEC2NSEC(MMP_INTERVAL_OK(zfs_multihost_interval));
575 mutex_exit(&mmp->mmp_io_lock);
576
577 while (!mmp->mmp_thread_exiting) {
578 hrtime_t next_time = gethrtime() +
579 MSEC2NSEC(MMP_DEFAULT_INTERVAL);
580 int leaves = MAX(vdev_count_leaves(spa), 1);
581
582 /* Detect changes in tunables or state */
583
584 last_spa_suspended = suspended;
585 last_spa_multihost = multihost;
586 suspended = spa_suspended(spa);
587 multihost = spa_multihost(spa);
588
589 last_mmp_interval = mmp_interval;
590 last_mmp_fail_intervals = mmp_fail_intervals;
591 last_mmp_fail_ns = mmp_fail_ns;
592 mmp_interval = MSEC2NSEC(MMP_INTERVAL_OK(
593 zfs_multihost_interval));
594 mmp_fail_intervals = MMP_FAIL_INTVS_OK(
595 zfs_multihost_fail_intervals);
596
597 /* Smooth so pool is not suspended when reducing tunables */
598 if (mmp_fail_intervals * mmp_interval < mmp_fail_ns) {
599 mmp_fail_ns = (mmp_fail_ns * 31 +
600 mmp_fail_intervals * mmp_interval) / 32;
601 } else {
602 mmp_fail_ns = mmp_fail_intervals *
603 mmp_interval;
604 }
605
606 if (mmp_interval != last_mmp_interval ||
607 mmp_fail_intervals != last_mmp_fail_intervals) {
608 /*
609 * We want other hosts to see new tunables as quickly as
610 * possible. Write out at higher frequency than usual.
611 */
612 skip_wait += leaves;
613 }
614
615 if (multihost)
616 next_time = gethrtime() + mmp_interval / leaves;
617
618 if (mmp_fail_ns != last_mmp_fail_ns) {
619 zfs_dbgmsg("MMP interval change pool '%s' "
620 "gethrtime %llu last_mmp_interval %llu "
621 "mmp_interval %llu last_mmp_fail_intervals %u "
622 "mmp_fail_intervals %u mmp_fail_ns %llu "
623 "skip_wait %d leaves %d next_time %llu",
624 spa_name(spa), (u_longlong_t)gethrtime(),
625 (u_longlong_t)last_mmp_interval,
626 (u_longlong_t)mmp_interval, last_mmp_fail_intervals,
627 mmp_fail_intervals, (u_longlong_t)mmp_fail_ns,
628 skip_wait, leaves, (u_longlong_t)next_time);
629 }
630
631 /*
632 * MMP off => on, or suspended => !suspended:
633 * No writes occurred recently. Update mmp_last_write to give
634 * us some time to try.
635 */
636 if ((!last_spa_multihost && multihost) ||
637 (last_spa_suspended && !suspended)) {
638 zfs_dbgmsg("MMP state change pool '%s': gethrtime %llu "
639 "last_spa_multihost %u multihost %u "
640 "last_spa_suspended %u suspended %u",
641 spa_name(spa), (u_longlong_t)gethrtime(),
642 last_spa_multihost, multihost, last_spa_suspended,
643 suspended);
644 mutex_enter(&mmp->mmp_io_lock);
645 mmp->mmp_last_write = gethrtime();
646 mmp->mmp_delay = mmp_interval;
647 mutex_exit(&mmp->mmp_io_lock);
648 }
649
650 /*
651 * MMP on => off:
652 * mmp_delay == 0 tells importing node to skip activity check.
653 */
654 if (last_spa_multihost && !multihost) {
655 mutex_enter(&mmp->mmp_io_lock);
656 mmp->mmp_delay = 0;
657 mutex_exit(&mmp->mmp_io_lock);
658 }
659
660 /*
661 * Suspend the pool if no MMP write has succeeded in over
662 * mmp_interval * mmp_fail_intervals nanoseconds.
663 */
664 if (multihost && !suspended && mmp_fail_intervals &&
665 (gethrtime() - mmp->mmp_last_write) > mmp_fail_ns) {
666 zfs_dbgmsg("MMP suspending pool '%s': gethrtime %llu "
667 "mmp_last_write %llu mmp_interval %llu "
668 "mmp_fail_intervals %llu mmp_fail_ns %llu txg %llu",
669 spa_name(spa), (u_longlong_t)gethrtime(),
670 (u_longlong_t)mmp->mmp_last_write,
671 (u_longlong_t)mmp_interval,
672 (u_longlong_t)mmp_fail_intervals,
673 (u_longlong_t)mmp_fail_ns,
674 (u_longlong_t)spa->spa_uberblock.ub_txg);
675 cmn_err(CE_WARN, "MMP writes to pool '%s' have not "
676 "succeeded in over %llu ms; suspending pool. "
677 "Hrtime %llu",
678 spa_name(spa),
679 NSEC2MSEC(gethrtime() - mmp->mmp_last_write),
680 gethrtime());
681 zio_suspend(spa, NULL, ZIO_SUSPEND_MMP);
682 }
683
684 if (multihost && !suspended)
685 mmp_write_uberblock(spa);
686
687 if (skip_wait > 0) {
688 next_time = gethrtime() + MSEC2NSEC(MMP_MIN_INTERVAL) /
689 leaves;
690 skip_wait--;
691 }
692
693 CALLB_CPR_SAFE_BEGIN(&cpr);
694 (void) cv_timedwait_idle_hires(&mmp->mmp_thread_cv,
695 &mmp->mmp_thread_lock, next_time, USEC2NSEC(100),
696 CALLOUT_FLAG_ABSOLUTE);
697 CALLB_CPR_SAFE_END(&cpr, &mmp->mmp_thread_lock);
698 }
699
700 /* Outstanding writes are allowed to complete. */
701 zio_wait(mmp->mmp_zio_root);
702
703 mmp->mmp_zio_root = NULL;
704 mmp_thread_exit(mmp, &mmp->mmp_thread, &cpr);
705
706 thread_exit();
707 }
708
709 /*
710 * Signal the MMP thread to wake it, when it is sleeping on
711 * its cv. Used when some module parameter has changed and
712 * we want the thread to know about it.
713 * Only signal if the pool is active and mmp thread is
714 * running, otherwise there is no thread to wake.
715 */
716 static void
mmp_signal_thread(spa_t * spa)717 mmp_signal_thread(spa_t *spa)
718 {
719 mmp_thread_t *mmp = &spa->spa_mmp;
720
721 mutex_enter(&mmp->mmp_thread_lock);
722 if (mmp->mmp_thread)
723 cv_broadcast(&mmp->mmp_thread_cv);
724 mutex_exit(&mmp->mmp_thread_lock);
725 }
726
727 void
mmp_signal_all_threads(void)728 mmp_signal_all_threads(void)
729 {
730 spa_t *spa = NULL;
731
732 mutex_enter(&spa_namespace_lock);
733 while ((spa = spa_next(spa))) {
734 if (spa->spa_state == POOL_STATE_ACTIVE)
735 mmp_signal_thread(spa);
736 }
737 mutex_exit(&spa_namespace_lock);
738 }
739
740 ZFS_MODULE_PARAM_CALL(zfs_multihost, zfs_multihost_, interval,
741 param_set_multihost_interval, spl_param_get_u64, ZMOD_RW,
742 "Milliseconds between mmp writes to each leaf");
743
744 ZFS_MODULE_PARAM(zfs_multihost, zfs_multihost_, fail_intervals, UINT, ZMOD_RW,
745 "Max allowed period without a successful mmp write");
746
747 ZFS_MODULE_PARAM(zfs_multihost, zfs_multihost_, import_intervals, UINT, ZMOD_RW,
748 "Number of zfs_multihost_interval periods to wait for activity");
749