1 //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This file provides the interface for the instcombine pass implementation. 11 /// The interface is used for generic transformations in this folder and 12 /// target specific combinations in the targets. 13 /// The visitor implementation is in \c InstCombinerImpl in 14 /// \c InstCombineInternal.h. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H 19 #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H 20 21 #include "llvm/Analysis/DomConditionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetFolder.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/KnownBits.h" 29 #include <cassert> 30 31 #define DEBUG_TYPE "instcombine" 32 #include "llvm/Transforms/Utils/InstructionWorklist.h" 33 34 namespace llvm { 35 36 class AAResults; 37 class AssumptionCache; 38 class OptimizationRemarkEmitter; 39 class ProfileSummaryInfo; 40 class TargetLibraryInfo; 41 class TargetTransformInfo; 42 43 /// The core instruction combiner logic. 44 /// 45 /// This class provides both the logic to recursively visit instructions and 46 /// combine them. 47 class LLVM_LIBRARY_VISIBILITY InstCombiner { 48 /// Only used to call target specific intrinsic combining. 49 /// It must **NOT** be used for any other purpose, as InstCombine is a 50 /// target-independent canonicalization transform. 51 TargetTransformInfo &TTI; 52 53 public: 54 /// Maximum size of array considered when transforming. 55 uint64_t MaxArraySizeForCombine = 0; 56 57 /// An IRBuilder that automatically inserts new instructions into the 58 /// worklist. 59 using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>; 60 BuilderTy &Builder; 61 62 protected: 63 /// A worklist of the instructions that need to be simplified. 64 InstructionWorklist &Worklist; 65 66 // Mode in which we are running the combiner. 67 const bool MinimizeSize; 68 69 AAResults *AA; 70 71 // Required analyses. 72 AssumptionCache &AC; 73 TargetLibraryInfo &TLI; 74 DominatorTree &DT; 75 const DataLayout &DL; 76 SimplifyQuery SQ; 77 OptimizationRemarkEmitter &ORE; 78 BlockFrequencyInfo *BFI; 79 BranchProbabilityInfo *BPI; 80 ProfileSummaryInfo *PSI; 81 DomConditionCache DC; 82 83 // Optional analyses. When non-null, these can both be used to do better 84 // combining and will be updated to reflect any changes. 85 LoopInfo *LI; 86 87 bool MadeIRChange = false; 88 89 /// Edges that are known to never be taken. 90 SmallDenseSet<std::pair<BasicBlock *, BasicBlock *>, 8> DeadEdges; 91 92 /// Order of predecessors to canonicalize phi nodes towards. 93 SmallDenseMap<BasicBlock *, SmallVector<BasicBlock *>, 8> PredOrder; 94 95 public: InstCombiner(InstructionWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,AAResults * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,BranchProbabilityInfo * BPI,ProfileSummaryInfo * PSI,const DataLayout & DL,LoopInfo * LI)96 InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder, 97 bool MinimizeSize, AAResults *AA, AssumptionCache &AC, 98 TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 99 DominatorTree &DT, OptimizationRemarkEmitter &ORE, 100 BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, 101 ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI) 102 : TTI(TTI), Builder(Builder), Worklist(Worklist), 103 MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), 104 SQ(DL, &TLI, &DT, &AC, nullptr, /*UseInstrInfo*/ true, 105 /*CanUseUndef*/ true, &DC), 106 ORE(ORE), BFI(BFI), BPI(BPI), PSI(PSI), LI(LI) {} 107 108 virtual ~InstCombiner() = default; 109 110 /// Return the source operand of a potentially bitcasted value while 111 /// optionally checking if it has one use. If there is no bitcast or the one 112 /// use check is not met, return the input value itself. 113 static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { 114 if (auto *BitCast = dyn_cast<BitCastInst>(V)) 115 if (!OneUseOnly || BitCast->hasOneUse()) 116 return BitCast->getOperand(0); 117 118 // V is not a bitcast or V has more than one use and OneUseOnly is true. 119 return V; 120 } 121 122 /// Assign a complexity or rank value to LLVM Values. This is used to reduce 123 /// the amount of pattern matching needed for compares and commutative 124 /// instructions. For example, if we have: 125 /// icmp ugt X, Constant 126 /// or 127 /// xor (add X, Constant), cast Z 128 /// 129 /// We do not have to consider the commuted variants of these patterns because 130 /// canonicalization based on complexity guarantees the above ordering. 131 /// 132 /// This routine maps IR values to various complexity ranks: 133 /// 0 -> undef 134 /// 1 -> Constants 135 /// 2 -> Other non-instructions 136 /// 3 -> Arguments 137 /// 4 -> Cast and (f)neg/not instructions 138 /// 5 -> Other instructions getComplexity(Value * V)139 static unsigned getComplexity(Value *V) { 140 if (isa<Instruction>(V)) { 141 if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) || 142 match(V, m_Not(PatternMatch::m_Value())) || 143 match(V, m_FNeg(PatternMatch::m_Value()))) 144 return 4; 145 return 5; 146 } 147 if (isa<Argument>(V)) 148 return 3; 149 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; 150 } 151 152 /// Predicate canonicalization reduces the number of patterns that need to be 153 /// matched by other transforms. For example, we may swap the operands of a 154 /// conditional branch or select to create a compare with a canonical 155 /// (inverted) predicate which is then more likely to be matched with other 156 /// values. isCanonicalPredicate(CmpInst::Predicate Pred)157 static bool isCanonicalPredicate(CmpInst::Predicate Pred) { 158 switch (Pred) { 159 case CmpInst::ICMP_NE: 160 case CmpInst::ICMP_ULE: 161 case CmpInst::ICMP_SLE: 162 case CmpInst::ICMP_UGE: 163 case CmpInst::ICMP_SGE: 164 // TODO: There are 16 FCMP predicates. Should others be (not) canonical? 165 case CmpInst::FCMP_ONE: 166 case CmpInst::FCMP_OLE: 167 case CmpInst::FCMP_OGE: 168 return false; 169 default: 170 return true; 171 } 172 } 173 174 /// Add one to a Constant AddOne(Constant * C)175 static Constant *AddOne(Constant *C) { 176 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 177 } 178 179 /// Subtract one from a Constant SubOne(Constant * C)180 static Constant *SubOne(Constant *C) { 181 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); 182 } 183 184 std::optional<std::pair< 185 CmpInst::Predicate, 186 Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst:: 187 Predicate 188 Pred, 189 Constant *C); 190 shouldAvoidAbsorbingNotIntoSelect(const SelectInst & SI)191 static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) { 192 // a ? b : false and a ? true : b are the canonical form of logical and/or. 193 // This includes !a ? b : false and !a ? true : b. Absorbing the not into 194 // the select by swapping operands would break recognition of this pattern 195 // in other analyses, so don't do that. 196 return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(), 197 PatternMatch::m_Value())) || 198 match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(), 199 PatternMatch::m_Value())); 200 } 201 202 /// Return nonnull value if V is free to invert under the condition of 203 /// WillInvertAllUses. 204 /// If Builder is nonnull, it will return a simplified ~V. 205 /// If Builder is null, it will return an arbitrary nonnull value (not 206 /// dereferenceable). 207 /// If the inversion will consume instructions, `DoesConsume` will be set to 208 /// true. Otherwise it will be false. 209 Value *getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 210 BuilderTy *Builder, bool &DoesConsume, 211 unsigned Depth); 212 getFreelyInverted(Value * V,bool WillInvertAllUses,BuilderTy * Builder,bool & DoesConsume)213 Value *getFreelyInverted(Value *V, bool WillInvertAllUses, 214 BuilderTy *Builder, bool &DoesConsume) { 215 DoesConsume = false; 216 return getFreelyInvertedImpl(V, WillInvertAllUses, Builder, DoesConsume, 217 /*Depth*/ 0); 218 } 219 getFreelyInverted(Value * V,bool WillInvertAllUses,BuilderTy * Builder)220 Value *getFreelyInverted(Value *V, bool WillInvertAllUses, 221 BuilderTy *Builder) { 222 bool Unused; 223 return getFreelyInverted(V, WillInvertAllUses, Builder, Unused); 224 } 225 226 /// Return true if the specified value is free to invert (apply ~ to). 227 /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses 228 /// is true, work under the assumption that the caller intends to remove all 229 /// uses of V and only keep uses of ~V. 230 /// 231 /// See also: canFreelyInvertAllUsersOf() isFreeToInvert(Value * V,bool WillInvertAllUses,bool & DoesConsume)232 bool isFreeToInvert(Value *V, bool WillInvertAllUses, 233 bool &DoesConsume) { 234 return getFreelyInverted(V, WillInvertAllUses, /*Builder*/ nullptr, 235 DoesConsume) != nullptr; 236 } 237 isFreeToInvert(Value * V,bool WillInvertAllUses)238 bool isFreeToInvert(Value *V, bool WillInvertAllUses) { 239 bool Unused; 240 return isFreeToInvert(V, WillInvertAllUses, Unused); 241 } 242 243 /// Given i1 V, can every user of V be freely adapted if V is changed to !V ? 244 /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn. 245 /// NOTE: for Instructions only! 246 /// 247 /// See also: isFreeToInvert() canFreelyInvertAllUsersOf(Instruction * V,Value * IgnoredUser)248 bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) { 249 // Look at every user of V. 250 for (Use &U : V->uses()) { 251 if (U.getUser() == IgnoredUser) 252 continue; // Don't consider this user. 253 254 auto *I = cast<Instruction>(U.getUser()); 255 switch (I->getOpcode()) { 256 case Instruction::Select: 257 if (U.getOperandNo() != 0) // Only if the value is used as select cond. 258 return false; 259 if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I))) 260 return false; 261 break; 262 case Instruction::Br: 263 assert(U.getOperandNo() == 0 && "Must be branching on that value."); 264 break; // Free to invert by swapping true/false values/destinations. 265 case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring 266 // it. 267 if (!match(I, m_Not(PatternMatch::m_Value()))) 268 return false; // Not a 'not'. 269 break; 270 default: 271 return false; // Don't know, likely not freely invertible. 272 } 273 // So far all users were free to invert... 274 } 275 return true; // Can freely invert all users! 276 } 277 278 /// Some binary operators require special handling to avoid poison and 279 /// undefined behavior. If a constant vector has undef elements, replace those 280 /// undefs with identity constants if possible because those are always safe 281 /// to execute. If no identity constant exists, replace undef with some other 282 /// safe constant. 283 static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode,Constant * In,bool IsRHSConstant)284 getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, 285 bool IsRHSConstant) { 286 auto *InVTy = cast<FixedVectorType>(In->getType()); 287 288 Type *EltTy = InVTy->getElementType(); 289 auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); 290 if (!SafeC) { 291 // TODO: Should this be available as a constant utility function? It is 292 // similar to getBinOpAbsorber(). 293 if (IsRHSConstant) { 294 switch (Opcode) { 295 case Instruction::SRem: // X % 1 = 0 296 case Instruction::URem: // X %u 1 = 0 297 SafeC = ConstantInt::get(EltTy, 1); 298 break; 299 case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) 300 SafeC = ConstantFP::get(EltTy, 1.0); 301 break; 302 default: 303 llvm_unreachable( 304 "Only rem opcodes have no identity constant for RHS"); 305 } 306 } else { 307 switch (Opcode) { 308 case Instruction::Shl: // 0 << X = 0 309 case Instruction::LShr: // 0 >>u X = 0 310 case Instruction::AShr: // 0 >> X = 0 311 case Instruction::SDiv: // 0 / X = 0 312 case Instruction::UDiv: // 0 /u X = 0 313 case Instruction::SRem: // 0 % X = 0 314 case Instruction::URem: // 0 %u X = 0 315 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) 316 case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) 317 case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) 318 case Instruction::FRem: // 0.0 % X = 0 319 SafeC = Constant::getNullValue(EltTy); 320 break; 321 default: 322 llvm_unreachable("Expected to find identity constant for opcode"); 323 } 324 } 325 } 326 assert(SafeC && "Must have safe constant for binop"); 327 unsigned NumElts = InVTy->getNumElements(); 328 SmallVector<Constant *, 16> Out(NumElts); 329 for (unsigned i = 0; i != NumElts; ++i) { 330 Constant *C = In->getAggregateElement(i); 331 Out[i] = isa<UndefValue>(C) ? SafeC : C; 332 } 333 return ConstantVector::get(Out); 334 } 335 addToWorklist(Instruction * I)336 void addToWorklist(Instruction *I) { Worklist.push(I); } 337 getAssumptionCache()338 AssumptionCache &getAssumptionCache() const { return AC; } getTargetLibraryInfo()339 TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } getDominatorTree()340 DominatorTree &getDominatorTree() const { return DT; } getDataLayout()341 const DataLayout &getDataLayout() const { return DL; } getSimplifyQuery()342 const SimplifyQuery &getSimplifyQuery() const { return SQ; } getOptimizationRemarkEmitter()343 OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const { 344 return ORE; 345 } getBlockFrequencyInfo()346 BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; } getProfileSummaryInfo()347 ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; } getLoopInfo()348 LoopInfo *getLoopInfo() const { return LI; } 349 350 // Call target specific combiners 351 std::optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II); 352 std::optional<Value *> 353 targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, 354 KnownBits &Known, 355 bool &KnownBitsComputed); 356 std::optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic( 357 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 358 APInt &UndefElts2, APInt &UndefElts3, 359 std::function<void(Instruction *, unsigned, APInt, APInt &)> 360 SimplifyAndSetOp); 361 362 /// Inserts an instruction \p New before instruction \p Old 363 /// 364 /// Also adds the new instruction to the worklist and returns \p New so that 365 /// it is suitable for use as the return from the visitation patterns. InsertNewInstBefore(Instruction * New,BasicBlock::iterator Old)366 Instruction *InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old) { 367 assert(New && !New->getParent() && 368 "New instruction already inserted into a basic block!"); 369 New->insertBefore(Old); // Insert inst 370 Worklist.add(New); 371 return New; 372 } 373 374 /// Same as InsertNewInstBefore, but also sets the debug loc. InsertNewInstWith(Instruction * New,BasicBlock::iterator Old)375 Instruction *InsertNewInstWith(Instruction *New, BasicBlock::iterator Old) { 376 New->setDebugLoc(Old->getDebugLoc()); 377 return InsertNewInstBefore(New, Old); 378 } 379 380 /// A combiner-aware RAUW-like routine. 381 /// 382 /// This method is to be used when an instruction is found to be dead, 383 /// replaceable with another preexisting expression. Here we add all uses of 384 /// I to the worklist, replace all uses of I with the new value, then return 385 /// I, so that the inst combiner will know that I was modified. replaceInstUsesWith(Instruction & I,Value * V)386 Instruction *replaceInstUsesWith(Instruction &I, Value *V) { 387 // If there are no uses to replace, then we return nullptr to indicate that 388 // no changes were made to the program. 389 if (I.use_empty()) return nullptr; 390 391 Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist. 392 393 // If we are replacing the instruction with itself, this must be in a 394 // segment of unreachable code, so just clobber the instruction. 395 if (&I == V) 396 V = PoisonValue::get(I.getType()); 397 398 LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" 399 << " with " << *V << '\n'); 400 401 // If V is a new unnamed instruction, take the name from the old one. 402 if (V->use_empty() && isa<Instruction>(V) && !V->hasName() && I.hasName()) 403 V->takeName(&I); 404 405 I.replaceAllUsesWith(V); 406 return &I; 407 } 408 409 /// Replace operand of instruction and add old operand to the worklist. replaceOperand(Instruction & I,unsigned OpNum,Value * V)410 Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) { 411 Value *OldOp = I.getOperand(OpNum); 412 I.setOperand(OpNum, V); 413 Worklist.handleUseCountDecrement(OldOp); 414 return &I; 415 } 416 417 /// Replace use and add the previously used value to the worklist. replaceUse(Use & U,Value * NewValue)418 void replaceUse(Use &U, Value *NewValue) { 419 Value *OldOp = U; 420 U = NewValue; 421 Worklist.handleUseCountDecrement(OldOp); 422 } 423 424 /// Combiner aware instruction erasure. 425 /// 426 /// When dealing with an instruction that has side effects or produces a void 427 /// value, we can't rely on DCE to delete the instruction. Instead, visit 428 /// methods should return the value returned by this function. 429 virtual Instruction *eraseInstFromFunction(Instruction &I) = 0; 430 computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)431 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 432 const Instruction *CxtI) const { 433 llvm::computeKnownBits(V, Known, Depth, SQ.getWithInstruction(CxtI)); 434 } 435 computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)436 KnownBits computeKnownBits(const Value *V, unsigned Depth, 437 const Instruction *CxtI) const { 438 return llvm::computeKnownBits(V, Depth, SQ.getWithInstruction(CxtI)); 439 } 440 441 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, 442 unsigned Depth = 0, 443 const Instruction *CxtI = nullptr) { 444 return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); 445 } 446 447 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, 448 const Instruction *CxtI = nullptr) const { 449 return llvm::MaskedValueIsZero(V, Mask, SQ.getWithInstruction(CxtI), Depth); 450 } 451 452 unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, 453 const Instruction *CxtI = nullptr) const { 454 return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); 455 } 456 457 unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0, 458 const Instruction *CxtI = nullptr) const { 459 return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT); 460 } 461 462 OverflowResult computeOverflowForUnsignedMul(const Value *LHS, 463 const Value *RHS, 464 const Instruction *CxtI, 465 bool IsNSW = false) const { 466 return llvm::computeOverflowForUnsignedMul( 467 LHS, RHS, SQ.getWithInstruction(CxtI), IsNSW); 468 } 469 computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)470 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 471 const Instruction *CxtI) const { 472 return llvm::computeOverflowForSignedMul(LHS, RHS, 473 SQ.getWithInstruction(CxtI)); 474 } 475 476 OverflowResult computeOverflowForUnsignedAdd(const WithCache<const Value * > & LHS,const WithCache<const Value * > & RHS,const Instruction * CxtI)477 computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS, 478 const WithCache<const Value *> &RHS, 479 const Instruction *CxtI) const { 480 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, 481 SQ.getWithInstruction(CxtI)); 482 } 483 484 OverflowResult computeOverflowForSignedAdd(const WithCache<const Value * > & LHS,const WithCache<const Value * > & RHS,const Instruction * CxtI)485 computeOverflowForSignedAdd(const WithCache<const Value *> &LHS, 486 const WithCache<const Value *> &RHS, 487 const Instruction *CxtI) const { 488 return llvm::computeOverflowForSignedAdd(LHS, RHS, 489 SQ.getWithInstruction(CxtI)); 490 } 491 computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)492 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, 493 const Value *RHS, 494 const Instruction *CxtI) const { 495 return llvm::computeOverflowForUnsignedSub(LHS, RHS, 496 SQ.getWithInstruction(CxtI)); 497 } 498 computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)499 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, 500 const Instruction *CxtI) const { 501 return llvm::computeOverflowForSignedSub(LHS, RHS, 502 SQ.getWithInstruction(CxtI)); 503 } 504 505 virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, 506 const APInt &DemandedMask, KnownBits &Known, 507 unsigned Depth, const SimplifyQuery &Q) = 0; 508 SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known)509 bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, 510 const APInt &DemandedMask, KnownBits &Known) { 511 return SimplifyDemandedBits(I, OpNo, DemandedMask, Known, 512 /*Depth=*/0, SQ.getWithInstruction(I)); 513 } 514 515 virtual Value * 516 SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, 517 unsigned Depth = 0, 518 bool AllowMultipleUsers = false) = 0; 519 520 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; 521 }; 522 523 } // namespace llvm 524 525 #undef DEBUG_TYPE 526 527 #endif 528