1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6 * Copyright (c) 2000, BSDi
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #include "opt_acpi.h"
33 #include "opt_iommu.h"
34 #include "opt_bus.h"
35
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/eventhandler.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/linker.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/taskqueue.h>
51 #include <sys/tree.h>
52
53 #include <vm/vm.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_extern.h>
56
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 #include <machine/stdarg.h>
62
63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64 #include <machine/intr_machdep.h>
65 #endif
66
67 #include <sys/pciio.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pci_private.h>
71
72 #ifdef PCI_IOV
73 #include <sys/nv.h>
74 #include <dev/pci/pci_iov_private.h>
75 #endif
76
77 #include <dev/usb/controller/xhcireg.h>
78 #include <dev/usb/controller/ehcireg.h>
79 #include <dev/usb/controller/ohcireg.h>
80 #include <dev/usb/controller/uhcireg.h>
81
82 #include <dev/iommu/iommu.h>
83
84 #include "pcib_if.h"
85 #include "pci_if.h"
86
87 #define PCIR_IS_BIOS(cfg, reg) \
88 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \
89 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90
91 static device_probe_t pci_probe;
92
93 static bus_reset_post_t pci_reset_post;
94 static bus_reset_prepare_t pci_reset_prepare;
95 static bus_reset_child_t pci_reset_child;
96 static bus_hint_device_unit_t pci_hint_device_unit;
97 static bus_remap_intr_t pci_remap_intr_method;
98
99 static pci_get_id_t pci_get_id_method;
100
101 static int pci_has_quirk(uint32_t devid, int quirk);
102 static pci_addr_t pci_mapbase(uint64_t mapreg);
103 static const char *pci_maptype(uint64_t mapreg);
104 static int pci_maprange(uint64_t mapreg);
105 static pci_addr_t pci_rombase(uint64_t mapreg);
106 static int pci_romsize(uint64_t testval);
107 static void pci_fixancient(pcicfgregs *cfg);
108 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109
110 static int pci_porten(device_t dev);
111 static int pci_memen(device_t dev);
112 static void pci_assign_interrupt(device_t bus, device_t dev,
113 int force_route);
114 static int pci_add_map(device_t bus, device_t dev, int reg,
115 struct resource_list *rl, int force, int prefetch);
116 static void pci_load_vendor_data(void);
117 static int pci_describe_parse_line(char **ptr, int *vendor,
118 int *device, char **desc);
119 static char *pci_describe_device(device_t dev);
120 static int pci_modevent(module_t mod, int what, void *arg);
121 static void pci_hdrtypedata(device_t pcib, int b, int s, int f,
122 pcicfgregs *cfg);
123 static void pci_read_cap(device_t pcib, pcicfgregs *cfg);
124 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125 int reg, uint32_t *data);
126 #if 0
127 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128 int reg, uint32_t data);
129 #endif
130 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131 static void pci_mask_msix(device_t dev, u_int index);
132 static void pci_unmask_msix(device_t dev, u_int index);
133 static int pci_msi_blacklisted(void);
134 static int pci_msix_blacklisted(void);
135 static void pci_resume_msi(device_t dev);
136 static void pci_resume_msix(device_t dev);
137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138 int b, int s, int f, uint16_t vid, uint16_t did);
139
140 static device_method_t pci_methods[] = {
141 /* Device interface */
142 DEVMETHOD(device_probe, pci_probe),
143 DEVMETHOD(device_attach, pci_attach),
144 DEVMETHOD(device_detach, pci_detach),
145 DEVMETHOD(device_shutdown, bus_generic_shutdown),
146 DEVMETHOD(device_suspend, bus_generic_suspend),
147 DEVMETHOD(device_resume, pci_resume),
148
149 /* Bus interface */
150 DEVMETHOD(bus_print_child, pci_print_child),
151 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch),
152 DEVMETHOD(bus_read_ivar, pci_read_ivar),
153 DEVMETHOD(bus_write_ivar, pci_write_ivar),
154 DEVMETHOD(bus_driver_added, pci_driver_added),
155 DEVMETHOD(bus_setup_intr, pci_setup_intr),
156 DEVMETHOD(bus_teardown_intr, pci_teardown_intr),
157 DEVMETHOD(bus_reset_prepare, pci_reset_prepare),
158 DEVMETHOD(bus_reset_post, pci_reset_post),
159 DEVMETHOD(bus_reset_child, pci_reset_child),
160
161 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag),
162 DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
164 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
165 DEVMETHOD(bus_delete_resource, pci_delete_resource),
166 DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
167 DEVMETHOD(bus_adjust_resource, pci_adjust_resource),
168 DEVMETHOD(bus_release_resource, pci_release_resource),
169 DEVMETHOD(bus_activate_resource, pci_activate_resource),
170 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
171 DEVMETHOD(bus_map_resource, pci_map_resource),
172 DEVMETHOD(bus_unmap_resource, pci_unmap_resource),
173 DEVMETHOD(bus_child_deleted, pci_child_deleted),
174 DEVMETHOD(bus_child_detached, pci_child_detached),
175 DEVMETHOD(bus_child_pnpinfo, pci_child_pnpinfo_method),
176 DEVMETHOD(bus_child_location, pci_child_location_method),
177 DEVMETHOD(bus_get_device_path, pci_get_device_path_method),
178 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit),
179 DEVMETHOD(bus_remap_intr, pci_remap_intr_method),
180 DEVMETHOD(bus_suspend_child, pci_suspend_child),
181 DEVMETHOD(bus_resume_child, pci_resume_child),
182 DEVMETHOD(bus_rescan, pci_rescan_method),
183
184 /* PCI interface */
185 DEVMETHOD(pci_read_config, pci_read_config_method),
186 DEVMETHOD(pci_write_config, pci_write_config_method),
187 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method),
188 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
189 DEVMETHOD(pci_enable_io, pci_enable_io_method),
190 DEVMETHOD(pci_disable_io, pci_disable_io_method),
191 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method),
192 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method),
193 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method),
194 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method),
195 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
196 DEVMETHOD(pci_find_cap, pci_find_cap_method),
197 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method),
198 DEVMETHOD(pci_find_extcap, pci_find_extcap_method),
199 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method),
200 DEVMETHOD(pci_find_htcap, pci_find_htcap_method),
201 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method),
202 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method),
203 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method),
204 DEVMETHOD(pci_enable_msi, pci_enable_msi_method),
205 DEVMETHOD(pci_enable_msix, pci_enable_msix_method),
206 DEVMETHOD(pci_disable_msi, pci_disable_msi_method),
207 DEVMETHOD(pci_remap_msix, pci_remap_msix_method),
208 DEVMETHOD(pci_release_msi, pci_release_msi_method),
209 DEVMETHOD(pci_msi_count, pci_msi_count_method),
210 DEVMETHOD(pci_msix_count, pci_msix_count_method),
211 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method),
212 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method),
213 DEVMETHOD(pci_get_id, pci_get_id_method),
214 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method),
215 DEVMETHOD(pci_child_added, pci_child_added_method),
216 #ifdef PCI_IOV
217 DEVMETHOD(pci_iov_attach, pci_iov_attach_method),
218 DEVMETHOD(pci_iov_detach, pci_iov_detach_method),
219 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method),
220 #endif
221
222 DEVMETHOD_END
223 };
224
225 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
226
227 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
228 MODULE_VERSION(pci, 1);
229
230 static char *pci_vendordata;
231 static size_t pci_vendordata_size;
232
233 struct pci_quirk {
234 uint32_t devid; /* Vendor/device of the card */
235 int type;
236 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */
237 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */
238 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */
239 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */
240 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */
241 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */
242 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */
243 int arg1;
244 int arg2;
245 };
246
247 static const struct pci_quirk pci_quirks[] = {
248 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
249 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 },
250 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 },
251 /* As does the Serverworks OSB4 (the SMBus mapping register) */
252 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 },
253
254 /*
255 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
256 * or the CMIC-SL (AKA ServerWorks GC_LE).
257 */
258 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
259 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
260
261 /*
262 * MSI doesn't work on earlier Intel chipsets including
263 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
264 */
265 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
266 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
267 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
268 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
269 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
270 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
271 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
272
273 /*
274 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
275 * bridge.
276 */
277 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 },
278
279 /*
280 * Some virtualization environments emulate an older chipset
281 * but support MSI just fine. QEMU uses the Intel 82440.
282 */
283 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 },
284
285 /*
286 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
287 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
288 * It prevents us from attaching hpet(4) when the bit is unset.
289 * Note this quirk only affects SB600 revision A13 and earlier.
290 * For SB600 A21 and later, firmware must set the bit to hide it.
291 * For SB700 and later, it is unused and hardcoded to zero.
292 */
293 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 },
294
295 /*
296 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
297 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
298 * of the command register is set.
299 */
300 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
301 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
302 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
303 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
304 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
305
306 /*
307 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
308 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
309 */
310 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */
311 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */
312 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */
313 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */
314 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */
315 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */
316
317 /*
318 * HPE Gen 10 VGA has a memory range that can't be allocated in the
319 * expected place.
320 */
321 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 },
322 { 0 }
323 };
324
325 /* map register information */
326 #define PCI_MAPMEM 0x01 /* memory map */
327 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */
328 #define PCI_MAPPORT 0x04 /* port map */
329
330 struct devlist pci_devq;
331 uint32_t pci_generation;
332 uint32_t pci_numdevs = 0;
333 static int pcie_chipset, pcix_chipset;
334
335 /* sysctl vars */
336 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
337 "PCI bus tuning parameters");
338
339 static int pci_enable_io_modes = 1;
340 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
341 &pci_enable_io_modes, 1,
342 "Enable I/O and memory bits in the config register. Some BIOSes do not"
343 " enable these bits correctly. We'd like to do this all the time, but"
344 " there are some peripherals that this causes problems with.");
345
346 static int pci_do_realloc_bars = 1;
347 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
348 &pci_do_realloc_bars, 0,
349 "Attempt to allocate a new range for any BARs whose original "
350 "firmware-assigned ranges fail to allocate during the initial device scan.");
351
352 static int pci_do_power_nodriver = 0;
353 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
354 &pci_do_power_nodriver, 0,
355 "Place a function into D3 state when no driver attaches to it. 0 means"
356 " disable. 1 means conservatively place devices into D3 state. 2 means"
357 " aggressively place devices into D3 state. 3 means put absolutely"
358 " everything in D3 state.");
359
360 int pci_do_power_resume = 1;
361 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
362 &pci_do_power_resume, 1,
363 "Transition from D3 -> D0 on resume.");
364
365 int pci_do_power_suspend = 1;
366 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
367 &pci_do_power_suspend, 1,
368 "Transition from D0 -> D3 on suspend.");
369
370 static int pci_do_msi = 1;
371 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
372 "Enable support for MSI interrupts");
373
374 static int pci_do_msix = 1;
375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
376 "Enable support for MSI-X interrupts");
377
378 static int pci_msix_rewrite_table = 0;
379 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
380 &pci_msix_rewrite_table, 0,
381 "Rewrite entire MSI-X table when updating MSI-X entries");
382
383 static int pci_honor_msi_blacklist = 1;
384 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
385 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
386
387 #if defined(__i386__) || defined(__amd64__)
388 static int pci_usb_takeover = 1;
389 #else
390 static int pci_usb_takeover = 0;
391 #endif
392 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
393 &pci_usb_takeover, 1,
394 "Enable early takeover of USB controllers. Disable this if you depend on"
395 " BIOS emulation of USB devices, that is you use USB devices (like"
396 " keyboard or mouse) but do not load USB drivers");
397
398 static int pci_clear_bars;
399 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
400 "Ignore firmware-assigned resources for BARs.");
401
402 static int pci_clear_buses;
403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
404 "Ignore firmware-assigned bus numbers.");
405
406 static int pci_enable_ari = 1;
407 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
408 0, "Enable support for PCIe Alternative RID Interpretation");
409
410 int pci_enable_aspm = 1;
411 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
412 0, "Enable support for PCIe Active State Power Management");
413
414 static int pci_clear_aer_on_attach = 0;
415 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
416 &pci_clear_aer_on_attach, 0,
417 "Clear port and device AER state on driver attach");
418
419 static bool pci_enable_mps_tune = true;
420 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
421 &pci_enable_mps_tune, 1,
422 "Enable tuning of MPS(maximum payload size)." );
423
424 static int
pci_has_quirk(uint32_t devid,int quirk)425 pci_has_quirk(uint32_t devid, int quirk)
426 {
427 const struct pci_quirk *q;
428
429 for (q = &pci_quirks[0]; q->devid; q++) {
430 if (q->devid == devid && q->type == quirk)
431 return (1);
432 }
433 return (0);
434 }
435
436 /* Find a device_t by bus/slot/function in domain 0 */
437
438 device_t
pci_find_bsf(uint8_t bus,uint8_t slot,uint8_t func)439 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
440 {
441
442 return (pci_find_dbsf(0, bus, slot, func));
443 }
444
445 /* Find a device_t by domain/bus/slot/function */
446
447 device_t
pci_find_dbsf(uint32_t domain,uint8_t bus,uint8_t slot,uint8_t func)448 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
449 {
450 struct pci_devinfo *dinfo = NULL;
451
452 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
453 if ((dinfo->cfg.domain == domain) &&
454 (dinfo->cfg.bus == bus) &&
455 (dinfo->cfg.slot == slot) &&
456 (dinfo->cfg.func == func)) {
457 break;
458 }
459 }
460
461 return (dinfo != NULL ? dinfo->cfg.dev : NULL);
462 }
463
464 /* Find a device_t by vendor/device ID */
465
466 device_t
pci_find_device(uint16_t vendor,uint16_t device)467 pci_find_device(uint16_t vendor, uint16_t device)
468 {
469 struct pci_devinfo *dinfo;
470
471 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
472 if ((dinfo->cfg.vendor == vendor) &&
473 (dinfo->cfg.device == device)) {
474 return (dinfo->cfg.dev);
475 }
476 }
477
478 return (NULL);
479 }
480
481 device_t
pci_find_class(uint8_t class,uint8_t subclass)482 pci_find_class(uint8_t class, uint8_t subclass)
483 {
484 struct pci_devinfo *dinfo;
485
486 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
487 if (dinfo->cfg.baseclass == class &&
488 dinfo->cfg.subclass == subclass) {
489 return (dinfo->cfg.dev);
490 }
491 }
492
493 return (NULL);
494 }
495
496 device_t
pci_find_class_from(uint8_t class,uint8_t subclass,device_t from)497 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
498 {
499 struct pci_devinfo *dinfo;
500 bool found = false;
501
502 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
503 if (from != NULL && found == false) {
504 if (from != dinfo->cfg.dev)
505 continue;
506 found = true;
507 continue;
508 }
509 if (dinfo->cfg.baseclass == class &&
510 dinfo->cfg.subclass == subclass) {
511 return (dinfo->cfg.dev);
512 }
513 }
514
515 return (NULL);
516 }
517
518 static int
pci_printf(pcicfgregs * cfg,const char * fmt,...)519 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
520 {
521 va_list ap;
522 int retval;
523
524 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
525 cfg->func);
526 va_start(ap, fmt);
527 retval += vprintf(fmt, ap);
528 va_end(ap);
529 return (retval);
530 }
531
532 /* return base address of memory or port map */
533
534 static pci_addr_t
pci_mapbase(uint64_t mapreg)535 pci_mapbase(uint64_t mapreg)
536 {
537
538 if (PCI_BAR_MEM(mapreg))
539 return (mapreg & PCIM_BAR_MEM_BASE);
540 else
541 return (mapreg & PCIM_BAR_IO_BASE);
542 }
543
544 /* return map type of memory or port map */
545
546 static const char *
pci_maptype(uint64_t mapreg)547 pci_maptype(uint64_t mapreg)
548 {
549
550 if (PCI_BAR_IO(mapreg))
551 return ("I/O Port");
552 if (mapreg & PCIM_BAR_MEM_PREFETCH)
553 return ("Prefetchable Memory");
554 return ("Memory");
555 }
556
557 /* return log2 of map size decoded for memory or port map */
558
559 int
pci_mapsize(uint64_t testval)560 pci_mapsize(uint64_t testval)
561 {
562 int ln2size;
563
564 testval = pci_mapbase(testval);
565 ln2size = 0;
566 if (testval != 0) {
567 while ((testval & 1) == 0)
568 {
569 ln2size++;
570 testval >>= 1;
571 }
572 }
573 return (ln2size);
574 }
575
576 /* return base address of device ROM */
577
578 static pci_addr_t
pci_rombase(uint64_t mapreg)579 pci_rombase(uint64_t mapreg)
580 {
581
582 return (mapreg & PCIM_BIOS_ADDR_MASK);
583 }
584
585 /* return log2 of map size decided for device ROM */
586
587 static int
pci_romsize(uint64_t testval)588 pci_romsize(uint64_t testval)
589 {
590 int ln2size;
591
592 testval = pci_rombase(testval);
593 ln2size = 0;
594 if (testval != 0) {
595 while ((testval & 1) == 0)
596 {
597 ln2size++;
598 testval >>= 1;
599 }
600 }
601 return (ln2size);
602 }
603
604 /* return log2 of address range supported by map register */
605
606 static int
pci_maprange(uint64_t mapreg)607 pci_maprange(uint64_t mapreg)
608 {
609 int ln2range = 0;
610
611 if (PCI_BAR_IO(mapreg))
612 ln2range = 32;
613 else
614 switch (mapreg & PCIM_BAR_MEM_TYPE) {
615 case PCIM_BAR_MEM_32:
616 ln2range = 32;
617 break;
618 case PCIM_BAR_MEM_1MB:
619 ln2range = 20;
620 break;
621 case PCIM_BAR_MEM_64:
622 ln2range = 64;
623 break;
624 }
625 return (ln2range);
626 }
627
628 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
629
630 static void
pci_fixancient(pcicfgregs * cfg)631 pci_fixancient(pcicfgregs *cfg)
632 {
633 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
634 return;
635
636 /* PCI to PCI bridges use header type 1 */
637 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
638 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
639 }
640
641 /* extract header type specific config data */
642
643 static void
pci_hdrtypedata(device_t pcib,int b,int s,int f,pcicfgregs * cfg)644 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
645 {
646 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
647 switch (cfg->hdrtype & PCIM_HDRTYPE) {
648 case PCIM_HDRTYPE_NORMAL:
649 cfg->subvendor = REG(PCIR_SUBVEND_0, 2);
650 cfg->subdevice = REG(PCIR_SUBDEV_0, 2);
651 cfg->mingnt = REG(PCIR_MINGNT, 1);
652 cfg->maxlat = REG(PCIR_MAXLAT, 1);
653 cfg->nummaps = PCI_MAXMAPS_0;
654 break;
655 case PCIM_HDRTYPE_BRIDGE:
656 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
657 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
658 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
659 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
660 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
661 cfg->nummaps = PCI_MAXMAPS_1;
662 break;
663 case PCIM_HDRTYPE_CARDBUS:
664 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
665 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
666 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
667 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
668 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
669 cfg->subvendor = REG(PCIR_SUBVEND_2, 2);
670 cfg->subdevice = REG(PCIR_SUBDEV_2, 2);
671 cfg->nummaps = PCI_MAXMAPS_2;
672 break;
673 }
674 #undef REG
675 }
676
677 /* read configuration header into pcicfgregs structure */
678 struct pci_devinfo *
pci_read_device(device_t pcib,device_t bus,int d,int b,int s,int f)679 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
680 {
681 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
682 uint16_t vid, did;
683
684 vid = REG(PCIR_VENDOR, 2);
685 if (vid == PCIV_INVALID)
686 return (NULL);
687
688 did = REG(PCIR_DEVICE, 2);
689
690 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
691 }
692
693 struct pci_devinfo *
pci_alloc_devinfo_method(device_t dev)694 pci_alloc_devinfo_method(device_t dev)
695 {
696
697 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
698 M_WAITOK | M_ZERO));
699 }
700
701 static struct pci_devinfo *
pci_fill_devinfo(device_t pcib,device_t bus,int d,int b,int s,int f,uint16_t vid,uint16_t did)702 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
703 uint16_t vid, uint16_t did)
704 {
705 struct pci_devinfo *devlist_entry;
706 pcicfgregs *cfg;
707
708 devlist_entry = PCI_ALLOC_DEVINFO(bus);
709
710 cfg = &devlist_entry->cfg;
711
712 cfg->domain = d;
713 cfg->bus = b;
714 cfg->slot = s;
715 cfg->func = f;
716 cfg->vendor = vid;
717 cfg->device = did;
718 cfg->cmdreg = REG(PCIR_COMMAND, 2);
719 cfg->statreg = REG(PCIR_STATUS, 2);
720 cfg->baseclass = REG(PCIR_CLASS, 1);
721 cfg->subclass = REG(PCIR_SUBCLASS, 1);
722 cfg->progif = REG(PCIR_PROGIF, 1);
723 cfg->revid = REG(PCIR_REVID, 1);
724 cfg->hdrtype = REG(PCIR_HDRTYPE, 1);
725 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1);
726 cfg->lattimer = REG(PCIR_LATTIMER, 1);
727 cfg->intpin = REG(PCIR_INTPIN, 1);
728 cfg->intline = REG(PCIR_INTLINE, 1);
729
730 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0;
731 cfg->hdrtype &= ~PCIM_MFDEV;
732 STAILQ_INIT(&cfg->maps);
733
734 cfg->iov = NULL;
735
736 pci_fixancient(cfg);
737 pci_hdrtypedata(pcib, b, s, f, cfg);
738
739 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
740 pci_read_cap(pcib, cfg);
741
742 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
743
744 devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
745 devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
746 devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
747 devlist_entry->conf.pc_sel.pc_func = cfg->func;
748 devlist_entry->conf.pc_hdr = cfg->hdrtype;
749
750 devlist_entry->conf.pc_subvendor = cfg->subvendor;
751 devlist_entry->conf.pc_subdevice = cfg->subdevice;
752 devlist_entry->conf.pc_vendor = cfg->vendor;
753 devlist_entry->conf.pc_device = cfg->device;
754
755 devlist_entry->conf.pc_class = cfg->baseclass;
756 devlist_entry->conf.pc_subclass = cfg->subclass;
757 devlist_entry->conf.pc_progif = cfg->progif;
758 devlist_entry->conf.pc_revid = cfg->revid;
759
760 pci_numdevs++;
761 pci_generation++;
762
763 return (devlist_entry);
764 }
765 #undef REG
766
767 static void
pci_ea_fill_info(device_t pcib,pcicfgregs * cfg)768 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
769 {
770 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
771 cfg->ea.ea_location + (n), w)
772 int num_ent;
773 int ptr;
774 int a, b;
775 uint32_t val;
776 int ent_size;
777 uint32_t dw[4];
778 uint64_t base, max_offset;
779 struct pci_ea_entry *eae;
780
781 if (cfg->ea.ea_location == 0)
782 return;
783
784 STAILQ_INIT(&cfg->ea.ea_entries);
785
786 /* Determine the number of entries */
787 num_ent = REG(PCIR_EA_NUM_ENT, 2);
788 num_ent &= PCIM_EA_NUM_ENT_MASK;
789
790 /* Find the first entry to care of */
791 ptr = PCIR_EA_FIRST_ENT;
792
793 /* Skip DWORD 2 for type 1 functions */
794 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
795 ptr += 4;
796
797 for (a = 0; a < num_ent; a++) {
798 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
799 eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
800
801 /* Read a number of dwords in the entry */
802 val = REG(ptr, 4);
803 ptr += 4;
804 ent_size = (val & PCIM_EA_ES);
805
806 for (b = 0; b < ent_size; b++) {
807 dw[b] = REG(ptr, 4);
808 ptr += 4;
809 }
810
811 eae->eae_flags = val;
812 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
813
814 base = dw[0] & PCIM_EA_FIELD_MASK;
815 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
816 b = 2;
817 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
818 base |= (uint64_t)dw[b] << 32UL;
819 b++;
820 }
821 if (((dw[1] & PCIM_EA_IS_64) != 0)
822 && (b < ent_size)) {
823 max_offset |= (uint64_t)dw[b] << 32UL;
824 b++;
825 }
826
827 eae->eae_base = base;
828 eae->eae_max_offset = max_offset;
829
830 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
831
832 if (bootverbose) {
833 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
834 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
835 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
836 }
837 }
838 }
839 #undef REG
840
841 static void
pci_read_cap(device_t pcib,pcicfgregs * cfg)842 pci_read_cap(device_t pcib, pcicfgregs *cfg)
843 {
844 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
845 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
846 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
847 uint64_t addr;
848 #endif
849 uint32_t val;
850 int ptr, nextptr, ptrptr;
851
852 switch (cfg->hdrtype & PCIM_HDRTYPE) {
853 case PCIM_HDRTYPE_NORMAL:
854 case PCIM_HDRTYPE_BRIDGE:
855 ptrptr = PCIR_CAP_PTR;
856 break;
857 case PCIM_HDRTYPE_CARDBUS:
858 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */
859 break;
860 default:
861 return; /* no extended capabilities support */
862 }
863 nextptr = REG(ptrptr, 1); /* sanity check? */
864
865 /*
866 * Read capability entries.
867 */
868 while (nextptr != 0) {
869 /* Sanity check */
870 if (nextptr > 255) {
871 printf("illegal PCI extended capability offset %d\n",
872 nextptr);
873 return;
874 }
875 /* Find the next entry */
876 ptr = nextptr;
877 nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
878
879 /* Process this entry */
880 switch (REG(ptr + PCICAP_ID, 1)) {
881 case PCIY_PMG: /* PCI power management */
882 if (cfg->pp.pp_cap == 0) {
883 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
884 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
885 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
886 if ((nextptr - ptr) > PCIR_POWER_DATA)
887 cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
888 }
889 break;
890 case PCIY_HT: /* HyperTransport */
891 /* Determine HT-specific capability type. */
892 val = REG(ptr + PCIR_HT_COMMAND, 2);
893
894 if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
895 cfg->ht.ht_slave = ptr;
896
897 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
898 switch (val & PCIM_HTCMD_CAP_MASK) {
899 case PCIM_HTCAP_MSI_MAPPING:
900 if (!(val & PCIM_HTCMD_MSI_FIXED)) {
901 /* Sanity check the mapping window. */
902 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
903 4);
904 addr <<= 32;
905 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
906 4);
907 if (addr != MSI_INTEL_ADDR_BASE)
908 device_printf(pcib,
909 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
910 cfg->domain, cfg->bus,
911 cfg->slot, cfg->func,
912 (long long)addr);
913 } else
914 addr = MSI_INTEL_ADDR_BASE;
915
916 cfg->ht.ht_msimap = ptr;
917 cfg->ht.ht_msictrl = val;
918 cfg->ht.ht_msiaddr = addr;
919 break;
920 }
921 #endif
922 break;
923 case PCIY_MSI: /* PCI MSI */
924 cfg->msi.msi_location = ptr;
925 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
926 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
927 PCIM_MSICTRL_MMC_MASK)>>1);
928 break;
929 case PCIY_MSIX: /* PCI MSI-X */
930 cfg->msix.msix_location = ptr;
931 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
932 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
933 PCIM_MSIXCTRL_TABLE_SIZE) + 1;
934 val = REG(ptr + PCIR_MSIX_TABLE, 4);
935 cfg->msix.msix_table_bar = PCIR_BAR(val &
936 PCIM_MSIX_BIR_MASK);
937 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
938 val = REG(ptr + PCIR_MSIX_PBA, 4);
939 cfg->msix.msix_pba_bar = PCIR_BAR(val &
940 PCIM_MSIX_BIR_MASK);
941 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
942 break;
943 case PCIY_VPD: /* PCI Vital Product Data */
944 cfg->vpd.vpd_reg = ptr;
945 break;
946 case PCIY_SUBVENDOR:
947 /* Should always be true. */
948 if ((cfg->hdrtype & PCIM_HDRTYPE) ==
949 PCIM_HDRTYPE_BRIDGE) {
950 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
951 cfg->subvendor = val & 0xffff;
952 cfg->subdevice = val >> 16;
953 }
954 break;
955 case PCIY_PCIX: /* PCI-X */
956 /*
957 * Assume we have a PCI-X chipset if we have
958 * at least one PCI-PCI bridge with a PCI-X
959 * capability. Note that some systems with
960 * PCI-express or HT chipsets might match on
961 * this check as well.
962 */
963 if ((cfg->hdrtype & PCIM_HDRTYPE) ==
964 PCIM_HDRTYPE_BRIDGE)
965 pcix_chipset = 1;
966 cfg->pcix.pcix_location = ptr;
967 break;
968 case PCIY_EXPRESS: /* PCI-express */
969 /*
970 * Assume we have a PCI-express chipset if we have
971 * at least one PCI-express device.
972 */
973 pcie_chipset = 1;
974 cfg->pcie.pcie_location = ptr;
975 val = REG(ptr + PCIER_FLAGS, 2);
976 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
977 break;
978 case PCIY_EA: /* Enhanced Allocation */
979 cfg->ea.ea_location = ptr;
980 pci_ea_fill_info(pcib, cfg);
981 break;
982 default:
983 break;
984 }
985 }
986
987 #if defined(__powerpc__)
988 /*
989 * Enable the MSI mapping window for all HyperTransport
990 * slaves. PCI-PCI bridges have their windows enabled via
991 * PCIB_MAP_MSI().
992 */
993 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
994 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
995 device_printf(pcib,
996 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
997 cfg->domain, cfg->bus, cfg->slot, cfg->func);
998 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
999 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1000 2);
1001 }
1002 #endif
1003 /* REG and WREG use carry through to next functions */
1004 }
1005
1006 /*
1007 * PCI Vital Product Data
1008 */
1009
1010 #define PCI_VPD_TIMEOUT 1000000
1011
1012 static int
pci_read_vpd_reg(device_t pcib,pcicfgregs * cfg,int reg,uint32_t * data)1013 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1014 {
1015 int count = PCI_VPD_TIMEOUT;
1016
1017 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1018
1019 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1020
1021 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1022 if (--count < 0)
1023 return (ENXIO);
1024 DELAY(1); /* limit looping */
1025 }
1026 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1027
1028 return (0);
1029 }
1030
1031 #if 0
1032 static int
1033 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1034 {
1035 int count = PCI_VPD_TIMEOUT;
1036
1037 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1038
1039 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1040 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1041 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1042 if (--count < 0)
1043 return (ENXIO);
1044 DELAY(1); /* limit looping */
1045 }
1046
1047 return (0);
1048 }
1049 #endif
1050
1051 #undef PCI_VPD_TIMEOUT
1052
1053 struct vpd_readstate {
1054 device_t pcib;
1055 pcicfgregs *cfg;
1056 uint32_t val;
1057 int bytesinval;
1058 int off;
1059 uint8_t cksum;
1060 };
1061
1062 /* return 0 and one byte in *data if no read error, -1 else */
1063 static int
vpd_nextbyte(struct vpd_readstate * vrs,uint8_t * data)1064 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1065 {
1066 uint32_t reg;
1067 uint8_t byte;
1068
1069 if (vrs->bytesinval == 0) {
1070 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®))
1071 return (-1);
1072 vrs->val = le32toh(reg);
1073 vrs->off += 4;
1074 byte = vrs->val & 0xff;
1075 vrs->bytesinval = 3;
1076 } else {
1077 vrs->val = vrs->val >> 8;
1078 byte = vrs->val & 0xff;
1079 vrs->bytesinval--;
1080 }
1081
1082 vrs->cksum += byte;
1083 *data = byte;
1084 return (0);
1085 }
1086
1087 /* return 0 on match, -1 and "unget" byte on no match */
1088 static int
vpd_expectbyte(struct vpd_readstate * vrs,uint8_t expected)1089 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1090 {
1091 uint8_t data;
1092
1093 if (vpd_nextbyte(vrs, &data) != 0)
1094 return (-1);
1095
1096 if (data == expected)
1097 return (0);
1098
1099 vrs->cksum -= data;
1100 vrs->val = (vrs->val << 8) + data;
1101 vrs->bytesinval++;
1102 return (-1);
1103 }
1104
1105 /* return size if tag matches, -1 on no match, -2 on read error */
1106 static int
vpd_read_tag_size(struct vpd_readstate * vrs,uint8_t vpd_tag)1107 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1108 {
1109 uint8_t byte1, byte2;
1110
1111 if (vpd_expectbyte(vrs, vpd_tag) != 0)
1112 return (-1);
1113
1114 if ((vpd_tag & 0x80) == 0)
1115 return (vpd_tag & 0x07);
1116
1117 if (vpd_nextbyte(vrs, &byte1) != 0)
1118 return (-2);
1119 if (vpd_nextbyte(vrs, &byte2) != 0)
1120 return (-2);
1121
1122 return ((byte2 << 8) + byte1);
1123 }
1124
1125 /* (re)allocate buffer in multiples of 8 elements */
1126 static void*
alloc_buffer(void * buffer,size_t element_size,int needed)1127 alloc_buffer(void* buffer, size_t element_size, int needed)
1128 {
1129 int alloc, new_alloc;
1130
1131 alloc = roundup2(needed, 8);
1132 new_alloc = roundup2(needed + 1, 8);
1133 if (alloc != new_alloc) {
1134 buffer = reallocf(buffer,
1135 new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1136 }
1137
1138 return (buffer);
1139 }
1140
1141 /* read VPD keyword and return element size, return -1 on read error */
1142 static int
vpd_read_elem_head(struct vpd_readstate * vrs,char keyword[2])1143 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1144 {
1145 uint8_t data;
1146
1147 if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1148 return (-1);
1149 if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1150 return (-1);
1151 if (vpd_nextbyte(vrs, &data) != 0)
1152 return (-1);
1153
1154 return (data);
1155 }
1156
1157 /* read VPD data element of given size into allocated buffer */
1158 static char *
vpd_read_value(struct vpd_readstate * vrs,int size)1159 vpd_read_value(struct vpd_readstate *vrs, int size)
1160 {
1161 int i;
1162 char char1;
1163 char *value;
1164
1165 value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1166 for (i = 0; i < size; i++) {
1167 if (vpd_nextbyte(vrs, &char1) != 0) {
1168 free(value, M_DEVBUF);
1169 return (NULL);
1170 }
1171 value[i] = char1;
1172 }
1173 value[size] = '\0';
1174
1175 return (value);
1176 }
1177
1178 /* read VPD into *keyword and *value, return length of data element */
1179 static int
vpd_read_elem_data(struct vpd_readstate * vrs,char keyword[2],char ** value,int maxlen)1180 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1181 {
1182 int len;
1183
1184 len = vpd_read_elem_head(vrs, keyword);
1185 if (len < 0 || len > maxlen)
1186 return (-1);
1187 *value = vpd_read_value(vrs, len);
1188
1189 return (len);
1190 }
1191
1192 /* subtract all data following first byte from checksum of RV element */
1193 static void
vpd_fixup_cksum(struct vpd_readstate * vrs,char * rvstring,int len)1194 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1195 {
1196 int i;
1197 uint8_t fixup;
1198
1199 fixup = 0;
1200 for (i = 1; i < len; i++)
1201 fixup += rvstring[i];
1202 vrs->cksum -= fixup;
1203 }
1204
1205 /* fetch one read-only element and return size of heading + data */
1206 static int
next_vpd_ro_elem(struct vpd_readstate * vrs,int maxsize)1207 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1208 {
1209 struct pcicfg_vpd *vpd;
1210 pcicfgregs *cfg;
1211 struct vpd_readonly *vpd_ros;
1212 int len;
1213
1214 cfg = vrs->cfg;
1215 vpd = &cfg->vpd;
1216
1217 if (maxsize < 3)
1218 return (-1);
1219 vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1220 vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1221 maxsize -= 3;
1222 len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1223 if (vpd_ros->value == NULL)
1224 return (-1);
1225 vpd_ros->len = len;
1226 if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1227 vpd_fixup_cksum(vrs, vpd_ros->value, len);
1228 if (vrs->cksum != 0) {
1229 pci_printf(cfg,
1230 "invalid VPD checksum %#hhx\n", vrs->cksum);
1231 return (-1);
1232 }
1233 }
1234 vpd->vpd_rocnt++;
1235
1236 return (len + 3);
1237 }
1238
1239 /* fetch one writable element and return size of heading + data */
1240 static int
next_vpd_rw_elem(struct vpd_readstate * vrs,int maxsize)1241 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1242 {
1243 struct pcicfg_vpd *vpd;
1244 pcicfgregs *cfg;
1245 struct vpd_write *vpd_w;
1246 int len;
1247
1248 cfg = vrs->cfg;
1249 vpd = &cfg->vpd;
1250
1251 if (maxsize < 3)
1252 return (-1);
1253 vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1254 if (vpd->vpd_w == NULL) {
1255 pci_printf(cfg, "out of memory");
1256 return (-1);
1257 }
1258 vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1259 maxsize -= 3;
1260 vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1261 len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1262 if (vpd_w->value == NULL)
1263 return (-1);
1264 vpd_w->len = len;
1265 vpd->vpd_wcnt++;
1266
1267 return (len + 3);
1268 }
1269
1270 /* free all memory allocated for VPD data */
1271 static void
vpd_free(struct pcicfg_vpd * vpd)1272 vpd_free(struct pcicfg_vpd *vpd)
1273 {
1274 int i;
1275
1276 free(vpd->vpd_ident, M_DEVBUF);
1277 for (i = 0; i < vpd->vpd_rocnt; i++)
1278 free(vpd->vpd_ros[i].value, M_DEVBUF);
1279 free(vpd->vpd_ros, M_DEVBUF);
1280 vpd->vpd_rocnt = 0;
1281 for (i = 0; i < vpd->vpd_wcnt; i++)
1282 free(vpd->vpd_w[i].value, M_DEVBUF);
1283 free(vpd->vpd_w, M_DEVBUF);
1284 vpd->vpd_wcnt = 0;
1285 }
1286
1287 #define VPD_TAG_END ((0x0f << 3) | 0) /* small tag, len == 0 */
1288 #define VPD_TAG_IDENT (0x02 | 0x80) /* large tag */
1289 #define VPD_TAG_RO (0x10 | 0x80) /* large tag */
1290 #define VPD_TAG_RW (0x11 | 0x80) /* large tag */
1291
1292 static int
pci_parse_vpd(device_t pcib,pcicfgregs * cfg)1293 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1294 {
1295 struct vpd_readstate vrs;
1296 int cksumvalid;
1297 int size, elem_size;
1298
1299 /* init vpd reader */
1300 vrs.bytesinval = 0;
1301 vrs.off = 0;
1302 vrs.pcib = pcib;
1303 vrs.cfg = cfg;
1304 vrs.cksum = 0;
1305
1306 /* read VPD ident element - mandatory */
1307 size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1308 if (size <= 0) {
1309 pci_printf(cfg, "no VPD ident found\n");
1310 return (0);
1311 }
1312 cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1313 if (cfg->vpd.vpd_ident == NULL) {
1314 pci_printf(cfg, "error accessing VPD ident data\n");
1315 return (0);
1316 }
1317
1318 /* read VPD RO elements - mandatory */
1319 size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1320 if (size <= 0) {
1321 pci_printf(cfg, "no read-only VPD data found\n");
1322 return (0);
1323 }
1324 while (size > 0) {
1325 elem_size = next_vpd_ro_elem(&vrs, size);
1326 if (elem_size < 0) {
1327 pci_printf(cfg, "error accessing read-only VPD data\n");
1328 return (-1);
1329 }
1330 size -= elem_size;
1331 }
1332 cksumvalid = (vrs.cksum == 0);
1333 if (!cksumvalid)
1334 return (-1);
1335
1336 /* read VPD RW elements - optional */
1337 size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1338 if (size == -2)
1339 return (-1);
1340 while (size > 0) {
1341 elem_size = next_vpd_rw_elem(&vrs, size);
1342 if (elem_size < 0) {
1343 pci_printf(cfg, "error accessing writeable VPD data\n");
1344 return (-1);
1345 }
1346 size -= elem_size;
1347 }
1348
1349 /* read empty END tag - mandatory */
1350 size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1351 if (size != 0) {
1352 pci_printf(cfg, "No valid VPD end tag found\n");
1353 }
1354 return (0);
1355 }
1356
1357 static void
pci_read_vpd(device_t pcib,pcicfgregs * cfg)1358 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1359 {
1360 int status;
1361
1362 status = pci_parse_vpd(pcib, cfg);
1363 if (status < 0)
1364 vpd_free(&cfg->vpd);
1365 cfg->vpd.vpd_cached = 1;
1366 #undef REG
1367 #undef WREG
1368 }
1369
1370 int
pci_get_vpd_ident_method(device_t dev,device_t child,const char ** identptr)1371 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1372 {
1373 struct pci_devinfo *dinfo = device_get_ivars(child);
1374 pcicfgregs *cfg = &dinfo->cfg;
1375
1376 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1377 pci_read_vpd(device_get_parent(dev), cfg);
1378
1379 *identptr = cfg->vpd.vpd_ident;
1380
1381 if (*identptr == NULL)
1382 return (ENXIO);
1383
1384 return (0);
1385 }
1386
1387 int
pci_get_vpd_readonly_method(device_t dev,device_t child,const char * kw,const char ** vptr)1388 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1389 const char **vptr)
1390 {
1391 struct pci_devinfo *dinfo = device_get_ivars(child);
1392 pcicfgregs *cfg = &dinfo->cfg;
1393 int i;
1394
1395 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1396 pci_read_vpd(device_get_parent(dev), cfg);
1397
1398 for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1399 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1400 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1401 *vptr = cfg->vpd.vpd_ros[i].value;
1402 return (0);
1403 }
1404
1405 *vptr = NULL;
1406 return (ENXIO);
1407 }
1408
1409 struct pcicfg_vpd *
pci_fetch_vpd_list(device_t dev)1410 pci_fetch_vpd_list(device_t dev)
1411 {
1412 struct pci_devinfo *dinfo = device_get_ivars(dev);
1413 pcicfgregs *cfg = &dinfo->cfg;
1414
1415 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1416 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1417 return (&cfg->vpd);
1418 }
1419
1420 /*
1421 * Find the requested HyperTransport capability and return the offset
1422 * in configuration space via the pointer provided. The function
1423 * returns 0 on success and an error code otherwise.
1424 */
1425 int
pci_find_htcap_method(device_t dev,device_t child,int capability,int * capreg)1426 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1427 {
1428 int ptr, error;
1429 uint16_t val;
1430
1431 error = pci_find_cap(child, PCIY_HT, &ptr);
1432 if (error)
1433 return (error);
1434
1435 /*
1436 * Traverse the capabilities list checking each HT capability
1437 * to see if it matches the requested HT capability.
1438 */
1439 for (;;) {
1440 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1441 if (capability == PCIM_HTCAP_SLAVE ||
1442 capability == PCIM_HTCAP_HOST)
1443 val &= 0xe000;
1444 else
1445 val &= PCIM_HTCMD_CAP_MASK;
1446 if (val == capability) {
1447 if (capreg != NULL)
1448 *capreg = ptr;
1449 return (0);
1450 }
1451
1452 /* Skip to the next HT capability. */
1453 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1454 break;
1455 }
1456
1457 return (ENOENT);
1458 }
1459
1460 /*
1461 * Find the next requested HyperTransport capability after start and return
1462 * the offset in configuration space via the pointer provided. The function
1463 * returns 0 on success and an error code otherwise.
1464 */
1465 int
pci_find_next_htcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1466 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1467 int start, int *capreg)
1468 {
1469 int ptr;
1470 uint16_t val;
1471
1472 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1473 ("start capability is not HyperTransport capability"));
1474 ptr = start;
1475
1476 /*
1477 * Traverse the capabilities list checking each HT capability
1478 * to see if it matches the requested HT capability.
1479 */
1480 for (;;) {
1481 /* Skip to the next HT capability. */
1482 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1483 break;
1484
1485 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1486 if (capability == PCIM_HTCAP_SLAVE ||
1487 capability == PCIM_HTCAP_HOST)
1488 val &= 0xe000;
1489 else
1490 val &= PCIM_HTCMD_CAP_MASK;
1491 if (val == capability) {
1492 if (capreg != NULL)
1493 *capreg = ptr;
1494 return (0);
1495 }
1496 }
1497
1498 return (ENOENT);
1499 }
1500
1501 /*
1502 * Find the requested capability and return the offset in
1503 * configuration space via the pointer provided. The function returns
1504 * 0 on success and an error code otherwise.
1505 */
1506 int
pci_find_cap_method(device_t dev,device_t child,int capability,int * capreg)1507 pci_find_cap_method(device_t dev, device_t child, int capability,
1508 int *capreg)
1509 {
1510 struct pci_devinfo *dinfo = device_get_ivars(child);
1511 pcicfgregs *cfg = &dinfo->cfg;
1512 uint32_t status;
1513 uint8_t ptr;
1514
1515 /*
1516 * Check the CAP_LIST bit of the PCI status register first.
1517 */
1518 status = pci_read_config(child, PCIR_STATUS, 2);
1519 if (!(status & PCIM_STATUS_CAPPRESENT))
1520 return (ENXIO);
1521
1522 /*
1523 * Determine the start pointer of the capabilities list.
1524 */
1525 switch (cfg->hdrtype & PCIM_HDRTYPE) {
1526 case PCIM_HDRTYPE_NORMAL:
1527 case PCIM_HDRTYPE_BRIDGE:
1528 ptr = PCIR_CAP_PTR;
1529 break;
1530 case PCIM_HDRTYPE_CARDBUS:
1531 ptr = PCIR_CAP_PTR_2;
1532 break;
1533 default:
1534 /* XXX: panic? */
1535 return (ENXIO); /* no extended capabilities support */
1536 }
1537 ptr = pci_read_config(child, ptr, 1);
1538
1539 /*
1540 * Traverse the capabilities list.
1541 */
1542 while (ptr != 0) {
1543 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1544 if (capreg != NULL)
1545 *capreg = ptr;
1546 return (0);
1547 }
1548 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1549 }
1550
1551 return (ENOENT);
1552 }
1553
1554 /*
1555 * Find the next requested capability after start and return the offset in
1556 * configuration space via the pointer provided. The function returns
1557 * 0 on success and an error code otherwise.
1558 */
1559 int
pci_find_next_cap_method(device_t dev,device_t child,int capability,int start,int * capreg)1560 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1561 int start, int *capreg)
1562 {
1563 uint8_t ptr;
1564
1565 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1566 ("start capability is not expected capability"));
1567
1568 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1569 while (ptr != 0) {
1570 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1571 if (capreg != NULL)
1572 *capreg = ptr;
1573 return (0);
1574 }
1575 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1576 }
1577
1578 return (ENOENT);
1579 }
1580
1581 /*
1582 * Find the requested extended capability and return the offset in
1583 * configuration space via the pointer provided. The function returns
1584 * 0 on success and an error code otherwise.
1585 */
1586 int
pci_find_extcap_method(device_t dev,device_t child,int capability,int * capreg)1587 pci_find_extcap_method(device_t dev, device_t child, int capability,
1588 int *capreg)
1589 {
1590 struct pci_devinfo *dinfo = device_get_ivars(child);
1591 pcicfgregs *cfg = &dinfo->cfg;
1592 uint32_t ecap;
1593 uint16_t ptr;
1594
1595 /* Only supported for PCI-express devices. */
1596 if (cfg->pcie.pcie_location == 0)
1597 return (ENXIO);
1598
1599 ptr = PCIR_EXTCAP;
1600 ecap = pci_read_config(child, ptr, 4);
1601 if (ecap == 0xffffffff || ecap == 0)
1602 return (ENOENT);
1603 for (;;) {
1604 if (PCI_EXTCAP_ID(ecap) == capability) {
1605 if (capreg != NULL)
1606 *capreg = ptr;
1607 return (0);
1608 }
1609 ptr = PCI_EXTCAP_NEXTPTR(ecap);
1610 if (ptr == 0)
1611 break;
1612 ecap = pci_read_config(child, ptr, 4);
1613 }
1614
1615 return (ENOENT);
1616 }
1617
1618 /*
1619 * Find the next requested extended capability after start and return the
1620 * offset in configuration space via the pointer provided. The function
1621 * returns 0 on success and an error code otherwise.
1622 */
1623 int
pci_find_next_extcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1624 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1625 int start, int *capreg)
1626 {
1627 struct pci_devinfo *dinfo = device_get_ivars(child);
1628 pcicfgregs *cfg = &dinfo->cfg;
1629 uint32_t ecap;
1630 uint16_t ptr;
1631
1632 /* Only supported for PCI-express devices. */
1633 if (cfg->pcie.pcie_location == 0)
1634 return (ENXIO);
1635
1636 ecap = pci_read_config(child, start, 4);
1637 KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1638 ("start extended capability is not expected capability"));
1639 ptr = PCI_EXTCAP_NEXTPTR(ecap);
1640 while (ptr != 0) {
1641 ecap = pci_read_config(child, ptr, 4);
1642 if (PCI_EXTCAP_ID(ecap) == capability) {
1643 if (capreg != NULL)
1644 *capreg = ptr;
1645 return (0);
1646 }
1647 ptr = PCI_EXTCAP_NEXTPTR(ecap);
1648 }
1649
1650 return (ENOENT);
1651 }
1652
1653 /*
1654 * Support for MSI-X message interrupts.
1655 */
1656 static void
pci_write_msix_entry(device_t dev,u_int index,uint64_t address,uint32_t data)1657 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1658 {
1659 struct pci_devinfo *dinfo = device_get_ivars(dev);
1660 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1661 uint32_t offset;
1662
1663 KASSERT(msix->msix_table_len > index, ("bogus index"));
1664 offset = msix->msix_table_offset + index * 16;
1665 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1666 bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1667 bus_write_4(msix->msix_table_res, offset + 8, data);
1668 }
1669
1670 void
pci_enable_msix_method(device_t dev,device_t child,u_int index,uint64_t address,uint32_t data)1671 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1672 uint64_t address, uint32_t data)
1673 {
1674
1675 if (pci_msix_rewrite_table) {
1676 struct pci_devinfo *dinfo = device_get_ivars(child);
1677 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1678
1679 /*
1680 * Some VM hosts require MSIX to be disabled in the
1681 * control register before updating the MSIX table
1682 * entries are allowed. It is not enough to only
1683 * disable MSIX while updating a single entry. MSIX
1684 * must be disabled while updating all entries in the
1685 * table.
1686 */
1687 pci_write_config(child,
1688 msix->msix_location + PCIR_MSIX_CTRL,
1689 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1690 pci_resume_msix(child);
1691 } else
1692 pci_write_msix_entry(child, index, address, data);
1693
1694 /* Enable MSI -> HT mapping. */
1695 pci_ht_map_msi(child, address);
1696 }
1697
1698 void
pci_mask_msix(device_t dev,u_int index)1699 pci_mask_msix(device_t dev, u_int index)
1700 {
1701 struct pci_devinfo *dinfo = device_get_ivars(dev);
1702 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1703 uint32_t offset, val;
1704
1705 KASSERT(msix->msix_msgnum > index, ("bogus index"));
1706 offset = msix->msix_table_offset + index * 16 + 12;
1707 val = bus_read_4(msix->msix_table_res, offset);
1708 val |= PCIM_MSIX_VCTRL_MASK;
1709
1710 /*
1711 * Some devices (e.g. Samsung PM961) do not support reads of this
1712 * register, so always write the new value.
1713 */
1714 bus_write_4(msix->msix_table_res, offset, val);
1715 }
1716
1717 void
pci_unmask_msix(device_t dev,u_int index)1718 pci_unmask_msix(device_t dev, u_int index)
1719 {
1720 struct pci_devinfo *dinfo = device_get_ivars(dev);
1721 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1722 uint32_t offset, val;
1723
1724 KASSERT(msix->msix_table_len > index, ("bogus index"));
1725 offset = msix->msix_table_offset + index * 16 + 12;
1726 val = bus_read_4(msix->msix_table_res, offset);
1727 val &= ~PCIM_MSIX_VCTRL_MASK;
1728
1729 /*
1730 * Some devices (e.g. Samsung PM961) do not support reads of this
1731 * register, so always write the new value.
1732 */
1733 bus_write_4(msix->msix_table_res, offset, val);
1734 }
1735
1736 int
pci_pending_msix(device_t dev,u_int index)1737 pci_pending_msix(device_t dev, u_int index)
1738 {
1739 struct pci_devinfo *dinfo = device_get_ivars(dev);
1740 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1741 uint32_t offset, bit;
1742
1743 KASSERT(msix->msix_table_len > index, ("bogus index"));
1744 offset = msix->msix_pba_offset + (index / 32) * 4;
1745 bit = 1 << index % 32;
1746 return (bus_read_4(msix->msix_pba_res, offset) & bit);
1747 }
1748
1749 /*
1750 * Restore MSI-X registers and table during resume. If MSI-X is
1751 * enabled then walk the virtual table to restore the actual MSI-X
1752 * table.
1753 */
1754 static void
pci_resume_msix(device_t dev)1755 pci_resume_msix(device_t dev)
1756 {
1757 struct pci_devinfo *dinfo = device_get_ivars(dev);
1758 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1759 struct msix_table_entry *mte;
1760 struct msix_vector *mv;
1761 int i;
1762
1763 if (msix->msix_alloc > 0) {
1764 /* First, mask all vectors. */
1765 for (i = 0; i < msix->msix_msgnum; i++)
1766 pci_mask_msix(dev, i);
1767
1768 /* Second, program any messages with at least one handler. */
1769 for (i = 0; i < msix->msix_table_len; i++) {
1770 mte = &msix->msix_table[i];
1771 if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1772 continue;
1773 mv = &msix->msix_vectors[mte->mte_vector - 1];
1774 pci_write_msix_entry(dev, i, mv->mv_address,
1775 mv->mv_data);
1776 pci_unmask_msix(dev, i);
1777 }
1778 }
1779 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1780 msix->msix_ctrl, 2);
1781 }
1782
1783 /*
1784 * Attempt to allocate *count MSI-X messages. The actual number allocated is
1785 * returned in *count. After this function returns, each message will be
1786 * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1787 */
1788 int
pci_alloc_msix_method(device_t dev,device_t child,int * count)1789 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1790 {
1791 struct pci_devinfo *dinfo = device_get_ivars(child);
1792 pcicfgregs *cfg = &dinfo->cfg;
1793 struct resource_list_entry *rle;
1794 int actual, error, i, irq, max;
1795
1796 /* Don't let count == 0 get us into trouble. */
1797 if (*count == 0)
1798 return (EINVAL);
1799
1800 /* If rid 0 is allocated, then fail. */
1801 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1802 if (rle != NULL && rle->res != NULL)
1803 return (ENXIO);
1804
1805 /* Already have allocated messages? */
1806 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1807 return (ENXIO);
1808
1809 /* If MSI-X is blacklisted for this system, fail. */
1810 if (pci_msix_blacklisted())
1811 return (ENXIO);
1812
1813 /* MSI-X capability present? */
1814 if (cfg->msix.msix_location == 0 || !pci_do_msix)
1815 return (ENODEV);
1816
1817 /* Make sure the appropriate BARs are mapped. */
1818 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1819 cfg->msix.msix_table_bar);
1820 if (rle == NULL || rle->res == NULL ||
1821 !(rman_get_flags(rle->res) & RF_ACTIVE))
1822 return (ENXIO);
1823 cfg->msix.msix_table_res = rle->res;
1824 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1825 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1826 cfg->msix.msix_pba_bar);
1827 if (rle == NULL || rle->res == NULL ||
1828 !(rman_get_flags(rle->res) & RF_ACTIVE))
1829 return (ENXIO);
1830 }
1831 cfg->msix.msix_pba_res = rle->res;
1832
1833 if (bootverbose)
1834 device_printf(child,
1835 "attempting to allocate %d MSI-X vectors (%d supported)\n",
1836 *count, cfg->msix.msix_msgnum);
1837 max = min(*count, cfg->msix.msix_msgnum);
1838 for (i = 0; i < max; i++) {
1839 /* Allocate a message. */
1840 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1841 if (error) {
1842 if (i == 0)
1843 return (error);
1844 break;
1845 }
1846 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1847 irq, 1);
1848 }
1849 actual = i;
1850
1851 if (bootverbose) {
1852 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1853 if (actual == 1)
1854 device_printf(child, "using IRQ %ju for MSI-X\n",
1855 rle->start);
1856 else {
1857 int run;
1858
1859 /*
1860 * Be fancy and try to print contiguous runs of
1861 * IRQ values as ranges. 'irq' is the previous IRQ.
1862 * 'run' is true if we are in a range.
1863 */
1864 device_printf(child, "using IRQs %ju", rle->start);
1865 irq = rle->start;
1866 run = 0;
1867 for (i = 1; i < actual; i++) {
1868 rle = resource_list_find(&dinfo->resources,
1869 SYS_RES_IRQ, i + 1);
1870
1871 /* Still in a run? */
1872 if (rle->start == irq + 1) {
1873 run = 1;
1874 irq++;
1875 continue;
1876 }
1877
1878 /* Finish previous range. */
1879 if (run) {
1880 printf("-%d", irq);
1881 run = 0;
1882 }
1883
1884 /* Start new range. */
1885 printf(",%ju", rle->start);
1886 irq = rle->start;
1887 }
1888
1889 /* Unfinished range? */
1890 if (run)
1891 printf("-%d", irq);
1892 printf(" for MSI-X\n");
1893 }
1894 }
1895
1896 /* Mask all vectors. */
1897 for (i = 0; i < cfg->msix.msix_msgnum; i++)
1898 pci_mask_msix(child, i);
1899
1900 /* Allocate and initialize vector data and virtual table. */
1901 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1902 M_DEVBUF, M_WAITOK | M_ZERO);
1903 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1904 M_DEVBUF, M_WAITOK | M_ZERO);
1905 for (i = 0; i < actual; i++) {
1906 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1907 cfg->msix.msix_vectors[i].mv_irq = rle->start;
1908 cfg->msix.msix_table[i].mte_vector = i + 1;
1909 }
1910
1911 /* Update control register to enable MSI-X. */
1912 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1913 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1914 cfg->msix.msix_ctrl, 2);
1915
1916 /* Update counts of alloc'd messages. */
1917 cfg->msix.msix_alloc = actual;
1918 cfg->msix.msix_table_len = actual;
1919 *count = actual;
1920 return (0);
1921 }
1922
1923 /*
1924 * By default, pci_alloc_msix() will assign the allocated IRQ
1925 * resources consecutively to the first N messages in the MSI-X table.
1926 * However, device drivers may want to use different layouts if they
1927 * either receive fewer messages than they asked for, or they wish to
1928 * populate the MSI-X table sparsely. This method allows the driver
1929 * to specify what layout it wants. It must be called after a
1930 * successful pci_alloc_msix() but before any of the associated
1931 * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1932 *
1933 * The 'vectors' array contains 'count' message vectors. The array
1934 * maps directly to the MSI-X table in that index 0 in the array
1935 * specifies the vector for the first message in the MSI-X table, etc.
1936 * The vector value in each array index can either be 0 to indicate
1937 * that no vector should be assigned to a message slot, or it can be a
1938 * number from 1 to N (where N is the count returned from a
1939 * succcessful call to pci_alloc_msix()) to indicate which message
1940 * vector (IRQ) to be used for the corresponding message.
1941 *
1942 * On successful return, each message with a non-zero vector will have
1943 * an associated SYS_RES_IRQ whose rid is equal to the array index +
1944 * 1. Additionally, if any of the IRQs allocated via the previous
1945 * call to pci_alloc_msix() are not used in the mapping, those IRQs
1946 * will be freed back to the system automatically.
1947 *
1948 * For example, suppose a driver has a MSI-X table with 6 messages and
1949 * asks for 6 messages, but pci_alloc_msix() only returns a count of
1950 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and
1951 * C. After the call to pci_alloc_msix(), the device will be setup to
1952 * have an MSI-X table of ABC--- (where - means no vector assigned).
1953 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1954 * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1955 * be freed back to the system. This device will also have valid
1956 * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1957 *
1958 * In any case, the SYS_RES_IRQ rid X will always map to the message
1959 * at MSI-X table index X - 1 and will only be valid if a vector is
1960 * assigned to that table entry.
1961 */
1962 int
pci_remap_msix_method(device_t dev,device_t child,int count,const u_int * vectors)1963 pci_remap_msix_method(device_t dev, device_t child, int count,
1964 const u_int *vectors)
1965 {
1966 struct pci_devinfo *dinfo = device_get_ivars(child);
1967 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1968 struct resource_list_entry *rle;
1969 int i, irq, j, *used;
1970
1971 /*
1972 * Have to have at least one message in the table but the
1973 * table can't be bigger than the actual MSI-X table in the
1974 * device.
1975 */
1976 if (count == 0 || count > msix->msix_msgnum)
1977 return (EINVAL);
1978
1979 /* Sanity check the vectors. */
1980 for (i = 0; i < count; i++)
1981 if (vectors[i] > msix->msix_alloc)
1982 return (EINVAL);
1983
1984 /*
1985 * Make sure there aren't any holes in the vectors to be used.
1986 * It's a big pain to support it, and it doesn't really make
1987 * sense anyway. Also, at least one vector must be used.
1988 */
1989 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1990 M_ZERO);
1991 for (i = 0; i < count; i++)
1992 if (vectors[i] != 0)
1993 used[vectors[i] - 1] = 1;
1994 for (i = 0; i < msix->msix_alloc - 1; i++)
1995 if (used[i] == 0 && used[i + 1] == 1) {
1996 free(used, M_DEVBUF);
1997 return (EINVAL);
1998 }
1999 if (used[0] != 1) {
2000 free(used, M_DEVBUF);
2001 return (EINVAL);
2002 }
2003
2004 /* Make sure none of the resources are allocated. */
2005 for (i = 0; i < msix->msix_table_len; i++) {
2006 if (msix->msix_table[i].mte_vector == 0)
2007 continue;
2008 if (msix->msix_table[i].mte_handlers > 0) {
2009 free(used, M_DEVBUF);
2010 return (EBUSY);
2011 }
2012 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2013 KASSERT(rle != NULL, ("missing resource"));
2014 if (rle->res != NULL) {
2015 free(used, M_DEVBUF);
2016 return (EBUSY);
2017 }
2018 }
2019
2020 /* Free the existing resource list entries. */
2021 for (i = 0; i < msix->msix_table_len; i++) {
2022 if (msix->msix_table[i].mte_vector == 0)
2023 continue;
2024 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2025 }
2026
2027 /*
2028 * Build the new virtual table keeping track of which vectors are
2029 * used.
2030 */
2031 free(msix->msix_table, M_DEVBUF);
2032 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2033 M_DEVBUF, M_WAITOK | M_ZERO);
2034 for (i = 0; i < count; i++)
2035 msix->msix_table[i].mte_vector = vectors[i];
2036 msix->msix_table_len = count;
2037
2038 /* Free any unused IRQs and resize the vectors array if necessary. */
2039 j = msix->msix_alloc - 1;
2040 if (used[j] == 0) {
2041 struct msix_vector *vec;
2042
2043 while (used[j] == 0) {
2044 PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2045 msix->msix_vectors[j].mv_irq);
2046 j--;
2047 }
2048 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2049 M_WAITOK);
2050 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2051 (j + 1));
2052 free(msix->msix_vectors, M_DEVBUF);
2053 msix->msix_vectors = vec;
2054 msix->msix_alloc = j + 1;
2055 }
2056 free(used, M_DEVBUF);
2057
2058 /* Map the IRQs onto the rids. */
2059 for (i = 0; i < count; i++) {
2060 if (vectors[i] == 0)
2061 continue;
2062 irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2063 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2064 irq, 1);
2065 }
2066
2067 if (bootverbose) {
2068 device_printf(child, "Remapped MSI-X IRQs as: ");
2069 for (i = 0; i < count; i++) {
2070 if (i != 0)
2071 printf(", ");
2072 if (vectors[i] == 0)
2073 printf("---");
2074 else
2075 printf("%d",
2076 msix->msix_vectors[vectors[i] - 1].mv_irq);
2077 }
2078 printf("\n");
2079 }
2080
2081 return (0);
2082 }
2083
2084 static int
pci_release_msix(device_t dev,device_t child)2085 pci_release_msix(device_t dev, device_t child)
2086 {
2087 struct pci_devinfo *dinfo = device_get_ivars(child);
2088 struct pcicfg_msix *msix = &dinfo->cfg.msix;
2089 struct resource_list_entry *rle;
2090 int i;
2091
2092 /* Do we have any messages to release? */
2093 if (msix->msix_alloc == 0)
2094 return (ENODEV);
2095
2096 /* Make sure none of the resources are allocated. */
2097 for (i = 0; i < msix->msix_table_len; i++) {
2098 if (msix->msix_table[i].mte_vector == 0)
2099 continue;
2100 if (msix->msix_table[i].mte_handlers > 0)
2101 return (EBUSY);
2102 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2103 KASSERT(rle != NULL, ("missing resource"));
2104 if (rle->res != NULL)
2105 return (EBUSY);
2106 }
2107
2108 /* Update control register to disable MSI-X. */
2109 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2110 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2111 msix->msix_ctrl, 2);
2112
2113 /* Free the resource list entries. */
2114 for (i = 0; i < msix->msix_table_len; i++) {
2115 if (msix->msix_table[i].mte_vector == 0)
2116 continue;
2117 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2118 }
2119 free(msix->msix_table, M_DEVBUF);
2120 msix->msix_table_len = 0;
2121
2122 /* Release the IRQs. */
2123 for (i = 0; i < msix->msix_alloc; i++)
2124 PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2125 msix->msix_vectors[i].mv_irq);
2126 free(msix->msix_vectors, M_DEVBUF);
2127 msix->msix_alloc = 0;
2128 return (0);
2129 }
2130
2131 /*
2132 * Return the max supported MSI-X messages this device supports.
2133 * Basically, assuming the MD code can alloc messages, this function
2134 * should return the maximum value that pci_alloc_msix() can return.
2135 * Thus, it is subject to the tunables, etc.
2136 */
2137 int
pci_msix_count_method(device_t dev,device_t child)2138 pci_msix_count_method(device_t dev, device_t child)
2139 {
2140 struct pci_devinfo *dinfo = device_get_ivars(child);
2141 struct pcicfg_msix *msix = &dinfo->cfg.msix;
2142
2143 if (pci_do_msix && msix->msix_location != 0)
2144 return (msix->msix_msgnum);
2145 return (0);
2146 }
2147
2148 int
pci_msix_pba_bar_method(device_t dev,device_t child)2149 pci_msix_pba_bar_method(device_t dev, device_t child)
2150 {
2151 struct pci_devinfo *dinfo = device_get_ivars(child);
2152 struct pcicfg_msix *msix = &dinfo->cfg.msix;
2153
2154 if (pci_do_msix && msix->msix_location != 0)
2155 return (msix->msix_pba_bar);
2156 return (-1);
2157 }
2158
2159 int
pci_msix_table_bar_method(device_t dev,device_t child)2160 pci_msix_table_bar_method(device_t dev, device_t child)
2161 {
2162 struct pci_devinfo *dinfo = device_get_ivars(child);
2163 struct pcicfg_msix *msix = &dinfo->cfg.msix;
2164
2165 if (pci_do_msix && msix->msix_location != 0)
2166 return (msix->msix_table_bar);
2167 return (-1);
2168 }
2169
2170 /*
2171 * HyperTransport MSI mapping control
2172 */
2173 void
pci_ht_map_msi(device_t dev,uint64_t addr)2174 pci_ht_map_msi(device_t dev, uint64_t addr)
2175 {
2176 struct pci_devinfo *dinfo = device_get_ivars(dev);
2177 struct pcicfg_ht *ht = &dinfo->cfg.ht;
2178
2179 if (!ht->ht_msimap)
2180 return;
2181
2182 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2183 ht->ht_msiaddr >> 20 == addr >> 20) {
2184 /* Enable MSI -> HT mapping. */
2185 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2186 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2187 ht->ht_msictrl, 2);
2188 }
2189
2190 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2191 /* Disable MSI -> HT mapping. */
2192 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2193 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2194 ht->ht_msictrl, 2);
2195 }
2196 }
2197
2198 int
pci_get_relaxed_ordering_enabled(device_t dev)2199 pci_get_relaxed_ordering_enabled(device_t dev)
2200 {
2201 struct pci_devinfo *dinfo = device_get_ivars(dev);
2202 int cap;
2203 uint16_t val;
2204
2205 cap = dinfo->cfg.pcie.pcie_location;
2206 if (cap == 0)
2207 return (0);
2208 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2209 val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2210 return (val != 0);
2211 }
2212
2213 int
pci_get_max_payload(device_t dev)2214 pci_get_max_payload(device_t dev)
2215 {
2216 struct pci_devinfo *dinfo = device_get_ivars(dev);
2217 int cap;
2218 uint16_t val;
2219
2220 cap = dinfo->cfg.pcie.pcie_location;
2221 if (cap == 0)
2222 return (0);
2223 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2224 val &= PCIEM_CTL_MAX_PAYLOAD;
2225 val >>= 5;
2226 return (1 << (val + 7));
2227 }
2228
2229 int
pci_get_max_read_req(device_t dev)2230 pci_get_max_read_req(device_t dev)
2231 {
2232 struct pci_devinfo *dinfo = device_get_ivars(dev);
2233 int cap;
2234 uint16_t val;
2235
2236 cap = dinfo->cfg.pcie.pcie_location;
2237 if (cap == 0)
2238 return (0);
2239 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2240 val &= PCIEM_CTL_MAX_READ_REQUEST;
2241 val >>= 12;
2242 return (1 << (val + 7));
2243 }
2244
2245 int
pci_set_max_read_req(device_t dev,int size)2246 pci_set_max_read_req(device_t dev, int size)
2247 {
2248 struct pci_devinfo *dinfo = device_get_ivars(dev);
2249 int cap;
2250 uint16_t val;
2251
2252 cap = dinfo->cfg.pcie.pcie_location;
2253 if (cap == 0)
2254 return (0);
2255 if (size < 128)
2256 size = 128;
2257 if (size > 4096)
2258 size = 4096;
2259 size = (1 << (fls(size) - 1));
2260 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2261 val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2262 val |= (fls(size) - 8) << 12;
2263 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2264 return (size);
2265 }
2266
2267 uint32_t
pcie_read_config(device_t dev,int reg,int width)2268 pcie_read_config(device_t dev, int reg, int width)
2269 {
2270 struct pci_devinfo *dinfo = device_get_ivars(dev);
2271 int cap;
2272
2273 cap = dinfo->cfg.pcie.pcie_location;
2274 if (cap == 0) {
2275 if (width == 2)
2276 return (0xffff);
2277 return (0xffffffff);
2278 }
2279
2280 return (pci_read_config(dev, cap + reg, width));
2281 }
2282
2283 void
pcie_write_config(device_t dev,int reg,uint32_t value,int width)2284 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2285 {
2286 struct pci_devinfo *dinfo = device_get_ivars(dev);
2287 int cap;
2288
2289 cap = dinfo->cfg.pcie.pcie_location;
2290 if (cap == 0)
2291 return;
2292 pci_write_config(dev, cap + reg, value, width);
2293 }
2294
2295 /*
2296 * Adjusts a PCI-e capability register by clearing the bits in mask
2297 * and setting the bits in (value & mask). Bits not set in mask are
2298 * not adjusted.
2299 *
2300 * Returns the old value on success or all ones on failure.
2301 */
2302 uint32_t
pcie_adjust_config(device_t dev,int reg,uint32_t mask,uint32_t value,int width)2303 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2304 int width)
2305 {
2306 struct pci_devinfo *dinfo = device_get_ivars(dev);
2307 uint32_t old, new;
2308 int cap;
2309
2310 cap = dinfo->cfg.pcie.pcie_location;
2311 if (cap == 0) {
2312 if (width == 2)
2313 return (0xffff);
2314 return (0xffffffff);
2315 }
2316
2317 old = pci_read_config(dev, cap + reg, width);
2318 new = old & ~mask;
2319 new |= (value & mask);
2320 pci_write_config(dev, cap + reg, new, width);
2321 return (old);
2322 }
2323
2324 /*
2325 * Support for MSI message signalled interrupts.
2326 */
2327 void
pci_enable_msi_method(device_t dev,device_t child,uint64_t address,uint16_t data)2328 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2329 uint16_t data)
2330 {
2331 struct pci_devinfo *dinfo = device_get_ivars(child);
2332 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2333
2334 /* Write data and address values. */
2335 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2336 address & 0xffffffff, 4);
2337 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2338 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2339 address >> 32, 4);
2340 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2341 data, 2);
2342 } else
2343 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2344 2);
2345
2346 /* Enable MSI in the control register. */
2347 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2348 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2349 msi->msi_ctrl, 2);
2350
2351 /* Enable MSI -> HT mapping. */
2352 pci_ht_map_msi(child, address);
2353 }
2354
2355 void
pci_disable_msi_method(device_t dev,device_t child)2356 pci_disable_msi_method(device_t dev, device_t child)
2357 {
2358 struct pci_devinfo *dinfo = device_get_ivars(child);
2359 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2360
2361 /* Disable MSI -> HT mapping. */
2362 pci_ht_map_msi(child, 0);
2363
2364 /* Disable MSI in the control register. */
2365 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2366 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2367 msi->msi_ctrl, 2);
2368 }
2369
2370 /*
2371 * Restore MSI registers during resume. If MSI is enabled then
2372 * restore the data and address registers in addition to the control
2373 * register.
2374 */
2375 static void
pci_resume_msi(device_t dev)2376 pci_resume_msi(device_t dev)
2377 {
2378 struct pci_devinfo *dinfo = device_get_ivars(dev);
2379 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2380 uint64_t address;
2381 uint16_t data;
2382
2383 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2384 address = msi->msi_addr;
2385 data = msi->msi_data;
2386 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2387 address & 0xffffffff, 4);
2388 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2389 pci_write_config(dev, msi->msi_location +
2390 PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2391 pci_write_config(dev, msi->msi_location +
2392 PCIR_MSI_DATA_64BIT, data, 2);
2393 } else
2394 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2395 data, 2);
2396 }
2397 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2398 2);
2399 }
2400
2401 static int
pci_remap_intr_method(device_t bus,device_t dev,u_int irq)2402 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2403 {
2404 struct pci_devinfo *dinfo = device_get_ivars(dev);
2405 pcicfgregs *cfg = &dinfo->cfg;
2406 struct resource_list_entry *rle;
2407 struct msix_table_entry *mte;
2408 struct msix_vector *mv;
2409 uint64_t addr;
2410 uint32_t data;
2411 int error, i, j;
2412
2413 /*
2414 * Handle MSI first. We try to find this IRQ among our list
2415 * of MSI IRQs. If we find it, we request updated address and
2416 * data registers and apply the results.
2417 */
2418 if (cfg->msi.msi_alloc > 0) {
2419 /* If we don't have any active handlers, nothing to do. */
2420 if (cfg->msi.msi_handlers == 0)
2421 return (0);
2422 for (i = 0; i < cfg->msi.msi_alloc; i++) {
2423 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2424 i + 1);
2425 if (rle->start == irq) {
2426 error = PCIB_MAP_MSI(device_get_parent(bus),
2427 dev, irq, &addr, &data);
2428 if (error)
2429 return (error);
2430 pci_disable_msi(dev);
2431 dinfo->cfg.msi.msi_addr = addr;
2432 dinfo->cfg.msi.msi_data = data;
2433 pci_enable_msi(dev, addr, data);
2434 return (0);
2435 }
2436 }
2437 return (ENOENT);
2438 }
2439
2440 /*
2441 * For MSI-X, we check to see if we have this IRQ. If we do,
2442 * we request the updated mapping info. If that works, we go
2443 * through all the slots that use this IRQ and update them.
2444 */
2445 if (cfg->msix.msix_alloc > 0) {
2446 bool found = false;
2447
2448 for (i = 0; i < cfg->msix.msix_alloc; i++) {
2449 mv = &cfg->msix.msix_vectors[i];
2450 if (mv->mv_irq == irq) {
2451 error = PCIB_MAP_MSI(device_get_parent(bus),
2452 dev, irq, &addr, &data);
2453 if (error)
2454 return (error);
2455 mv->mv_address = addr;
2456 mv->mv_data = data;
2457 for (j = 0; j < cfg->msix.msix_table_len; j++) {
2458 mte = &cfg->msix.msix_table[j];
2459 if (mte->mte_vector != i + 1)
2460 continue;
2461 if (mte->mte_handlers == 0)
2462 continue;
2463 pci_mask_msix(dev, j);
2464 pci_enable_msix(dev, j, addr, data);
2465 pci_unmask_msix(dev, j);
2466 }
2467 found = true;
2468 }
2469 }
2470 return (found ? 0 : ENOENT);
2471 }
2472
2473 return (ENOENT);
2474 }
2475
2476 /*
2477 * Returns true if the specified device is blacklisted because MSI
2478 * doesn't work.
2479 */
2480 int
pci_msi_device_blacklisted(device_t dev)2481 pci_msi_device_blacklisted(device_t dev)
2482 {
2483
2484 if (!pci_honor_msi_blacklist)
2485 return (0);
2486
2487 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2488 }
2489
2490 /*
2491 * Determine if MSI is blacklisted globally on this system. Currently,
2492 * we just check for blacklisted chipsets as represented by the
2493 * host-PCI bridge at device 0:0:0. In the future, it may become
2494 * necessary to check other system attributes, such as the kenv values
2495 * that give the motherboard manufacturer and model number.
2496 */
2497 static int
pci_msi_blacklisted(void)2498 pci_msi_blacklisted(void)
2499 {
2500 device_t dev;
2501
2502 if (!pci_honor_msi_blacklist)
2503 return (0);
2504
2505 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2506 if (!(pcie_chipset || pcix_chipset)) {
2507 if (vm_guest != VM_GUEST_NO) {
2508 /*
2509 * Whitelist older chipsets in virtual
2510 * machines known to support MSI.
2511 */
2512 dev = pci_find_bsf(0, 0, 0);
2513 if (dev != NULL)
2514 return (!pci_has_quirk(pci_get_devid(dev),
2515 PCI_QUIRK_ENABLE_MSI_VM));
2516 }
2517 return (1);
2518 }
2519
2520 dev = pci_find_bsf(0, 0, 0);
2521 if (dev != NULL)
2522 return (pci_msi_device_blacklisted(dev));
2523 return (0);
2524 }
2525
2526 /*
2527 * Returns true if the specified device is blacklisted because MSI-X
2528 * doesn't work. Note that this assumes that if MSI doesn't work,
2529 * MSI-X doesn't either.
2530 */
2531 int
pci_msix_device_blacklisted(device_t dev)2532 pci_msix_device_blacklisted(device_t dev)
2533 {
2534
2535 if (!pci_honor_msi_blacklist)
2536 return (0);
2537
2538 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2539 return (1);
2540
2541 return (pci_msi_device_blacklisted(dev));
2542 }
2543
2544 /*
2545 * Determine if MSI-X is blacklisted globally on this system. If MSI
2546 * is blacklisted, assume that MSI-X is as well. Check for additional
2547 * chipsets where MSI works but MSI-X does not.
2548 */
2549 static int
pci_msix_blacklisted(void)2550 pci_msix_blacklisted(void)
2551 {
2552 device_t dev;
2553
2554 if (!pci_honor_msi_blacklist)
2555 return (0);
2556
2557 dev = pci_find_bsf(0, 0, 0);
2558 if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2559 PCI_QUIRK_DISABLE_MSIX))
2560 return (1);
2561
2562 return (pci_msi_blacklisted());
2563 }
2564
2565 /*
2566 * Attempt to allocate *count MSI messages. The actual number allocated is
2567 * returned in *count. After this function returns, each message will be
2568 * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2569 */
2570 int
pci_alloc_msi_method(device_t dev,device_t child,int * count)2571 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2572 {
2573 struct pci_devinfo *dinfo = device_get_ivars(child);
2574 pcicfgregs *cfg = &dinfo->cfg;
2575 struct resource_list_entry *rle;
2576 int actual, error, i, irqs[32];
2577 uint16_t ctrl;
2578
2579 /* Don't let count == 0 get us into trouble. */
2580 if (*count == 0)
2581 return (EINVAL);
2582
2583 /* If rid 0 is allocated, then fail. */
2584 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2585 if (rle != NULL && rle->res != NULL)
2586 return (ENXIO);
2587
2588 /* Already have allocated messages? */
2589 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2590 return (ENXIO);
2591
2592 /* If MSI is blacklisted for this system, fail. */
2593 if (pci_msi_blacklisted())
2594 return (ENXIO);
2595
2596 /* MSI capability present? */
2597 if (cfg->msi.msi_location == 0 || !pci_do_msi)
2598 return (ENODEV);
2599
2600 if (bootverbose)
2601 device_printf(child,
2602 "attempting to allocate %d MSI vectors (%d supported)\n",
2603 *count, cfg->msi.msi_msgnum);
2604
2605 /* Don't ask for more than the device supports. */
2606 actual = min(*count, cfg->msi.msi_msgnum);
2607
2608 /* Don't ask for more than 32 messages. */
2609 actual = min(actual, 32);
2610
2611 /* MSI requires power of 2 number of messages. */
2612 if (!powerof2(actual))
2613 return (EINVAL);
2614
2615 for (;;) {
2616 /* Try to allocate N messages. */
2617 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2618 actual, irqs);
2619 if (error == 0)
2620 break;
2621 if (actual == 1)
2622 return (error);
2623
2624 /* Try N / 2. */
2625 actual >>= 1;
2626 }
2627
2628 /*
2629 * We now have N actual messages mapped onto SYS_RES_IRQ
2630 * resources in the irqs[] array, so add new resources
2631 * starting at rid 1.
2632 */
2633 for (i = 0; i < actual; i++)
2634 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2635 irqs[i], irqs[i], 1);
2636
2637 if (bootverbose) {
2638 if (actual == 1)
2639 device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2640 else {
2641 int run;
2642
2643 /*
2644 * Be fancy and try to print contiguous runs
2645 * of IRQ values as ranges. 'run' is true if
2646 * we are in a range.
2647 */
2648 device_printf(child, "using IRQs %d", irqs[0]);
2649 run = 0;
2650 for (i = 1; i < actual; i++) {
2651 /* Still in a run? */
2652 if (irqs[i] == irqs[i - 1] + 1) {
2653 run = 1;
2654 continue;
2655 }
2656
2657 /* Finish previous range. */
2658 if (run) {
2659 printf("-%d", irqs[i - 1]);
2660 run = 0;
2661 }
2662
2663 /* Start new range. */
2664 printf(",%d", irqs[i]);
2665 }
2666
2667 /* Unfinished range? */
2668 if (run)
2669 printf("-%d", irqs[actual - 1]);
2670 printf(" for MSI\n");
2671 }
2672 }
2673
2674 /* Update control register with actual count. */
2675 ctrl = cfg->msi.msi_ctrl;
2676 ctrl &= ~PCIM_MSICTRL_MME_MASK;
2677 ctrl |= (ffs(actual) - 1) << 4;
2678 cfg->msi.msi_ctrl = ctrl;
2679 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2680
2681 /* Update counts of alloc'd messages. */
2682 cfg->msi.msi_alloc = actual;
2683 cfg->msi.msi_handlers = 0;
2684 *count = actual;
2685 return (0);
2686 }
2687
2688 /* Release the MSI messages associated with this device. */
2689 int
pci_release_msi_method(device_t dev,device_t child)2690 pci_release_msi_method(device_t dev, device_t child)
2691 {
2692 struct pci_devinfo *dinfo = device_get_ivars(child);
2693 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2694 struct resource_list_entry *rle;
2695 int error, i, irqs[32];
2696
2697 /* Try MSI-X first. */
2698 error = pci_release_msix(dev, child);
2699 if (error != ENODEV)
2700 return (error);
2701
2702 /* Do we have any messages to release? */
2703 if (msi->msi_alloc == 0)
2704 return (ENODEV);
2705 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2706
2707 /* Make sure none of the resources are allocated. */
2708 if (msi->msi_handlers > 0)
2709 return (EBUSY);
2710 for (i = 0; i < msi->msi_alloc; i++) {
2711 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2712 KASSERT(rle != NULL, ("missing MSI resource"));
2713 if (rle->res != NULL)
2714 return (EBUSY);
2715 irqs[i] = rle->start;
2716 }
2717
2718 /* Update control register with 0 count. */
2719 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2720 ("%s: MSI still enabled", __func__));
2721 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2722 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2723 msi->msi_ctrl, 2);
2724
2725 /* Release the messages. */
2726 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2727 for (i = 0; i < msi->msi_alloc; i++)
2728 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2729
2730 /* Update alloc count. */
2731 msi->msi_alloc = 0;
2732 msi->msi_addr = 0;
2733 msi->msi_data = 0;
2734 return (0);
2735 }
2736
2737 /*
2738 * Return the max supported MSI messages this device supports.
2739 * Basically, assuming the MD code can alloc messages, this function
2740 * should return the maximum value that pci_alloc_msi() can return.
2741 * Thus, it is subject to the tunables, etc.
2742 */
2743 int
pci_msi_count_method(device_t dev,device_t child)2744 pci_msi_count_method(device_t dev, device_t child)
2745 {
2746 struct pci_devinfo *dinfo = device_get_ivars(child);
2747 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2748
2749 if (pci_do_msi && msi->msi_location != 0)
2750 return (msi->msi_msgnum);
2751 return (0);
2752 }
2753
2754 /* free pcicfgregs structure and all depending data structures */
2755
2756 int
pci_freecfg(struct pci_devinfo * dinfo)2757 pci_freecfg(struct pci_devinfo *dinfo)
2758 {
2759 struct devlist *devlist_head;
2760 struct pci_map *pm, *next;
2761
2762 devlist_head = &pci_devq;
2763
2764 if (dinfo->cfg.vpd.vpd_reg)
2765 vpd_free(&dinfo->cfg.vpd);
2766
2767 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2768 free(pm, M_DEVBUF);
2769 }
2770 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2771 free(dinfo, M_DEVBUF);
2772
2773 /* increment the generation count */
2774 pci_generation++;
2775
2776 /* we're losing one device */
2777 pci_numdevs--;
2778 return (0);
2779 }
2780
2781 /*
2782 * PCI power manangement
2783 */
2784 int
pci_set_powerstate_method(device_t dev,device_t child,int state)2785 pci_set_powerstate_method(device_t dev, device_t child, int state)
2786 {
2787 struct pci_devinfo *dinfo = device_get_ivars(child);
2788 pcicfgregs *cfg = &dinfo->cfg;
2789 uint16_t status;
2790 int oldstate, highest, delay;
2791
2792 if (cfg->pp.pp_cap == 0)
2793 return (EOPNOTSUPP);
2794
2795 /*
2796 * Optimize a no state change request away. While it would be OK to
2797 * write to the hardware in theory, some devices have shown odd
2798 * behavior when going from D3 -> D3.
2799 */
2800 oldstate = pci_get_powerstate(child);
2801 if (oldstate == state)
2802 return (0);
2803
2804 /*
2805 * The PCI power management specification states that after a state
2806 * transition between PCI power states, system software must
2807 * guarantee a minimal delay before the function accesses the device.
2808 * Compute the worst case delay that we need to guarantee before we
2809 * access the device. Many devices will be responsive much more
2810 * quickly than this delay, but there are some that don't respond
2811 * instantly to state changes. Transitions to/from D3 state require
2812 * 10ms, while D2 requires 200us, and D0/1 require none. The delay
2813 * is done below with DELAY rather than a sleeper function because
2814 * this function can be called from contexts where we cannot sleep.
2815 */
2816 highest = (oldstate > state) ? oldstate : state;
2817 if (highest == PCI_POWERSTATE_D3)
2818 delay = 10000;
2819 else if (highest == PCI_POWERSTATE_D2)
2820 delay = 200;
2821 else
2822 delay = 0;
2823 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2824 & ~PCIM_PSTAT_DMASK;
2825 switch (state) {
2826 case PCI_POWERSTATE_D0:
2827 status |= PCIM_PSTAT_D0;
2828 break;
2829 case PCI_POWERSTATE_D1:
2830 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2831 return (EOPNOTSUPP);
2832 status |= PCIM_PSTAT_D1;
2833 break;
2834 case PCI_POWERSTATE_D2:
2835 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2836 return (EOPNOTSUPP);
2837 status |= PCIM_PSTAT_D2;
2838 break;
2839 case PCI_POWERSTATE_D3:
2840 status |= PCIM_PSTAT_D3;
2841 break;
2842 default:
2843 return (EINVAL);
2844 }
2845
2846 if (bootverbose)
2847 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2848 state);
2849
2850 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2851 if (delay)
2852 DELAY(delay);
2853 return (0);
2854 }
2855
2856 int
pci_get_powerstate_method(device_t dev,device_t child)2857 pci_get_powerstate_method(device_t dev, device_t child)
2858 {
2859 struct pci_devinfo *dinfo = device_get_ivars(child);
2860 pcicfgregs *cfg = &dinfo->cfg;
2861 uint16_t status;
2862 int result;
2863
2864 if (cfg->pp.pp_cap != 0) {
2865 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2866 switch (status & PCIM_PSTAT_DMASK) {
2867 case PCIM_PSTAT_D0:
2868 result = PCI_POWERSTATE_D0;
2869 break;
2870 case PCIM_PSTAT_D1:
2871 result = PCI_POWERSTATE_D1;
2872 break;
2873 case PCIM_PSTAT_D2:
2874 result = PCI_POWERSTATE_D2;
2875 break;
2876 case PCIM_PSTAT_D3:
2877 result = PCI_POWERSTATE_D3;
2878 break;
2879 default:
2880 result = PCI_POWERSTATE_UNKNOWN;
2881 break;
2882 }
2883 } else {
2884 /* No support, device is always at D0 */
2885 result = PCI_POWERSTATE_D0;
2886 }
2887 return (result);
2888 }
2889
2890 /*
2891 * Some convenience functions for PCI device drivers.
2892 */
2893
2894 static __inline void
pci_set_command_bit(device_t dev,device_t child,uint16_t bit)2895 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2896 {
2897 uint16_t command;
2898
2899 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2900 command |= bit;
2901 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2902 }
2903
2904 static __inline void
pci_clear_command_bit(device_t dev,device_t child,uint16_t bit)2905 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2906 {
2907 uint16_t command;
2908
2909 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2910 command &= ~bit;
2911 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2912 }
2913
2914 int
pci_enable_busmaster_method(device_t dev,device_t child)2915 pci_enable_busmaster_method(device_t dev, device_t child)
2916 {
2917 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2918 return (0);
2919 }
2920
2921 int
pci_disable_busmaster_method(device_t dev,device_t child)2922 pci_disable_busmaster_method(device_t dev, device_t child)
2923 {
2924 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2925 return (0);
2926 }
2927
2928 int
pci_enable_io_method(device_t dev,device_t child,int space)2929 pci_enable_io_method(device_t dev, device_t child, int space)
2930 {
2931 uint16_t bit;
2932
2933 switch(space) {
2934 case SYS_RES_IOPORT:
2935 bit = PCIM_CMD_PORTEN;
2936 break;
2937 case SYS_RES_MEMORY:
2938 bit = PCIM_CMD_MEMEN;
2939 break;
2940 default:
2941 return (EINVAL);
2942 }
2943 pci_set_command_bit(dev, child, bit);
2944 return (0);
2945 }
2946
2947 int
pci_disable_io_method(device_t dev,device_t child,int space)2948 pci_disable_io_method(device_t dev, device_t child, int space)
2949 {
2950 uint16_t bit;
2951
2952 switch(space) {
2953 case SYS_RES_IOPORT:
2954 bit = PCIM_CMD_PORTEN;
2955 break;
2956 case SYS_RES_MEMORY:
2957 bit = PCIM_CMD_MEMEN;
2958 break;
2959 default:
2960 return (EINVAL);
2961 }
2962 pci_clear_command_bit(dev, child, bit);
2963 return (0);
2964 }
2965
2966 /*
2967 * New style pci driver. Parent device is either a pci-host-bridge or a
2968 * pci-pci-bridge. Both kinds are represented by instances of pcib.
2969 */
2970
2971 void
pci_print_verbose(struct pci_devinfo * dinfo)2972 pci_print_verbose(struct pci_devinfo *dinfo)
2973 {
2974
2975 if (bootverbose) {
2976 pcicfgregs *cfg = &dinfo->cfg;
2977
2978 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2979 cfg->vendor, cfg->device, cfg->revid);
2980 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2981 cfg->domain, cfg->bus, cfg->slot, cfg->func);
2982 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2983 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2984 cfg->mfdev);
2985 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2986 cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2987 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2988 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2989 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2990 if (cfg->intpin > 0)
2991 printf("\tintpin=%c, irq=%d\n",
2992 cfg->intpin +'a' -1, cfg->intline);
2993 if (cfg->pp.pp_cap) {
2994 uint16_t status;
2995
2996 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2997 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n",
2998 cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2999 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3000 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3001 status & PCIM_PSTAT_DMASK);
3002 }
3003 if (cfg->msi.msi_location) {
3004 int ctrl;
3005
3006 ctrl = cfg->msi.msi_ctrl;
3007 printf("\tMSI supports %d message%s%s%s\n",
3008 cfg->msi.msi_msgnum,
3009 (cfg->msi.msi_msgnum == 1) ? "" : "s",
3010 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3011 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3012 }
3013 if (cfg->msix.msix_location) {
3014 printf("\tMSI-X supports %d message%s ",
3015 cfg->msix.msix_msgnum,
3016 (cfg->msix.msix_msgnum == 1) ? "" : "s");
3017 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3018 printf("in map 0x%x\n",
3019 cfg->msix.msix_table_bar);
3020 else
3021 printf("in maps 0x%x and 0x%x\n",
3022 cfg->msix.msix_table_bar,
3023 cfg->msix.msix_pba_bar);
3024 }
3025 }
3026 }
3027
3028 static int
pci_porten(device_t dev)3029 pci_porten(device_t dev)
3030 {
3031 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3032 }
3033
3034 static int
pci_memen(device_t dev)3035 pci_memen(device_t dev)
3036 {
3037 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3038 }
3039
3040 void
pci_read_bar(device_t dev,int reg,pci_addr_t * mapp,pci_addr_t * testvalp,int * bar64)3041 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3042 int *bar64)
3043 {
3044 struct pci_devinfo *dinfo;
3045 pci_addr_t map, testval;
3046 int ln2range;
3047 uint16_t cmd;
3048
3049 /*
3050 * The device ROM BAR is special. It is always a 32-bit
3051 * memory BAR. Bit 0 is special and should not be set when
3052 * sizing the BAR.
3053 */
3054 dinfo = device_get_ivars(dev);
3055 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3056 map = pci_read_config(dev, reg, 4);
3057 pci_write_config(dev, reg, 0xfffffffe, 4);
3058 testval = pci_read_config(dev, reg, 4);
3059 pci_write_config(dev, reg, map, 4);
3060 *mapp = map;
3061 *testvalp = testval;
3062 if (bar64 != NULL)
3063 *bar64 = 0;
3064 return;
3065 }
3066
3067 map = pci_read_config(dev, reg, 4);
3068 ln2range = pci_maprange(map);
3069 if (ln2range == 64)
3070 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3071
3072 /*
3073 * Disable decoding via the command register before
3074 * determining the BAR's length since we will be placing it in
3075 * a weird state.
3076 */
3077 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3078 pci_write_config(dev, PCIR_COMMAND,
3079 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3080
3081 /*
3082 * Determine the BAR's length by writing all 1's. The bottom
3083 * log_2(size) bits of the BAR will stick as 0 when we read
3084 * the value back.
3085 *
3086 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3087 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3088 * and combines the result into a 64-bit value." (section 6.2.5.1)
3089 *
3090 * Writes to both registers must be performed before attempting to
3091 * read back the size value.
3092 */
3093 testval = 0;
3094 pci_write_config(dev, reg, 0xffffffff, 4);
3095 if (ln2range == 64) {
3096 pci_write_config(dev, reg + 4, 0xffffffff, 4);
3097 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3098 }
3099 testval |= pci_read_config(dev, reg, 4);
3100
3101 /*
3102 * Restore the original value of the BAR. We may have reprogrammed
3103 * the BAR of the low-level console device and when booting verbose,
3104 * we need the console device addressable.
3105 */
3106 pci_write_config(dev, reg, map, 4);
3107 if (ln2range == 64)
3108 pci_write_config(dev, reg + 4, map >> 32, 4);
3109 pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3110
3111 *mapp = map;
3112 *testvalp = testval;
3113 if (bar64 != NULL)
3114 *bar64 = (ln2range == 64);
3115 }
3116
3117 static void
pci_write_bar(device_t dev,struct pci_map * pm,pci_addr_t base)3118 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3119 {
3120 struct pci_devinfo *dinfo;
3121 int ln2range;
3122
3123 /* The device ROM BAR is always a 32-bit memory BAR. */
3124 dinfo = device_get_ivars(dev);
3125 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3126 ln2range = 32;
3127 else
3128 ln2range = pci_maprange(pm->pm_value);
3129 pci_write_config(dev, pm->pm_reg, base, 4);
3130 if (ln2range == 64)
3131 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3132 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3133 if (ln2range == 64)
3134 pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3135 pm->pm_reg + 4, 4) << 32;
3136 }
3137
3138 struct pci_map *
pci_find_bar(device_t dev,int reg)3139 pci_find_bar(device_t dev, int reg)
3140 {
3141 struct pci_devinfo *dinfo;
3142 struct pci_map *pm;
3143
3144 dinfo = device_get_ivars(dev);
3145 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3146 if (pm->pm_reg == reg)
3147 return (pm);
3148 }
3149 return (NULL);
3150 }
3151
3152 struct pci_map *
pci_first_bar(device_t dev)3153 pci_first_bar(device_t dev)
3154 {
3155 struct pci_devinfo *dinfo;
3156
3157 dinfo = device_get_ivars(dev);
3158 return (STAILQ_FIRST(&dinfo->cfg.maps));
3159 }
3160
3161 struct pci_map *
pci_next_bar(struct pci_map * pm)3162 pci_next_bar(struct pci_map *pm)
3163 {
3164 return (STAILQ_NEXT(pm, pm_link));
3165 }
3166
3167 int
pci_bar_enabled(device_t dev,struct pci_map * pm)3168 pci_bar_enabled(device_t dev, struct pci_map *pm)
3169 {
3170 struct pci_devinfo *dinfo;
3171 uint16_t cmd;
3172
3173 dinfo = device_get_ivars(dev);
3174 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3175 !(pm->pm_value & PCIM_BIOS_ENABLE))
3176 return (0);
3177 #ifdef PCI_IOV
3178 if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3179 struct pcicfg_iov *iov;
3180
3181 iov = dinfo->cfg.iov;
3182 cmd = pci_read_config(iov->iov_pf,
3183 iov->iov_pos + PCIR_SRIOV_CTL, 2);
3184 return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3185 }
3186 #endif
3187 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3188 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3189 return ((cmd & PCIM_CMD_MEMEN) != 0);
3190 else
3191 return ((cmd & PCIM_CMD_PORTEN) != 0);
3192 }
3193
3194 struct pci_map *
pci_add_bar(device_t dev,int reg,pci_addr_t value,pci_addr_t size)3195 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3196 {
3197 struct pci_devinfo *dinfo;
3198 struct pci_map *pm, *prev;
3199
3200 dinfo = device_get_ivars(dev);
3201 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3202 pm->pm_reg = reg;
3203 pm->pm_value = value;
3204 pm->pm_size = size;
3205 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3206 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3207 reg));
3208 if (STAILQ_NEXT(prev, pm_link) == NULL ||
3209 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3210 break;
3211 }
3212 if (prev != NULL)
3213 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3214 else
3215 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3216 return (pm);
3217 }
3218
3219 static void
pci_restore_bars(device_t dev)3220 pci_restore_bars(device_t dev)
3221 {
3222 struct pci_devinfo *dinfo;
3223 struct pci_map *pm;
3224 int ln2range;
3225
3226 dinfo = device_get_ivars(dev);
3227 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3228 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3229 ln2range = 32;
3230 else
3231 ln2range = pci_maprange(pm->pm_value);
3232 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3233 if (ln2range == 64)
3234 pci_write_config(dev, pm->pm_reg + 4,
3235 pm->pm_value >> 32, 4);
3236 }
3237 }
3238
3239 /*
3240 * Add a resource based on a pci map register. Return 1 if the map
3241 * register is a 32bit map register or 2 if it is a 64bit register.
3242 */
3243 static int
pci_add_map(device_t bus,device_t dev,int reg,struct resource_list * rl,int force,int prefetch)3244 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3245 int force, int prefetch)
3246 {
3247 struct pci_map *pm;
3248 pci_addr_t base, map, testval;
3249 pci_addr_t start, end, count;
3250 int barlen, basezero, flags, maprange, mapsize, type;
3251 uint16_t cmd;
3252 struct resource *res;
3253
3254 /*
3255 * The BAR may already exist if the device is a CardBus card
3256 * whose CIS is stored in this BAR.
3257 */
3258 pm = pci_find_bar(dev, reg);
3259 if (pm != NULL) {
3260 maprange = pci_maprange(pm->pm_value);
3261 barlen = maprange == 64 ? 2 : 1;
3262 return (barlen);
3263 }
3264
3265 pci_read_bar(dev, reg, &map, &testval, NULL);
3266 if (PCI_BAR_MEM(map)) {
3267 type = SYS_RES_MEMORY;
3268 if (map & PCIM_BAR_MEM_PREFETCH)
3269 prefetch = 1;
3270 } else
3271 type = SYS_RES_IOPORT;
3272 mapsize = pci_mapsize(testval);
3273 base = pci_mapbase(map);
3274 #ifdef __PCI_BAR_ZERO_VALID
3275 basezero = 0;
3276 #else
3277 basezero = base == 0;
3278 #endif
3279 maprange = pci_maprange(map);
3280 barlen = maprange == 64 ? 2 : 1;
3281
3282 /*
3283 * For I/O registers, if bottom bit is set, and the next bit up
3284 * isn't clear, we know we have a BAR that doesn't conform to the
3285 * spec, so ignore it. Also, sanity check the size of the data
3286 * areas to the type of memory involved. Memory must be at least
3287 * 16 bytes in size, while I/O ranges must be at least 4.
3288 */
3289 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3290 return (barlen);
3291 if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3292 (type == SYS_RES_IOPORT && mapsize < 2))
3293 return (barlen);
3294
3295 /* Save a record of this BAR. */
3296 pm = pci_add_bar(dev, reg, map, mapsize);
3297 if (bootverbose) {
3298 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3299 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3300 if (type == SYS_RES_IOPORT && !pci_porten(dev))
3301 printf(", port disabled\n");
3302 else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3303 printf(", memory disabled\n");
3304 else
3305 printf(", enabled\n");
3306 }
3307
3308 /*
3309 * If base is 0, then we have problems if this architecture does
3310 * not allow that. It is best to ignore such entries for the
3311 * moment. These will be allocated later if the driver specifically
3312 * requests them. However, some removable buses look better when
3313 * all resources are allocated, so allow '0' to be overridden.
3314 *
3315 * Similarly treat maps whose values is the same as the test value
3316 * read back. These maps have had all f's written to them by the
3317 * BIOS in an attempt to disable the resources.
3318 */
3319 if (!force && (basezero || map == testval))
3320 return (barlen);
3321 if ((u_long)base != base) {
3322 device_printf(bus,
3323 "pci%d:%d:%d:%d bar %#x too many address bits",
3324 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3325 pci_get_function(dev), reg);
3326 return (barlen);
3327 }
3328
3329 /*
3330 * This code theoretically does the right thing, but has
3331 * undesirable side effects in some cases where peripherals
3332 * respond oddly to having these bits enabled. Let the user
3333 * be able to turn them off (since pci_enable_io_modes is 1 by
3334 * default).
3335 */
3336 if (pci_enable_io_modes) {
3337 /* Turn on resources that have been left off by a lazy BIOS */
3338 if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3339 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3340 cmd |= PCIM_CMD_PORTEN;
3341 pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3342 }
3343 if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3344 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3345 cmd |= PCIM_CMD_MEMEN;
3346 pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3347 }
3348 } else {
3349 if (type == SYS_RES_IOPORT && !pci_porten(dev))
3350 return (barlen);
3351 if (type == SYS_RES_MEMORY && !pci_memen(dev))
3352 return (barlen);
3353 }
3354
3355 count = (pci_addr_t)1 << mapsize;
3356 flags = RF_ALIGNMENT_LOG2(mapsize);
3357 if (prefetch)
3358 flags |= RF_PREFETCHABLE;
3359 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3360 start = 0; /* Let the parent decide. */
3361 end = ~0;
3362 } else {
3363 start = base;
3364 end = base + count - 1;
3365 }
3366 resource_list_add(rl, type, reg, start, end, count);
3367
3368 /*
3369 * Try to allocate the resource for this BAR from our parent
3370 * so that this resource range is already reserved. The
3371 * driver for this device will later inherit this resource in
3372 * pci_alloc_resource().
3373 */
3374 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count,
3375 flags);
3376 if ((pci_do_realloc_bars
3377 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3378 && res == NULL && (start != 0 || end != ~0)) {
3379 /*
3380 * If the allocation fails, try to allocate a resource for
3381 * this BAR using any available range. The firmware felt
3382 * it was important enough to assign a resource, so don't
3383 * disable decoding if we can help it.
3384 */
3385 resource_list_delete(rl, type, reg);
3386 resource_list_add(rl, type, reg, 0, ~0, count);
3387 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0,
3388 count, flags);
3389 }
3390 if (res == NULL) {
3391 /*
3392 * If the allocation fails, delete the resource list entry
3393 * and disable decoding for this device.
3394 *
3395 * If the driver requests this resource in the future,
3396 * pci_reserve_map() will try to allocate a fresh
3397 * resource range.
3398 */
3399 resource_list_delete(rl, type, reg);
3400 pci_disable_io(dev, type);
3401 if (bootverbose)
3402 device_printf(bus,
3403 "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3404 pci_get_domain(dev), pci_get_bus(dev),
3405 pci_get_slot(dev), pci_get_function(dev), reg);
3406 } else {
3407 start = rman_get_start(res);
3408 pci_write_bar(dev, pm, start);
3409 }
3410 return (barlen);
3411 }
3412
3413 /*
3414 * For ATA devices we need to decide early what addressing mode to use.
3415 * Legacy demands that the primary and secondary ATA ports sits on the
3416 * same addresses that old ISA hardware did. This dictates that we use
3417 * those addresses and ignore the BAR's if we cannot set PCI native
3418 * addressing mode.
3419 */
3420 static void
pci_ata_maps(device_t bus,device_t dev,struct resource_list * rl,int force,uint32_t prefetchmask)3421 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3422 uint32_t prefetchmask)
3423 {
3424 int rid, type, progif;
3425 #if 0
3426 /* if this device supports PCI native addressing use it */
3427 progif = pci_read_config(dev, PCIR_PROGIF, 1);
3428 if ((progif & 0x8a) == 0x8a) {
3429 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3430 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3431 printf("Trying ATA native PCI addressing mode\n");
3432 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3433 }
3434 }
3435 #endif
3436 progif = pci_read_config(dev, PCIR_PROGIF, 1);
3437 type = SYS_RES_IOPORT;
3438 if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3439 pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3440 prefetchmask & (1 << 0));
3441 pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3442 prefetchmask & (1 << 1));
3443 } else {
3444 rid = PCIR_BAR(0);
3445 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3446 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3447 0x1f7, 8, 0);
3448 rid = PCIR_BAR(1);
3449 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3450 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3451 0x3f6, 1, 0);
3452 }
3453 if (progif & PCIP_STORAGE_IDE_MODESEC) {
3454 pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3455 prefetchmask & (1 << 2));
3456 pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3457 prefetchmask & (1 << 3));
3458 } else {
3459 rid = PCIR_BAR(2);
3460 resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3461 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3462 0x177, 8, 0);
3463 rid = PCIR_BAR(3);
3464 resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3465 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3466 0x376, 1, 0);
3467 }
3468 pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3469 prefetchmask & (1 << 4));
3470 pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3471 prefetchmask & (1 << 5));
3472 }
3473
3474 static void
pci_assign_interrupt(device_t bus,device_t dev,int force_route)3475 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3476 {
3477 struct pci_devinfo *dinfo = device_get_ivars(dev);
3478 pcicfgregs *cfg = &dinfo->cfg;
3479 char tunable_name[64];
3480 int irq;
3481
3482 /* Has to have an intpin to have an interrupt. */
3483 if (cfg->intpin == 0)
3484 return;
3485
3486 /* Let the user override the IRQ with a tunable. */
3487 irq = PCI_INVALID_IRQ;
3488 snprintf(tunable_name, sizeof(tunable_name),
3489 "hw.pci%d.%d.%d.INT%c.irq",
3490 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3491 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3492 irq = PCI_INVALID_IRQ;
3493
3494 /*
3495 * If we didn't get an IRQ via the tunable, then we either use the
3496 * IRQ value in the intline register or we ask the bus to route an
3497 * interrupt for us. If force_route is true, then we only use the
3498 * value in the intline register if the bus was unable to assign an
3499 * IRQ.
3500 */
3501 if (!PCI_INTERRUPT_VALID(irq)) {
3502 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3503 irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3504 if (!PCI_INTERRUPT_VALID(irq))
3505 irq = cfg->intline;
3506 }
3507
3508 /* If after all that we don't have an IRQ, just bail. */
3509 if (!PCI_INTERRUPT_VALID(irq))
3510 return;
3511
3512 /* Update the config register if it changed. */
3513 if (irq != cfg->intline) {
3514 cfg->intline = irq;
3515 pci_write_config(dev, PCIR_INTLINE, irq, 1);
3516 }
3517
3518 /* Add this IRQ as rid 0 interrupt resource. */
3519 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3520 }
3521
3522 /* Perform early OHCI takeover from SMM. */
3523 static void
ohci_early_takeover(device_t self)3524 ohci_early_takeover(device_t self)
3525 {
3526 struct resource *res;
3527 uint32_t ctl;
3528 int rid;
3529 int i;
3530
3531 rid = PCIR_BAR(0);
3532 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3533 if (res == NULL)
3534 return;
3535
3536 ctl = bus_read_4(res, OHCI_CONTROL);
3537 if (ctl & OHCI_IR) {
3538 if (bootverbose)
3539 printf("ohci early: "
3540 "SMM active, request owner change\n");
3541 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3542 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3543 DELAY(1000);
3544 ctl = bus_read_4(res, OHCI_CONTROL);
3545 }
3546 if (ctl & OHCI_IR) {
3547 if (bootverbose)
3548 printf("ohci early: "
3549 "SMM does not respond, resetting\n");
3550 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3551 }
3552 /* Disable interrupts */
3553 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3554 }
3555
3556 bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3557 }
3558
3559 /* Perform early UHCI takeover from SMM. */
3560 static void
uhci_early_takeover(device_t self)3561 uhci_early_takeover(device_t self)
3562 {
3563 struct resource *res;
3564 int rid;
3565
3566 /*
3567 * Set the PIRQD enable bit and switch off all the others. We don't
3568 * want legacy support to interfere with us XXX Does this also mean
3569 * that the BIOS won't touch the keyboard anymore if it is connected
3570 * to the ports of the root hub?
3571 */
3572 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3573
3574 /* Disable interrupts */
3575 rid = PCI_UHCI_BASE_REG;
3576 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3577 if (res != NULL) {
3578 bus_write_2(res, UHCI_INTR, 0);
3579 bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3580 }
3581 }
3582
3583 /* Perform early EHCI takeover from SMM. */
3584 static void
ehci_early_takeover(device_t self)3585 ehci_early_takeover(device_t self)
3586 {
3587 struct resource *res;
3588 uint32_t cparams;
3589 uint32_t eec;
3590 uint8_t eecp;
3591 uint8_t bios_sem;
3592 uint8_t offs;
3593 int rid;
3594 int i;
3595
3596 rid = PCIR_BAR(0);
3597 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3598 if (res == NULL)
3599 return;
3600
3601 cparams = bus_read_4(res, EHCI_HCCPARAMS);
3602
3603 /* Synchronise with the BIOS if it owns the controller. */
3604 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3605 eecp = EHCI_EECP_NEXT(eec)) {
3606 eec = pci_read_config(self, eecp, 4);
3607 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3608 continue;
3609 }
3610 bios_sem = pci_read_config(self, eecp +
3611 EHCI_LEGSUP_BIOS_SEM, 1);
3612 if (bios_sem == 0) {
3613 continue;
3614 }
3615 if (bootverbose)
3616 printf("ehci early: "
3617 "SMM active, request owner change\n");
3618
3619 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3620
3621 for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3622 DELAY(1000);
3623 bios_sem = pci_read_config(self, eecp +
3624 EHCI_LEGSUP_BIOS_SEM, 1);
3625 }
3626
3627 if (bios_sem != 0) {
3628 if (bootverbose)
3629 printf("ehci early: "
3630 "SMM does not respond\n");
3631 }
3632 /* Disable interrupts */
3633 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3634 bus_write_4(res, offs + EHCI_USBINTR, 0);
3635 }
3636 bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3637 }
3638
3639 /* Perform early XHCI takeover from SMM. */
3640 static void
xhci_early_takeover(device_t self)3641 xhci_early_takeover(device_t self)
3642 {
3643 struct resource *res;
3644 uint32_t cparams;
3645 uint32_t eec;
3646 uint8_t eecp;
3647 uint8_t bios_sem;
3648 uint8_t offs;
3649 int rid;
3650 int i;
3651
3652 rid = PCIR_BAR(0);
3653 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3654 if (res == NULL)
3655 return;
3656
3657 cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3658
3659 eec = -1;
3660
3661 /* Synchronise with the BIOS if it owns the controller. */
3662 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3663 eecp += XHCI_XECP_NEXT(eec) << 2) {
3664 eec = bus_read_4(res, eecp);
3665
3666 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3667 continue;
3668
3669 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3670 if (bios_sem == 0)
3671 continue;
3672
3673 if (bootverbose)
3674 printf("xhci early: "
3675 "SMM active, request owner change\n");
3676
3677 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3678
3679 /* wait a maximum of 5 second */
3680
3681 for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3682 DELAY(1000);
3683 bios_sem = bus_read_1(res, eecp +
3684 XHCI_XECP_BIOS_SEM);
3685 }
3686
3687 if (bios_sem != 0) {
3688 if (bootverbose)
3689 printf("xhci early: "
3690 "SMM does not respond\n");
3691 }
3692
3693 /* Disable interrupts */
3694 offs = bus_read_1(res, XHCI_CAPLENGTH);
3695 bus_write_4(res, offs + XHCI_USBCMD, 0);
3696 bus_read_4(res, offs + XHCI_USBSTS);
3697 }
3698 bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3699 }
3700
3701 static void
pci_reserve_secbus(device_t bus,device_t dev,pcicfgregs * cfg,struct resource_list * rl)3702 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3703 struct resource_list *rl)
3704 {
3705 struct resource *res;
3706 char *cp;
3707 rman_res_t start, end, count;
3708 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3709
3710 switch (cfg->hdrtype & PCIM_HDRTYPE) {
3711 case PCIM_HDRTYPE_BRIDGE:
3712 sec_reg = PCIR_SECBUS_1;
3713 sub_reg = PCIR_SUBBUS_1;
3714 break;
3715 case PCIM_HDRTYPE_CARDBUS:
3716 sec_reg = PCIR_SECBUS_2;
3717 sub_reg = PCIR_SUBBUS_2;
3718 break;
3719 default:
3720 return;
3721 }
3722
3723 /*
3724 * If the existing bus range is valid, attempt to reserve it
3725 * from our parent. If this fails for any reason, clear the
3726 * secbus and subbus registers.
3727 *
3728 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3729 * This would at least preserve the existing sec_bus if it is
3730 * valid.
3731 */
3732 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3733 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3734
3735 /* Quirk handling. */
3736 switch (pci_get_devid(dev)) {
3737 case 0x12258086: /* Intel 82454KX/GX (Orion) */
3738 sup_bus = pci_read_config(dev, 0x41, 1);
3739 if (sup_bus != 0xff) {
3740 sec_bus = sup_bus + 1;
3741 sub_bus = sup_bus + 1;
3742 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3743 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3744 }
3745 break;
3746
3747 case 0x00dd10de:
3748 /* Compaq R3000 BIOS sets wrong subordinate bus number. */
3749 if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3750 break;
3751 if (strncmp(cp, "Compal", 6) != 0) {
3752 freeenv(cp);
3753 break;
3754 }
3755 freeenv(cp);
3756 if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3757 break;
3758 if (strncmp(cp, "08A0", 4) != 0) {
3759 freeenv(cp);
3760 break;
3761 }
3762 freeenv(cp);
3763 if (sub_bus < 0xa) {
3764 sub_bus = 0xa;
3765 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3766 }
3767 break;
3768 }
3769
3770 if (bootverbose)
3771 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3772 if (sec_bus > 0 && sub_bus >= sec_bus) {
3773 start = sec_bus;
3774 end = sub_bus;
3775 count = end - start + 1;
3776
3777 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3778
3779 /*
3780 * If requested, clear secondary bus registers in
3781 * bridge devices to force a complete renumbering
3782 * rather than reserving the existing range. However,
3783 * preserve the existing size.
3784 */
3785 if (pci_clear_buses)
3786 goto clear;
3787
3788 rid = 0;
3789 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3790 start, end, count, 0);
3791 if (res != NULL)
3792 return;
3793
3794 if (bootverbose)
3795 device_printf(bus,
3796 "pci%d:%d:%d:%d secbus failed to allocate\n",
3797 pci_get_domain(dev), pci_get_bus(dev),
3798 pci_get_slot(dev), pci_get_function(dev));
3799 }
3800
3801 clear:
3802 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3803 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3804 }
3805
3806 static struct resource *
pci_alloc_secbus(device_t dev,device_t child,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3807 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3808 rman_res_t end, rman_res_t count, u_int flags)
3809 {
3810 struct pci_devinfo *dinfo;
3811 pcicfgregs *cfg;
3812 struct resource_list *rl;
3813 struct resource *res;
3814 int sec_reg, sub_reg;
3815
3816 dinfo = device_get_ivars(child);
3817 cfg = &dinfo->cfg;
3818 rl = &dinfo->resources;
3819 switch (cfg->hdrtype & PCIM_HDRTYPE) {
3820 case PCIM_HDRTYPE_BRIDGE:
3821 sec_reg = PCIR_SECBUS_1;
3822 sub_reg = PCIR_SUBBUS_1;
3823 break;
3824 case PCIM_HDRTYPE_CARDBUS:
3825 sec_reg = PCIR_SECBUS_2;
3826 sub_reg = PCIR_SUBBUS_2;
3827 break;
3828 default:
3829 return (NULL);
3830 }
3831
3832 if (*rid != 0)
3833 return (NULL);
3834
3835 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3836 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3837 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3838 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3839 start, end, count, flags & ~RF_ACTIVE);
3840 if (res == NULL) {
3841 resource_list_delete(rl, PCI_RES_BUS, *rid);
3842 device_printf(child, "allocating %ju bus%s failed\n",
3843 count, count == 1 ? "" : "es");
3844 return (NULL);
3845 }
3846 if (bootverbose)
3847 device_printf(child,
3848 "Lazy allocation of %ju bus%s at %ju\n", count,
3849 count == 1 ? "" : "es", rman_get_start(res));
3850 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3851 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3852 }
3853 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3854 end, count, flags));
3855 }
3856
3857 static int
pci_ea_bei_to_rid(device_t dev,int bei)3858 pci_ea_bei_to_rid(device_t dev, int bei)
3859 {
3860 #ifdef PCI_IOV
3861 struct pci_devinfo *dinfo;
3862 int iov_pos;
3863 struct pcicfg_iov *iov;
3864
3865 dinfo = device_get_ivars(dev);
3866 iov = dinfo->cfg.iov;
3867 if (iov != NULL)
3868 iov_pos = iov->iov_pos;
3869 else
3870 iov_pos = 0;
3871 #endif
3872
3873 /* Check if matches BAR */
3874 if ((bei >= PCIM_EA_BEI_BAR_0) &&
3875 (bei <= PCIM_EA_BEI_BAR_5))
3876 return (PCIR_BAR(bei));
3877
3878 /* Check ROM */
3879 if (bei == PCIM_EA_BEI_ROM)
3880 return (PCIR_BIOS);
3881
3882 #ifdef PCI_IOV
3883 /* Check if matches VF_BAR */
3884 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3885 (bei <= PCIM_EA_BEI_VF_BAR_5))
3886 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3887 iov_pos);
3888 #endif
3889
3890 return (-1);
3891 }
3892
3893 int
pci_ea_is_enabled(device_t dev,int rid)3894 pci_ea_is_enabled(device_t dev, int rid)
3895 {
3896 struct pci_ea_entry *ea;
3897 struct pci_devinfo *dinfo;
3898
3899 dinfo = device_get_ivars(dev);
3900
3901 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3902 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3903 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3904 }
3905
3906 return (0);
3907 }
3908
3909 void
pci_add_resources_ea(device_t bus,device_t dev,int alloc_iov)3910 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3911 {
3912 struct pci_ea_entry *ea;
3913 struct pci_devinfo *dinfo;
3914 pci_addr_t start, end, count;
3915 struct resource_list *rl;
3916 int type, flags, rid;
3917 struct resource *res;
3918 uint32_t tmp;
3919 #ifdef PCI_IOV
3920 struct pcicfg_iov *iov;
3921 #endif
3922
3923 dinfo = device_get_ivars(dev);
3924 rl = &dinfo->resources;
3925 flags = 0;
3926
3927 #ifdef PCI_IOV
3928 iov = dinfo->cfg.iov;
3929 #endif
3930
3931 if (dinfo->cfg.ea.ea_location == 0)
3932 return;
3933
3934 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3935 /*
3936 * TODO: Ignore EA-BAR if is not enabled.
3937 * Currently the EA implementation supports
3938 * only situation, where EA structure contains
3939 * predefined entries. In case they are not enabled
3940 * leave them unallocated and proceed with
3941 * a legacy-BAR mechanism.
3942 */
3943 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3944 continue;
3945
3946 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3947 case PCIM_EA_P_MEM_PREFETCH:
3948 case PCIM_EA_P_VF_MEM_PREFETCH:
3949 flags = RF_PREFETCHABLE;
3950 /* FALLTHROUGH */
3951 case PCIM_EA_P_VF_MEM:
3952 case PCIM_EA_P_MEM:
3953 type = SYS_RES_MEMORY;
3954 break;
3955 case PCIM_EA_P_IO:
3956 type = SYS_RES_IOPORT;
3957 break;
3958 default:
3959 continue;
3960 }
3961
3962 if (alloc_iov != 0) {
3963 #ifdef PCI_IOV
3964 /* Allocating IOV, confirm BEI matches */
3965 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3966 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3967 continue;
3968 #else
3969 continue;
3970 #endif
3971 } else {
3972 /* Allocating BAR, confirm BEI matches */
3973 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3974 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3975 (ea->eae_bei != PCIM_EA_BEI_ROM))
3976 continue;
3977 }
3978
3979 rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3980 if (rid < 0)
3981 continue;
3982
3983 /* Skip resources already allocated by EA */
3984 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3985 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3986 continue;
3987
3988 start = ea->eae_base;
3989 count = ea->eae_max_offset + 1;
3990 #ifdef PCI_IOV
3991 if (iov != NULL)
3992 count = count * iov->iov_num_vfs;
3993 #endif
3994 end = start + count - 1;
3995 if (count == 0)
3996 continue;
3997
3998 resource_list_add(rl, type, rid, start, end, count);
3999 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4000 flags);
4001 if (res == NULL) {
4002 resource_list_delete(rl, type, rid);
4003
4004 /*
4005 * Failed to allocate using EA, disable entry.
4006 * Another attempt to allocation will be performed
4007 * further, but this time using legacy BAR registers
4008 */
4009 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4010 tmp &= ~PCIM_EA_ENABLE;
4011 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4012
4013 /*
4014 * Disabling entry might fail in case it is hardwired.
4015 * Read flags again to match current status.
4016 */
4017 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4018
4019 continue;
4020 }
4021
4022 /* As per specification, fill BAR with zeros */
4023 pci_write_config(dev, rid, 0, 4);
4024 }
4025 }
4026
4027 void
pci_add_resources(device_t bus,device_t dev,int force,uint32_t prefetchmask)4028 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4029 {
4030 struct pci_devinfo *dinfo;
4031 pcicfgregs *cfg;
4032 struct resource_list *rl;
4033 const struct pci_quirk *q;
4034 uint32_t devid;
4035 int i;
4036
4037 dinfo = device_get_ivars(dev);
4038 cfg = &dinfo->cfg;
4039 rl = &dinfo->resources;
4040 devid = (cfg->device << 16) | cfg->vendor;
4041
4042 /* Allocate resources using Enhanced Allocation */
4043 pci_add_resources_ea(bus, dev, 0);
4044
4045 /* ATA devices needs special map treatment */
4046 if ((pci_get_class(dev) == PCIC_STORAGE) &&
4047 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4048 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4049 (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4050 !pci_read_config(dev, PCIR_BAR(2), 4))) )
4051 pci_ata_maps(bus, dev, rl, force, prefetchmask);
4052 else
4053 for (i = 0; i < cfg->nummaps;) {
4054 /* Skip resources already managed by EA */
4055 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4056 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4057 pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4058 i++;
4059 continue;
4060 }
4061
4062 /*
4063 * Skip quirked resources.
4064 */
4065 for (q = &pci_quirks[0]; q->devid != 0; q++)
4066 if (q->devid == devid &&
4067 q->type == PCI_QUIRK_UNMAP_REG &&
4068 q->arg1 == PCIR_BAR(i))
4069 break;
4070 if (q->devid != 0) {
4071 i++;
4072 continue;
4073 }
4074 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4075 prefetchmask & (1 << i));
4076 }
4077
4078 /*
4079 * Add additional, quirked resources.
4080 */
4081 for (q = &pci_quirks[0]; q->devid != 0; q++)
4082 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4083 pci_add_map(bus, dev, q->arg1, rl, force, 0);
4084
4085 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4086 #ifdef __PCI_REROUTE_INTERRUPT
4087 /*
4088 * Try to re-route interrupts. Sometimes the BIOS or
4089 * firmware may leave bogus values in these registers.
4090 * If the re-route fails, then just stick with what we
4091 * have.
4092 */
4093 pci_assign_interrupt(bus, dev, 1);
4094 #else
4095 pci_assign_interrupt(bus, dev, 0);
4096 #endif
4097 }
4098
4099 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4100 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4101 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4102 xhci_early_takeover(dev);
4103 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4104 ehci_early_takeover(dev);
4105 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4106 ohci_early_takeover(dev);
4107 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4108 uhci_early_takeover(dev);
4109 }
4110
4111 /*
4112 * Reserve resources for secondary bus ranges behind bridge
4113 * devices.
4114 */
4115 pci_reserve_secbus(bus, dev, cfg, rl);
4116 }
4117
4118 static struct pci_devinfo *
pci_identify_function(device_t pcib,device_t dev,int domain,int busno,int slot,int func)4119 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4120 int slot, int func)
4121 {
4122 struct pci_devinfo *dinfo;
4123
4124 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4125 if (dinfo != NULL)
4126 pci_add_child(dev, dinfo);
4127
4128 return (dinfo);
4129 }
4130
4131 void
pci_add_children(device_t dev,int domain,int busno)4132 pci_add_children(device_t dev, int domain, int busno)
4133 {
4134 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4135 device_t pcib = device_get_parent(dev);
4136 struct pci_devinfo *dinfo;
4137 int maxslots;
4138 int s, f, pcifunchigh;
4139 uint8_t hdrtype;
4140 int first_func;
4141
4142 /*
4143 * Try to detect a device at slot 0, function 0. If it exists, try to
4144 * enable ARI. We must enable ARI before detecting the rest of the
4145 * functions on this bus as ARI changes the set of slots and functions
4146 * that are legal on this bus.
4147 */
4148 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4149 if (dinfo != NULL && pci_enable_ari)
4150 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4151
4152 /*
4153 * Start looking for new devices on slot 0 at function 1 because we
4154 * just identified the device at slot 0, function 0.
4155 */
4156 first_func = 1;
4157
4158 maxslots = PCIB_MAXSLOTS(pcib);
4159 for (s = 0; s <= maxslots; s++, first_func = 0) {
4160 pcifunchigh = 0;
4161 f = 0;
4162 DELAY(1);
4163
4164 /* If function 0 is not present, skip to the next slot. */
4165 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4166 continue;
4167 hdrtype = REG(PCIR_HDRTYPE, 1);
4168 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4169 continue;
4170 if (hdrtype & PCIM_MFDEV)
4171 pcifunchigh = PCIB_MAXFUNCS(pcib);
4172 for (f = first_func; f <= pcifunchigh; f++)
4173 pci_identify_function(pcib, dev, domain, busno, s, f);
4174 }
4175 #undef REG
4176 }
4177
4178 int
pci_rescan_method(device_t dev)4179 pci_rescan_method(device_t dev)
4180 {
4181 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4182 device_t pcib = device_get_parent(dev);
4183 device_t child, *devlist, *unchanged;
4184 int devcount, error, i, j, maxslots, oldcount;
4185 int busno, domain, s, f, pcifunchigh;
4186 uint8_t hdrtype;
4187
4188 /* No need to check for ARI on a rescan. */
4189 error = device_get_children(dev, &devlist, &devcount);
4190 if (error)
4191 return (error);
4192 if (devcount != 0) {
4193 unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4194 M_NOWAIT | M_ZERO);
4195 if (unchanged == NULL) {
4196 free(devlist, M_TEMP);
4197 return (ENOMEM);
4198 }
4199 } else
4200 unchanged = NULL;
4201
4202 domain = pcib_get_domain(dev);
4203 busno = pcib_get_bus(dev);
4204 maxslots = PCIB_MAXSLOTS(pcib);
4205 for (s = 0; s <= maxslots; s++) {
4206 /* If function 0 is not present, skip to the next slot. */
4207 f = 0;
4208 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4209 continue;
4210 pcifunchigh = 0;
4211 hdrtype = REG(PCIR_HDRTYPE, 1);
4212 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4213 continue;
4214 if (hdrtype & PCIM_MFDEV)
4215 pcifunchigh = PCIB_MAXFUNCS(pcib);
4216 for (f = 0; f <= pcifunchigh; f++) {
4217 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4218 continue;
4219
4220 /*
4221 * Found a valid function. Check if a
4222 * device_t for this device already exists.
4223 */
4224 for (i = 0; i < devcount; i++) {
4225 child = devlist[i];
4226 if (child == NULL)
4227 continue;
4228 if (pci_get_slot(child) == s &&
4229 pci_get_function(child) == f) {
4230 unchanged[i] = child;
4231 goto next_func;
4232 }
4233 }
4234
4235 pci_identify_function(pcib, dev, domain, busno, s, f);
4236 next_func:;
4237 }
4238 }
4239
4240 /* Remove devices that are no longer present. */
4241 for (i = 0; i < devcount; i++) {
4242 if (unchanged[i] != NULL)
4243 continue;
4244 device_delete_child(dev, devlist[i]);
4245 }
4246
4247 free(devlist, M_TEMP);
4248 oldcount = devcount;
4249
4250 /* Try to attach the devices just added. */
4251 error = device_get_children(dev, &devlist, &devcount);
4252 if (error) {
4253 free(unchanged, M_TEMP);
4254 return (error);
4255 }
4256
4257 for (i = 0; i < devcount; i++) {
4258 for (j = 0; j < oldcount; j++) {
4259 if (devlist[i] == unchanged[j])
4260 goto next_device;
4261 }
4262
4263 device_probe_and_attach(devlist[i]);
4264 next_device:;
4265 }
4266
4267 free(unchanged, M_TEMP);
4268 free(devlist, M_TEMP);
4269 return (0);
4270 #undef REG
4271 }
4272
4273 #ifdef PCI_IOV
4274 device_t
pci_add_iov_child(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4275 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4276 uint16_t did)
4277 {
4278 struct pci_devinfo *vf_dinfo;
4279 device_t pcib;
4280 int busno, slot, func;
4281
4282 pcib = device_get_parent(bus);
4283
4284 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4285
4286 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4287 slot, func, vid, did);
4288
4289 vf_dinfo->cfg.flags |= PCICFG_VF;
4290 pci_add_child(bus, vf_dinfo);
4291
4292 return (vf_dinfo->cfg.dev);
4293 }
4294
4295 device_t
pci_create_iov_child_method(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4296 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4297 uint16_t vid, uint16_t did)
4298 {
4299
4300 return (pci_add_iov_child(bus, pf, rid, vid, did));
4301 }
4302 #endif
4303
4304 /*
4305 * For PCIe device set Max_Payload_Size to match PCIe root's.
4306 */
4307 static void
pcie_setup_mps(device_t dev)4308 pcie_setup_mps(device_t dev)
4309 {
4310 struct pci_devinfo *dinfo = device_get_ivars(dev);
4311 device_t root;
4312 uint16_t rmps, mmps, mps;
4313
4314 if (dinfo->cfg.pcie.pcie_location == 0)
4315 return;
4316 root = pci_find_pcie_root_port(dev);
4317 if (root == NULL)
4318 return;
4319 /* Check whether the MPS is already configured. */
4320 rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4321 PCIEM_CTL_MAX_PAYLOAD;
4322 mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4323 PCIEM_CTL_MAX_PAYLOAD;
4324 if (mps == rmps)
4325 return;
4326 /* Check whether the device is capable of the root's MPS. */
4327 mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4328 PCIEM_CAP_MAX_PAYLOAD) << 5;
4329 if (rmps > mmps) {
4330 /*
4331 * The device is unable to handle root's MPS. Limit root.
4332 * XXX: We should traverse through all the tree, applying
4333 * it to all the devices.
4334 */
4335 pcie_adjust_config(root, PCIER_DEVICE_CTL,
4336 PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4337 } else {
4338 pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4339 PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4340 }
4341 }
4342
4343 static void
pci_add_child_clear_aer(device_t dev,struct pci_devinfo * dinfo)4344 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4345 {
4346 int aer;
4347 uint32_t r;
4348 uint16_t r2;
4349
4350 if (dinfo->cfg.pcie.pcie_location != 0 &&
4351 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4352 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4353 PCIER_ROOT_CTL, 2);
4354 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4355 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4356 pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4357 PCIER_ROOT_CTL, r2, 2);
4358 }
4359 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4360 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4361 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4362 if (r != 0 && bootverbose) {
4363 pci_printf(&dinfo->cfg,
4364 "clearing AER UC 0x%08x -> 0x%08x\n",
4365 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4366 4));
4367 }
4368
4369 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4370 r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4371 PCIM_AER_UC_DL_PROTOCOL_ERROR |
4372 PCIM_AER_UC_SURPRISE_LINK_DOWN |
4373 PCIM_AER_UC_POISONED_TLP |
4374 PCIM_AER_UC_FC_PROTOCOL_ERROR |
4375 PCIM_AER_UC_COMPLETION_TIMEOUT |
4376 PCIM_AER_UC_COMPLETER_ABORT |
4377 PCIM_AER_UC_UNEXPECTED_COMPLETION |
4378 PCIM_AER_UC_RECEIVER_OVERFLOW |
4379 PCIM_AER_UC_MALFORMED_TLP |
4380 PCIM_AER_UC_ECRC_ERROR |
4381 PCIM_AER_UC_UNSUPPORTED_REQUEST |
4382 PCIM_AER_UC_ACS_VIOLATION |
4383 PCIM_AER_UC_INTERNAL_ERROR |
4384 PCIM_AER_UC_MC_BLOCKED_TLP |
4385 PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4386 PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4387 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4388
4389 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4390 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4391 if (r != 0 && bootverbose) {
4392 pci_printf(&dinfo->cfg,
4393 "clearing AER COR 0x%08x -> 0x%08x\n",
4394 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4395 4));
4396 }
4397
4398 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4399 r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4400 PCIM_AER_COR_BAD_TLP |
4401 PCIM_AER_COR_BAD_DLLP |
4402 PCIM_AER_COR_REPLAY_ROLLOVER |
4403 PCIM_AER_COR_REPLAY_TIMEOUT |
4404 PCIM_AER_COR_ADVISORY_NF_ERROR |
4405 PCIM_AER_COR_INTERNAL_ERROR |
4406 PCIM_AER_COR_HEADER_LOG_OVFLOW);
4407 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4408
4409 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4410 PCIER_DEVICE_CTL, 2);
4411 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4412 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4413 pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4414 PCIER_DEVICE_CTL, r, 2);
4415 }
4416 }
4417
4418 void
pci_add_child(device_t bus,struct pci_devinfo * dinfo)4419 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4420 {
4421 device_t dev;
4422
4423 dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY);
4424 device_set_ivars(dev, dinfo);
4425 resource_list_init(&dinfo->resources);
4426 pci_cfg_save(dev, dinfo, 0);
4427 pci_cfg_restore(dev, dinfo);
4428 pci_print_verbose(dinfo);
4429 pci_add_resources(bus, dev, 0, 0);
4430 if (pci_enable_mps_tune)
4431 pcie_setup_mps(dev);
4432 pci_child_added(dinfo->cfg.dev);
4433
4434 if (pci_clear_aer_on_attach)
4435 pci_add_child_clear_aer(dev, dinfo);
4436
4437 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4438 }
4439
4440 void
pci_child_added_method(device_t dev,device_t child)4441 pci_child_added_method(device_t dev, device_t child)
4442 {
4443
4444 }
4445
4446 static int
pci_probe(device_t dev)4447 pci_probe(device_t dev)
4448 {
4449
4450 device_set_desc(dev, "PCI bus");
4451
4452 /* Allow other subclasses to override this driver. */
4453 return (BUS_PROBE_GENERIC);
4454 }
4455
4456 int
pci_attach_common(device_t dev)4457 pci_attach_common(device_t dev)
4458 {
4459 struct pci_softc *sc;
4460 int busno, domain;
4461 int rid;
4462
4463 sc = device_get_softc(dev);
4464 domain = pcib_get_domain(dev);
4465 busno = pcib_get_bus(dev);
4466 rid = 0;
4467 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4468 1, 0);
4469 if (sc->sc_bus == NULL) {
4470 device_printf(dev, "failed to allocate bus number\n");
4471 return (ENXIO);
4472 }
4473 if (bootverbose)
4474 device_printf(dev, "domain=%d, physical bus=%d\n",
4475 domain, busno);
4476 sc->sc_dma_tag = bus_get_dma_tag(dev);
4477 return (0);
4478 }
4479
4480 int
pci_attach(device_t dev)4481 pci_attach(device_t dev)
4482 {
4483 int busno, domain, error;
4484
4485 error = pci_attach_common(dev);
4486 if (error)
4487 return (error);
4488
4489 /*
4490 * Since there can be multiple independently numbered PCI
4491 * buses on systems with multiple PCI domains, we can't use
4492 * the unit number to decide which bus we are probing. We ask
4493 * the parent pcib what our domain and bus numbers are.
4494 */
4495 domain = pcib_get_domain(dev);
4496 busno = pcib_get_bus(dev);
4497 pci_add_children(dev, domain, busno);
4498 return (bus_generic_attach(dev));
4499 }
4500
4501 int
pci_detach(device_t dev)4502 pci_detach(device_t dev)
4503 {
4504 struct pci_softc *sc;
4505 int error;
4506
4507 error = bus_generic_detach(dev);
4508 if (error)
4509 return (error);
4510 sc = device_get_softc(dev);
4511 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4512 if (error)
4513 return (error);
4514 return (device_delete_children(dev));
4515 }
4516
4517 static void
pci_hint_device_unit(device_t dev,device_t child,const char * name,int * unitp)4518 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4519 {
4520 int line, unit;
4521 const char *at;
4522 char me1[24], me2[32];
4523 uint8_t b, s, f;
4524 uint32_t d;
4525 device_location_cache_t *cache;
4526
4527 d = pci_get_domain(child);
4528 b = pci_get_bus(child);
4529 s = pci_get_slot(child);
4530 f = pci_get_function(child);
4531 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4532 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4533 line = 0;
4534 cache = dev_wired_cache_init();
4535 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4536 resource_string_value(name, unit, "at", &at);
4537 if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4538 *unitp = unit;
4539 break;
4540 }
4541 if (dev_wired_cache_match(cache, child, at)) {
4542 *unitp = unit;
4543 break;
4544 }
4545 }
4546 dev_wired_cache_fini(cache);
4547 }
4548
4549 static void
pci_set_power_child(device_t dev,device_t child,int state)4550 pci_set_power_child(device_t dev, device_t child, int state)
4551 {
4552 device_t pcib;
4553 int dstate;
4554
4555 /*
4556 * Set the device to the given state. If the firmware suggests
4557 * a different power state, use it instead. If power management
4558 * is not present, the firmware is responsible for managing
4559 * device power. Skip children who aren't attached since they
4560 * are handled separately.
4561 */
4562 pcib = device_get_parent(dev);
4563 dstate = state;
4564 if (device_is_attached(child) &&
4565 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4566 pci_set_powerstate(child, dstate);
4567 }
4568
4569 int
pci_suspend_child(device_t dev,device_t child)4570 pci_suspend_child(device_t dev, device_t child)
4571 {
4572 struct pci_devinfo *dinfo;
4573 struct resource_list_entry *rle;
4574 int error;
4575
4576 dinfo = device_get_ivars(child);
4577
4578 /*
4579 * Save the PCI configuration space for the child and set the
4580 * device in the appropriate power state for this sleep state.
4581 */
4582 pci_cfg_save(child, dinfo, 0);
4583
4584 /* Suspend devices before potentially powering them down. */
4585 error = bus_generic_suspend_child(dev, child);
4586
4587 if (error)
4588 return (error);
4589
4590 if (pci_do_power_suspend) {
4591 /*
4592 * Make sure this device's interrupt handler is not invoked
4593 * in the case the device uses a shared interrupt that can
4594 * be raised by some other device.
4595 * This is applicable only to regular (legacy) PCI interrupts
4596 * as MSI/MSI-X interrupts are never shared.
4597 */
4598 rle = resource_list_find(&dinfo->resources,
4599 SYS_RES_IRQ, 0);
4600 if (rle != NULL && rle->res != NULL)
4601 (void)bus_suspend_intr(child, rle->res);
4602 pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4603 }
4604
4605 return (0);
4606 }
4607
4608 int
pci_resume_child(device_t dev,device_t child)4609 pci_resume_child(device_t dev, device_t child)
4610 {
4611 struct pci_devinfo *dinfo;
4612 struct resource_list_entry *rle;
4613
4614 if (pci_do_power_resume)
4615 pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4616
4617 dinfo = device_get_ivars(child);
4618 pci_cfg_restore(child, dinfo);
4619 if (!device_is_attached(child))
4620 pci_cfg_save(child, dinfo, 1);
4621
4622 bus_generic_resume_child(dev, child);
4623
4624 /*
4625 * Allow interrupts only after fully resuming the driver and hardware.
4626 */
4627 if (pci_do_power_suspend) {
4628 /* See pci_suspend_child for details. */
4629 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4630 if (rle != NULL && rle->res != NULL)
4631 (void)bus_resume_intr(child, rle->res);
4632 }
4633
4634 return (0);
4635 }
4636
4637 int
pci_resume(device_t dev)4638 pci_resume(device_t dev)
4639 {
4640 device_t child, *devlist;
4641 int error, i, numdevs;
4642
4643 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4644 return (error);
4645
4646 /*
4647 * Resume critical devices first, then everything else later.
4648 */
4649 for (i = 0; i < numdevs; i++) {
4650 child = devlist[i];
4651 switch (pci_get_class(child)) {
4652 case PCIC_DISPLAY:
4653 case PCIC_MEMORY:
4654 case PCIC_BRIDGE:
4655 case PCIC_BASEPERIPH:
4656 BUS_RESUME_CHILD(dev, child);
4657 break;
4658 }
4659 }
4660 for (i = 0; i < numdevs; i++) {
4661 child = devlist[i];
4662 switch (pci_get_class(child)) {
4663 case PCIC_DISPLAY:
4664 case PCIC_MEMORY:
4665 case PCIC_BRIDGE:
4666 case PCIC_BASEPERIPH:
4667 break;
4668 default:
4669 BUS_RESUME_CHILD(dev, child);
4670 }
4671 }
4672 free(devlist, M_TEMP);
4673 return (0);
4674 }
4675
4676 static void
pci_load_vendor_data(void)4677 pci_load_vendor_data(void)
4678 {
4679 caddr_t data;
4680 void *ptr;
4681 size_t sz;
4682
4683 data = preload_search_by_type("pci_vendor_data");
4684 if (data != NULL) {
4685 ptr = preload_fetch_addr(data);
4686 sz = preload_fetch_size(data);
4687 if (ptr != NULL && sz != 0) {
4688 pci_vendordata = ptr;
4689 pci_vendordata_size = sz;
4690 /* terminate the database */
4691 pci_vendordata[pci_vendordata_size] = '\n';
4692 }
4693 }
4694 }
4695
4696 void
pci_driver_added(device_t dev,driver_t * driver)4697 pci_driver_added(device_t dev, driver_t *driver)
4698 {
4699 int numdevs;
4700 device_t *devlist;
4701 device_t child;
4702 struct pci_devinfo *dinfo;
4703 int i;
4704
4705 if (bootverbose)
4706 device_printf(dev, "driver added\n");
4707 DEVICE_IDENTIFY(driver, dev);
4708 if (device_get_children(dev, &devlist, &numdevs) != 0)
4709 return;
4710 for (i = 0; i < numdevs; i++) {
4711 child = devlist[i];
4712 if (device_get_state(child) != DS_NOTPRESENT)
4713 continue;
4714 dinfo = device_get_ivars(child);
4715 pci_print_verbose(dinfo);
4716 if (bootverbose)
4717 pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4718 pci_cfg_restore(child, dinfo);
4719 if (device_probe_and_attach(child) != 0)
4720 pci_child_detached(dev, child);
4721 }
4722 free(devlist, M_TEMP);
4723 }
4724
4725 int
pci_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)4726 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4727 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4728 {
4729 struct pci_devinfo *dinfo;
4730 struct msix_table_entry *mte;
4731 struct msix_vector *mv;
4732 uint64_t addr;
4733 uint32_t data;
4734 void *cookie;
4735 int error, rid;
4736
4737 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4738 arg, &cookie);
4739 if (error)
4740 return (error);
4741
4742 /* If this is not a direct child, just bail out. */
4743 if (device_get_parent(child) != dev) {
4744 *cookiep = cookie;
4745 return(0);
4746 }
4747
4748 rid = rman_get_rid(irq);
4749 if (rid == 0) {
4750 /* Make sure that INTx is enabled */
4751 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4752 } else {
4753 /*
4754 * Check to see if the interrupt is MSI or MSI-X.
4755 * Ask our parent to map the MSI and give
4756 * us the address and data register values.
4757 * If we fail for some reason, teardown the
4758 * interrupt handler.
4759 */
4760 dinfo = device_get_ivars(child);
4761 if (dinfo->cfg.msi.msi_alloc > 0) {
4762 if (dinfo->cfg.msi.msi_addr == 0) {
4763 KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4764 ("MSI has handlers, but vectors not mapped"));
4765 error = PCIB_MAP_MSI(device_get_parent(dev),
4766 child, rman_get_start(irq), &addr, &data);
4767 if (error)
4768 goto bad;
4769 dinfo->cfg.msi.msi_addr = addr;
4770 dinfo->cfg.msi.msi_data = data;
4771 }
4772 if (dinfo->cfg.msi.msi_handlers == 0)
4773 pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4774 dinfo->cfg.msi.msi_data);
4775 dinfo->cfg.msi.msi_handlers++;
4776 } else {
4777 KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4778 ("No MSI or MSI-X interrupts allocated"));
4779 KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4780 ("MSI-X index too high"));
4781 mte = &dinfo->cfg.msix.msix_table[rid - 1];
4782 KASSERT(mte->mte_vector != 0, ("no message vector"));
4783 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4784 KASSERT(mv->mv_irq == rman_get_start(irq),
4785 ("IRQ mismatch"));
4786 if (mv->mv_address == 0) {
4787 KASSERT(mte->mte_handlers == 0,
4788 ("MSI-X table entry has handlers, but vector not mapped"));
4789 error = PCIB_MAP_MSI(device_get_parent(dev),
4790 child, rman_get_start(irq), &addr, &data);
4791 if (error)
4792 goto bad;
4793 mv->mv_address = addr;
4794 mv->mv_data = data;
4795 }
4796
4797 /*
4798 * The MSIX table entry must be made valid by
4799 * incrementing the mte_handlers before
4800 * calling pci_enable_msix() and
4801 * pci_resume_msix(). Else the MSIX rewrite
4802 * table quirk will not work as expected.
4803 */
4804 mte->mte_handlers++;
4805 if (mte->mte_handlers == 1) {
4806 pci_enable_msix(child, rid - 1, mv->mv_address,
4807 mv->mv_data);
4808 pci_unmask_msix(child, rid - 1);
4809 }
4810 }
4811
4812 /*
4813 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4814 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4815 * in which case we "enable" INTx so MSI/MSI-X actually works.
4816 */
4817 if (!pci_has_quirk(pci_get_devid(child),
4818 PCI_QUIRK_MSI_INTX_BUG))
4819 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4820 else
4821 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4822 bad:
4823 if (error) {
4824 (void)bus_generic_teardown_intr(dev, child, irq,
4825 cookie);
4826 return (error);
4827 }
4828 }
4829 *cookiep = cookie;
4830 return (0);
4831 }
4832
4833 int
pci_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)4834 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4835 void *cookie)
4836 {
4837 struct msix_table_entry *mte;
4838 struct resource_list_entry *rle;
4839 struct pci_devinfo *dinfo;
4840 int error, rid;
4841
4842 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4843 return (EINVAL);
4844
4845 /* If this isn't a direct child, just bail out */
4846 if (device_get_parent(child) != dev)
4847 return(bus_generic_teardown_intr(dev, child, irq, cookie));
4848
4849 rid = rman_get_rid(irq);
4850 if (rid == 0) {
4851 /* Mask INTx */
4852 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4853 } else {
4854 /*
4855 * Check to see if the interrupt is MSI or MSI-X. If so,
4856 * decrement the appropriate handlers count and mask the
4857 * MSI-X message, or disable MSI messages if the count
4858 * drops to 0.
4859 */
4860 dinfo = device_get_ivars(child);
4861 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4862 if (rle->res != irq)
4863 return (EINVAL);
4864 if (dinfo->cfg.msi.msi_alloc > 0) {
4865 KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4866 ("MSI-X index too high"));
4867 if (dinfo->cfg.msi.msi_handlers == 0)
4868 return (EINVAL);
4869 dinfo->cfg.msi.msi_handlers--;
4870 if (dinfo->cfg.msi.msi_handlers == 0)
4871 pci_disable_msi(child);
4872 } else {
4873 KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4874 ("No MSI or MSI-X interrupts allocated"));
4875 KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4876 ("MSI-X index too high"));
4877 mte = &dinfo->cfg.msix.msix_table[rid - 1];
4878 if (mte->mte_handlers == 0)
4879 return (EINVAL);
4880 mte->mte_handlers--;
4881 if (mte->mte_handlers == 0)
4882 pci_mask_msix(child, rid - 1);
4883 }
4884 }
4885 error = bus_generic_teardown_intr(dev, child, irq, cookie);
4886 if (rid > 0)
4887 KASSERT(error == 0,
4888 ("%s: generic teardown failed for MSI/MSI-X", __func__));
4889 return (error);
4890 }
4891
4892 int
pci_print_child(device_t dev,device_t child)4893 pci_print_child(device_t dev, device_t child)
4894 {
4895 struct pci_devinfo *dinfo;
4896 struct resource_list *rl;
4897 int retval = 0;
4898
4899 dinfo = device_get_ivars(child);
4900 rl = &dinfo->resources;
4901
4902 retval += bus_print_child_header(dev, child);
4903
4904 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4905 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4906 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4907 if (device_get_flags(dev))
4908 retval += printf(" flags %#x", device_get_flags(dev));
4909
4910 retval += printf(" at device %d.%d", pci_get_slot(child),
4911 pci_get_function(child));
4912
4913 retval += bus_print_child_domain(dev, child);
4914 retval += bus_print_child_footer(dev, child);
4915
4916 return (retval);
4917 }
4918
4919 static const struct
4920 {
4921 int class;
4922 int subclass;
4923 int report; /* 0 = bootverbose, 1 = always */
4924 const char *desc;
4925 } pci_nomatch_tab[] = {
4926 {PCIC_OLD, -1, 1, "old"},
4927 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"},
4928 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"},
4929 {PCIC_STORAGE, -1, 1, "mass storage"},
4930 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"},
4931 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"},
4932 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"},
4933 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"},
4934 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"},
4935 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"},
4936 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"},
4937 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"},
4938 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"},
4939 {PCIC_NETWORK, -1, 1, "network"},
4940 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"},
4941 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"},
4942 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"},
4943 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"},
4944 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"},
4945 {PCIC_DISPLAY, -1, 1, "display"},
4946 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"},
4947 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"},
4948 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"},
4949 {PCIC_MULTIMEDIA, -1, 1, "multimedia"},
4950 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"},
4951 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"},
4952 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"},
4953 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"},
4954 {PCIC_MEMORY, -1, 1, "memory"},
4955 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"},
4956 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"},
4957 {PCIC_BRIDGE, -1, 1, "bridge"},
4958 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"},
4959 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"},
4960 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"},
4961 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"},
4962 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"},
4963 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"},
4964 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"},
4965 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"},
4966 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"},
4967 {PCIC_SIMPLECOMM, -1, 1, "simple comms"},
4968 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */
4969 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"},
4970 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"},
4971 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"},
4972 {PCIC_BASEPERIPH, -1, 0, "base peripheral"},
4973 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"},
4974 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"},
4975 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"},
4976 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"},
4977 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"},
4978 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"},
4979 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"},
4980 {PCIC_INPUTDEV, -1, 1, "input device"},
4981 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"},
4982 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
4983 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"},
4984 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"},
4985 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"},
4986 {PCIC_DOCKING, -1, 1, "docking station"},
4987 {PCIC_PROCESSOR, -1, 1, "processor"},
4988 {PCIC_SERIALBUS, -1, 1, "serial bus"},
4989 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"},
4990 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"},
4991 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"},
4992 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"},
4993 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"},
4994 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"},
4995 {PCIC_WIRELESS, -1, 1, "wireless controller"},
4996 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"},
4997 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"},
4998 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"},
4999 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"},
5000 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"},
5001 {PCIC_SATCOM, -1, 1, "satellite communication"},
5002 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"},
5003 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"},
5004 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"},
5005 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"},
5006 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"},
5007 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"},
5008 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"},
5009 {PCIC_DASP, -1, 0, "dasp"},
5010 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"},
5011 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"},
5012 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"},
5013 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"},
5014 {PCIC_INSTRUMENT, -1, 0, "non-essential instrumentation"},
5015 {0, 0, 0, NULL}
5016 };
5017
5018 void
pci_probe_nomatch(device_t dev,device_t child)5019 pci_probe_nomatch(device_t dev, device_t child)
5020 {
5021 int i, report;
5022 const char *cp, *scp;
5023 char *device;
5024
5025 /*
5026 * Look for a listing for this device in a loaded device database.
5027 */
5028 report = 1;
5029 if ((device = pci_describe_device(child)) != NULL) {
5030 device_printf(dev, "<%s>", device);
5031 free(device, M_DEVBUF);
5032 } else {
5033 /*
5034 * Scan the class/subclass descriptions for a general
5035 * description.
5036 */
5037 cp = "unknown";
5038 scp = NULL;
5039 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5040 if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5041 if (pci_nomatch_tab[i].subclass == -1) {
5042 cp = pci_nomatch_tab[i].desc;
5043 report = pci_nomatch_tab[i].report;
5044 } else if (pci_nomatch_tab[i].subclass ==
5045 pci_get_subclass(child)) {
5046 scp = pci_nomatch_tab[i].desc;
5047 report = pci_nomatch_tab[i].report;
5048 }
5049 }
5050 }
5051 if (report || bootverbose) {
5052 device_printf(dev, "<%s%s%s>",
5053 cp ? cp : "",
5054 ((cp != NULL) && (scp != NULL)) ? ", " : "",
5055 scp ? scp : "");
5056 }
5057 }
5058 if (report || bootverbose) {
5059 printf(" at device %d.%d (no driver attached)\n",
5060 pci_get_slot(child), pci_get_function(child));
5061 }
5062 pci_cfg_save(child, device_get_ivars(child), 1);
5063 }
5064
5065 void
pci_child_detached(device_t dev,device_t child)5066 pci_child_detached(device_t dev, device_t child)
5067 {
5068 struct pci_devinfo *dinfo;
5069 struct resource_list *rl;
5070
5071 dinfo = device_get_ivars(child);
5072 rl = &dinfo->resources;
5073
5074 /*
5075 * Have to deallocate IRQs before releasing any MSI messages and
5076 * have to release MSI messages before deallocating any memory
5077 * BARs.
5078 */
5079 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5080 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5081 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5082 if (dinfo->cfg.msi.msi_alloc != 0)
5083 pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5084 "vectors\n", dinfo->cfg.msi.msi_alloc);
5085 else
5086 pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5087 "vectors\n", dinfo->cfg.msix.msix_alloc);
5088 (void)pci_release_msi(child);
5089 }
5090 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5091 pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5092 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5093 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5094 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5095 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5096
5097 pci_cfg_save(child, dinfo, 1);
5098 }
5099
5100 /*
5101 * Parse the PCI device database, if loaded, and return a pointer to a
5102 * description of the device.
5103 *
5104 * The database is flat text formatted as follows:
5105 *
5106 * Any line not in a valid format is ignored.
5107 * Lines are terminated with newline '\n' characters.
5108 *
5109 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5110 * the vendor name.
5111 *
5112 * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5113 * - devices cannot be listed without a corresponding VENDOR line.
5114 * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5115 * another TAB, then the device name.
5116 */
5117
5118 /*
5119 * Assuming (ptr) points to the beginning of a line in the database,
5120 * return the vendor or device and description of the next entry.
5121 * The value of (vendor) or (device) inappropriate for the entry type
5122 * is set to -1. Returns nonzero at the end of the database.
5123 *
5124 * Note that this is slightly unrobust in the face of corrupt data;
5125 * we attempt to safeguard against this by spamming the end of the
5126 * database with a newline when we initialise.
5127 */
5128 static int
pci_describe_parse_line(char ** ptr,int * vendor,int * device,char ** desc)5129 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5130 {
5131 char *cp = *ptr;
5132 int left;
5133
5134 *device = -1;
5135 *vendor = -1;
5136 **desc = '\0';
5137 for (;;) {
5138 left = pci_vendordata_size - (cp - pci_vendordata);
5139 if (left <= 0) {
5140 *ptr = cp;
5141 return(1);
5142 }
5143
5144 /* vendor entry? */
5145 if (*cp != '\t' &&
5146 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5147 break;
5148 /* device entry? */
5149 if (*cp == '\t' &&
5150 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5151 break;
5152
5153 /* skip to next line */
5154 while (*cp != '\n' && left > 0) {
5155 cp++;
5156 left--;
5157 }
5158 if (*cp == '\n') {
5159 cp++;
5160 left--;
5161 }
5162 }
5163 /* skip to next line */
5164 while (*cp != '\n' && left > 0) {
5165 cp++;
5166 left--;
5167 }
5168 if (*cp == '\n' && left > 0)
5169 cp++;
5170 *ptr = cp;
5171 return(0);
5172 }
5173
5174 static char *
pci_describe_device(device_t dev)5175 pci_describe_device(device_t dev)
5176 {
5177 int vendor, device;
5178 char *desc, *vp, *dp, *line;
5179
5180 desc = vp = dp = NULL;
5181
5182 /*
5183 * If we have no vendor data, we can't do anything.
5184 */
5185 if (pci_vendordata == NULL)
5186 goto out;
5187
5188 /*
5189 * Scan the vendor data looking for this device
5190 */
5191 line = pci_vendordata;
5192 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5193 goto out;
5194 for (;;) {
5195 if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5196 goto out;
5197 if (vendor == pci_get_vendor(dev))
5198 break;
5199 }
5200 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5201 goto out;
5202 for (;;) {
5203 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5204 *dp = 0;
5205 break;
5206 }
5207 if (vendor != -1) {
5208 *dp = 0;
5209 break;
5210 }
5211 if (device == pci_get_device(dev))
5212 break;
5213 }
5214 if (dp[0] == '\0')
5215 snprintf(dp, 80, "0x%x", pci_get_device(dev));
5216 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5217 NULL)
5218 sprintf(desc, "%s, %s", vp, dp);
5219 out:
5220 if (vp != NULL)
5221 free(vp, M_DEVBUF);
5222 if (dp != NULL)
5223 free(dp, M_DEVBUF);
5224 return(desc);
5225 }
5226
5227 int
pci_read_ivar(device_t dev,device_t child,int which,uintptr_t * result)5228 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5229 {
5230 struct pci_devinfo *dinfo;
5231 pcicfgregs *cfg;
5232
5233 dinfo = device_get_ivars(child);
5234 cfg = &dinfo->cfg;
5235
5236 switch (which) {
5237 case PCI_IVAR_ETHADDR:
5238 /*
5239 * The generic accessor doesn't deal with failure, so
5240 * we set the return value, then return an error.
5241 */
5242 *((uint8_t **) result) = NULL;
5243 return (EINVAL);
5244 case PCI_IVAR_SUBVENDOR:
5245 *result = cfg->subvendor;
5246 break;
5247 case PCI_IVAR_SUBDEVICE:
5248 *result = cfg->subdevice;
5249 break;
5250 case PCI_IVAR_VENDOR:
5251 *result = cfg->vendor;
5252 break;
5253 case PCI_IVAR_DEVICE:
5254 *result = cfg->device;
5255 break;
5256 case PCI_IVAR_DEVID:
5257 *result = (cfg->device << 16) | cfg->vendor;
5258 break;
5259 case PCI_IVAR_CLASS:
5260 *result = cfg->baseclass;
5261 break;
5262 case PCI_IVAR_SUBCLASS:
5263 *result = cfg->subclass;
5264 break;
5265 case PCI_IVAR_PROGIF:
5266 *result = cfg->progif;
5267 break;
5268 case PCI_IVAR_REVID:
5269 *result = cfg->revid;
5270 break;
5271 case PCI_IVAR_INTPIN:
5272 *result = cfg->intpin;
5273 break;
5274 case PCI_IVAR_IRQ:
5275 *result = cfg->intline;
5276 break;
5277 case PCI_IVAR_DOMAIN:
5278 *result = cfg->domain;
5279 break;
5280 case PCI_IVAR_BUS:
5281 *result = cfg->bus;
5282 break;
5283 case PCI_IVAR_SLOT:
5284 *result = cfg->slot;
5285 break;
5286 case PCI_IVAR_FUNCTION:
5287 *result = cfg->func;
5288 break;
5289 case PCI_IVAR_CMDREG:
5290 *result = cfg->cmdreg;
5291 break;
5292 case PCI_IVAR_CACHELNSZ:
5293 *result = cfg->cachelnsz;
5294 break;
5295 case PCI_IVAR_MINGNT:
5296 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5297 *result = -1;
5298 return (EINVAL);
5299 }
5300 *result = cfg->mingnt;
5301 break;
5302 case PCI_IVAR_MAXLAT:
5303 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5304 *result = -1;
5305 return (EINVAL);
5306 }
5307 *result = cfg->maxlat;
5308 break;
5309 case PCI_IVAR_LATTIMER:
5310 *result = cfg->lattimer;
5311 break;
5312 default:
5313 return (ENOENT);
5314 }
5315 return (0);
5316 }
5317
5318 int
pci_write_ivar(device_t dev,device_t child,int which,uintptr_t value)5319 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5320 {
5321 struct pci_devinfo *dinfo;
5322
5323 dinfo = device_get_ivars(child);
5324
5325 switch (which) {
5326 case PCI_IVAR_INTPIN:
5327 dinfo->cfg.intpin = value;
5328 return (0);
5329 case PCI_IVAR_ETHADDR:
5330 case PCI_IVAR_SUBVENDOR:
5331 case PCI_IVAR_SUBDEVICE:
5332 case PCI_IVAR_VENDOR:
5333 case PCI_IVAR_DEVICE:
5334 case PCI_IVAR_DEVID:
5335 case PCI_IVAR_CLASS:
5336 case PCI_IVAR_SUBCLASS:
5337 case PCI_IVAR_PROGIF:
5338 case PCI_IVAR_REVID:
5339 case PCI_IVAR_IRQ:
5340 case PCI_IVAR_DOMAIN:
5341 case PCI_IVAR_BUS:
5342 case PCI_IVAR_SLOT:
5343 case PCI_IVAR_FUNCTION:
5344 return (EINVAL); /* disallow for now */
5345
5346 default:
5347 return (ENOENT);
5348 }
5349 }
5350
5351 #include "opt_ddb.h"
5352 #ifdef DDB
5353 #include <ddb/ddb.h>
5354 #include <sys/cons.h>
5355
5356 /*
5357 * List resources based on pci map registers, used for within ddb
5358 */
5359
DB_SHOW_COMMAND_FLAGS(pciregs,db_pci_dump,DB_CMD_MEMSAFE)5360 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5361 {
5362 struct pci_devinfo *dinfo;
5363 struct devlist *devlist_head;
5364 struct pci_conf *p;
5365 const char *name;
5366 int i, error, none_count;
5367
5368 none_count = 0;
5369 /* get the head of the device queue */
5370 devlist_head = &pci_devq;
5371
5372 /*
5373 * Go through the list of devices and print out devices
5374 */
5375 for (error = 0, i = 0,
5376 dinfo = STAILQ_FIRST(devlist_head);
5377 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5378 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5379 /* Populate pd_name and pd_unit */
5380 name = NULL;
5381 if (dinfo->cfg.dev)
5382 name = device_get_name(dinfo->cfg.dev);
5383
5384 p = &dinfo->conf;
5385 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5386 "chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5387 (name && *name) ? name : "none",
5388 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5389 none_count++,
5390 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5391 p->pc_sel.pc_func, (p->pc_class << 16) |
5392 (p->pc_subclass << 8) | p->pc_progif,
5393 (p->pc_subdevice << 16) | p->pc_subvendor,
5394 (p->pc_device << 16) | p->pc_vendor,
5395 p->pc_revid, p->pc_hdr);
5396 }
5397 }
5398 #endif /* DDB */
5399
5400 struct resource *
pci_reserve_map(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int num,u_int flags)5401 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5402 rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5403 u_int flags)
5404 {
5405 struct pci_devinfo *dinfo = device_get_ivars(child);
5406 struct resource_list *rl = &dinfo->resources;
5407 struct resource *res;
5408 struct pci_map *pm;
5409 uint16_t cmd;
5410 pci_addr_t map, testval;
5411 int mapsize;
5412
5413 res = NULL;
5414
5415 /* If rid is managed by EA, ignore it */
5416 if (pci_ea_is_enabled(child, *rid))
5417 goto out;
5418
5419 pm = pci_find_bar(child, *rid);
5420 if (pm != NULL) {
5421 /* This is a BAR that we failed to allocate earlier. */
5422 mapsize = pm->pm_size;
5423 map = pm->pm_value;
5424 } else {
5425 /*
5426 * Weed out the bogons, and figure out how large the
5427 * BAR/map is. BARs that read back 0 here are bogus
5428 * and unimplemented. Note: atapci in legacy mode are
5429 * special and handled elsewhere in the code. If you
5430 * have a atapci device in legacy mode and it fails
5431 * here, that other code is broken.
5432 */
5433 pci_read_bar(child, *rid, &map, &testval, NULL);
5434
5435 /*
5436 * Determine the size of the BAR and ignore BARs with a size
5437 * of 0. Device ROM BARs use a different mask value.
5438 */
5439 if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5440 mapsize = pci_romsize(testval);
5441 else
5442 mapsize = pci_mapsize(testval);
5443 if (mapsize == 0)
5444 goto out;
5445 pm = pci_add_bar(child, *rid, map, mapsize);
5446 }
5447
5448 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5449 if (type != SYS_RES_MEMORY) {
5450 if (bootverbose)
5451 device_printf(dev,
5452 "child %s requested type %d for rid %#x,"
5453 " but the BAR says it is an memio\n",
5454 device_get_nameunit(child), type, *rid);
5455 goto out;
5456 }
5457 } else {
5458 if (type != SYS_RES_IOPORT) {
5459 if (bootverbose)
5460 device_printf(dev,
5461 "child %s requested type %d for rid %#x,"
5462 " but the BAR says it is an ioport\n",
5463 device_get_nameunit(child), type, *rid);
5464 goto out;
5465 }
5466 }
5467
5468 /*
5469 * For real BARs, we need to override the size that
5470 * the driver requests, because that's what the BAR
5471 * actually uses and we would otherwise have a
5472 * situation where we might allocate the excess to
5473 * another driver, which won't work.
5474 */
5475 count = ((pci_addr_t)1 << mapsize) * num;
5476 if (RF_ALIGNMENT(flags) < mapsize)
5477 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5478 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5479 flags |= RF_PREFETCHABLE;
5480
5481 /*
5482 * Allocate enough resource, and then write back the
5483 * appropriate BAR for that resource.
5484 */
5485 resource_list_add(rl, type, *rid, start, end, count);
5486 res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5487 count, flags & ~RF_ACTIVE);
5488 if (res == NULL) {
5489 resource_list_delete(rl, type, *rid);
5490 device_printf(child,
5491 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5492 count, *rid, type, start, end);
5493 goto out;
5494 }
5495 if (bootverbose)
5496 device_printf(child,
5497 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5498 count, *rid, type, rman_get_start(res));
5499
5500 /* Disable decoding via the CMD register before updating the BAR */
5501 cmd = pci_read_config(child, PCIR_COMMAND, 2);
5502 pci_write_config(child, PCIR_COMMAND,
5503 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5504
5505 map = rman_get_start(res);
5506 pci_write_bar(child, pm, map);
5507
5508 /* Restore the original value of the CMD register */
5509 pci_write_config(child, PCIR_COMMAND, cmd, 2);
5510 out:
5511 return (res);
5512 }
5513
5514 struct resource *
pci_alloc_multi_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_long num,u_int flags)5515 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5516 rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5517 u_int flags)
5518 {
5519 struct pci_devinfo *dinfo;
5520 struct resource_list *rl;
5521 struct resource_list_entry *rle;
5522 struct resource *res;
5523 pcicfgregs *cfg;
5524
5525 /*
5526 * Perform lazy resource allocation
5527 */
5528 dinfo = device_get_ivars(child);
5529 rl = &dinfo->resources;
5530 cfg = &dinfo->cfg;
5531 switch (type) {
5532 case PCI_RES_BUS:
5533 return (pci_alloc_secbus(dev, child, rid, start, end, count,
5534 flags));
5535 case SYS_RES_IRQ:
5536 /*
5537 * Can't alloc legacy interrupt once MSI messages have
5538 * been allocated.
5539 */
5540 if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5541 cfg->msix.msix_alloc > 0))
5542 return (NULL);
5543
5544 /*
5545 * If the child device doesn't have an interrupt
5546 * routed and is deserving of an interrupt, try to
5547 * assign it one.
5548 */
5549 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5550 (cfg->intpin != 0))
5551 pci_assign_interrupt(dev, child, 0);
5552 break;
5553 case SYS_RES_IOPORT:
5554 case SYS_RES_MEMORY:
5555 /*
5556 * PCI-PCI bridge I/O window resources are not BARs.
5557 * For those allocations just pass the request up the
5558 * tree.
5559 */
5560 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5561 switch (*rid) {
5562 case PCIR_IOBASEL_1:
5563 case PCIR_MEMBASE_1:
5564 case PCIR_PMBASEL_1:
5565 /*
5566 * XXX: Should we bother creating a resource
5567 * list entry?
5568 */
5569 return (bus_generic_alloc_resource(dev, child,
5570 type, rid, start, end, count, flags));
5571 }
5572 }
5573 /* Reserve resources for this BAR if needed. */
5574 rle = resource_list_find(rl, type, *rid);
5575 if (rle == NULL) {
5576 res = pci_reserve_map(dev, child, type, rid, start, end,
5577 count, num, flags);
5578 if (res == NULL)
5579 return (NULL);
5580 }
5581 }
5582 return (resource_list_alloc(rl, dev, child, type, rid,
5583 start, end, count, flags));
5584 }
5585
5586 struct resource *
pci_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)5587 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5588 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5589 {
5590 #ifdef PCI_IOV
5591 struct pci_devinfo *dinfo;
5592 #endif
5593
5594 if (device_get_parent(child) != dev)
5595 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5596 type, rid, start, end, count, flags));
5597
5598 #ifdef PCI_IOV
5599 dinfo = device_get_ivars(child);
5600 if (dinfo->cfg.flags & PCICFG_VF) {
5601 switch (type) {
5602 /* VFs can't have I/O BARs. */
5603 case SYS_RES_IOPORT:
5604 return (NULL);
5605 case SYS_RES_MEMORY:
5606 return (pci_vf_alloc_mem_resource(dev, child, rid,
5607 start, end, count, flags));
5608 }
5609
5610 /* Fall through for other types of resource allocations. */
5611 }
5612 #endif
5613
5614 return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5615 count, 1, flags));
5616 }
5617
5618 int
pci_release_resource(device_t dev,device_t child,struct resource * r)5619 pci_release_resource(device_t dev, device_t child, struct resource *r)
5620 {
5621 struct pci_devinfo *dinfo;
5622 struct resource_list *rl;
5623 pcicfgregs *cfg __unused;
5624
5625 if (device_get_parent(child) != dev)
5626 return (bus_generic_release_resource(dev, child, r));
5627
5628 dinfo = device_get_ivars(child);
5629 cfg = &dinfo->cfg;
5630
5631 #ifdef PCI_IOV
5632 if (cfg->flags & PCICFG_VF) {
5633 switch (rman_get_type(r)) {
5634 /* VFs can't have I/O BARs. */
5635 case SYS_RES_IOPORT:
5636 return (EDOOFUS);
5637 case SYS_RES_MEMORY:
5638 return (pci_vf_release_mem_resource(dev, child, r));
5639 }
5640
5641 /* Fall through for other types of resource allocations. */
5642 }
5643 #endif
5644
5645 /*
5646 * PCI-PCI bridge I/O window resources are not BARs. For
5647 * those allocations just pass the request up the tree.
5648 */
5649 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5650 (rman_get_type(r) == SYS_RES_IOPORT ||
5651 rman_get_type(r) == SYS_RES_MEMORY)) {
5652 switch (rman_get_rid(r)) {
5653 case PCIR_IOBASEL_1:
5654 case PCIR_MEMBASE_1:
5655 case PCIR_PMBASEL_1:
5656 return (bus_generic_release_resource(dev, child, r));
5657 }
5658 }
5659
5660 rl = &dinfo->resources;
5661 return (resource_list_release(rl, dev, child, r));
5662 }
5663
5664 int
pci_activate_resource(device_t dev,device_t child,struct resource * r)5665 pci_activate_resource(device_t dev, device_t child, struct resource *r)
5666 {
5667 struct pci_devinfo *dinfo;
5668 int error, rid, type;
5669
5670 if (device_get_parent(child) != dev)
5671 return (bus_generic_activate_resource(dev, child, r));
5672
5673 dinfo = device_get_ivars(child);
5674 #ifdef PCI_IOV
5675 if (dinfo->cfg.flags & PCICFG_VF) {
5676 switch (rman_get_type(r)) {
5677 /* VFs can't have I/O BARs. */
5678 case SYS_RES_IOPORT:
5679 error = EINVAL;
5680 break;
5681 case SYS_RES_MEMORY:
5682 error = pci_vf_activate_mem_resource(dev, child, r);
5683 break;
5684 default:
5685 error = bus_generic_activate_resource(dev, child, r);
5686 break;
5687 }
5688 } else
5689 #endif
5690 error = bus_generic_activate_resource(dev, child, r);
5691 if (error)
5692 return (error);
5693
5694 rid = rman_get_rid(r);
5695 type = rman_get_type(r);
5696
5697 /* Device ROMs need their decoding explicitly enabled. */
5698 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5699 pci_write_bar(child, pci_find_bar(child, rid),
5700 rman_get_start(r) | PCIM_BIOS_ENABLE);
5701
5702 /* Enable decoding in the command register when activating BARs. */
5703 switch (type) {
5704 case SYS_RES_IOPORT:
5705 case SYS_RES_MEMORY:
5706 error = PCI_ENABLE_IO(dev, child, type);
5707 break;
5708 }
5709 return (error);
5710 }
5711
5712 int
pci_deactivate_resource(device_t dev,device_t child,struct resource * r)5713 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5714 {
5715 struct pci_devinfo *dinfo;
5716 int error, rid, type;
5717
5718 if (device_get_parent(child) != dev)
5719 return (bus_generic_deactivate_resource(dev, child, r));
5720
5721 dinfo = device_get_ivars(child);
5722 #ifdef PCI_IOV
5723 if (dinfo->cfg.flags & PCICFG_VF) {
5724 switch (rman_get_type(r)) {
5725 /* VFs can't have I/O BARs. */
5726 case SYS_RES_IOPORT:
5727 error = EINVAL;
5728 break;
5729 case SYS_RES_MEMORY:
5730 error = pci_vf_deactivate_mem_resource(dev, child, r);
5731 break;
5732 default:
5733 error = bus_generic_deactivate_resource(dev, child, r);
5734 break;
5735 }
5736 } else
5737 #endif
5738 error = bus_generic_deactivate_resource(dev, child, r);
5739 if (error)
5740 return (error);
5741
5742 /* Disable decoding for device ROMs. */
5743 rid = rman_get_rid(r);
5744 type = rman_get_type(r);
5745 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5746 pci_write_bar(child, pci_find_bar(child, rid),
5747 rman_get_start(r));
5748 return (0);
5749 }
5750
5751 int
pci_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)5752 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5753 rman_res_t start, rman_res_t end)
5754 {
5755 #ifdef PCI_IOV
5756 struct pci_devinfo *dinfo;
5757
5758 if (device_get_parent(child) != dev)
5759 return (bus_generic_adjust_resource(dev, child, r, start,
5760 end));
5761
5762 dinfo = device_get_ivars(child);
5763 if (dinfo->cfg.flags & PCICFG_VF) {
5764 switch (rman_get_type(r)) {
5765 /* VFs can't have I/O BARs. */
5766 case SYS_RES_IOPORT:
5767 return (EINVAL);
5768 case SYS_RES_MEMORY:
5769 return (pci_vf_adjust_mem_resource(dev, child, r,
5770 start, end));
5771 }
5772
5773 /* Fall through for other types of resource allocations. */
5774 }
5775 #endif
5776
5777 return (bus_generic_adjust_resource(dev, child, r, start, end));
5778 }
5779
5780 int
pci_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)5781 pci_map_resource(device_t dev, device_t child, struct resource *r,
5782 struct resource_map_request *argsp, struct resource_map *map)
5783 {
5784 #ifdef PCI_IOV
5785 struct pci_devinfo *dinfo;
5786
5787 if (device_get_parent(child) != dev)
5788 return (bus_generic_map_resource(dev, child, r, argsp,
5789 map));
5790
5791 dinfo = device_get_ivars(child);
5792 if (dinfo->cfg.flags & PCICFG_VF) {
5793 switch (rman_get_type(r)) {
5794 /* VFs can't have I/O BARs. */
5795 case SYS_RES_IOPORT:
5796 return (EINVAL);
5797 case SYS_RES_MEMORY:
5798 return (pci_vf_map_mem_resource(dev, child, r, argsp,
5799 map));
5800 }
5801
5802 /* Fall through for other types of resource allocations. */
5803 }
5804 #endif
5805
5806 return (bus_generic_map_resource(dev, child, r, argsp, map));
5807 }
5808
5809 int
pci_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)5810 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5811 struct resource_map *map)
5812 {
5813 #ifdef PCI_IOV
5814 struct pci_devinfo *dinfo;
5815
5816 if (device_get_parent(child) != dev)
5817 return (bus_generic_unmap_resource(dev, child, r, map));
5818
5819 dinfo = device_get_ivars(child);
5820 if (dinfo->cfg.flags & PCICFG_VF) {
5821 switch (rman_get_type(r)) {
5822 /* VFs can't have I/O BARs. */
5823 case SYS_RES_IOPORT:
5824 return (EINVAL);
5825 case SYS_RES_MEMORY:
5826 return (pci_vf_unmap_mem_resource(dev, child, r, map));
5827 }
5828
5829 /* Fall through for other types of resource allocations. */
5830 }
5831 #endif
5832
5833 return (bus_generic_unmap_resource(dev, child, r, map));
5834 }
5835
5836 void
pci_child_deleted(device_t dev,device_t child)5837 pci_child_deleted(device_t dev, device_t child)
5838 {
5839 struct resource_list_entry *rle;
5840 struct resource_list *rl;
5841 struct pci_devinfo *dinfo;
5842
5843 dinfo = device_get_ivars(child);
5844 rl = &dinfo->resources;
5845
5846 EVENTHANDLER_INVOKE(pci_delete_device, child);
5847
5848 /* Turn off access to resources we're about to free */
5849 if (bus_child_present(child) != 0) {
5850 pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5851 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5852
5853 pci_disable_busmaster(child);
5854 }
5855
5856 /* Free all allocated resources */
5857 STAILQ_FOREACH(rle, rl, link) {
5858 if (rle->res) {
5859 if (rman_get_flags(rle->res) & RF_ACTIVE ||
5860 resource_list_busy(rl, rle->type, rle->rid)) {
5861 pci_printf(&dinfo->cfg,
5862 "Resource still owned, oops. "
5863 "(type=%d, rid=%d, addr=%lx)\n",
5864 rle->type, rle->rid,
5865 rman_get_start(rle->res));
5866 bus_release_resource(child, rle->type, rle->rid,
5867 rle->res);
5868 }
5869 resource_list_unreserve(rl, dev, child, rle->type,
5870 rle->rid);
5871 }
5872 }
5873 resource_list_free(rl);
5874
5875 pci_freecfg(dinfo);
5876 }
5877
5878 void
pci_delete_resource(device_t dev,device_t child,int type,int rid)5879 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5880 {
5881 struct pci_devinfo *dinfo;
5882 struct resource_list *rl;
5883 struct resource_list_entry *rle;
5884
5885 if (device_get_parent(child) != dev)
5886 return;
5887
5888 dinfo = device_get_ivars(child);
5889 rl = &dinfo->resources;
5890 rle = resource_list_find(rl, type, rid);
5891 if (rle == NULL)
5892 return;
5893
5894 if (rle->res) {
5895 if (rman_get_flags(rle->res) & RF_ACTIVE ||
5896 resource_list_busy(rl, type, rid)) {
5897 device_printf(dev, "delete_resource: "
5898 "Resource still owned by child, oops. "
5899 "(type=%d, rid=%d, addr=%jx)\n",
5900 type, rid, rman_get_start(rle->res));
5901 return;
5902 }
5903 resource_list_unreserve(rl, dev, child, type, rid);
5904 }
5905 resource_list_delete(rl, type, rid);
5906 }
5907
5908 struct resource_list *
pci_get_resource_list(device_t dev,device_t child)5909 pci_get_resource_list (device_t dev, device_t child)
5910 {
5911 struct pci_devinfo *dinfo = device_get_ivars(child);
5912
5913 return (&dinfo->resources);
5914 }
5915
5916 #ifdef IOMMU
5917 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)5918 pci_get_dma_tag(device_t bus, device_t dev)
5919 {
5920 bus_dma_tag_t tag;
5921 struct pci_softc *sc;
5922
5923 if (device_get_parent(dev) == bus) {
5924 /* try iommu and return if it works */
5925 tag = iommu_get_dma_tag(bus, dev);
5926 } else
5927 tag = NULL;
5928 if (tag == NULL) {
5929 sc = device_get_softc(bus);
5930 tag = sc->sc_dma_tag;
5931 }
5932 return (tag);
5933 }
5934 #else
5935 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)5936 pci_get_dma_tag(device_t bus, device_t dev)
5937 {
5938 struct pci_softc *sc = device_get_softc(bus);
5939
5940 return (sc->sc_dma_tag);
5941 }
5942 #endif
5943
5944 uint32_t
pci_read_config_method(device_t dev,device_t child,int reg,int width)5945 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5946 {
5947 struct pci_devinfo *dinfo = device_get_ivars(child);
5948 pcicfgregs *cfg = &dinfo->cfg;
5949
5950 #ifdef PCI_IOV
5951 /*
5952 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5953 * emulate them here.
5954 */
5955 if (cfg->flags & PCICFG_VF) {
5956 if (reg == PCIR_VENDOR) {
5957 switch (width) {
5958 case 4:
5959 return (cfg->device << 16 | cfg->vendor);
5960 case 2:
5961 return (cfg->vendor);
5962 case 1:
5963 return (cfg->vendor & 0xff);
5964 default:
5965 return (0xffffffff);
5966 }
5967 } else if (reg == PCIR_DEVICE) {
5968 switch (width) {
5969 /* Note that an unaligned 4-byte read is an error. */
5970 case 2:
5971 return (cfg->device);
5972 case 1:
5973 return (cfg->device & 0xff);
5974 default:
5975 return (0xffffffff);
5976 }
5977 }
5978 }
5979 #endif
5980
5981 return (PCIB_READ_CONFIG(device_get_parent(dev),
5982 cfg->bus, cfg->slot, cfg->func, reg, width));
5983 }
5984
5985 void
pci_write_config_method(device_t dev,device_t child,int reg,uint32_t val,int width)5986 pci_write_config_method(device_t dev, device_t child, int reg,
5987 uint32_t val, int width)
5988 {
5989 struct pci_devinfo *dinfo = device_get_ivars(child);
5990 pcicfgregs *cfg = &dinfo->cfg;
5991
5992 PCIB_WRITE_CONFIG(device_get_parent(dev),
5993 cfg->bus, cfg->slot, cfg->func, reg, val, width);
5994 }
5995
5996 int
pci_child_location_method(device_t dev,device_t child,struct sbuf * sb)5997 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
5998 {
5999
6000 sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6001 pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6002 pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6003 return (0);
6004 }
6005
6006 int
pci_child_pnpinfo_method(device_t dev,device_t child,struct sbuf * sb)6007 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6008 {
6009 struct pci_devinfo *dinfo;
6010 pcicfgregs *cfg;
6011
6012 dinfo = device_get_ivars(child);
6013 cfg = &dinfo->cfg;
6014 sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6015 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6016 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6017 cfg->progif);
6018 return (0);
6019 }
6020
6021 int
pci_get_device_path_method(device_t bus,device_t child,const char * locator,struct sbuf * sb)6022 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6023 struct sbuf *sb)
6024 {
6025 device_t parent = device_get_parent(bus);
6026 int rv;
6027
6028 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6029 rv = bus_generic_get_device_path(parent, bus, locator, sb);
6030 if (rv == 0) {
6031 sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6032 pci_get_function(child));
6033 }
6034 return (0);
6035 }
6036 return (bus_generic_get_device_path(bus, child, locator, sb));
6037 }
6038
6039 int
pci_assign_interrupt_method(device_t dev,device_t child)6040 pci_assign_interrupt_method(device_t dev, device_t child)
6041 {
6042 struct pci_devinfo *dinfo = device_get_ivars(child);
6043 pcicfgregs *cfg = &dinfo->cfg;
6044
6045 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6046 cfg->intpin));
6047 }
6048
6049 static void
pci_lookup(void * arg,const char * name,device_t * dev)6050 pci_lookup(void *arg, const char *name, device_t *dev)
6051 {
6052 long val;
6053 char *end;
6054 int domain, bus, slot, func;
6055
6056 if (*dev != NULL)
6057 return;
6058
6059 /*
6060 * Accept pciconf-style selectors of either pciD:B:S:F or
6061 * pciB:S:F. In the latter case, the domain is assumed to
6062 * be zero.
6063 */
6064 if (strncmp(name, "pci", 3) != 0)
6065 return;
6066 val = strtol(name + 3, &end, 10);
6067 if (val < 0 || val > INT_MAX || *end != ':')
6068 return;
6069 domain = val;
6070 val = strtol(end + 1, &end, 10);
6071 if (val < 0 || val > INT_MAX || *end != ':')
6072 return;
6073 bus = val;
6074 val = strtol(end + 1, &end, 10);
6075 if (val < 0 || val > INT_MAX)
6076 return;
6077 slot = val;
6078 if (*end == ':') {
6079 val = strtol(end + 1, &end, 10);
6080 if (val < 0 || val > INT_MAX || *end != '\0')
6081 return;
6082 func = val;
6083 } else if (*end == '\0') {
6084 func = slot;
6085 slot = bus;
6086 bus = domain;
6087 domain = 0;
6088 } else
6089 return;
6090
6091 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6092 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6093 return;
6094
6095 *dev = pci_find_dbsf(domain, bus, slot, func);
6096 }
6097
6098 static int
pci_modevent(module_t mod,int what,void * arg)6099 pci_modevent(module_t mod, int what, void *arg)
6100 {
6101 static struct cdev *pci_cdev;
6102 static eventhandler_tag tag;
6103
6104 switch (what) {
6105 case MOD_LOAD:
6106 STAILQ_INIT(&pci_devq);
6107 pci_generation = 0;
6108 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6109 "pci");
6110 pci_load_vendor_data();
6111 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6112 1000);
6113 break;
6114
6115 case MOD_UNLOAD:
6116 if (tag != NULL)
6117 EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6118 destroy_dev(pci_cdev);
6119 break;
6120 }
6121
6122 return (0);
6123 }
6124
6125 static void
pci_cfg_restore_pcie(device_t dev,struct pci_devinfo * dinfo)6126 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6127 {
6128 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2)
6129 struct pcicfg_pcie *cfg;
6130 int version, pos;
6131
6132 cfg = &dinfo->cfg.pcie;
6133 pos = cfg->pcie_location;
6134
6135 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6136
6137 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6138
6139 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6140 cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6141 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6142 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6143
6144 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6145 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6146 (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6147 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6148
6149 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6150 cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6151 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6152
6153 if (version > 1) {
6154 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6155 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6156 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6157 }
6158 #undef WREG
6159 }
6160
6161 static void
pci_cfg_restore_pcix(device_t dev,struct pci_devinfo * dinfo)6162 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6163 {
6164 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6165 dinfo->cfg.pcix.pcix_command, 2);
6166 }
6167
6168 void
pci_cfg_restore(device_t dev,struct pci_devinfo * dinfo)6169 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6170 {
6171
6172 /*
6173 * Restore the device to full power mode. We must do this
6174 * before we restore the registers because moving from D3 to
6175 * D0 will cause the chip's BARs and some other registers to
6176 * be reset to some unknown power on reset values. Cut down
6177 * the noise on boot by doing nothing if we are already in
6178 * state D0.
6179 */
6180 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6181 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6182 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6183 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6184 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6185 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6186 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6187 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6188 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6189 case PCIM_HDRTYPE_NORMAL:
6190 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6191 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6192 break;
6193 case PCIM_HDRTYPE_BRIDGE:
6194 pci_write_config(dev, PCIR_SECLAT_1,
6195 dinfo->cfg.bridge.br_seclat, 1);
6196 pci_write_config(dev, PCIR_SUBBUS_1,
6197 dinfo->cfg.bridge.br_subbus, 1);
6198 pci_write_config(dev, PCIR_SECBUS_1,
6199 dinfo->cfg.bridge.br_secbus, 1);
6200 pci_write_config(dev, PCIR_PRIBUS_1,
6201 dinfo->cfg.bridge.br_pribus, 1);
6202 pci_write_config(dev, PCIR_BRIDGECTL_1,
6203 dinfo->cfg.bridge.br_control, 2);
6204 break;
6205 case PCIM_HDRTYPE_CARDBUS:
6206 pci_write_config(dev, PCIR_SECLAT_2,
6207 dinfo->cfg.bridge.br_seclat, 1);
6208 pci_write_config(dev, PCIR_SUBBUS_2,
6209 dinfo->cfg.bridge.br_subbus, 1);
6210 pci_write_config(dev, PCIR_SECBUS_2,
6211 dinfo->cfg.bridge.br_secbus, 1);
6212 pci_write_config(dev, PCIR_PRIBUS_2,
6213 dinfo->cfg.bridge.br_pribus, 1);
6214 pci_write_config(dev, PCIR_BRIDGECTL_2,
6215 dinfo->cfg.bridge.br_control, 2);
6216 break;
6217 }
6218 pci_restore_bars(dev);
6219
6220 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6221 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6222
6223 /*
6224 * Restore extended capabilities for PCI-Express and PCI-X
6225 */
6226 if (dinfo->cfg.pcie.pcie_location != 0)
6227 pci_cfg_restore_pcie(dev, dinfo);
6228 if (dinfo->cfg.pcix.pcix_location != 0)
6229 pci_cfg_restore_pcix(dev, dinfo);
6230
6231 /* Restore MSI and MSI-X configurations if they are present. */
6232 if (dinfo->cfg.msi.msi_location != 0)
6233 pci_resume_msi(dev);
6234 if (dinfo->cfg.msix.msix_location != 0)
6235 pci_resume_msix(dev);
6236
6237 #ifdef PCI_IOV
6238 if (dinfo->cfg.iov != NULL)
6239 pci_iov_cfg_restore(dev, dinfo);
6240 #endif
6241 }
6242
6243 static void
pci_cfg_save_pcie(device_t dev,struct pci_devinfo * dinfo)6244 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6245 {
6246 #define RREG(n) pci_read_config(dev, pos + (n), 2)
6247 struct pcicfg_pcie *cfg;
6248 int version, pos;
6249
6250 cfg = &dinfo->cfg.pcie;
6251 pos = cfg->pcie_location;
6252
6253 cfg->pcie_flags = RREG(PCIER_FLAGS);
6254
6255 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6256
6257 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6258
6259 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6260 cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6261 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6262 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6263
6264 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6265 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6266 (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6267 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6268
6269 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6270 cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6271 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6272
6273 if (version > 1) {
6274 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6275 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6276 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6277 }
6278 #undef RREG
6279 }
6280
6281 static void
pci_cfg_save_pcix(device_t dev,struct pci_devinfo * dinfo)6282 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6283 {
6284 dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6285 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6286 }
6287
6288 void
pci_cfg_save(device_t dev,struct pci_devinfo * dinfo,int setstate)6289 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6290 {
6291 uint32_t cls;
6292 int ps;
6293
6294 /*
6295 * Some drivers apparently write to these registers w/o updating our
6296 * cached copy. No harm happens if we update the copy, so do so here
6297 * so we can restore them. The COMMAND register is modified by the
6298 * bus w/o updating the cache. This should represent the normally
6299 * writable portion of the 'defined' part of type 0/1/2 headers.
6300 */
6301 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6302 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6303 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6304 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6305 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6306 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6307 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6308 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6309 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6310 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6311 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6312 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6313 case PCIM_HDRTYPE_NORMAL:
6314 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6315 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6316 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6317 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6318 break;
6319 case PCIM_HDRTYPE_BRIDGE:
6320 dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6321 PCIR_SECLAT_1, 1);
6322 dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6323 PCIR_SUBBUS_1, 1);
6324 dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6325 PCIR_SECBUS_1, 1);
6326 dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6327 PCIR_PRIBUS_1, 1);
6328 dinfo->cfg.bridge.br_control = pci_read_config(dev,
6329 PCIR_BRIDGECTL_1, 2);
6330 break;
6331 case PCIM_HDRTYPE_CARDBUS:
6332 dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6333 PCIR_SECLAT_2, 1);
6334 dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6335 PCIR_SUBBUS_2, 1);
6336 dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6337 PCIR_SECBUS_2, 1);
6338 dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6339 PCIR_PRIBUS_2, 1);
6340 dinfo->cfg.bridge.br_control = pci_read_config(dev,
6341 PCIR_BRIDGECTL_2, 2);
6342 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6343 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6344 break;
6345 }
6346
6347 if (dinfo->cfg.pcie.pcie_location != 0)
6348 pci_cfg_save_pcie(dev, dinfo);
6349
6350 if (dinfo->cfg.pcix.pcix_location != 0)
6351 pci_cfg_save_pcix(dev, dinfo);
6352
6353 #ifdef PCI_IOV
6354 if (dinfo->cfg.iov != NULL)
6355 pci_iov_cfg_save(dev, dinfo);
6356 #endif
6357
6358 /*
6359 * don't set the state for display devices, base peripherals and
6360 * memory devices since bad things happen when they are powered down.
6361 * We should (a) have drivers that can easily detach and (b) use
6362 * generic drivers for these devices so that some device actually
6363 * attaches. We need to make sure that when we implement (a) we don't
6364 * power the device down on a reattach.
6365 */
6366 cls = pci_get_class(dev);
6367 if (!setstate)
6368 return;
6369 switch (pci_do_power_nodriver)
6370 {
6371 case 0: /* NO powerdown at all */
6372 return;
6373 case 1: /* Conservative about what to power down */
6374 if (cls == PCIC_STORAGE)
6375 return;
6376 /*FALLTHROUGH*/
6377 case 2: /* Aggressive about what to power down */
6378 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6379 cls == PCIC_BASEPERIPH)
6380 return;
6381 /*FALLTHROUGH*/
6382 case 3: /* Power down everything */
6383 break;
6384 }
6385 /*
6386 * PCI spec says we can only go into D3 state from D0 state.
6387 * Transition from D[12] into D0 before going to D3 state.
6388 */
6389 ps = pci_get_powerstate(dev);
6390 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6391 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6392 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6393 pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6394 }
6395
6396 /* Wrapper APIs suitable for device driver use. */
6397 void
pci_save_state(device_t dev)6398 pci_save_state(device_t dev)
6399 {
6400 struct pci_devinfo *dinfo;
6401
6402 dinfo = device_get_ivars(dev);
6403 pci_cfg_save(dev, dinfo, 0);
6404 }
6405
6406 void
pci_restore_state(device_t dev)6407 pci_restore_state(device_t dev)
6408 {
6409 struct pci_devinfo *dinfo;
6410
6411 dinfo = device_get_ivars(dev);
6412 pci_cfg_restore(dev, dinfo);
6413 }
6414
6415 static int
pci_get_id_method(device_t dev,device_t child,enum pci_id_type type,uintptr_t * id)6416 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6417 uintptr_t *id)
6418 {
6419
6420 return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6421 }
6422
6423 /* Find the upstream port of a given PCI device in a root complex. */
6424 device_t
pci_find_pcie_root_port(device_t dev)6425 pci_find_pcie_root_port(device_t dev)
6426 {
6427 struct pci_devinfo *dinfo;
6428 devclass_t pci_class;
6429 device_t pcib, bus;
6430
6431 pci_class = devclass_find("pci");
6432 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6433 ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6434
6435 /*
6436 * Walk the bridge hierarchy until we find a PCI-e root
6437 * port or a non-PCI device.
6438 */
6439 for (;;) {
6440 bus = device_get_parent(dev);
6441 KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6442 device_get_nameunit(dev)));
6443
6444 pcib = device_get_parent(bus);
6445 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6446 device_get_nameunit(bus)));
6447
6448 /*
6449 * pcib's parent must be a PCI bus for this to be a
6450 * PCI-PCI bridge.
6451 */
6452 if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6453 return (NULL);
6454
6455 dinfo = device_get_ivars(pcib);
6456 if (dinfo->cfg.pcie.pcie_location != 0 &&
6457 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6458 return (pcib);
6459
6460 dev = pcib;
6461 }
6462 }
6463
6464 /*
6465 * Wait for pending transactions to complete on a PCI-express function.
6466 *
6467 * The maximum delay is specified in milliseconds in max_delay. Note
6468 * that this function may sleep.
6469 *
6470 * Returns true if the function is idle and false if the timeout is
6471 * exceeded. If dev is not a PCI-express function, this returns true.
6472 */
6473 bool
pcie_wait_for_pending_transactions(device_t dev,u_int max_delay)6474 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6475 {
6476 struct pci_devinfo *dinfo = device_get_ivars(dev);
6477 uint16_t sta;
6478 int cap;
6479
6480 cap = dinfo->cfg.pcie.pcie_location;
6481 if (cap == 0)
6482 return (true);
6483
6484 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6485 while (sta & PCIEM_STA_TRANSACTION_PND) {
6486 if (max_delay == 0)
6487 return (false);
6488
6489 /* Poll once every 100 milliseconds up to the timeout. */
6490 if (max_delay > 100) {
6491 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6492 max_delay -= 100;
6493 } else {
6494 pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6495 C_HARDCLOCK);
6496 max_delay = 0;
6497 }
6498 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6499 }
6500
6501 return (true);
6502 }
6503
6504 /*
6505 * Determine the maximum Completion Timeout in microseconds.
6506 *
6507 * For non-PCI-express functions this returns 0.
6508 */
6509 int
pcie_get_max_completion_timeout(device_t dev)6510 pcie_get_max_completion_timeout(device_t dev)
6511 {
6512 struct pci_devinfo *dinfo = device_get_ivars(dev);
6513 int cap;
6514
6515 cap = dinfo->cfg.pcie.pcie_location;
6516 if (cap == 0)
6517 return (0);
6518
6519 /*
6520 * Functions using the 1.x spec use the default timeout range of
6521 * 50 microseconds to 50 milliseconds. Functions that do not
6522 * support programmable timeouts also use this range.
6523 */
6524 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6525 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6526 PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6527 return (50 * 1000);
6528
6529 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6530 PCIEM_CTL2_COMP_TIMO_VAL) {
6531 case PCIEM_CTL2_COMP_TIMO_100US:
6532 return (100);
6533 case PCIEM_CTL2_COMP_TIMO_10MS:
6534 return (10 * 1000);
6535 case PCIEM_CTL2_COMP_TIMO_55MS:
6536 return (55 * 1000);
6537 case PCIEM_CTL2_COMP_TIMO_210MS:
6538 return (210 * 1000);
6539 case PCIEM_CTL2_COMP_TIMO_900MS:
6540 return (900 * 1000);
6541 case PCIEM_CTL2_COMP_TIMO_3500MS:
6542 return (3500 * 1000);
6543 case PCIEM_CTL2_COMP_TIMO_13S:
6544 return (13 * 1000 * 1000);
6545 case PCIEM_CTL2_COMP_TIMO_64S:
6546 return (64 * 1000 * 1000);
6547 default:
6548 return (50 * 1000);
6549 }
6550 }
6551
6552 void
pcie_apei_error(device_t dev,int sev,uint8_t * aerp)6553 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6554 {
6555 struct pci_devinfo *dinfo = device_get_ivars(dev);
6556 const char *s;
6557 int aer;
6558 uint32_t r, r1;
6559 uint16_t rs;
6560
6561 if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6562 s = "Correctable";
6563 else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6564 s = "Uncorrectable (Non-Fatal)";
6565 else
6566 s = "Uncorrectable (Fatal)";
6567 device_printf(dev, "%s PCIe error reported by APEI\n", s);
6568 if (aerp) {
6569 if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6570 r = le32dec(aerp + PCIR_AER_COR_STATUS);
6571 r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6572 } else {
6573 r = le32dec(aerp + PCIR_AER_UC_STATUS);
6574 r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6575 }
6576 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6577 if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6578 r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6579 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6580 printf(" severity 0x%08x first %d\n",
6581 r, rs & 0x1f);
6582 } else
6583 printf("\n");
6584 }
6585
6586 /* As kind of recovery just report and clear the error statuses. */
6587 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6588 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6589 if (r != 0) {
6590 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6591 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6592 }
6593
6594 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6595 if (r != 0) {
6596 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6597 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6598 }
6599 }
6600 if (dinfo->cfg.pcie.pcie_location != 0) {
6601 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6602 PCIER_DEVICE_STA, 2);
6603 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6604 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6605 PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6606 pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6607 PCIER_DEVICE_STA, rs, 2);
6608 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6609 }
6610 }
6611 }
6612
6613 /*
6614 * Perform a Function Level Reset (FLR) on a device.
6615 *
6616 * This function first waits for any pending transactions to complete
6617 * within the timeout specified by max_delay. If transactions are
6618 * still pending, the function will return false without attempting a
6619 * reset.
6620 *
6621 * If dev is not a PCI-express function or does not support FLR, this
6622 * function returns false.
6623 *
6624 * Note that no registers are saved or restored. The caller is
6625 * responsible for saving and restoring any registers including
6626 * PCI-standard registers via pci_save_state() and
6627 * pci_restore_state().
6628 */
6629 bool
pcie_flr(device_t dev,u_int max_delay,bool force)6630 pcie_flr(device_t dev, u_int max_delay, bool force)
6631 {
6632 struct pci_devinfo *dinfo = device_get_ivars(dev);
6633 uint16_t cmd, ctl;
6634 int compl_delay;
6635 int cap;
6636
6637 cap = dinfo->cfg.pcie.pcie_location;
6638 if (cap == 0)
6639 return (false);
6640
6641 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6642 return (false);
6643
6644 /*
6645 * Disable busmastering to prevent generation of new
6646 * transactions while waiting for the device to go idle. If
6647 * the idle timeout fails, the command register is restored
6648 * which will re-enable busmastering.
6649 */
6650 cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6651 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6652 if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6653 if (!force) {
6654 pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6655 return (false);
6656 }
6657 pci_printf(&dinfo->cfg,
6658 "Resetting with transactions pending after %d ms\n",
6659 max_delay);
6660
6661 /*
6662 * Extend the post-FLR delay to cover the maximum
6663 * Completion Timeout delay of anything in flight
6664 * during the FLR delay. Enforce a minimum delay of
6665 * at least 10ms.
6666 */
6667 compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6668 if (compl_delay < 10)
6669 compl_delay = 10;
6670 } else
6671 compl_delay = 0;
6672
6673 /* Initiate the reset. */
6674 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6675 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6676 PCIEM_CTL_INITIATE_FLR, 2);
6677
6678 /* Wait for 100ms. */
6679 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6680
6681 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6682 PCIEM_STA_TRANSACTION_PND)
6683 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6684 return (true);
6685 }
6686
6687 /*
6688 * Attempt a power-management reset by cycling the device in/out of D3
6689 * state. PCI spec says we can only go into D3 state from D0 state.
6690 * Transition from D[12] into D0 before going to D3 state.
6691 */
6692 int
pci_power_reset(device_t dev)6693 pci_power_reset(device_t dev)
6694 {
6695 int ps;
6696
6697 ps = pci_get_powerstate(dev);
6698 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6699 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6700 pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6701 pci_set_powerstate(dev, ps);
6702 return (0);
6703 }
6704
6705 /*
6706 * Try link drop and retrain of the downstream port of upstream
6707 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must
6708 * cause Conventional Hot reset of the device in the slot.
6709 * Alternative, for PCIe, could be the secondary bus reset initiatied
6710 * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6711 */
6712 int
pcie_link_reset(device_t port,int pcie_location)6713 pcie_link_reset(device_t port, int pcie_location)
6714 {
6715 uint16_t v;
6716
6717 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6718 v |= PCIEM_LINK_CTL_LINK_DIS;
6719 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6720 pause_sbt("pcier1", mstosbt(20), 0, 0);
6721 v &= ~PCIEM_LINK_CTL_LINK_DIS;
6722 v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6723 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6724 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6725 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6726 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6727 }
6728
6729 static int
pci_reset_post(device_t dev,device_t child)6730 pci_reset_post(device_t dev, device_t child)
6731 {
6732
6733 if (dev == device_get_parent(child))
6734 pci_restore_state(child);
6735 return (0);
6736 }
6737
6738 static int
pci_reset_prepare(device_t dev,device_t child)6739 pci_reset_prepare(device_t dev, device_t child)
6740 {
6741
6742 if (dev == device_get_parent(child))
6743 pci_save_state(child);
6744 return (0);
6745 }
6746
6747 static int
pci_reset_child(device_t dev,device_t child,int flags)6748 pci_reset_child(device_t dev, device_t child, int flags)
6749 {
6750 int error;
6751
6752 if (dev == NULL || device_get_parent(child) != dev)
6753 return (0);
6754 if ((flags & DEVF_RESET_DETACH) != 0) {
6755 error = device_get_state(child) == DS_ATTACHED ?
6756 device_detach(child) : 0;
6757 } else {
6758 error = BUS_SUSPEND_CHILD(dev, child);
6759 }
6760 if (error == 0) {
6761 if (!pcie_flr(child, 1000, false)) {
6762 error = BUS_RESET_PREPARE(dev, child);
6763 if (error == 0)
6764 pci_power_reset(child);
6765 BUS_RESET_POST(dev, child);
6766 }
6767 if ((flags & DEVF_RESET_DETACH) != 0)
6768 device_probe_and_attach(child);
6769 else
6770 BUS_RESUME_CHILD(dev, child);
6771 }
6772 return (error);
6773 }
6774
6775 const struct pci_device_table *
pci_match_device(device_t child,const struct pci_device_table * id,size_t nelt)6776 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6777 {
6778 bool match;
6779 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6780
6781 vendor = pci_get_vendor(child);
6782 device = pci_get_device(child);
6783 subvendor = pci_get_subvendor(child);
6784 subdevice = pci_get_subdevice(child);
6785 class = pci_get_class(child);
6786 subclass = pci_get_subclass(child);
6787 revid = pci_get_revid(child);
6788 while (nelt-- > 0) {
6789 match = true;
6790 if (id->match_flag_vendor)
6791 match &= vendor == id->vendor;
6792 if (id->match_flag_device)
6793 match &= device == id->device;
6794 if (id->match_flag_subvendor)
6795 match &= subvendor == id->subvendor;
6796 if (id->match_flag_subdevice)
6797 match &= subdevice == id->subdevice;
6798 if (id->match_flag_class)
6799 match &= class == id->class_id;
6800 if (id->match_flag_subclass)
6801 match &= subclass == id->subclass;
6802 if (id->match_flag_revid)
6803 match &= revid == id->revid;
6804 if (match)
6805 return (id);
6806 id++;
6807 }
6808 return (NULL);
6809 }
6810
6811 static void
pci_print_faulted_dev_name(const struct pci_devinfo * dinfo)6812 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6813 {
6814 const char *dev_name;
6815 device_t dev;
6816
6817 dev = dinfo->cfg.dev;
6818 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6819 dinfo->cfg.slot, dinfo->cfg.func);
6820 dev_name = device_get_name(dev);
6821 if (dev_name != NULL)
6822 printf(" (%s%d)", dev_name, device_get_unit(dev));
6823 }
6824
6825 void
pci_print_faulted_dev(void)6826 pci_print_faulted_dev(void)
6827 {
6828 struct pci_devinfo *dinfo;
6829 device_t dev;
6830 int aer, i;
6831 uint32_t r1, r2;
6832 uint16_t status;
6833
6834 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6835 dev = dinfo->cfg.dev;
6836 status = pci_read_config(dev, PCIR_STATUS, 2);
6837 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6838 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6839 PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6840 if (status != 0) {
6841 pci_print_faulted_dev_name(dinfo);
6842 printf(" error 0x%04x\n", status);
6843 }
6844 if (dinfo->cfg.pcie.pcie_location != 0) {
6845 status = pci_read_config(dev,
6846 dinfo->cfg.pcie.pcie_location +
6847 PCIER_DEVICE_STA, 2);
6848 if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6849 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6850 PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6851 pci_print_faulted_dev_name(dinfo);
6852 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6853 pci_read_config(dev,
6854 dinfo->cfg.pcie.pcie_location +
6855 PCIER_DEVICE_CTL, 2),
6856 status);
6857 }
6858 }
6859 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6860 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6861 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6862 if (r1 != 0 || r2 != 0) {
6863 pci_print_faulted_dev_name(dinfo);
6864 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6865 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6866 r1, pci_read_config(dev, aer +
6867 PCIR_AER_UC_MASK, 4),
6868 pci_read_config(dev, aer +
6869 PCIR_AER_UC_SEVERITY, 4),
6870 r2, pci_read_config(dev, aer +
6871 PCIR_AER_COR_MASK, 4),
6872 pci_read_config(dev, aer +
6873 PCIR_AER_CAP_CONTROL, 4));
6874 for (i = 0; i < 4; i++) {
6875 r1 = pci_read_config(dev, aer +
6876 PCIR_AER_HEADER_LOG + i * 4, 4);
6877 printf(" HL%d: 0x%08x\n", i, r1);
6878 }
6879 }
6880 }
6881 }
6882 }
6883
6884 #ifdef DDB
DB_SHOW_COMMAND_FLAGS(pcierr,pci_print_faulted_dev_db,DB_CMD_MEMSAFE)6885 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6886 {
6887
6888 pci_print_faulted_dev();
6889 }
6890
6891 static void
db_clear_pcie_errors(const struct pci_devinfo * dinfo)6892 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6893 {
6894 device_t dev;
6895 int aer;
6896 uint32_t r;
6897
6898 dev = dinfo->cfg.dev;
6899 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6900 PCIER_DEVICE_STA, 2);
6901 pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6902 PCIER_DEVICE_STA, r, 2);
6903
6904 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6905 return;
6906 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6907 if (r != 0)
6908 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6909 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6910 if (r != 0)
6911 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6912 }
6913
DB_COMMAND_FLAGS(pci_clearerr,db_pci_clearerr,DB_CMD_MEMSAFE)6914 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
6915 {
6916 struct pci_devinfo *dinfo;
6917 device_t dev;
6918 uint16_t status, status1;
6919
6920 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6921 dev = dinfo->cfg.dev;
6922 status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6923 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6924 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6925 PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6926 if (status1 != 0) {
6927 status &= ~status1;
6928 pci_write_config(dev, PCIR_STATUS, status, 2);
6929 }
6930 if (dinfo->cfg.pcie.pcie_location != 0)
6931 db_clear_pcie_errors(dinfo);
6932 }
6933 }
6934 #endif
6935