1 /*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 * Copyright (c) 2024-2025 The FreeBSD Foundation
8 *
9 * Portions of this software were developed by Björn Zeeb
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice unmodified, this list of conditions, and the following
17 * disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #ifndef _LINUXKPI_LINUX_SLAB_H_
34 #define _LINUXKPI_LINUX_SLAB_H_
35
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/limits.h>
39
40 #include <linux/compat.h>
41 #include <linux/types.h>
42 #include <linux/gfp.h>
43 #include <linux/err.h>
44 #include <linux/llist.h>
45 #include <linux/overflow.h>
46 #include <linux/cleanup.h>
47
48 MALLOC_DECLARE(M_KMALLOC);
49
50 #define kvzalloc(size, flags) kvmalloc(size, (flags) | __GFP_ZERO)
51 #define kvcalloc(n, size, flags) kvmalloc_array(n, size, (flags) | __GFP_ZERO)
52 #define kzalloc(size, flags) kmalloc(size, (flags) | __GFP_ZERO)
53 #define kzalloc_node(size, flags, node) kmalloc_node(size, (flags) | __GFP_ZERO, node)
54 #define kfree_const(ptr) kfree(ptr)
55 #define kfree_async(ptr) kfree(ptr) /* drm-kmod 5.4 compat */
56 #define vzalloc(size) __vmalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, 0)
57 #define vfree(arg) kfree(arg)
58 #define kvfree(arg) kfree(arg)
59 #define vmalloc_node(size, node) __vmalloc_node(size, GFP_KERNEL, node)
60 #define vmalloc_user(size) __vmalloc(size, GFP_KERNEL | __GFP_ZERO, 0)
61 #define vmalloc(size) __vmalloc(size, GFP_KERNEL, 0)
62
63 /*
64 * Prefix some functions with linux_ to avoid namespace conflict
65 * with the OpenSolaris code in the kernel.
66 */
67 #define kmem_cache linux_kmem_cache
68 #define kmem_cache_create(...) linux_kmem_cache_create(__VA_ARGS__)
69 #define kmem_cache_alloc(...) lkpi_kmem_cache_alloc(__VA_ARGS__)
70 #define kmem_cache_zalloc(...) lkpi_kmem_cache_zalloc(__VA_ARGS__)
71 #define kmem_cache_free(...) lkpi_kmem_cache_free(__VA_ARGS__)
72 #define kmem_cache_destroy(...) linux_kmem_cache_destroy(__VA_ARGS__)
73 #define kmem_cache_shrink(x) (0)
74
75 #define KMEM_CACHE(__struct, flags) \
76 linux_kmem_cache_create(#__struct, sizeof(struct __struct), \
77 __alignof(struct __struct), (flags), NULL)
78
79 typedef void linux_kmem_ctor_t (void *);
80
81 struct linux_kmem_cache;
82
83 #define SLAB_HWCACHE_ALIGN (1 << 0)
84 #define SLAB_TYPESAFE_BY_RCU (1 << 1)
85 #define SLAB_RECLAIM_ACCOUNT (1 << 2)
86
87 #define SLAB_DESTROY_BY_RCU \
88 SLAB_TYPESAFE_BY_RCU
89
90 #define ARCH_KMALLOC_MINALIGN \
91 __alignof(unsigned long long)
92
93 #define ZERO_SIZE_PTR ((void *)16)
94 #define ZERO_OR_NULL_PTR(x) ((x) == NULL || (x) == ZERO_SIZE_PTR)
95
96 struct linux_kmem_cache *linux_kmem_cache_create(const char *name,
97 size_t size, size_t align, unsigned flags, linux_kmem_ctor_t *ctor);
98 void *lkpi_kmem_cache_alloc(struct linux_kmem_cache *, gfp_t);
99 void *lkpi_kmem_cache_zalloc(struct linux_kmem_cache *, gfp_t);
100 void lkpi_kmem_cache_free(struct linux_kmem_cache *, void *);
101 void linux_kmem_cache_destroy(struct linux_kmem_cache *);
102
103 void *lkpi_kmalloc(size_t, gfp_t);
104 void *lkpi_kvmalloc(size_t, gfp_t);
105 void *lkpi___kmalloc(size_t, gfp_t);
106 void *lkpi___kmalloc_node(size_t, gfp_t, int);
107 void *lkpi_krealloc(void *, size_t, gfp_t);
108 void lkpi_kfree(const void *);
109
110 static inline gfp_t
linux_check_m_flags(gfp_t flags)111 linux_check_m_flags(gfp_t flags)
112 {
113 const gfp_t m = M_NOWAIT | M_WAITOK;
114
115 /* make sure either M_NOWAIT or M_WAITOK is set */
116 if ((flags & m) == 0)
117 flags |= M_NOWAIT;
118 else if ((flags & m) == m)
119 flags &= ~M_WAITOK;
120
121 /* mask away LinuxKPI specific flags */
122 return (flags & GFP_NATIVE_MASK);
123 }
124
125 /*
126 * Base functions with a native implementation.
127 */
128 static inline void *
kmalloc(size_t size,gfp_t flags)129 kmalloc(size_t size, gfp_t flags)
130 {
131 return (lkpi_kmalloc(size, flags));
132 }
133
134 static inline void *
__kmalloc(size_t size,gfp_t flags)135 __kmalloc(size_t size, gfp_t flags)
136 {
137 return (lkpi___kmalloc(size, flags));
138 }
139
140 static inline void *
kmalloc_node(size_t size,gfp_t flags,int node)141 kmalloc_node(size_t size, gfp_t flags, int node)
142 {
143 return (lkpi___kmalloc_node(size, flags, node));
144 }
145
146 static inline void *
krealloc(void * ptr,size_t size,gfp_t flags)147 krealloc(void *ptr, size_t size, gfp_t flags)
148 {
149 return (lkpi_krealloc(ptr, size, flags));
150 }
151
152 static inline void
kfree(const void * ptr)153 kfree(const void *ptr)
154 {
155 lkpi_kfree(ptr);
156 }
157
158 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
159
160 /*
161 * Other k*alloc() funtions using the above as underlying allocator.
162 */
163 /* kmalloc */
164 static inline void *
kmalloc_array(size_t n,size_t size,gfp_t flags)165 kmalloc_array(size_t n, size_t size, gfp_t flags)
166 {
167 if (WOULD_OVERFLOW(n, size))
168 panic("%s: %zu * %zu overflowed", __func__, n, size);
169
170 return (kmalloc(size * n, flags));
171 }
172
173 static inline void *
kcalloc(size_t n,size_t size,gfp_t flags)174 kcalloc(size_t n, size_t size, gfp_t flags)
175 {
176 flags |= __GFP_ZERO;
177 return (kmalloc_array(n, size, flags));
178 }
179
180 /* kmalloc_node */
181 static inline void *
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)182 kmalloc_array_node(size_t n, size_t size, gfp_t flags, int node)
183 {
184 if (WOULD_OVERFLOW(n, size))
185 panic("%s: %zu * %zu overflowed", __func__, n, size);
186
187 return (kmalloc_node(size * n, flags, node));
188 }
189
190 static inline void *
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)191 kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
192 {
193 flags |= __GFP_ZERO;
194 return (kmalloc_array_node(n, size, flags, node));
195 }
196
197 /* krealloc */
198 static inline void *
krealloc_array(void * ptr,size_t n,size_t size,gfp_t flags)199 krealloc_array(void *ptr, size_t n, size_t size, gfp_t flags)
200 {
201 if (WOULD_OVERFLOW(n, size))
202 return NULL;
203
204 return (krealloc(ptr, n * size, flags));
205 }
206
207 /*
208 * vmalloc/kvalloc functions.
209 */
210 static inline void *
__vmalloc(size_t size,gfp_t flags,int other)211 __vmalloc(size_t size, gfp_t flags, int other)
212 {
213 return (malloc(size, M_KMALLOC, linux_check_m_flags(flags)));
214 }
215
216 static inline void *
__vmalloc_node(size_t size,gfp_t flags,int node)217 __vmalloc_node(size_t size, gfp_t flags, int node)
218 {
219 return (malloc_domainset(size, M_KMALLOC,
220 linux_get_vm_domain_set(node), linux_check_m_flags(flags)));
221 }
222
223 static inline void *
vmalloc_32(size_t size)224 vmalloc_32(size_t size)
225 {
226 return (contigmalloc(size, M_KMALLOC, M_WAITOK, 0, UINT_MAX, 1, 1));
227 }
228
229 /* May return non-contiguous memory. */
230 static inline void *
kvmalloc(size_t size,gfp_t flags)231 kvmalloc(size_t size, gfp_t flags)
232 {
233 return (lkpi_kvmalloc(size, flags));
234 }
235
236 static inline void *
kvmalloc_array(size_t n,size_t size,gfp_t flags)237 kvmalloc_array(size_t n, size_t size, gfp_t flags)
238 {
239 if (WOULD_OVERFLOW(n, size))
240 panic("%s: %zu * %zu overflowed", __func__, n, size);
241
242 return (kvmalloc(size * n, flags));
243 }
244
245 static inline void *
kvrealloc(const void * ptr,size_t oldsize,size_t newsize,gfp_t flags)246 kvrealloc(const void *ptr, size_t oldsize, size_t newsize, gfp_t flags)
247 {
248 void *newptr;
249
250 if (newsize <= oldsize)
251 return (__DECONST(void *, ptr));
252
253 newptr = kvmalloc(newsize, flags);
254 if (newptr != NULL) {
255 memcpy(newptr, ptr, oldsize);
256 kvfree(ptr);
257 }
258
259 return (newptr);
260 }
261
262 /*
263 * Misc.
264 */
265
266 static __inline void
kfree_sensitive(const void * ptr)267 kfree_sensitive(const void *ptr)
268 {
269 if (ZERO_OR_NULL_PTR(ptr))
270 return;
271
272 zfree(__DECONST(void *, ptr), M_KMALLOC);
273 }
274
275 static inline size_t
ksize(const void * ptr)276 ksize(const void *ptr)
277 {
278 return (malloc_usable_size(ptr));
279 }
280
281 static inline size_t
kmalloc_size_roundup(size_t size)282 kmalloc_size_roundup(size_t size)
283 {
284 if (unlikely(size == 0 || size == SIZE_MAX))
285 return (size);
286 return (malloc_size(size));
287 }
288
289 #endif /* _LINUXKPI_LINUX_SLAB_H_ */
290