1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
26 * Copyright (c) 2024, Klara, Inc.
27 */
28
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dbuf.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/zap_impl.h>
38 #include <sys/spa.h>
39 #include <sys/sa.h>
40 #include <sys/sa_impl.h>
41 #include <sys/zfs_context.h>
42 #include <sys/trace_zfs.h>
43
44 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
45 uint64_t arg1, uint64_t arg2);
46
47 dmu_tx_stats_t dmu_tx_stats = {
48 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
49 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
50 { "dmu_tx_error", KSTAT_DATA_UINT64 },
51 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
52 { "dmu_tx_group", KSTAT_DATA_UINT64 },
53 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
54 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
56 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
57 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
58 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
59 { "dmu_tx_wrlog_delay", KSTAT_DATA_UINT64 },
60 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
61 };
62
63 static kstat_t *dmu_tx_ksp;
64
65 dmu_tx_t *
dmu_tx_create_dd(dsl_dir_t * dd)66 dmu_tx_create_dd(dsl_dir_t *dd)
67 {
68 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
69 tx->tx_dir = dd;
70 if (dd != NULL)
71 tx->tx_pool = dd->dd_pool;
72 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
73 offsetof(dmu_tx_hold_t, txh_node));
74 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
75 offsetof(dmu_tx_callback_t, dcb_node));
76 tx->tx_start = gethrtime();
77 return (tx);
78 }
79
80 dmu_tx_t *
dmu_tx_create(objset_t * os)81 dmu_tx_create(objset_t *os)
82 {
83 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
84 tx->tx_objset = os;
85 return (tx);
86 }
87
88 dmu_tx_t *
dmu_tx_create_assigned(struct dsl_pool * dp,uint64_t txg)89 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
90 {
91 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
92
93 TXG_VERIFY(dp->dp_spa, txg);
94 tx->tx_pool = dp;
95 tx->tx_txg = txg;
96 tx->tx_anyobj = TRUE;
97
98 return (tx);
99 }
100
101 int
dmu_tx_is_syncing(dmu_tx_t * tx)102 dmu_tx_is_syncing(dmu_tx_t *tx)
103 {
104 return (tx->tx_anyobj);
105 }
106
107 int
dmu_tx_private_ok(dmu_tx_t * tx)108 dmu_tx_private_ok(dmu_tx_t *tx)
109 {
110 return (tx->tx_anyobj);
111 }
112
113 static dmu_tx_hold_t *
dmu_tx_hold_dnode_impl(dmu_tx_t * tx,dnode_t * dn,enum dmu_tx_hold_type type,uint64_t arg1,uint64_t arg2)114 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
115 uint64_t arg1, uint64_t arg2)
116 {
117 dmu_tx_hold_t *txh;
118
119 if (dn != NULL) {
120 (void) zfs_refcount_add(&dn->dn_holds, tx);
121 if (tx->tx_txg != 0) {
122 mutex_enter(&dn->dn_mtx);
123 /*
124 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
125 * problem, but there's no way for it to happen (for
126 * now, at least).
127 */
128 ASSERT(dn->dn_assigned_txg == 0);
129 dn->dn_assigned_txg = tx->tx_txg;
130 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
131 mutex_exit(&dn->dn_mtx);
132 }
133 }
134
135 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
136 txh->txh_tx = tx;
137 txh->txh_dnode = dn;
138 zfs_refcount_create(&txh->txh_space_towrite);
139 zfs_refcount_create(&txh->txh_memory_tohold);
140 txh->txh_type = type;
141 txh->txh_arg1 = arg1;
142 txh->txh_arg2 = arg2;
143 list_insert_tail(&tx->tx_holds, txh);
144
145 return (txh);
146 }
147
148 static dmu_tx_hold_t *
dmu_tx_hold_object_impl(dmu_tx_t * tx,objset_t * os,uint64_t object,enum dmu_tx_hold_type type,uint64_t arg1,uint64_t arg2)149 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
150 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
151 {
152 dnode_t *dn = NULL;
153 dmu_tx_hold_t *txh;
154 int err;
155
156 if (object != DMU_NEW_OBJECT) {
157 err = dnode_hold(os, object, FTAG, &dn);
158 if (err != 0) {
159 tx->tx_err = err;
160 return (NULL);
161 }
162 }
163 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
164 if (dn != NULL)
165 dnode_rele(dn, FTAG);
166 return (txh);
167 }
168
169 void
dmu_tx_add_new_object(dmu_tx_t * tx,dnode_t * dn)170 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
171 {
172 /*
173 * If we're syncing, they can manipulate any object anyhow, and
174 * the hold on the dnode_t can cause problems.
175 */
176 if (!dmu_tx_is_syncing(tx))
177 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
178 }
179
180 /*
181 * This function reads specified data from disk. The specified data will
182 * be needed to perform the transaction -- i.e, it will be read after
183 * we do dmu_tx_assign(). There are two reasons that we read the data now
184 * (before dmu_tx_assign()):
185 *
186 * 1. Reading it now has potentially better performance. The transaction
187 * has not yet been assigned, so the TXG is not held open, and also the
188 * caller typically has less locks held when calling dmu_tx_hold_*() than
189 * after the transaction has been assigned. This reduces the lock (and txg)
190 * hold times, thus reducing lock contention.
191 *
192 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
193 * that are detected before they start making changes to the DMU state
194 * (i.e. now). Once the transaction has been assigned, and some DMU
195 * state has been changed, it can be difficult to recover from an i/o
196 * error (e.g. to undo the changes already made in memory at the DMU
197 * layer). Typically code to do so does not exist in the caller -- it
198 * assumes that the data has already been cached and thus i/o errors are
199 * not possible.
200 *
201 * It has been observed that the i/o initiated here can be a performance
202 * problem, and it appears to be optional, because we don't look at the
203 * data which is read. However, removing this read would only serve to
204 * move the work elsewhere (after the dmu_tx_assign()), where it may
205 * have a greater impact on performance (in addition to the impact on
206 * fault tolerance noted above).
207 */
208 static int
dmu_tx_check_ioerr(zio_t * zio,dnode_t * dn,int level,uint64_t blkid)209 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
210 {
211 int err;
212 dmu_buf_impl_t *db;
213
214 rw_enter(&dn->dn_struct_rwlock, RW_READER);
215 err = dbuf_hold_impl(dn, level, blkid, TRUE, FALSE, FTAG, &db);
216 rw_exit(&dn->dn_struct_rwlock);
217 if (err == ENOENT)
218 return (0);
219 if (err != 0)
220 return (err);
221 /*
222 * PARTIAL_FIRST allows caching for uncacheable blocks. It will
223 * be cleared after dmu_buf_will_dirty() call dbuf_read() again.
224 */
225 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH |
226 (level == 0 ? DB_RF_PARTIAL_FIRST : 0));
227 dbuf_rele(db, FTAG);
228 return (err);
229 }
230
231 static void
dmu_tx_count_write(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)232 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
233 {
234 dnode_t *dn = txh->txh_dnode;
235 int err = 0;
236
237 if (len == 0)
238 return;
239
240 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
241
242 if (dn == NULL)
243 return;
244
245 /*
246 * For i/o error checking, read the blocks that will be needed
247 * to perform the write: the first and last level-0 blocks (if
248 * they are not aligned, i.e. if they are partial-block writes),
249 * and all the level-1 blocks.
250 */
251 if (dn->dn_maxblkid == 0) {
252 if (off < dn->dn_datablksz &&
253 (off > 0 || len < dn->dn_datablksz)) {
254 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
255 if (err != 0) {
256 txh->txh_tx->tx_err = err;
257 }
258 }
259 } else {
260 zio_t *zio = zio_root(dn->dn_objset->os_spa,
261 NULL, NULL, ZIO_FLAG_CANFAIL);
262
263 /* first level-0 block */
264 uint64_t start = off >> dn->dn_datablkshift;
265 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
266 err = dmu_tx_check_ioerr(zio, dn, 0, start);
267 if (err != 0) {
268 txh->txh_tx->tx_err = err;
269 }
270 }
271
272 /* last level-0 block */
273 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
274 if (end != start && end <= dn->dn_maxblkid &&
275 P2PHASE(off + len, dn->dn_datablksz)) {
276 err = dmu_tx_check_ioerr(zio, dn, 0, end);
277 if (err != 0) {
278 txh->txh_tx->tx_err = err;
279 }
280 }
281
282 /* level-1 blocks */
283 if (dn->dn_nlevels > 1) {
284 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
285 for (uint64_t i = (start >> shft) + 1;
286 i < end >> shft; i++) {
287 err = dmu_tx_check_ioerr(zio, dn, 1, i);
288 if (err != 0) {
289 txh->txh_tx->tx_err = err;
290 }
291 }
292 }
293
294 err = zio_wait(zio);
295 if (err != 0) {
296 txh->txh_tx->tx_err = err;
297 }
298 }
299 }
300
301 static void
dmu_tx_count_append(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)302 dmu_tx_count_append(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
303 {
304 dnode_t *dn = txh->txh_dnode;
305 int err = 0;
306
307 if (len == 0)
308 return;
309
310 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
311
312 if (dn == NULL)
313 return;
314
315 /*
316 * For i/o error checking, read the blocks that will be needed
317 * to perform the append; first level-0 block (if not aligned, i.e.
318 * if they are partial-block writes), no additional blocks are read.
319 */
320 if (dn->dn_maxblkid == 0) {
321 if (off < dn->dn_datablksz &&
322 (off > 0 || len < dn->dn_datablksz)) {
323 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
324 if (err != 0) {
325 txh->txh_tx->tx_err = err;
326 }
327 }
328 } else {
329 zio_t *zio = zio_root(dn->dn_objset->os_spa,
330 NULL, NULL, ZIO_FLAG_CANFAIL);
331
332 /* first level-0 block */
333 uint64_t start = off >> dn->dn_datablkshift;
334 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
335 err = dmu_tx_check_ioerr(zio, dn, 0, start);
336 if (err != 0) {
337 txh->txh_tx->tx_err = err;
338 }
339 }
340
341 err = zio_wait(zio);
342 if (err != 0) {
343 txh->txh_tx->tx_err = err;
344 }
345 }
346 }
347
348 static void
dmu_tx_count_dnode(dmu_tx_hold_t * txh)349 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
350 {
351 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
352 DNODE_MIN_SIZE, FTAG);
353 }
354
355 void
dmu_tx_hold_write(dmu_tx_t * tx,uint64_t object,uint64_t off,int len)356 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
357 {
358 dmu_tx_hold_t *txh;
359
360 ASSERT0(tx->tx_txg);
361 ASSERT3U(len, <=, DMU_MAX_ACCESS);
362 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
363
364 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
365 object, THT_WRITE, off, len);
366 if (txh != NULL) {
367 dmu_tx_count_write(txh, off, len);
368 dmu_tx_count_dnode(txh);
369 }
370 }
371
372 void
dmu_tx_hold_write_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)373 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
374 {
375 dmu_tx_hold_t *txh;
376
377 ASSERT0(tx->tx_txg);
378 ASSERT3U(len, <=, DMU_MAX_ACCESS);
379 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
380
381 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
382 if (txh != NULL) {
383 dmu_tx_count_write(txh, off, len);
384 dmu_tx_count_dnode(txh);
385 }
386 }
387
388 /*
389 * Should be used when appending to an object and the exact offset is unknown.
390 * The write must occur at or beyond the specified offset. Only the L0 block
391 * at provided offset will be prefetched.
392 */
393 void
dmu_tx_hold_append(dmu_tx_t * tx,uint64_t object,uint64_t off,int len)394 dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
395 {
396 dmu_tx_hold_t *txh;
397
398 ASSERT0(tx->tx_txg);
399 ASSERT3U(len, <=, DMU_MAX_ACCESS);
400
401 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
402 object, THT_APPEND, off, DMU_OBJECT_END);
403 if (txh != NULL) {
404 dmu_tx_count_append(txh, off, len);
405 dmu_tx_count_dnode(txh);
406 }
407 }
408
409 void
dmu_tx_hold_append_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)410 dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
411 {
412 dmu_tx_hold_t *txh;
413
414 ASSERT0(tx->tx_txg);
415 ASSERT3U(len, <=, DMU_MAX_ACCESS);
416
417 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_APPEND, off, DMU_OBJECT_END);
418 if (txh != NULL) {
419 dmu_tx_count_append(txh, off, len);
420 dmu_tx_count_dnode(txh);
421 }
422 }
423
424 /*
425 * This function marks the transaction as being a "net free". The end
426 * result is that refquotas will be disabled for this transaction, and
427 * this transaction will be able to use half of the pool space overhead
428 * (see dsl_pool_adjustedsize()). Therefore this function should only
429 * be called for transactions that we expect will not cause a net increase
430 * in the amount of space used (but it's OK if that is occasionally not true).
431 */
432 void
dmu_tx_mark_netfree(dmu_tx_t * tx)433 dmu_tx_mark_netfree(dmu_tx_t *tx)
434 {
435 tx->tx_netfree = B_TRUE;
436 }
437
438 static void
dmu_tx_count_free(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)439 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
440 {
441 dmu_tx_t *tx = txh->txh_tx;
442 dnode_t *dn = txh->txh_dnode;
443 int err;
444
445 ASSERT(tx->tx_txg == 0);
446
447 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
448 return;
449 if (len == DMU_OBJECT_END)
450 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
451
452 /*
453 * For i/o error checking, we read the first and last level-0
454 * blocks if they are not aligned, and all the level-1 blocks.
455 *
456 * Note: dbuf_free_range() assumes that we have not instantiated
457 * any level-0 dbufs that will be completely freed. Therefore we must
458 * exercise care to not read or count the first and last blocks
459 * if they are blocksize-aligned.
460 */
461 if (dn->dn_datablkshift == 0) {
462 if (off != 0 || len < dn->dn_datablksz)
463 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
464 } else {
465 /* first block will be modified if it is not aligned */
466 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
467 dmu_tx_count_write(txh, off, 1);
468 /* last block will be modified if it is not aligned */
469 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
470 dmu_tx_count_write(txh, off + len, 1);
471 }
472
473 /*
474 * Check level-1 blocks.
475 */
476 if (dn->dn_nlevels > 1) {
477 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
478 SPA_BLKPTRSHIFT;
479 uint64_t start = off >> shift;
480 uint64_t end = (off + len) >> shift;
481
482 ASSERT(dn->dn_indblkshift != 0);
483
484 /*
485 * dnode_reallocate() can result in an object with indirect
486 * blocks having an odd data block size. In this case,
487 * just check the single block.
488 */
489 if (dn->dn_datablkshift == 0)
490 start = end = 0;
491
492 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
493 NULL, NULL, ZIO_FLAG_CANFAIL);
494 for (uint64_t i = start; i <= end; i++) {
495 uint64_t ibyte = i << shift;
496 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
497 i = ibyte >> shift;
498 if (err == ESRCH || i > end)
499 break;
500 if (err != 0) {
501 tx->tx_err = err;
502 (void) zio_wait(zio);
503 return;
504 }
505
506 (void) zfs_refcount_add_many(&txh->txh_memory_tohold,
507 1 << dn->dn_indblkshift, FTAG);
508
509 err = dmu_tx_check_ioerr(zio, dn, 1, i);
510 if (err != 0) {
511 tx->tx_err = err;
512 (void) zio_wait(zio);
513 return;
514 }
515 }
516 err = zio_wait(zio);
517 if (err != 0) {
518 tx->tx_err = err;
519 return;
520 }
521 }
522 }
523
524 void
dmu_tx_hold_free(dmu_tx_t * tx,uint64_t object,uint64_t off,uint64_t len)525 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
526 {
527 dmu_tx_hold_t *txh;
528
529 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
530 object, THT_FREE, off, len);
531 if (txh != NULL) {
532 dmu_tx_count_dnode(txh);
533 dmu_tx_count_free(txh, off, len);
534 }
535 }
536
537 void
dmu_tx_hold_free_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,uint64_t len)538 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
539 {
540 dmu_tx_hold_t *txh;
541
542 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
543 if (txh != NULL) {
544 dmu_tx_count_dnode(txh);
545 dmu_tx_count_free(txh, off, len);
546 }
547 }
548
549 static void
dmu_tx_count_clone(dmu_tx_hold_t * txh,uint64_t off,uint64_t len)550 dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
551 {
552
553 /*
554 * Reuse dmu_tx_count_free(), it does exactly what we need for clone.
555 */
556 dmu_tx_count_free(txh, off, len);
557 }
558
559 void
dmu_tx_hold_clone_by_dnode(dmu_tx_t * tx,dnode_t * dn,uint64_t off,int len)560 dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
561 {
562 dmu_tx_hold_t *txh;
563
564 ASSERT0(tx->tx_txg);
565 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
566
567 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len);
568 if (txh != NULL) {
569 dmu_tx_count_dnode(txh);
570 dmu_tx_count_clone(txh, off, len);
571 }
572 }
573
574 static void
dmu_tx_hold_zap_impl(dmu_tx_hold_t * txh,const char * name)575 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
576 {
577 dmu_tx_t *tx = txh->txh_tx;
578 dnode_t *dn = txh->txh_dnode;
579 int err;
580
581 ASSERT(tx->tx_txg == 0);
582
583 dmu_tx_count_dnode(txh);
584
585 /*
586 * Modifying a almost-full microzap is around the worst case (128KB)
587 *
588 * If it is a fat zap, the worst case would be 7*16KB=112KB:
589 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
590 * - 4 new blocks written if adding:
591 * - 2 blocks for possibly split leaves,
592 * - 2 grown ptrtbl blocks
593 */
594 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
595 zap_get_micro_max_size(tx->tx_pool->dp_spa), FTAG);
596
597 if (dn == NULL)
598 return;
599
600 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
601
602 if (dn->dn_maxblkid == 0 || name == NULL) {
603 /*
604 * This is a microzap (only one block), or we don't know
605 * the name. Check the first block for i/o errors.
606 */
607 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
608 if (err != 0) {
609 tx->tx_err = err;
610 }
611 } else {
612 /*
613 * Access the name so that we'll check for i/o errors to
614 * the leaf blocks, etc. We ignore ENOENT, as this name
615 * may not yet exist.
616 */
617 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
618 if (err == EIO || err == ECKSUM || err == ENXIO) {
619 tx->tx_err = err;
620 }
621 }
622 }
623
624 void
dmu_tx_hold_zap(dmu_tx_t * tx,uint64_t object,int add,const char * name)625 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
626 {
627 dmu_tx_hold_t *txh;
628
629 ASSERT0(tx->tx_txg);
630
631 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
632 object, THT_ZAP, add, (uintptr_t)name);
633 if (txh != NULL)
634 dmu_tx_hold_zap_impl(txh, name);
635 }
636
637 void
dmu_tx_hold_zap_by_dnode(dmu_tx_t * tx,dnode_t * dn,int add,const char * name)638 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
639 {
640 dmu_tx_hold_t *txh;
641
642 ASSERT0(tx->tx_txg);
643 ASSERT(dn != NULL);
644
645 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
646 if (txh != NULL)
647 dmu_tx_hold_zap_impl(txh, name);
648 }
649
650 void
dmu_tx_hold_bonus(dmu_tx_t * tx,uint64_t object)651 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
652 {
653 dmu_tx_hold_t *txh;
654
655 ASSERT(tx->tx_txg == 0);
656
657 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
658 object, THT_BONUS, 0, 0);
659 if (txh)
660 dmu_tx_count_dnode(txh);
661 }
662
663 void
dmu_tx_hold_bonus_by_dnode(dmu_tx_t * tx,dnode_t * dn)664 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
665 {
666 dmu_tx_hold_t *txh;
667
668 ASSERT0(tx->tx_txg);
669
670 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
671 if (txh)
672 dmu_tx_count_dnode(txh);
673 }
674
675 void
dmu_tx_hold_space(dmu_tx_t * tx,uint64_t space)676 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
677 {
678 dmu_tx_hold_t *txh;
679
680 ASSERT(tx->tx_txg == 0);
681
682 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
683 DMU_NEW_OBJECT, THT_SPACE, space, 0);
684 if (txh) {
685 (void) zfs_refcount_add_many(
686 &txh->txh_space_towrite, space, FTAG);
687 }
688 }
689
690 #ifdef ZFS_DEBUG
691 void
dmu_tx_dirty_buf(dmu_tx_t * tx,dmu_buf_impl_t * db)692 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
693 {
694 boolean_t match_object = B_FALSE;
695 boolean_t match_offset = B_FALSE;
696
697 DB_DNODE_ENTER(db);
698 dnode_t *dn = DB_DNODE(db);
699 ASSERT(tx->tx_txg != 0);
700 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
701 ASSERT3U(dn->dn_object, ==, db->db.db_object);
702
703 if (tx->tx_anyobj) {
704 DB_DNODE_EXIT(db);
705 return;
706 }
707
708 /* XXX No checking on the meta dnode for now */
709 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
710 DB_DNODE_EXIT(db);
711 return;
712 }
713
714 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
715 txh = list_next(&tx->tx_holds, txh)) {
716 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
717 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
718 match_object = TRUE;
719 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
720 int datablkshift = dn->dn_datablkshift ?
721 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
722 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
723 int shift = datablkshift + epbs * db->db_level;
724 uint64_t beginblk = shift >= 64 ? 0 :
725 (txh->txh_arg1 >> shift);
726 uint64_t endblk = shift >= 64 ? 0 :
727 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
728 uint64_t blkid = db->db_blkid;
729
730 /* XXX txh_arg2 better not be zero... */
731
732 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
733 txh->txh_type, (u_longlong_t)beginblk,
734 (u_longlong_t)endblk);
735
736 switch (txh->txh_type) {
737 case THT_WRITE:
738 if (blkid >= beginblk && blkid <= endblk)
739 match_offset = TRUE;
740 /*
741 * We will let this hold work for the bonus
742 * or spill buffer so that we don't need to
743 * hold it when creating a new object.
744 */
745 if (blkid == DMU_BONUS_BLKID ||
746 blkid == DMU_SPILL_BLKID)
747 match_offset = TRUE;
748 /*
749 * They might have to increase nlevels,
750 * thus dirtying the new TLIBs. Or the
751 * might have to change the block size,
752 * thus dirying the new lvl=0 blk=0.
753 */
754 if (blkid == 0)
755 match_offset = TRUE;
756 break;
757 case THT_APPEND:
758 if (blkid >= beginblk && (blkid <= endblk ||
759 txh->txh_arg2 == DMU_OBJECT_END))
760 match_offset = TRUE;
761
762 /*
763 * THT_WRITE used for bonus and spill blocks.
764 */
765 ASSERT(blkid != DMU_BONUS_BLKID &&
766 blkid != DMU_SPILL_BLKID);
767
768 /*
769 * They might have to increase nlevels,
770 * thus dirtying the new TLIBs. Or the
771 * might have to change the block size,
772 * thus dirying the new lvl=0 blk=0.
773 */
774 if (blkid == 0)
775 match_offset = TRUE;
776 break;
777 case THT_FREE:
778 /*
779 * We will dirty all the level 1 blocks in
780 * the free range and perhaps the first and
781 * last level 0 block.
782 */
783 if (blkid >= beginblk && (blkid <= endblk ||
784 txh->txh_arg2 == DMU_OBJECT_END))
785 match_offset = TRUE;
786 break;
787 case THT_SPILL:
788 if (blkid == DMU_SPILL_BLKID)
789 match_offset = TRUE;
790 break;
791 case THT_BONUS:
792 if (blkid == DMU_BONUS_BLKID)
793 match_offset = TRUE;
794 break;
795 case THT_ZAP:
796 match_offset = TRUE;
797 break;
798 case THT_NEWOBJECT:
799 match_object = TRUE;
800 break;
801 case THT_CLONE:
802 if (blkid >= beginblk && blkid <= endblk)
803 match_offset = TRUE;
804 /*
805 * They might have to increase nlevels,
806 * thus dirtying the new TLIBs. Or the
807 * might have to change the block size,
808 * thus dirying the new lvl=0 blk=0.
809 */
810 if (blkid == 0)
811 match_offset = TRUE;
812 break;
813 default:
814 cmn_err(CE_PANIC, "bad txh_type %d",
815 txh->txh_type);
816 }
817 }
818 if (match_object && match_offset) {
819 DB_DNODE_EXIT(db);
820 return;
821 }
822 }
823 DB_DNODE_EXIT(db);
824 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
825 (u_longlong_t)db->db.db_object, db->db_level,
826 (u_longlong_t)db->db_blkid);
827 }
828 #endif
829
830 /*
831 * If we can't do 10 iops, something is wrong. Let us go ahead
832 * and hit zfs_dirty_data_max.
833 */
834 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
835
836 /*
837 * We delay transactions when we've determined that the backend storage
838 * isn't able to accommodate the rate of incoming writes.
839 *
840 * If there is already a transaction waiting, we delay relative to when
841 * that transaction finishes waiting. This way the calculated min_time
842 * is independent of the number of threads concurrently executing
843 * transactions.
844 *
845 * If we are the only waiter, wait relative to when the transaction
846 * started, rather than the current time. This credits the transaction for
847 * "time already served", e.g. reading indirect blocks.
848 *
849 * The minimum time for a transaction to take is calculated as:
850 * min_time = scale * (dirty - min) / (max - dirty)
851 * min_time is then capped at zfs_delay_max_ns.
852 *
853 * The delay has two degrees of freedom that can be adjusted via tunables.
854 * The percentage of dirty data at which we start to delay is defined by
855 * zfs_delay_min_dirty_percent. This should typically be at or above
856 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
857 * delay after writing at full speed has failed to keep up with the incoming
858 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
859 * speaking, this variable determines the amount of delay at the midpoint of
860 * the curve.
861 *
862 * delay
863 * 10ms +-------------------------------------------------------------*+
864 * | *|
865 * 9ms + *+
866 * | *|
867 * 8ms + *+
868 * | * |
869 * 7ms + * +
870 * | * |
871 * 6ms + * +
872 * | * |
873 * 5ms + * +
874 * | * |
875 * 4ms + * +
876 * | * |
877 * 3ms + * +
878 * | * |
879 * 2ms + (midpoint) * +
880 * | | ** |
881 * 1ms + v *** +
882 * | zfs_delay_scale ----------> ******** |
883 * 0 +-------------------------------------*********----------------+
884 * 0% <- zfs_dirty_data_max -> 100%
885 *
886 * Note that since the delay is added to the outstanding time remaining on the
887 * most recent transaction, the delay is effectively the inverse of IOPS.
888 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
889 * was chosen such that small changes in the amount of accumulated dirty data
890 * in the first 3/4 of the curve yield relatively small differences in the
891 * amount of delay.
892 *
893 * The effects can be easier to understand when the amount of delay is
894 * represented on a log scale:
895 *
896 * delay
897 * 100ms +-------------------------------------------------------------++
898 * + +
899 * | |
900 * + *+
901 * 10ms + *+
902 * + ** +
903 * | (midpoint) ** |
904 * + | ** +
905 * 1ms + v **** +
906 * + zfs_delay_scale ----------> ***** +
907 * | **** |
908 * + **** +
909 * 100us + ** +
910 * + * +
911 * | * |
912 * + * +
913 * 10us + * +
914 * + +
915 * | |
916 * + +
917 * +--------------------------------------------------------------+
918 * 0% <- zfs_dirty_data_max -> 100%
919 *
920 * Note here that only as the amount of dirty data approaches its limit does
921 * the delay start to increase rapidly. The goal of a properly tuned system
922 * should be to keep the amount of dirty data out of that range by first
923 * ensuring that the appropriate limits are set for the I/O scheduler to reach
924 * optimal throughput on the backend storage, and then by changing the value
925 * of zfs_delay_scale to increase the steepness of the curve.
926 */
927 static void
dmu_tx_delay(dmu_tx_t * tx,uint64_t dirty)928 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
929 {
930 dsl_pool_t *dp = tx->tx_pool;
931 uint64_t delay_min_bytes, wrlog;
932 hrtime_t wakeup, tx_time = 0, now;
933
934 /* Calculate minimum transaction time for the dirty data amount. */
935 delay_min_bytes =
936 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
937 if (dirty > delay_min_bytes) {
938 /*
939 * The caller has already waited until we are under the max.
940 * We make them pass us the amount of dirty data so we don't
941 * have to handle the case of it being >= the max, which
942 * could cause a divide-by-zero if it's == the max.
943 */
944 ASSERT3U(dirty, <, zfs_dirty_data_max);
945
946 tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
947 (zfs_dirty_data_max - dirty);
948 }
949
950 /* Calculate minimum transaction time for the TX_WRITE log size. */
951 wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
952 delay_min_bytes =
953 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
954 if (wrlog >= zfs_wrlog_data_max) {
955 tx_time = zfs_delay_max_ns;
956 } else if (wrlog > delay_min_bytes) {
957 tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
958 (zfs_wrlog_data_max - wrlog), tx_time);
959 }
960
961 if (tx_time == 0)
962 return;
963
964 tx_time = MIN(tx_time, zfs_delay_max_ns);
965 now = gethrtime();
966 if (now > tx->tx_start + tx_time)
967 return;
968
969 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
970 uint64_t, tx_time);
971
972 mutex_enter(&dp->dp_lock);
973 wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
974 dp->dp_last_wakeup = wakeup;
975 mutex_exit(&dp->dp_lock);
976
977 zfs_sleep_until(wakeup);
978 }
979
980 /*
981 * This routine attempts to assign the transaction to a transaction group.
982 * To do so, we must determine if there is sufficient free space on disk.
983 *
984 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
985 * on it), then it is assumed that there is sufficient free space,
986 * unless there's insufficient slop space in the pool (see the comment
987 * above spa_slop_shift in spa_misc.c).
988 *
989 * If it is not a "netfree" transaction, then if the data already on disk
990 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
991 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
992 * plus the rough estimate of this transaction's changes, may exceed the
993 * allowed usage, then this will fail with ERESTART, which will cause the
994 * caller to wait for the pending changes to be written to disk (by waiting
995 * for the next TXG to open), and then check the space usage again.
996 *
997 * The rough estimate of pending changes is comprised of the sum of:
998 *
999 * - this transaction's holds' txh_space_towrite
1000 *
1001 * - dd_tempreserved[], which is the sum of in-flight transactions'
1002 * holds' txh_space_towrite (i.e. those transactions that have called
1003 * dmu_tx_assign() but not yet called dmu_tx_commit()).
1004 *
1005 * - dd_space_towrite[], which is the amount of dirtied dbufs.
1006 *
1007 * Note that all of these values are inflated by spa_get_worst_case_asize(),
1008 * which means that we may get ERESTART well before we are actually in danger
1009 * of running out of space, but this also mitigates any small inaccuracies
1010 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
1011 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
1012 * to the MOS).
1013 *
1014 * Note that due to this algorithm, it is possible to exceed the allowed
1015 * usage by one transaction. Also, as we approach the allowed usage,
1016 * we will allow a very limited amount of changes into each TXG, thus
1017 * decreasing performance.
1018 */
1019 static int
dmu_tx_try_assign(dmu_tx_t * tx,uint64_t flags)1020 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t flags)
1021 {
1022 spa_t *spa = tx->tx_pool->dp_spa;
1023
1024 ASSERT0(tx->tx_txg);
1025
1026 if (tx->tx_err) {
1027 DMU_TX_STAT_BUMP(dmu_tx_error);
1028 return (tx->tx_err);
1029 }
1030
1031 if (spa_suspended(spa)) {
1032 DMU_TX_STAT_BUMP(dmu_tx_suspended);
1033
1034 /*
1035 * If the user has indicated a blocking failure mode
1036 * then return ERESTART which will block in dmu_tx_wait().
1037 * Otherwise, return EIO so that an error can get
1038 * propagated back to the VOP calls.
1039 *
1040 * Note that we always honor the `flags` flag regardless
1041 * of the failuremode setting.
1042 */
1043 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1044 !(flags & DMU_TX_WAIT))
1045 return (SET_ERROR(EIO));
1046
1047 return (SET_ERROR(ERESTART));
1048 }
1049
1050 if (!tx->tx_dirty_delayed &&
1051 dsl_pool_need_wrlog_delay(tx->tx_pool)) {
1052 tx->tx_wait_dirty = B_TRUE;
1053 DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
1054 return (SET_ERROR(ERESTART));
1055 }
1056
1057 if (!tx->tx_dirty_delayed &&
1058 dsl_pool_need_dirty_delay(tx->tx_pool)) {
1059 tx->tx_wait_dirty = B_TRUE;
1060 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
1061 return (SET_ERROR(ERESTART));
1062 }
1063
1064 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1065 tx->tx_needassign_txh = NULL;
1066
1067 /*
1068 * NB: No error returns are allowed after txg_hold_open, but
1069 * before processing the dnode holds, due to the
1070 * dmu_tx_unassign() logic.
1071 */
1072
1073 uint64_t towrite = 0;
1074 uint64_t tohold = 0;
1075 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1076 txh = list_next(&tx->tx_holds, txh)) {
1077 dnode_t *dn = txh->txh_dnode;
1078 if (dn != NULL) {
1079 /*
1080 * This thread can't hold the dn_struct_rwlock
1081 * while assigning the tx, because this can lead to
1082 * deadlock. Specifically, if this dnode is already
1083 * assigned to an earlier txg, this thread may need
1084 * to wait for that txg to sync (the ERESTART case
1085 * below). The other thread that has assigned this
1086 * dnode to an earlier txg prevents this txg from
1087 * syncing until its tx can complete (calling
1088 * dmu_tx_commit()), but it may need to acquire the
1089 * dn_struct_rwlock to do so (e.g. via
1090 * dmu_buf_hold*()).
1091 *
1092 * Note that this thread can't hold the lock for
1093 * read either, but the rwlock doesn't record
1094 * enough information to make that assertion.
1095 */
1096 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
1097
1098 mutex_enter(&dn->dn_mtx);
1099 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1100 mutex_exit(&dn->dn_mtx);
1101 tx->tx_needassign_txh = txh;
1102 DMU_TX_STAT_BUMP(dmu_tx_group);
1103 return (SET_ERROR(ERESTART));
1104 }
1105 if (dn->dn_assigned_txg == 0)
1106 dn->dn_assigned_txg = tx->tx_txg;
1107 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1108 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
1109 mutex_exit(&dn->dn_mtx);
1110 }
1111 towrite += zfs_refcount_count(&txh->txh_space_towrite);
1112 tohold += zfs_refcount_count(&txh->txh_memory_tohold);
1113 }
1114
1115 /* needed allocation: worst-case estimate of write space */
1116 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
1117 /* calculate memory footprint estimate */
1118 uint64_t memory = towrite + tohold;
1119
1120 if (tx->tx_dir != NULL && asize != 0) {
1121 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1122 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
1123 if (err != 0)
1124 return (err);
1125 }
1126
1127 DMU_TX_STAT_BUMP(dmu_tx_assigned);
1128
1129 return (0);
1130 }
1131
1132 static void
dmu_tx_unassign(dmu_tx_t * tx)1133 dmu_tx_unassign(dmu_tx_t *tx)
1134 {
1135 if (tx->tx_txg == 0)
1136 return;
1137
1138 txg_rele_to_quiesce(&tx->tx_txgh);
1139
1140 /*
1141 * Walk the transaction's hold list, removing the hold on the
1142 * associated dnode, and notifying waiters if the refcount drops to 0.
1143 */
1144 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
1145 txh && txh != tx->tx_needassign_txh;
1146 txh = list_next(&tx->tx_holds, txh)) {
1147 dnode_t *dn = txh->txh_dnode;
1148
1149 if (dn == NULL)
1150 continue;
1151 mutex_enter(&dn->dn_mtx);
1152 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1153
1154 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1155 dn->dn_assigned_txg = 0;
1156 cv_broadcast(&dn->dn_notxholds);
1157 }
1158 mutex_exit(&dn->dn_mtx);
1159 }
1160
1161 txg_rele_to_sync(&tx->tx_txgh);
1162
1163 tx->tx_lasttried_txg = tx->tx_txg;
1164 tx->tx_txg = 0;
1165 }
1166
1167 /*
1168 * Assign tx to a transaction group; `flags` is a bitmask:
1169 *
1170 * If DMU_TX_WAIT is set and the currently open txg is full, this function
1171 * will wait until there's a new txg. This should be used when no locks
1172 * are being held. With this bit set, this function will only fail if
1173 * we're truly out of space (or over quota).
1174 *
1175 * If DMU_TX_WAIT is *not* set and we can't assign into the currently open
1176 * txg without blocking, this function will return immediately with
1177 * ERESTART. This should be used whenever locks are being held. On an
1178 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1179 * and try again.
1180 *
1181 * If DMU_TX_NOTHROTTLE is set, this indicates that this tx should not be
1182 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1183 * details on the throttle). This is used by the VFS operations, after
1184 * they have already called dmu_tx_wait() (though most likely on a
1185 * different tx).
1186 *
1187 * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1188 * will assign the tx to monotonically increasing txgs. Of course this is
1189 * not strong monotonicity, because the same txg can be returned multiple
1190 * times in a row. This guarantee holds both for subsequent calls from
1191 * one thread and for multiple threads. For example, it is impossible to
1192 * observe the following sequence of events:
1193 *
1194 * Thread 1 Thread 2
1195 *
1196 * dmu_tx_assign(T1, ...)
1197 * 1 <- dmu_tx_get_txg(T1)
1198 * dmu_tx_assign(T2, ...)
1199 * 2 <- dmu_tx_get_txg(T2)
1200 * dmu_tx_assign(T3, ...)
1201 * 1 <- dmu_tx_get_txg(T3)
1202 */
1203 int
dmu_tx_assign(dmu_tx_t * tx,uint64_t flags)1204 dmu_tx_assign(dmu_tx_t *tx, uint64_t flags)
1205 {
1206 int err;
1207
1208 ASSERT(tx->tx_txg == 0);
1209 ASSERT0(flags & ~(DMU_TX_WAIT | DMU_TX_NOTHROTTLE));
1210 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1211
1212 /* If we might wait, we must not hold the config lock. */
1213 IMPLY((flags & DMU_TX_WAIT), !dsl_pool_config_held(tx->tx_pool));
1214
1215 if ((flags & DMU_TX_NOTHROTTLE))
1216 tx->tx_dirty_delayed = B_TRUE;
1217
1218 while ((err = dmu_tx_try_assign(tx, flags)) != 0) {
1219 dmu_tx_unassign(tx);
1220
1221 if (err != ERESTART || !(flags & DMU_TX_WAIT))
1222 return (err);
1223
1224 dmu_tx_wait(tx);
1225 }
1226
1227 txg_rele_to_quiesce(&tx->tx_txgh);
1228
1229 return (0);
1230 }
1231
1232 void
dmu_tx_wait(dmu_tx_t * tx)1233 dmu_tx_wait(dmu_tx_t *tx)
1234 {
1235 spa_t *spa = tx->tx_pool->dp_spa;
1236 dsl_pool_t *dp = tx->tx_pool;
1237 hrtime_t before;
1238
1239 ASSERT(tx->tx_txg == 0);
1240 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1241
1242 before = gethrtime();
1243
1244 if (tx->tx_wait_dirty) {
1245 uint64_t dirty;
1246
1247 /*
1248 * dmu_tx_try_assign() has determined that we need to wait
1249 * because we've consumed much or all of the dirty buffer
1250 * space.
1251 */
1252 mutex_enter(&dp->dp_lock);
1253 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1254 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1255 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1256 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1257 dirty = dp->dp_dirty_total;
1258 mutex_exit(&dp->dp_lock);
1259
1260 dmu_tx_delay(tx, dirty);
1261
1262 tx->tx_wait_dirty = B_FALSE;
1263
1264 /*
1265 * Note: setting tx_dirty_delayed only has effect if the
1266 * caller used DMU_TX_WAIT. Otherwise they are going to
1267 * destroy this tx and try again. The common case,
1268 * zfs_write(), uses DMU_TX_WAIT.
1269 */
1270 tx->tx_dirty_delayed = B_TRUE;
1271 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1272 /*
1273 * If the pool is suspended we need to wait until it
1274 * is resumed. Note that it's possible that the pool
1275 * has become active after this thread has tried to
1276 * obtain a tx. If that's the case then tx_lasttried_txg
1277 * would not have been set.
1278 */
1279 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1280 } else if (tx->tx_needassign_txh) {
1281 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1282
1283 mutex_enter(&dn->dn_mtx);
1284 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1285 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1286 mutex_exit(&dn->dn_mtx);
1287 tx->tx_needassign_txh = NULL;
1288 } else {
1289 /*
1290 * If we have a lot of dirty data just wait until we sync
1291 * out a TXG at which point we'll hopefully have synced
1292 * a portion of the changes.
1293 */
1294 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1295 }
1296
1297 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1298 }
1299
1300 static void
dmu_tx_destroy(dmu_tx_t * tx)1301 dmu_tx_destroy(dmu_tx_t *tx)
1302 {
1303 dmu_tx_hold_t *txh;
1304
1305 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1306 dnode_t *dn = txh->txh_dnode;
1307
1308 list_remove(&tx->tx_holds, txh);
1309 zfs_refcount_destroy_many(&txh->txh_space_towrite,
1310 zfs_refcount_count(&txh->txh_space_towrite));
1311 zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1312 zfs_refcount_count(&txh->txh_memory_tohold));
1313 kmem_free(txh, sizeof (dmu_tx_hold_t));
1314 if (dn != NULL)
1315 dnode_rele(dn, tx);
1316 }
1317
1318 list_destroy(&tx->tx_callbacks);
1319 list_destroy(&tx->tx_holds);
1320 kmem_free(tx, sizeof (dmu_tx_t));
1321 }
1322
1323 void
dmu_tx_commit(dmu_tx_t * tx)1324 dmu_tx_commit(dmu_tx_t *tx)
1325 {
1326 ASSERT(tx->tx_txg != 0);
1327
1328 /*
1329 * Go through the transaction's hold list and remove holds on
1330 * associated dnodes, notifying waiters if no holds remain.
1331 */
1332 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1333 txh = list_next(&tx->tx_holds, txh)) {
1334 dnode_t *dn = txh->txh_dnode;
1335
1336 if (dn == NULL)
1337 continue;
1338
1339 mutex_enter(&dn->dn_mtx);
1340 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1341
1342 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1343 dn->dn_assigned_txg = 0;
1344 cv_broadcast(&dn->dn_notxholds);
1345 }
1346 mutex_exit(&dn->dn_mtx);
1347 }
1348
1349 if (tx->tx_tempreserve_cookie)
1350 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1351
1352 if (!list_is_empty(&tx->tx_callbacks))
1353 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1354
1355 if (tx->tx_anyobj == FALSE)
1356 txg_rele_to_sync(&tx->tx_txgh);
1357
1358 dmu_tx_destroy(tx);
1359 }
1360
1361 void
dmu_tx_abort(dmu_tx_t * tx)1362 dmu_tx_abort(dmu_tx_t *tx)
1363 {
1364 ASSERT(tx->tx_txg == 0);
1365
1366 /*
1367 * Call any registered callbacks with an error code.
1368 */
1369 if (!list_is_empty(&tx->tx_callbacks))
1370 dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1371
1372 dmu_tx_destroy(tx);
1373 }
1374
1375 uint64_t
dmu_tx_get_txg(dmu_tx_t * tx)1376 dmu_tx_get_txg(dmu_tx_t *tx)
1377 {
1378 ASSERT(tx->tx_txg != 0);
1379 return (tx->tx_txg);
1380 }
1381
1382 dsl_pool_t *
dmu_tx_pool(dmu_tx_t * tx)1383 dmu_tx_pool(dmu_tx_t *tx)
1384 {
1385 ASSERT(tx->tx_pool != NULL);
1386 return (tx->tx_pool);
1387 }
1388
1389 /*
1390 * Register a callback to be executed at the end of a TXG.
1391 *
1392 * Note: This currently exists for outside consumers, specifically the ZFS OSD
1393 * for Lustre. Please do not remove before checking that project. For examples
1394 * on how to use this see `ztest_commit_callback`.
1395 */
1396 void
dmu_tx_callback_register(dmu_tx_t * tx,dmu_tx_callback_func_t * func,void * data)1397 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1398 {
1399 dmu_tx_callback_t *dcb;
1400
1401 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1402
1403 dcb->dcb_func = func;
1404 dcb->dcb_data = data;
1405
1406 list_insert_tail(&tx->tx_callbacks, dcb);
1407 }
1408
1409 /*
1410 * Call all the commit callbacks on a list, with a given error code.
1411 */
1412 void
dmu_tx_do_callbacks(list_t * cb_list,int error)1413 dmu_tx_do_callbacks(list_t *cb_list, int error)
1414 {
1415 dmu_tx_callback_t *dcb;
1416
1417 while ((dcb = list_remove_tail(cb_list)) != NULL) {
1418 dcb->dcb_func(dcb->dcb_data, error);
1419 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1420 }
1421 }
1422
1423 /*
1424 * Interface to hold a bunch of attributes.
1425 * used for creating new files.
1426 * attrsize is the total size of all attributes
1427 * to be added during object creation
1428 *
1429 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1430 */
1431
1432 /*
1433 * hold necessary attribute name for attribute registration.
1434 * should be a very rare case where this is needed. If it does
1435 * happen it would only happen on the first write to the file system.
1436 */
1437 static void
dmu_tx_sa_registration_hold(sa_os_t * sa,dmu_tx_t * tx)1438 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1439 {
1440 if (!sa->sa_need_attr_registration)
1441 return;
1442
1443 for (int i = 0; i != sa->sa_num_attrs; i++) {
1444 if (!sa->sa_attr_table[i].sa_registered) {
1445 if (sa->sa_reg_attr_obj)
1446 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1447 B_TRUE, sa->sa_attr_table[i].sa_name);
1448 else
1449 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1450 B_TRUE, sa->sa_attr_table[i].sa_name);
1451 }
1452 }
1453 }
1454
1455 void
dmu_tx_hold_spill(dmu_tx_t * tx,uint64_t object)1456 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1457 {
1458 dmu_tx_hold_t *txh;
1459
1460 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1461 THT_SPILL, 0, 0);
1462 if (txh != NULL)
1463 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
1464 SPA_OLD_MAXBLOCKSIZE, FTAG);
1465 }
1466
1467 void
dmu_tx_hold_sa_create(dmu_tx_t * tx,int attrsize)1468 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1469 {
1470 sa_os_t *sa = tx->tx_objset->os_sa;
1471
1472 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1473
1474 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1475 return;
1476
1477 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1478 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1479 } else {
1480 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1481 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1482 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1483 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1484 }
1485
1486 dmu_tx_sa_registration_hold(sa, tx);
1487
1488 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1489 return;
1490
1491 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1492 THT_SPILL, 0, 0);
1493 }
1494
1495 /*
1496 * Hold SA attribute
1497 *
1498 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1499 *
1500 * variable_size is the total size of all variable sized attributes
1501 * passed to this function. It is not the total size of all
1502 * variable size attributes that *may* exist on this object.
1503 */
1504 void
dmu_tx_hold_sa(dmu_tx_t * tx,sa_handle_t * hdl,boolean_t may_grow)1505 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1506 {
1507 uint64_t object;
1508 sa_os_t *sa = tx->tx_objset->os_sa;
1509
1510 ASSERT(hdl != NULL);
1511
1512 object = sa_handle_object(hdl);
1513
1514 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1515 DB_DNODE_ENTER(db);
1516 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1517 DB_DNODE_EXIT(db);
1518
1519 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1520 return;
1521
1522 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1523 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1524 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1525 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1526 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1527 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1528 }
1529
1530 dmu_tx_sa_registration_hold(sa, tx);
1531
1532 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1533 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1534
1535 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1536 ASSERT(tx->tx_txg == 0);
1537 dmu_tx_hold_spill(tx, object);
1538 } else {
1539 DB_DNODE_ENTER(db);
1540 if (DB_DNODE(db)->dn_have_spill) {
1541 ASSERT(tx->tx_txg == 0);
1542 dmu_tx_hold_spill(tx, object);
1543 }
1544 DB_DNODE_EXIT(db);
1545 }
1546 }
1547
1548 void
dmu_tx_init(void)1549 dmu_tx_init(void)
1550 {
1551 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1552 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1553 KSTAT_FLAG_VIRTUAL);
1554
1555 if (dmu_tx_ksp != NULL) {
1556 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1557 kstat_install(dmu_tx_ksp);
1558 }
1559 }
1560
1561 void
dmu_tx_fini(void)1562 dmu_tx_fini(void)
1563 {
1564 if (dmu_tx_ksp != NULL) {
1565 kstat_delete(dmu_tx_ksp);
1566 dmu_tx_ksp = NULL;
1567 }
1568 }
1569
1570 #if defined(_KERNEL)
1571 EXPORT_SYMBOL(dmu_tx_create);
1572 EXPORT_SYMBOL(dmu_tx_hold_write);
1573 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1574 EXPORT_SYMBOL(dmu_tx_hold_append);
1575 EXPORT_SYMBOL(dmu_tx_hold_append_by_dnode);
1576 EXPORT_SYMBOL(dmu_tx_hold_free);
1577 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1578 EXPORT_SYMBOL(dmu_tx_hold_zap);
1579 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1580 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1581 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1582 EXPORT_SYMBOL(dmu_tx_abort);
1583 EXPORT_SYMBOL(dmu_tx_assign);
1584 EXPORT_SYMBOL(dmu_tx_wait);
1585 EXPORT_SYMBOL(dmu_tx_commit);
1586 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1587 EXPORT_SYMBOL(dmu_tx_get_txg);
1588 EXPORT_SYMBOL(dmu_tx_callback_register);
1589 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1590 EXPORT_SYMBOL(dmu_tx_hold_spill);
1591 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1592 EXPORT_SYMBOL(dmu_tx_hold_sa);
1593 #endif
1594