1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright (c) 2016, Intel Corporation.
25 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>
26 */
27
28 /*
29 * The ZFS retire agent is responsible for managing hot spares across all pools.
30 * When we see a device fault or a device removal, we try to open the associated
31 * pool and look for any hot spares. We iterate over any available hot spares
32 * and attempt a 'zpool replace' for each one.
33 *
34 * For vdevs diagnosed as faulty, the agent is also responsible for proactively
35 * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
36 */
37
38 #include <sys/fs/zfs.h>
39 #include <sys/fm/protocol.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <libzutil.h>
42 #include <libzfs.h>
43 #include <string.h>
44 #include <libgen.h>
45
46 #include "zfs_agents.h"
47 #include "fmd_api.h"
48
49
50 typedef struct zfs_retire_repaired {
51 struct zfs_retire_repaired *zrr_next;
52 uint64_t zrr_pool;
53 uint64_t zrr_vdev;
54 } zfs_retire_repaired_t;
55
56 typedef struct zfs_retire_data {
57 libzfs_handle_t *zrd_hdl;
58 zfs_retire_repaired_t *zrd_repaired;
59 } zfs_retire_data_t;
60
61 static void
zfs_retire_clear_data(fmd_hdl_t * hdl,zfs_retire_data_t * zdp)62 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
63 {
64 zfs_retire_repaired_t *zrp;
65
66 while ((zrp = zdp->zrd_repaired) != NULL) {
67 zdp->zrd_repaired = zrp->zrr_next;
68 fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
69 }
70 }
71
72 /*
73 * Find a pool with a matching GUID.
74 */
75 typedef struct find_cbdata {
76 uint64_t cb_guid;
77 zpool_handle_t *cb_zhp;
78 nvlist_t *cb_vdev;
79 uint64_t cb_vdev_guid;
80 uint64_t cb_num_spares;
81 } find_cbdata_t;
82
83 static int
find_pool(zpool_handle_t * zhp,void * data)84 find_pool(zpool_handle_t *zhp, void *data)
85 {
86 find_cbdata_t *cbp = data;
87
88 if (cbp->cb_guid ==
89 zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
90 cbp->cb_zhp = zhp;
91 return (1);
92 }
93
94 zpool_close(zhp);
95 return (0);
96 }
97
98 /*
99 * Find a vdev within a tree with a matching GUID.
100 */
101 static nvlist_t *
find_vdev(libzfs_handle_t * zhdl,nvlist_t * nv,uint64_t search_guid)102 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid)
103 {
104 uint64_t guid;
105 nvlist_t **child;
106 uint_t c, children;
107 nvlist_t *ret;
108
109 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
110 guid == search_guid) {
111 fmd_hdl_debug(fmd_module_hdl("zfs-retire"),
112 "matched vdev %llu", guid);
113 return (nv);
114 }
115
116 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
117 &child, &children) != 0)
118 return (NULL);
119
120 for (c = 0; c < children; c++) {
121 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
122 return (ret);
123 }
124
125 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
126 &child, &children) != 0)
127 return (NULL);
128
129 for (c = 0; c < children; c++) {
130 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
131 return (ret);
132 }
133
134 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
135 &child, &children) != 0)
136 return (NULL);
137
138 for (c = 0; c < children; c++) {
139 if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
140 return (ret);
141 }
142
143 return (NULL);
144 }
145
146 static int
remove_spares(zpool_handle_t * zhp,void * data)147 remove_spares(zpool_handle_t *zhp, void *data)
148 {
149 nvlist_t *config, *nvroot;
150 nvlist_t **spares;
151 uint_t nspares;
152 char *devname;
153 find_cbdata_t *cbp = data;
154 uint64_t spareguid = 0;
155 vdev_stat_t *vs;
156 unsigned int c;
157
158 config = zpool_get_config(zhp, NULL);
159 if (nvlist_lookup_nvlist(config,
160 ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) {
161 zpool_close(zhp);
162 return (0);
163 }
164
165 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
166 &spares, &nspares) != 0) {
167 zpool_close(zhp);
168 return (0);
169 }
170
171 for (int i = 0; i < nspares; i++) {
172 if (nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID,
173 &spareguid) == 0 && spareguid == cbp->cb_vdev_guid) {
174 devname = zpool_vdev_name(NULL, zhp, spares[i],
175 B_FALSE);
176 nvlist_lookup_uint64_array(spares[i],
177 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c);
178 if (vs->vs_state != VDEV_STATE_REMOVED &&
179 zpool_vdev_remove_wanted(zhp, devname) == 0)
180 cbp->cb_num_spares++;
181 break;
182 }
183 }
184
185 zpool_close(zhp);
186 return (0);
187 }
188
189 /*
190 * Given a vdev guid, find and remove all spares associated with it.
191 */
192 static int
find_and_remove_spares(libzfs_handle_t * zhdl,uint64_t vdev_guid)193 find_and_remove_spares(libzfs_handle_t *zhdl, uint64_t vdev_guid)
194 {
195 find_cbdata_t cb;
196
197 cb.cb_num_spares = 0;
198 cb.cb_vdev_guid = vdev_guid;
199 zpool_iter(zhdl, remove_spares, &cb);
200
201 return (cb.cb_num_spares);
202 }
203
204 /*
205 * Given a (pool, vdev) GUID pair, find the matching pool and vdev.
206 */
207 static zpool_handle_t *
find_by_guid(libzfs_handle_t * zhdl,uint64_t pool_guid,uint64_t vdev_guid,nvlist_t ** vdevp)208 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
209 nvlist_t **vdevp)
210 {
211 find_cbdata_t cb;
212 zpool_handle_t *zhp;
213 nvlist_t *config, *nvroot;
214
215 /*
216 * Find the corresponding pool and make sure the vdev still exists.
217 */
218 cb.cb_guid = pool_guid;
219 if (zpool_iter(zhdl, find_pool, &cb) != 1)
220 return (NULL);
221
222 zhp = cb.cb_zhp;
223 config = zpool_get_config(zhp, NULL);
224 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
225 &nvroot) != 0) {
226 zpool_close(zhp);
227 return (NULL);
228 }
229
230 if (vdev_guid != 0) {
231 if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) {
232 zpool_close(zhp);
233 return (NULL);
234 }
235 }
236
237 return (zhp);
238 }
239
240 /*
241 * Given a vdev, attempt to replace it with every known spare until one
242 * succeeds or we run out of devices to try.
243 * Return whether we were successful or not in replacing the device.
244 */
245 static boolean_t
replace_with_spare(fmd_hdl_t * hdl,zpool_handle_t * zhp,nvlist_t * vdev)246 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
247 {
248 nvlist_t *config, *nvroot, *replacement;
249 nvlist_t **spares;
250 uint_t s, nspares;
251 char *dev_name;
252 zprop_source_t source;
253 int ashift;
254
255 config = zpool_get_config(zhp, NULL);
256 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
257 &nvroot) != 0)
258 return (B_FALSE);
259
260 /*
261 * Find out if there are any hot spares available in the pool.
262 */
263 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
264 &spares, &nspares) != 0)
265 return (B_FALSE);
266
267 /*
268 * lookup "ashift" pool property, we may need it for the replacement
269 */
270 ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
271
272 replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
273
274 (void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
275 VDEV_TYPE_ROOT);
276
277 dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
278
279 /*
280 * Try to replace each spare, ending when we successfully
281 * replace it.
282 */
283 for (s = 0; s < nspares; s++) {
284 boolean_t rebuild = B_FALSE;
285 const char *spare_name, *type;
286
287 if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
288 &spare_name) != 0)
289 continue;
290
291 /* prefer sequential resilvering for distributed spares */
292 if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE,
293 &type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
294 rebuild = B_TRUE;
295
296 /* if set, add the "ashift" pool property to the spare nvlist */
297 if (source != ZPROP_SRC_DEFAULT)
298 (void) nvlist_add_uint64(spares[s],
299 ZPOOL_CONFIG_ASHIFT, ashift);
300
301 (void) nvlist_add_nvlist_array(replacement,
302 ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)&spares[s], 1);
303
304 fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'",
305 dev_name, zfs_basename(spare_name));
306
307 if (zpool_vdev_attach(zhp, dev_name, spare_name,
308 replacement, B_TRUE, rebuild) == 0) {
309 free(dev_name);
310 nvlist_free(replacement);
311 return (B_TRUE);
312 }
313 }
314
315 free(dev_name);
316 nvlist_free(replacement);
317
318 return (B_FALSE);
319 }
320
321 /*
322 * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
323 * ASRU is now usable. ZFS has found the device to be present and
324 * functioning.
325 */
326 static void
zfs_vdev_repair(fmd_hdl_t * hdl,nvlist_t * nvl)327 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
328 {
329 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
330 zfs_retire_repaired_t *zrp;
331 uint64_t pool_guid, vdev_guid;
332 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
333 &pool_guid) != 0 || nvlist_lookup_uint64(nvl,
334 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
335 return;
336
337 /*
338 * Before checking the state of the ASRU, go through and see if we've
339 * already made an attempt to repair this ASRU. This list is cleared
340 * whenever we receive any kind of list event, and is designed to
341 * prevent us from generating a feedback loop when we attempt repairs
342 * against a faulted pool. The problem is that checking the unusable
343 * state of the ASRU can involve opening the pool, which can post
344 * statechange events but otherwise leave the pool in the faulted
345 * state. This list allows us to detect when a statechange event is
346 * due to our own request.
347 */
348 for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
349 if (zrp->zrr_pool == pool_guid &&
350 zrp->zrr_vdev == vdev_guid)
351 return;
352 }
353
354 zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
355 zrp->zrr_next = zdp->zrd_repaired;
356 zrp->zrr_pool = pool_guid;
357 zrp->zrr_vdev = vdev_guid;
358 zdp->zrd_repaired = zrp;
359
360 fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu",
361 vdev_guid, pool_guid);
362 }
363
364 static void
zfs_retire_recv(fmd_hdl_t * hdl,fmd_event_t * ep,nvlist_t * nvl,const char * class)365 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
366 const char *class)
367 {
368 (void) ep;
369 uint64_t pool_guid, vdev_guid;
370 zpool_handle_t *zhp;
371 nvlist_t *resource, *fault;
372 nvlist_t **faults;
373 uint_t f, nfaults;
374 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
375 libzfs_handle_t *zhdl = zdp->zrd_hdl;
376 boolean_t fault_device, degrade_device;
377 boolean_t is_repair;
378 boolean_t l2arc = B_FALSE;
379 boolean_t spare = B_FALSE;
380 const char *scheme;
381 nvlist_t *vdev = NULL;
382 const char *uuid;
383 int repair_done = 0;
384 boolean_t retire;
385 boolean_t is_disk;
386 vdev_aux_t aux;
387 uint64_t state = 0;
388 vdev_stat_t *vs;
389 unsigned int c;
390
391 fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class);
392
393 (void) nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE,
394 &state);
395
396 /*
397 * If this is a resource notifying us of device removal then simply
398 * check for an available spare and continue unless the device is a
399 * l2arc vdev, in which case we just offline it.
400 */
401 if (strcmp(class, "resource.fs.zfs.removed") == 0 ||
402 (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
403 (state == VDEV_STATE_REMOVED || state == VDEV_STATE_FAULTED))) {
404 const char *devtype;
405 char *devname;
406
407 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
408 &devtype) == 0) {
409 if (strcmp(devtype, VDEV_TYPE_SPARE) == 0)
410 spare = B_TRUE;
411 else if (strcmp(devtype, VDEV_TYPE_L2CACHE) == 0)
412 l2arc = B_TRUE;
413 }
414
415 if (nvlist_lookup_uint64(nvl,
416 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
417 return;
418
419 if (vdev_guid == 0) {
420 fmd_hdl_debug(hdl, "Got a zero GUID");
421 return;
422 }
423
424 if (spare) {
425 int nspares = find_and_remove_spares(zhdl, vdev_guid);
426 fmd_hdl_debug(hdl, "%d spares removed", nspares);
427 return;
428 }
429
430 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
431 &pool_guid) != 0)
432 return;
433
434 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
435 &vdev)) == NULL)
436 return;
437
438 devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
439
440 nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
441 (uint64_t **)&vs, &c);
442
443 /*
444 * If state removed is requested for already removed vdev,
445 * its a loopback event from spa_async_remove(). Just
446 * ignore it.
447 */
448 if ((vs->vs_state == VDEV_STATE_REMOVED && state ==
449 VDEV_STATE_REMOVED) || vs->vs_state == VDEV_STATE_OFFLINE)
450 return;
451
452 /* Remove the vdev since device is unplugged */
453 int remove_status = 0;
454 if (l2arc || (strcmp(class, "resource.fs.zfs.removed") == 0)) {
455 remove_status = zpool_vdev_remove_wanted(zhp, devname);
456 fmd_hdl_debug(hdl, "zpool_vdev_remove_wanted '%s'"
457 ", err:%d", devname, libzfs_errno(zhdl));
458 }
459
460 /* Replace the vdev with a spare if its not a l2arc */
461 if (!l2arc && !remove_status &&
462 (!fmd_prop_get_int32(hdl, "spare_on_remove") ||
463 replace_with_spare(hdl, zhp, vdev) == B_FALSE)) {
464 /* Could not handle with spare */
465 fmd_hdl_debug(hdl, "no spare for '%s'", devname);
466 }
467
468 free(devname);
469 zpool_close(zhp);
470 return;
471 }
472
473 if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
474 return;
475
476 /*
477 * Note: on Linux statechange events are more than just
478 * healthy ones so we need to confirm the actual state value.
479 */
480 if (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
481 state == VDEV_STATE_HEALTHY) {
482 zfs_vdev_repair(hdl, nvl);
483 return;
484 }
485 if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) {
486 zfs_vdev_repair(hdl, nvl);
487 return;
488 }
489
490 zfs_retire_clear_data(hdl, zdp);
491
492 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
493 is_repair = B_TRUE;
494 else
495 is_repair = B_FALSE;
496
497 /*
498 * We subscribe to zfs faults as well as all repair events.
499 */
500 if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
501 &faults, &nfaults) != 0)
502 return;
503
504 for (f = 0; f < nfaults; f++) {
505 fault = faults[f];
506
507 fault_device = B_FALSE;
508 degrade_device = B_FALSE;
509 is_disk = B_FALSE;
510
511 if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
512 &retire) == 0 && retire == 0)
513 continue;
514
515 /*
516 * While we subscribe to fault.fs.zfs.*, we only take action
517 * for faults targeting a specific vdev (open failure or SERD
518 * failure). We also subscribe to fault.io.* events, so that
519 * faulty disks will be faulted in the ZFS configuration.
520 */
521 if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
522 fault_device = B_TRUE;
523 } else if (fmd_nvl_class_match(hdl, fault,
524 "fault.fs.zfs.vdev.checksum")) {
525 degrade_device = B_TRUE;
526 } else if (fmd_nvl_class_match(hdl, fault,
527 "fault.fs.zfs.vdev.slow_io")) {
528 degrade_device = B_TRUE;
529 } else if (fmd_nvl_class_match(hdl, fault,
530 "fault.fs.zfs.device")) {
531 fault_device = B_FALSE;
532 } else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
533 is_disk = B_TRUE;
534 fault_device = B_TRUE;
535 } else {
536 continue;
537 }
538
539 if (is_disk) {
540 continue;
541 } else {
542 /*
543 * This is a ZFS fault. Lookup the resource, and
544 * attempt to find the matching vdev.
545 */
546 if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
547 &resource) != 0 ||
548 nvlist_lookup_string(resource, FM_FMRI_SCHEME,
549 &scheme) != 0)
550 continue;
551
552 if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
553 continue;
554
555 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
556 &pool_guid) != 0)
557 continue;
558
559 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
560 &vdev_guid) != 0) {
561 if (is_repair)
562 vdev_guid = 0;
563 else
564 continue;
565 }
566
567 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
568 &vdev)) == NULL)
569 continue;
570
571 aux = VDEV_AUX_ERR_EXCEEDED;
572 }
573
574 if (vdev_guid == 0) {
575 /*
576 * For pool-level repair events, clear the entire pool.
577 */
578 fmd_hdl_debug(hdl, "zpool_clear of pool '%s'",
579 zpool_get_name(zhp));
580 (void) zpool_clear(zhp, NULL, NULL);
581 zpool_close(zhp);
582 continue;
583 }
584
585 /*
586 * If this is a repair event, then mark the vdev as repaired and
587 * continue.
588 */
589 if (is_repair) {
590 repair_done = 1;
591 fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu",
592 zpool_get_name(zhp), vdev_guid);
593 (void) zpool_vdev_clear(zhp, vdev_guid);
594 zpool_close(zhp);
595 continue;
596 }
597
598 /*
599 * Actively fault the device if needed.
600 */
601 if (fault_device)
602 (void) zpool_vdev_fault(zhp, vdev_guid, aux);
603 if (degrade_device)
604 (void) zpool_vdev_degrade(zhp, vdev_guid, aux);
605
606 if (fault_device || degrade_device)
607 fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'",
608 fault_device ? "fault" : "degrade", vdev_guid,
609 zpool_get_name(zhp));
610
611 /*
612 * Attempt to substitute a hot spare.
613 */
614 (void) replace_with_spare(hdl, zhp, vdev);
615
616 zpool_close(zhp);
617 }
618
619 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
620 nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
621 fmd_case_uuresolved(hdl, uuid);
622 }
623
624 static const fmd_hdl_ops_t fmd_ops = {
625 zfs_retire_recv, /* fmdo_recv */
626 NULL, /* fmdo_timeout */
627 NULL, /* fmdo_close */
628 NULL, /* fmdo_stats */
629 NULL, /* fmdo_gc */
630 };
631
632 static const fmd_prop_t fmd_props[] = {
633 { "spare_on_remove", FMD_TYPE_BOOL, "true" },
634 { NULL, 0, NULL }
635 };
636
637 static const fmd_hdl_info_t fmd_info = {
638 "ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
639 };
640
641 void
_zfs_retire_init(fmd_hdl_t * hdl)642 _zfs_retire_init(fmd_hdl_t *hdl)
643 {
644 zfs_retire_data_t *zdp;
645 libzfs_handle_t *zhdl;
646
647 if ((zhdl = libzfs_init()) == NULL)
648 return;
649
650 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
651 libzfs_fini(zhdl);
652 return;
653 }
654
655 zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
656 zdp->zrd_hdl = zhdl;
657
658 fmd_hdl_setspecific(hdl, zdp);
659 }
660
661 void
_zfs_retire_fini(fmd_hdl_t * hdl)662 _zfs_retire_fini(fmd_hdl_t *hdl)
663 {
664 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
665
666 if (zdp != NULL) {
667 zfs_retire_clear_data(hdl, zdp);
668 libzfs_fini(zdp->zrd_hdl);
669 fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
670 }
671 }
672