xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
26  * Copyright (c) 2024, Klara, Inc.
27  */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dbuf.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/zap_impl.h>
38 #include <sys/spa.h>
39 #include <sys/sa.h>
40 #include <sys/sa_impl.h>
41 #include <sys/zfs_context.h>
42 #include <sys/trace_zfs.h>
43 
44 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
45     uint64_t arg1, uint64_t arg2);
46 
47 dmu_tx_stats_t dmu_tx_stats = {
48 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
58 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
59 	{ "dmu_tx_wrlog_delay",		KSTAT_DATA_UINT64 },
60 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
61 };
62 
63 static kstat_t *dmu_tx_ksp;
64 
65 dmu_tx_t *
dmu_tx_create_dd(dsl_dir_t * dd)66 dmu_tx_create_dd(dsl_dir_t *dd)
67 {
68 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
69 	tx->tx_dir = dd;
70 	if (dd != NULL)
71 		tx->tx_pool = dd->dd_pool;
72 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
73 	    offsetof(dmu_tx_hold_t, txh_node));
74 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
75 	    offsetof(dmu_tx_callback_t, dcb_node));
76 	tx->tx_start = gethrtime();
77 	return (tx);
78 }
79 
80 dmu_tx_t *
dmu_tx_create(objset_t * os)81 dmu_tx_create(objset_t *os)
82 {
83 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
84 	tx->tx_objset = os;
85 	return (tx);
86 }
87 
88 dmu_tx_t *
dmu_tx_create_assigned(struct dsl_pool * dp,uint64_t txg)89 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
90 {
91 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
92 
93 	TXG_VERIFY(dp->dp_spa, txg);
94 	tx->tx_pool = dp;
95 	tx->tx_txg = txg;
96 	tx->tx_anyobj = TRUE;
97 
98 	return (tx);
99 }
100 
101 int
dmu_tx_is_syncing(dmu_tx_t * tx)102 dmu_tx_is_syncing(dmu_tx_t *tx)
103 {
104 	return (tx->tx_anyobj);
105 }
106 
107 int
dmu_tx_private_ok(dmu_tx_t * tx)108 dmu_tx_private_ok(dmu_tx_t *tx)
109 {
110 	return (tx->tx_anyobj);
111 }
112 
113 static dmu_tx_hold_t *
dmu_tx_hold_dnode_impl(dmu_tx_t * tx,dnode_t * dn,enum dmu_tx_hold_type type,uint64_t arg1,uint64_t arg2)114 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
115     uint64_t arg1, uint64_t arg2)
116 {
117 	dmu_tx_hold_t *txh;
118 
119 	if (dn != NULL) {
120 		(void) zfs_refcount_add(&dn->dn_holds, tx);
121 		if (tx->tx_txg != 0) {
122 			mutex_enter(&dn->dn_mtx);
123 			/*
124 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
125 			 * problem, but there's no way for it to happen (for
126 			 * now, at least).
127 			 */
128 			ASSERT(dn->dn_assigned_txg == 0);
129 			dn->dn_assigned_txg = tx->tx_txg;
130 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
131 			mutex_exit(&dn->dn_mtx);
132 		}
133 	}
134 
135 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
136 	txh->txh_tx = tx;
137 	txh->txh_dnode = dn;
138 	zfs_refcount_create(&txh->txh_space_towrite);
139 	zfs_refcount_create(&txh->txh_memory_tohold);
140 	txh->txh_type = type;
141 	txh->txh_arg1 = arg1;
142 	txh->txh_arg2 = arg2;
143 	list_insert_tail(&tx->tx_holds, txh);
144 
145 	return (txh);
146 }
147 
148 static dmu_tx_hold_t *
dmu_tx_hold_object_impl(dmu_tx_t * tx,objset_t * os,uint64_t object,enum dmu_tx_hold_type type,uint64_t arg1,uint64_t arg2)149 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
150     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
151 {
152 	dnode_t *dn = NULL;
153 	dmu_tx_hold_t *txh;
154 	int err;
155 
156 	if (object != DMU_NEW_OBJECT) {
157 		err = dnode_hold(os, object, FTAG, &dn);
158 		if (err != 0) {
159 			tx->tx_err = err;
160 			return (NULL);
161 		}
162 	}
163 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
164 	if (dn != NULL)
165 		dnode_rele(dn, FTAG);
166 	return (txh);
167 }
168 
169 void
dmu_tx_add_new_object(dmu_tx_t * tx,dnode_t * dn)170 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
171 {
172 	/*
173 	 * If we're syncing, they can manipulate any object anyhow, and
174 	 * the hold on the dnode_t can cause problems.
175 	 */
176 	if (!dmu_tx_is_syncing(tx))
177 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
178 }
179 
180 /*
181  * This function reads specified data from disk.  The specified data will
182  * be needed to perform the transaction -- i.e, it will be read after
183  * we do dmu_tx_assign().  There are two reasons that we read the data now
184  * (before dmu_tx_assign()):
185  *
186  * 1. Reading it now has potentially better performance.  The transaction
187  * has not yet been assigned, so the TXG is not held open, and also the
188  * caller typically has less locks held when calling dmu_tx_hold_*() than
189  * after the transaction has been assigned.  This reduces the lock (and txg)
190  * hold times, thus reducing lock contention.
191  *
192  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
193  * that are detected before they start making changes to the DMU state
194  * (i.e. now).  Once the transaction has been assigned, and some DMU
195  * state has been changed, it can be difficult to recover from an i/o
196  * error (e.g. to undo the changes already made in memory at the DMU
197  * layer).  Typically code to do so does not exist in the caller -- it
198  * assumes that the data has already been cached and thus i/o errors are
199  * not possible.
200  *
201  * It has been observed that the i/o initiated here can be a performance
202  * problem, and it appears to be optional, because we don't look at the
203  * data which is read.  However, removing this read would only serve to
204  * move the work elsewhere (after the dmu_tx_assign()), where it may
205  * have a greater impact on performance (in addition to the impact on
206  * fault tolerance noted above).
207  */
208 static int
dmu_tx_check_ioerr(zio_t * zio,dnode_t * dn,int level,uint64_t blkid)209 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
210 {
211 	int err;
212 	dmu_buf_impl_t *db;
213 
214 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
215 	err = dbuf_hold_impl(dn, level, blkid, TRUE, FALSE, FTAG, &db);
216 	rw_exit(&dn->dn_struct_rwlock);
217 	if (err == ENOENT)
218 		return (0);
219 	if (err != 0)
220 		return (err);
221 	/*
222 	 * PARTIAL_FIRST allows caching for uncacheable blocks.  It will
223 	 * be cleared after dmu_buf_will_dirty() call dbuf_read() again.
224 	 */
225 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH |
226 	    (level == 0 ? DB_RF_PARTIAL_FIRST : 0));
227 	dbuf_rele(db, FTAG);
228 	return (err);
229 }
230 
231 static void
dmu_tx_count_write(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)232 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
233 {
234 	dnode_t *dn = txh->txh_dnode;
235 	int err = 0;
236 
237 	if (len == 0)
238 		return;
239 
240 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
241 
242 	if (dn == NULL)
243 		return;
244 
245 	/*
246 	 * For i/o error checking, read the blocks that will be needed
247 	 * to perform the write: the first and last level-0 blocks (if
248 	 * they are not aligned, i.e. if they are partial-block writes),
249 	 * and all the level-1 blocks.
250 	 */
251 	if (dn->dn_maxblkid == 0) {
252 		if (off < dn->dn_datablksz &&
253 		    (off > 0 || len < dn->dn_datablksz)) {
254 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
255 			if (err != 0) {
256 				txh->txh_tx->tx_err = err;
257 			}
258 		}
259 	} else {
260 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
261 		    NULL, NULL, ZIO_FLAG_CANFAIL);
262 
263 		/* first level-0 block */
264 		uint64_t start = off >> dn->dn_datablkshift;
265 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
266 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
267 			if (err != 0) {
268 				txh->txh_tx->tx_err = err;
269 			}
270 		}
271 
272 		/* last level-0 block */
273 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
274 		if (end != start && end <= dn->dn_maxblkid &&
275 		    P2PHASE(off + len, dn->dn_datablksz)) {
276 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
277 			if (err != 0) {
278 				txh->txh_tx->tx_err = err;
279 			}
280 		}
281 
282 		/* level-1 blocks */
283 		if (dn->dn_nlevels > 1) {
284 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
285 			for (uint64_t i = (start >> shft) + 1;
286 			    i < end >> shft; i++) {
287 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
288 				if (err != 0) {
289 					txh->txh_tx->tx_err = err;
290 				}
291 			}
292 		}
293 
294 		err = zio_wait(zio);
295 		if (err != 0) {
296 			txh->txh_tx->tx_err = err;
297 		}
298 	}
299 }
300 
301 static void
dmu_tx_count_append(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)302 dmu_tx_count_append(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
303 {
304 	dnode_t *dn = txh->txh_dnode;
305 	int err = 0;
306 
307 	if (len == 0)
308 		return;
309 
310 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
311 
312 	if (dn == NULL)
313 		return;
314 
315 	/*
316 	 * For i/o error checking, read the blocks that will be needed
317 	 * to perform the append; first level-0 block (if not aligned, i.e.
318 	 * if they are partial-block writes), no additional blocks are read.
319 	 */
320 	if (dn->dn_maxblkid == 0) {
321 		if (off < dn->dn_datablksz &&
322 		    (off > 0 || len < dn->dn_datablksz)) {
323 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
324 			if (err != 0) {
325 				txh->txh_tx->tx_err = err;
326 			}
327 		}
328 	} else {
329 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
330 		    NULL, NULL, ZIO_FLAG_CANFAIL);
331 
332 		/* first level-0 block */
333 		uint64_t start = off >> dn->dn_datablkshift;
334 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
335 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
336 			if (err != 0) {
337 				txh->txh_tx->tx_err = err;
338 			}
339 		}
340 
341 		err = zio_wait(zio);
342 		if (err != 0) {
343 			txh->txh_tx->tx_err = err;
344 		}
345 	}
346 }
347 
348 static void
dmu_tx_count_dnode(dmu_tx_hold_t * txh)349 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
350 {
351 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
352 	    DNODE_MIN_SIZE, FTAG);
353 }
354 
355 void
dmu_tx_hold_write(dmu_tx_t * tx,uint64_t object,uint64_t off,int len)356 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
357 {
358 	dmu_tx_hold_t *txh;
359 
360 	ASSERT0(tx->tx_txg);
361 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
362 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
363 
364 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
365 	    object, THT_WRITE, off, len);
366 	if (txh != NULL) {
367 		dmu_tx_count_write(txh, off, len);
368 		dmu_tx_count_dnode(txh);
369 	}
370 }
371 
372 void
dmu_tx_hold_write_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)373 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
374 {
375 	dmu_tx_hold_t *txh;
376 
377 	ASSERT0(tx->tx_txg);
378 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
379 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
380 
381 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
382 	if (txh != NULL) {
383 		dmu_tx_count_write(txh, off, len);
384 		dmu_tx_count_dnode(txh);
385 	}
386 }
387 
388 /*
389  * Should be used when appending to an object and the exact offset is unknown.
390  * The write must occur at or beyond the specified offset.  Only the L0 block
391  * at provided offset will be prefetched.
392  */
393 void
dmu_tx_hold_append(dmu_tx_t * tx,uint64_t object,uint64_t off,int len)394 dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
395 {
396 	dmu_tx_hold_t *txh;
397 
398 	ASSERT0(tx->tx_txg);
399 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
400 
401 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
402 	    object, THT_APPEND, off, DMU_OBJECT_END);
403 	if (txh != NULL) {
404 		dmu_tx_count_append(txh, off, len);
405 		dmu_tx_count_dnode(txh);
406 	}
407 }
408 
409 void
dmu_tx_hold_append_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)410 dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
411 {
412 	dmu_tx_hold_t *txh;
413 
414 	ASSERT0(tx->tx_txg);
415 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
416 
417 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_APPEND, off, DMU_OBJECT_END);
418 	if (txh != NULL) {
419 		dmu_tx_count_append(txh, off, len);
420 		dmu_tx_count_dnode(txh);
421 	}
422 }
423 
424 /*
425  * This function marks the transaction as being a "net free".  The end
426  * result is that refquotas will be disabled for this transaction, and
427  * this transaction will be able to use half of the pool space overhead
428  * (see dsl_pool_adjustedsize()).  Therefore this function should only
429  * be called for transactions that we expect will not cause a net increase
430  * in the amount of space used (but it's OK if that is occasionally not true).
431  */
432 void
dmu_tx_mark_netfree(dmu_tx_t * tx)433 dmu_tx_mark_netfree(dmu_tx_t *tx)
434 {
435 	tx->tx_netfree = B_TRUE;
436 }
437 
438 static void
dmu_tx_count_free(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)439 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
440 {
441 	dmu_tx_t *tx = txh->txh_tx;
442 	dnode_t *dn = txh->txh_dnode;
443 	int err;
444 
445 	ASSERT(tx->tx_txg == 0);
446 
447 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
448 		return;
449 	if (len == DMU_OBJECT_END)
450 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
451 
452 	/*
453 	 * For i/o error checking, we read the first and last level-0
454 	 * blocks if they are not aligned, and all the level-1 blocks.
455 	 *
456 	 * Note:  dbuf_free_range() assumes that we have not instantiated
457 	 * any level-0 dbufs that will be completely freed.  Therefore we must
458 	 * exercise care to not read or count the first and last blocks
459 	 * if they are blocksize-aligned.
460 	 */
461 	if (dn->dn_datablkshift == 0) {
462 		if (off != 0 || len < dn->dn_datablksz)
463 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
464 	} else {
465 		/* first block will be modified if it is not aligned */
466 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
467 			dmu_tx_count_write(txh, off, 1);
468 		/* last block will be modified if it is not aligned */
469 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
470 			dmu_tx_count_write(txh, off + len, 1);
471 	}
472 
473 	/*
474 	 * Check level-1 blocks.
475 	 */
476 	if (dn->dn_nlevels > 1) {
477 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
478 		    SPA_BLKPTRSHIFT;
479 		uint64_t start = off >> shift;
480 		uint64_t end = (off + len) >> shift;
481 
482 		ASSERT(dn->dn_indblkshift != 0);
483 
484 		/*
485 		 * dnode_reallocate() can result in an object with indirect
486 		 * blocks having an odd data block size.  In this case,
487 		 * just check the single block.
488 		 */
489 		if (dn->dn_datablkshift == 0)
490 			start = end = 0;
491 
492 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
493 		    NULL, NULL, ZIO_FLAG_CANFAIL);
494 		for (uint64_t i = start; i <= end; i++) {
495 			uint64_t ibyte = i << shift;
496 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
497 			i = ibyte >> shift;
498 			if (err == ESRCH || i > end)
499 				break;
500 			if (err != 0) {
501 				tx->tx_err = err;
502 				(void) zio_wait(zio);
503 				return;
504 			}
505 
506 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
507 			    1 << dn->dn_indblkshift, FTAG);
508 
509 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
510 			if (err != 0) {
511 				tx->tx_err = err;
512 				(void) zio_wait(zio);
513 				return;
514 			}
515 		}
516 		err = zio_wait(zio);
517 		if (err != 0) {
518 			tx->tx_err = err;
519 			return;
520 		}
521 	}
522 }
523 
524 void
dmu_tx_hold_free(dmu_tx_t * tx,uint64_t object,uint64_t off,uint64_t len)525 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
526 {
527 	dmu_tx_hold_t *txh;
528 
529 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
530 	    object, THT_FREE, off, len);
531 	if (txh != NULL) {
532 		dmu_tx_count_dnode(txh);
533 		dmu_tx_count_free(txh, off, len);
534 	}
535 }
536 
537 void
dmu_tx_hold_free_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,uint64_t len)538 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
539 {
540 	dmu_tx_hold_t *txh;
541 
542 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
543 	if (txh != NULL) {
544 		dmu_tx_count_dnode(txh);
545 		dmu_tx_count_free(txh, off, len);
546 	}
547 }
548 
549 static void
dmu_tx_count_clone(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)550 dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
551 {
552 
553 	/*
554 	 * Reuse dmu_tx_count_free(), it does exactly what we need for clone.
555 	 */
556 	dmu_tx_count_free(txh, off, len);
557 }
558 
559 void
dmu_tx_hold_clone_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)560 dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
561 {
562 	dmu_tx_hold_t *txh;
563 
564 	ASSERT0(tx->tx_txg);
565 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
566 
567 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len);
568 	if (txh != NULL) {
569 		dmu_tx_count_dnode(txh);
570 		dmu_tx_count_clone(txh, off, len);
571 	}
572 }
573 
574 static void
dmu_tx_hold_zap_impl(dmu_tx_hold_t * txh,const char * name)575 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
576 {
577 	dmu_tx_t *tx = txh->txh_tx;
578 	dnode_t *dn = txh->txh_dnode;
579 	int err;
580 
581 	ASSERT(tx->tx_txg == 0);
582 
583 	dmu_tx_count_dnode(txh);
584 
585 	/*
586 	 * Modifying a almost-full microzap is around the worst case (128KB)
587 	 *
588 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
589 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
590 	 * - 4 new blocks written if adding:
591 	 *    - 2 blocks for possibly split leaves,
592 	 *    - 2 grown ptrtbl blocks
593 	 */
594 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
595 	    zap_get_micro_max_size(tx->tx_pool->dp_spa), FTAG);
596 
597 	if (dn == NULL)
598 		return;
599 
600 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
601 
602 	if (dn->dn_maxblkid == 0 || name == NULL) {
603 		/*
604 		 * This is a microzap (only one block), or we don't know
605 		 * the name.  Check the first block for i/o errors.
606 		 */
607 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
608 		if (err != 0) {
609 			tx->tx_err = err;
610 		}
611 	} else {
612 		/*
613 		 * Access the name so that we'll check for i/o errors to
614 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
615 		 * may not yet exist.
616 		 */
617 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
618 		if (err == EIO || err == ECKSUM || err == ENXIO) {
619 			tx->tx_err = err;
620 		}
621 	}
622 }
623 
624 void
dmu_tx_hold_zap(dmu_tx_t * tx,uint64_t object,int add,const char * name)625 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
626 {
627 	dmu_tx_hold_t *txh;
628 
629 	ASSERT0(tx->tx_txg);
630 
631 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
632 	    object, THT_ZAP, add, (uintptr_t)name);
633 	if (txh != NULL)
634 		dmu_tx_hold_zap_impl(txh, name);
635 }
636 
637 void
dmu_tx_hold_zap_by_dnode(dmu_tx_t * tx,dnode_t * dn,int add,const char * name)638 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
639 {
640 	dmu_tx_hold_t *txh;
641 
642 	ASSERT0(tx->tx_txg);
643 	ASSERT(dn != NULL);
644 
645 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
646 	if (txh != NULL)
647 		dmu_tx_hold_zap_impl(txh, name);
648 }
649 
650 void
dmu_tx_hold_bonus(dmu_tx_t * tx,uint64_t object)651 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
652 {
653 	dmu_tx_hold_t *txh;
654 
655 	ASSERT(tx->tx_txg == 0);
656 
657 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
658 	    object, THT_BONUS, 0, 0);
659 	if (txh)
660 		dmu_tx_count_dnode(txh);
661 }
662 
663 void
dmu_tx_hold_bonus_by_dnode(dmu_tx_t * tx,dnode_t * dn)664 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
665 {
666 	dmu_tx_hold_t *txh;
667 
668 	ASSERT0(tx->tx_txg);
669 
670 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
671 	if (txh)
672 		dmu_tx_count_dnode(txh);
673 }
674 
675 void
dmu_tx_hold_space(dmu_tx_t * tx,uint64_t space)676 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
677 {
678 	dmu_tx_hold_t *txh;
679 
680 	ASSERT(tx->tx_txg == 0);
681 
682 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
683 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
684 	if (txh) {
685 		(void) zfs_refcount_add_many(
686 		    &txh->txh_space_towrite, space, FTAG);
687 	}
688 }
689 
690 #ifdef ZFS_DEBUG
691 void
dmu_tx_dirty_buf(dmu_tx_t * tx,dmu_buf_impl_t * db)692 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
693 {
694 	boolean_t match_object = B_FALSE;
695 	boolean_t match_offset = B_FALSE;
696 
697 	DB_DNODE_ENTER(db);
698 	dnode_t *dn = DB_DNODE(db);
699 	ASSERT(tx->tx_txg != 0);
700 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
701 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
702 
703 	if (tx->tx_anyobj) {
704 		DB_DNODE_EXIT(db);
705 		return;
706 	}
707 
708 	/* XXX No checking on the meta dnode for now */
709 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
710 		DB_DNODE_EXIT(db);
711 		return;
712 	}
713 
714 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
715 	    txh = list_next(&tx->tx_holds, txh)) {
716 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
717 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
718 			match_object = TRUE;
719 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
720 			int datablkshift = dn->dn_datablkshift ?
721 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
722 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
723 			int shift = datablkshift + epbs * db->db_level;
724 			uint64_t beginblk = shift >= 64 ? 0 :
725 			    (txh->txh_arg1 >> shift);
726 			uint64_t endblk = shift >= 64 ? 0 :
727 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
728 			uint64_t blkid = db->db_blkid;
729 
730 			/* XXX txh_arg2 better not be zero... */
731 
732 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
733 			    txh->txh_type, (u_longlong_t)beginblk,
734 			    (u_longlong_t)endblk);
735 
736 			switch (txh->txh_type) {
737 			case THT_WRITE:
738 				if (blkid >= beginblk && blkid <= endblk)
739 					match_offset = TRUE;
740 				/*
741 				 * We will let this hold work for the bonus
742 				 * or spill buffer so that we don't need to
743 				 * hold it when creating a new object.
744 				 */
745 				if (blkid == DMU_BONUS_BLKID ||
746 				    blkid == DMU_SPILL_BLKID)
747 					match_offset = TRUE;
748 				/*
749 				 * They might have to increase nlevels,
750 				 * thus dirtying the new TLIBs.  Or the
751 				 * might have to change the block size,
752 				 * thus dirying the new lvl=0 blk=0.
753 				 */
754 				if (blkid == 0)
755 					match_offset = TRUE;
756 				break;
757 			case THT_APPEND:
758 				if (blkid >= beginblk && (blkid <= endblk ||
759 				    txh->txh_arg2 == DMU_OBJECT_END))
760 					match_offset = TRUE;
761 
762 				/*
763 				 * THT_WRITE used for bonus and spill blocks.
764 				 */
765 				ASSERT(blkid != DMU_BONUS_BLKID &&
766 				    blkid != DMU_SPILL_BLKID);
767 
768 				/*
769 				 * They might have to increase nlevels,
770 				 * thus dirtying the new TLIBs.  Or the
771 				 * might have to change the block size,
772 				 * thus dirying the new lvl=0 blk=0.
773 				 */
774 				if (blkid == 0)
775 					match_offset = TRUE;
776 				break;
777 			case THT_FREE:
778 				/*
779 				 * We will dirty all the level 1 blocks in
780 				 * the free range and perhaps the first and
781 				 * last level 0 block.
782 				 */
783 				if (blkid >= beginblk && (blkid <= endblk ||
784 				    txh->txh_arg2 == DMU_OBJECT_END))
785 					match_offset = TRUE;
786 				break;
787 			case THT_SPILL:
788 				if (blkid == DMU_SPILL_BLKID)
789 					match_offset = TRUE;
790 				break;
791 			case THT_BONUS:
792 				if (blkid == DMU_BONUS_BLKID)
793 					match_offset = TRUE;
794 				break;
795 			case THT_ZAP:
796 				match_offset = TRUE;
797 				break;
798 			case THT_NEWOBJECT:
799 				match_object = TRUE;
800 				break;
801 			case THT_CLONE:
802 				if (blkid >= beginblk && blkid <= endblk)
803 					match_offset = TRUE;
804 				/*
805 				 * They might have to increase nlevels,
806 				 * thus dirtying the new TLIBs.  Or the
807 				 * might have to change the block size,
808 				 * thus dirying the new lvl=0 blk=0.
809 				 */
810 				if (blkid == 0)
811 					match_offset = TRUE;
812 				break;
813 			default:
814 				cmn_err(CE_PANIC, "bad txh_type %d",
815 				    txh->txh_type);
816 			}
817 		}
818 		if (match_object && match_offset) {
819 			DB_DNODE_EXIT(db);
820 			return;
821 		}
822 	}
823 	DB_DNODE_EXIT(db);
824 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
825 	    (u_longlong_t)db->db.db_object, db->db_level,
826 	    (u_longlong_t)db->db_blkid);
827 }
828 #endif
829 
830 /*
831  * If we can't do 10 iops, something is wrong.  Let us go ahead
832  * and hit zfs_dirty_data_max.
833  */
834 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
835 
836 /*
837  * We delay transactions when we've determined that the backend storage
838  * isn't able to accommodate the rate of incoming writes.
839  *
840  * If there is already a transaction waiting, we delay relative to when
841  * that transaction finishes waiting.  This way the calculated min_time
842  * is independent of the number of threads concurrently executing
843  * transactions.
844  *
845  * If we are the only waiter, wait relative to when the transaction
846  * started, rather than the current time.  This credits the transaction for
847  * "time already served", e.g. reading indirect blocks.
848  *
849  * The minimum time for a transaction to take is calculated as:
850  *     min_time = scale * (dirty - min) / (max - dirty)
851  *     min_time is then capped at zfs_delay_max_ns.
852  *
853  * The delay has two degrees of freedom that can be adjusted via tunables.
854  * The percentage of dirty data at which we start to delay is defined by
855  * zfs_delay_min_dirty_percent. This should typically be at or above
856  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
857  * delay after writing at full speed has failed to keep up with the incoming
858  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
859  * speaking, this variable determines the amount of delay at the midpoint of
860  * the curve.
861  *
862  * delay
863  *  10ms +-------------------------------------------------------------*+
864  *       |                                                             *|
865  *   9ms +                                                             *+
866  *       |                                                             *|
867  *   8ms +                                                             *+
868  *       |                                                            * |
869  *   7ms +                                                            * +
870  *       |                                                            * |
871  *   6ms +                                                            * +
872  *       |                                                            * |
873  *   5ms +                                                           *  +
874  *       |                                                           *  |
875  *   4ms +                                                           *  +
876  *       |                                                           *  |
877  *   3ms +                                                          *   +
878  *       |                                                          *   |
879  *   2ms +                                              (midpoint) *    +
880  *       |                                                  |    **     |
881  *   1ms +                                                  v ***       +
882  *       |             zfs_delay_scale ---------->     ********         |
883  *     0 +-------------------------------------*********----------------+
884  *       0%                    <- zfs_dirty_data_max ->               100%
885  *
886  * Note that since the delay is added to the outstanding time remaining on the
887  * most recent transaction, the delay is effectively the inverse of IOPS.
888  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
889  * was chosen such that small changes in the amount of accumulated dirty data
890  * in the first 3/4 of the curve yield relatively small differences in the
891  * amount of delay.
892  *
893  * The effects can be easier to understand when the amount of delay is
894  * represented on a log scale:
895  *
896  * delay
897  * 100ms +-------------------------------------------------------------++
898  *       +                                                              +
899  *       |                                                              |
900  *       +                                                             *+
901  *  10ms +                                                             *+
902  *       +                                                           ** +
903  *       |                                              (midpoint)  **  |
904  *       +                                                  |     **    +
905  *   1ms +                                                  v ****      +
906  *       +             zfs_delay_scale ---------->        *****         +
907  *       |                                             ****             |
908  *       +                                          ****                +
909  * 100us +                                        **                    +
910  *       +                                       *                      +
911  *       |                                      *                       |
912  *       +                                     *                        +
913  *  10us +                                     *                        +
914  *       +                                                              +
915  *       |                                                              |
916  *       +                                                              +
917  *       +--------------------------------------------------------------+
918  *       0%                    <- zfs_dirty_data_max ->               100%
919  *
920  * Note here that only as the amount of dirty data approaches its limit does
921  * the delay start to increase rapidly. The goal of a properly tuned system
922  * should be to keep the amount of dirty data out of that range by first
923  * ensuring that the appropriate limits are set for the I/O scheduler to reach
924  * optimal throughput on the backend storage, and then by changing the value
925  * of zfs_delay_scale to increase the steepness of the curve.
926  */
927 static void
dmu_tx_delay(dmu_tx_t * tx,uint64_t dirty)928 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
929 {
930 	dsl_pool_t *dp = tx->tx_pool;
931 	uint64_t delay_min_bytes, wrlog;
932 	hrtime_t wakeup, tx_time = 0, now;
933 
934 	/* Calculate minimum transaction time for the dirty data amount. */
935 	delay_min_bytes =
936 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
937 	if (dirty > delay_min_bytes) {
938 		/*
939 		 * The caller has already waited until we are under the max.
940 		 * We make them pass us the amount of dirty data so we don't
941 		 * have to handle the case of it being >= the max, which
942 		 * could cause a divide-by-zero if it's == the max.
943 		 */
944 		ASSERT3U(dirty, <, zfs_dirty_data_max);
945 
946 		tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
947 		    (zfs_dirty_data_max - dirty);
948 	}
949 
950 	/* Calculate minimum transaction time for the TX_WRITE log size. */
951 	wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
952 	delay_min_bytes =
953 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
954 	if (wrlog >= zfs_wrlog_data_max) {
955 		tx_time = zfs_delay_max_ns;
956 	} else if (wrlog > delay_min_bytes) {
957 		tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
958 		    (zfs_wrlog_data_max - wrlog), tx_time);
959 	}
960 
961 	if (tx_time == 0)
962 		return;
963 
964 	tx_time = MIN(tx_time, zfs_delay_max_ns);
965 	now = gethrtime();
966 	if (now > tx->tx_start + tx_time)
967 		return;
968 
969 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
970 	    uint64_t, tx_time);
971 
972 	mutex_enter(&dp->dp_lock);
973 	wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
974 	dp->dp_last_wakeup = wakeup;
975 	mutex_exit(&dp->dp_lock);
976 
977 	zfs_sleep_until(wakeup);
978 }
979 
980 /*
981  * This routine attempts to assign the transaction to a transaction group.
982  * To do so, we must determine if there is sufficient free space on disk.
983  *
984  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
985  * on it), then it is assumed that there is sufficient free space,
986  * unless there's insufficient slop space in the pool (see the comment
987  * above spa_slop_shift in spa_misc.c).
988  *
989  * If it is not a "netfree" transaction, then if the data already on disk
990  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
991  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
992  * plus the rough estimate of this transaction's changes, may exceed the
993  * allowed usage, then this will fail with ERESTART, which will cause the
994  * caller to wait for the pending changes to be written to disk (by waiting
995  * for the next TXG to open), and then check the space usage again.
996  *
997  * The rough estimate of pending changes is comprised of the sum of:
998  *
999  *  - this transaction's holds' txh_space_towrite
1000  *
1001  *  - dd_tempreserved[], which is the sum of in-flight transactions'
1002  *    holds' txh_space_towrite (i.e. those transactions that have called
1003  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
1004  *
1005  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
1006  *
1007  * Note that all of these values are inflated by spa_get_worst_case_asize(),
1008  * which means that we may get ERESTART well before we are actually in danger
1009  * of running out of space, but this also mitigates any small inaccuracies
1010  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
1011  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
1012  * to the MOS).
1013  *
1014  * Note that due to this algorithm, it is possible to exceed the allowed
1015  * usage by one transaction.  Also, as we approach the allowed usage,
1016  * we will allow a very limited amount of changes into each TXG, thus
1017  * decreasing performance.
1018  */
1019 static int
dmu_tx_try_assign(dmu_tx_t * tx,uint64_t flags)1020 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t flags)
1021 {
1022 	spa_t *spa = tx->tx_pool->dp_spa;
1023 
1024 	ASSERT0(tx->tx_txg);
1025 
1026 	if (tx->tx_err) {
1027 		DMU_TX_STAT_BUMP(dmu_tx_error);
1028 		return (tx->tx_err);
1029 	}
1030 
1031 	if (spa_suspended(spa)) {
1032 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
1033 
1034 		/*
1035 		 * If the user has indicated a blocking failure mode
1036 		 * then return ERESTART which will block in dmu_tx_wait().
1037 		 * Otherwise, return EIO so that an error can get
1038 		 * propagated back to the VOP calls.
1039 		 *
1040 		 * Note that we always honor the `flags` flag regardless
1041 		 * of the failuremode setting.
1042 		 */
1043 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1044 		    !(flags & DMU_TX_WAIT))
1045 			return (SET_ERROR(EIO));
1046 
1047 		return (SET_ERROR(ERESTART));
1048 	}
1049 
1050 	if (!tx->tx_dirty_delayed &&
1051 	    dsl_pool_need_wrlog_delay(tx->tx_pool)) {
1052 		tx->tx_wait_dirty = B_TRUE;
1053 		DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
1054 		return (SET_ERROR(ERESTART));
1055 	}
1056 
1057 	if (!tx->tx_dirty_delayed &&
1058 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1059 		tx->tx_wait_dirty = B_TRUE;
1060 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
1061 		return (SET_ERROR(ERESTART));
1062 	}
1063 
1064 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1065 	tx->tx_needassign_txh = NULL;
1066 
1067 	/*
1068 	 * NB: No error returns are allowed after txg_hold_open, but
1069 	 * before processing the dnode holds, due to the
1070 	 * dmu_tx_unassign() logic.
1071 	 */
1072 
1073 	uint64_t towrite = 0;
1074 	uint64_t tohold = 0;
1075 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1076 	    txh = list_next(&tx->tx_holds, txh)) {
1077 		dnode_t *dn = txh->txh_dnode;
1078 		if (dn != NULL) {
1079 			/*
1080 			 * This thread can't hold the dn_struct_rwlock
1081 			 * while assigning the tx, because this can lead to
1082 			 * deadlock. Specifically, if this dnode is already
1083 			 * assigned to an earlier txg, this thread may need
1084 			 * to wait for that txg to sync (the ERESTART case
1085 			 * below).  The other thread that has assigned this
1086 			 * dnode to an earlier txg prevents this txg from
1087 			 * syncing until its tx can complete (calling
1088 			 * dmu_tx_commit()), but it may need to acquire the
1089 			 * dn_struct_rwlock to do so (e.g. via
1090 			 * dmu_buf_hold*()).
1091 			 *
1092 			 * Note that this thread can't hold the lock for
1093 			 * read either, but the rwlock doesn't record
1094 			 * enough information to make that assertion.
1095 			 */
1096 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
1097 
1098 			mutex_enter(&dn->dn_mtx);
1099 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1100 				mutex_exit(&dn->dn_mtx);
1101 				tx->tx_needassign_txh = txh;
1102 				DMU_TX_STAT_BUMP(dmu_tx_group);
1103 				return (SET_ERROR(ERESTART));
1104 			}
1105 			if (dn->dn_assigned_txg == 0)
1106 				dn->dn_assigned_txg = tx->tx_txg;
1107 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1108 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
1109 			mutex_exit(&dn->dn_mtx);
1110 		}
1111 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
1112 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
1113 	}
1114 
1115 	/* needed allocation: worst-case estimate of write space */
1116 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
1117 	/* calculate memory footprint estimate */
1118 	uint64_t memory = towrite + tohold;
1119 
1120 	if (tx->tx_dir != NULL && asize != 0) {
1121 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1122 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
1123 		if (err != 0)
1124 			return (err);
1125 	}
1126 
1127 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
1128 
1129 	return (0);
1130 }
1131 
1132 static void
dmu_tx_unassign(dmu_tx_t * tx)1133 dmu_tx_unassign(dmu_tx_t *tx)
1134 {
1135 	if (tx->tx_txg == 0)
1136 		return;
1137 
1138 	txg_rele_to_quiesce(&tx->tx_txgh);
1139 
1140 	/*
1141 	 * Walk the transaction's hold list, removing the hold on the
1142 	 * associated dnode, and notifying waiters if the refcount drops to 0.
1143 	 */
1144 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
1145 	    txh && txh != tx->tx_needassign_txh;
1146 	    txh = list_next(&tx->tx_holds, txh)) {
1147 		dnode_t *dn = txh->txh_dnode;
1148 
1149 		if (dn == NULL)
1150 			continue;
1151 		mutex_enter(&dn->dn_mtx);
1152 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1153 
1154 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1155 			dn->dn_assigned_txg = 0;
1156 			cv_broadcast(&dn->dn_notxholds);
1157 		}
1158 		mutex_exit(&dn->dn_mtx);
1159 	}
1160 
1161 	txg_rele_to_sync(&tx->tx_txgh);
1162 
1163 	tx->tx_lasttried_txg = tx->tx_txg;
1164 	tx->tx_txg = 0;
1165 }
1166 
1167 /*
1168  * Assign tx to a transaction group; `flags` is a bitmask:
1169  *
1170  * If DMU_TX_WAIT is set and the currently open txg is full, this function
1171  * will wait until there's a new txg. This should be used when no locks
1172  * are being held. With this bit set, this function will only fail if
1173  * we're truly out of space (or over quota).
1174  *
1175  * If DMU_TX_WAIT is *not* set and we can't assign into the currently open
1176  * txg without blocking, this function will return immediately with
1177  * ERESTART. This should be used whenever locks are being held.  On an
1178  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1179  * and try again.
1180  *
1181  * If DMU_TX_NOTHROTTLE is set, this indicates that this tx should not be
1182  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1183  * details on the throttle). This is used by the VFS operations, after
1184  * they have already called dmu_tx_wait() (though most likely on a
1185  * different tx).
1186  *
1187  * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1188  * will assign the tx to monotonically increasing txgs. Of course this is
1189  * not strong monotonicity, because the same txg can be returned multiple
1190  * times in a row. This guarantee holds both for subsequent calls from
1191  * one thread and for multiple threads. For example, it is impossible to
1192  * observe the following sequence of events:
1193  *
1194  *          Thread 1                            Thread 2
1195  *
1196  *     dmu_tx_assign(T1, ...)
1197  *     1 <- dmu_tx_get_txg(T1)
1198  *                                       dmu_tx_assign(T2, ...)
1199  *                                       2 <- dmu_tx_get_txg(T2)
1200  *     dmu_tx_assign(T3, ...)
1201  *     1 <- dmu_tx_get_txg(T3)
1202  */
1203 int
dmu_tx_assign(dmu_tx_t * tx,uint64_t flags)1204 dmu_tx_assign(dmu_tx_t *tx, uint64_t flags)
1205 {
1206 	int err;
1207 
1208 	ASSERT(tx->tx_txg == 0);
1209 	ASSERT0(flags & ~(DMU_TX_WAIT | DMU_TX_NOTHROTTLE));
1210 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1211 
1212 	/* If we might wait, we must not hold the config lock. */
1213 	IMPLY((flags & DMU_TX_WAIT), !dsl_pool_config_held(tx->tx_pool));
1214 
1215 	if ((flags & DMU_TX_NOTHROTTLE))
1216 		tx->tx_dirty_delayed = B_TRUE;
1217 
1218 	while ((err = dmu_tx_try_assign(tx, flags)) != 0) {
1219 		dmu_tx_unassign(tx);
1220 
1221 		if (err != ERESTART || !(flags & DMU_TX_WAIT))
1222 			return (err);
1223 
1224 		dmu_tx_wait(tx);
1225 	}
1226 
1227 	txg_rele_to_quiesce(&tx->tx_txgh);
1228 
1229 	return (0);
1230 }
1231 
1232 void
dmu_tx_wait(dmu_tx_t * tx)1233 dmu_tx_wait(dmu_tx_t *tx)
1234 {
1235 	spa_t *spa = tx->tx_pool->dp_spa;
1236 	dsl_pool_t *dp = tx->tx_pool;
1237 	hrtime_t before;
1238 
1239 	ASSERT(tx->tx_txg == 0);
1240 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1241 
1242 	before = gethrtime();
1243 
1244 	if (tx->tx_wait_dirty) {
1245 		uint64_t dirty;
1246 
1247 		/*
1248 		 * dmu_tx_try_assign() has determined that we need to wait
1249 		 * because we've consumed much or all of the dirty buffer
1250 		 * space.
1251 		 */
1252 		mutex_enter(&dp->dp_lock);
1253 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1254 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1255 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1256 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1257 		dirty = dp->dp_dirty_total;
1258 		mutex_exit(&dp->dp_lock);
1259 
1260 		dmu_tx_delay(tx, dirty);
1261 
1262 		tx->tx_wait_dirty = B_FALSE;
1263 
1264 		/*
1265 		 * Note: setting tx_dirty_delayed only has effect if the
1266 		 * caller used DMU_TX_WAIT.  Otherwise they are going to
1267 		 * destroy this tx and try again.  The common case,
1268 		 * zfs_write(), uses DMU_TX_WAIT.
1269 		 */
1270 		tx->tx_dirty_delayed = B_TRUE;
1271 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1272 		/*
1273 		 * If the pool is suspended we need to wait until it
1274 		 * is resumed.  Note that it's possible that the pool
1275 		 * has become active after this thread has tried to
1276 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1277 		 * would not have been set.
1278 		 */
1279 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1280 	} else if (tx->tx_needassign_txh) {
1281 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1282 
1283 		mutex_enter(&dn->dn_mtx);
1284 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1285 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1286 		mutex_exit(&dn->dn_mtx);
1287 		tx->tx_needassign_txh = NULL;
1288 	} else {
1289 		/*
1290 		 * If we have a lot of dirty data just wait until we sync
1291 		 * out a TXG at which point we'll hopefully have synced
1292 		 * a portion of the changes.
1293 		 */
1294 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1295 	}
1296 
1297 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1298 }
1299 
1300 static void
dmu_tx_destroy(dmu_tx_t * tx)1301 dmu_tx_destroy(dmu_tx_t *tx)
1302 {
1303 	dmu_tx_hold_t *txh;
1304 
1305 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1306 		dnode_t *dn = txh->txh_dnode;
1307 
1308 		list_remove(&tx->tx_holds, txh);
1309 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1310 		    zfs_refcount_count(&txh->txh_space_towrite));
1311 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1312 		    zfs_refcount_count(&txh->txh_memory_tohold));
1313 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1314 		if (dn != NULL)
1315 			dnode_rele(dn, tx);
1316 	}
1317 
1318 	list_destroy(&tx->tx_callbacks);
1319 	list_destroy(&tx->tx_holds);
1320 	kmem_free(tx, sizeof (dmu_tx_t));
1321 }
1322 
1323 void
dmu_tx_commit(dmu_tx_t * tx)1324 dmu_tx_commit(dmu_tx_t *tx)
1325 {
1326 	ASSERT(tx->tx_txg != 0);
1327 
1328 	/*
1329 	 * Go through the transaction's hold list and remove holds on
1330 	 * associated dnodes, notifying waiters if no holds remain.
1331 	 */
1332 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1333 	    txh = list_next(&tx->tx_holds, txh)) {
1334 		dnode_t *dn = txh->txh_dnode;
1335 
1336 		if (dn == NULL)
1337 			continue;
1338 
1339 		mutex_enter(&dn->dn_mtx);
1340 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1341 
1342 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1343 			dn->dn_assigned_txg = 0;
1344 			cv_broadcast(&dn->dn_notxholds);
1345 		}
1346 		mutex_exit(&dn->dn_mtx);
1347 	}
1348 
1349 	if (tx->tx_tempreserve_cookie)
1350 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1351 
1352 	if (!list_is_empty(&tx->tx_callbacks))
1353 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1354 
1355 	if (tx->tx_anyobj == FALSE)
1356 		txg_rele_to_sync(&tx->tx_txgh);
1357 
1358 	dmu_tx_destroy(tx);
1359 }
1360 
1361 void
dmu_tx_abort(dmu_tx_t * tx)1362 dmu_tx_abort(dmu_tx_t *tx)
1363 {
1364 	ASSERT(tx->tx_txg == 0);
1365 
1366 	/*
1367 	 * Call any registered callbacks with an error code.
1368 	 */
1369 	if (!list_is_empty(&tx->tx_callbacks))
1370 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1371 
1372 	dmu_tx_destroy(tx);
1373 }
1374 
1375 uint64_t
dmu_tx_get_txg(dmu_tx_t * tx)1376 dmu_tx_get_txg(dmu_tx_t *tx)
1377 {
1378 	ASSERT(tx->tx_txg != 0);
1379 	return (tx->tx_txg);
1380 }
1381 
1382 dsl_pool_t *
dmu_tx_pool(dmu_tx_t * tx)1383 dmu_tx_pool(dmu_tx_t *tx)
1384 {
1385 	ASSERT(tx->tx_pool != NULL);
1386 	return (tx->tx_pool);
1387 }
1388 
1389 /*
1390  * Register a callback to be executed at the end of a TXG.
1391  *
1392  * Note: This currently exists for outside consumers, specifically the ZFS OSD
1393  * for Lustre. Please do not remove before checking that project. For examples
1394  * on how to use this see `ztest_commit_callback`.
1395  */
1396 void
dmu_tx_callback_register(dmu_tx_t * tx,dmu_tx_callback_func_t * func,void * data)1397 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1398 {
1399 	dmu_tx_callback_t *dcb;
1400 
1401 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1402 
1403 	dcb->dcb_func = func;
1404 	dcb->dcb_data = data;
1405 
1406 	list_insert_tail(&tx->tx_callbacks, dcb);
1407 }
1408 
1409 /*
1410  * Call all the commit callbacks on a list, with a given error code.
1411  */
1412 void
dmu_tx_do_callbacks(list_t * cb_list,int error)1413 dmu_tx_do_callbacks(list_t *cb_list, int error)
1414 {
1415 	dmu_tx_callback_t *dcb;
1416 
1417 	while ((dcb = list_remove_tail(cb_list)) != NULL) {
1418 		dcb->dcb_func(dcb->dcb_data, error);
1419 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1420 	}
1421 }
1422 
1423 /*
1424  * Interface to hold a bunch of attributes.
1425  * used for creating new files.
1426  * attrsize is the total size of all attributes
1427  * to be added during object creation
1428  *
1429  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1430  */
1431 
1432 /*
1433  * hold necessary attribute name for attribute registration.
1434  * should be a very rare case where this is needed.  If it does
1435  * happen it would only happen on the first write to the file system.
1436  */
1437 static void
dmu_tx_sa_registration_hold(sa_os_t * sa,dmu_tx_t * tx)1438 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1439 {
1440 	if (!sa->sa_need_attr_registration)
1441 		return;
1442 
1443 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1444 		if (!sa->sa_attr_table[i].sa_registered) {
1445 			if (sa->sa_reg_attr_obj)
1446 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1447 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1448 			else
1449 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1450 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1451 		}
1452 	}
1453 }
1454 
1455 void
dmu_tx_hold_spill(dmu_tx_t * tx,uint64_t object)1456 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1457 {
1458 	dmu_tx_hold_t *txh;
1459 
1460 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1461 	    THT_SPILL, 0, 0);
1462 	if (txh != NULL)
1463 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1464 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1465 }
1466 
1467 void
dmu_tx_hold_sa_create(dmu_tx_t * tx,int attrsize)1468 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1469 {
1470 	sa_os_t *sa = tx->tx_objset->os_sa;
1471 
1472 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1473 
1474 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1475 		return;
1476 
1477 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1478 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1479 	} else {
1480 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1481 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1482 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1483 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1484 	}
1485 
1486 	dmu_tx_sa_registration_hold(sa, tx);
1487 
1488 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1489 		return;
1490 
1491 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1492 	    THT_SPILL, 0, 0);
1493 }
1494 
1495 /*
1496  * Hold SA attribute
1497  *
1498  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1499  *
1500  * variable_size is the total size of all variable sized attributes
1501  * passed to this function.  It is not the total size of all
1502  * variable size attributes that *may* exist on this object.
1503  */
1504 void
dmu_tx_hold_sa(dmu_tx_t * tx,sa_handle_t * hdl,boolean_t may_grow)1505 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1506 {
1507 	uint64_t object;
1508 	sa_os_t *sa = tx->tx_objset->os_sa;
1509 
1510 	ASSERT(hdl != NULL);
1511 
1512 	object = sa_handle_object(hdl);
1513 
1514 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1515 	DB_DNODE_ENTER(db);
1516 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1517 	DB_DNODE_EXIT(db);
1518 
1519 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1520 		return;
1521 
1522 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1523 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1524 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1525 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1526 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1527 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1528 	}
1529 
1530 	dmu_tx_sa_registration_hold(sa, tx);
1531 
1532 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1533 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1534 
1535 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1536 		ASSERT(tx->tx_txg == 0);
1537 		dmu_tx_hold_spill(tx, object);
1538 	} else {
1539 		DB_DNODE_ENTER(db);
1540 		if (DB_DNODE(db)->dn_have_spill) {
1541 			ASSERT(tx->tx_txg == 0);
1542 			dmu_tx_hold_spill(tx, object);
1543 		}
1544 		DB_DNODE_EXIT(db);
1545 	}
1546 }
1547 
1548 void
dmu_tx_init(void)1549 dmu_tx_init(void)
1550 {
1551 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1552 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1553 	    KSTAT_FLAG_VIRTUAL);
1554 
1555 	if (dmu_tx_ksp != NULL) {
1556 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1557 		kstat_install(dmu_tx_ksp);
1558 	}
1559 }
1560 
1561 void
dmu_tx_fini(void)1562 dmu_tx_fini(void)
1563 {
1564 	if (dmu_tx_ksp != NULL) {
1565 		kstat_delete(dmu_tx_ksp);
1566 		dmu_tx_ksp = NULL;
1567 	}
1568 }
1569 
1570 #if defined(_KERNEL)
1571 EXPORT_SYMBOL(dmu_tx_create);
1572 EXPORT_SYMBOL(dmu_tx_hold_write);
1573 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1574 EXPORT_SYMBOL(dmu_tx_hold_append);
1575 EXPORT_SYMBOL(dmu_tx_hold_append_by_dnode);
1576 EXPORT_SYMBOL(dmu_tx_hold_free);
1577 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1578 EXPORT_SYMBOL(dmu_tx_hold_zap);
1579 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1580 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1581 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1582 EXPORT_SYMBOL(dmu_tx_abort);
1583 EXPORT_SYMBOL(dmu_tx_assign);
1584 EXPORT_SYMBOL(dmu_tx_wait);
1585 EXPORT_SYMBOL(dmu_tx_commit);
1586 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1587 EXPORT_SYMBOL(dmu_tx_get_txg);
1588 EXPORT_SYMBOL(dmu_tx_callback_register);
1589 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1590 EXPORT_SYMBOL(dmu_tx_hold_spill);
1591 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1592 EXPORT_SYMBOL(dmu_tx_hold_sa);
1593 #endif
1594