1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
26 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 * Copyright 2016 RackTop Systems.
29 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
30 * Copyright (c) 2019, 2024, Klara, Inc.
31 * Copyright (c) 2019, Allan Jude
32 */
33
34 #include <sys/dmu.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zfs_ioctl.h>
49 #include <sys/zap.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dmu_send.h>
57 #include <sys/dmu_recv.h>
58 #include <sys/dsl_destroy.h>
59 #include <sys/blkptr.h>
60 #include <sys/dsl_bookmark.h>
61 #include <sys/zfeature.h>
62 #include <sys/bqueue.h>
63 #include <sys/zvol.h>
64 #include <sys/policy.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69
70 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
71 static int zfs_send_corrupt_data = B_FALSE;
72 /*
73 * This tunable controls the amount of data (measured in bytes) that will be
74 * prefetched by zfs send. If the main thread is blocking on reads that haven't
75 * completed, this variable might need to be increased. If instead the main
76 * thread is issuing new reads because the prefetches have fallen out of the
77 * cache, this may need to be decreased.
78 */
79 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
80 /*
81 * This tunable controls the length of the queues that zfs send worker threads
82 * use to communicate. If the send_main_thread is blocking on these queues,
83 * this variable may need to be increased. If there is a significant slowdown
84 * at the start of a send as these threads consume all the available IO
85 * resources, this variable may need to be decreased.
86 */
87 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
88 /*
89 * These tunables control the fill fraction of the queues by zfs send. The fill
90 * fraction controls the frequency with which threads have to be cv_signaled.
91 * If a lot of cpu time is being spent on cv_signal, then these should be tuned
92 * down. If the queues empty before the signalled thread can catch up, then
93 * these should be tuned up.
94 */
95 static uint_t zfs_send_queue_ff = 20;
96 static uint_t zfs_send_no_prefetch_queue_ff = 20;
97
98 /*
99 * Use this to override the recordsize calculation for fast zfs send estimates.
100 */
101 static uint_t zfs_override_estimate_recordsize = 0;
102
103 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
104 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
105
106 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
107 static int zfs_send_unmodified_spill_blocks = B_TRUE;
108
109 static inline boolean_t
overflow_multiply(uint64_t a,uint64_t b,uint64_t * c)110 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
111 {
112 uint64_t temp = a * b;
113 if (b != 0 && temp / b != a)
114 return (B_FALSE);
115 *c = temp;
116 return (B_TRUE);
117 }
118
119 struct send_thread_arg {
120 bqueue_t q;
121 objset_t *os; /* Objset to traverse */
122 uint64_t fromtxg; /* Traverse from this txg */
123 int flags; /* flags to pass to traverse_dataset */
124 int error_code;
125 boolean_t cancel;
126 zbookmark_phys_t resume;
127 uint64_t *num_blocks_visited;
128 };
129
130 struct redact_list_thread_arg {
131 boolean_t cancel;
132 bqueue_t q;
133 zbookmark_phys_t resume;
134 redaction_list_t *rl;
135 boolean_t mark_redact;
136 int error_code;
137 uint64_t *num_blocks_visited;
138 };
139
140 struct send_merge_thread_arg {
141 bqueue_t q;
142 objset_t *os;
143 struct redact_list_thread_arg *from_arg;
144 struct send_thread_arg *to_arg;
145 struct redact_list_thread_arg *redact_arg;
146 int error;
147 boolean_t cancel;
148 };
149
150 struct send_range {
151 boolean_t eos_marker; /* Marks the end of the stream */
152 uint64_t object;
153 uint64_t start_blkid;
154 uint64_t end_blkid;
155 bqueue_node_t ln;
156 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
157 PREVIOUSLY_REDACTED} type;
158 union {
159 struct srd {
160 dmu_object_type_t obj_type;
161 uint32_t datablksz; // logical size
162 uint32_t datasz; // payload size
163 blkptr_t bp;
164 arc_buf_t *abuf;
165 abd_t *abd;
166 kmutex_t lock;
167 kcondvar_t cv;
168 boolean_t io_outstanding;
169 boolean_t io_compressed;
170 int io_err;
171 } data;
172 struct srh {
173 uint32_t datablksz;
174 } hole;
175 struct sro {
176 /*
177 * This is a pointer because embedding it in the
178 * struct causes these structures to be massively larger
179 * for all range types; this makes the code much less
180 * memory efficient.
181 */
182 dnode_phys_t *dnp;
183 blkptr_t bp;
184 /* Piggyback unmodified spill block */
185 struct send_range *spill_range;
186 } object;
187 struct srr {
188 uint32_t datablksz;
189 } redact;
190 struct sror {
191 blkptr_t bp;
192 } object_range;
193 } sru;
194 };
195
196 /*
197 * The list of data whose inclusion in a send stream can be pending from
198 * one call to backup_cb to another. Multiple calls to dump_free(),
199 * dump_freeobjects(), and dump_redact() can be aggregated into a single
200 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
201 */
202 typedef enum {
203 PENDING_NONE,
204 PENDING_FREE,
205 PENDING_FREEOBJECTS,
206 PENDING_REDACT
207 } dmu_pendop_t;
208
209 typedef struct dmu_send_cookie {
210 dmu_replay_record_t *dsc_drr;
211 dmu_send_outparams_t *dsc_dso;
212 offset_t *dsc_off;
213 objset_t *dsc_os;
214 zio_cksum_t dsc_zc;
215 uint64_t dsc_toguid;
216 uint64_t dsc_fromtxg;
217 int dsc_err;
218 dmu_pendop_t dsc_pending_op;
219 uint64_t dsc_featureflags;
220 uint64_t dsc_last_data_object;
221 uint64_t dsc_last_data_offset;
222 uint64_t dsc_resume_object;
223 uint64_t dsc_resume_offset;
224 boolean_t dsc_sent_begin;
225 boolean_t dsc_sent_end;
226 } dmu_send_cookie_t;
227
228 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
229
230 static void
range_free(struct send_range * range)231 range_free(struct send_range *range)
232 {
233 if (range->type == OBJECT) {
234 size_t size = sizeof (dnode_phys_t) *
235 (range->sru.object.dnp->dn_extra_slots + 1);
236 kmem_free(range->sru.object.dnp, size);
237 if (range->sru.object.spill_range)
238 range_free(range->sru.object.spill_range);
239 } else if (range->type == DATA) {
240 mutex_enter(&range->sru.data.lock);
241 while (range->sru.data.io_outstanding)
242 cv_wait(&range->sru.data.cv, &range->sru.data.lock);
243 if (range->sru.data.abd != NULL)
244 abd_free(range->sru.data.abd);
245 if (range->sru.data.abuf != NULL) {
246 arc_buf_destroy(range->sru.data.abuf,
247 &range->sru.data.abuf);
248 }
249 mutex_exit(&range->sru.data.lock);
250
251 cv_destroy(&range->sru.data.cv);
252 mutex_destroy(&range->sru.data.lock);
253 }
254 kmem_free(range, sizeof (*range));
255 }
256
257 /*
258 * For all record types except BEGIN, fill in the checksum (overlaid in
259 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
260 * up to the start of the checksum itself.
261 */
262 static int
dump_record(dmu_send_cookie_t * dscp,void * payload,int payload_len)263 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
264 {
265 dmu_send_outparams_t *dso = dscp->dsc_dso;
266 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
267 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
268 (void) fletcher_4_incremental_native(dscp->dsc_drr,
269 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
270 &dscp->dsc_zc);
271 if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
272 dscp->dsc_sent_begin = B_TRUE;
273 } else {
274 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
275 drr_checksum.drr_checksum));
276 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
277 }
278 if (dscp->dsc_drr->drr_type == DRR_END) {
279 dscp->dsc_sent_end = B_TRUE;
280 }
281 (void) fletcher_4_incremental_native(&dscp->dsc_drr->
282 drr_u.drr_checksum.drr_checksum,
283 sizeof (zio_cksum_t), &dscp->dsc_zc);
284 *dscp->dsc_off += sizeof (dmu_replay_record_t);
285 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
286 sizeof (dmu_replay_record_t), dso->dso_arg);
287 if (dscp->dsc_err != 0)
288 return (SET_ERROR(EINTR));
289 if (payload_len != 0) {
290 *dscp->dsc_off += payload_len;
291 /*
292 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
293 * doing a send size calculation)
294 */
295 if (payload != NULL) {
296 (void) fletcher_4_incremental_native(
297 payload, payload_len, &dscp->dsc_zc);
298 }
299
300 /*
301 * The code does not rely on this (len being a multiple of 8).
302 * We keep this assertion because of the corresponding assertion
303 * in receive_read(). Keeping this assertion ensures that we do
304 * not inadvertently break backwards compatibility (causing the
305 * assertion in receive_read() to trigger on old software).
306 *
307 * Raw sends cannot be received on old software, and so can
308 * bypass this assertion.
309 */
310
311 ASSERT((payload_len % 8 == 0) ||
312 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
313
314 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
315 payload_len, dso->dso_arg);
316 if (dscp->dsc_err != 0)
317 return (SET_ERROR(EINTR));
318 }
319 return (0);
320 }
321
322 /*
323 * Fill in the drr_free struct, or perform aggregation if the previous record is
324 * also a free record, and the two are adjacent.
325 *
326 * Note that we send free records even for a full send, because we want to be
327 * able to receive a full send as a clone, which requires a list of all the free
328 * and freeobject records that were generated on the source.
329 */
330 static int
dump_free(dmu_send_cookie_t * dscp,uint64_t object,uint64_t offset,uint64_t length)331 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
332 uint64_t length)
333 {
334 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
335
336 /*
337 * When we receive a free record, dbuf_free_range() assumes
338 * that the receiving system doesn't have any dbufs in the range
339 * being freed. This is always true because there is a one-record
340 * constraint: we only send one WRITE record for any given
341 * object,offset. We know that the one-record constraint is
342 * true because we always send data in increasing order by
343 * object,offset.
344 *
345 * If the increasing-order constraint ever changes, we should find
346 * another way to assert that the one-record constraint is still
347 * satisfied.
348 */
349 ASSERT(object > dscp->dsc_last_data_object ||
350 (object == dscp->dsc_last_data_object &&
351 offset > dscp->dsc_last_data_offset));
352
353 /*
354 * If there is a pending op, but it's not PENDING_FREE, push it out,
355 * since free block aggregation can only be done for blocks of the
356 * same type (i.e., DRR_FREE records can only be aggregated with
357 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
358 * aggregated with other DRR_FREEOBJECTS records).
359 */
360 if (dscp->dsc_pending_op != PENDING_NONE &&
361 dscp->dsc_pending_op != PENDING_FREE) {
362 if (dump_record(dscp, NULL, 0) != 0)
363 return (SET_ERROR(EINTR));
364 dscp->dsc_pending_op = PENDING_NONE;
365 }
366
367 if (dscp->dsc_pending_op == PENDING_FREE) {
368 /*
369 * Check to see whether this free block can be aggregated
370 * with pending one.
371 */
372 if (drrf->drr_object == object && drrf->drr_offset +
373 drrf->drr_length == offset) {
374 if (offset + length < offset || length == UINT64_MAX)
375 drrf->drr_length = UINT64_MAX;
376 else
377 drrf->drr_length += length;
378 return (0);
379 } else {
380 /* not a continuation. Push out pending record */
381 if (dump_record(dscp, NULL, 0) != 0)
382 return (SET_ERROR(EINTR));
383 dscp->dsc_pending_op = PENDING_NONE;
384 }
385 }
386 /* create a FREE record and make it pending */
387 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
388 dscp->dsc_drr->drr_type = DRR_FREE;
389 drrf->drr_object = object;
390 drrf->drr_offset = offset;
391 if (offset + length < offset)
392 drrf->drr_length = DMU_OBJECT_END;
393 else
394 drrf->drr_length = length;
395 drrf->drr_toguid = dscp->dsc_toguid;
396 if (length == DMU_OBJECT_END) {
397 if (dump_record(dscp, NULL, 0) != 0)
398 return (SET_ERROR(EINTR));
399 } else {
400 dscp->dsc_pending_op = PENDING_FREE;
401 }
402
403 return (0);
404 }
405
406 /*
407 * Fill in the drr_redact struct, or perform aggregation if the previous record
408 * is also a redaction record, and the two are adjacent.
409 */
410 static int
dump_redact(dmu_send_cookie_t * dscp,uint64_t object,uint64_t offset,uint64_t length)411 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
412 uint64_t length)
413 {
414 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
415
416 /*
417 * If there is a pending op, but it's not PENDING_REDACT, push it out,
418 * since free block aggregation can only be done for blocks of the
419 * same type (i.e., DRR_REDACT records can only be aggregated with
420 * other DRR_REDACT records).
421 */
422 if (dscp->dsc_pending_op != PENDING_NONE &&
423 dscp->dsc_pending_op != PENDING_REDACT) {
424 if (dump_record(dscp, NULL, 0) != 0)
425 return (SET_ERROR(EINTR));
426 dscp->dsc_pending_op = PENDING_NONE;
427 }
428
429 if (dscp->dsc_pending_op == PENDING_REDACT) {
430 /*
431 * Check to see whether this redacted block can be aggregated
432 * with pending one.
433 */
434 if (drrr->drr_object == object && drrr->drr_offset +
435 drrr->drr_length == offset) {
436 drrr->drr_length += length;
437 return (0);
438 } else {
439 /* not a continuation. Push out pending record */
440 if (dump_record(dscp, NULL, 0) != 0)
441 return (SET_ERROR(EINTR));
442 dscp->dsc_pending_op = PENDING_NONE;
443 }
444 }
445 /* create a REDACT record and make it pending */
446 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
447 dscp->dsc_drr->drr_type = DRR_REDACT;
448 drrr->drr_object = object;
449 drrr->drr_offset = offset;
450 drrr->drr_length = length;
451 drrr->drr_toguid = dscp->dsc_toguid;
452 dscp->dsc_pending_op = PENDING_REDACT;
453
454 return (0);
455 }
456
457 static int
dmu_dump_write(dmu_send_cookie_t * dscp,dmu_object_type_t type,uint64_t object,uint64_t offset,int lsize,int psize,const blkptr_t * bp,boolean_t io_compressed,void * data)458 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
459 uint64_t offset, int lsize, int psize, const blkptr_t *bp,
460 boolean_t io_compressed, void *data)
461 {
462 uint64_t payload_size;
463 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
464 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
465
466 /*
467 * We send data in increasing object, offset order.
468 * See comment in dump_free() for details.
469 */
470 ASSERT(object > dscp->dsc_last_data_object ||
471 (object == dscp->dsc_last_data_object &&
472 offset > dscp->dsc_last_data_offset));
473 dscp->dsc_last_data_object = object;
474 dscp->dsc_last_data_offset = offset + lsize - 1;
475
476 /*
477 * If there is any kind of pending aggregation (currently either
478 * a grouping of free objects or free blocks), push it out to
479 * the stream, since aggregation can't be done across operations
480 * of different types.
481 */
482 if (dscp->dsc_pending_op != PENDING_NONE) {
483 if (dump_record(dscp, NULL, 0) != 0)
484 return (SET_ERROR(EINTR));
485 dscp->dsc_pending_op = PENDING_NONE;
486 }
487 /* write a WRITE record */
488 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
489 dscp->dsc_drr->drr_type = DRR_WRITE;
490 drrw->drr_object = object;
491 drrw->drr_type = type;
492 drrw->drr_offset = offset;
493 drrw->drr_toguid = dscp->dsc_toguid;
494 drrw->drr_logical_size = lsize;
495
496 /* only set the compression fields if the buf is compressed or raw */
497 boolean_t compressed =
498 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
499 io_compressed : lsize != psize);
500 if (raw || compressed) {
501 ASSERT(bp != NULL);
502 ASSERT(raw || dscp->dsc_featureflags &
503 DMU_BACKUP_FEATURE_COMPRESSED);
504 ASSERT(!BP_IS_EMBEDDED(bp));
505 ASSERT3S(psize, >, 0);
506
507 if (raw) {
508 ASSERT(BP_IS_PROTECTED(bp));
509
510 /*
511 * This is a raw protected block so we need to pass
512 * along everything the receiving side will need to
513 * interpret this block, including the byteswap, salt,
514 * IV, and MAC.
515 */
516 if (BP_SHOULD_BYTESWAP(bp))
517 drrw->drr_flags |= DRR_RAW_BYTESWAP;
518 zio_crypt_decode_params_bp(bp, drrw->drr_salt,
519 drrw->drr_iv);
520 zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
521 } else {
522 /* this is a compressed block */
523 ASSERT(dscp->dsc_featureflags &
524 DMU_BACKUP_FEATURE_COMPRESSED);
525 ASSERT(!BP_SHOULD_BYTESWAP(bp));
526 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
527 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
528 ASSERT3S(lsize, >=, psize);
529 }
530
531 /* set fields common to compressed and raw sends */
532 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
533 drrw->drr_compressed_size = psize;
534 payload_size = drrw->drr_compressed_size;
535 } else {
536 payload_size = drrw->drr_logical_size;
537 }
538
539 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
540 /*
541 * There's no pre-computed checksum for partial-block writes,
542 * embedded BP's, or encrypted BP's that are being sent as
543 * plaintext, so (like fletcher4-checksummed blocks) userland
544 * will have to compute a dedup-capable checksum itself.
545 */
546 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
547 } else {
548 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
549 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
550 ZCHECKSUM_FLAG_DEDUP)
551 drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
552 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
553 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
554 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
555 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
556 drrw->drr_key.ddk_cksum = bp->blk_cksum;
557 }
558
559 if (dump_record(dscp, data, payload_size) != 0)
560 return (SET_ERROR(EINTR));
561 return (0);
562 }
563
564 static int
dump_write_embedded(dmu_send_cookie_t * dscp,uint64_t object,uint64_t offset,int blksz,const blkptr_t * bp)565 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
566 int blksz, const blkptr_t *bp)
567 {
568 char buf[BPE_PAYLOAD_SIZE];
569 struct drr_write_embedded *drrw =
570 &(dscp->dsc_drr->drr_u.drr_write_embedded);
571
572 if (dscp->dsc_pending_op != PENDING_NONE) {
573 if (dump_record(dscp, NULL, 0) != 0)
574 return (SET_ERROR(EINTR));
575 dscp->dsc_pending_op = PENDING_NONE;
576 }
577
578 ASSERT(BP_IS_EMBEDDED(bp));
579
580 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
581 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
582 drrw->drr_object = object;
583 drrw->drr_offset = offset;
584 drrw->drr_length = blksz;
585 drrw->drr_toguid = dscp->dsc_toguid;
586 drrw->drr_compression = BP_GET_COMPRESS(bp);
587 drrw->drr_etype = BPE_GET_ETYPE(bp);
588 drrw->drr_lsize = BPE_GET_LSIZE(bp);
589 drrw->drr_psize = BPE_GET_PSIZE(bp);
590
591 decode_embedded_bp_compressed(bp, buf);
592
593 uint32_t psize = drrw->drr_psize;
594 uint32_t rsize = P2ROUNDUP(psize, 8);
595
596 if (psize != rsize)
597 memset(buf + psize, 0, rsize - psize);
598
599 if (dump_record(dscp, buf, rsize) != 0)
600 return (SET_ERROR(EINTR));
601 return (0);
602 }
603
604 static int
dump_spill(dmu_send_cookie_t * dscp,const blkptr_t * bp,uint64_t object,void * data)605 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
606 void *data)
607 {
608 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
609 uint64_t blksz = BP_GET_LSIZE(bp);
610 uint64_t payload_size = blksz;
611
612 if (dscp->dsc_pending_op != PENDING_NONE) {
613 if (dump_record(dscp, NULL, 0) != 0)
614 return (SET_ERROR(EINTR));
615 dscp->dsc_pending_op = PENDING_NONE;
616 }
617
618 /* write a SPILL record */
619 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
620 dscp->dsc_drr->drr_type = DRR_SPILL;
621 drrs->drr_object = object;
622 drrs->drr_length = blksz;
623 drrs->drr_toguid = dscp->dsc_toguid;
624
625 /* See comment in piggyback_unmodified_spill() for full details */
626 if (zfs_send_unmodified_spill_blocks &&
627 (BP_GET_LOGICAL_BIRTH(bp) <= dscp->dsc_fromtxg)) {
628 drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
629 }
630
631 /* handle raw send fields */
632 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
633 ASSERT(BP_IS_PROTECTED(bp));
634
635 if (BP_SHOULD_BYTESWAP(bp))
636 drrs->drr_flags |= DRR_RAW_BYTESWAP;
637 drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
638 drrs->drr_compressed_size = BP_GET_PSIZE(bp);
639 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
640 zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
641 payload_size = drrs->drr_compressed_size;
642 }
643
644 if (dump_record(dscp, data, payload_size) != 0)
645 return (SET_ERROR(EINTR));
646 return (0);
647 }
648
649 static int
dump_freeobjects(dmu_send_cookie_t * dscp,uint64_t firstobj,uint64_t numobjs)650 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
651 {
652 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
653 uint64_t maxobj = DNODES_PER_BLOCK *
654 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
655
656 /*
657 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
658 * leading to zfs recv never completing. to avoid this issue, don't
659 * send FREEOBJECTS records for object IDs which cannot exist on the
660 * receiving side.
661 */
662 if (maxobj > 0) {
663 if (maxobj <= firstobj)
664 return (0);
665
666 if (maxobj < firstobj + numobjs)
667 numobjs = maxobj - firstobj;
668 }
669
670 /*
671 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
672 * push it out, since free block aggregation can only be done for
673 * blocks of the same type (i.e., DRR_FREE records can only be
674 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
675 * can only be aggregated with other DRR_FREEOBJECTS records).
676 */
677 if (dscp->dsc_pending_op != PENDING_NONE &&
678 dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
679 if (dump_record(dscp, NULL, 0) != 0)
680 return (SET_ERROR(EINTR));
681 dscp->dsc_pending_op = PENDING_NONE;
682 }
683
684 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
685 /*
686 * See whether this free object array can be aggregated
687 * with pending one
688 */
689 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
690 drrfo->drr_numobjs += numobjs;
691 return (0);
692 } else {
693 /* can't be aggregated. Push out pending record */
694 if (dump_record(dscp, NULL, 0) != 0)
695 return (SET_ERROR(EINTR));
696 dscp->dsc_pending_op = PENDING_NONE;
697 }
698 }
699
700 /* write a FREEOBJECTS record */
701 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
702 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
703 drrfo->drr_firstobj = firstobj;
704 drrfo->drr_numobjs = numobjs;
705 drrfo->drr_toguid = dscp->dsc_toguid;
706
707 dscp->dsc_pending_op = PENDING_FREEOBJECTS;
708
709 return (0);
710 }
711
712 static int
dump_dnode(dmu_send_cookie_t * dscp,const blkptr_t * bp,uint64_t object,dnode_phys_t * dnp)713 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
714 dnode_phys_t *dnp)
715 {
716 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
717 int bonuslen;
718
719 if (object < dscp->dsc_resume_object) {
720 /*
721 * Note: when resuming, we will visit all the dnodes in
722 * the block of dnodes that we are resuming from. In
723 * this case it's unnecessary to send the dnodes prior to
724 * the one we are resuming from. We should be at most one
725 * block's worth of dnodes behind the resume point.
726 */
727 ASSERT3U(dscp->dsc_resume_object - object, <,
728 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
729 return (0);
730 }
731
732 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
733 return (dump_freeobjects(dscp, object, 1));
734
735 if (dscp->dsc_pending_op != PENDING_NONE) {
736 if (dump_record(dscp, NULL, 0) != 0)
737 return (SET_ERROR(EINTR));
738 dscp->dsc_pending_op = PENDING_NONE;
739 }
740
741 /* write an OBJECT record */
742 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
743 dscp->dsc_drr->drr_type = DRR_OBJECT;
744 drro->drr_object = object;
745 drro->drr_type = dnp->dn_type;
746 drro->drr_bonustype = dnp->dn_bonustype;
747 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
748 drro->drr_bonuslen = dnp->dn_bonuslen;
749 drro->drr_dn_slots = dnp->dn_extra_slots + 1;
750 drro->drr_checksumtype = dnp->dn_checksum;
751 drro->drr_compress = dnp->dn_compress;
752 drro->drr_toguid = dscp->dsc_toguid;
753
754 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
755 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
756 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
757
758 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
759
760 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
761 ASSERT(BP_IS_ENCRYPTED(bp));
762
763 if (BP_SHOULD_BYTESWAP(bp))
764 drro->drr_flags |= DRR_RAW_BYTESWAP;
765
766 /* needed for reconstructing dnp on recv side */
767 drro->drr_maxblkid = dnp->dn_maxblkid;
768 drro->drr_indblkshift = dnp->dn_indblkshift;
769 drro->drr_nlevels = dnp->dn_nlevels;
770 drro->drr_nblkptr = dnp->dn_nblkptr;
771
772 /*
773 * Since we encrypt the entire bonus area, the (raw) part
774 * beyond the bonuslen is actually nonzero, so we need
775 * to send it.
776 */
777 if (bonuslen != 0) {
778 if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
779 return (SET_ERROR(EINVAL));
780 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
781 bonuslen = drro->drr_raw_bonuslen;
782 }
783 }
784
785 /*
786 * DRR_OBJECT_SPILL is set for every dnode which references a
787 * spill block. This allows the receiving pool to definitively
788 * determine when a spill block should be kept or freed.
789 */
790 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
791 drro->drr_flags |= DRR_OBJECT_SPILL;
792
793 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
794 return (SET_ERROR(EINTR));
795
796 /* Free anything past the end of the file. */
797 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
798 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
799 return (SET_ERROR(EINTR));
800
801 if (dscp->dsc_err != 0)
802 return (SET_ERROR(EINTR));
803
804 return (0);
805 }
806
807 static int
dump_object_range(dmu_send_cookie_t * dscp,const blkptr_t * bp,uint64_t firstobj,uint64_t numslots)808 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
809 uint64_t firstobj, uint64_t numslots)
810 {
811 struct drr_object_range *drror =
812 &(dscp->dsc_drr->drr_u.drr_object_range);
813
814 /* we only use this record type for raw sends */
815 ASSERT(BP_IS_PROTECTED(bp));
816 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
817 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
818 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
819 ASSERT0(BP_GET_LEVEL(bp));
820
821 if (dscp->dsc_pending_op != PENDING_NONE) {
822 if (dump_record(dscp, NULL, 0) != 0)
823 return (SET_ERROR(EINTR));
824 dscp->dsc_pending_op = PENDING_NONE;
825 }
826
827 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
828 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
829 drror->drr_firstobj = firstobj;
830 drror->drr_numslots = numslots;
831 drror->drr_toguid = dscp->dsc_toguid;
832 if (BP_SHOULD_BYTESWAP(bp))
833 drror->drr_flags |= DRR_RAW_BYTESWAP;
834 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
835 zio_crypt_decode_mac_bp(bp, drror->drr_mac);
836
837 if (dump_record(dscp, NULL, 0) != 0)
838 return (SET_ERROR(EINTR));
839 return (0);
840 }
841
842 static boolean_t
send_do_embed(const blkptr_t * bp,uint64_t featureflags)843 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
844 {
845 if (!BP_IS_EMBEDDED(bp))
846 return (B_FALSE);
847
848 /*
849 * Compression function must be legacy, or explicitly enabled.
850 */
851 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
852 !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
853 return (B_FALSE);
854
855 /*
856 * If we have not set the ZSTD feature flag, we can't send ZSTD
857 * compressed embedded blocks, as the receiver may not support them.
858 */
859 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
860 !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
861 return (B_FALSE);
862
863 /*
864 * Embed type must be explicitly enabled.
865 */
866 switch (BPE_GET_ETYPE(bp)) {
867 case BP_EMBEDDED_TYPE_DATA:
868 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
869 return (B_TRUE);
870 break;
871 default:
872 return (B_FALSE);
873 }
874 return (B_FALSE);
875 }
876
877 /*
878 * This function actually handles figuring out what kind of record needs to be
879 * dumped, and calling the appropriate helper function. In most cases,
880 * the data has already been read by send_reader_thread().
881 */
882 static int
do_dump(dmu_send_cookie_t * dscp,struct send_range * range)883 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
884 {
885 int err = 0;
886 switch (range->type) {
887 case OBJECT:
888 err = dump_dnode(dscp, &range->sru.object.bp, range->object,
889 range->sru.object.dnp);
890 /* Dump piggybacked unmodified spill block */
891 if (!err && range->sru.object.spill_range)
892 err = do_dump(dscp, range->sru.object.spill_range);
893 return (err);
894 case OBJECT_RANGE: {
895 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
896 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
897 return (0);
898 }
899 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
900 DNODE_SHIFT;
901 uint64_t firstobj = range->start_blkid * epb;
902 err = dump_object_range(dscp, &range->sru.object_range.bp,
903 firstobj, epb);
904 break;
905 }
906 case REDACT: {
907 struct srr *srrp = &range->sru.redact;
908 err = dump_redact(dscp, range->object, range->start_blkid *
909 srrp->datablksz, (range->end_blkid - range->start_blkid) *
910 srrp->datablksz);
911 return (err);
912 }
913 case DATA: {
914 struct srd *srdp = &range->sru.data;
915 blkptr_t *bp = &srdp->bp;
916 spa_t *spa =
917 dmu_objset_spa(dscp->dsc_os);
918
919 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
920 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
921
922 if (send_do_embed(bp, dscp->dsc_featureflags)) {
923 err = dump_write_embedded(dscp, range->object,
924 range->start_blkid * srdp->datablksz,
925 srdp->datablksz, bp);
926 return (err);
927 }
928 ASSERT(range->object > dscp->dsc_resume_object ||
929 (range->object == dscp->dsc_resume_object &&
930 (range->start_blkid == DMU_SPILL_BLKID ||
931 range->start_blkid * srdp->datablksz >=
932 dscp->dsc_resume_offset)));
933 /* it's a level-0 block of a regular object */
934
935 mutex_enter(&srdp->lock);
936 while (srdp->io_outstanding)
937 cv_wait(&srdp->cv, &srdp->lock);
938 err = srdp->io_err;
939 mutex_exit(&srdp->lock);
940
941 if (err != 0) {
942 if (zfs_send_corrupt_data &&
943 !dscp->dsc_dso->dso_dryrun) {
944 /*
945 * Send a block filled with 0x"zfs badd bloc"
946 */
947 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
948 ARC_BUFC_DATA, srdp->datablksz);
949 uint64_t *ptr;
950 for (ptr = srdp->abuf->b_data;
951 (char *)ptr < (char *)srdp->abuf->b_data +
952 srdp->datablksz; ptr++)
953 *ptr = 0x2f5baddb10cULL;
954 } else {
955 return (SET_ERROR(EIO));
956 }
957 }
958
959 ASSERT(dscp->dsc_dso->dso_dryrun ||
960 srdp->abuf != NULL || srdp->abd != NULL);
961
962 char *data = NULL;
963 if (srdp->abd != NULL) {
964 data = abd_to_buf(srdp->abd);
965 ASSERT3P(srdp->abuf, ==, NULL);
966 } else if (srdp->abuf != NULL) {
967 data = srdp->abuf->b_data;
968 }
969
970 if (BP_GET_TYPE(bp) == DMU_OT_SA) {
971 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
972 err = dump_spill(dscp, bp, range->object, data);
973 return (err);
974 }
975
976 uint64_t offset = range->start_blkid * srdp->datablksz;
977
978 /*
979 * If we have large blocks stored on disk but the send flags
980 * don't allow us to send large blocks, we split the data from
981 * the arc buf into chunks.
982 */
983 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
984 !(dscp->dsc_featureflags &
985 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
986 while (srdp->datablksz > 0 && err == 0) {
987 int n = MIN(srdp->datablksz,
988 SPA_OLD_MAXBLOCKSIZE);
989 err = dmu_dump_write(dscp, srdp->obj_type,
990 range->object, offset, n, n, NULL, B_FALSE,
991 data);
992 offset += n;
993 /*
994 * When doing dry run, data==NULL is used as a
995 * sentinel value by
996 * dmu_dump_write()->dump_record().
997 */
998 if (data != NULL)
999 data += n;
1000 srdp->datablksz -= n;
1001 }
1002 } else {
1003 err = dmu_dump_write(dscp, srdp->obj_type,
1004 range->object, offset,
1005 srdp->datablksz, srdp->datasz, bp,
1006 srdp->io_compressed, data);
1007 }
1008 return (err);
1009 }
1010 case HOLE: {
1011 struct srh *srhp = &range->sru.hole;
1012 if (range->object == DMU_META_DNODE_OBJECT) {
1013 uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1014 uint64_t first_obj = range->start_blkid * span;
1015 uint64_t numobj = range->end_blkid * span - first_obj;
1016 return (dump_freeobjects(dscp, first_obj, numobj));
1017 }
1018 uint64_t offset = 0;
1019
1020 /*
1021 * If this multiply overflows, we don't need to send this block.
1022 * Even if it has a birth time, it can never not be a hole, so
1023 * we don't need to send records for it.
1024 */
1025 if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1026 &offset)) {
1027 return (0);
1028 }
1029 uint64_t len = 0;
1030
1031 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1032 len = UINT64_MAX;
1033 len = len - offset;
1034 return (dump_free(dscp, range->object, offset, len));
1035 }
1036 default:
1037 panic("Invalid range type in do_dump: %d", range->type);
1038 }
1039 return (err);
1040 }
1041
1042 static struct send_range *
range_alloc(enum type type,uint64_t object,uint64_t start_blkid,uint64_t end_blkid,boolean_t eos)1043 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1044 uint64_t end_blkid, boolean_t eos)
1045 {
1046 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1047 range->type = type;
1048 range->object = object;
1049 range->start_blkid = start_blkid;
1050 range->end_blkid = end_blkid;
1051 range->eos_marker = eos;
1052 if (type == DATA) {
1053 range->sru.data.abd = NULL;
1054 range->sru.data.abuf = NULL;
1055 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1056 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1057 range->sru.data.io_outstanding = 0;
1058 range->sru.data.io_err = 0;
1059 range->sru.data.io_compressed = B_FALSE;
1060 } else if (type == OBJECT) {
1061 range->sru.object.spill_range = NULL;
1062 }
1063 return (range);
1064 }
1065
1066 /*
1067 * This is the callback function to traverse_dataset that acts as a worker
1068 * thread for dmu_send_impl.
1069 */
1070 static int
send_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const struct dnode_phys * dnp,void * arg)1071 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1072 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1073 {
1074 (void) zilog;
1075 struct send_thread_arg *sta = arg;
1076 struct send_range *record;
1077
1078 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1079 zb->zb_object >= sta->resume.zb_object);
1080
1081 /*
1082 * All bps of an encrypted os should have the encryption bit set.
1083 * If this is not true it indicates tampering and we report an error.
1084 */
1085 if (sta->os->os_encrypted &&
1086 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1087 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
1088 return (SET_ERROR(EIO));
1089 }
1090
1091 if (sta->cancel)
1092 return (SET_ERROR(EINTR));
1093 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1094 DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1095 return (0);
1096 atomic_inc_64(sta->num_blocks_visited);
1097
1098 if (zb->zb_level == ZB_DNODE_LEVEL) {
1099 if (zb->zb_object == DMU_META_DNODE_OBJECT)
1100 return (0);
1101 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1102 record->sru.object.bp = *bp;
1103 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1104 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1105 memcpy(record->sru.object.dnp, dnp, size);
1106 bqueue_enqueue(&sta->q, record, sizeof (*record));
1107 return (0);
1108 }
1109 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1110 !BP_IS_HOLE(bp)) {
1111 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1112 zb->zb_blkid + 1, B_FALSE);
1113 record->sru.object_range.bp = *bp;
1114 bqueue_enqueue(&sta->q, record, sizeof (*record));
1115 return (0);
1116 }
1117 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1118 return (0);
1119 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1120 return (0);
1121
1122 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1123 uint64_t start;
1124
1125 /*
1126 * If this multiply overflows, we don't need to send this block.
1127 * Even if it has a birth time, it can never not be a hole, so
1128 * we don't need to send records for it.
1129 */
1130 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1131 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1132 span * zb->zb_blkid > dnp->dn_maxblkid)) {
1133 ASSERT(BP_IS_HOLE(bp));
1134 return (0);
1135 }
1136
1137 if (zb->zb_blkid == DMU_SPILL_BLKID)
1138 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1139
1140 enum type record_type = DATA;
1141 if (BP_IS_HOLE(bp))
1142 record_type = HOLE;
1143 else if (BP_IS_REDACTED(bp))
1144 record_type = REDACT;
1145 else
1146 record_type = DATA;
1147
1148 record = range_alloc(record_type, zb->zb_object, start,
1149 (start + span < start ? 0 : start + span), B_FALSE);
1150
1151 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1152 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1153
1154 if (BP_IS_HOLE(bp)) {
1155 record->sru.hole.datablksz = datablksz;
1156 } else if (BP_IS_REDACTED(bp)) {
1157 record->sru.redact.datablksz = datablksz;
1158 } else {
1159 record->sru.data.datablksz = datablksz;
1160 record->sru.data.obj_type = dnp->dn_type;
1161 record->sru.data.bp = *bp;
1162 }
1163
1164 bqueue_enqueue(&sta->q, record, sizeof (*record));
1165 return (0);
1166 }
1167
1168 struct redact_list_cb_arg {
1169 uint64_t *num_blocks_visited;
1170 bqueue_t *q;
1171 boolean_t *cancel;
1172 boolean_t mark_redact;
1173 };
1174
1175 static int
redact_list_cb(redact_block_phys_t * rb,void * arg)1176 redact_list_cb(redact_block_phys_t *rb, void *arg)
1177 {
1178 struct redact_list_cb_arg *rlcap = arg;
1179
1180 atomic_inc_64(rlcap->num_blocks_visited);
1181 if (*rlcap->cancel)
1182 return (-1);
1183
1184 struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1185 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1186 ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1187 if (rlcap->mark_redact) {
1188 data->type = REDACT;
1189 data->sru.redact.datablksz = redact_block_get_size(rb);
1190 } else {
1191 data->type = PREVIOUSLY_REDACTED;
1192 }
1193 bqueue_enqueue(rlcap->q, data, sizeof (*data));
1194
1195 return (0);
1196 }
1197
1198 /*
1199 * This function kicks off the traverse_dataset. It also handles setting the
1200 * error code of the thread in case something goes wrong, and pushes the End of
1201 * Stream record when the traverse_dataset call has finished.
1202 */
1203 static __attribute__((noreturn)) void
send_traverse_thread(void * arg)1204 send_traverse_thread(void *arg)
1205 {
1206 struct send_thread_arg *st_arg = arg;
1207 int err = 0;
1208 struct send_range *data;
1209 fstrans_cookie_t cookie = spl_fstrans_mark();
1210
1211 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1212 st_arg->fromtxg, &st_arg->resume,
1213 st_arg->flags, send_cb, st_arg);
1214
1215 if (err != EINTR)
1216 st_arg->error_code = err;
1217 data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1218 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1219 spl_fstrans_unmark(cookie);
1220 thread_exit();
1221 }
1222
1223 /*
1224 * Utility function that causes End of Stream records to compare after of all
1225 * others, so that other threads' comparison logic can stay simple.
1226 */
1227 static int __attribute__((unused))
send_range_after(const struct send_range * from,const struct send_range * to)1228 send_range_after(const struct send_range *from, const struct send_range *to)
1229 {
1230 if (from->eos_marker == B_TRUE)
1231 return (1);
1232 if (to->eos_marker == B_TRUE)
1233 return (-1);
1234
1235 uint64_t from_obj = from->object;
1236 uint64_t from_end_obj = from->object + 1;
1237 uint64_t to_obj = to->object;
1238 uint64_t to_end_obj = to->object + 1;
1239 if (from_obj == 0) {
1240 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1241 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1242 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1243 }
1244 if (to_obj == 0) {
1245 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1246 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1247 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1248 }
1249
1250 if (from_end_obj <= to_obj)
1251 return (-1);
1252 if (from_obj >= to_end_obj)
1253 return (1);
1254 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1255 OBJECT_RANGE);
1256 if (unlikely(cmp))
1257 return (cmp);
1258 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1259 if (unlikely(cmp))
1260 return (cmp);
1261 if (from->end_blkid <= to->start_blkid)
1262 return (-1);
1263 if (from->start_blkid >= to->end_blkid)
1264 return (1);
1265 return (0);
1266 }
1267
1268 /*
1269 * Pop the new data off the queue, check that the records we receive are in
1270 * the right order, but do not free the old data. This is used so that the
1271 * records can be sent on to the main thread without copying the data.
1272 */
1273 static struct send_range *
get_next_range_nofree(bqueue_t * bq,struct send_range * prev)1274 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1275 {
1276 struct send_range *next = bqueue_dequeue(bq);
1277 ASSERT3S(send_range_after(prev, next), ==, -1);
1278 return (next);
1279 }
1280
1281 /*
1282 * Pop the new data off the queue, check that the records we receive are in
1283 * the right order, and free the old data.
1284 */
1285 static struct send_range *
get_next_range(bqueue_t * bq,struct send_range * prev)1286 get_next_range(bqueue_t *bq, struct send_range *prev)
1287 {
1288 struct send_range *next = get_next_range_nofree(bq, prev);
1289 range_free(prev);
1290 return (next);
1291 }
1292
1293 static __attribute__((noreturn)) void
redact_list_thread(void * arg)1294 redact_list_thread(void *arg)
1295 {
1296 struct redact_list_thread_arg *rlt_arg = arg;
1297 struct send_range *record;
1298 fstrans_cookie_t cookie = spl_fstrans_mark();
1299 if (rlt_arg->rl != NULL) {
1300 struct redact_list_cb_arg rlcba = {0};
1301 rlcba.cancel = &rlt_arg->cancel;
1302 rlcba.q = &rlt_arg->q;
1303 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1304 rlcba.mark_redact = rlt_arg->mark_redact;
1305 int err = dsl_redaction_list_traverse(rlt_arg->rl,
1306 &rlt_arg->resume, redact_list_cb, &rlcba);
1307 if (err != EINTR)
1308 rlt_arg->error_code = err;
1309 }
1310 record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1311 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1312 spl_fstrans_unmark(cookie);
1313
1314 thread_exit();
1315 }
1316
1317 /*
1318 * Compare the start point of the two provided ranges. End of stream ranges
1319 * compare last, objects compare before any data or hole inside that object and
1320 * multi-object holes that start at the same object.
1321 */
1322 static int
send_range_start_compare(struct send_range * r1,struct send_range * r2)1323 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1324 {
1325 uint64_t r1_objequiv = r1->object;
1326 uint64_t r1_l0equiv = r1->start_blkid;
1327 uint64_t r2_objequiv = r2->object;
1328 uint64_t r2_l0equiv = r2->start_blkid;
1329 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1330 if (unlikely(cmp))
1331 return (cmp);
1332 if (r1->object == 0) {
1333 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1334 r1_l0equiv = 0;
1335 }
1336 if (r2->object == 0) {
1337 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1338 r2_l0equiv = 0;
1339 }
1340
1341 cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1342 if (likely(cmp))
1343 return (cmp);
1344 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1345 if (unlikely(cmp))
1346 return (cmp);
1347 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1348 if (unlikely(cmp))
1349 return (cmp);
1350
1351 return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1352 }
1353
1354 enum q_idx {
1355 REDACT_IDX = 0,
1356 TO_IDX,
1357 FROM_IDX,
1358 NUM_THREADS
1359 };
1360
1361 /*
1362 * This function returns the next range the send_merge_thread should operate on.
1363 * The inputs are two arrays; the first one stores the range at the front of the
1364 * queues stored in the second one. The ranges are sorted in descending
1365 * priority order; the metadata from earlier ranges overrules metadata from
1366 * later ranges. out_mask is used to return which threads the ranges came from;
1367 * bit i is set if ranges[i] started at the same place as the returned range.
1368 *
1369 * This code is not hardcoded to compare a specific number of threads; it could
1370 * be used with any number, just by changing the q_idx enum.
1371 *
1372 * The "next range" is the one with the earliest start; if two starts are equal,
1373 * the highest-priority range is the next to operate on. If a higher-priority
1374 * range starts in the middle of the first range, then the first range will be
1375 * truncated to end where the higher-priority range starts, and we will operate
1376 * on that one next time. In this way, we make sure that each block covered by
1377 * some range gets covered by a returned range, and each block covered is
1378 * returned using the metadata of the highest-priority range it appears in.
1379 *
1380 * For example, if the three ranges at the front of the queues were [2,4),
1381 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1382 * from the third range, [2,4) with the metadata from the first range, and then
1383 * [4,5) with the metadata from the second.
1384 */
1385 static struct send_range *
find_next_range(struct send_range ** ranges,bqueue_t ** qs,uint64_t * out_mask)1386 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1387 {
1388 int idx = 0; // index of the range with the earliest start
1389 int i;
1390 uint64_t bmask = 0;
1391 for (i = 1; i < NUM_THREADS; i++) {
1392 if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1393 idx = i;
1394 }
1395 if (ranges[idx]->eos_marker) {
1396 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1397 *out_mask = 0;
1398 return (ret);
1399 }
1400 /*
1401 * Find all the ranges that start at that same point.
1402 */
1403 for (i = 0; i < NUM_THREADS; i++) {
1404 if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1405 bmask |= 1 << i;
1406 }
1407 *out_mask = bmask;
1408 /*
1409 * OBJECT_RANGE records only come from the TO thread, and should always
1410 * be treated as overlapping with nothing and sent on immediately. They
1411 * are only used in raw sends, and are never redacted.
1412 */
1413 if (ranges[idx]->type == OBJECT_RANGE) {
1414 ASSERT3U(idx, ==, TO_IDX);
1415 ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1416 struct send_range *ret = ranges[idx];
1417 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1418 return (ret);
1419 }
1420 /*
1421 * Find the first start or end point after the start of the first range.
1422 */
1423 uint64_t first_change = ranges[idx]->end_blkid;
1424 for (i = 0; i < NUM_THREADS; i++) {
1425 if (i == idx || ranges[i]->eos_marker ||
1426 ranges[i]->object > ranges[idx]->object ||
1427 ranges[i]->object == DMU_META_DNODE_OBJECT)
1428 continue;
1429 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1430 if (first_change > ranges[i]->start_blkid &&
1431 (bmask & (1 << i)) == 0)
1432 first_change = ranges[i]->start_blkid;
1433 else if (first_change > ranges[i]->end_blkid)
1434 first_change = ranges[i]->end_blkid;
1435 }
1436 /*
1437 * Update all ranges to no longer overlap with the range we're
1438 * returning. All such ranges must start at the same place as the range
1439 * being returned, and end at or after first_change. Thus we update
1440 * their start to first_change. If that makes them size 0, then free
1441 * them and pull a new range from that thread.
1442 */
1443 for (i = 0; i < NUM_THREADS; i++) {
1444 if (i == idx || (bmask & (1 << i)) == 0)
1445 continue;
1446 ASSERT3U(first_change, >, ranges[i]->start_blkid);
1447 ranges[i]->start_blkid = first_change;
1448 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1449 if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1450 ranges[i] = get_next_range(qs[i], ranges[i]);
1451 }
1452 /*
1453 * Short-circuit the simple case; if the range doesn't overlap with
1454 * anything else, or it only overlaps with things that start at the same
1455 * place and are longer, send it on.
1456 */
1457 if (first_change == ranges[idx]->end_blkid) {
1458 struct send_range *ret = ranges[idx];
1459 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1460 return (ret);
1461 }
1462
1463 /*
1464 * Otherwise, return a truncated copy of ranges[idx] and move the start
1465 * of ranges[idx] back to first_change.
1466 */
1467 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1468 *ret = *ranges[idx];
1469 ret->end_blkid = first_change;
1470 ranges[idx]->start_blkid = first_change;
1471 return (ret);
1472 }
1473
1474 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1475
1476 /*
1477 * Merge the results from the from thread and the to thread, and then hand the
1478 * records off to send_prefetch_thread to prefetch them. If this is not a
1479 * send from a redaction bookmark, the from thread will push an end of stream
1480 * record and stop, and we'll just send everything that was changed in the
1481 * to_ds since the ancestor's creation txg. If it is, then since
1482 * traverse_dataset has a canonical order, we can compare each change as
1483 * they're pulled off the queues. That will give us a stream that is
1484 * appropriately sorted, and covers all records. In addition, we pull the
1485 * data from the redact_list_thread and use that to determine which blocks
1486 * should be redacted.
1487 */
1488 static __attribute__((noreturn)) void
send_merge_thread(void * arg)1489 send_merge_thread(void *arg)
1490 {
1491 struct send_merge_thread_arg *smt_arg = arg;
1492 struct send_range *front_ranges[NUM_THREADS];
1493 bqueue_t *queues[NUM_THREADS];
1494 int err = 0;
1495 fstrans_cookie_t cookie = spl_fstrans_mark();
1496
1497 if (smt_arg->redact_arg == NULL) {
1498 front_ranges[REDACT_IDX] =
1499 kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1500 front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1501 front_ranges[REDACT_IDX]->type = REDACT;
1502 queues[REDACT_IDX] = NULL;
1503 } else {
1504 front_ranges[REDACT_IDX] =
1505 bqueue_dequeue(&smt_arg->redact_arg->q);
1506 queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1507 }
1508 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1509 queues[TO_IDX] = &smt_arg->to_arg->q;
1510 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1511 queues[FROM_IDX] = &smt_arg->from_arg->q;
1512 uint64_t mask = 0;
1513 struct send_range *range;
1514 for (range = find_next_range(front_ranges, queues, &mask);
1515 !range->eos_marker && err == 0 && !smt_arg->cancel;
1516 range = find_next_range(front_ranges, queues, &mask)) {
1517 /*
1518 * If the range in question was in both the from redact bookmark
1519 * and the bookmark we're using to redact, then don't send it.
1520 * It's already redacted on the receiving system, so a redaction
1521 * record would be redundant.
1522 */
1523 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1524 ASSERT3U(range->type, ==, REDACT);
1525 range_free(range);
1526 continue;
1527 }
1528 bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1529
1530 if (smt_arg->to_arg->error_code != 0) {
1531 err = smt_arg->to_arg->error_code;
1532 } else if (smt_arg->from_arg->error_code != 0) {
1533 err = smt_arg->from_arg->error_code;
1534 } else if (smt_arg->redact_arg != NULL &&
1535 smt_arg->redact_arg->error_code != 0) {
1536 err = smt_arg->redact_arg->error_code;
1537 }
1538 }
1539 if (smt_arg->cancel && err == 0)
1540 err = SET_ERROR(EINTR);
1541 smt_arg->error = err;
1542 if (smt_arg->error != 0) {
1543 smt_arg->to_arg->cancel = B_TRUE;
1544 smt_arg->from_arg->cancel = B_TRUE;
1545 if (smt_arg->redact_arg != NULL)
1546 smt_arg->redact_arg->cancel = B_TRUE;
1547 }
1548 for (int i = 0; i < NUM_THREADS; i++) {
1549 while (!front_ranges[i]->eos_marker) {
1550 front_ranges[i] = get_next_range(queues[i],
1551 front_ranges[i]);
1552 }
1553 range_free(front_ranges[i]);
1554 }
1555 range->eos_marker = B_TRUE;
1556 bqueue_enqueue_flush(&smt_arg->q, range, 1);
1557 spl_fstrans_unmark(cookie);
1558 thread_exit();
1559 }
1560
1561 struct send_reader_thread_arg {
1562 struct send_merge_thread_arg *smta;
1563 bqueue_t q;
1564 boolean_t cancel;
1565 boolean_t issue_reads;
1566 uint64_t featureflags;
1567 int error;
1568 };
1569
1570 static void
dmu_send_read_done(zio_t * zio)1571 dmu_send_read_done(zio_t *zio)
1572 {
1573 struct send_range *range = zio->io_private;
1574
1575 mutex_enter(&range->sru.data.lock);
1576 if (zio->io_error != 0) {
1577 abd_free(range->sru.data.abd);
1578 range->sru.data.abd = NULL;
1579 range->sru.data.io_err = zio->io_error;
1580 }
1581
1582 ASSERT(range->sru.data.io_outstanding);
1583 range->sru.data.io_outstanding = B_FALSE;
1584 cv_broadcast(&range->sru.data.cv);
1585 mutex_exit(&range->sru.data.lock);
1586 }
1587
1588 static void
issue_data_read(struct send_reader_thread_arg * srta,struct send_range * range)1589 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1590 {
1591 struct srd *srdp = &range->sru.data;
1592 blkptr_t *bp = &srdp->bp;
1593 objset_t *os = srta->smta->os;
1594
1595 ASSERT3U(range->type, ==, DATA);
1596 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1597 /*
1598 * If we have large blocks stored on disk but
1599 * the send flags don't allow us to send large
1600 * blocks, we split the data from the arc buf
1601 * into chunks.
1602 */
1603 boolean_t split_large_blocks =
1604 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1605 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1606 /*
1607 * We should only request compressed data from the ARC if all
1608 * the following are true:
1609 * - stream compression was requested
1610 * - we aren't splitting large blocks into smaller chunks
1611 * - the data won't need to be byteswapped before sending
1612 * - this isn't an embedded block
1613 * - this isn't metadata (if receiving on a different endian
1614 * system it can be byteswapped more easily)
1615 */
1616 boolean_t request_compressed =
1617 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1618 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1619 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1620
1621 zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1622
1623 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1624 zioflags |= ZIO_FLAG_RAW;
1625 srdp->io_compressed = B_TRUE;
1626 } else if (request_compressed) {
1627 zioflags |= ZIO_FLAG_RAW_COMPRESS;
1628 srdp->io_compressed = B_TRUE;
1629 }
1630
1631 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1632 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1633
1634 if (!srta->issue_reads)
1635 return;
1636 if (BP_IS_REDACTED(bp))
1637 return;
1638 if (send_do_embed(bp, srta->featureflags))
1639 return;
1640
1641 zbookmark_phys_t zb = {
1642 .zb_objset = dmu_objset_id(os),
1643 .zb_object = range->object,
1644 .zb_level = 0,
1645 .zb_blkid = range->start_blkid,
1646 };
1647
1648 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1649
1650 int arc_err = arc_read(NULL, os->os_spa, bp,
1651 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1652 zioflags, &aflags, &zb);
1653 /*
1654 * If the data is not already cached in the ARC, we read directly
1655 * from zio. This avoids the performance overhead of adding a new
1656 * entry to the ARC, and we also avoid polluting the ARC cache with
1657 * data that is not likely to be used in the future.
1658 */
1659 if (arc_err != 0) {
1660 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1661 srdp->io_outstanding = B_TRUE;
1662 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1663 srdp->datasz, dmu_send_read_done, range,
1664 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1665 }
1666 }
1667
1668 /*
1669 * Create a new record with the given values.
1670 */
1671 static void
enqueue_range(struct send_reader_thread_arg * srta,bqueue_t * q,dnode_t * dn,uint64_t blkid,uint64_t count,const blkptr_t * bp,uint32_t datablksz)1672 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1673 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1674 {
1675 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1676 (BP_IS_REDACTED(bp) ? REDACT : DATA));
1677
1678 struct send_range *range = range_alloc(range_type, dn->dn_object,
1679 blkid, blkid + count, B_FALSE);
1680
1681 if (blkid == DMU_SPILL_BLKID) {
1682 ASSERT3P(bp, !=, NULL);
1683 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1684 }
1685
1686 switch (range_type) {
1687 case HOLE:
1688 range->sru.hole.datablksz = datablksz;
1689 break;
1690 case DATA:
1691 ASSERT3U(count, ==, 1);
1692 range->sru.data.datablksz = datablksz;
1693 range->sru.data.obj_type = dn->dn_type;
1694 range->sru.data.bp = *bp;
1695 issue_data_read(srta, range);
1696 break;
1697 case REDACT:
1698 range->sru.redact.datablksz = datablksz;
1699 break;
1700 default:
1701 break;
1702 }
1703 bqueue_enqueue(q, range, datablksz);
1704 }
1705
1706 /*
1707 * Send DRR_SPILL records for unmodified spill blocks. This is useful
1708 * because changing certain attributes of the object (e.g. blocksize)
1709 * can cause old versions of ZFS to incorrectly remove a spill block.
1710 * Including these records in the stream forces an up to date version
1711 * to always be written ensuring they're never lost. Current versions
1712 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
1713 * ignore these unmodified spill blocks.
1714 *
1715 * We piggyback the spill_range to dnode range instead of enqueueing it
1716 * so send_range_after won't complain.
1717 */
1718 static uint64_t
piggyback_unmodified_spill(struct send_reader_thread_arg * srta,struct send_range * range)1719 piggyback_unmodified_spill(struct send_reader_thread_arg *srta,
1720 struct send_range *range)
1721 {
1722 ASSERT3U(range->type, ==, OBJECT);
1723
1724 dnode_phys_t *dnp = range->sru.object.dnp;
1725 uint64_t fromtxg = srta->smta->to_arg->fromtxg;
1726
1727 if (!zfs_send_unmodified_spill_blocks ||
1728 !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ||
1729 !(BP_GET_LOGICAL_BIRTH(DN_SPILL_BLKPTR(dnp)) <= fromtxg))
1730 return (0);
1731
1732 blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
1733 struct send_range *spill_range = range_alloc(DATA, range->object,
1734 DMU_SPILL_BLKID, DMU_SPILL_BLKID+1, B_FALSE);
1735 spill_range->sru.data.bp = *bp;
1736 spill_range->sru.data.obj_type = dnp->dn_type;
1737 spill_range->sru.data.datablksz = BP_GET_LSIZE(bp);
1738
1739 issue_data_read(srta, spill_range);
1740 range->sru.object.spill_range = spill_range;
1741
1742 return (BP_GET_LSIZE(bp));
1743 }
1744
1745 /*
1746 * This thread is responsible for two things: First, it retrieves the correct
1747 * blkptr in the to ds if we need to send the data because of something from
1748 * the from thread. As a result of this, we're the first ones to discover that
1749 * some indirect blocks can be discarded because they're not holes. Second,
1750 * it issues prefetches for the data we need to send.
1751 */
1752 static __attribute__((noreturn)) void
send_reader_thread(void * arg)1753 send_reader_thread(void *arg)
1754 {
1755 struct send_reader_thread_arg *srta = arg;
1756 struct send_merge_thread_arg *smta = srta->smta;
1757 bqueue_t *inq = &smta->q;
1758 bqueue_t *outq = &srta->q;
1759 objset_t *os = smta->os;
1760 fstrans_cookie_t cookie = spl_fstrans_mark();
1761 struct send_range *range = bqueue_dequeue(inq);
1762 int err = 0;
1763
1764 /*
1765 * If the record we're analyzing is from a redaction bookmark from the
1766 * fromds, then we need to know whether or not it exists in the tods so
1767 * we know whether to create records for it or not. If it does, we need
1768 * the datablksz so we can generate an appropriate record for it.
1769 * Finally, if it isn't redacted, we need the blkptr so that we can send
1770 * a WRITE record containing the actual data.
1771 */
1772 uint64_t last_obj = UINT64_MAX;
1773 uint64_t last_obj_exists = B_TRUE;
1774 while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1775 err == 0) {
1776 uint64_t spill = 0;
1777 switch (range->type) {
1778 case DATA:
1779 issue_data_read(srta, range);
1780 bqueue_enqueue(outq, range, range->sru.data.datablksz);
1781 range = get_next_range_nofree(inq, range);
1782 break;
1783 case OBJECT:
1784 spill = piggyback_unmodified_spill(srta, range);
1785 zfs_fallthrough;
1786 case HOLE:
1787 case OBJECT_RANGE:
1788 case REDACT: // Redacted blocks must exist
1789 bqueue_enqueue(outq, range, sizeof (*range) + spill);
1790 range = get_next_range_nofree(inq, range);
1791 break;
1792 case PREVIOUSLY_REDACTED: {
1793 /*
1794 * This entry came from the "from bookmark" when
1795 * sending from a bookmark that has a redaction
1796 * list. We need to check if this object/blkid
1797 * exists in the target ("to") dataset, and if
1798 * not then we drop this entry. We also need
1799 * to fill in the block pointer so that we know
1800 * what to prefetch.
1801 *
1802 * To accomplish the above, we first cache whether or
1803 * not the last object we examined exists. If it
1804 * doesn't, we can drop this record. If it does, we hold
1805 * the dnode and use it to call dbuf_dnode_findbp. We do
1806 * this instead of dbuf_bookmark_findbp because we will
1807 * often operate on large ranges, and holding the dnode
1808 * once is more efficient.
1809 */
1810 boolean_t object_exists = B_TRUE;
1811 /*
1812 * If the data is redacted, we only care if it exists,
1813 * so that we don't send records for objects that have
1814 * been deleted.
1815 */
1816 dnode_t *dn;
1817 if (range->object == last_obj && !last_obj_exists) {
1818 /*
1819 * If we're still examining the same object as
1820 * previously, and it doesn't exist, we don't
1821 * need to call dbuf_bookmark_findbp.
1822 */
1823 object_exists = B_FALSE;
1824 } else {
1825 err = dnode_hold(os, range->object, FTAG, &dn);
1826 if (err == ENOENT) {
1827 object_exists = B_FALSE;
1828 err = 0;
1829 }
1830 last_obj = range->object;
1831 last_obj_exists = object_exists;
1832 }
1833
1834 if (err != 0) {
1835 break;
1836 } else if (!object_exists) {
1837 /*
1838 * The block was modified, but doesn't
1839 * exist in the to dataset; if it was
1840 * deleted in the to dataset, then we'll
1841 * visit the hole bp for it at some point.
1842 */
1843 range = get_next_range(inq, range);
1844 continue;
1845 }
1846 uint64_t file_max =
1847 MIN(dn->dn_maxblkid, range->end_blkid);
1848 /*
1849 * The object exists, so we need to try to find the
1850 * blkptr for each block in the range we're processing.
1851 */
1852 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1853 for (uint64_t blkid = range->start_blkid;
1854 blkid < file_max; blkid++) {
1855 blkptr_t bp;
1856 uint32_t datablksz =
1857 dn->dn_phys->dn_datablkszsec <<
1858 SPA_MINBLOCKSHIFT;
1859 uint64_t offset = blkid * datablksz;
1860 /*
1861 * This call finds the next non-hole block in
1862 * the object. This is to prevent a
1863 * performance problem where we're unredacting
1864 * a large hole. Using dnode_next_offset to
1865 * skip over the large hole avoids iterating
1866 * over every block in it.
1867 */
1868 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1869 &offset, 1, 1, 0);
1870 if (err == ESRCH) {
1871 offset = UINT64_MAX;
1872 err = 0;
1873 } else if (err != 0) {
1874 break;
1875 }
1876 if (offset != blkid * datablksz) {
1877 /*
1878 * if there is a hole from here
1879 * (blkid) to offset
1880 */
1881 offset = MIN(offset, file_max *
1882 datablksz);
1883 uint64_t nblks = (offset / datablksz) -
1884 blkid;
1885 enqueue_range(srta, outq, dn, blkid,
1886 nblks, NULL, datablksz);
1887 blkid += nblks;
1888 }
1889 if (blkid >= file_max)
1890 break;
1891 err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1892 NULL, NULL);
1893 if (err != 0)
1894 break;
1895 ASSERT(!BP_IS_HOLE(&bp));
1896 enqueue_range(srta, outq, dn, blkid, 1, &bp,
1897 datablksz);
1898 }
1899 rw_exit(&dn->dn_struct_rwlock);
1900 dnode_rele(dn, FTAG);
1901 range = get_next_range(inq, range);
1902 }
1903 }
1904 }
1905 if (srta->cancel || err != 0) {
1906 smta->cancel = B_TRUE;
1907 srta->error = err;
1908 } else if (smta->error != 0) {
1909 srta->error = smta->error;
1910 }
1911 while (!range->eos_marker)
1912 range = get_next_range(inq, range);
1913
1914 bqueue_enqueue_flush(outq, range, 1);
1915 spl_fstrans_unmark(cookie);
1916 thread_exit();
1917 }
1918
1919 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX
1920
1921 struct dmu_send_params {
1922 /* Pool args */
1923 const void *tag; // Tag dp was held with, will be used to release dp.
1924 dsl_pool_t *dp;
1925 /* To snapshot args */
1926 const char *tosnap;
1927 dsl_dataset_t *to_ds;
1928 /* From snapshot args */
1929 zfs_bookmark_phys_t ancestor_zb;
1930 uint64_t *fromredactsnaps;
1931 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1932 uint64_t numfromredactsnaps;
1933 /* Stream params */
1934 boolean_t is_clone;
1935 boolean_t embedok;
1936 boolean_t large_block_ok;
1937 boolean_t compressok;
1938 boolean_t rawok;
1939 boolean_t savedok;
1940 uint64_t resumeobj;
1941 uint64_t resumeoff;
1942 uint64_t saved_guid;
1943 zfs_bookmark_phys_t *redactbook;
1944 /* Stream output params */
1945 dmu_send_outparams_t *dso;
1946
1947 /* Stream progress params */
1948 offset_t *off;
1949 int outfd;
1950 char saved_toname[MAXNAMELEN];
1951 };
1952
1953 static int
setup_featureflags(struct dmu_send_params * dspp,objset_t * os,uint64_t * featureflags)1954 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1955 uint64_t *featureflags)
1956 {
1957 dsl_dataset_t *to_ds = dspp->to_ds;
1958 dsl_pool_t *dp = dspp->dp;
1959
1960 if (dmu_objset_type(os) == DMU_OST_ZFS) {
1961 uint64_t version;
1962 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1963 return (SET_ERROR(EINVAL));
1964
1965 if (version >= ZPL_VERSION_SA)
1966 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1967 }
1968
1969 /* raw sends imply large_block_ok */
1970 if ((dspp->rawok || dspp->large_block_ok) &&
1971 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1972 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1973 }
1974
1975 /* encrypted datasets will not have embedded blocks */
1976 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1977 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1978 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1979 }
1980
1981 /* raw send implies compressok */
1982 if (dspp->compressok || dspp->rawok)
1983 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1984
1985 if (dspp->rawok && os->os_encrypted)
1986 *featureflags |= DMU_BACKUP_FEATURE_RAW;
1987
1988 if ((*featureflags &
1989 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1990 DMU_BACKUP_FEATURE_RAW)) != 0 &&
1991 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1992 *featureflags |= DMU_BACKUP_FEATURE_LZ4;
1993 }
1994
1995 /*
1996 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1997 * allow sending ZSTD compressed datasets to a receiver that does not
1998 * support ZSTD
1999 */
2000 if ((*featureflags &
2001 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
2002 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2003 *featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2004 }
2005
2006 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2007 *featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2008 }
2009
2010 if (dspp->redactbook != NULL) {
2011 *featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2012 }
2013
2014 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2015 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2016 }
2017
2018 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LONGNAME)) {
2019 *featureflags |= DMU_BACKUP_FEATURE_LONGNAME;
2020 }
2021
2022 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_MICROZAP)) {
2023 /*
2024 * We must never split a large microzap block, so we can only
2025 * send large microzaps if LARGE_BLOCKS is already enabled.
2026 */
2027 if (!(*featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
2028 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_MICROZAP));
2029 *featureflags |= DMU_BACKUP_FEATURE_LARGE_MICROZAP;
2030 }
2031
2032 return (0);
2033 }
2034
2035 static dmu_replay_record_t *
create_begin_record(struct dmu_send_params * dspp,objset_t * os,uint64_t featureflags)2036 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2037 uint64_t featureflags)
2038 {
2039 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2040 KM_SLEEP);
2041 drr->drr_type = DRR_BEGIN;
2042
2043 struct drr_begin *drrb = &drr->drr_u.drr_begin;
2044 dsl_dataset_t *to_ds = dspp->to_ds;
2045
2046 drrb->drr_magic = DMU_BACKUP_MAGIC;
2047 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2048 drrb->drr_type = dmu_objset_type(os);
2049 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2050 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2051
2052 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2053 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2054
2055 if (dspp->is_clone)
2056 drrb->drr_flags |= DRR_FLAG_CLONE;
2057 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2058 drrb->drr_flags |= DRR_FLAG_CI_DATA;
2059 if (zfs_send_set_freerecords_bit)
2060 drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2061 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2062
2063 if (dspp->savedok) {
2064 drrb->drr_toguid = dspp->saved_guid;
2065 strlcpy(drrb->drr_toname, dspp->saved_toname,
2066 sizeof (drrb->drr_toname));
2067 } else {
2068 dsl_dataset_name(to_ds, drrb->drr_toname);
2069 if (!to_ds->ds_is_snapshot) {
2070 (void) strlcat(drrb->drr_toname, "@--head--",
2071 sizeof (drrb->drr_toname));
2072 }
2073 }
2074 return (drr);
2075 }
2076
2077 static void
setup_to_thread(struct send_thread_arg * to_arg,objset_t * to_os,dmu_sendstatus_t * dssp,uint64_t fromtxg,boolean_t rawok)2078 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2079 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2080 {
2081 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2082 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2083 offsetof(struct send_range, ln)));
2084 to_arg->error_code = 0;
2085 to_arg->cancel = B_FALSE;
2086 to_arg->os = to_os;
2087 to_arg->fromtxg = fromtxg;
2088 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2089 if (rawok)
2090 to_arg->flags |= TRAVERSE_NO_DECRYPT;
2091 if (zfs_send_corrupt_data)
2092 to_arg->flags |= TRAVERSE_HARD;
2093 to_arg->num_blocks_visited = &dssp->dss_blocks;
2094 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2095 curproc, TS_RUN, minclsyspri);
2096 }
2097
2098 static void
setup_from_thread(struct redact_list_thread_arg * from_arg,redaction_list_t * from_rl,dmu_sendstatus_t * dssp)2099 setup_from_thread(struct redact_list_thread_arg *from_arg,
2100 redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2101 {
2102 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2103 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2104 offsetof(struct send_range, ln)));
2105 from_arg->error_code = 0;
2106 from_arg->cancel = B_FALSE;
2107 from_arg->rl = from_rl;
2108 from_arg->mark_redact = B_FALSE;
2109 from_arg->num_blocks_visited = &dssp->dss_blocks;
2110 /*
2111 * If from_ds is null, send_traverse_thread just returns success and
2112 * enqueues an eos marker.
2113 */
2114 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2115 curproc, TS_RUN, minclsyspri);
2116 }
2117
2118 static void
setup_redact_list_thread(struct redact_list_thread_arg * rlt_arg,struct dmu_send_params * dspp,redaction_list_t * rl,dmu_sendstatus_t * dssp)2119 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2120 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2121 {
2122 if (dspp->redactbook == NULL)
2123 return;
2124
2125 rlt_arg->cancel = B_FALSE;
2126 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2127 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2128 offsetof(struct send_range, ln)));
2129 rlt_arg->error_code = 0;
2130 rlt_arg->mark_redact = B_TRUE;
2131 rlt_arg->rl = rl;
2132 rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2133
2134 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2135 curproc, TS_RUN, minclsyspri);
2136 }
2137
2138 static void
setup_merge_thread(struct send_merge_thread_arg * smt_arg,struct dmu_send_params * dspp,struct redact_list_thread_arg * from_arg,struct send_thread_arg * to_arg,struct redact_list_thread_arg * rlt_arg,objset_t * os)2139 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2140 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2141 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2142 objset_t *os)
2143 {
2144 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2145 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2146 offsetof(struct send_range, ln)));
2147 smt_arg->cancel = B_FALSE;
2148 smt_arg->error = 0;
2149 smt_arg->from_arg = from_arg;
2150 smt_arg->to_arg = to_arg;
2151 if (dspp->redactbook != NULL)
2152 smt_arg->redact_arg = rlt_arg;
2153
2154 smt_arg->os = os;
2155 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2156 TS_RUN, minclsyspri);
2157 }
2158
2159 static void
setup_reader_thread(struct send_reader_thread_arg * srt_arg,struct dmu_send_params * dspp,struct send_merge_thread_arg * smt_arg,uint64_t featureflags)2160 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2161 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2162 uint64_t featureflags)
2163 {
2164 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2165 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2166 offsetof(struct send_range, ln)));
2167 srt_arg->smta = smt_arg;
2168 srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2169 srt_arg->featureflags = featureflags;
2170 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2171 curproc, TS_RUN, minclsyspri);
2172 }
2173
2174 static int
setup_resume_points(struct dmu_send_params * dspp,struct send_thread_arg * to_arg,struct redact_list_thread_arg * from_arg,struct redact_list_thread_arg * rlt_arg,struct send_merge_thread_arg * smt_arg,boolean_t resuming,objset_t * os,redaction_list_t * redact_rl,nvlist_t * nvl)2175 setup_resume_points(struct dmu_send_params *dspp,
2176 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2177 struct redact_list_thread_arg *rlt_arg,
2178 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2179 redaction_list_t *redact_rl, nvlist_t *nvl)
2180 {
2181 (void) smt_arg;
2182 dsl_dataset_t *to_ds = dspp->to_ds;
2183 int err = 0;
2184
2185 uint64_t obj = 0;
2186 uint64_t blkid = 0;
2187 if (resuming) {
2188 obj = dspp->resumeobj;
2189 dmu_object_info_t to_doi;
2190 err = dmu_object_info(os, obj, &to_doi);
2191 if (err != 0)
2192 return (err);
2193
2194 blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2195 }
2196 /*
2197 * If we're resuming a redacted send, we can skip to the appropriate
2198 * point in the redaction bookmark by binary searching through it.
2199 */
2200 if (redact_rl != NULL) {
2201 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2202 }
2203
2204 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2205 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2206 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2207 /*
2208 * Note: If the resume point is in an object whose
2209 * blocksize is different in the from vs to snapshots,
2210 * we will have divided by the "wrong" blocksize.
2211 * However, in this case fromsnap's send_cb() will
2212 * detect that the blocksize has changed and therefore
2213 * ignore this object.
2214 *
2215 * If we're resuming a send from a redaction bookmark,
2216 * we still cannot accidentally suggest blocks behind
2217 * the to_ds. In addition, we know that any blocks in
2218 * the object in the to_ds will have to be sent, since
2219 * the size changed. Therefore, we can't cause any harm
2220 * this way either.
2221 */
2222 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2223 }
2224 if (resuming) {
2225 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2226 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2227 }
2228 return (0);
2229 }
2230
2231 static dmu_sendstatus_t *
setup_send_progress(struct dmu_send_params * dspp)2232 setup_send_progress(struct dmu_send_params *dspp)
2233 {
2234 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2235 dssp->dss_outfd = dspp->outfd;
2236 dssp->dss_off = dspp->off;
2237 dssp->dss_proc = curproc;
2238 mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2239 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2240 mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2241 return (dssp);
2242 }
2243
2244 /*
2245 * Actually do the bulk of the work in a zfs send.
2246 *
2247 * The idea is that we want to do a send from ancestor_zb to to_ds. We also
2248 * want to not send any data that has been modified by all the datasets in
2249 * redactsnaparr, and store the list of blocks that are redacted in this way in
2250 * a bookmark named redactbook, created on the to_ds. We do this by creating
2251 * several worker threads, whose function is described below.
2252 *
2253 * There are three cases.
2254 * The first case is a redacted zfs send. In this case there are 5 threads.
2255 * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2256 * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2257 * it's a full send, that's all blocks in the dataset). It then sends those
2258 * blocks on to the send merge thread. The redact list thread takes the data
2259 * from the redaction bookmark and sends those blocks on to the send merge
2260 * thread. The send merge thread takes the data from the to_ds traversal
2261 * thread, and combines it with the redaction records from the redact list
2262 * thread. If a block appears in both the to_ds's data and the redaction data,
2263 * the send merge thread will mark it as redacted and send it on to the prefetch
2264 * thread. Otherwise, the send merge thread will send the block on to the
2265 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2266 * any data that isn't redacted, and then send the data on to the main thread.
2267 * The main thread behaves the same as in a normal send case, issuing demand
2268 * reads for data blocks and sending out records over the network
2269 *
2270 * The graphic below diagrams the flow of data in the case of a redacted zfs
2271 * send. Each box represents a thread, and each line represents the flow of
2272 * data.
2273 *
2274 * Records from the |
2275 * redaction bookmark |
2276 * +--------------------+ | +---------------------------+
2277 * | | v | Send Merge Thread |
2278 * | Redact List Thread +----------> Apply redaction marks to |
2279 * | | | records as specified by |
2280 * +--------------------+ | redaction ranges |
2281 * +----^---------------+------+
2282 * | | Merged data
2283 * | |
2284 * | +------------v--------+
2285 * | | Prefetch Thread |
2286 * +--------------------+ | | Issues prefetch |
2287 * | to_ds Traversal | | | reads of data blocks|
2288 * | Thread (finds +---------------+ +------------+--------+
2289 * | candidate blocks) | Blocks modified | Prefetched data
2290 * +--------------------+ by to_ds since |
2291 * ancestor_zb +------------v----+
2292 * | Main Thread | File Descriptor
2293 * | Sends data over +->(to zfs receive)
2294 * | wire |
2295 * +-----------------+
2296 *
2297 * The second case is an incremental send from a redaction bookmark. The to_ds
2298 * traversal thread and the main thread behave the same as in the redacted
2299 * send case. The new thread is the from bookmark traversal thread. It
2300 * iterates over the redaction list in the redaction bookmark, and enqueues
2301 * records for each block that was redacted in the original send. The send
2302 * merge thread now has to merge the data from the two threads. For details
2303 * about that process, see the header comment of send_merge_thread(). Any data
2304 * it decides to send on will be prefetched by the prefetch thread. Note that
2305 * you can perform a redacted send from a redaction bookmark; in that case,
2306 * the data flow behaves very similarly to the flow in the redacted send case,
2307 * except with the addition of the bookmark traversal thread iterating over the
2308 * redaction bookmark. The send_merge_thread also has to take on the
2309 * responsibility of merging the redact list thread's records, the bookmark
2310 * traversal thread's records, and the to_ds records.
2311 *
2312 * +---------------------+
2313 * | |
2314 * | Redact List Thread +--------------+
2315 * | | |
2316 * +---------------------+ |
2317 * Blocks in redaction list | Ranges modified by every secure snap
2318 * of from bookmark | (or EOS if not readcted)
2319 * |
2320 * +---------------------+ | +----v----------------------+
2321 * | bookmark Traversal | v | Send Merge Thread |
2322 * | Thread (finds +---------> Merges bookmark, rlt, and |
2323 * | candidate blocks) | | to_ds send records |
2324 * +---------------------+ +----^---------------+------+
2325 * | | Merged data
2326 * | +------------v--------+
2327 * | | Prefetch Thread |
2328 * +--------------------+ | | Issues prefetch |
2329 * | to_ds Traversal | | | reads of data blocks|
2330 * | Thread (finds +---------------+ +------------+--------+
2331 * | candidate blocks) | Blocks modified | Prefetched data
2332 * +--------------------+ by to_ds since +------------v----+
2333 * ancestor_zb | Main Thread | File Descriptor
2334 * | Sends data over +->(to zfs receive)
2335 * | wire |
2336 * +-----------------+
2337 *
2338 * The final case is a simple zfs full or incremental send. The to_ds traversal
2339 * thread behaves the same as always. The redact list thread is never started.
2340 * The send merge thread takes all the blocks that the to_ds traversal thread
2341 * sends it, prefetches the data, and sends the blocks on to the main thread.
2342 * The main thread sends the data over the wire.
2343 *
2344 * To keep performance acceptable, we want to prefetch the data in the worker
2345 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
2346 * feature built into traverse_dataset, the combining and deletion of records
2347 * due to redaction and sends from redaction bookmarks mean that we could
2348 * issue many unnecessary prefetches. As a result, we only prefetch data
2349 * after we've determined that the record is not going to be redacted. To
2350 * prevent the prefetching from getting too far ahead of the main thread, the
2351 * blocking queues that are used for communication are capped not by the
2352 * number of entries in the queue, but by the sum of the size of the
2353 * prefetches associated with them. The limit on the amount of data that the
2354 * thread can prefetch beyond what the main thread has reached is controlled
2355 * by the global variable zfs_send_queue_length. In addition, to prevent poor
2356 * performance in the beginning of a send, we also limit the distance ahead
2357 * that the traversal threads can be. That distance is controlled by the
2358 * zfs_send_no_prefetch_queue_length tunable.
2359 *
2360 * Note: Releases dp using the specified tag.
2361 */
2362 static int
dmu_send_impl(struct dmu_send_params * dspp)2363 dmu_send_impl(struct dmu_send_params *dspp)
2364 {
2365 objset_t *os;
2366 dmu_replay_record_t *drr;
2367 dmu_sendstatus_t *dssp;
2368 dmu_send_cookie_t dsc = {0};
2369 int err;
2370 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2371 uint64_t featureflags = 0;
2372 struct redact_list_thread_arg *from_arg;
2373 struct send_thread_arg *to_arg;
2374 struct redact_list_thread_arg *rlt_arg;
2375 struct send_merge_thread_arg *smt_arg;
2376 struct send_reader_thread_arg *srt_arg;
2377 struct send_range *range;
2378 redaction_list_t *from_rl = NULL;
2379 redaction_list_t *redact_rl = NULL;
2380 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2381 boolean_t book_resuming = resuming;
2382
2383 dsl_dataset_t *to_ds = dspp->to_ds;
2384 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2385 dsl_pool_t *dp = dspp->dp;
2386 const void *tag = dspp->tag;
2387
2388 err = dmu_objset_from_ds(to_ds, &os);
2389 if (err != 0) {
2390 dsl_pool_rele(dp, tag);
2391 return (err);
2392 }
2393
2394 /*
2395 * If this is a non-raw send of an encrypted ds, we can ensure that
2396 * the objset_phys_t is authenticated. This is safe because this is
2397 * either a snapshot or we have owned the dataset, ensuring that
2398 * it can't be modified.
2399 */
2400 if (!dspp->rawok && os->os_encrypted &&
2401 arc_is_unauthenticated(os->os_phys_buf)) {
2402 zbookmark_phys_t zb;
2403
2404 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2405 ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2406 err = arc_untransform(os->os_phys_buf, os->os_spa,
2407 &zb, B_FALSE);
2408 if (err != 0) {
2409 dsl_pool_rele(dp, tag);
2410 return (err);
2411 }
2412
2413 ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2414 }
2415
2416 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2417 dsl_pool_rele(dp, tag);
2418 return (err);
2419 }
2420
2421 /*
2422 * If we're doing a redacted send, hold the bookmark's redaction list.
2423 */
2424 if (dspp->redactbook != NULL) {
2425 err = dsl_redaction_list_hold_obj(dp,
2426 dspp->redactbook->zbm_redaction_obj, FTAG,
2427 &redact_rl);
2428 if (err != 0) {
2429 dsl_pool_rele(dp, tag);
2430 return (SET_ERROR(EINVAL));
2431 }
2432 dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2433 }
2434
2435 /*
2436 * If we're sending from a redaction bookmark, hold the redaction list
2437 * so that we can consider sending the redacted blocks.
2438 */
2439 if (ancestor_zb->zbm_redaction_obj != 0) {
2440 err = dsl_redaction_list_hold_obj(dp,
2441 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2442 if (err != 0) {
2443 if (redact_rl != NULL) {
2444 dsl_redaction_list_long_rele(redact_rl, FTAG);
2445 dsl_redaction_list_rele(redact_rl, FTAG);
2446 }
2447 dsl_pool_rele(dp, tag);
2448 return (SET_ERROR(EINVAL));
2449 }
2450 dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2451 }
2452
2453 dsl_dataset_long_hold(to_ds, FTAG);
2454
2455 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2456 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2457 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2458 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2459 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2460
2461 drr = create_begin_record(dspp, os, featureflags);
2462 dssp = setup_send_progress(dspp);
2463
2464 dsc.dsc_drr = drr;
2465 dsc.dsc_dso = dspp->dso;
2466 dsc.dsc_os = os;
2467 dsc.dsc_off = dspp->off;
2468 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2469 dsc.dsc_fromtxg = fromtxg;
2470 dsc.dsc_pending_op = PENDING_NONE;
2471 dsc.dsc_featureflags = featureflags;
2472 dsc.dsc_resume_object = dspp->resumeobj;
2473 dsc.dsc_resume_offset = dspp->resumeoff;
2474
2475 dsl_pool_rele(dp, tag);
2476
2477 void *payload = NULL;
2478 size_t payload_len = 0;
2479 nvlist_t *nvl = fnvlist_alloc();
2480
2481 /*
2482 * If we're doing a redacted send, we include the snapshots we're
2483 * redacted with respect to so that the target system knows what send
2484 * streams can be correctly received on top of this dataset. If we're
2485 * instead sending a redacted dataset, we include the snapshots that the
2486 * dataset was created with respect to.
2487 */
2488 if (dspp->redactbook != NULL) {
2489 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2490 redact_rl->rl_phys->rlp_snaps,
2491 redact_rl->rl_phys->rlp_num_snaps);
2492 } else if (dsl_dataset_feature_is_active(to_ds,
2493 SPA_FEATURE_REDACTED_DATASETS)) {
2494 uint64_t *tods_guids;
2495 uint64_t length;
2496 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2497 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2498 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2499 length);
2500 }
2501
2502 /*
2503 * If we're sending from a redaction bookmark, then we should retrieve
2504 * the guids of that bookmark so we can send them over the wire.
2505 */
2506 if (from_rl != NULL) {
2507 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2508 from_rl->rl_phys->rlp_snaps,
2509 from_rl->rl_phys->rlp_num_snaps);
2510 }
2511
2512 /*
2513 * If the snapshot we're sending from is redacted, include the redaction
2514 * list in the stream.
2515 */
2516 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2517 ASSERT3P(from_rl, ==, NULL);
2518 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2519 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2520 if (dspp->numfromredactsnaps > 0) {
2521 kmem_free(dspp->fromredactsnaps,
2522 dspp->numfromredactsnaps * sizeof (uint64_t));
2523 dspp->fromredactsnaps = NULL;
2524 }
2525 }
2526
2527 if (resuming || book_resuming) {
2528 err = setup_resume_points(dspp, to_arg, from_arg,
2529 rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2530 if (err != 0)
2531 goto out;
2532 }
2533
2534 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2535 uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2536 nvlist_t *keynvl = NULL;
2537 ASSERT(os->os_encrypted);
2538
2539 err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2540 &keynvl);
2541 if (err != 0) {
2542 fnvlist_free(nvl);
2543 goto out;
2544 }
2545
2546 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2547 fnvlist_free(keynvl);
2548 }
2549
2550 if (!nvlist_empty(nvl)) {
2551 payload = fnvlist_pack(nvl, &payload_len);
2552 drr->drr_payloadlen = payload_len;
2553 }
2554
2555 fnvlist_free(nvl);
2556 err = dump_record(&dsc, payload, payload_len);
2557 fnvlist_pack_free(payload, payload_len);
2558 if (err != 0) {
2559 err = dsc.dsc_err;
2560 goto out;
2561 }
2562
2563 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2564 setup_from_thread(from_arg, from_rl, dssp);
2565 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2566 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2567 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2568
2569 range = bqueue_dequeue(&srt_arg->q);
2570 while (err == 0 && !range->eos_marker) {
2571 err = do_dump(&dsc, range);
2572 range = get_next_range(&srt_arg->q, range);
2573 if (issig())
2574 err = SET_ERROR(EINTR);
2575 }
2576
2577 /*
2578 * If we hit an error or are interrupted, cancel our worker threads and
2579 * clear the queue of any pending records. The threads will pass the
2580 * cancel up the tree of worker threads, and each one will clean up any
2581 * pending records before exiting.
2582 */
2583 if (err != 0) {
2584 srt_arg->cancel = B_TRUE;
2585 while (!range->eos_marker) {
2586 range = get_next_range(&srt_arg->q, range);
2587 }
2588 }
2589 range_free(range);
2590
2591 bqueue_destroy(&srt_arg->q);
2592 bqueue_destroy(&smt_arg->q);
2593 if (dspp->redactbook != NULL)
2594 bqueue_destroy(&rlt_arg->q);
2595 bqueue_destroy(&to_arg->q);
2596 bqueue_destroy(&from_arg->q);
2597
2598 if (err == 0 && srt_arg->error != 0)
2599 err = srt_arg->error;
2600
2601 if (err != 0)
2602 goto out;
2603
2604 if (dsc.dsc_pending_op != PENDING_NONE)
2605 if (dump_record(&dsc, NULL, 0) != 0)
2606 err = SET_ERROR(EINTR);
2607
2608 if (err != 0) {
2609 if (err == EINTR && dsc.dsc_err != 0)
2610 err = dsc.dsc_err;
2611 goto out;
2612 }
2613
2614 /*
2615 * Send the DRR_END record if this is not a saved stream.
2616 * Otherwise, the omitted DRR_END record will signal to
2617 * the receive side that the stream is incomplete.
2618 */
2619 if (!dspp->savedok) {
2620 memset(drr, 0, sizeof (dmu_replay_record_t));
2621 drr->drr_type = DRR_END;
2622 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2623 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2624
2625 if (dump_record(&dsc, NULL, 0) != 0)
2626 err = dsc.dsc_err;
2627 }
2628 out:
2629 mutex_enter(&to_ds->ds_sendstream_lock);
2630 list_remove(&to_ds->ds_sendstreams, dssp);
2631 mutex_exit(&to_ds->ds_sendstream_lock);
2632
2633 VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2634 (dsc.dsc_sent_end || dspp->savedok)));
2635
2636 kmem_free(drr, sizeof (dmu_replay_record_t));
2637 kmem_free(dssp, sizeof (dmu_sendstatus_t));
2638 kmem_free(from_arg, sizeof (*from_arg));
2639 kmem_free(to_arg, sizeof (*to_arg));
2640 kmem_free(rlt_arg, sizeof (*rlt_arg));
2641 kmem_free(smt_arg, sizeof (*smt_arg));
2642 kmem_free(srt_arg, sizeof (*srt_arg));
2643
2644 dsl_dataset_long_rele(to_ds, FTAG);
2645 if (from_rl != NULL) {
2646 dsl_redaction_list_long_rele(from_rl, FTAG);
2647 dsl_redaction_list_rele(from_rl, FTAG);
2648 }
2649 if (redact_rl != NULL) {
2650 dsl_redaction_list_long_rele(redact_rl, FTAG);
2651 dsl_redaction_list_rele(redact_rl, FTAG);
2652 }
2653
2654 return (err);
2655 }
2656
2657 int
dmu_send_obj(const char * pool,uint64_t tosnap,uint64_t fromsnap,boolean_t embedok,boolean_t large_block_ok,boolean_t compressok,boolean_t rawok,boolean_t savedok,int outfd,offset_t * off,dmu_send_outparams_t * dsop)2658 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2659 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2660 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2661 dmu_send_outparams_t *dsop)
2662 {
2663 int err;
2664 dsl_dataset_t *fromds;
2665 ds_hold_flags_t dsflags;
2666 struct dmu_send_params dspp = {0};
2667 dspp.embedok = embedok;
2668 dspp.large_block_ok = large_block_ok;
2669 dspp.compressok = compressok;
2670 dspp.outfd = outfd;
2671 dspp.off = off;
2672 dspp.dso = dsop;
2673 dspp.tag = FTAG;
2674 dspp.rawok = rawok;
2675 dspp.savedok = savedok;
2676
2677 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2678 err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2679 if (err != 0)
2680 return (err);
2681
2682 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2683 &dspp.to_ds);
2684 if (err != 0) {
2685 dsl_pool_rele(dspp.dp, FTAG);
2686 return (err);
2687 }
2688
2689 if (fromsnap != 0) {
2690 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2691 FTAG, &fromds);
2692 if (err != 0) {
2693 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2694 dsl_pool_rele(dspp.dp, FTAG);
2695 return (err);
2696 }
2697 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2698 dspp.ancestor_zb.zbm_creation_txg =
2699 dsl_dataset_phys(fromds)->ds_creation_txg;
2700 dspp.ancestor_zb.zbm_creation_time =
2701 dsl_dataset_phys(fromds)->ds_creation_time;
2702
2703 if (dsl_dataset_is_zapified(fromds)) {
2704 (void) zap_lookup(dspp.dp->dp_meta_objset,
2705 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2706 &dspp.ancestor_zb.zbm_ivset_guid);
2707 }
2708
2709 /* See dmu_send for the reasons behind this. */
2710 uint64_t *fromredact;
2711
2712 if (!dsl_dataset_get_uint64_array_feature(fromds,
2713 SPA_FEATURE_REDACTED_DATASETS,
2714 &dspp.numfromredactsnaps,
2715 &fromredact)) {
2716 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2717 } else if (dspp.numfromredactsnaps > 0) {
2718 uint64_t size = dspp.numfromredactsnaps *
2719 sizeof (uint64_t);
2720 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2721 memcpy(dspp.fromredactsnaps, fromredact, size);
2722 }
2723
2724 boolean_t is_before =
2725 dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2726 dspp.is_clone = (dspp.to_ds->ds_dir !=
2727 fromds->ds_dir);
2728 dsl_dataset_rele(fromds, FTAG);
2729 if (!is_before) {
2730 dsl_pool_rele(dspp.dp, FTAG);
2731 err = SET_ERROR(EXDEV);
2732 } else {
2733 err = dmu_send_impl(&dspp);
2734 }
2735 } else {
2736 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2737 err = dmu_send_impl(&dspp);
2738 }
2739 if (dspp.fromredactsnaps)
2740 kmem_free(dspp.fromredactsnaps,
2741 dspp.numfromredactsnaps * sizeof (uint64_t));
2742
2743 dsl_dataset_rele(dspp.to_ds, FTAG);
2744 return (err);
2745 }
2746
2747 int
dmu_send(const char * tosnap,const char * fromsnap,boolean_t embedok,boolean_t large_block_ok,boolean_t compressok,boolean_t rawok,boolean_t savedok,uint64_t resumeobj,uint64_t resumeoff,const char * redactbook,int outfd,offset_t * off,dmu_send_outparams_t * dsop)2748 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2749 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2750 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2751 const char *redactbook, int outfd, offset_t *off,
2752 dmu_send_outparams_t *dsop)
2753 {
2754 int err = 0;
2755 ds_hold_flags_t dsflags;
2756 boolean_t owned = B_FALSE;
2757 dsl_dataset_t *fromds = NULL;
2758 zfs_bookmark_phys_t book = {0};
2759 struct dmu_send_params dspp = {0};
2760
2761 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2762 dspp.tosnap = tosnap;
2763 dspp.embedok = embedok;
2764 dspp.large_block_ok = large_block_ok;
2765 dspp.compressok = compressok;
2766 dspp.outfd = outfd;
2767 dspp.off = off;
2768 dspp.dso = dsop;
2769 dspp.tag = FTAG;
2770 dspp.resumeobj = resumeobj;
2771 dspp.resumeoff = resumeoff;
2772 dspp.rawok = rawok;
2773 dspp.savedok = savedok;
2774
2775 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2776 return (SET_ERROR(EINVAL));
2777
2778 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2779 if (err != 0)
2780 return (err);
2781
2782 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2783 /*
2784 * We are sending a filesystem or volume. Ensure
2785 * that it doesn't change by owning the dataset.
2786 */
2787
2788 if (savedok) {
2789 /*
2790 * We are looking for the dataset that represents the
2791 * partially received send stream. If this stream was
2792 * received as a new snapshot of an existing dataset,
2793 * this will be saved in a hidden clone named
2794 * "<pool>/<dataset>/%recv". Otherwise, the stream
2795 * will be saved in the live dataset itself. In
2796 * either case we need to use dsl_dataset_own_force()
2797 * because the stream is marked as inconsistent,
2798 * which would normally make it unavailable to be
2799 * owned.
2800 */
2801 char *name = kmem_asprintf("%s/%s", tosnap,
2802 recv_clone_name);
2803 err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2804 FTAG, &dspp.to_ds);
2805 if (err == ENOENT) {
2806 err = dsl_dataset_own_force(dspp.dp, tosnap,
2807 dsflags, FTAG, &dspp.to_ds);
2808 }
2809
2810 if (err == 0) {
2811 owned = B_TRUE;
2812 err = zap_lookup(dspp.dp->dp_meta_objset,
2813 dspp.to_ds->ds_object,
2814 DS_FIELD_RESUME_TOGUID, 8, 1,
2815 &dspp.saved_guid);
2816 }
2817
2818 if (err == 0) {
2819 err = zap_lookup(dspp.dp->dp_meta_objset,
2820 dspp.to_ds->ds_object,
2821 DS_FIELD_RESUME_TONAME, 1,
2822 sizeof (dspp.saved_toname),
2823 dspp.saved_toname);
2824 }
2825 /* Only disown if there was an error in the lookups */
2826 if (owned && (err != 0))
2827 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2828
2829 kmem_strfree(name);
2830 } else {
2831 err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2832 FTAG, &dspp.to_ds);
2833 if (err == 0)
2834 owned = B_TRUE;
2835 }
2836 } else {
2837 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2838 &dspp.to_ds);
2839 }
2840
2841 if (err != 0) {
2842 /* Note: dsl dataset is not owned at this point */
2843 dsl_pool_rele(dspp.dp, FTAG);
2844 return (err);
2845 }
2846
2847 if (redactbook != NULL) {
2848 char path[ZFS_MAX_DATASET_NAME_LEN];
2849 (void) strlcpy(path, tosnap, sizeof (path));
2850 char *at = strchr(path, '@');
2851 if (at == NULL) {
2852 err = EINVAL;
2853 } else {
2854 (void) snprintf(at, sizeof (path) - (at - path), "#%s",
2855 redactbook);
2856 err = dsl_bookmark_lookup(dspp.dp, path,
2857 NULL, &book);
2858 dspp.redactbook = &book;
2859 }
2860 }
2861
2862 if (err != 0) {
2863 dsl_pool_rele(dspp.dp, FTAG);
2864 if (owned)
2865 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2866 else
2867 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2868 return (err);
2869 }
2870
2871 if (fromsnap != NULL) {
2872 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2873 int fsnamelen;
2874 if (strpbrk(tosnap, "@#") != NULL)
2875 fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2876 else
2877 fsnamelen = strlen(tosnap);
2878
2879 /*
2880 * If the fromsnap is in a different filesystem, then
2881 * mark the send stream as a clone.
2882 */
2883 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2884 (fromsnap[fsnamelen] != '@' &&
2885 fromsnap[fsnamelen] != '#')) {
2886 dspp.is_clone = B_TRUE;
2887 }
2888
2889 if (strchr(fromsnap, '@') != NULL) {
2890 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2891 &fromds);
2892
2893 if (err != 0) {
2894 ASSERT3P(fromds, ==, NULL);
2895 } else {
2896 /*
2897 * We need to make a deep copy of the redact
2898 * snapshots of the from snapshot, because the
2899 * array will be freed when we evict from_ds.
2900 */
2901 uint64_t *fromredact;
2902 if (!dsl_dataset_get_uint64_array_feature(
2903 fromds, SPA_FEATURE_REDACTED_DATASETS,
2904 &dspp.numfromredactsnaps,
2905 &fromredact)) {
2906 dspp.numfromredactsnaps =
2907 NUM_SNAPS_NOT_REDACTED;
2908 } else if (dspp.numfromredactsnaps > 0) {
2909 uint64_t size =
2910 dspp.numfromredactsnaps *
2911 sizeof (uint64_t);
2912 dspp.fromredactsnaps = kmem_zalloc(size,
2913 KM_SLEEP);
2914 memcpy(dspp.fromredactsnaps, fromredact,
2915 size);
2916 }
2917 if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2918 0)) {
2919 err = SET_ERROR(EXDEV);
2920 } else {
2921 zb->zbm_creation_txg =
2922 dsl_dataset_phys(fromds)->
2923 ds_creation_txg;
2924 zb->zbm_creation_time =
2925 dsl_dataset_phys(fromds)->
2926 ds_creation_time;
2927 zb->zbm_guid =
2928 dsl_dataset_phys(fromds)->ds_guid;
2929 zb->zbm_redaction_obj = 0;
2930
2931 if (dsl_dataset_is_zapified(fromds)) {
2932 (void) zap_lookup(
2933 dspp.dp->dp_meta_objset,
2934 fromds->ds_object,
2935 DS_FIELD_IVSET_GUID, 8, 1,
2936 &zb->zbm_ivset_guid);
2937 }
2938 }
2939 dsl_dataset_rele(fromds, FTAG);
2940 }
2941 } else {
2942 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2943 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2944 zb);
2945 if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2946 zb->zbm_guid ==
2947 dsl_dataset_phys(dspp.to_ds)->ds_guid)
2948 err = 0;
2949 }
2950
2951 if (err == 0) {
2952 /* dmu_send_impl will call dsl_pool_rele for us. */
2953 err = dmu_send_impl(&dspp);
2954 } else {
2955 if (dspp.fromredactsnaps)
2956 kmem_free(dspp.fromredactsnaps,
2957 dspp.numfromredactsnaps *
2958 sizeof (uint64_t));
2959 dsl_pool_rele(dspp.dp, FTAG);
2960 }
2961 } else {
2962 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2963 err = dmu_send_impl(&dspp);
2964 }
2965 if (owned)
2966 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2967 else
2968 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2969 return (err);
2970 }
2971
2972 static int
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t * ds,uint64_t uncompressed,uint64_t compressed,boolean_t stream_compressed,uint64_t * sizep)2973 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2974 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2975 {
2976 int err = 0;
2977 uint64_t size;
2978 /*
2979 * Assume that space (both on-disk and in-stream) is dominated by
2980 * data. We will adjust for indirect blocks and the copies property,
2981 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2982 */
2983
2984 uint64_t recordsize;
2985 uint64_t record_count;
2986 objset_t *os;
2987 VERIFY0(dmu_objset_from_ds(ds, &os));
2988
2989 /* Assume all (uncompressed) blocks are recordsize. */
2990 if (zfs_override_estimate_recordsize != 0) {
2991 recordsize = zfs_override_estimate_recordsize;
2992 } else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2993 err = dsl_prop_get_int_ds(ds,
2994 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2995 } else {
2996 err = dsl_prop_get_int_ds(ds,
2997 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2998 }
2999 if (err != 0)
3000 return (err);
3001 record_count = uncompressed / recordsize;
3002
3003 /*
3004 * If we're estimating a send size for a compressed stream, use the
3005 * compressed data size to estimate the stream size. Otherwise, use the
3006 * uncompressed data size.
3007 */
3008 size = stream_compressed ? compressed : uncompressed;
3009
3010 /*
3011 * Subtract out approximate space used by indirect blocks.
3012 * Assume most space is used by data blocks (non-indirect, non-dnode).
3013 * Assume no ditto blocks or internal fragmentation.
3014 *
3015 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
3016 * block.
3017 */
3018 size -= record_count * sizeof (blkptr_t);
3019
3020 /* Add in the space for the record associated with each block. */
3021 size += record_count * sizeof (dmu_replay_record_t);
3022
3023 *sizep = size;
3024
3025 return (0);
3026 }
3027
3028 int
dmu_send_estimate_fast(dsl_dataset_t * origds,dsl_dataset_t * fromds,zfs_bookmark_phys_t * frombook,boolean_t stream_compressed,boolean_t saved,uint64_t * sizep)3029 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3030 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3031 boolean_t saved, uint64_t *sizep)
3032 {
3033 int err;
3034 dsl_dataset_t *ds = origds;
3035 uint64_t uncomp, comp;
3036
3037 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3038 ASSERT(fromds == NULL || frombook == NULL);
3039
3040 /*
3041 * If this is a saved send we may actually be sending
3042 * from the %recv clone used for resuming.
3043 */
3044 if (saved) {
3045 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3046 uint64_t guid;
3047 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3048
3049 dsl_dataset_name(origds, dsname);
3050 (void) strcat(dsname, "/");
3051 (void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3052
3053 err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3054 dsname, FTAG, &ds);
3055 if (err != ENOENT && err != 0) {
3056 return (err);
3057 } else if (err == ENOENT) {
3058 ds = origds;
3059 }
3060
3061 /* check that this dataset has partially received data */
3062 err = zap_lookup(mos, ds->ds_object,
3063 DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3064 if (err != 0) {
3065 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3066 goto out;
3067 }
3068
3069 err = zap_lookup(mos, ds->ds_object,
3070 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3071 if (err != 0) {
3072 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3073 goto out;
3074 }
3075 }
3076
3077 /* tosnap must be a snapshot or the target of a saved send */
3078 if (!ds->ds_is_snapshot && ds == origds)
3079 return (SET_ERROR(EINVAL));
3080
3081 if (fromds != NULL) {
3082 uint64_t used;
3083 if (!fromds->ds_is_snapshot) {
3084 err = SET_ERROR(EINVAL);
3085 goto out;
3086 }
3087
3088 if (!dsl_dataset_is_before(ds, fromds, 0)) {
3089 err = SET_ERROR(EXDEV);
3090 goto out;
3091 }
3092
3093 err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3094 &uncomp);
3095 if (err != 0)
3096 goto out;
3097 } else if (frombook != NULL) {
3098 uint64_t used;
3099 err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3100 &comp, &uncomp);
3101 if (err != 0)
3102 goto out;
3103 } else {
3104 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3105 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3106 }
3107
3108 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3109 stream_compressed, sizep);
3110 /*
3111 * Add the size of the BEGIN and END records to the estimate.
3112 */
3113 *sizep += 2 * sizeof (dmu_replay_record_t);
3114
3115 out:
3116 if (ds != origds)
3117 dsl_dataset_rele(ds, FTAG);
3118 return (err);
3119 }
3120
3121 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3122 "Allow sending corrupt data");
3123
3124 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3125 "Maximum send queue length");
3126
3127 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3128 "Send unmodified spill blocks");
3129
3130 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3131 "Maximum send queue length for non-prefetch queues");
3132
3133 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3134 "Send queue fill fraction");
3135
3136 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3137 "Send queue fill fraction for non-prefetch queues");
3138
3139 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3140 "Override block size estimate with fixed size");
3141