1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2013 EMC Corp.
5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Path-compressed radix trie implementation.
34 *
35 * The implementation takes into account the following rationale:
36 * - Size of the nodes should be as small as possible but still big enough
37 * to avoid a large maximum depth for the trie. This is a balance
38 * between the necessity to not wire too much physical memory for the nodes
39 * and the necessity to avoid too much cache pollution during the trie
40 * operations.
41 * - There is not a huge bias toward the number of lookup operations over
42 * the number of insert and remove operations. This basically implies
43 * that optimizations supposedly helping one operation but hurting the
44 * other might be carefully evaluated.
45 * - On average not many nodes are expected to be fully populated, hence
46 * level compression may just complicate things.
47 */
48
49 #include <sys/cdefs.h>
50 #include "opt_ddb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/libkern.h>
56 #include <sys/pctrie.h>
57 #include <sys/proc.h> /* smr.h depends on struct thread. */
58 #include <sys/smr.h>
59 #include <sys/smr_types.h>
60
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64
65 #if PCTRIE_WIDTH == 3
66 typedef uint8_t pn_popmap_t;
67 #elif PCTRIE_WIDTH == 4
68 typedef uint16_t pn_popmap_t;
69 #elif PCTRIE_WIDTH == 5
70 typedef uint32_t pn_popmap_t;
71 #else
72 #error Unsupported width
73 #endif
74 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
75 "pn_popmap_t too wide");
76
77 struct pctrie_node;
78 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
79
80 struct pctrie_node {
81 uint64_t pn_owner; /* Owner of record. */
82 pn_popmap_t pn_popmap; /* Valid children. */
83 uint8_t pn_clev; /* Level * WIDTH. */
84 smr_pctnode_t pn_parent; /* Parent node. */
85 smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */
86 };
87
88 /*
89 * Map index to an array position for the children of node,
90 */
91 static __inline int
pctrie_slot(struct pctrie_node * node,uint64_t index)92 pctrie_slot(struct pctrie_node *node, uint64_t index)
93 {
94 return ((index >> node->pn_clev) & (PCTRIE_COUNT - 1));
95 }
96
97 /*
98 * Returns true if index does not belong to the specified node. Otherwise,
99 * sets slot value, and returns false.
100 */
101 static __inline bool
pctrie_keybarr(struct pctrie_node * node,uint64_t index,int * slot)102 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
103 {
104 index = (index - node->pn_owner) >> node->pn_clev;
105 if (index >= PCTRIE_COUNT)
106 return (true);
107 *slot = index;
108 return (false);
109 }
110
111 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
112
113 /*
114 * Fetch a node pointer from a slot.
115 */
116 static __inline struct pctrie_node *
pctrie_node_load(smr_pctnode_t * p,smr_t smr,enum pctrie_access access)117 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
118 {
119 switch (access) {
120 case PCTRIE_UNSERIALIZED:
121 return (smr_unserialized_load(p, true));
122 case PCTRIE_LOCKED:
123 return (smr_serialized_load(p, true));
124 case PCTRIE_SMR:
125 return (smr_entered_load(p, smr));
126 }
127 __assert_unreachable();
128 }
129
130 static __inline void
pctrie_node_store(smr_pctnode_t * p,void * v,enum pctrie_access access)131 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
132 {
133 switch (access) {
134 case PCTRIE_UNSERIALIZED:
135 smr_unserialized_store(p, v, true);
136 break;
137 case PCTRIE_LOCKED:
138 smr_serialized_store(p, v, true);
139 break;
140 case PCTRIE_SMR:
141 panic("%s: Not supported in SMR section.", __func__);
142 break;
143 default:
144 __assert_unreachable();
145 break;
146 }
147 }
148
149 /*
150 * Get the root address, cast to proper type for load/store.
151 */
152 static __inline smr_pctnode_t *
pctrie_root(struct pctrie * ptree)153 pctrie_root(struct pctrie *ptree)
154 {
155 return ((smr_pctnode_t *)&ptree->pt_root);
156 }
157
158 /*
159 * Get the root node for a tree.
160 */
161 static __inline struct pctrie_node *
pctrie_root_load(struct pctrie * ptree,smr_t smr,enum pctrie_access access)162 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
163 {
164 return (pctrie_node_load(pctrie_root(ptree), smr, access));
165 }
166
167 /*
168 * Get the child of a node.
169 */
170 static __inline smr_pctnode_t *
pctrie_child(struct pctrie * ptree,struct pctrie_node * node,uint64_t index)171 pctrie_child(struct pctrie *ptree, struct pctrie_node *node, uint64_t index)
172 {
173 return (node == NULL ? pctrie_root(ptree) :
174 &node->pn_child[pctrie_slot(node, index)]);
175 }
176
177 /*
178 * Returns TRUE if the specified node is a leaf and FALSE otherwise.
179 */
180 static __inline bool
pctrie_isleaf(struct pctrie_node * node)181 pctrie_isleaf(struct pctrie_node *node)
182 {
183 return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
184 }
185
186 /*
187 * Returns val with leaf bit set.
188 */
189 static __inline void *
pctrie_toleaf(uint64_t * val)190 pctrie_toleaf(uint64_t *val)
191 {
192 return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
193 }
194
195 /*
196 * Returns the associated val extracted from node.
197 */
198 static __inline uint64_t *
pctrie_toval(struct pctrie_node * node)199 pctrie_toval(struct pctrie_node *node)
200 {
201 return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
202 }
203
204 /*
205 * Returns the associated pointer extracted from node and field offset.
206 */
207 static __inline void *
pctrie_toptr(struct pctrie_node * node,int keyoff)208 pctrie_toptr(struct pctrie_node *node, int keyoff)
209 {
210 return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff));
211 }
212
213 /*
214 * Make 'parent' a parent of 'child'.
215 */
216 static __inline void
pctrie_setparent(struct pctrie_node * child,struct pctrie_node * parent)217 pctrie_setparent(struct pctrie_node *child, struct pctrie_node *parent)
218 {
219 pctrie_node_store(&child->pn_parent, parent, PCTRIE_UNSERIALIZED);
220 }
221
222 /*
223 * Return the parent of 'node'.
224 */
225 static __inline struct pctrie_node *
pctrie_parent(struct pctrie_node * node)226 pctrie_parent(struct pctrie_node *node)
227 {
228 return (pctrie_node_load(&node->pn_parent, NULL, PCTRIE_UNSERIALIZED));
229 }
230
231 /*
232 * Make 'child' a child of 'node'.
233 */
234 static __inline void
pctrie_addnode(struct pctrie_node * node,uint64_t index,struct pctrie_node * child,enum pctrie_access access)235 pctrie_addnode(struct pctrie_node *node, uint64_t index,
236 struct pctrie_node *child, enum pctrie_access access)
237 {
238 int slot;
239
240 slot = pctrie_slot(node, index);
241 pctrie_node_store(&node->pn_child[slot], child, access);
242 node->pn_popmap ^= 1 << slot;
243 KASSERT((node->pn_popmap & (1 << slot)) != 0,
244 ("%s: bad popmap slot %d in node %p", __func__, slot, node));
245 }
246
247 /*
248 * pctrie node zone initializer.
249 */
250 int
pctrie_zone_init(void * mem,int size __unused,int flags __unused)251 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
252 {
253 struct pctrie_node *node;
254
255 node = mem;
256 node->pn_popmap = 0;
257 for (int i = 0; i < nitems(node->pn_child); i++)
258 pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
259 PCTRIE_UNSERIALIZED);
260 return (0);
261 }
262
263 size_t
pctrie_node_size(void)264 pctrie_node_size(void)
265 {
266
267 return (sizeof(struct pctrie_node));
268 }
269
270 /*
271 * Look for where to insert the key-value pair into the trie. Complete the
272 * insertion if it replaces a null leaf. Return the insertion location if the
273 * insertion needs to be completed by the caller; otherwise return NULL.
274 *
275 * If the key is already present in the trie, populate *found_out as if by
276 * pctrie_lookup().
277 */
278 static __always_inline void *
pctrie_insert_lookup_compound(struct pctrie * ptree,uint64_t * val,struct pctrie_node ** parent_out,uint64_t ** found_out)279 pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val,
280 struct pctrie_node **parent_out, uint64_t **found_out)
281 {
282 uint64_t index;
283 struct pctrie_node *node, *parent;
284 int slot;
285
286 index = *val;
287
288 /*
289 * The owner of record for root is not really important because it
290 * will never be used.
291 */
292 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
293 parent = NULL;
294 for (;;) {
295 if (pctrie_isleaf(node)) {
296 if (node == PCTRIE_NULL) {
297 if (parent == NULL)
298 pctrie_node_store(pctrie_root(ptree),
299 pctrie_toleaf(val), PCTRIE_LOCKED);
300 else
301 pctrie_addnode(parent, index,
302 pctrie_toleaf(val), PCTRIE_LOCKED);
303 *parent_out = parent;
304 return (NULL);
305 }
306 if (*pctrie_toval(node) == index) {
307 *found_out = pctrie_toval(node);
308 *parent_out = parent;
309 return (NULL);
310 }
311 break;
312 }
313 if (pctrie_keybarr(node, index, &slot))
314 break;
315 parent = node;
316 node = pctrie_node_load(&node->pn_child[slot], NULL,
317 PCTRIE_LOCKED);
318 }
319
320 /*
321 * 'node' must be replaced in the tree with a new branch node, with
322 * children 'node' and 'val'. Return the place that points to 'node'
323 * now, and will point to to the new branching node later.
324 */
325 *parent_out = parent;
326 return ((parent == NULL) ? pctrie_root(ptree): &parent->pn_child[slot]);
327 }
328
329 /*
330 * Wrap pctrie_insert_lookup_compound to implement a strict insertion. Panic
331 * if the key already exists, and do not look for neighboring entries.
332 */
333 void *
pctrie_insert_lookup_strict(struct pctrie * ptree,uint64_t * val,struct pctrie_node ** parent_out)334 pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val,
335 struct pctrie_node **parent_out)
336 {
337 void *parentp;
338 uint64_t *found;
339
340 found = NULL;
341 parentp = pctrie_insert_lookup_compound(ptree, val, parent_out,
342 &found);
343 if (__predict_false(found != NULL))
344 panic("%s: key %jx is already present", __func__,
345 (uintmax_t)*val);
346 return (parentp);
347 }
348
349 /*
350 * Wrap pctrie_insert_lookup_compound to implement find-or-insert. Do not look
351 * for neighboring entries.
352 */
353 void *
pctrie_insert_lookup(struct pctrie * ptree,uint64_t * val,struct pctrie_node ** parent_out,uint64_t ** found_out)354 pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val,
355 struct pctrie_node **parent_out, uint64_t **found_out)
356 {
357 *found_out = NULL;
358 return (pctrie_insert_lookup_compound(ptree, val, parent_out,
359 found_out));
360 }
361
362 /*
363 * Inserts newly allocated node 'child' into trie at location 'parentp', with
364 * parent 'parent' and two children, 'val' and whatever non-NULL node or leaf
365 * was at 'parentp' to begin with.
366 */
367 void
pctrie_insert_node(uint64_t * val,struct pctrie_node * parent,void * parentp,struct pctrie_node * child)368 pctrie_insert_node(uint64_t *val, struct pctrie_node *parent, void *parentp,
369 struct pctrie_node *child)
370 {
371 struct pctrie_node *node;
372 uint64_t index, newind;
373
374 /*
375 * Clear the last child pointer of the newly allocated child. We want
376 * to clear it after the final section has exited so lookup can not
377 * return false negatives. It is done here because it will be
378 * cache-cold in the dtor callback.
379 */
380 if (child->pn_popmap != 0) {
381 pctrie_node_store(&child->pn_child[ffs(child->pn_popmap) - 1],
382 PCTRIE_NULL, PCTRIE_UNSERIALIZED);
383 child->pn_popmap = 0;
384 }
385
386 /*
387 * Recover the values of the two children of the new child node. If
388 * 'node' is not a leaf, this stores into 'newind' the 'owner' field,
389 * which must be first in the node.
390 */
391 index = *val;
392 node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
393 pctrie_setparent(child, parent);
394 if (!pctrie_isleaf(node))
395 pctrie_setparent(node, child);
396 newind = *pctrie_toval(node);
397
398 /*
399 * From the highest-order bit where the indexes differ,
400 * compute the highest level in the trie where they differ. Then,
401 * compute the least index of this subtrie.
402 */
403 _Static_assert(sizeof(long long) >= sizeof(uint64_t),
404 "uint64 too wide");
405 _Static_assert(sizeof(uint64_t) * NBBY <=
406 (1 << (sizeof(child->pn_clev) * NBBY)), "pn_clev too narrow");
407 child->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH);
408 child->pn_owner = PCTRIE_COUNT;
409 child->pn_owner = index & -(child->pn_owner << child->pn_clev);
410
411
412 /* These writes are not yet visible due to ordering. */
413 pctrie_addnode(child, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
414 pctrie_addnode(child, newind, node, PCTRIE_UNSERIALIZED);
415 /* Synchronize to make the above visible. */
416 pctrie_node_store(parentp, child, PCTRIE_LOCKED);
417 }
418
419 /*
420 * Return the value associated with the node, if the node is a leaf that matches
421 * the index; otherwise NULL.
422 */
423 static __always_inline uint64_t *
pctrie_match_value(struct pctrie_node * node,uint64_t index)424 pctrie_match_value(struct pctrie_node *node, uint64_t index)
425 {
426 uint64_t *m;
427
428 if (!pctrie_isleaf(node) || (m = pctrie_toval(node)) == NULL ||
429 *m != index)
430 m = NULL;
431 return (m);
432 }
433
434 /*
435 * Returns the value stored at the index. If the index is not present,
436 * NULL is returned.
437 */
438 static __always_inline uint64_t *
_pctrie_lookup(struct pctrie * ptree,uint64_t index,smr_t smr,enum pctrie_access access)439 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
440 enum pctrie_access access)
441 {
442 struct pctrie_node *node;
443 int slot;
444
445 node = pctrie_root_load(ptree, smr, access);
446 /* Seek a node that matches index. */
447 while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot))
448 node = pctrie_node_load(&node->pn_child[slot], smr, access);
449 return (pctrie_match_value(node, index));
450 }
451
452 /*
453 * Returns the value stored at the index, assuming access is externally
454 * synchronized by a lock.
455 *
456 * If the index is not present, NULL is returned.
457 */
458 uint64_t *
pctrie_lookup(struct pctrie * ptree,uint64_t index)459 pctrie_lookup(struct pctrie *ptree, uint64_t index)
460 {
461 return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
462 }
463
464 /*
465 * Returns the value stored at the index without requiring an external lock.
466 *
467 * If the index is not present, NULL is returned.
468 */
469 uint64_t *
pctrie_lookup_unlocked(struct pctrie * ptree,uint64_t index,smr_t smr)470 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
471 {
472 uint64_t *res;
473
474 smr_enter(smr);
475 res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
476 smr_exit(smr);
477 return (res);
478 }
479
480 /*
481 * Returns the last node examined in the search for the index, and sets the
482 * parent of that node.
483 */
484 static __always_inline struct pctrie_node *
_pctrie_lookup_node(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,smr_t smr,enum pctrie_access access)485 _pctrie_lookup_node(struct pctrie *ptree, struct pctrie_node *node,
486 uint64_t index, struct pctrie_node **parent_out,
487 smr_t smr, enum pctrie_access access)
488 {
489 struct pctrie_node *parent;
490 int slot;
491
492 /*
493 * Climb the search path to find the lowest node from which to start the
494 * search for a value matching 'index'.
495 */
496 while (node != NULL) {
497 KASSERT(!powerof2(node->pn_popmap),
498 ("%s: freed node in iter path", __func__));
499 if (!pctrie_keybarr(node, index, &slot))
500 break;
501 node = pctrie_parent(node);
502 }
503
504 if (node == NULL) {
505 parent = NULL;
506 node = pctrie_root_load(ptree, smr, access);
507 } else {
508 parent = node;
509 node = pctrie_node_load(&node->pn_child[slot], smr, access);
510 }
511
512 /* Seek a node that matches index. */
513 while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) {
514 parent = node;
515 node = pctrie_node_load(&node->pn_child[slot], smr, access);
516 }
517 if (parent_out != NULL)
518 *parent_out = parent;
519 return (node);
520 }
521
522 /*
523 * Returns the value stored at a given index value, possibly NULL.
524 */
525 static __always_inline uint64_t *
_pctrie_iter_lookup(struct pctrie_iter * it,uint64_t index,smr_t smr,enum pctrie_access access)526 _pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index, smr_t smr,
527 enum pctrie_access access)
528 {
529 struct pctrie_node *node;
530
531 it->index = index;
532 node = _pctrie_lookup_node(it->ptree, it->node, index, &it->node,
533 smr, access);
534 return (pctrie_match_value(node, index));
535 }
536
537 /*
538 * Returns the value stored at a given index value, possibly NULL.
539 */
540 uint64_t *
pctrie_iter_lookup(struct pctrie_iter * it,uint64_t index)541 pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index)
542 {
543 return (_pctrie_iter_lookup(it, index, NULL, PCTRIE_LOCKED));
544 }
545
546 /*
547 * Insert the val in the trie, starting search with iterator. Return a pointer
548 * to indicate where a new node must be allocated to complete insertion.
549 * Assumes access is externally synchronized by a lock.
550 */
551 void *
pctrie_iter_insert_lookup(struct pctrie_iter * it,uint64_t * val)552 pctrie_iter_insert_lookup(struct pctrie_iter *it, uint64_t *val)
553 {
554 struct pctrie_node *node;
555
556 it->index = *val;
557 node = _pctrie_lookup_node(it->ptree, it->node, *val, &it->node,
558 NULL, PCTRIE_LOCKED);
559 if (node == PCTRIE_NULL) {
560 if (it->node == NULL)
561 pctrie_node_store(pctrie_root(it->ptree),
562 pctrie_toleaf(val), PCTRIE_LOCKED);
563 else
564 pctrie_addnode(it->node, it->index,
565 pctrie_toleaf(val), PCTRIE_LOCKED);
566 return (NULL);
567 }
568 if (__predict_false(pctrie_match_value(node, it->index) != NULL))
569 panic("%s: key %jx is already present", __func__,
570 (uintmax_t)it->index);
571
572 /*
573 * 'node' must be replaced in the tree with a new branch node, with
574 * children 'node' and 'val'. Return the place that points to 'node'
575 * now, and will point to to the new branching node later.
576 */
577 return (pctrie_child(it->ptree, it->node, it->index));
578 }
579
580 /*
581 * Returns the value stored at a fixed offset from the current index value,
582 * possibly NULL.
583 */
584 static __always_inline uint64_t *
_pctrie_iter_stride(struct pctrie_iter * it,int stride,smr_t smr,enum pctrie_access access)585 _pctrie_iter_stride(struct pctrie_iter *it, int stride, smr_t smr,
586 enum pctrie_access access)
587 {
588 uint64_t index = it->index + stride;
589
590 /* Detect stride overflow. */
591 if ((stride > 0) != (index > it->index))
592 return (NULL);
593 /* Detect crossing limit */
594 if ((index < it->limit) != (it->index < it->limit))
595 return (NULL);
596
597 return (_pctrie_iter_lookup(it, index, smr, access));
598 }
599
600 /*
601 * Returns the value stored at a fixed offset from the current index value,
602 * possibly NULL.
603 */
604 uint64_t *
pctrie_iter_stride(struct pctrie_iter * it,int stride)605 pctrie_iter_stride(struct pctrie_iter *it, int stride)
606 {
607 return (_pctrie_iter_stride(it, stride, NULL, PCTRIE_LOCKED));
608 }
609
610 /*
611 * Returns the value stored at one more than the current index value, possibly
612 * NULL, assuming access is externally synchronized by a lock.
613 */
614 uint64_t *
pctrie_iter_next(struct pctrie_iter * it)615 pctrie_iter_next(struct pctrie_iter *it)
616 {
617 return (_pctrie_iter_stride(it, 1, NULL, PCTRIE_LOCKED));
618 }
619
620 /*
621 * Returns the value stored at one less than the current index value, possibly
622 * NULL, assuming access is externally synchronized by a lock.
623 */
624 uint64_t *
pctrie_iter_prev(struct pctrie_iter * it)625 pctrie_iter_prev(struct pctrie_iter *it)
626 {
627 return (_pctrie_iter_stride(it, -1, NULL, PCTRIE_LOCKED));
628 }
629
630 /*
631 * Find first leaf >= index, and fill iter with the path to the parent of that
632 * leaf. Return NULL if there is no such leaf less than limit.
633 */
634 static __inline uint64_t *
_pctrie_lookup_ge(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,uint64_t limit)635 _pctrie_lookup_ge(struct pctrie *ptree, struct pctrie_node *node,
636 uint64_t index, struct pctrie_node **parent_out, uint64_t limit)
637 {
638 struct pctrie_node *parent;
639 uint64_t *m;
640 int slot;
641
642 /* Seek a node that matches index. */
643 node = _pctrie_lookup_node(ptree, node, index, &parent,
644 NULL, PCTRIE_LOCKED);
645
646 /*
647 * If no such node was found, and instead this path leads only to nodes
648 * < index, back up to find a subtrie with the least value > index.
649 */
650 if (node == PCTRIE_NULL || *pctrie_toval(node) < index) {
651 /* Climb the path to find a node with a descendant > index. */
652 for (node = parent; node != NULL; node = pctrie_parent(node)) {
653 slot = pctrie_slot(node, index) + 1;
654 if ((node->pn_popmap >> slot) != 0)
655 break;
656 }
657 if (node == NULL) {
658 if (parent_out != NULL)
659 *parent_out = NULL;
660 return (NULL);
661 }
662
663 /* Step to the least child with a descendant > index. */
664 slot += ffs(node->pn_popmap >> slot) - 1;
665 parent = node;
666 node = pctrie_node_load(&node->pn_child[slot], NULL,
667 PCTRIE_LOCKED);
668 }
669 /* Descend to the least leaf of the subtrie. */
670 while (!pctrie_isleaf(node)) {
671 if (limit != 0 && node->pn_owner >= limit)
672 return (NULL);
673 slot = ffs(node->pn_popmap) - 1;
674 parent = node;
675 node = pctrie_node_load(&node->pn_child[slot], NULL,
676 PCTRIE_LOCKED);
677 }
678 if (parent_out != NULL)
679 *parent_out = parent;
680 m = pctrie_toval(node);
681 if (limit != 0 && *m >= limit)
682 return (NULL);
683 return (m);
684 }
685
686 uint64_t *
pctrie_lookup_ge(struct pctrie * ptree,uint64_t index)687 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
688 {
689 return (_pctrie_lookup_ge(ptree, NULL, index, NULL, 0));
690 }
691
692 /*
693 * Find first leaf >= index, and fill iter with the path to the parent of that
694 * leaf. Return NULL if there is no such leaf less than limit.
695 */
696 uint64_t *
pctrie_iter_lookup_ge(struct pctrie_iter * it,uint64_t index)697 pctrie_iter_lookup_ge(struct pctrie_iter *it, uint64_t index)
698 {
699 uint64_t *m;
700
701 m = _pctrie_lookup_ge(it->ptree, it->node, index, &it->node, it->limit);
702 if (m != NULL)
703 it->index = *m;
704 return (m);
705 }
706
707 /*
708 * Find the first leaf with value at least 'jump' greater than the previous
709 * leaf. Return NULL if that value is >= limit.
710 */
711 uint64_t *
pctrie_iter_jump_ge(struct pctrie_iter * it,int64_t jump)712 pctrie_iter_jump_ge(struct pctrie_iter *it, int64_t jump)
713 {
714 uint64_t index = it->index + jump;
715
716 /* Detect jump overflow. */
717 if ((jump > 0) != (index > it->index))
718 return (NULL);
719 if (it->limit != 0 && index >= it->limit)
720 return (NULL);
721 return (pctrie_iter_lookup_ge(it, index));
722 }
723
724 /*
725 * Find first leaf <= index, and fill iter with the path to the parent of that
726 * leaf. Return NULL if there is no such leaf greater than limit.
727 */
728 static __inline uint64_t *
_pctrie_lookup_le(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,uint64_t limit)729 _pctrie_lookup_le(struct pctrie *ptree, struct pctrie_node *node,
730 uint64_t index, struct pctrie_node **parent_out, uint64_t limit)
731 {
732 struct pctrie_node *parent;
733 uint64_t *m;
734 int slot;
735
736 /* Seek a node that matches index. */
737 node = _pctrie_lookup_node(ptree, node, index, &parent, NULL,
738 PCTRIE_LOCKED);
739
740 /*
741 * If no such node was found, and instead this path leads only to nodes
742 * > index, back up to find a subtrie with the greatest value < index.
743 */
744 if (node == PCTRIE_NULL || *pctrie_toval(node) > index) {
745 /* Climb the path to find a node with a descendant < index. */
746 for (node = parent; node != NULL; node = pctrie_parent(node)) {
747 slot = pctrie_slot(node, index);
748 if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
749 break;
750 }
751 if (node == NULL) {
752 if (parent_out != NULL)
753 *parent_out = NULL;
754 return (NULL);
755 }
756
757 /* Step to the greatest child with a descendant < index. */
758 slot = ilog2(node->pn_popmap & ((1 << slot) - 1));
759 parent = node;
760 node = pctrie_node_load(&node->pn_child[slot], NULL,
761 PCTRIE_LOCKED);
762 }
763 /* Descend to the greatest leaf of the subtrie. */
764 while (!pctrie_isleaf(node)) {
765 if (limit != 0 && limit >= node->pn_owner +
766 ((uint64_t)PCTRIE_COUNT << node->pn_clev) - 1)
767 return (NULL);
768 slot = ilog2(node->pn_popmap);
769 parent = node;
770 node = pctrie_node_load(&node->pn_child[slot], NULL,
771 PCTRIE_LOCKED);
772 }
773 if (parent_out != NULL)
774 *parent_out = parent;
775 m = pctrie_toval(node);
776 if (limit != 0 && *m <= limit)
777 return (NULL);
778 return (m);
779 }
780
781 uint64_t *
pctrie_lookup_le(struct pctrie * ptree,uint64_t index)782 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
783 {
784 return (_pctrie_lookup_le(ptree, NULL, index, NULL, 0));
785 }
786
787 uint64_t *
pctrie_subtree_lookup_lt(struct pctrie * ptree,struct pctrie_node * node,uint64_t index)788 pctrie_subtree_lookup_lt(struct pctrie *ptree, struct pctrie_node *node,
789 uint64_t index)
790 {
791 if (index == 0)
792 return (NULL);
793 return (_pctrie_lookup_le(ptree, node, index - 1, NULL, 0));
794 }
795
796 /*
797 * Find first leaf <= index, and fill iter with the path to the parent of that
798 * leaf. Return NULL if there is no such leaf greater than limit.
799 */
800 uint64_t *
pctrie_iter_lookup_le(struct pctrie_iter * it,uint64_t index)801 pctrie_iter_lookup_le(struct pctrie_iter *it, uint64_t index)
802 {
803 uint64_t *m;
804
805 m = _pctrie_lookup_le(it->ptree, it->node, index, &it->node, it->limit);
806 if (m != NULL)
807 it->index = *m;
808 return (m);
809 }
810
811 /*
812 * Find the first leaf with value at most 'jump' less than the previous
813 * leaf. Return NULL if that value is <= limit.
814 */
815 uint64_t *
pctrie_iter_jump_le(struct pctrie_iter * it,int64_t jump)816 pctrie_iter_jump_le(struct pctrie_iter *it, int64_t jump)
817 {
818 uint64_t index = it->index - jump;
819
820 /* Detect jump overflow. */
821 if ((jump > 0) != (index < it->index))
822 return (NULL);
823 if (it->limit != 0 && index <= it->limit)
824 return (NULL);
825 return (pctrie_iter_lookup_le(it, index));
826 }
827
828 /*
829 * Remove the non-NULL child identified by 'index' from the set of children of
830 * 'node'. If doing so causes 'node' to have only one child, purge it from the
831 * pctrie and save it in *freenode for later disposal.
832 */
833 static void
pctrie_remove(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** freenode)834 pctrie_remove(struct pctrie *ptree, struct pctrie_node *node, uint64_t index,
835 struct pctrie_node **freenode)
836 {
837 smr_pctnode_t *parentp;
838 struct pctrie_node *child;
839 int slot;
840
841 *freenode = NULL;
842 parentp = pctrie_child(ptree, node, index);
843 if (node == NULL) {
844 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_LOCKED);
845 return;
846 }
847 slot = pctrie_slot(node, index);
848 KASSERT((node->pn_popmap & (1 << slot)) != 0,
849 ("%s: bad popmap slot %d in node %p",
850 __func__, slot, node));
851 node->pn_popmap ^= 1 << slot;
852 if (!powerof2(node->pn_popmap)) {
853 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_LOCKED);
854 return;
855 }
856 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
857 KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
858 slot = ffs(node->pn_popmap) - 1;
859 *freenode = node;
860 child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
861 KASSERT(child != PCTRIE_NULL,
862 ("%s: bad popmap slot %d in node %p", __func__, slot, node));
863 node = pctrie_parent(node);
864 if (!pctrie_isleaf(child))
865 pctrie_setparent(child, node);
866 parentp = pctrie_child(ptree, node, index);
867 pctrie_node_store(parentp, child, PCTRIE_LOCKED);
868 }
869
870 /*
871 * Remove the specified index from the tree, and return the value stored at
872 * that index. If the index is not present, return NULL.
873 */
874 uint64_t *
pctrie_remove_lookup(struct pctrie * ptree,uint64_t index,struct pctrie_node ** freenode)875 pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
876 struct pctrie_node **freenode)
877 {
878 struct pctrie_node *child, *node;
879 uint64_t *m;
880 int slot;
881
882 node = NULL;
883 child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
884 while (!pctrie_isleaf(child)) {
885 node = child;
886 slot = pctrie_slot(node, index);
887 child = pctrie_node_load(&node->pn_child[slot], NULL,
888 PCTRIE_LOCKED);
889 }
890 if ((m = pctrie_match_value(child, index)) != NULL)
891 pctrie_remove(ptree, node, index, freenode);
892 else
893 *freenode = NULL;
894 return (m);
895 }
896
897 /*
898 * Remove from the trie the leaf last chosen by the iterator, and
899 * adjust the path if it's last member is to be freed.
900 */
901 void
pctrie_iter_remove(struct pctrie_iter * it,struct pctrie_node ** freenode)902 pctrie_iter_remove(struct pctrie_iter *it, struct pctrie_node **freenode)
903 {
904 KASSERT(NULL != pctrie_match_value(pctrie_node_load(pctrie_child(
905 it->ptree, it->node, it->index), NULL, PCTRIE_LOCKED), it->index),
906 ("%s: removing value %jx not at iter", __func__,
907 (uintmax_t)it->index));
908 pctrie_remove(it->ptree, it->node, it->index, freenode);
909 if (*freenode != NULL)
910 it->node = pctrie_parent(it->node);
911 }
912
913 /*
914 * Return the current leaf, assuming access is externally synchronized by a
915 * lock.
916 */
917 uint64_t *
pctrie_iter_value(struct pctrie_iter * it)918 pctrie_iter_value(struct pctrie_iter *it)
919 {
920 struct pctrie_node *node;
921
922 node = pctrie_node_load(pctrie_child(it->ptree, it->node, it->index),
923 NULL, PCTRIE_LOCKED);
924 return (pctrie_toval(node));
925 }
926
927 /*
928 * Walk the subtrie rooted at *pnode in order, invoking callback on leaves,
929 * until an interior node is stripped of all children, and returned for
930 * deallocation, with *pnode left pointing to the parent of that node.
931 */
932 static __always_inline struct pctrie_node *
pctrie_reclaim_prune(struct pctrie_node ** pnode,struct pctrie_node * parent,pctrie_cb_t callback,int keyoff,void * arg)933 pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent,
934 pctrie_cb_t callback, int keyoff, void *arg)
935 {
936 struct pctrie_node *child, *node;
937 int slot;
938
939 node = *pnode;
940 while (node->pn_popmap != 0) {
941 slot = ffs(node->pn_popmap) - 1;
942 node->pn_popmap ^= 1 << slot;
943 child = pctrie_node_load(&node->pn_child[slot], NULL,
944 PCTRIE_UNSERIALIZED);
945 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
946 PCTRIE_UNSERIALIZED);
947 if (pctrie_isleaf(child)) {
948 if (callback != NULL)
949 callback(pctrie_toptr(child, keyoff), arg);
950 continue;
951 }
952 /* Climb one level down the trie. */
953 parent = node;
954 node = child;
955 }
956 *pnode = parent;
957 return (node);
958 }
959
960 /*
961 * Recover the node parent from its first child and continue pruning.
962 */
963 static __always_inline struct pctrie_node *
pctrie_reclaim_resume_compound(struct pctrie_node ** pnode,pctrie_cb_t callback,int keyoff,void * arg)964 pctrie_reclaim_resume_compound(struct pctrie_node **pnode,
965 pctrie_cb_t callback, int keyoff, void *arg)
966 {
967 if (*pnode == NULL)
968 return (NULL);
969 /* Climb one level up the trie. */
970 return (pctrie_reclaim_prune(pnode, pctrie_parent(*pnode), callback,
971 keyoff, arg));
972 }
973
974 /*
975 * Find the trie root, and start pruning with a NULL parent.
976 */
977 static __always_inline struct pctrie_node *
pctrie_reclaim_begin_compound(struct pctrie_node ** pnode,struct pctrie * ptree,pctrie_cb_t callback,int keyoff,void * arg)978 pctrie_reclaim_begin_compound(struct pctrie_node **pnode,
979 struct pctrie *ptree,
980 pctrie_cb_t callback, int keyoff, void *arg)
981 {
982 struct pctrie_node *node;
983
984 node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
985 pctrie_node_store(pctrie_root(ptree), PCTRIE_NULL, PCTRIE_UNSERIALIZED);
986 if (pctrie_isleaf(node)) {
987 if (callback != NULL && node != PCTRIE_NULL)
988 callback(pctrie_toptr(node, keyoff), arg);
989 return (NULL);
990 }
991 *pnode = node;
992 return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg));
993 }
994
995 struct pctrie_node *
pctrie_reclaim_resume(struct pctrie_node ** pnode)996 pctrie_reclaim_resume(struct pctrie_node **pnode)
997 {
998 return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL));
999 }
1000
1001 struct pctrie_node *
pctrie_reclaim_begin(struct pctrie_node ** pnode,struct pctrie * ptree)1002 pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree)
1003 {
1004 return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL));
1005 }
1006
1007 struct pctrie_node *
pctrie_reclaim_resume_cb(struct pctrie_node ** pnode,pctrie_cb_t callback,int keyoff,void * arg)1008 pctrie_reclaim_resume_cb(struct pctrie_node **pnode,
1009 pctrie_cb_t callback, int keyoff, void *arg)
1010 {
1011 return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg));
1012 }
1013
1014 struct pctrie_node *
pctrie_reclaim_begin_cb(struct pctrie_node ** pnode,struct pctrie * ptree,pctrie_cb_t callback,int keyoff,void * arg)1015 pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree,
1016 pctrie_cb_t callback, int keyoff, void *arg)
1017 {
1018 return (pctrie_reclaim_begin_compound(pnode, ptree,
1019 callback, keyoff, arg));
1020 }
1021
1022 /*
1023 * Replace an existing value in the trie with another one.
1024 * Panics if there is not an old value in the trie at the new value's index.
1025 */
1026 uint64_t *
pctrie_replace(struct pctrie * ptree,uint64_t * newval)1027 pctrie_replace(struct pctrie *ptree, uint64_t *newval)
1028 {
1029 struct pctrie_node *leaf, *parent, *node;
1030 uint64_t *m;
1031 uint64_t index;
1032 int slot;
1033
1034 leaf = pctrie_toleaf(newval);
1035 index = *newval;
1036 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
1037 parent = NULL;
1038 for (;;) {
1039 if (pctrie_isleaf(node)) {
1040 if ((m = pctrie_toval(node)) != NULL && *m == index) {
1041 if (parent == NULL)
1042 pctrie_node_store(pctrie_root(ptree),
1043 leaf, PCTRIE_LOCKED);
1044 else
1045 pctrie_node_store(
1046 &parent->pn_child[slot], leaf,
1047 PCTRIE_LOCKED);
1048 return (m);
1049 }
1050 break;
1051 }
1052 if (pctrie_keybarr(node, index, &slot))
1053 break;
1054 parent = node;
1055 node = pctrie_node_load(&node->pn_child[slot], NULL,
1056 PCTRIE_LOCKED);
1057 }
1058 panic("%s: original replacing value not found", __func__);
1059 }
1060
1061 #ifdef DDB
1062 /*
1063 * Show details about the given node.
1064 */
DB_SHOW_COMMAND(pctrienode,db_show_pctrienode)1065 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
1066 {
1067 struct pctrie_node *node, *tmp;
1068 int slot;
1069 pn_popmap_t popmap;
1070
1071 if (!have_addr)
1072 return;
1073 node = (struct pctrie_node *)addr;
1074 db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
1075 (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
1076 node->pn_clev / PCTRIE_WIDTH);
1077 for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
1078 slot = ffs(popmap) - 1;
1079 tmp = pctrie_node_load(&node->pn_child[slot], NULL,
1080 PCTRIE_UNSERIALIZED);
1081 db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
1082 slot, (void *)tmp,
1083 pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
1084 node->pn_clev / PCTRIE_WIDTH);
1085 }
1086 }
1087 #endif /* DDB */
1088