1 /*
2 * FILE: sha2.c
3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Modified by Jelte Jansen to fit in ldns, and not clash with any
9 * system-defined SHA code.
10 * Changes:
11 * - Renamed (external) functions and constants to fit ldns style
12 * - Removed _End and _Data functions
13 * - Added ldns_shaX(data, len, digest) convenience functions
14 * - Removed prototypes of _Transform functions and made those static
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the copyright holder nor the names of contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41 */
42
43 #include <ldns/config.h>
44 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
45 #include <assert.h> /* assert() */
46 #include <ldns/sha2.h>
47
48 /*
49 * ASSERT NOTE:
50 * Some sanity checking code is included using assert(). On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined. Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
54 *
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file). Either define on the command line, for example:
59 *
60 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61 *
62 * or define below:
63 *
64 * #define SHA2_UNROLL_TRANSFORM
65 *
66 */
67
68
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
70 /*
71 * BYTE_ORDER NOTE:
72 *
73 * Please make sure that your system defines BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivalent.
77 *
78 * If your system does not define the above, then you can do so by
79 * hand like this:
80 *
81 * #define LITTLE_ENDIAN 1234
82 * #define BIG_ENDIAN 4321
83 *
84 * And for little-endian machines, add:
85 *
86 * #define BYTE_ORDER LITTLE_ENDIAN
87 *
88 * Or for big-endian machines:
89 *
90 * #define BYTE_ORDER BIG_ENDIAN
91 *
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
96 */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100
101 typedef uint8_t sha2_byte; /* Exactly 1 byte */
102 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
103 #ifdef S_SPLINT_S
104 typedef unsigned long long sha2_word64; /* lint 8 bytes */
105 #else
106 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
107 #endif
108
109 /*** SHA-256/384/512 Various Length Definitions ***********************/
110 /* NOTE: Most of these are in sha2.h */
111 #define ldns_sha256_SHORT_BLOCK_LENGTH (LDNS_SHA256_BLOCK_LENGTH - 8)
112 #define ldns_sha384_SHORT_BLOCK_LENGTH (LDNS_SHA384_BLOCK_LENGTH - 16)
113 #define ldns_sha512_SHORT_BLOCK_LENGTH (LDNS_SHA512_BLOCK_LENGTH - 16)
114
115
116 /*** ENDIAN REVERSAL MACROS *******************************************/
117 #if BYTE_ORDER == LITTLE_ENDIAN
118 #define REVERSE32(w,x) { \
119 sha2_word32 tmp = (w); \
120 tmp = (tmp >> 16) | (tmp << 16); \
121 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122 }
123 #ifndef S_SPLINT_S
124 #define REVERSE64(w,x) { \
125 sha2_word64 tmp = (w); \
126 tmp = (tmp >> 32) | (tmp << 32); \
127 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130 ((tmp & 0x0000ffff0000ffffULL) << 16); \
131 }
132 #else /* splint */
133 #define REVERSE64(w,x) /* splint */
134 #endif /* splint */
135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
136
137 /*
138 * Macro for incrementally adding the unsigned 64-bit integer n to the
139 * unsigned 128-bit integer (represented using a two-element array of
140 * 64-bit words):
141 */
142 #define ADDINC128(w,n) { \
143 (w)[0] += (sha2_word64)(n); \
144 if ((w)[0] < (n)) { \
145 (w)[1]++; \
146 } \
147 }
148 #ifdef S_SPLINT_S
149 #undef ADDINC128
150 #define ADDINC128(w,n) /* splint */
151 #endif
152
153 /*
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory. Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
157 *
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
160 * choose to use:
161 */
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define SHA2_USE_MEMSET_MEMCPY 1
165 #endif
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169 #endif
170
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
174 #endif
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l) bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
178 #endif
179
180
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
182 /*
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184 *
185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
186 * S is a ROTATION) because the SHA-256/384/512 description document
187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 * same "backwards" definition.
189 */
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) ((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
196
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
206
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
212
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 static const sha2_word32 K256[64] = {
216 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232 };
233
234 /* initial hash value H for SHA-256: */
235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236 0x6a09e667UL,
237 0xbb67ae85UL,
238 0x3c6ef372UL,
239 0xa54ff53aUL,
240 0x510e527fUL,
241 0x9b05688cUL,
242 0x1f83d9abUL,
243 0x5be0cd19UL
244 };
245
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 static const sha2_word64 K512[80] = {
248 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288 };
289
290 /* initial hash value H for SHA-384 */
291 static const sha2_word64 sha384_initial_hash_value[8] = {
292 0xcbbb9d5dc1059ed8ULL,
293 0x629a292a367cd507ULL,
294 0x9159015a3070dd17ULL,
295 0x152fecd8f70e5939ULL,
296 0x67332667ffc00b31ULL,
297 0x8eb44a8768581511ULL,
298 0xdb0c2e0d64f98fa7ULL,
299 0x47b5481dbefa4fa4ULL
300 };
301
302 /* initial hash value H for SHA-512 */
303 static const sha2_word64 sha512_initial_hash_value[8] = {
304 0x6a09e667f3bcc908ULL,
305 0xbb67ae8584caa73bULL,
306 0x3c6ef372fe94f82bULL,
307 0xa54ff53a5f1d36f1ULL,
308 0x510e527fade682d1ULL,
309 0x9b05688c2b3e6c1fULL,
310 0x1f83d9abfb41bd6bULL,
311 0x5be0cd19137e2179ULL
312 };
313
314 /*** SHA-256: *********************************************************/
ldns_sha256_init(ldns_sha256_CTX * context)315 void ldns_sha256_init(ldns_sha256_CTX* context) {
316 if (context == (ldns_sha256_CTX*)0) {
317 return;
318 }
319 MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320 MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321 context->bitcount = 0;
322 }
323
324 #ifdef SHA2_UNROLL_TRANSFORM
325
326 /* Unrolled SHA-256 round macros: */
327
328 #if BYTE_ORDER == LITTLE_ENDIAN
329
330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
331 REVERSE32(*data++, W256[j]); \
332 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333 K256[j] + W256[j]; \
334 (d) += T1; \
335 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336 j++
337
338
339 #else /* BYTE_ORDER == LITTLE_ENDIAN */
340
341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
342 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343 K256[j] + (W256[j] = *data++); \
344 (d) += T1; \
345 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346 j++
347
348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
349
350 #define ROUND256(a,b,c,d,e,f,g,h) \
351 s0 = W256[(j+1)&0x0f]; \
352 s0 = sigma0_256(s0); \
353 s1 = W256[(j+14)&0x0f]; \
354 s1 = sigma1_256(s1); \
355 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357 (d) += T1; \
358 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359 j++
360
ldns_sha256_Transform(ldns_sha256_CTX * context,const sha2_word32 * data)361 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362 const sha2_word32* data) {
363 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
364 sha2_word32 T1, *W256;
365 int j;
366
367 W256 = (sha2_word32*)context->buffer;
368
369 /* initialize registers with the prev. intermediate value */
370 a = context->state[0];
371 b = context->state[1];
372 c = context->state[2];
373 d = context->state[3];
374 e = context->state[4];
375 f = context->state[5];
376 g = context->state[6];
377 h = context->state[7];
378
379 j = 0;
380 do {
381 /* Rounds 0 to 15 (unrolled): */
382 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390 } while (j < 16);
391
392 /* Now for the remaining rounds to 64: */
393 do {
394 ROUND256(a,b,c,d,e,f,g,h);
395 ROUND256(h,a,b,c,d,e,f,g);
396 ROUND256(g,h,a,b,c,d,e,f);
397 ROUND256(f,g,h,a,b,c,d,e);
398 ROUND256(e,f,g,h,a,b,c,d);
399 ROUND256(d,e,f,g,h,a,b,c);
400 ROUND256(c,d,e,f,g,h,a,b);
401 ROUND256(b,c,d,e,f,g,h,a);
402 } while (j < 64);
403
404 /* Compute the current intermediate hash value */
405 context->state[0] += a;
406 context->state[1] += b;
407 context->state[2] += c;
408 context->state[3] += d;
409 context->state[4] += e;
410 context->state[5] += f;
411 context->state[6] += g;
412 context->state[7] += h;
413
414 /* Clean up */
415 a = b = c = d = e = f = g = h = T1 = 0;
416 }
417
418 #else /* SHA2_UNROLL_TRANSFORM */
419
ldns_sha256_Transform(ldns_sha256_CTX * context,const sha2_word32 * data)420 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421 const sha2_word32* data) {
422 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
423 sha2_word32 T1, T2, *W256;
424 int j;
425
426 W256 = (sha2_word32*)context->buffer;
427
428 /* initialize registers with the prev. intermediate value */
429 a = context->state[0];
430 b = context->state[1];
431 c = context->state[2];
432 d = context->state[3];
433 e = context->state[4];
434 f = context->state[5];
435 g = context->state[6];
436 h = context->state[7];
437
438 j = 0;
439 do {
440 #if BYTE_ORDER == LITTLE_ENDIAN
441 /* Copy data while converting to host byte order */
442 REVERSE32(*data++,W256[j]);
443 /* Apply the SHA-256 compression function to update a..h */
444 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 #else /* BYTE_ORDER == LITTLE_ENDIAN */
446 /* Apply the SHA-256 compression function to update a..h with copy */
447 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
449 T2 = Sigma0_256(a) + Maj(a, b, c);
450 h = g;
451 g = f;
452 f = e;
453 e = d + T1;
454 d = c;
455 c = b;
456 b = a;
457 a = T1 + T2;
458
459 j++;
460 } while (j < 16);
461
462 do {
463 /* Part of the message block expansion: */
464 s0 = W256[(j+1)&0x0f];
465 s0 = sigma0_256(s0);
466 s1 = W256[(j+14)&0x0f];
467 s1 = sigma1_256(s1);
468
469 /* Apply the SHA-256 compression function to update a..h */
470 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472 T2 = Sigma0_256(a) + Maj(a, b, c);
473 h = g;
474 g = f;
475 f = e;
476 e = d + T1;
477 d = c;
478 c = b;
479 b = a;
480 a = T1 + T2;
481
482 j++;
483 } while (j < 64);
484
485 /* Compute the current intermediate hash value */
486 context->state[0] += a;
487 context->state[1] += b;
488 context->state[2] += c;
489 context->state[3] += d;
490 context->state[4] += e;
491 context->state[5] += f;
492 context->state[6] += g;
493 context->state[7] += h;
494
495 /* Clean up */
496 a = b = c = d = e = f = g = h = T1 = T2 = 0;
497 (void)a;
498 }
499
500 #endif /* SHA2_UNROLL_TRANSFORM */
501
ldns_sha256_update(ldns_sha256_CTX * context,const sha2_byte * data,size_t len)502 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
503 size_t freespace, usedspace;
504
505 if (len == 0) {
506 /* Calling with no data is valid - we do nothing */
507 return;
508 }
509
510 /* Sanity check: */
511 assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
512
513 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
514 if (usedspace > 0) {
515 /* Calculate how much free space is available in the buffer */
516 freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
517
518 if (len >= freespace) {
519 /* Fill the buffer completely and process it */
520 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
521 context->bitcount += freespace << 3;
522 len -= freespace;
523 data += freespace;
524 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
525 } else {
526 /* The buffer is not yet full */
527 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
528 context->bitcount += len << 3;
529 /* Clean up: */
530 usedspace = freespace = 0;
531 (void)usedspace;
532 return;
533 }
534 }
535 while (len >= LDNS_SHA256_BLOCK_LENGTH) {
536 /* Process as many complete blocks as we can */
537 ldns_sha256_Transform(context, (sha2_word32*)data);
538 context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
539 len -= LDNS_SHA256_BLOCK_LENGTH;
540 data += LDNS_SHA256_BLOCK_LENGTH;
541 }
542 if (len > 0) {
543 /* There's left-overs, so save 'em */
544 MEMCPY_BCOPY(context->buffer, data, len);
545 context->bitcount += len << 3;
546 }
547 /* Clean up: */
548 usedspace = freespace = 0;
549 (void)usedspace;
550 }
551
552 typedef union _ldns_sha2_buffer_union {
553 uint8_t* theChars;
554 uint64_t* theLongs;
555 } ldns_sha2_buffer_union;
556
ldns_sha256_final(sha2_byte digest[LDNS_SHA256_DIGEST_LENGTH],ldns_sha256_CTX * context)557 void ldns_sha256_final(sha2_byte digest[LDNS_SHA256_DIGEST_LENGTH], ldns_sha256_CTX* context) {
558 sha2_word32 *d = (sha2_word32*)digest;
559 size_t usedspace;
560 ldns_sha2_buffer_union cast_var;
561
562 /* Sanity check: */
563 assert(context != (ldns_sha256_CTX*)0);
564
565 /* If no digest buffer is passed, we don't bother doing this: */
566 if (digest != (sha2_byte*)0) {
567 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
568 #if BYTE_ORDER == LITTLE_ENDIAN
569 /* Convert FROM host byte order */
570 REVERSE64(context->bitcount,context->bitcount);
571 #endif
572 if (usedspace > 0) {
573 /* Begin padding with a 1 bit: */
574 context->buffer[usedspace++] = 0x80;
575
576 if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
577 /* Set-up for the last transform: */
578 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
579 } else {
580 if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
581 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
582 }
583 /* Do second-to-last transform: */
584 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
585
586 /* And set-up for the last transform: */
587 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
588 }
589 } else {
590 /* Set-up for the last transform: */
591 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
592
593 /* Begin padding with a 1 bit: */
594 *context->buffer = 0x80;
595 }
596 /* Set the bit count: */
597 cast_var.theChars = context->buffer;
598 cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
599
600 /* final transform: */
601 ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
602
603 #if BYTE_ORDER == LITTLE_ENDIAN
604 {
605 /* Convert TO host byte order */
606 int j;
607 for (j = 0; j < 8; j++) {
608 REVERSE32(context->state[j],context->state[j]);
609 *d++ = context->state[j];
610 }
611 }
612 #else
613 MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
614 #endif
615 }
616
617 /* Clean up state data: */
618 MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
619 usedspace = 0;
620 (void)usedspace;
621 }
622
623 unsigned char *
ldns_sha256(const unsigned char * data,unsigned int data_len,unsigned char * digest)624 ldns_sha256(const unsigned char *data, unsigned int data_len, unsigned char *digest)
625 {
626 ldns_sha256_CTX ctx;
627 ldns_sha256_init(&ctx);
628 ldns_sha256_update(&ctx, data, data_len);
629 ldns_sha256_final(digest, &ctx);
630 return digest;
631 }
632
633 /*** SHA-512: *********************************************************/
ldns_sha512_init(ldns_sha512_CTX * context)634 void ldns_sha512_init(ldns_sha512_CTX* context) {
635 if (context == (ldns_sha512_CTX*)0) {
636 return;
637 }
638 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
639 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
640 context->bitcount[0] = context->bitcount[1] = 0;
641 }
642
643 #ifdef SHA2_UNROLL_TRANSFORM
644
645 /* Unrolled SHA-512 round macros: */
646 #if BYTE_ORDER == LITTLE_ENDIAN
647
648 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
649 REVERSE64(*data++, W512[j]); \
650 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
651 K512[j] + W512[j]; \
652 (d) += T1, \
653 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
654 j++
655
656
657 #else /* BYTE_ORDER == LITTLE_ENDIAN */
658
659 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
660 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
661 K512[j] + (W512[j] = *data++); \
662 (d) += T1; \
663 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
664 j++
665
666 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
667
668 #define ROUND512(a,b,c,d,e,f,g,h) \
669 s0 = W512[(j+1)&0x0f]; \
670 s0 = sigma0_512(s0); \
671 s1 = W512[(j+14)&0x0f]; \
672 s1 = sigma1_512(s1); \
673 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
674 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
675 (d) += T1; \
676 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
677 j++
678
ldns_sha512_Transform(ldns_sha512_CTX * context,const sha2_word64 * data)679 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
680 const sha2_word64* data) {
681 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
682 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
683 int j;
684
685 /* initialize registers with the prev. intermediate value */
686 a = context->state[0];
687 b = context->state[1];
688 c = context->state[2];
689 d = context->state[3];
690 e = context->state[4];
691 f = context->state[5];
692 g = context->state[6];
693 h = context->state[7];
694
695 j = 0;
696 do {
697 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
698 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
699 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
700 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
701 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
702 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
703 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
704 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
705 } while (j < 16);
706
707 /* Now for the remaining rounds up to 79: */
708 do {
709 ROUND512(a,b,c,d,e,f,g,h);
710 ROUND512(h,a,b,c,d,e,f,g);
711 ROUND512(g,h,a,b,c,d,e,f);
712 ROUND512(f,g,h,a,b,c,d,e);
713 ROUND512(e,f,g,h,a,b,c,d);
714 ROUND512(d,e,f,g,h,a,b,c);
715 ROUND512(c,d,e,f,g,h,a,b);
716 ROUND512(b,c,d,e,f,g,h,a);
717 } while (j < 80);
718
719 /* Compute the current intermediate hash value */
720 context->state[0] += a;
721 context->state[1] += b;
722 context->state[2] += c;
723 context->state[3] += d;
724 context->state[4] += e;
725 context->state[5] += f;
726 context->state[6] += g;
727 context->state[7] += h;
728
729 /* Clean up */
730 a = b = c = d = e = f = g = h = T1 = 0;
731 }
732
733 #else /* SHA2_UNROLL_TRANSFORM */
734
ldns_sha512_Transform(ldns_sha512_CTX * context,const sha2_word64 * data)735 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
736 const sha2_word64* data) {
737 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
738 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
739 int j;
740
741 /* initialize registers with the prev. intermediate value */
742 a = context->state[0];
743 b = context->state[1];
744 c = context->state[2];
745 d = context->state[3];
746 e = context->state[4];
747 f = context->state[5];
748 g = context->state[6];
749 h = context->state[7];
750
751 j = 0;
752 do {
753 #if BYTE_ORDER == LITTLE_ENDIAN
754 /* Convert TO host byte order */
755 REVERSE64(*data++, W512[j]);
756 /* Apply the SHA-512 compression function to update a..h */
757 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
758 #else /* BYTE_ORDER == LITTLE_ENDIAN */
759 /* Apply the SHA-512 compression function to update a..h with copy */
760 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
761 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
762 T2 = Sigma0_512(a) + Maj(a, b, c);
763 h = g;
764 g = f;
765 f = e;
766 e = d + T1;
767 d = c;
768 c = b;
769 b = a;
770 a = T1 + T2;
771
772 j++;
773 } while (j < 16);
774
775 do {
776 /* Part of the message block expansion: */
777 s0 = W512[(j+1)&0x0f];
778 s0 = sigma0_512(s0);
779 s1 = W512[(j+14)&0x0f];
780 s1 = sigma1_512(s1);
781
782 /* Apply the SHA-512 compression function to update a..h */
783 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
784 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
785 T2 = Sigma0_512(a) + Maj(a, b, c);
786 h = g;
787 g = f;
788 f = e;
789 e = d + T1;
790 d = c;
791 c = b;
792 b = a;
793 a = T1 + T2;
794
795 j++;
796 } while (j < 80);
797
798 /* Compute the current intermediate hash value */
799 context->state[0] += a;
800 context->state[1] += b;
801 context->state[2] += c;
802 context->state[3] += d;
803 context->state[4] += e;
804 context->state[5] += f;
805 context->state[6] += g;
806 context->state[7] += h;
807
808 /* Clean up */
809 a = b = c = d = e = f = g = h = T1 = T2 = 0;
810 (void)a;
811 }
812
813 #endif /* SHA2_UNROLL_TRANSFORM */
814
ldns_sha512_update(ldns_sha512_CTX * context,const sha2_byte * data,size_t len)815 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
816 size_t freespace, usedspace;
817
818 if (len == 0) {
819 /* Calling with no data is valid - we do nothing */
820 return;
821 }
822
823 /* Sanity check: */
824 assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
825
826 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
827 if (usedspace > 0) {
828 /* Calculate how much free space is available in the buffer */
829 freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
830
831 if (len >= freespace) {
832 /* Fill the buffer completely and process it */
833 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
834 ADDINC128(context->bitcount, freespace << 3);
835 len -= freespace;
836 data += freespace;
837 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
838 } else {
839 /* The buffer is not yet full */
840 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
841 ADDINC128(context->bitcount, len << 3);
842 /* Clean up: */
843 usedspace = freespace = 0;
844 (void)usedspace;
845 return;
846 }
847 }
848 while (len >= LDNS_SHA512_BLOCK_LENGTH) {
849 /* Process as many complete blocks as we can */
850 ldns_sha512_Transform(context, (sha2_word64*)data);
851 ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
852 len -= LDNS_SHA512_BLOCK_LENGTH;
853 data += LDNS_SHA512_BLOCK_LENGTH;
854 }
855 if (len > 0) {
856 /* There's left-overs, so save 'em */
857 MEMCPY_BCOPY(context->buffer, data, len);
858 ADDINC128(context->bitcount, len << 3);
859 }
860 /* Clean up: */
861 usedspace = freespace = 0;
862 (void)usedspace;
863 }
864
ldns_sha512_Last(ldns_sha512_CTX * context)865 static void ldns_sha512_Last(ldns_sha512_CTX* context) {
866 size_t usedspace;
867 ldns_sha2_buffer_union cast_var;
868
869 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
870 #if BYTE_ORDER == LITTLE_ENDIAN
871 /* Convert FROM host byte order */
872 REVERSE64(context->bitcount[0],context->bitcount[0]);
873 REVERSE64(context->bitcount[1],context->bitcount[1]);
874 #endif
875 if (usedspace > 0) {
876 /* Begin padding with a 1 bit: */
877 context->buffer[usedspace++] = 0x80;
878
879 if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
880 /* Set-up for the last transform: */
881 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
882 } else {
883 if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
884 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
885 }
886 /* Do second-to-last transform: */
887 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
888
889 /* And set-up for the last transform: */
890 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
891 }
892 } else {
893 /* Prepare for final transform: */
894 MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
895
896 /* Begin padding with a 1 bit: */
897 *context->buffer = 0x80;
898 }
899 /* Store the length of input data (in bits): */
900 cast_var.theChars = context->buffer;
901 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
902 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
903
904 /* final transform: */
905 ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
906 }
907
ldns_sha512_final(sha2_byte digest[LDNS_SHA512_DIGEST_LENGTH],ldns_sha512_CTX * context)908 void ldns_sha512_final(sha2_byte digest[LDNS_SHA512_DIGEST_LENGTH], ldns_sha512_CTX* context) {
909 sha2_word64 *d = (sha2_word64*)digest;
910
911 /* Sanity check: */
912 assert(context != (ldns_sha512_CTX*)0);
913
914 /* If no digest buffer is passed, we don't bother doing this: */
915 if (digest != (sha2_byte*)0) {
916 ldns_sha512_Last(context);
917
918 /* Save the hash data for output: */
919 #if BYTE_ORDER == LITTLE_ENDIAN
920 {
921 /* Convert TO host byte order */
922 int j;
923 for (j = 0; j < 8; j++) {
924 REVERSE64(context->state[j],context->state[j]);
925 *d++ = context->state[j];
926 }
927 }
928 #else
929 MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
930 #endif
931 }
932
933 /* Zero out state data */
934 MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
935 }
936
937 unsigned char *
ldns_sha512(const unsigned char * data,unsigned int data_len,unsigned char * digest)938 ldns_sha512(const unsigned char *data, unsigned int data_len, unsigned char *digest)
939 {
940 ldns_sha512_CTX ctx;
941 ldns_sha512_init(&ctx);
942 ldns_sha512_update(&ctx, data, data_len);
943 ldns_sha512_final(digest, &ctx);
944 return digest;
945 }
946
947 /*** SHA-384: *********************************************************/
ldns_sha384_init(ldns_sha384_CTX * context)948 void ldns_sha384_init(ldns_sha384_CTX* context) {
949 if (context == (ldns_sha384_CTX*)0) {
950 return;
951 }
952 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
953 MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
954 context->bitcount[0] = context->bitcount[1] = 0;
955 }
956
ldns_sha384_update(ldns_sha384_CTX * context,const sha2_byte * data,size_t len)957 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
958 ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
959 }
960
ldns_sha384_final(sha2_byte digest[LDNS_SHA384_DIGEST_LENGTH],ldns_sha384_CTX * context)961 void ldns_sha384_final(sha2_byte digest[LDNS_SHA384_DIGEST_LENGTH], ldns_sha384_CTX* context) {
962 sha2_word64 *d = (sha2_word64*)digest;
963
964 /* Sanity check: */
965 assert(context != (ldns_sha384_CTX*)0);
966
967 /* If no digest buffer is passed, we don't bother doing this: */
968 if (digest != (sha2_byte*)0) {
969 ldns_sha512_Last((ldns_sha512_CTX*)context);
970
971 /* Save the hash data for output: */
972 #if BYTE_ORDER == LITTLE_ENDIAN
973 {
974 /* Convert TO host byte order */
975 int j;
976 for (j = 0; j < 6; j++) {
977 REVERSE64(context->state[j],context->state[j]);
978 *d++ = context->state[j];
979 }
980 }
981 #else
982 MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
983 #endif
984 }
985
986 /* Zero out state data */
987 MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
988 }
989
990 unsigned char *
ldns_sha384(const unsigned char * data,unsigned int data_len,unsigned char * digest)991 ldns_sha384(const unsigned char *data, unsigned int data_len, unsigned char *digest)
992 {
993 ldns_sha384_CTX ctx;
994 ldns_sha384_init(&ctx);
995 ldns_sha384_update(&ctx, data, data_len);
996 ldns_sha384_final(digest, &ctx);
997 return digest;
998 }
999