1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2018, Joyent, Inc.
25 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
26 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2020, George Amanakis. All rights reserved.
30 * Copyright (c) 2019, 2024, Klara Inc.
31 * Copyright (c) 2019, Allan Jude
32 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 *
35 * [1] Portions of this software were developed by Allan Jude
36 * under sponsorship from the FreeBSD Foundation.
37 */
38
39 /*
40 * DVA-based Adjustable Replacement Cache
41 *
42 * While much of the theory of operation used here is
43 * based on the self-tuning, low overhead replacement cache
44 * presented by Megiddo and Modha at FAST 2003, there are some
45 * significant differences:
46 *
47 * 1. The Megiddo and Modha model assumes any page is evictable.
48 * Pages in its cache cannot be "locked" into memory. This makes
49 * the eviction algorithm simple: evict the last page in the list.
50 * This also make the performance characteristics easy to reason
51 * about. Our cache is not so simple. At any given moment, some
52 * subset of the blocks in the cache are un-evictable because we
53 * have handed out a reference to them. Blocks are only evictable
54 * when there are no external references active. This makes
55 * eviction far more problematic: we choose to evict the evictable
56 * blocks that are the "lowest" in the list.
57 *
58 * There are times when it is not possible to evict the requested
59 * space. In these circumstances we are unable to adjust the cache
60 * size. To prevent the cache growing unbounded at these times we
61 * implement a "cache throttle" that slows the flow of new data
62 * into the cache until we can make space available.
63 *
64 * 2. The Megiddo and Modha model assumes a fixed cache size.
65 * Pages are evicted when the cache is full and there is a cache
66 * miss. Our model has a variable sized cache. It grows with
67 * high use, but also tries to react to memory pressure from the
68 * operating system: decreasing its size when system memory is
69 * tight.
70 *
71 * 3. The Megiddo and Modha model assumes a fixed page size. All
72 * elements of the cache are therefore exactly the same size. So
73 * when adjusting the cache size following a cache miss, its simply
74 * a matter of choosing a single page to evict. In our model, we
75 * have variable sized cache blocks (ranging from 512 bytes to
76 * 128K bytes). We therefore choose a set of blocks to evict to make
77 * space for a cache miss that approximates as closely as possible
78 * the space used by the new block.
79 *
80 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
81 * by N. Megiddo & D. Modha, FAST 2003
82 */
83
84 /*
85 * The locking model:
86 *
87 * A new reference to a cache buffer can be obtained in two
88 * ways: 1) via a hash table lookup using the DVA as a key,
89 * or 2) via one of the ARC lists. The arc_read() interface
90 * uses method 1, while the internal ARC algorithms for
91 * adjusting the cache use method 2. We therefore provide two
92 * types of locks: 1) the hash table lock array, and 2) the
93 * ARC list locks.
94 *
95 * Buffers do not have their own mutexes, rather they rely on the
96 * hash table mutexes for the bulk of their protection (i.e. most
97 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 *
99 * buf_hash_find() returns the appropriate mutex (held) when it
100 * locates the requested buffer in the hash table. It returns
101 * NULL for the mutex if the buffer was not in the table.
102 *
103 * buf_hash_remove() expects the appropriate hash mutex to be
104 * already held before it is invoked.
105 *
106 * Each ARC state also has a mutex which is used to protect the
107 * buffer list associated with the state. When attempting to
108 * obtain a hash table lock while holding an ARC list lock you
109 * must use: mutex_tryenter() to avoid deadlock. Also note that
110 * the active state mutex must be held before the ghost state mutex.
111 *
112 * It as also possible to register a callback which is run when the
113 * metadata limit is reached and no buffers can be safely evicted. In
114 * this case the arc user should drop a reference on some arc buffers so
115 * they can be reclaimed. For example, when using the ZPL each dentry
116 * holds a references on a znode. These dentries must be pruned before
117 * the arc buffer holding the znode can be safely evicted.
118 *
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131 /*
132 * ARC operation:
133 *
134 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
135 * This structure can point either to a block that is still in the cache or to
136 * one that is only accessible in an L2 ARC device, or it can provide
137 * information about a block that was recently evicted. If a block is
138 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
139 * information to retrieve it from the L2ARC device. This information is
140 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
141 * that is in this state cannot access the data directly.
142 *
143 * Blocks that are actively being referenced or have not been evicted
144 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
145 * the arc_buf_hdr_t that will point to the data block in memory. A block can
146 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
147 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
148 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 *
150 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
151 * ability to store the physical data (b_pabd) associated with the DVA of the
152 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
153 * it will match its on-disk compression characteristics. This behavior can be
154 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
155 * compressed ARC functionality is disabled, the b_pabd will point to an
156 * uncompressed version of the on-disk data.
157 *
158 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
159 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
160 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
161 * consumer. The ARC will provide references to this data and will keep it
162 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
163 * data block and will evict any arc_buf_t that is no longer referenced. The
164 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
165 * "overhead_size" kstat.
166 *
167 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
168 * compressed form. The typical case is that consumers will want uncompressed
169 * data, and when that happens a new data buffer is allocated where the data is
170 * decompressed for them to use. Currently the only consumer who wants
171 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
172 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
173 * with the arc_buf_hdr_t.
174 *
175 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
176 * first one is owned by a compressed send consumer (and therefore references
177 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
178 * used by any other consumer (and has its own uncompressed copy of the data
179 * buffer).
180 *
181 * arc_buf_hdr_t
182 * +-----------+
183 * | fields |
184 * | common to |
185 * | L1- and |
186 * | L2ARC |
187 * +-----------+
188 * | l2arc_buf_hdr_t
189 * | |
190 * +-----------+
191 * | l1arc_buf_hdr_t
192 * | | arc_buf_t
193 * | b_buf +------------>+-----------+ arc_buf_t
194 * | b_pabd +-+ |b_next +---->+-----------+
195 * +-----------+ | |-----------| |b_next +-->NULL
196 * | |b_comp = T | +-----------+
197 * | |b_data +-+ |b_comp = F |
198 * | +-----------+ | |b_data +-+
199 * +->+------+ | +-----------+ |
200 * compressed | | | |
201 * data | |<--------------+ | uncompressed
202 * +------+ compressed, | data
203 * shared +-->+------+
204 * data | |
205 * | |
206 * +------+
207 *
208 * When a consumer reads a block, the ARC must first look to see if the
209 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
210 * arc_buf_t and either copies uncompressed data into a new data buffer from an
211 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
212 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
213 * hdr is compressed and the desired compression characteristics of the
214 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
215 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
216 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
217 * be anywhere in the hdr's list.
218 *
219 * The diagram below shows an example of an uncompressed ARC hdr that is
220 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
221 * the last element in the buf list):
222 *
223 * arc_buf_hdr_t
224 * +-----------+
225 * | |
226 * | |
227 * | |
228 * +-----------+
229 * l2arc_buf_hdr_t| |
230 * | |
231 * +-----------+
232 * l1arc_buf_hdr_t| |
233 * | | arc_buf_t (shared)
234 * | b_buf +------------>+---------+ arc_buf_t
235 * | | |b_next +---->+---------+
236 * | b_pabd +-+ |---------| |b_next +-->NULL
237 * +-----------+ | | | +---------+
238 * | |b_data +-+ | |
239 * | +---------+ | |b_data +-+
240 * +->+------+ | +---------+ |
241 * | | | |
242 * uncompressed | | | |
243 * data +------+ | |
244 * ^ +->+------+ |
245 * | uncompressed | | |
246 * | data | | |
247 * | +------+ |
248 * +---------------------------------+
249 *
250 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
251 * since the physical block is about to be rewritten. The new data contents
252 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
253 * it may compress the data before writing it to disk. The ARC will be called
254 * with the transformed data and will memcpy the transformed on-disk block into
255 * a newly allocated b_pabd. Writes are always done into buffers which have
256 * either been loaned (and hence are new and don't have other readers) or
257 * buffers which have been released (and hence have their own hdr, if there
258 * were originally other readers of the buf's original hdr). This ensures that
259 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 *
261 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
262 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
263 * that when compressed ARC is enabled that the L2ARC blocks are identical
264 * to the on-disk block in the main data pool. This provides a significant
265 * advantage since the ARC can leverage the bp's checksum when reading from the
266 * L2ARC to determine if the contents are valid. However, if the compressed
267 * ARC is disabled, then the L2ARC's block must be transformed to look
268 * like the physical block in the main data pool before comparing the
269 * checksum and determining its validity.
270 *
271 * The L1ARC has a slightly different system for storing encrypted data.
272 * Raw (encrypted + possibly compressed) data has a few subtle differences from
273 * data that is just compressed. The biggest difference is that it is not
274 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
275 * The other difference is that encryption cannot be treated as a suggestion.
276 * If a caller would prefer compressed data, but they actually wind up with
277 * uncompressed data the worst thing that could happen is there might be a
278 * performance hit. If the caller requests encrypted data, however, we must be
279 * sure they actually get it or else secret information could be leaked. Raw
280 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
281 * may have both an encrypted version and a decrypted version of its data at
282 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
283 * copied out of this header. To avoid complications with b_pabd, raw buffers
284 * cannot be shared.
285 */
286
287 #include <sys/spa.h>
288 #include <sys/zio.h>
289 #include <sys/spa_impl.h>
290 #include <sys/zio_compress.h>
291 #include <sys/zio_checksum.h>
292 #include <sys/zfs_context.h>
293 #include <sys/arc.h>
294 #include <sys/zfs_refcount.h>
295 #include <sys/vdev.h>
296 #include <sys/vdev_impl.h>
297 #include <sys/dsl_pool.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/zil.h>
301 #include <sys/fm/fs/zfs.h>
302 #include <sys/callb.h>
303 #include <sys/kstat.h>
304 #include <sys/zthr.h>
305 #include <zfs_fletcher.h>
306 #include <sys/arc_impl.h>
307 #include <sys/trace_zfs.h>
308 #include <sys/aggsum.h>
309 #include <sys/wmsum.h>
310 #include <cityhash.h>
311 #include <sys/vdev_trim.h>
312 #include <sys/zfs_racct.h>
313 #include <sys/zstd/zstd.h>
314
315 #ifndef _KERNEL
316 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
317 boolean_t arc_watch = B_FALSE;
318 #endif
319
320 /*
321 * This thread's job is to keep enough free memory in the system, by
322 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
323 * arc_available_memory().
324 */
325 static zthr_t *arc_reap_zthr;
326
327 /*
328 * This thread's job is to keep arc_size under arc_c, by calling
329 * arc_evict(), which improves arc_is_overflowing().
330 */
331 static zthr_t *arc_evict_zthr;
332 static arc_buf_hdr_t **arc_state_evict_markers;
333 static int arc_state_evict_marker_count;
334
335 static kmutex_t arc_evict_lock;
336 static boolean_t arc_evict_needed = B_FALSE;
337 static clock_t arc_last_uncached_flush;
338
339 /*
340 * Count of bytes evicted since boot.
341 */
342 static uint64_t arc_evict_count;
343
344 /*
345 * List of arc_evict_waiter_t's, representing threads waiting for the
346 * arc_evict_count to reach specific values.
347 */
348 static list_t arc_evict_waiters;
349
350 /*
351 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
352 * the requested amount of data to be evicted. For example, by default for
353 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
354 * Since this is above 100%, it ensures that progress is made towards getting
355 * arc_size under arc_c. Since this is finite, it ensures that allocations
356 * can still happen, even during the potentially long time that arc_size is
357 * more than arc_c.
358 */
359 static uint_t zfs_arc_eviction_pct = 200;
360
361 /*
362 * The number of headers to evict in arc_evict_state_impl() before
363 * dropping the sublist lock and evicting from another sublist. A lower
364 * value means we're more likely to evict the "correct" header (i.e. the
365 * oldest header in the arc state), but comes with higher overhead
366 * (i.e. more invocations of arc_evict_state_impl()).
367 */
368 static uint_t zfs_arc_evict_batch_limit = 10;
369
370 /* number of seconds before growing cache again */
371 uint_t arc_grow_retry = 5;
372
373 /*
374 * Minimum time between calls to arc_kmem_reap_soon().
375 */
376 static const int arc_kmem_cache_reap_retry_ms = 1000;
377
378 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
379 static int zfs_arc_overflow_shift = 8;
380
381 /* log2(fraction of arc to reclaim) */
382 uint_t arc_shrink_shift = 7;
383
384 /* percent of pagecache to reclaim arc to */
385 #ifdef _KERNEL
386 uint_t zfs_arc_pc_percent = 0;
387 #endif
388
389 /*
390 * log2(fraction of ARC which must be free to allow growing).
391 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
392 * when reading a new block into the ARC, we will evict an equal-sized block
393 * from the ARC.
394 *
395 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
396 * we will still not allow it to grow.
397 */
398 uint_t arc_no_grow_shift = 5;
399
400
401 /*
402 * minimum lifespan of a prefetch block in clock ticks
403 * (initialized in arc_init())
404 */
405 static uint_t arc_min_prefetch_ms;
406 static uint_t arc_min_prescient_prefetch_ms;
407
408 /*
409 * If this percent of memory is free, don't throttle.
410 */
411 uint_t arc_lotsfree_percent = 10;
412
413 /*
414 * The arc has filled available memory and has now warmed up.
415 */
416 boolean_t arc_warm;
417
418 /*
419 * These tunables are for performance analysis.
420 */
421 uint64_t zfs_arc_max = 0;
422 uint64_t zfs_arc_min = 0;
423 static uint64_t zfs_arc_dnode_limit = 0;
424 static uint_t zfs_arc_dnode_reduce_percent = 10;
425 static uint_t zfs_arc_grow_retry = 0;
426 static uint_t zfs_arc_shrink_shift = 0;
427 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
428
429 /*
430 * ARC dirty data constraints for arc_tempreserve_space() throttle:
431 * * total dirty data limit
432 * * anon block dirty limit
433 * * each pool's anon allowance
434 */
435 static const unsigned long zfs_arc_dirty_limit_percent = 50;
436 static const unsigned long zfs_arc_anon_limit_percent = 25;
437 static const unsigned long zfs_arc_pool_dirty_percent = 20;
438
439 /*
440 * Enable or disable compressed arc buffers.
441 */
442 int zfs_compressed_arc_enabled = B_TRUE;
443
444 /*
445 * Balance between metadata and data on ghost hits. Values above 100
446 * increase metadata caching by proportionally reducing effect of ghost
447 * data hits on target data/metadata rate.
448 */
449 static uint_t zfs_arc_meta_balance = 500;
450
451 /*
452 * Percentage that can be consumed by dnodes of ARC meta buffers.
453 */
454 static uint_t zfs_arc_dnode_limit_percent = 10;
455
456 /*
457 * These tunables are Linux-specific
458 */
459 static uint64_t zfs_arc_sys_free = 0;
460 static uint_t zfs_arc_min_prefetch_ms = 0;
461 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
462 static uint_t zfs_arc_lotsfree_percent = 10;
463
464 /*
465 * Number of arc_prune threads
466 */
467 static int zfs_arc_prune_task_threads = 1;
468
469 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
470 static taskq_t *arc_flush_taskq;
471
472 /* The 7 states: */
473 arc_state_t ARC_anon;
474 arc_state_t ARC_mru;
475 arc_state_t ARC_mru_ghost;
476 arc_state_t ARC_mfu;
477 arc_state_t ARC_mfu_ghost;
478 arc_state_t ARC_l2c_only;
479 arc_state_t ARC_uncached;
480
481 arc_stats_t arc_stats = {
482 { "hits", KSTAT_DATA_UINT64 },
483 { "iohits", KSTAT_DATA_UINT64 },
484 { "misses", KSTAT_DATA_UINT64 },
485 { "demand_data_hits", KSTAT_DATA_UINT64 },
486 { "demand_data_iohits", KSTAT_DATA_UINT64 },
487 { "demand_data_misses", KSTAT_DATA_UINT64 },
488 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
489 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
490 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
491 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
492 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
493 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
494 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
495 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
496 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
497 { "mru_hits", KSTAT_DATA_UINT64 },
498 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
499 { "mfu_hits", KSTAT_DATA_UINT64 },
500 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
501 { "uncached_hits", KSTAT_DATA_UINT64 },
502 { "deleted", KSTAT_DATA_UINT64 },
503 { "mutex_miss", KSTAT_DATA_UINT64 },
504 { "access_skip", KSTAT_DATA_UINT64 },
505 { "evict_skip", KSTAT_DATA_UINT64 },
506 { "evict_not_enough", KSTAT_DATA_UINT64 },
507 { "evict_l2_cached", KSTAT_DATA_UINT64 },
508 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
509 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
510 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
511 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
512 { "evict_l2_skip", KSTAT_DATA_UINT64 },
513 { "hash_elements", KSTAT_DATA_UINT64 },
514 { "hash_elements_max", KSTAT_DATA_UINT64 },
515 { "hash_collisions", KSTAT_DATA_UINT64 },
516 { "hash_chains", KSTAT_DATA_UINT64 },
517 { "hash_chain_max", KSTAT_DATA_UINT64 },
518 { "meta", KSTAT_DATA_UINT64 },
519 { "pd", KSTAT_DATA_UINT64 },
520 { "pm", KSTAT_DATA_UINT64 },
521 { "c", KSTAT_DATA_UINT64 },
522 { "c_min", KSTAT_DATA_UINT64 },
523 { "c_max", KSTAT_DATA_UINT64 },
524 { "size", KSTAT_DATA_UINT64 },
525 { "compressed_size", KSTAT_DATA_UINT64 },
526 { "uncompressed_size", KSTAT_DATA_UINT64 },
527 { "overhead_size", KSTAT_DATA_UINT64 },
528 { "hdr_size", KSTAT_DATA_UINT64 },
529 { "data_size", KSTAT_DATA_UINT64 },
530 { "metadata_size", KSTAT_DATA_UINT64 },
531 { "dbuf_size", KSTAT_DATA_UINT64 },
532 { "dnode_size", KSTAT_DATA_UINT64 },
533 { "bonus_size", KSTAT_DATA_UINT64 },
534 #if defined(COMPAT_FREEBSD11)
535 { "other_size", KSTAT_DATA_UINT64 },
536 #endif
537 { "anon_size", KSTAT_DATA_UINT64 },
538 { "anon_data", KSTAT_DATA_UINT64 },
539 { "anon_metadata", KSTAT_DATA_UINT64 },
540 { "anon_evictable_data", KSTAT_DATA_UINT64 },
541 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
542 { "mru_size", KSTAT_DATA_UINT64 },
543 { "mru_data", KSTAT_DATA_UINT64 },
544 { "mru_metadata", KSTAT_DATA_UINT64 },
545 { "mru_evictable_data", KSTAT_DATA_UINT64 },
546 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
547 { "mru_ghost_size", KSTAT_DATA_UINT64 },
548 { "mru_ghost_data", KSTAT_DATA_UINT64 },
549 { "mru_ghost_metadata", KSTAT_DATA_UINT64 },
550 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
551 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
552 { "mfu_size", KSTAT_DATA_UINT64 },
553 { "mfu_data", KSTAT_DATA_UINT64 },
554 { "mfu_metadata", KSTAT_DATA_UINT64 },
555 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
556 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
557 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
558 { "mfu_ghost_data", KSTAT_DATA_UINT64 },
559 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 },
560 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
561 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
562 { "uncached_size", KSTAT_DATA_UINT64 },
563 { "uncached_data", KSTAT_DATA_UINT64 },
564 { "uncached_metadata", KSTAT_DATA_UINT64 },
565 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
566 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
567 { "l2_hits", KSTAT_DATA_UINT64 },
568 { "l2_misses", KSTAT_DATA_UINT64 },
569 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
570 { "l2_mru_asize", KSTAT_DATA_UINT64 },
571 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
572 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
573 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
574 { "l2_feeds", KSTAT_DATA_UINT64 },
575 { "l2_rw_clash", KSTAT_DATA_UINT64 },
576 { "l2_read_bytes", KSTAT_DATA_UINT64 },
577 { "l2_write_bytes", KSTAT_DATA_UINT64 },
578 { "l2_writes_sent", KSTAT_DATA_UINT64 },
579 { "l2_writes_done", KSTAT_DATA_UINT64 },
580 { "l2_writes_error", KSTAT_DATA_UINT64 },
581 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
582 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
583 { "l2_evict_reading", KSTAT_DATA_UINT64 },
584 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
585 { "l2_free_on_write", KSTAT_DATA_UINT64 },
586 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
587 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
588 { "l2_io_error", KSTAT_DATA_UINT64 },
589 { "l2_size", KSTAT_DATA_UINT64 },
590 { "l2_asize", KSTAT_DATA_UINT64 },
591 { "l2_hdr_size", KSTAT_DATA_UINT64 },
592 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
593 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
594 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
595 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
596 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
597 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
598 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
599 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
600 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
601 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
602 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
603 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
604 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
605 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
606 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
607 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
608 { "memory_throttle_count", KSTAT_DATA_UINT64 },
609 { "memory_direct_count", KSTAT_DATA_UINT64 },
610 { "memory_indirect_count", KSTAT_DATA_UINT64 },
611 { "memory_all_bytes", KSTAT_DATA_UINT64 },
612 { "memory_free_bytes", KSTAT_DATA_UINT64 },
613 { "memory_available_bytes", KSTAT_DATA_INT64 },
614 { "arc_no_grow", KSTAT_DATA_UINT64 },
615 { "arc_tempreserve", KSTAT_DATA_UINT64 },
616 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
617 { "arc_prune", KSTAT_DATA_UINT64 },
618 { "arc_meta_used", KSTAT_DATA_UINT64 },
619 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
620 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
621 { "predictive_prefetch", KSTAT_DATA_UINT64 },
622 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
623 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
624 { "prescient_prefetch", KSTAT_DATA_UINT64 },
625 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
626 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
627 { "arc_need_free", KSTAT_DATA_UINT64 },
628 { "arc_sys_free", KSTAT_DATA_UINT64 },
629 { "arc_raw_size", KSTAT_DATA_UINT64 },
630 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
631 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
632 };
633
634 arc_sums_t arc_sums;
635
636 #define ARCSTAT_MAX(stat, val) { \
637 uint64_t m; \
638 while ((val) > (m = arc_stats.stat.value.ui64) && \
639 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
640 continue; \
641 }
642
643 /*
644 * We define a macro to allow ARC hits/misses to be easily broken down by
645 * two separate conditions, giving a total of four different subtypes for
646 * each of hits and misses (so eight statistics total).
647 */
648 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
649 if (cond1) { \
650 if (cond2) { \
651 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
652 } else { \
653 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
654 } \
655 } else { \
656 if (cond2) { \
657 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
658 } else { \
659 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
660 } \
661 }
662
663 /*
664 * This macro allows us to use kstats as floating averages. Each time we
665 * update this kstat, we first factor it and the update value by
666 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
667 * average. This macro assumes that integer loads and stores are atomic, but
668 * is not safe for multiple writers updating the kstat in parallel (only the
669 * last writer's update will remain).
670 */
671 #define ARCSTAT_F_AVG_FACTOR 3
672 #define ARCSTAT_F_AVG(stat, value) \
673 do { \
674 uint64_t x = ARCSTAT(stat); \
675 x = x - x / ARCSTAT_F_AVG_FACTOR + \
676 (value) / ARCSTAT_F_AVG_FACTOR; \
677 ARCSTAT(stat) = x; \
678 } while (0)
679
680 static kstat_t *arc_ksp;
681
682 /*
683 * There are several ARC variables that are critical to export as kstats --
684 * but we don't want to have to grovel around in the kstat whenever we wish to
685 * manipulate them. For these variables, we therefore define them to be in
686 * terms of the statistic variable. This assures that we are not introducing
687 * the possibility of inconsistency by having shadow copies of the variables,
688 * while still allowing the code to be readable.
689 */
690 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
691 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
692 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
693 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
694
695 hrtime_t arc_growtime;
696 list_t arc_prune_list;
697 kmutex_t arc_prune_mtx;
698 taskq_t *arc_prune_taskq;
699
700 #define GHOST_STATE(state) \
701 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
702 (state) == arc_l2c_only)
703
704 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
705 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
706 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
707 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
708 #define HDR_PRESCIENT_PREFETCH(hdr) \
709 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
710 #define HDR_COMPRESSION_ENABLED(hdr) \
711 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
712
713 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
714 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
715 #define HDR_L2_READING(hdr) \
716 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
717 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
718 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
719 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
720 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
721 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
722 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
723 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
724
725 #define HDR_ISTYPE_METADATA(hdr) \
726 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
727 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
728
729 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
730 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
731 #define HDR_HAS_RABD(hdr) \
732 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
733 (hdr)->b_crypt_hdr.b_rabd != NULL)
734 #define HDR_ENCRYPTED(hdr) \
735 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
736 #define HDR_AUTHENTICATED(hdr) \
737 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
738
739 /* For storing compression mode in b_flags */
740 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
741
742 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
743 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
744 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
745 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
746
747 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
748 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
749 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
750 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
751
752 /*
753 * Other sizes
754 */
755
756 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
757 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
758
759 /*
760 * Hash table routines
761 */
762
763 #define BUF_LOCKS 2048
764 typedef struct buf_hash_table {
765 uint64_t ht_mask;
766 arc_buf_hdr_t **ht_table;
767 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
768 } buf_hash_table_t;
769
770 static buf_hash_table_t buf_hash_table;
771
772 #define BUF_HASH_INDEX(spa, dva, birth) \
773 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
774 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
775 #define HDR_LOCK(hdr) \
776 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
777
778 uint64_t zfs_crc64_table[256];
779
780 /*
781 * Asynchronous ARC flush
782 *
783 * We track these in a list for arc_async_flush_guid_inuse().
784 * Used for both L1 and L2 async teardown.
785 */
786 static list_t arc_async_flush_list;
787 static kmutex_t arc_async_flush_lock;
788
789 typedef struct arc_async_flush {
790 uint64_t af_spa_guid;
791 taskq_ent_t af_tqent;
792 uint_t af_cache_level; /* 1 or 2 to differentiate node */
793 list_node_t af_node;
794 } arc_async_flush_t;
795
796
797 /*
798 * Level 2 ARC
799 */
800
801 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
802 #define L2ARC_HEADROOM 8 /* num of writes */
803
804 /*
805 * If we discover during ARC scan any buffers to be compressed, we boost
806 * our headroom for the next scanning cycle by this percentage multiple.
807 */
808 #define L2ARC_HEADROOM_BOOST 200
809 #define L2ARC_FEED_SECS 1 /* caching interval secs */
810 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
811
812 /*
813 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
814 * and each of the state has two types: data and metadata.
815 */
816 #define L2ARC_FEED_TYPES 4
817
818 /* L2ARC Performance Tunables */
819 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
820 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
821 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
822 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
823 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
824 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
825 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
826 int l2arc_feed_again = B_TRUE; /* turbo warmup */
827 int l2arc_norw = B_FALSE; /* no reads during writes */
828 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
829
830 /*
831 * L2ARC Internals
832 */
833 static list_t L2ARC_dev_list; /* device list */
834 static list_t *l2arc_dev_list; /* device list pointer */
835 static kmutex_t l2arc_dev_mtx; /* device list mutex */
836 static l2arc_dev_t *l2arc_dev_last; /* last device used */
837 static list_t L2ARC_free_on_write; /* free after write buf list */
838 static list_t *l2arc_free_on_write; /* free after write list ptr */
839 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
840 static uint64_t l2arc_ndev; /* number of devices */
841
842 typedef struct l2arc_read_callback {
843 arc_buf_hdr_t *l2rcb_hdr; /* read header */
844 blkptr_t l2rcb_bp; /* original blkptr */
845 zbookmark_phys_t l2rcb_zb; /* original bookmark */
846 int l2rcb_flags; /* original flags */
847 abd_t *l2rcb_abd; /* temporary buffer */
848 } l2arc_read_callback_t;
849
850 typedef struct l2arc_data_free {
851 /* protected by l2arc_free_on_write_mtx */
852 abd_t *l2df_abd;
853 size_t l2df_size;
854 arc_buf_contents_t l2df_type;
855 list_node_t l2df_list_node;
856 } l2arc_data_free_t;
857
858 typedef enum arc_fill_flags {
859 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
860 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
861 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
862 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
863 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
864 } arc_fill_flags_t;
865
866 typedef enum arc_ovf_level {
867 ARC_OVF_NONE, /* ARC within target size. */
868 ARC_OVF_SOME, /* ARC is slightly overflowed. */
869 ARC_OVF_SEVERE /* ARC is severely overflowed. */
870 } arc_ovf_level_t;
871
872 static kmutex_t l2arc_feed_thr_lock;
873 static kcondvar_t l2arc_feed_thr_cv;
874 static uint8_t l2arc_thread_exit;
875
876 static kmutex_t l2arc_rebuild_thr_lock;
877 static kcondvar_t l2arc_rebuild_thr_cv;
878
879 enum arc_hdr_alloc_flags {
880 ARC_HDR_ALLOC_RDATA = 0x1,
881 ARC_HDR_USE_RESERVE = 0x4,
882 ARC_HDR_ALLOC_LINEAR = 0x8,
883 };
884
885
886 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
887 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
888 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
889 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
890 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
891 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
892 const void *tag);
893 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
894 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
895 static void arc_hdr_destroy(arc_buf_hdr_t *);
896 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
897 static void arc_buf_watch(arc_buf_t *);
898 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
899
900 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
901 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
902 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
903 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
904
905 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
906 static void l2arc_read_done(zio_t *);
907 static void l2arc_do_free_on_write(void);
908 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
909 boolean_t state_only);
910
911 static void arc_prune_async(uint64_t adjust);
912
913 #define l2arc_hdr_arcstats_increment(hdr) \
914 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
915 #define l2arc_hdr_arcstats_decrement(hdr) \
916 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
917 #define l2arc_hdr_arcstats_increment_state(hdr) \
918 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
919 #define l2arc_hdr_arcstats_decrement_state(hdr) \
920 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
921
922 /*
923 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
924 * present on special vdevs are eligibile for caching in L2ARC. If
925 * set to 1, exclude dbufs on special vdevs from being cached to
926 * L2ARC.
927 */
928 int l2arc_exclude_special = 0;
929
930 /*
931 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
932 * metadata and data are cached from ARC into L2ARC.
933 */
934 static int l2arc_mfuonly = 0;
935
936 /*
937 * L2ARC TRIM
938 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
939 * the current write size (l2arc_write_max) we should TRIM if we
940 * have filled the device. It is defined as a percentage of the
941 * write size. If set to 100 we trim twice the space required to
942 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
943 * It also enables TRIM of the whole L2ARC device upon creation or
944 * addition to an existing pool or if the header of the device is
945 * invalid upon importing a pool or onlining a cache device. The
946 * default is 0, which disables TRIM on L2ARC altogether as it can
947 * put significant stress on the underlying storage devices. This
948 * will vary depending of how well the specific device handles
949 * these commands.
950 */
951 static uint64_t l2arc_trim_ahead = 0;
952
953 /*
954 * Performance tuning of L2ARC persistence:
955 *
956 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
957 * an L2ARC device (either at pool import or later) will attempt
958 * to rebuild L2ARC buffer contents.
959 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
960 * whether log blocks are written to the L2ARC device. If the L2ARC
961 * device is less than 1GB, the amount of data l2arc_evict()
962 * evicts is significant compared to the amount of restored L2ARC
963 * data. In this case do not write log blocks in L2ARC in order
964 * not to waste space.
965 */
966 static int l2arc_rebuild_enabled = B_TRUE;
967 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
968
969 /* L2ARC persistence rebuild control routines. */
970 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
971 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
972 static int l2arc_rebuild(l2arc_dev_t *dev);
973
974 /* L2ARC persistence read I/O routines. */
975 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
976 static int l2arc_log_blk_read(l2arc_dev_t *dev,
977 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
978 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
979 zio_t *this_io, zio_t **next_io);
980 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
981 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
982 static void l2arc_log_blk_fetch_abort(zio_t *zio);
983
984 /* L2ARC persistence block restoration routines. */
985 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
986 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
987 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
988 l2arc_dev_t *dev);
989
990 /* L2ARC persistence write I/O routines. */
991 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
992 l2arc_write_callback_t *cb);
993
994 /* L2ARC persistence auxiliary routines. */
995 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
996 const l2arc_log_blkptr_t *lbp);
997 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
998 const arc_buf_hdr_t *ab);
999 boolean_t l2arc_range_check_overlap(uint64_t bottom,
1000 uint64_t top, uint64_t check);
1001 static void l2arc_blk_fetch_done(zio_t *zio);
1002 static inline uint64_t
1003 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1004
1005 /*
1006 * We use Cityhash for this. It's fast, and has good hash properties without
1007 * requiring any large static buffers.
1008 */
1009 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1010 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1011 {
1012 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1013 }
1014
1015 #define HDR_EMPTY(hdr) \
1016 ((hdr)->b_dva.dva_word[0] == 0 && \
1017 (hdr)->b_dva.dva_word[1] == 0)
1018
1019 #define HDR_EMPTY_OR_LOCKED(hdr) \
1020 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1021
1022 #define HDR_EQUAL(spa, dva, birth, hdr) \
1023 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1024 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1025 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1026
1027 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1028 buf_discard_identity(arc_buf_hdr_t *hdr)
1029 {
1030 hdr->b_dva.dva_word[0] = 0;
1031 hdr->b_dva.dva_word[1] = 0;
1032 hdr->b_birth = 0;
1033 }
1034
1035 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1036 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1037 {
1038 const dva_t *dva = BP_IDENTITY(bp);
1039 uint64_t birth = BP_GET_BIRTH(bp);
1040 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1041 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1042 arc_buf_hdr_t *hdr;
1043
1044 mutex_enter(hash_lock);
1045 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1046 hdr = hdr->b_hash_next) {
1047 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1048 *lockp = hash_lock;
1049 return (hdr);
1050 }
1051 }
1052 mutex_exit(hash_lock);
1053 *lockp = NULL;
1054 return (NULL);
1055 }
1056
1057 /*
1058 * Insert an entry into the hash table. If there is already an element
1059 * equal to elem in the hash table, then the already existing element
1060 * will be returned and the new element will not be inserted.
1061 * Otherwise returns NULL.
1062 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1063 */
1064 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1065 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1066 {
1067 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1068 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1069 arc_buf_hdr_t *fhdr;
1070 uint32_t i;
1071
1072 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1073 ASSERT(hdr->b_birth != 0);
1074 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1075
1076 if (lockp != NULL) {
1077 *lockp = hash_lock;
1078 mutex_enter(hash_lock);
1079 } else {
1080 ASSERT(MUTEX_HELD(hash_lock));
1081 }
1082
1083 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1084 fhdr = fhdr->b_hash_next, i++) {
1085 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1086 return (fhdr);
1087 }
1088
1089 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1090 buf_hash_table.ht_table[idx] = hdr;
1091 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1092
1093 /* collect some hash table performance data */
1094 if (i > 0) {
1095 ARCSTAT_BUMP(arcstat_hash_collisions);
1096 if (i == 1)
1097 ARCSTAT_BUMP(arcstat_hash_chains);
1098 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1099 }
1100 ARCSTAT_BUMP(arcstat_hash_elements);
1101
1102 return (NULL);
1103 }
1104
1105 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1106 buf_hash_remove(arc_buf_hdr_t *hdr)
1107 {
1108 arc_buf_hdr_t *fhdr, **hdrp;
1109 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1110
1111 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1112 ASSERT(HDR_IN_HASH_TABLE(hdr));
1113
1114 hdrp = &buf_hash_table.ht_table[idx];
1115 while ((fhdr = *hdrp) != hdr) {
1116 ASSERT3P(fhdr, !=, NULL);
1117 hdrp = &fhdr->b_hash_next;
1118 }
1119 *hdrp = hdr->b_hash_next;
1120 hdr->b_hash_next = NULL;
1121 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1122
1123 /* collect some hash table performance data */
1124 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1125 if (buf_hash_table.ht_table[idx] &&
1126 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1127 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1128 }
1129
1130 /*
1131 * Global data structures and functions for the buf kmem cache.
1132 */
1133
1134 static kmem_cache_t *hdr_full_cache;
1135 static kmem_cache_t *hdr_l2only_cache;
1136 static kmem_cache_t *buf_cache;
1137
1138 static void
buf_fini(void)1139 buf_fini(void)
1140 {
1141 #if defined(_KERNEL)
1142 /*
1143 * Large allocations which do not require contiguous pages
1144 * should be using vmem_free() in the linux kernel\
1145 */
1146 vmem_free(buf_hash_table.ht_table,
1147 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1148 #else
1149 kmem_free(buf_hash_table.ht_table,
1150 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1151 #endif
1152 for (int i = 0; i < BUF_LOCKS; i++)
1153 mutex_destroy(BUF_HASH_LOCK(i));
1154 kmem_cache_destroy(hdr_full_cache);
1155 kmem_cache_destroy(hdr_l2only_cache);
1156 kmem_cache_destroy(buf_cache);
1157 }
1158
1159 /*
1160 * Constructor callback - called when the cache is empty
1161 * and a new buf is requested.
1162 */
1163 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1164 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1165 {
1166 (void) unused, (void) kmflag;
1167 arc_buf_hdr_t *hdr = vbuf;
1168
1169 memset(hdr, 0, HDR_FULL_SIZE);
1170 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1171 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1172 #ifdef ZFS_DEBUG
1173 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1174 #endif
1175 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1176 list_link_init(&hdr->b_l2hdr.b_l2node);
1177 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1178
1179 return (0);
1180 }
1181
1182 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1183 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1184 {
1185 (void) unused, (void) kmflag;
1186 arc_buf_hdr_t *hdr = vbuf;
1187
1188 memset(hdr, 0, HDR_L2ONLY_SIZE);
1189 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1190
1191 return (0);
1192 }
1193
1194 static int
buf_cons(void * vbuf,void * unused,int kmflag)1195 buf_cons(void *vbuf, void *unused, int kmflag)
1196 {
1197 (void) unused, (void) kmflag;
1198 arc_buf_t *buf = vbuf;
1199
1200 memset(buf, 0, sizeof (arc_buf_t));
1201 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1202
1203 return (0);
1204 }
1205
1206 /*
1207 * Destructor callback - called when a cached buf is
1208 * no longer required.
1209 */
1210 static void
hdr_full_dest(void * vbuf,void * unused)1211 hdr_full_dest(void *vbuf, void *unused)
1212 {
1213 (void) unused;
1214 arc_buf_hdr_t *hdr = vbuf;
1215
1216 ASSERT(HDR_EMPTY(hdr));
1217 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1218 #ifdef ZFS_DEBUG
1219 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1220 #endif
1221 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1222 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1223 }
1224
1225 static void
hdr_l2only_dest(void * vbuf,void * unused)1226 hdr_l2only_dest(void *vbuf, void *unused)
1227 {
1228 (void) unused;
1229 arc_buf_hdr_t *hdr = vbuf;
1230
1231 ASSERT(HDR_EMPTY(hdr));
1232 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1233 }
1234
1235 static void
buf_dest(void * vbuf,void * unused)1236 buf_dest(void *vbuf, void *unused)
1237 {
1238 (void) unused;
1239 (void) vbuf;
1240
1241 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1242 }
1243
1244 static void
buf_init(void)1245 buf_init(void)
1246 {
1247 uint64_t *ct = NULL;
1248 uint64_t hsize = 1ULL << 12;
1249 int i, j;
1250
1251 /*
1252 * The hash table is big enough to fill all of physical memory
1253 * with an average block size of zfs_arc_average_blocksize (default 8K).
1254 * By default, the table will take up
1255 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1256 */
1257 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1258 hsize <<= 1;
1259 retry:
1260 buf_hash_table.ht_mask = hsize - 1;
1261 #if defined(_KERNEL)
1262 /*
1263 * Large allocations which do not require contiguous pages
1264 * should be using vmem_alloc() in the linux kernel
1265 */
1266 buf_hash_table.ht_table =
1267 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1268 #else
1269 buf_hash_table.ht_table =
1270 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1271 #endif
1272 if (buf_hash_table.ht_table == NULL) {
1273 ASSERT(hsize > (1ULL << 8));
1274 hsize >>= 1;
1275 goto retry;
1276 }
1277
1278 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1279 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1280 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1281 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1282 NULL, NULL, 0);
1283 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1284 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1285
1286 for (i = 0; i < 256; i++)
1287 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1288 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1289
1290 for (i = 0; i < BUF_LOCKS; i++)
1291 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1292 }
1293
1294 #define ARC_MINTIME (hz>>4) /* 62 ms */
1295
1296 /*
1297 * This is the size that the buf occupies in memory. If the buf is compressed,
1298 * it will correspond to the compressed size. You should use this method of
1299 * getting the buf size unless you explicitly need the logical size.
1300 */
1301 uint64_t
arc_buf_size(arc_buf_t * buf)1302 arc_buf_size(arc_buf_t *buf)
1303 {
1304 return (ARC_BUF_COMPRESSED(buf) ?
1305 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1306 }
1307
1308 uint64_t
arc_buf_lsize(arc_buf_t * buf)1309 arc_buf_lsize(arc_buf_t *buf)
1310 {
1311 return (HDR_GET_LSIZE(buf->b_hdr));
1312 }
1313
1314 /*
1315 * This function will return B_TRUE if the buffer is encrypted in memory.
1316 * This buffer can be decrypted by calling arc_untransform().
1317 */
1318 boolean_t
arc_is_encrypted(arc_buf_t * buf)1319 arc_is_encrypted(arc_buf_t *buf)
1320 {
1321 return (ARC_BUF_ENCRYPTED(buf) != 0);
1322 }
1323
1324 /*
1325 * Returns B_TRUE if the buffer represents data that has not had its MAC
1326 * verified yet.
1327 */
1328 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1329 arc_is_unauthenticated(arc_buf_t *buf)
1330 {
1331 return (HDR_NOAUTH(buf->b_hdr) != 0);
1332 }
1333
1334 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1335 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1336 uint8_t *iv, uint8_t *mac)
1337 {
1338 arc_buf_hdr_t *hdr = buf->b_hdr;
1339
1340 ASSERT(HDR_PROTECTED(hdr));
1341
1342 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1343 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1344 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1345 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1346 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1347 }
1348
1349 /*
1350 * Indicates how this buffer is compressed in memory. If it is not compressed
1351 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1352 * arc_untransform() as long as it is also unencrypted.
1353 */
1354 enum zio_compress
arc_get_compression(arc_buf_t * buf)1355 arc_get_compression(arc_buf_t *buf)
1356 {
1357 return (ARC_BUF_COMPRESSED(buf) ?
1358 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1359 }
1360
1361 /*
1362 * Return the compression algorithm used to store this data in the ARC. If ARC
1363 * compression is enabled or this is an encrypted block, this will be the same
1364 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1365 */
1366 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1367 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1368 {
1369 return (HDR_COMPRESSION_ENABLED(hdr) ?
1370 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1371 }
1372
1373 uint8_t
arc_get_complevel(arc_buf_t * buf)1374 arc_get_complevel(arc_buf_t *buf)
1375 {
1376 return (buf->b_hdr->b_complevel);
1377 }
1378
1379 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1380 arc_buf_is_shared(arc_buf_t *buf)
1381 {
1382 boolean_t shared = (buf->b_data != NULL &&
1383 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1384 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1385 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1386 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1387 EQUIV(shared, ARC_BUF_SHARED(buf));
1388 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1389
1390 /*
1391 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1392 * already being shared" requirement prevents us from doing that.
1393 */
1394
1395 return (shared);
1396 }
1397
1398 /*
1399 * Free the checksum associated with this header. If there is no checksum, this
1400 * is a no-op.
1401 */
1402 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1403 arc_cksum_free(arc_buf_hdr_t *hdr)
1404 {
1405 #ifdef ZFS_DEBUG
1406 ASSERT(HDR_HAS_L1HDR(hdr));
1407
1408 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1409 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1410 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1411 hdr->b_l1hdr.b_freeze_cksum = NULL;
1412 }
1413 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1414 #endif
1415 }
1416
1417 /*
1418 * Return true iff at least one of the bufs on hdr is not compressed.
1419 * Encrypted buffers count as compressed.
1420 */
1421 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1422 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1423 {
1424 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1425
1426 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1427 if (!ARC_BUF_COMPRESSED(b)) {
1428 return (B_TRUE);
1429 }
1430 }
1431 return (B_FALSE);
1432 }
1433
1434
1435 /*
1436 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1437 * matches the checksum that is stored in the hdr. If there is no checksum,
1438 * or if the buf is compressed, this is a no-op.
1439 */
1440 static void
arc_cksum_verify(arc_buf_t * buf)1441 arc_cksum_verify(arc_buf_t *buf)
1442 {
1443 #ifdef ZFS_DEBUG
1444 arc_buf_hdr_t *hdr = buf->b_hdr;
1445 zio_cksum_t zc;
1446
1447 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1448 return;
1449
1450 if (ARC_BUF_COMPRESSED(buf))
1451 return;
1452
1453 ASSERT(HDR_HAS_L1HDR(hdr));
1454
1455 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1456
1457 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1458 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1459 return;
1460 }
1461
1462 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1463 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1464 panic("buffer modified while frozen!");
1465 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1466 #endif
1467 }
1468
1469 /*
1470 * This function makes the assumption that data stored in the L2ARC
1471 * will be transformed exactly as it is in the main pool. Because of
1472 * this we can verify the checksum against the reading process's bp.
1473 */
1474 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1475 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1476 {
1477 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1478 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1479
1480 /*
1481 * Block pointers always store the checksum for the logical data.
1482 * If the block pointer has the gang bit set, then the checksum
1483 * it represents is for the reconstituted data and not for an
1484 * individual gang member. The zio pipeline, however, must be able to
1485 * determine the checksum of each of the gang constituents so it
1486 * treats the checksum comparison differently than what we need
1487 * for l2arc blocks. This prevents us from using the
1488 * zio_checksum_error() interface directly. Instead we must call the
1489 * zio_checksum_error_impl() so that we can ensure the checksum is
1490 * generated using the correct checksum algorithm and accounts for the
1491 * logical I/O size and not just a gang fragment.
1492 */
1493 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1494 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1495 zio->io_offset, NULL) == 0);
1496 }
1497
1498 /*
1499 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1500 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1501 * isn't modified later on. If buf is compressed or there is already a checksum
1502 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1503 */
1504 static void
arc_cksum_compute(arc_buf_t * buf)1505 arc_cksum_compute(arc_buf_t *buf)
1506 {
1507 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1508 return;
1509
1510 #ifdef ZFS_DEBUG
1511 arc_buf_hdr_t *hdr = buf->b_hdr;
1512 ASSERT(HDR_HAS_L1HDR(hdr));
1513 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1514 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1515 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1516 return;
1517 }
1518
1519 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1520 ASSERT(!ARC_BUF_COMPRESSED(buf));
1521 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1522 KM_SLEEP);
1523 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1524 hdr->b_l1hdr.b_freeze_cksum);
1525 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1526 #endif
1527 arc_buf_watch(buf);
1528 }
1529
1530 #ifndef _KERNEL
1531 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1532 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1533 {
1534 (void) sig, (void) unused;
1535 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1536 }
1537 #endif
1538
1539 static void
arc_buf_unwatch(arc_buf_t * buf)1540 arc_buf_unwatch(arc_buf_t *buf)
1541 {
1542 #ifndef _KERNEL
1543 if (arc_watch) {
1544 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1545 PROT_READ | PROT_WRITE));
1546 }
1547 #else
1548 (void) buf;
1549 #endif
1550 }
1551
1552 static void
arc_buf_watch(arc_buf_t * buf)1553 arc_buf_watch(arc_buf_t *buf)
1554 {
1555 #ifndef _KERNEL
1556 if (arc_watch)
1557 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1558 PROT_READ));
1559 #else
1560 (void) buf;
1561 #endif
1562 }
1563
1564 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1565 arc_buf_type(arc_buf_hdr_t *hdr)
1566 {
1567 arc_buf_contents_t type;
1568 if (HDR_ISTYPE_METADATA(hdr)) {
1569 type = ARC_BUFC_METADATA;
1570 } else {
1571 type = ARC_BUFC_DATA;
1572 }
1573 VERIFY3U(hdr->b_type, ==, type);
1574 return (type);
1575 }
1576
1577 boolean_t
arc_is_metadata(arc_buf_t * buf)1578 arc_is_metadata(arc_buf_t *buf)
1579 {
1580 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1581 }
1582
1583 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1584 arc_bufc_to_flags(arc_buf_contents_t type)
1585 {
1586 switch (type) {
1587 case ARC_BUFC_DATA:
1588 /* metadata field is 0 if buffer contains normal data */
1589 return (0);
1590 case ARC_BUFC_METADATA:
1591 return (ARC_FLAG_BUFC_METADATA);
1592 default:
1593 break;
1594 }
1595 panic("undefined ARC buffer type!");
1596 return ((uint32_t)-1);
1597 }
1598
1599 void
arc_buf_thaw(arc_buf_t * buf)1600 arc_buf_thaw(arc_buf_t *buf)
1601 {
1602 arc_buf_hdr_t *hdr = buf->b_hdr;
1603
1604 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1605 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1606
1607 arc_cksum_verify(buf);
1608
1609 /*
1610 * Compressed buffers do not manipulate the b_freeze_cksum.
1611 */
1612 if (ARC_BUF_COMPRESSED(buf))
1613 return;
1614
1615 ASSERT(HDR_HAS_L1HDR(hdr));
1616 arc_cksum_free(hdr);
1617 arc_buf_unwatch(buf);
1618 }
1619
1620 void
arc_buf_freeze(arc_buf_t * buf)1621 arc_buf_freeze(arc_buf_t *buf)
1622 {
1623 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1624 return;
1625
1626 if (ARC_BUF_COMPRESSED(buf))
1627 return;
1628
1629 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1630 arc_cksum_compute(buf);
1631 }
1632
1633 /*
1634 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1635 * the following functions should be used to ensure that the flags are
1636 * updated in a thread-safe way. When manipulating the flags either
1637 * the hash_lock must be held or the hdr must be undiscoverable. This
1638 * ensures that we're not racing with any other threads when updating
1639 * the flags.
1640 */
1641 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1642 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1643 {
1644 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1645 hdr->b_flags |= flags;
1646 }
1647
1648 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1649 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1650 {
1651 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1652 hdr->b_flags &= ~flags;
1653 }
1654
1655 /*
1656 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1657 * done in a special way since we have to clear and set bits
1658 * at the same time. Consumers that wish to set the compression bits
1659 * must use this function to ensure that the flags are updated in
1660 * thread-safe manner.
1661 */
1662 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1663 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1664 {
1665 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1666
1667 /*
1668 * Holes and embedded blocks will always have a psize = 0 so
1669 * we ignore the compression of the blkptr and set the
1670 * want to uncompress them. Mark them as uncompressed.
1671 */
1672 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1673 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1674 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1675 } else {
1676 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1677 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1678 }
1679
1680 HDR_SET_COMPRESS(hdr, cmp);
1681 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1682 }
1683
1684 /*
1685 * Looks for another buf on the same hdr which has the data decompressed, copies
1686 * from it, and returns true. If no such buf exists, returns false.
1687 */
1688 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1689 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1690 {
1691 arc_buf_hdr_t *hdr = buf->b_hdr;
1692 boolean_t copied = B_FALSE;
1693
1694 ASSERT(HDR_HAS_L1HDR(hdr));
1695 ASSERT3P(buf->b_data, !=, NULL);
1696 ASSERT(!ARC_BUF_COMPRESSED(buf));
1697
1698 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1699 from = from->b_next) {
1700 /* can't use our own data buffer */
1701 if (from == buf) {
1702 continue;
1703 }
1704
1705 if (!ARC_BUF_COMPRESSED(from)) {
1706 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1707 copied = B_TRUE;
1708 break;
1709 }
1710 }
1711
1712 #ifdef ZFS_DEBUG
1713 /*
1714 * There were no decompressed bufs, so there should not be a
1715 * checksum on the hdr either.
1716 */
1717 if (zfs_flags & ZFS_DEBUG_MODIFY)
1718 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1719 #endif
1720
1721 return (copied);
1722 }
1723
1724 /*
1725 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1726 * This is used during l2arc reconstruction to make empty ARC buffers
1727 * which circumvent the regular disk->arc->l2arc path and instead come
1728 * into being in the reverse order, i.e. l2arc->arc.
1729 */
1730 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t asize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1731 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1732 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1733 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1734 boolean_t prefetch, arc_state_type_t arcs_state)
1735 {
1736 arc_buf_hdr_t *hdr;
1737
1738 ASSERT(size != 0);
1739 ASSERT(dev->l2ad_vdev != NULL);
1740
1741 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1742 hdr->b_birth = birth;
1743 hdr->b_type = type;
1744 hdr->b_flags = 0;
1745 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1746 HDR_SET_LSIZE(hdr, size);
1747 HDR_SET_PSIZE(hdr, psize);
1748 HDR_SET_L2SIZE(hdr, asize);
1749 arc_hdr_set_compress(hdr, compress);
1750 hdr->b_complevel = complevel;
1751 if (protected)
1752 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1753 if (prefetch)
1754 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1755 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1756
1757 hdr->b_dva = dva;
1758
1759 hdr->b_l2hdr.b_dev = dev;
1760 hdr->b_l2hdr.b_daddr = daddr;
1761 hdr->b_l2hdr.b_arcs_state = arcs_state;
1762
1763 return (hdr);
1764 }
1765
1766 /*
1767 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1768 */
1769 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1770 arc_hdr_size(arc_buf_hdr_t *hdr)
1771 {
1772 uint64_t size;
1773
1774 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1775 HDR_GET_PSIZE(hdr) > 0) {
1776 size = HDR_GET_PSIZE(hdr);
1777 } else {
1778 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1779 size = HDR_GET_LSIZE(hdr);
1780 }
1781 return (size);
1782 }
1783
1784 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1785 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1786 {
1787 int ret;
1788 uint64_t csize;
1789 uint64_t lsize = HDR_GET_LSIZE(hdr);
1790 uint64_t psize = HDR_GET_PSIZE(hdr);
1791 abd_t *abd = hdr->b_l1hdr.b_pabd;
1792 boolean_t free_abd = B_FALSE;
1793
1794 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1795 ASSERT(HDR_AUTHENTICATED(hdr));
1796 ASSERT3P(abd, !=, NULL);
1797
1798 /*
1799 * The MAC is calculated on the compressed data that is stored on disk.
1800 * However, if compressed arc is disabled we will only have the
1801 * decompressed data available to us now. Compress it into a temporary
1802 * abd so we can verify the MAC. The performance overhead of this will
1803 * be relatively low, since most objects in an encrypted objset will
1804 * be encrypted (instead of authenticated) anyway.
1805 */
1806 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1807 !HDR_COMPRESSION_ENABLED(hdr)) {
1808 abd = NULL;
1809 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1810 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1811 hdr->b_complevel);
1812 if (csize >= lsize || csize > psize) {
1813 ret = SET_ERROR(EIO);
1814 return (ret);
1815 }
1816 ASSERT3P(abd, !=, NULL);
1817 abd_zero_off(abd, csize, psize - csize);
1818 free_abd = B_TRUE;
1819 }
1820
1821 /*
1822 * Authentication is best effort. We authenticate whenever the key is
1823 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1824 */
1825 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1826 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1827 ASSERT3U(lsize, ==, psize);
1828 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1829 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1830 } else {
1831 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1832 hdr->b_crypt_hdr.b_mac);
1833 }
1834
1835 if (ret == 0)
1836 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1837 else if (ret == ENOENT)
1838 ret = 0;
1839
1840 if (free_abd)
1841 abd_free(abd);
1842
1843 return (ret);
1844 }
1845
1846 /*
1847 * This function will take a header that only has raw encrypted data in
1848 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1849 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1850 * also decompress the data.
1851 */
1852 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1853 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1854 {
1855 int ret;
1856 abd_t *cabd = NULL;
1857 boolean_t no_crypt = B_FALSE;
1858 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1859
1860 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1861 ASSERT(HDR_ENCRYPTED(hdr));
1862
1863 arc_hdr_alloc_abd(hdr, 0);
1864
1865 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1866 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1867 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1868 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1869 if (ret != 0)
1870 goto error;
1871
1872 if (no_crypt) {
1873 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1874 HDR_GET_PSIZE(hdr));
1875 }
1876
1877 /*
1878 * If this header has disabled arc compression but the b_pabd is
1879 * compressed after decrypting it, we need to decompress the newly
1880 * decrypted data.
1881 */
1882 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1883 !HDR_COMPRESSION_ENABLED(hdr)) {
1884 /*
1885 * We want to make sure that we are correctly honoring the
1886 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1887 * and then loan a buffer from it, rather than allocating a
1888 * linear buffer and wrapping it in an abd later.
1889 */
1890 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1891
1892 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1893 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1894 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1895 if (ret != 0) {
1896 goto error;
1897 }
1898
1899 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1900 arc_hdr_size(hdr), hdr);
1901 hdr->b_l1hdr.b_pabd = cabd;
1902 }
1903
1904 return (0);
1905
1906 error:
1907 arc_hdr_free_abd(hdr, B_FALSE);
1908 if (cabd != NULL)
1909 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
1910
1911 return (ret);
1912 }
1913
1914 /*
1915 * This function is called during arc_buf_fill() to prepare the header's
1916 * abd plaintext pointer for use. This involves authenticated protected
1917 * data and decrypting encrypted data into the plaintext abd.
1918 */
1919 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1920 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1921 const zbookmark_phys_t *zb, boolean_t noauth)
1922 {
1923 int ret;
1924
1925 ASSERT(HDR_PROTECTED(hdr));
1926
1927 if (hash_lock != NULL)
1928 mutex_enter(hash_lock);
1929
1930 if (HDR_NOAUTH(hdr) && !noauth) {
1931 /*
1932 * The caller requested authenticated data but our data has
1933 * not been authenticated yet. Verify the MAC now if we can.
1934 */
1935 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1936 if (ret != 0)
1937 goto error;
1938 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1939 /*
1940 * If we only have the encrypted version of the data, but the
1941 * unencrypted version was requested we take this opportunity
1942 * to store the decrypted version in the header for future use.
1943 */
1944 ret = arc_hdr_decrypt(hdr, spa, zb);
1945 if (ret != 0)
1946 goto error;
1947 }
1948
1949 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1950
1951 if (hash_lock != NULL)
1952 mutex_exit(hash_lock);
1953
1954 return (0);
1955
1956 error:
1957 if (hash_lock != NULL)
1958 mutex_exit(hash_lock);
1959
1960 return (ret);
1961 }
1962
1963 /*
1964 * This function is used by the dbuf code to decrypt bonus buffers in place.
1965 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1966 * block, so we use the hash lock here to protect against concurrent calls to
1967 * arc_buf_fill().
1968 */
1969 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1970 arc_buf_untransform_in_place(arc_buf_t *buf)
1971 {
1972 arc_buf_hdr_t *hdr = buf->b_hdr;
1973
1974 ASSERT(HDR_ENCRYPTED(hdr));
1975 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1976 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1977 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1978
1979 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1980 arc_buf_size(buf));
1981 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1982 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1983 }
1984
1985 /*
1986 * Given a buf that has a data buffer attached to it, this function will
1987 * efficiently fill the buf with data of the specified compression setting from
1988 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1989 * are already sharing a data buf, no copy is performed.
1990 *
1991 * If the buf is marked as compressed but uncompressed data was requested, this
1992 * will allocate a new data buffer for the buf, remove that flag, and fill the
1993 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1994 * uncompressed data, and (since we haven't added support for it yet) if you
1995 * want compressed data your buf must already be marked as compressed and have
1996 * the correct-sized data buffer.
1997 */
1998 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)1999 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2000 arc_fill_flags_t flags)
2001 {
2002 int error = 0;
2003 arc_buf_hdr_t *hdr = buf->b_hdr;
2004 boolean_t hdr_compressed =
2005 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2006 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2007 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2008 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2009 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2010
2011 ASSERT3P(buf->b_data, !=, NULL);
2012 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2013 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2014 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2015 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2016 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2017 IMPLY(encrypted, !arc_buf_is_shared(buf));
2018
2019 /*
2020 * If the caller wanted encrypted data we just need to copy it from
2021 * b_rabd and potentially byteswap it. We won't be able to do any
2022 * further transforms on it.
2023 */
2024 if (encrypted) {
2025 ASSERT(HDR_HAS_RABD(hdr));
2026 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2027 HDR_GET_PSIZE(hdr));
2028 goto byteswap;
2029 }
2030
2031 /*
2032 * Adjust encrypted and authenticated headers to accommodate
2033 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2034 * allowed to fail decryption due to keys not being loaded
2035 * without being marked as an IO error.
2036 */
2037 if (HDR_PROTECTED(hdr)) {
2038 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2039 zb, !!(flags & ARC_FILL_NOAUTH));
2040 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2041 return (error);
2042 } else if (error != 0) {
2043 if (hash_lock != NULL)
2044 mutex_enter(hash_lock);
2045 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2046 if (hash_lock != NULL)
2047 mutex_exit(hash_lock);
2048 return (error);
2049 }
2050 }
2051
2052 /*
2053 * There is a special case here for dnode blocks which are
2054 * decrypting their bonus buffers. These blocks may request to
2055 * be decrypted in-place. This is necessary because there may
2056 * be many dnodes pointing into this buffer and there is
2057 * currently no method to synchronize replacing the backing
2058 * b_data buffer and updating all of the pointers. Here we use
2059 * the hash lock to ensure there are no races. If the need
2060 * arises for other types to be decrypted in-place, they must
2061 * add handling here as well.
2062 */
2063 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2064 ASSERT(!hdr_compressed);
2065 ASSERT(!compressed);
2066 ASSERT(!encrypted);
2067
2068 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2069 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2070
2071 if (hash_lock != NULL)
2072 mutex_enter(hash_lock);
2073 arc_buf_untransform_in_place(buf);
2074 if (hash_lock != NULL)
2075 mutex_exit(hash_lock);
2076
2077 /* Compute the hdr's checksum if necessary */
2078 arc_cksum_compute(buf);
2079 }
2080
2081 return (0);
2082 }
2083
2084 if (hdr_compressed == compressed) {
2085 if (ARC_BUF_SHARED(buf)) {
2086 ASSERT(arc_buf_is_shared(buf));
2087 } else {
2088 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2089 arc_buf_size(buf));
2090 }
2091 } else {
2092 ASSERT(hdr_compressed);
2093 ASSERT(!compressed);
2094
2095 /*
2096 * If the buf is sharing its data with the hdr, unlink it and
2097 * allocate a new data buffer for the buf.
2098 */
2099 if (ARC_BUF_SHARED(buf)) {
2100 ASSERTF(ARC_BUF_COMPRESSED(buf),
2101 "buf %p was uncompressed", buf);
2102
2103 /* We need to give the buf its own b_data */
2104 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2105 buf->b_data =
2106 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2107 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2108
2109 /* Previously overhead was 0; just add new overhead */
2110 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2111 } else if (ARC_BUF_COMPRESSED(buf)) {
2112 ASSERT(!arc_buf_is_shared(buf));
2113
2114 /* We need to reallocate the buf's b_data */
2115 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2116 buf);
2117 buf->b_data =
2118 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2119
2120 /* We increased the size of b_data; update overhead */
2121 ARCSTAT_INCR(arcstat_overhead_size,
2122 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2123 }
2124
2125 /*
2126 * Regardless of the buf's previous compression settings, it
2127 * should not be compressed at the end of this function.
2128 */
2129 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2130
2131 /*
2132 * Try copying the data from another buf which already has a
2133 * decompressed version. If that's not possible, it's time to
2134 * bite the bullet and decompress the data from the hdr.
2135 */
2136 if (arc_buf_try_copy_decompressed_data(buf)) {
2137 /* Skip byteswapping and checksumming (already done) */
2138 return (0);
2139 } else {
2140 abd_t dabd;
2141 abd_get_from_buf_struct(&dabd, buf->b_data,
2142 HDR_GET_LSIZE(hdr));
2143 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2144 hdr->b_l1hdr.b_pabd, &dabd,
2145 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2146 &hdr->b_complevel);
2147 abd_free(&dabd);
2148
2149 /*
2150 * Absent hardware errors or software bugs, this should
2151 * be impossible, but log it anyway so we can debug it.
2152 */
2153 if (error != 0) {
2154 zfs_dbgmsg(
2155 "hdr %px, compress %d, psize %d, lsize %d",
2156 hdr, arc_hdr_get_compress(hdr),
2157 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2158 if (hash_lock != NULL)
2159 mutex_enter(hash_lock);
2160 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2161 if (hash_lock != NULL)
2162 mutex_exit(hash_lock);
2163 return (SET_ERROR(EIO));
2164 }
2165 }
2166 }
2167
2168 byteswap:
2169 /* Byteswap the buf's data if necessary */
2170 if (bswap != DMU_BSWAP_NUMFUNCS) {
2171 ASSERT(!HDR_SHARED_DATA(hdr));
2172 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2173 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2174 }
2175
2176 /* Compute the hdr's checksum if necessary */
2177 arc_cksum_compute(buf);
2178
2179 return (0);
2180 }
2181
2182 /*
2183 * If this function is being called to decrypt an encrypted buffer or verify an
2184 * authenticated one, the key must be loaded and a mapping must be made
2185 * available in the keystore via spa_keystore_create_mapping() or one of its
2186 * callers.
2187 */
2188 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2189 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2190 boolean_t in_place)
2191 {
2192 int ret;
2193 arc_fill_flags_t flags = 0;
2194
2195 if (in_place)
2196 flags |= ARC_FILL_IN_PLACE;
2197
2198 ret = arc_buf_fill(buf, spa, zb, flags);
2199 if (ret == ECKSUM) {
2200 /*
2201 * Convert authentication and decryption errors to EIO
2202 * (and generate an ereport) before leaving the ARC.
2203 */
2204 ret = SET_ERROR(EIO);
2205 spa_log_error(spa, zb, buf->b_hdr->b_birth);
2206 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2207 spa, NULL, zb, NULL, 0);
2208 }
2209
2210 return (ret);
2211 }
2212
2213 /*
2214 * Increment the amount of evictable space in the arc_state_t's refcount.
2215 * We account for the space used by the hdr and the arc buf individually
2216 * so that we can add and remove them from the refcount individually.
2217 */
2218 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2219 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2220 {
2221 arc_buf_contents_t type = arc_buf_type(hdr);
2222
2223 ASSERT(HDR_HAS_L1HDR(hdr));
2224
2225 if (GHOST_STATE(state)) {
2226 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2227 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2228 ASSERT(!HDR_HAS_RABD(hdr));
2229 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2230 HDR_GET_LSIZE(hdr), hdr);
2231 return;
2232 }
2233
2234 if (hdr->b_l1hdr.b_pabd != NULL) {
2235 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2236 arc_hdr_size(hdr), hdr);
2237 }
2238 if (HDR_HAS_RABD(hdr)) {
2239 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2240 HDR_GET_PSIZE(hdr), hdr);
2241 }
2242
2243 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2244 buf = buf->b_next) {
2245 if (ARC_BUF_SHARED(buf))
2246 continue;
2247 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2248 arc_buf_size(buf), buf);
2249 }
2250 }
2251
2252 /*
2253 * Decrement the amount of evictable space in the arc_state_t's refcount.
2254 * We account for the space used by the hdr and the arc buf individually
2255 * so that we can add and remove them from the refcount individually.
2256 */
2257 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2258 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2259 {
2260 arc_buf_contents_t type = arc_buf_type(hdr);
2261
2262 ASSERT(HDR_HAS_L1HDR(hdr));
2263
2264 if (GHOST_STATE(state)) {
2265 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2266 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2267 ASSERT(!HDR_HAS_RABD(hdr));
2268 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2269 HDR_GET_LSIZE(hdr), hdr);
2270 return;
2271 }
2272
2273 if (hdr->b_l1hdr.b_pabd != NULL) {
2274 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2275 arc_hdr_size(hdr), hdr);
2276 }
2277 if (HDR_HAS_RABD(hdr)) {
2278 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2279 HDR_GET_PSIZE(hdr), hdr);
2280 }
2281
2282 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2283 buf = buf->b_next) {
2284 if (ARC_BUF_SHARED(buf))
2285 continue;
2286 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2287 arc_buf_size(buf), buf);
2288 }
2289 }
2290
2291 /*
2292 * Add a reference to this hdr indicating that someone is actively
2293 * referencing that memory. When the refcount transitions from 0 to 1,
2294 * we remove it from the respective arc_state_t list to indicate that
2295 * it is not evictable.
2296 */
2297 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2298 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2299 {
2300 arc_state_t *state = hdr->b_l1hdr.b_state;
2301
2302 ASSERT(HDR_HAS_L1HDR(hdr));
2303 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2304 ASSERT(state == arc_anon);
2305 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2306 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2307 }
2308
2309 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2310 state != arc_anon && state != arc_l2c_only) {
2311 /* We don't use the L2-only state list. */
2312 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2313 arc_evictable_space_decrement(hdr, state);
2314 }
2315 }
2316
2317 /*
2318 * Remove a reference from this hdr. When the reference transitions from
2319 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2320 * list making it eligible for eviction.
2321 */
2322 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2323 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2324 {
2325 int cnt;
2326 arc_state_t *state = hdr->b_l1hdr.b_state;
2327
2328 ASSERT(HDR_HAS_L1HDR(hdr));
2329 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2330 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2331
2332 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2333 return (cnt);
2334
2335 if (state == arc_anon) {
2336 arc_hdr_destroy(hdr);
2337 return (0);
2338 }
2339 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2340 arc_change_state(arc_anon, hdr);
2341 arc_hdr_destroy(hdr);
2342 return (0);
2343 }
2344 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2345 arc_evictable_space_increment(hdr, state);
2346 return (0);
2347 }
2348
2349 /*
2350 * Returns detailed information about a specific arc buffer. When the
2351 * state_index argument is set the function will calculate the arc header
2352 * list position for its arc state. Since this requires a linear traversal
2353 * callers are strongly encourage not to do this. However, it can be helpful
2354 * for targeted analysis so the functionality is provided.
2355 */
2356 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2357 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2358 {
2359 (void) state_index;
2360 arc_buf_hdr_t *hdr = ab->b_hdr;
2361 l1arc_buf_hdr_t *l1hdr = NULL;
2362 l2arc_buf_hdr_t *l2hdr = NULL;
2363 arc_state_t *state = NULL;
2364
2365 memset(abi, 0, sizeof (arc_buf_info_t));
2366
2367 if (hdr == NULL)
2368 return;
2369
2370 abi->abi_flags = hdr->b_flags;
2371
2372 if (HDR_HAS_L1HDR(hdr)) {
2373 l1hdr = &hdr->b_l1hdr;
2374 state = l1hdr->b_state;
2375 }
2376 if (HDR_HAS_L2HDR(hdr))
2377 l2hdr = &hdr->b_l2hdr;
2378
2379 if (l1hdr) {
2380 abi->abi_bufcnt = 0;
2381 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2382 abi->abi_bufcnt++;
2383 abi->abi_access = l1hdr->b_arc_access;
2384 abi->abi_mru_hits = l1hdr->b_mru_hits;
2385 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2386 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2387 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2388 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2389 }
2390
2391 if (l2hdr) {
2392 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2393 abi->abi_l2arc_hits = l2hdr->b_hits;
2394 }
2395
2396 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2397 abi->abi_state_contents = arc_buf_type(hdr);
2398 abi->abi_size = arc_hdr_size(hdr);
2399 }
2400
2401 /*
2402 * Move the supplied buffer to the indicated state. The hash lock
2403 * for the buffer must be held by the caller.
2404 */
2405 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2406 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2407 {
2408 arc_state_t *old_state;
2409 int64_t refcnt;
2410 boolean_t update_old, update_new;
2411 arc_buf_contents_t type = arc_buf_type(hdr);
2412
2413 /*
2414 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2415 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2416 * L1 hdr doesn't always exist when we change state to arc_anon before
2417 * destroying a header, in which case reallocating to add the L1 hdr is
2418 * pointless.
2419 */
2420 if (HDR_HAS_L1HDR(hdr)) {
2421 old_state = hdr->b_l1hdr.b_state;
2422 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2423 update_old = (hdr->b_l1hdr.b_buf != NULL ||
2424 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2425
2426 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2427 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2428 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2429 ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2430 } else {
2431 old_state = arc_l2c_only;
2432 refcnt = 0;
2433 update_old = B_FALSE;
2434 }
2435 update_new = update_old;
2436 if (GHOST_STATE(old_state))
2437 update_old = B_TRUE;
2438 if (GHOST_STATE(new_state))
2439 update_new = B_TRUE;
2440
2441 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2442 ASSERT3P(new_state, !=, old_state);
2443
2444 /*
2445 * If this buffer is evictable, transfer it from the
2446 * old state list to the new state list.
2447 */
2448 if (refcnt == 0) {
2449 if (old_state != arc_anon && old_state != arc_l2c_only) {
2450 ASSERT(HDR_HAS_L1HDR(hdr));
2451 /* remove_reference() saves on insert. */
2452 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2453 multilist_remove(&old_state->arcs_list[type],
2454 hdr);
2455 arc_evictable_space_decrement(hdr, old_state);
2456 }
2457 }
2458 if (new_state != arc_anon && new_state != arc_l2c_only) {
2459 /*
2460 * An L1 header always exists here, since if we're
2461 * moving to some L1-cached state (i.e. not l2c_only or
2462 * anonymous), we realloc the header to add an L1hdr
2463 * beforehand.
2464 */
2465 ASSERT(HDR_HAS_L1HDR(hdr));
2466 multilist_insert(&new_state->arcs_list[type], hdr);
2467 arc_evictable_space_increment(hdr, new_state);
2468 }
2469 }
2470
2471 ASSERT(!HDR_EMPTY(hdr));
2472 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2473 buf_hash_remove(hdr);
2474
2475 /* adjust state sizes (ignore arc_l2c_only) */
2476
2477 if (update_new && new_state != arc_l2c_only) {
2478 ASSERT(HDR_HAS_L1HDR(hdr));
2479 if (GHOST_STATE(new_state)) {
2480
2481 /*
2482 * When moving a header to a ghost state, we first
2483 * remove all arc buffers. Thus, we'll have no arc
2484 * buffer to use for the reference. As a result, we
2485 * use the arc header pointer for the reference.
2486 */
2487 (void) zfs_refcount_add_many(
2488 &new_state->arcs_size[type],
2489 HDR_GET_LSIZE(hdr), hdr);
2490 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2491 ASSERT(!HDR_HAS_RABD(hdr));
2492 } else {
2493
2494 /*
2495 * Each individual buffer holds a unique reference,
2496 * thus we must remove each of these references one
2497 * at a time.
2498 */
2499 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2500 buf = buf->b_next) {
2501
2502 /*
2503 * When the arc_buf_t is sharing the data
2504 * block with the hdr, the owner of the
2505 * reference belongs to the hdr. Only
2506 * add to the refcount if the arc_buf_t is
2507 * not shared.
2508 */
2509 if (ARC_BUF_SHARED(buf))
2510 continue;
2511
2512 (void) zfs_refcount_add_many(
2513 &new_state->arcs_size[type],
2514 arc_buf_size(buf), buf);
2515 }
2516
2517 if (hdr->b_l1hdr.b_pabd != NULL) {
2518 (void) zfs_refcount_add_many(
2519 &new_state->arcs_size[type],
2520 arc_hdr_size(hdr), hdr);
2521 }
2522
2523 if (HDR_HAS_RABD(hdr)) {
2524 (void) zfs_refcount_add_many(
2525 &new_state->arcs_size[type],
2526 HDR_GET_PSIZE(hdr), hdr);
2527 }
2528 }
2529 }
2530
2531 if (update_old && old_state != arc_l2c_only) {
2532 ASSERT(HDR_HAS_L1HDR(hdr));
2533 if (GHOST_STATE(old_state)) {
2534 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2535 ASSERT(!HDR_HAS_RABD(hdr));
2536
2537 /*
2538 * When moving a header off of a ghost state,
2539 * the header will not contain any arc buffers.
2540 * We use the arc header pointer for the reference
2541 * which is exactly what we did when we put the
2542 * header on the ghost state.
2543 */
2544
2545 (void) zfs_refcount_remove_many(
2546 &old_state->arcs_size[type],
2547 HDR_GET_LSIZE(hdr), hdr);
2548 } else {
2549
2550 /*
2551 * Each individual buffer holds a unique reference,
2552 * thus we must remove each of these references one
2553 * at a time.
2554 */
2555 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2556 buf = buf->b_next) {
2557
2558 /*
2559 * When the arc_buf_t is sharing the data
2560 * block with the hdr, the owner of the
2561 * reference belongs to the hdr. Only
2562 * add to the refcount if the arc_buf_t is
2563 * not shared.
2564 */
2565 if (ARC_BUF_SHARED(buf))
2566 continue;
2567
2568 (void) zfs_refcount_remove_many(
2569 &old_state->arcs_size[type],
2570 arc_buf_size(buf), buf);
2571 }
2572 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2573 HDR_HAS_RABD(hdr));
2574
2575 if (hdr->b_l1hdr.b_pabd != NULL) {
2576 (void) zfs_refcount_remove_many(
2577 &old_state->arcs_size[type],
2578 arc_hdr_size(hdr), hdr);
2579 }
2580
2581 if (HDR_HAS_RABD(hdr)) {
2582 (void) zfs_refcount_remove_many(
2583 &old_state->arcs_size[type],
2584 HDR_GET_PSIZE(hdr), hdr);
2585 }
2586 }
2587 }
2588
2589 if (HDR_HAS_L1HDR(hdr)) {
2590 hdr->b_l1hdr.b_state = new_state;
2591
2592 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2593 l2arc_hdr_arcstats_decrement_state(hdr);
2594 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2595 l2arc_hdr_arcstats_increment_state(hdr);
2596 }
2597 }
2598 }
2599
2600 void
arc_space_consume(uint64_t space,arc_space_type_t type)2601 arc_space_consume(uint64_t space, arc_space_type_t type)
2602 {
2603 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2604
2605 switch (type) {
2606 default:
2607 break;
2608 case ARC_SPACE_DATA:
2609 ARCSTAT_INCR(arcstat_data_size, space);
2610 break;
2611 case ARC_SPACE_META:
2612 ARCSTAT_INCR(arcstat_metadata_size, space);
2613 break;
2614 case ARC_SPACE_BONUS:
2615 ARCSTAT_INCR(arcstat_bonus_size, space);
2616 break;
2617 case ARC_SPACE_DNODE:
2618 ARCSTAT_INCR(arcstat_dnode_size, space);
2619 break;
2620 case ARC_SPACE_DBUF:
2621 ARCSTAT_INCR(arcstat_dbuf_size, space);
2622 break;
2623 case ARC_SPACE_HDRS:
2624 ARCSTAT_INCR(arcstat_hdr_size, space);
2625 break;
2626 case ARC_SPACE_L2HDRS:
2627 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2628 break;
2629 case ARC_SPACE_ABD_CHUNK_WASTE:
2630 /*
2631 * Note: this includes space wasted by all scatter ABD's, not
2632 * just those allocated by the ARC. But the vast majority of
2633 * scatter ABD's come from the ARC, because other users are
2634 * very short-lived.
2635 */
2636 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2637 break;
2638 }
2639
2640 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2641 ARCSTAT_INCR(arcstat_meta_used, space);
2642
2643 aggsum_add(&arc_sums.arcstat_size, space);
2644 }
2645
2646 void
arc_space_return(uint64_t space,arc_space_type_t type)2647 arc_space_return(uint64_t space, arc_space_type_t type)
2648 {
2649 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2650
2651 switch (type) {
2652 default:
2653 break;
2654 case ARC_SPACE_DATA:
2655 ARCSTAT_INCR(arcstat_data_size, -space);
2656 break;
2657 case ARC_SPACE_META:
2658 ARCSTAT_INCR(arcstat_metadata_size, -space);
2659 break;
2660 case ARC_SPACE_BONUS:
2661 ARCSTAT_INCR(arcstat_bonus_size, -space);
2662 break;
2663 case ARC_SPACE_DNODE:
2664 ARCSTAT_INCR(arcstat_dnode_size, -space);
2665 break;
2666 case ARC_SPACE_DBUF:
2667 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2668 break;
2669 case ARC_SPACE_HDRS:
2670 ARCSTAT_INCR(arcstat_hdr_size, -space);
2671 break;
2672 case ARC_SPACE_L2HDRS:
2673 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2674 break;
2675 case ARC_SPACE_ABD_CHUNK_WASTE:
2676 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2677 break;
2678 }
2679
2680 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2681 ARCSTAT_INCR(arcstat_meta_used, -space);
2682
2683 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2684 aggsum_add(&arc_sums.arcstat_size, -space);
2685 }
2686
2687 /*
2688 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2689 * with the hdr's b_pabd.
2690 */
2691 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2692 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2693 {
2694 /*
2695 * The criteria for sharing a hdr's data are:
2696 * 1. the buffer is not encrypted
2697 * 2. the hdr's compression matches the buf's compression
2698 * 3. the hdr doesn't need to be byteswapped
2699 * 4. the hdr isn't already being shared
2700 * 5. the buf is either compressed or it is the last buf in the hdr list
2701 *
2702 * Criterion #5 maintains the invariant that shared uncompressed
2703 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2704 * might ask, "if a compressed buf is allocated first, won't that be the
2705 * last thing in the list?", but in that case it's impossible to create
2706 * a shared uncompressed buf anyway (because the hdr must be compressed
2707 * to have the compressed buf). You might also think that #3 is
2708 * sufficient to make this guarantee, however it's possible
2709 * (specifically in the rare L2ARC write race mentioned in
2710 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2711 * is shareable, but wasn't at the time of its allocation. Rather than
2712 * allow a new shared uncompressed buf to be created and then shuffle
2713 * the list around to make it the last element, this simply disallows
2714 * sharing if the new buf isn't the first to be added.
2715 */
2716 ASSERT3P(buf->b_hdr, ==, hdr);
2717 boolean_t hdr_compressed =
2718 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2719 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2720 return (!ARC_BUF_ENCRYPTED(buf) &&
2721 buf_compressed == hdr_compressed &&
2722 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2723 !HDR_SHARED_DATA(hdr) &&
2724 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2725 }
2726
2727 /*
2728 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2729 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2730 * copy was made successfully, or an error code otherwise.
2731 */
2732 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2733 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2734 const void *tag, boolean_t encrypted, boolean_t compressed,
2735 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2736 {
2737 arc_buf_t *buf;
2738 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2739
2740 ASSERT(HDR_HAS_L1HDR(hdr));
2741 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2742 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2743 hdr->b_type == ARC_BUFC_METADATA);
2744 ASSERT3P(ret, !=, NULL);
2745 ASSERT3P(*ret, ==, NULL);
2746 IMPLY(encrypted, compressed);
2747
2748 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2749 buf->b_hdr = hdr;
2750 buf->b_data = NULL;
2751 buf->b_next = hdr->b_l1hdr.b_buf;
2752 buf->b_flags = 0;
2753
2754 add_reference(hdr, tag);
2755
2756 /*
2757 * We're about to change the hdr's b_flags. We must either
2758 * hold the hash_lock or be undiscoverable.
2759 */
2760 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2761
2762 /*
2763 * Only honor requests for compressed bufs if the hdr is actually
2764 * compressed. This must be overridden if the buffer is encrypted since
2765 * encrypted buffers cannot be decompressed.
2766 */
2767 if (encrypted) {
2768 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2769 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2770 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2771 } else if (compressed &&
2772 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2773 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2774 flags |= ARC_FILL_COMPRESSED;
2775 }
2776
2777 if (noauth) {
2778 ASSERT0(encrypted);
2779 flags |= ARC_FILL_NOAUTH;
2780 }
2781
2782 /*
2783 * If the hdr's data can be shared then we share the data buffer and
2784 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2785 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2786 * buffer to store the buf's data.
2787 *
2788 * There are two additional restrictions here because we're sharing
2789 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2790 * actively involved in an L2ARC write, because if this buf is used by
2791 * an arc_write() then the hdr's data buffer will be released when the
2792 * write completes, even though the L2ARC write might still be using it.
2793 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2794 * need to be ABD-aware. It must be allocated via
2795 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2796 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2797 * page" buffers because the ABD code needs to handle freeing them
2798 * specially.
2799 */
2800 boolean_t can_share = arc_can_share(hdr, buf) &&
2801 !HDR_L2_WRITING(hdr) &&
2802 hdr->b_l1hdr.b_pabd != NULL &&
2803 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2804 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2805
2806 /* Set up b_data and sharing */
2807 if (can_share) {
2808 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2809 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2810 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2811 } else {
2812 buf->b_data =
2813 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2814 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2815 }
2816 VERIFY3P(buf->b_data, !=, NULL);
2817
2818 hdr->b_l1hdr.b_buf = buf;
2819
2820 /*
2821 * If the user wants the data from the hdr, we need to either copy or
2822 * decompress the data.
2823 */
2824 if (fill) {
2825 ASSERT3P(zb, !=, NULL);
2826 return (arc_buf_fill(buf, spa, zb, flags));
2827 }
2828
2829 return (0);
2830 }
2831
2832 static const char *arc_onloan_tag = "onloan";
2833
2834 static inline void
arc_loaned_bytes_update(int64_t delta)2835 arc_loaned_bytes_update(int64_t delta)
2836 {
2837 atomic_add_64(&arc_loaned_bytes, delta);
2838
2839 /* assert that it did not wrap around */
2840 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2841 }
2842
2843 /*
2844 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2845 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2846 * buffers must be returned to the arc before they can be used by the DMU or
2847 * freed.
2848 */
2849 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2850 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2851 {
2852 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2853 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2854
2855 arc_loaned_bytes_update(arc_buf_size(buf));
2856
2857 return (buf);
2858 }
2859
2860 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2861 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2862 enum zio_compress compression_type, uint8_t complevel)
2863 {
2864 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2865 psize, lsize, compression_type, complevel);
2866
2867 arc_loaned_bytes_update(arc_buf_size(buf));
2868
2869 return (buf);
2870 }
2871
2872 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2873 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2874 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2875 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2876 enum zio_compress compression_type, uint8_t complevel)
2877 {
2878 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2879 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2880 complevel);
2881
2882 atomic_add_64(&arc_loaned_bytes, psize);
2883 return (buf);
2884 }
2885
2886
2887 /*
2888 * Return a loaned arc buffer to the arc.
2889 */
2890 void
arc_return_buf(arc_buf_t * buf,const void * tag)2891 arc_return_buf(arc_buf_t *buf, const void *tag)
2892 {
2893 arc_buf_hdr_t *hdr = buf->b_hdr;
2894
2895 ASSERT3P(buf->b_data, !=, NULL);
2896 ASSERT(HDR_HAS_L1HDR(hdr));
2897 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2898 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2899
2900 arc_loaned_bytes_update(-arc_buf_size(buf));
2901 }
2902
2903 /* Detach an arc_buf from a dbuf (tag) */
2904 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2905 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2906 {
2907 arc_buf_hdr_t *hdr = buf->b_hdr;
2908
2909 ASSERT3P(buf->b_data, !=, NULL);
2910 ASSERT(HDR_HAS_L1HDR(hdr));
2911 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2912 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2913
2914 arc_loaned_bytes_update(arc_buf_size(buf));
2915 }
2916
2917 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2918 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2919 {
2920 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2921
2922 df->l2df_abd = abd;
2923 df->l2df_size = size;
2924 df->l2df_type = type;
2925 mutex_enter(&l2arc_free_on_write_mtx);
2926 list_insert_head(l2arc_free_on_write, df);
2927 mutex_exit(&l2arc_free_on_write_mtx);
2928 }
2929
2930 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2931 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2932 {
2933 arc_state_t *state = hdr->b_l1hdr.b_state;
2934 arc_buf_contents_t type = arc_buf_type(hdr);
2935 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2936
2937 /* protected by hash lock, if in the hash table */
2938 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2939 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2940 ASSERT(state != arc_anon && state != arc_l2c_only);
2941
2942 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2943 size, hdr);
2944 }
2945 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2946 if (type == ARC_BUFC_METADATA) {
2947 arc_space_return(size, ARC_SPACE_META);
2948 } else {
2949 ASSERT(type == ARC_BUFC_DATA);
2950 arc_space_return(size, ARC_SPACE_DATA);
2951 }
2952
2953 if (free_rdata) {
2954 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2955 } else {
2956 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2957 }
2958 }
2959
2960 /*
2961 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2962 * data buffer, we transfer the refcount ownership to the hdr and update
2963 * the appropriate kstats.
2964 */
2965 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2966 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2967 {
2968 ASSERT(arc_can_share(hdr, buf));
2969 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2970 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2971 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2972
2973 /*
2974 * Start sharing the data buffer. We transfer the
2975 * refcount ownership to the hdr since it always owns
2976 * the refcount whenever an arc_buf_t is shared.
2977 */
2978 zfs_refcount_transfer_ownership_many(
2979 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2980 arc_hdr_size(hdr), buf, hdr);
2981 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2982 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2983 HDR_ISTYPE_METADATA(hdr));
2984 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2985 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2986
2987 /*
2988 * Since we've transferred ownership to the hdr we need
2989 * to increment its compressed and uncompressed kstats and
2990 * decrement the overhead size.
2991 */
2992 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2993 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2994 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2995 }
2996
2997 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2998 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2999 {
3000 ASSERT(arc_buf_is_shared(buf));
3001 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3002 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3003
3004 /*
3005 * We are no longer sharing this buffer so we need
3006 * to transfer its ownership to the rightful owner.
3007 */
3008 zfs_refcount_transfer_ownership_many(
3009 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3010 arc_hdr_size(hdr), hdr, buf);
3011 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3012 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3013 abd_free(hdr->b_l1hdr.b_pabd);
3014 hdr->b_l1hdr.b_pabd = NULL;
3015 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3016
3017 /*
3018 * Since the buffer is no longer shared between
3019 * the arc buf and the hdr, count it as overhead.
3020 */
3021 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3022 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3023 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3024 }
3025
3026 /*
3027 * Remove an arc_buf_t from the hdr's buf list and return the last
3028 * arc_buf_t on the list. If no buffers remain on the list then return
3029 * NULL.
3030 */
3031 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3032 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3033 {
3034 ASSERT(HDR_HAS_L1HDR(hdr));
3035 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3036
3037 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3038 arc_buf_t *lastbuf = NULL;
3039
3040 /*
3041 * Remove the buf from the hdr list and locate the last
3042 * remaining buffer on the list.
3043 */
3044 while (*bufp != NULL) {
3045 if (*bufp == buf)
3046 *bufp = buf->b_next;
3047
3048 /*
3049 * If we've removed a buffer in the middle of
3050 * the list then update the lastbuf and update
3051 * bufp.
3052 */
3053 if (*bufp != NULL) {
3054 lastbuf = *bufp;
3055 bufp = &(*bufp)->b_next;
3056 }
3057 }
3058 buf->b_next = NULL;
3059 ASSERT3P(lastbuf, !=, buf);
3060 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3061
3062 return (lastbuf);
3063 }
3064
3065 /*
3066 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3067 * list and free it.
3068 */
3069 static void
arc_buf_destroy_impl(arc_buf_t * buf)3070 arc_buf_destroy_impl(arc_buf_t *buf)
3071 {
3072 arc_buf_hdr_t *hdr = buf->b_hdr;
3073
3074 /*
3075 * Free up the data associated with the buf but only if we're not
3076 * sharing this with the hdr. If we are sharing it with the hdr, the
3077 * hdr is responsible for doing the free.
3078 */
3079 if (buf->b_data != NULL) {
3080 /*
3081 * We're about to change the hdr's b_flags. We must either
3082 * hold the hash_lock or be undiscoverable.
3083 */
3084 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3085
3086 arc_cksum_verify(buf);
3087 arc_buf_unwatch(buf);
3088
3089 if (ARC_BUF_SHARED(buf)) {
3090 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3091 } else {
3092 ASSERT(!arc_buf_is_shared(buf));
3093 uint64_t size = arc_buf_size(buf);
3094 arc_free_data_buf(hdr, buf->b_data, size, buf);
3095 ARCSTAT_INCR(arcstat_overhead_size, -size);
3096 }
3097 buf->b_data = NULL;
3098
3099 /*
3100 * If we have no more encrypted buffers and we've already
3101 * gotten a copy of the decrypted data we can free b_rabd
3102 * to save some space.
3103 */
3104 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3105 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3106 arc_buf_t *b;
3107 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3108 if (b != buf && ARC_BUF_ENCRYPTED(b))
3109 break;
3110 }
3111 if (b == NULL)
3112 arc_hdr_free_abd(hdr, B_TRUE);
3113 }
3114 }
3115
3116 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3117
3118 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3119 /*
3120 * If the current arc_buf_t is sharing its data buffer with the
3121 * hdr, then reassign the hdr's b_pabd to share it with the new
3122 * buffer at the end of the list. The shared buffer is always
3123 * the last one on the hdr's buffer list.
3124 *
3125 * There is an equivalent case for compressed bufs, but since
3126 * they aren't guaranteed to be the last buf in the list and
3127 * that is an exceedingly rare case, we just allow that space be
3128 * wasted temporarily. We must also be careful not to share
3129 * encrypted buffers, since they cannot be shared.
3130 */
3131 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3132 /* Only one buf can be shared at once */
3133 ASSERT(!arc_buf_is_shared(lastbuf));
3134 /* hdr is uncompressed so can't have compressed buf */
3135 ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3136
3137 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3138 arc_hdr_free_abd(hdr, B_FALSE);
3139
3140 /*
3141 * We must setup a new shared block between the
3142 * last buffer and the hdr. The data would have
3143 * been allocated by the arc buf so we need to transfer
3144 * ownership to the hdr since it's now being shared.
3145 */
3146 arc_share_buf(hdr, lastbuf);
3147 }
3148 } else if (HDR_SHARED_DATA(hdr)) {
3149 /*
3150 * Uncompressed shared buffers are always at the end
3151 * of the list. Compressed buffers don't have the
3152 * same requirements. This makes it hard to
3153 * simply assert that the lastbuf is shared so
3154 * we rely on the hdr's compression flags to determine
3155 * if we have a compressed, shared buffer.
3156 */
3157 ASSERT3P(lastbuf, !=, NULL);
3158 ASSERT(arc_buf_is_shared(lastbuf) ||
3159 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3160 }
3161
3162 /*
3163 * Free the checksum if we're removing the last uncompressed buf from
3164 * this hdr.
3165 */
3166 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3167 arc_cksum_free(hdr);
3168 }
3169
3170 /* clean up the buf */
3171 buf->b_hdr = NULL;
3172 kmem_cache_free(buf_cache, buf);
3173 }
3174
3175 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3176 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3177 {
3178 uint64_t size;
3179 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3180
3181 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3182 ASSERT(HDR_HAS_L1HDR(hdr));
3183 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3184 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3185
3186 if (alloc_rdata) {
3187 size = HDR_GET_PSIZE(hdr);
3188 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3189 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3190 alloc_flags);
3191 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3192 ARCSTAT_INCR(arcstat_raw_size, size);
3193 } else {
3194 size = arc_hdr_size(hdr);
3195 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3196 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3197 alloc_flags);
3198 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3199 }
3200
3201 ARCSTAT_INCR(arcstat_compressed_size, size);
3202 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3203 }
3204
3205 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3206 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3207 {
3208 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3209
3210 ASSERT(HDR_HAS_L1HDR(hdr));
3211 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3212 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3213
3214 /*
3215 * If the hdr is currently being written to the l2arc then
3216 * we defer freeing the data by adding it to the l2arc_free_on_write
3217 * list. The l2arc will free the data once it's finished
3218 * writing it to the l2arc device.
3219 */
3220 if (HDR_L2_WRITING(hdr)) {
3221 arc_hdr_free_on_write(hdr, free_rdata);
3222 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3223 } else if (free_rdata) {
3224 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3225 } else {
3226 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3227 }
3228
3229 if (free_rdata) {
3230 hdr->b_crypt_hdr.b_rabd = NULL;
3231 ARCSTAT_INCR(arcstat_raw_size, -size);
3232 } else {
3233 hdr->b_l1hdr.b_pabd = NULL;
3234 }
3235
3236 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3237 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3238
3239 ARCSTAT_INCR(arcstat_compressed_size, -size);
3240 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3241 }
3242
3243 /*
3244 * Allocate empty anonymous ARC header. The header will get its identity
3245 * assigned and buffers attached later as part of read or write operations.
3246 *
3247 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3248 * inserts it into ARC hash to become globally visible and allocates physical
3249 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3250 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3251 * sharing one of them with the physical ABD buffer.
3252 *
3253 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3254 * data. Then after compression and/or encryption arc_write_ready() allocates
3255 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3256 * buffer. On disk write completion arc_write_done() assigns the header its
3257 * new identity (b_dva + b_birth) and inserts into ARC hash.
3258 *
3259 * In case of partial overwrite the old data is read first as described. Then
3260 * arc_release() either allocates new anonymous ARC header and moves the ARC
3261 * buffer to it, or reuses the old ARC header by discarding its identity and
3262 * removing it from ARC hash. After buffer modification normal write process
3263 * follows as described.
3264 */
3265 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3266 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3267 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3268 arc_buf_contents_t type)
3269 {
3270 arc_buf_hdr_t *hdr;
3271
3272 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3273 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3274
3275 ASSERT(HDR_EMPTY(hdr));
3276 #ifdef ZFS_DEBUG
3277 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3278 #endif
3279 HDR_SET_PSIZE(hdr, psize);
3280 HDR_SET_LSIZE(hdr, lsize);
3281 hdr->b_spa = spa;
3282 hdr->b_type = type;
3283 hdr->b_flags = 0;
3284 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3285 arc_hdr_set_compress(hdr, compression_type);
3286 hdr->b_complevel = complevel;
3287 if (protected)
3288 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3289
3290 hdr->b_l1hdr.b_state = arc_anon;
3291 hdr->b_l1hdr.b_arc_access = 0;
3292 hdr->b_l1hdr.b_mru_hits = 0;
3293 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3294 hdr->b_l1hdr.b_mfu_hits = 0;
3295 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3296 hdr->b_l1hdr.b_buf = NULL;
3297
3298 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3299
3300 return (hdr);
3301 }
3302
3303 /*
3304 * Transition between the two allocation states for the arc_buf_hdr struct.
3305 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3306 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3307 * version is used when a cache buffer is only in the L2ARC in order to reduce
3308 * memory usage.
3309 */
3310 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3311 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3312 {
3313 ASSERT(HDR_HAS_L2HDR(hdr));
3314
3315 arc_buf_hdr_t *nhdr;
3316 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3317
3318 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3319 (old == hdr_l2only_cache && new == hdr_full_cache));
3320
3321 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3322
3323 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3324 buf_hash_remove(hdr);
3325
3326 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3327
3328 if (new == hdr_full_cache) {
3329 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3330 /*
3331 * arc_access and arc_change_state need to be aware that a
3332 * header has just come out of L2ARC, so we set its state to
3333 * l2c_only even though it's about to change.
3334 */
3335 nhdr->b_l1hdr.b_state = arc_l2c_only;
3336
3337 /* Verify previous threads set to NULL before freeing */
3338 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3339 ASSERT(!HDR_HAS_RABD(hdr));
3340 } else {
3341 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3342 #ifdef ZFS_DEBUG
3343 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3344 #endif
3345
3346 /*
3347 * If we've reached here, We must have been called from
3348 * arc_evict_hdr(), as such we should have already been
3349 * removed from any ghost list we were previously on
3350 * (which protects us from racing with arc_evict_state),
3351 * thus no locking is needed during this check.
3352 */
3353 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3354
3355 /*
3356 * A buffer must not be moved into the arc_l2c_only
3357 * state if it's not finished being written out to the
3358 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3359 * might try to be accessed, even though it was removed.
3360 */
3361 VERIFY(!HDR_L2_WRITING(hdr));
3362 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3363 ASSERT(!HDR_HAS_RABD(hdr));
3364
3365 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3366 }
3367 /*
3368 * The header has been reallocated so we need to re-insert it into any
3369 * lists it was on.
3370 */
3371 (void) buf_hash_insert(nhdr, NULL);
3372
3373 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3374
3375 mutex_enter(&dev->l2ad_mtx);
3376
3377 /*
3378 * We must place the realloc'ed header back into the list at
3379 * the same spot. Otherwise, if it's placed earlier in the list,
3380 * l2arc_write_buffers() could find it during the function's
3381 * write phase, and try to write it out to the l2arc.
3382 */
3383 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3384 list_remove(&dev->l2ad_buflist, hdr);
3385
3386 mutex_exit(&dev->l2ad_mtx);
3387
3388 /*
3389 * Since we're using the pointer address as the tag when
3390 * incrementing and decrementing the l2ad_alloc refcount, we
3391 * must remove the old pointer (that we're about to destroy) and
3392 * add the new pointer to the refcount. Otherwise we'd remove
3393 * the wrong pointer address when calling arc_hdr_destroy() later.
3394 */
3395
3396 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3397 arc_hdr_size(hdr), hdr);
3398 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3399 arc_hdr_size(nhdr), nhdr);
3400
3401 buf_discard_identity(hdr);
3402 kmem_cache_free(old, hdr);
3403
3404 return (nhdr);
3405 }
3406
3407 /*
3408 * This function is used by the send / receive code to convert a newly
3409 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3410 * is also used to allow the root objset block to be updated without altering
3411 * its embedded MACs. Both block types will always be uncompressed so we do not
3412 * have to worry about compression type or psize.
3413 */
3414 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3415 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3416 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3417 const uint8_t *mac)
3418 {
3419 arc_buf_hdr_t *hdr = buf->b_hdr;
3420
3421 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3422 ASSERT(HDR_HAS_L1HDR(hdr));
3423 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3424
3425 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3426 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3427 hdr->b_crypt_hdr.b_dsobj = dsobj;
3428 hdr->b_crypt_hdr.b_ot = ot;
3429 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3430 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3431 if (!arc_hdr_has_uncompressed_buf(hdr))
3432 arc_cksum_free(hdr);
3433
3434 if (salt != NULL)
3435 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3436 if (iv != NULL)
3437 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3438 if (mac != NULL)
3439 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3440 }
3441
3442 /*
3443 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3444 * The buf is returned thawed since we expect the consumer to modify it.
3445 */
3446 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3447 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3448 int32_t size)
3449 {
3450 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3451 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3452
3453 arc_buf_t *buf = NULL;
3454 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3455 B_FALSE, B_FALSE, &buf));
3456 arc_buf_thaw(buf);
3457
3458 return (buf);
3459 }
3460
3461 /*
3462 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3463 * for bufs containing metadata.
3464 */
3465 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3466 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3467 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3468 {
3469 ASSERT3U(lsize, >, 0);
3470 ASSERT3U(lsize, >=, psize);
3471 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3472 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3473
3474 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3475 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3476
3477 arc_buf_t *buf = NULL;
3478 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3479 B_TRUE, B_FALSE, B_FALSE, &buf));
3480 arc_buf_thaw(buf);
3481
3482 /*
3483 * To ensure that the hdr has the correct data in it if we call
3484 * arc_untransform() on this buf before it's been written to disk,
3485 * it's easiest if we just set up sharing between the buf and the hdr.
3486 */
3487 arc_share_buf(hdr, buf);
3488
3489 return (buf);
3490 }
3491
3492 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3493 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3494 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3495 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3496 enum zio_compress compression_type, uint8_t complevel)
3497 {
3498 arc_buf_hdr_t *hdr;
3499 arc_buf_t *buf;
3500 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3501 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3502
3503 ASSERT3U(lsize, >, 0);
3504 ASSERT3U(lsize, >=, psize);
3505 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3506 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3507
3508 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3509 compression_type, complevel, type);
3510
3511 hdr->b_crypt_hdr.b_dsobj = dsobj;
3512 hdr->b_crypt_hdr.b_ot = ot;
3513 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3514 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3515 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3516 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3517 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3518
3519 /*
3520 * This buffer will be considered encrypted even if the ot is not an
3521 * encrypted type. It will become authenticated instead in
3522 * arc_write_ready().
3523 */
3524 buf = NULL;
3525 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3526 B_FALSE, B_FALSE, &buf));
3527 arc_buf_thaw(buf);
3528
3529 return (buf);
3530 }
3531
3532 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3533 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3534 boolean_t state_only)
3535 {
3536 uint64_t lsize = HDR_GET_LSIZE(hdr);
3537 uint64_t psize = HDR_GET_PSIZE(hdr);
3538 uint64_t asize = HDR_GET_L2SIZE(hdr);
3539 arc_buf_contents_t type = hdr->b_type;
3540 int64_t lsize_s;
3541 int64_t psize_s;
3542 int64_t asize_s;
3543
3544 /* For L2 we expect the header's b_l2size to be valid */
3545 ASSERT3U(asize, >=, psize);
3546
3547 if (incr) {
3548 lsize_s = lsize;
3549 psize_s = psize;
3550 asize_s = asize;
3551 } else {
3552 lsize_s = -lsize;
3553 psize_s = -psize;
3554 asize_s = -asize;
3555 }
3556
3557 /* If the buffer is a prefetch, count it as such. */
3558 if (HDR_PREFETCH(hdr)) {
3559 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3560 } else {
3561 /*
3562 * We use the value stored in the L2 header upon initial
3563 * caching in L2ARC. This value will be updated in case
3564 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3565 * metadata (log entry) cannot currently be updated. Having
3566 * the ARC state in the L2 header solves the problem of a
3567 * possibly absent L1 header (apparent in buffers restored
3568 * from persistent L2ARC).
3569 */
3570 switch (hdr->b_l2hdr.b_arcs_state) {
3571 case ARC_STATE_MRU_GHOST:
3572 case ARC_STATE_MRU:
3573 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3574 break;
3575 case ARC_STATE_MFU_GHOST:
3576 case ARC_STATE_MFU:
3577 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3578 break;
3579 default:
3580 break;
3581 }
3582 }
3583
3584 if (state_only)
3585 return;
3586
3587 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3588 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3589
3590 switch (type) {
3591 case ARC_BUFC_DATA:
3592 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3593 break;
3594 case ARC_BUFC_METADATA:
3595 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3596 break;
3597 default:
3598 break;
3599 }
3600 }
3601
3602
3603 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3604 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3605 {
3606 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3607 l2arc_dev_t *dev = l2hdr->b_dev;
3608
3609 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3610 ASSERT(HDR_HAS_L2HDR(hdr));
3611
3612 list_remove(&dev->l2ad_buflist, hdr);
3613
3614 l2arc_hdr_arcstats_decrement(hdr);
3615 if (dev->l2ad_vdev != NULL) {
3616 uint64_t asize = HDR_GET_L2SIZE(hdr);
3617 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3618 }
3619
3620 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3621 hdr);
3622 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3623 }
3624
3625 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3626 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3627 {
3628 if (HDR_HAS_L1HDR(hdr)) {
3629 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3630 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3631 }
3632 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3633 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3634
3635 if (HDR_HAS_L2HDR(hdr)) {
3636 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3637 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3638
3639 if (!buflist_held)
3640 mutex_enter(&dev->l2ad_mtx);
3641
3642 /*
3643 * Even though we checked this conditional above, we
3644 * need to check this again now that we have the
3645 * l2ad_mtx. This is because we could be racing with
3646 * another thread calling l2arc_evict() which might have
3647 * destroyed this header's L2 portion as we were waiting
3648 * to acquire the l2ad_mtx. If that happens, we don't
3649 * want to re-destroy the header's L2 portion.
3650 */
3651 if (HDR_HAS_L2HDR(hdr)) {
3652
3653 if (!HDR_EMPTY(hdr))
3654 buf_discard_identity(hdr);
3655
3656 arc_hdr_l2hdr_destroy(hdr);
3657 }
3658
3659 if (!buflist_held)
3660 mutex_exit(&dev->l2ad_mtx);
3661 }
3662
3663 /*
3664 * The header's identify can only be safely discarded once it is no
3665 * longer discoverable. This requires removing it from the hash table
3666 * and the l2arc header list. After this point the hash lock can not
3667 * be used to protect the header.
3668 */
3669 if (!HDR_EMPTY(hdr))
3670 buf_discard_identity(hdr);
3671
3672 if (HDR_HAS_L1HDR(hdr)) {
3673 arc_cksum_free(hdr);
3674
3675 while (hdr->b_l1hdr.b_buf != NULL)
3676 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3677
3678 if (hdr->b_l1hdr.b_pabd != NULL)
3679 arc_hdr_free_abd(hdr, B_FALSE);
3680
3681 if (HDR_HAS_RABD(hdr))
3682 arc_hdr_free_abd(hdr, B_TRUE);
3683 }
3684
3685 ASSERT3P(hdr->b_hash_next, ==, NULL);
3686 if (HDR_HAS_L1HDR(hdr)) {
3687 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3688 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3689 #ifdef ZFS_DEBUG
3690 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3691 #endif
3692 kmem_cache_free(hdr_full_cache, hdr);
3693 } else {
3694 kmem_cache_free(hdr_l2only_cache, hdr);
3695 }
3696 }
3697
3698 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3699 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3700 {
3701 arc_buf_hdr_t *hdr = buf->b_hdr;
3702
3703 if (hdr->b_l1hdr.b_state == arc_anon) {
3704 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3705 ASSERT(ARC_BUF_LAST(buf));
3706 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3707 VERIFY0(remove_reference(hdr, tag));
3708 return;
3709 }
3710
3711 kmutex_t *hash_lock = HDR_LOCK(hdr);
3712 mutex_enter(hash_lock);
3713
3714 ASSERT3P(hdr, ==, buf->b_hdr);
3715 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3716 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3717 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3718 ASSERT3P(buf->b_data, !=, NULL);
3719
3720 arc_buf_destroy_impl(buf);
3721 (void) remove_reference(hdr, tag);
3722 mutex_exit(hash_lock);
3723 }
3724
3725 /*
3726 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3727 * state of the header is dependent on its state prior to entering this
3728 * function. The following transitions are possible:
3729 *
3730 * - arc_mru -> arc_mru_ghost
3731 * - arc_mfu -> arc_mfu_ghost
3732 * - arc_mru_ghost -> arc_l2c_only
3733 * - arc_mru_ghost -> deleted
3734 * - arc_mfu_ghost -> arc_l2c_only
3735 * - arc_mfu_ghost -> deleted
3736 * - arc_uncached -> deleted
3737 *
3738 * Return total size of evicted data buffers for eviction progress tracking.
3739 * When evicting from ghost states return logical buffer size to make eviction
3740 * progress at the same (or at least comparable) rate as from non-ghost states.
3741 *
3742 * Return *real_evicted for actual ARC size reduction to wake up threads
3743 * waiting for it. For non-ghost states it includes size of evicted data
3744 * buffers (the headers are not freed there). For ghost states it includes
3745 * only the evicted headers size.
3746 */
3747 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3748 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3749 {
3750 arc_state_t *evicted_state, *state;
3751 int64_t bytes_evicted = 0;
3752 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3753 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3754
3755 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3756 ASSERT(HDR_HAS_L1HDR(hdr));
3757 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3758 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3759 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3760
3761 *real_evicted = 0;
3762 state = hdr->b_l1hdr.b_state;
3763 if (GHOST_STATE(state)) {
3764
3765 /*
3766 * l2arc_write_buffers() relies on a header's L1 portion
3767 * (i.e. its b_pabd field) during it's write phase.
3768 * Thus, we cannot push a header onto the arc_l2c_only
3769 * state (removing its L1 piece) until the header is
3770 * done being written to the l2arc.
3771 */
3772 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3773 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3774 return (bytes_evicted);
3775 }
3776
3777 ARCSTAT_BUMP(arcstat_deleted);
3778 bytes_evicted += HDR_GET_LSIZE(hdr);
3779
3780 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3781
3782 if (HDR_HAS_L2HDR(hdr)) {
3783 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3784 ASSERT(!HDR_HAS_RABD(hdr));
3785 /*
3786 * This buffer is cached on the 2nd Level ARC;
3787 * don't destroy the header.
3788 */
3789 arc_change_state(arc_l2c_only, hdr);
3790 /*
3791 * dropping from L1+L2 cached to L2-only,
3792 * realloc to remove the L1 header.
3793 */
3794 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3795 hdr_l2only_cache);
3796 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3797 } else {
3798 arc_change_state(arc_anon, hdr);
3799 arc_hdr_destroy(hdr);
3800 *real_evicted += HDR_FULL_SIZE;
3801 }
3802 return (bytes_evicted);
3803 }
3804
3805 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3806 evicted_state = (state == arc_uncached) ? arc_anon :
3807 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3808
3809 /* prefetch buffers have a minimum lifespan */
3810 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3811 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3812 MSEC_TO_TICK(min_lifetime)) {
3813 ARCSTAT_BUMP(arcstat_evict_skip);
3814 return (bytes_evicted);
3815 }
3816
3817 if (HDR_HAS_L2HDR(hdr)) {
3818 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3819 } else {
3820 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3821 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3822 HDR_GET_LSIZE(hdr));
3823
3824 switch (state->arcs_state) {
3825 case ARC_STATE_MRU:
3826 ARCSTAT_INCR(
3827 arcstat_evict_l2_eligible_mru,
3828 HDR_GET_LSIZE(hdr));
3829 break;
3830 case ARC_STATE_MFU:
3831 ARCSTAT_INCR(
3832 arcstat_evict_l2_eligible_mfu,
3833 HDR_GET_LSIZE(hdr));
3834 break;
3835 default:
3836 break;
3837 }
3838 } else {
3839 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3840 HDR_GET_LSIZE(hdr));
3841 }
3842 }
3843
3844 bytes_evicted += arc_hdr_size(hdr);
3845 *real_evicted += arc_hdr_size(hdr);
3846
3847 /*
3848 * If this hdr is being evicted and has a compressed buffer then we
3849 * discard it here before we change states. This ensures that the
3850 * accounting is updated correctly in arc_free_data_impl().
3851 */
3852 if (hdr->b_l1hdr.b_pabd != NULL)
3853 arc_hdr_free_abd(hdr, B_FALSE);
3854
3855 if (HDR_HAS_RABD(hdr))
3856 arc_hdr_free_abd(hdr, B_TRUE);
3857
3858 arc_change_state(evicted_state, hdr);
3859 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3860 if (evicted_state == arc_anon) {
3861 arc_hdr_destroy(hdr);
3862 *real_evicted += HDR_FULL_SIZE;
3863 } else {
3864 ASSERT(HDR_IN_HASH_TABLE(hdr));
3865 }
3866
3867 return (bytes_evicted);
3868 }
3869
3870 static void
arc_set_need_free(void)3871 arc_set_need_free(void)
3872 {
3873 ASSERT(MUTEX_HELD(&arc_evict_lock));
3874 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3875 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3876 if (aw == NULL) {
3877 arc_need_free = MAX(-remaining, 0);
3878 } else {
3879 arc_need_free =
3880 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3881 }
3882 }
3883
3884 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)3885 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3886 uint64_t spa, uint64_t bytes)
3887 {
3888 multilist_sublist_t *mls;
3889 uint64_t bytes_evicted = 0, real_evicted = 0;
3890 arc_buf_hdr_t *hdr;
3891 kmutex_t *hash_lock;
3892 uint_t evict_count = zfs_arc_evict_batch_limit;
3893
3894 ASSERT3P(marker, !=, NULL);
3895
3896 mls = multilist_sublist_lock_idx(ml, idx);
3897
3898 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3899 hdr = multilist_sublist_prev(mls, marker)) {
3900 if ((evict_count == 0) || (bytes_evicted >= bytes))
3901 break;
3902
3903 /*
3904 * To keep our iteration location, move the marker
3905 * forward. Since we're not holding hdr's hash lock, we
3906 * must be very careful and not remove 'hdr' from the
3907 * sublist. Otherwise, other consumers might mistake the
3908 * 'hdr' as not being on a sublist when they call the
3909 * multilist_link_active() function (they all rely on
3910 * the hash lock protecting concurrent insertions and
3911 * removals). multilist_sublist_move_forward() was
3912 * specifically implemented to ensure this is the case
3913 * (only 'marker' will be removed and re-inserted).
3914 */
3915 multilist_sublist_move_forward(mls, marker);
3916
3917 /*
3918 * The only case where the b_spa field should ever be
3919 * zero, is the marker headers inserted by
3920 * arc_evict_state(). It's possible for multiple threads
3921 * to be calling arc_evict_state() concurrently (e.g.
3922 * dsl_pool_close() and zio_inject_fault()), so we must
3923 * skip any markers we see from these other threads.
3924 */
3925 if (hdr->b_spa == 0)
3926 continue;
3927
3928 /* we're only interested in evicting buffers of a certain spa */
3929 if (spa != 0 && hdr->b_spa != spa) {
3930 ARCSTAT_BUMP(arcstat_evict_skip);
3931 continue;
3932 }
3933
3934 hash_lock = HDR_LOCK(hdr);
3935
3936 /*
3937 * We aren't calling this function from any code path
3938 * that would already be holding a hash lock, so we're
3939 * asserting on this assumption to be defensive in case
3940 * this ever changes. Without this check, it would be
3941 * possible to incorrectly increment arcstat_mutex_miss
3942 * below (e.g. if the code changed such that we called
3943 * this function with a hash lock held).
3944 */
3945 ASSERT(!MUTEX_HELD(hash_lock));
3946
3947 if (mutex_tryenter(hash_lock)) {
3948 uint64_t revicted;
3949 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3950 mutex_exit(hash_lock);
3951
3952 bytes_evicted += evicted;
3953 real_evicted += revicted;
3954
3955 /*
3956 * If evicted is zero, arc_evict_hdr() must have
3957 * decided to skip this header, don't increment
3958 * evict_count in this case.
3959 */
3960 if (evicted != 0)
3961 evict_count--;
3962
3963 } else {
3964 ARCSTAT_BUMP(arcstat_mutex_miss);
3965 }
3966 }
3967
3968 multilist_sublist_unlock(mls);
3969
3970 /*
3971 * Increment the count of evicted bytes, and wake up any threads that
3972 * are waiting for the count to reach this value. Since the list is
3973 * ordered by ascending aew_count, we pop off the beginning of the
3974 * list until we reach the end, or a waiter that's past the current
3975 * "count". Doing this outside the loop reduces the number of times
3976 * we need to acquire the global arc_evict_lock.
3977 *
3978 * Only wake when there's sufficient free memory in the system
3979 * (specifically, arc_sys_free/2, which by default is a bit more than
3980 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3981 */
3982 mutex_enter(&arc_evict_lock);
3983 arc_evict_count += real_evicted;
3984
3985 if (arc_free_memory() > arc_sys_free / 2) {
3986 arc_evict_waiter_t *aw;
3987 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3988 aw->aew_count <= arc_evict_count) {
3989 list_remove(&arc_evict_waiters, aw);
3990 cv_broadcast(&aw->aew_cv);
3991 }
3992 }
3993 arc_set_need_free();
3994 mutex_exit(&arc_evict_lock);
3995
3996 /*
3997 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3998 * if the average cached block is small), eviction can be on-CPU for
3999 * many seconds. To ensure that other threads that may be bound to
4000 * this CPU are able to make progress, make a voluntary preemption
4001 * call here.
4002 */
4003 kpreempt(KPREEMPT_SYNC);
4004
4005 return (bytes_evicted);
4006 }
4007
4008 static arc_buf_hdr_t *
arc_state_alloc_marker(void)4009 arc_state_alloc_marker(void)
4010 {
4011 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4012
4013 /*
4014 * A b_spa of 0 is used to indicate that this header is
4015 * a marker. This fact is used in arc_evict_state_impl().
4016 */
4017 marker->b_spa = 0;
4018
4019 return (marker);
4020 }
4021
4022 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4023 arc_state_free_marker(arc_buf_hdr_t *marker)
4024 {
4025 kmem_cache_free(hdr_full_cache, marker);
4026 }
4027
4028 /*
4029 * Allocate an array of buffer headers used as placeholders during arc state
4030 * eviction.
4031 */
4032 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4033 arc_state_alloc_markers(int count)
4034 {
4035 arc_buf_hdr_t **markers;
4036
4037 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4038 for (int i = 0; i < count; i++)
4039 markers[i] = arc_state_alloc_marker();
4040 return (markers);
4041 }
4042
4043 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4044 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4045 {
4046 for (int i = 0; i < count; i++)
4047 arc_state_free_marker(markers[i]);
4048 kmem_free(markers, sizeof (*markers) * count);
4049 }
4050
4051 /*
4052 * Evict buffers from the given arc state, until we've removed the
4053 * specified number of bytes. Move the removed buffers to the
4054 * appropriate evict state.
4055 *
4056 * This function makes a "best effort". It skips over any buffers
4057 * it can't get a hash_lock on, and so, may not catch all candidates.
4058 * It may also return without evicting as much space as requested.
4059 *
4060 * If bytes is specified using the special value ARC_EVICT_ALL, this
4061 * will evict all available (i.e. unlocked and evictable) buffers from
4062 * the given arc state; which is used by arc_flush().
4063 */
4064 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4065 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4066 uint64_t bytes)
4067 {
4068 uint64_t total_evicted = 0;
4069 multilist_t *ml = &state->arcs_list[type];
4070 int num_sublists;
4071 arc_buf_hdr_t **markers;
4072
4073 num_sublists = multilist_get_num_sublists(ml);
4074
4075 /*
4076 * If we've tried to evict from each sublist, made some
4077 * progress, but still have not hit the target number of bytes
4078 * to evict, we want to keep trying. The markers allow us to
4079 * pick up where we left off for each individual sublist, rather
4080 * than starting from the tail each time.
4081 */
4082 if (zthr_iscurthread(arc_evict_zthr)) {
4083 markers = arc_state_evict_markers;
4084 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4085 } else {
4086 markers = arc_state_alloc_markers(num_sublists);
4087 }
4088 for (int i = 0; i < num_sublists; i++) {
4089 multilist_sublist_t *mls;
4090
4091 mls = multilist_sublist_lock_idx(ml, i);
4092 multilist_sublist_insert_tail(mls, markers[i]);
4093 multilist_sublist_unlock(mls);
4094 }
4095
4096 /*
4097 * While we haven't hit our target number of bytes to evict, or
4098 * we're evicting all available buffers.
4099 */
4100 while (total_evicted < bytes) {
4101 int sublist_idx = multilist_get_random_index(ml);
4102 uint64_t scan_evicted = 0;
4103
4104 /*
4105 * Start eviction using a randomly selected sublist,
4106 * this is to try and evenly balance eviction across all
4107 * sublists. Always starting at the same sublist
4108 * (e.g. index 0) would cause evictions to favor certain
4109 * sublists over others.
4110 */
4111 for (int i = 0; i < num_sublists; i++) {
4112 uint64_t bytes_remaining;
4113 uint64_t bytes_evicted;
4114
4115 if (total_evicted < bytes)
4116 bytes_remaining = bytes - total_evicted;
4117 else
4118 break;
4119
4120 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4121 markers[sublist_idx], spa, bytes_remaining);
4122
4123 scan_evicted += bytes_evicted;
4124 total_evicted += bytes_evicted;
4125
4126 /* we've reached the end, wrap to the beginning */
4127 if (++sublist_idx >= num_sublists)
4128 sublist_idx = 0;
4129 }
4130
4131 /*
4132 * If we didn't evict anything during this scan, we have
4133 * no reason to believe we'll evict more during another
4134 * scan, so break the loop.
4135 */
4136 if (scan_evicted == 0) {
4137 /* This isn't possible, let's make that obvious */
4138 ASSERT3S(bytes, !=, 0);
4139
4140 /*
4141 * When bytes is ARC_EVICT_ALL, the only way to
4142 * break the loop is when scan_evicted is zero.
4143 * In that case, we actually have evicted enough,
4144 * so we don't want to increment the kstat.
4145 */
4146 if (bytes != ARC_EVICT_ALL) {
4147 ASSERT3S(total_evicted, <, bytes);
4148 ARCSTAT_BUMP(arcstat_evict_not_enough);
4149 }
4150
4151 break;
4152 }
4153 }
4154
4155 for (int i = 0; i < num_sublists; i++) {
4156 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4157 multilist_sublist_remove(mls, markers[i]);
4158 multilist_sublist_unlock(mls);
4159 }
4160 if (markers != arc_state_evict_markers)
4161 arc_state_free_markers(markers, num_sublists);
4162
4163 return (total_evicted);
4164 }
4165
4166 /*
4167 * Flush all "evictable" data of the given type from the arc state
4168 * specified. This will not evict any "active" buffers (i.e. referenced).
4169 *
4170 * When 'retry' is set to B_FALSE, the function will make a single pass
4171 * over the state and evict any buffers that it can. Since it doesn't
4172 * continually retry the eviction, it might end up leaving some buffers
4173 * in the ARC due to lock misses.
4174 *
4175 * When 'retry' is set to B_TRUE, the function will continually retry the
4176 * eviction until *all* evictable buffers have been removed from the
4177 * state. As a result, if concurrent insertions into the state are
4178 * allowed (e.g. if the ARC isn't shutting down), this function might
4179 * wind up in an infinite loop, continually trying to evict buffers.
4180 */
4181 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4182 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4183 boolean_t retry)
4184 {
4185 uint64_t evicted = 0;
4186
4187 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4188 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4189
4190 if (!retry)
4191 break;
4192 }
4193
4194 return (evicted);
4195 }
4196
4197 /*
4198 * Evict the specified number of bytes from the state specified. This
4199 * function prevents us from trying to evict more from a state's list
4200 * than is "evictable", and to skip evicting altogether when passed a
4201 * negative value for "bytes". In contrast, arc_evict_state() will
4202 * evict everything it can, when passed a negative value for "bytes".
4203 */
4204 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4205 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4206 {
4207 uint64_t delta;
4208
4209 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4210 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4211 bytes);
4212 return (arc_evict_state(state, type, 0, delta));
4213 }
4214
4215 return (0);
4216 }
4217
4218 /*
4219 * Adjust specified fraction, taking into account initial ghost state(s) size,
4220 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4221 * decreasing it, plus a balance factor, controlling the decrease rate, used
4222 * to balance metadata vs data.
4223 */
4224 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4225 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4226 uint_t balance)
4227 {
4228 if (total < 8 || up + down == 0)
4229 return (frac);
4230
4231 /*
4232 * We should not have more ghost hits than ghost size, but they
4233 * may get close. Restrict maximum adjustment in that case.
4234 */
4235 if (up + down >= total / 4) {
4236 uint64_t scale = (up + down) / (total / 8);
4237 up /= scale;
4238 down /= scale;
4239 }
4240
4241 /* Get maximal dynamic range by choosing optimal shifts. */
4242 int s = highbit64(total);
4243 s = MIN(64 - s, 32);
4244
4245 uint64_t ofrac = (1ULL << 32) - frac;
4246
4247 if (frac >= 4 * ofrac)
4248 up /= frac / (2 * ofrac + 1);
4249 up = (up << s) / (total >> (32 - s));
4250 if (ofrac >= 4 * frac)
4251 down /= ofrac / (2 * frac + 1);
4252 down = (down << s) / (total >> (32 - s));
4253 down = down * 100 / balance;
4254
4255 return (frac + up - down);
4256 }
4257
4258 /*
4259 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4260 */
4261 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4262 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4263 {
4264 uint64_t q = (x / divisor);
4265 uint64_t r = (x % divisor);
4266
4267 return ((q * multiplier) + ((r * multiplier) / divisor));
4268 }
4269
4270 /*
4271 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4272 */
4273 static uint64_t
arc_evict(void)4274 arc_evict(void)
4275 {
4276 uint64_t bytes, total_evicted = 0;
4277 int64_t e, mrud, mrum, mfud, mfum, w;
4278 static uint64_t ogrd, ogrm, ogfd, ogfm;
4279 static uint64_t gsrd, gsrm, gsfd, gsfm;
4280 uint64_t ngrd, ngrm, ngfd, ngfm;
4281
4282 /* Get current size of ARC states we can evict from. */
4283 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4284 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4285 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4286 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4287 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4288 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4289 uint64_t d = mrud + mfud;
4290 uint64_t m = mrum + mfum;
4291 uint64_t t = d + m;
4292
4293 /* Get ARC ghost hits since last eviction. */
4294 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4295 uint64_t grd = ngrd - ogrd;
4296 ogrd = ngrd;
4297 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4298 uint64_t grm = ngrm - ogrm;
4299 ogrm = ngrm;
4300 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4301 uint64_t gfd = ngfd - ogfd;
4302 ogfd = ngfd;
4303 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4304 uint64_t gfm = ngfm - ogfm;
4305 ogfm = ngfm;
4306
4307 /* Adjust ARC states balance based on ghost hits. */
4308 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4309 grm + gfm, grd + gfd, zfs_arc_meta_balance);
4310 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4311 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4312
4313 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4314 uint64_t ac = arc_c;
4315 int64_t wt = t - (asize - ac);
4316
4317 /*
4318 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4319 * target is not evictable or if they go over arc_dnode_limit.
4320 */
4321 int64_t prune = 0;
4322 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4323 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4324 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4325 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4326 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4327 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4328 if (nem > w * 3 / 4) {
4329 prune = dn / sizeof (dnode_t) *
4330 zfs_arc_dnode_reduce_percent / 100;
4331 if (nem < w && w > 4)
4332 prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4333 }
4334 if (dn > arc_dnode_limit) {
4335 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4336 zfs_arc_dnode_reduce_percent / 100);
4337 }
4338 if (prune > 0)
4339 arc_prune_async(prune);
4340
4341 /* Evict MRU metadata. */
4342 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4343 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4344 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4345 total_evicted += bytes;
4346 mrum -= bytes;
4347 asize -= bytes;
4348
4349 /* Evict MFU metadata. */
4350 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4351 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4352 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4353 total_evicted += bytes;
4354 mfum -= bytes;
4355 asize -= bytes;
4356
4357 /* Evict MRU data. */
4358 wt -= m - total_evicted;
4359 w = wt * (int64_t)(arc_pd >> 16) >> 16;
4360 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4361 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4362 total_evicted += bytes;
4363 mrud -= bytes;
4364 asize -= bytes;
4365
4366 /* Evict MFU data. */
4367 e = asize - ac;
4368 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4369 mfud -= bytes;
4370 total_evicted += bytes;
4371
4372 /*
4373 * Evict ghost lists
4374 *
4375 * Size of each state's ghost list represents how much that state
4376 * may grow by shrinking the other states. Would it need to shrink
4377 * other states to zero (that is unlikely), its ghost size would be
4378 * equal to sum of other three state sizes. But excessive ghost
4379 * size may result in false ghost hits (too far back), that may
4380 * never result in real cache hits if several states are competing.
4381 * So choose some arbitraty point of 1/2 of other state sizes.
4382 */
4383 gsrd = (mrum + mfud + mfum) / 2;
4384 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4385 gsrd;
4386 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4387
4388 gsrm = (mrud + mfud + mfum) / 2;
4389 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4390 gsrm;
4391 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4392
4393 gsfd = (mrud + mrum + mfum) / 2;
4394 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4395 gsfd;
4396 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4397
4398 gsfm = (mrud + mrum + mfud) / 2;
4399 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4400 gsfm;
4401 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4402
4403 return (total_evicted);
4404 }
4405
4406 static void
arc_flush_impl(uint64_t guid,boolean_t retry)4407 arc_flush_impl(uint64_t guid, boolean_t retry)
4408 {
4409 ASSERT(!retry || guid == 0);
4410
4411 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4412 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4413
4414 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4415 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4416
4417 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4418 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4419
4420 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4421 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4422
4423 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4424 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4425 }
4426
4427 void
arc_flush(spa_t * spa,boolean_t retry)4428 arc_flush(spa_t *spa, boolean_t retry)
4429 {
4430 /*
4431 * If retry is B_TRUE, a spa must not be specified since we have
4432 * no good way to determine if all of a spa's buffers have been
4433 * evicted from an arc state.
4434 */
4435 ASSERT(!retry || spa == NULL);
4436
4437 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4438 }
4439
4440 static arc_async_flush_t *
arc_async_flush_add(uint64_t spa_guid,uint_t level)4441 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4442 {
4443 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4444 af->af_spa_guid = spa_guid;
4445 af->af_cache_level = level;
4446 taskq_init_ent(&af->af_tqent);
4447 list_link_init(&af->af_node);
4448
4449 mutex_enter(&arc_async_flush_lock);
4450 list_insert_tail(&arc_async_flush_list, af);
4451 mutex_exit(&arc_async_flush_lock);
4452
4453 return (af);
4454 }
4455
4456 static void
arc_async_flush_remove(uint64_t spa_guid,uint_t level)4457 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4458 {
4459 mutex_enter(&arc_async_flush_lock);
4460 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4461 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4462 if (af->af_spa_guid == spa_guid &&
4463 af->af_cache_level == level) {
4464 list_remove(&arc_async_flush_list, af);
4465 kmem_free(af, sizeof (*af));
4466 break;
4467 }
4468 }
4469 mutex_exit(&arc_async_flush_lock);
4470 }
4471
4472 static void
arc_flush_task(void * arg)4473 arc_flush_task(void *arg)
4474 {
4475 arc_async_flush_t *af = arg;
4476 hrtime_t start_time = gethrtime();
4477 uint64_t spa_guid = af->af_spa_guid;
4478
4479 arc_flush_impl(spa_guid, B_FALSE);
4480 arc_async_flush_remove(spa_guid, af->af_cache_level);
4481
4482 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
4483 if (elaspsed > 0) {
4484 zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4485 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed);
4486 }
4487 }
4488
4489 /*
4490 * ARC buffers use the spa's load guid and can continue to exist after
4491 * the spa_t is gone (exported). The blocks are orphaned since each
4492 * spa import has a different load guid.
4493 *
4494 * It's OK if the spa is re-imported while this asynchronous flush is
4495 * still in progress. The new spa_load_guid will be different.
4496 *
4497 * Also, arc_fini will wait for any arc_flush_task to finish.
4498 */
4499 void
arc_flush_async(spa_t * spa)4500 arc_flush_async(spa_t *spa)
4501 {
4502 uint64_t spa_guid = spa_load_guid(spa);
4503 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4504
4505 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4506 af, TQ_SLEEP, &af->af_tqent);
4507 }
4508
4509 /*
4510 * Check if a guid is still in-use as part of an async teardown task
4511 */
4512 boolean_t
arc_async_flush_guid_inuse(uint64_t spa_guid)4513 arc_async_flush_guid_inuse(uint64_t spa_guid)
4514 {
4515 mutex_enter(&arc_async_flush_lock);
4516 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4517 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4518 if (af->af_spa_guid == spa_guid) {
4519 mutex_exit(&arc_async_flush_lock);
4520 return (B_TRUE);
4521 }
4522 }
4523 mutex_exit(&arc_async_flush_lock);
4524 return (B_FALSE);
4525 }
4526
4527 uint64_t
arc_reduce_target_size(uint64_t to_free)4528 arc_reduce_target_size(uint64_t to_free)
4529 {
4530 /*
4531 * Get the actual arc size. Even if we don't need it, this updates
4532 * the aggsum lower bound estimate for arc_is_overflowing().
4533 */
4534 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4535
4536 /*
4537 * All callers want the ARC to actually evict (at least) this much
4538 * memory. Therefore we reduce from the lower of the current size and
4539 * the target size. This way, even if arc_c is much higher than
4540 * arc_size (as can be the case after many calls to arc_freed(), we will
4541 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4542 * will evict.
4543 */
4544 uint64_t c = arc_c;
4545 if (c > arc_c_min) {
4546 c = MIN(c, MAX(asize, arc_c_min));
4547 to_free = MIN(to_free, c - arc_c_min);
4548 arc_c = c - to_free;
4549 } else {
4550 to_free = 0;
4551 }
4552
4553 /*
4554 * Whether or not we reduced the target size, request eviction if the
4555 * current size is over it now, since caller obviously wants some RAM.
4556 */
4557 if (asize > arc_c) {
4558 /* See comment in arc_evict_cb_check() on why lock+flag */
4559 mutex_enter(&arc_evict_lock);
4560 arc_evict_needed = B_TRUE;
4561 mutex_exit(&arc_evict_lock);
4562 zthr_wakeup(arc_evict_zthr);
4563 }
4564
4565 return (to_free);
4566 }
4567
4568 /*
4569 * Determine if the system is under memory pressure and is asking
4570 * to reclaim memory. A return value of B_TRUE indicates that the system
4571 * is under memory pressure and that the arc should adjust accordingly.
4572 */
4573 boolean_t
arc_reclaim_needed(void)4574 arc_reclaim_needed(void)
4575 {
4576 return (arc_available_memory() < 0);
4577 }
4578
4579 void
arc_kmem_reap_soon(void)4580 arc_kmem_reap_soon(void)
4581 {
4582 size_t i;
4583 kmem_cache_t *prev_cache = NULL;
4584 kmem_cache_t *prev_data_cache = NULL;
4585
4586 #ifdef _KERNEL
4587 #if defined(_ILP32)
4588 /*
4589 * Reclaim unused memory from all kmem caches.
4590 */
4591 kmem_reap();
4592 #endif
4593 #endif
4594
4595 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4596 #if defined(_ILP32)
4597 /* reach upper limit of cache size on 32-bit */
4598 if (zio_buf_cache[i] == NULL)
4599 break;
4600 #endif
4601 if (zio_buf_cache[i] != prev_cache) {
4602 prev_cache = zio_buf_cache[i];
4603 kmem_cache_reap_now(zio_buf_cache[i]);
4604 }
4605 if (zio_data_buf_cache[i] != prev_data_cache) {
4606 prev_data_cache = zio_data_buf_cache[i];
4607 kmem_cache_reap_now(zio_data_buf_cache[i]);
4608 }
4609 }
4610 kmem_cache_reap_now(buf_cache);
4611 kmem_cache_reap_now(hdr_full_cache);
4612 kmem_cache_reap_now(hdr_l2only_cache);
4613 kmem_cache_reap_now(zfs_btree_leaf_cache);
4614 abd_cache_reap_now();
4615 }
4616
4617 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4618 arc_evict_cb_check(void *arg, zthr_t *zthr)
4619 {
4620 (void) arg, (void) zthr;
4621
4622 #ifdef ZFS_DEBUG
4623 /*
4624 * This is necessary in order to keep the kstat information
4625 * up to date for tools that display kstat data such as the
4626 * mdb ::arc dcmd and the Linux crash utility. These tools
4627 * typically do not call kstat's update function, but simply
4628 * dump out stats from the most recent update. Without
4629 * this call, these commands may show stale stats for the
4630 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4631 * with this call, the data might be out of date if the
4632 * evict thread hasn't been woken recently; but that should
4633 * suffice. The arc_state_t structures can be queried
4634 * directly if more accurate information is needed.
4635 */
4636 if (arc_ksp != NULL)
4637 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4638 #endif
4639
4640 /*
4641 * We have to rely on arc_wait_for_eviction() to tell us when to
4642 * evict, rather than checking if we are overflowing here, so that we
4643 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4644 * If we have become "not overflowing" since arc_wait_for_eviction()
4645 * checked, we need to wake it up. We could broadcast the CV here,
4646 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4647 * would need to use a mutex to ensure that this function doesn't
4648 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4649 * the arc_evict_lock). However, the lock ordering of such a lock
4650 * would necessarily be incorrect with respect to the zthr_lock,
4651 * which is held before this function is called, and is held by
4652 * arc_wait_for_eviction() when it calls zthr_wakeup().
4653 */
4654 if (arc_evict_needed)
4655 return (B_TRUE);
4656
4657 /*
4658 * If we have buffers in uncached state, evict them periodically.
4659 */
4660 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4661 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4662 ddi_get_lbolt() - arc_last_uncached_flush >
4663 MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4664 }
4665
4666 /*
4667 * Keep arc_size under arc_c by running arc_evict which evicts data
4668 * from the ARC.
4669 */
4670 static void
arc_evict_cb(void * arg,zthr_t * zthr)4671 arc_evict_cb(void *arg, zthr_t *zthr)
4672 {
4673 (void) arg;
4674
4675 uint64_t evicted = 0;
4676 fstrans_cookie_t cookie = spl_fstrans_mark();
4677
4678 /* Always try to evict from uncached state. */
4679 arc_last_uncached_flush = ddi_get_lbolt();
4680 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4681 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4682
4683 /* Evict from other states only if told to. */
4684 if (arc_evict_needed)
4685 evicted += arc_evict();
4686
4687 /*
4688 * If evicted is zero, we couldn't evict anything
4689 * via arc_evict(). This could be due to hash lock
4690 * collisions, but more likely due to the majority of
4691 * arc buffers being unevictable. Therefore, even if
4692 * arc_size is above arc_c, another pass is unlikely to
4693 * be helpful and could potentially cause us to enter an
4694 * infinite loop. Additionally, zthr_iscancelled() is
4695 * checked here so that if the arc is shutting down, the
4696 * broadcast will wake any remaining arc evict waiters.
4697 *
4698 * Note we cancel using zthr instead of arc_evict_zthr
4699 * because the latter may not yet be initializd when the
4700 * callback is first invoked.
4701 */
4702 mutex_enter(&arc_evict_lock);
4703 arc_evict_needed = !zthr_iscancelled(zthr) &&
4704 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4705 if (!arc_evict_needed) {
4706 /*
4707 * We're either no longer overflowing, or we
4708 * can't evict anything more, so we should wake
4709 * arc_get_data_impl() sooner.
4710 */
4711 arc_evict_waiter_t *aw;
4712 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4713 cv_broadcast(&aw->aew_cv);
4714 }
4715 arc_set_need_free();
4716 }
4717 mutex_exit(&arc_evict_lock);
4718 spl_fstrans_unmark(cookie);
4719 }
4720
4721 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4722 arc_reap_cb_check(void *arg, zthr_t *zthr)
4723 {
4724 (void) arg, (void) zthr;
4725
4726 int64_t free_memory = arc_available_memory();
4727 static int reap_cb_check_counter = 0;
4728
4729 /*
4730 * If a kmem reap is already active, don't schedule more. We must
4731 * check for this because kmem_cache_reap_soon() won't actually
4732 * block on the cache being reaped (this is to prevent callers from
4733 * becoming implicitly blocked by a system-wide kmem reap -- which,
4734 * on a system with many, many full magazines, can take minutes).
4735 */
4736 if (!kmem_cache_reap_active() && free_memory < 0) {
4737
4738 arc_no_grow = B_TRUE;
4739 arc_warm = B_TRUE;
4740 /*
4741 * Wait at least zfs_grow_retry (default 5) seconds
4742 * before considering growing.
4743 */
4744 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4745 return (B_TRUE);
4746 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4747 arc_no_grow = B_TRUE;
4748 } else if (gethrtime() >= arc_growtime) {
4749 arc_no_grow = B_FALSE;
4750 }
4751
4752 /*
4753 * Called unconditionally every 60 seconds to reclaim unused
4754 * zstd compression and decompression context. This is done
4755 * here to avoid the need for an independent thread.
4756 */
4757 if (!((reap_cb_check_counter++) % 60))
4758 zfs_zstd_cache_reap_now();
4759
4760 return (B_FALSE);
4761 }
4762
4763 /*
4764 * Keep enough free memory in the system by reaping the ARC's kmem
4765 * caches. To cause more slabs to be reapable, we may reduce the
4766 * target size of the cache (arc_c), causing the arc_evict_cb()
4767 * to free more buffers.
4768 */
4769 static void
arc_reap_cb(void * arg,zthr_t * zthr)4770 arc_reap_cb(void *arg, zthr_t *zthr)
4771 {
4772 int64_t can_free, free_memory, to_free;
4773
4774 (void) arg, (void) zthr;
4775 fstrans_cookie_t cookie = spl_fstrans_mark();
4776
4777 /*
4778 * Kick off asynchronous kmem_reap()'s of all our caches.
4779 */
4780 arc_kmem_reap_soon();
4781
4782 /*
4783 * Wait at least arc_kmem_cache_reap_retry_ms between
4784 * arc_kmem_reap_soon() calls. Without this check it is possible to
4785 * end up in a situation where we spend lots of time reaping
4786 * caches, while we're near arc_c_min. Waiting here also gives the
4787 * subsequent free memory check a chance of finding that the
4788 * asynchronous reap has already freed enough memory, and we don't
4789 * need to call arc_reduce_target_size().
4790 */
4791 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4792
4793 /*
4794 * Reduce the target size as needed to maintain the amount of free
4795 * memory in the system at a fraction of the arc_size (1/128th by
4796 * default). If oversubscribed (free_memory < 0) then reduce the
4797 * target arc_size by the deficit amount plus the fractional
4798 * amount. If free memory is positive but less than the fractional
4799 * amount, reduce by what is needed to hit the fractional amount.
4800 */
4801 free_memory = arc_available_memory();
4802 can_free = arc_c - arc_c_min;
4803 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4804 if (to_free > 0)
4805 arc_reduce_target_size(to_free);
4806 spl_fstrans_unmark(cookie);
4807 }
4808
4809 #ifdef _KERNEL
4810 /*
4811 * Determine the amount of memory eligible for eviction contained in the
4812 * ARC. All clean data reported by the ghost lists can always be safely
4813 * evicted. Due to arc_c_min, the same does not hold for all clean data
4814 * contained by the regular mru and mfu lists.
4815 *
4816 * In the case of the regular mru and mfu lists, we need to report as
4817 * much clean data as possible, such that evicting that same reported
4818 * data will not bring arc_size below arc_c_min. Thus, in certain
4819 * circumstances, the total amount of clean data in the mru and mfu
4820 * lists might not actually be evictable.
4821 *
4822 * The following two distinct cases are accounted for:
4823 *
4824 * 1. The sum of the amount of dirty data contained by both the mru and
4825 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4826 * is greater than or equal to arc_c_min.
4827 * (i.e. amount of dirty data >= arc_c_min)
4828 *
4829 * This is the easy case; all clean data contained by the mru and mfu
4830 * lists is evictable. Evicting all clean data can only drop arc_size
4831 * to the amount of dirty data, which is greater than arc_c_min.
4832 *
4833 * 2. The sum of the amount of dirty data contained by both the mru and
4834 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4835 * is less than arc_c_min.
4836 * (i.e. arc_c_min > amount of dirty data)
4837 *
4838 * 2.1. arc_size is greater than or equal arc_c_min.
4839 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4840 *
4841 * In this case, not all clean data from the regular mru and mfu
4842 * lists is actually evictable; we must leave enough clean data
4843 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4844 * evictable data from the two lists combined, is exactly the
4845 * difference between arc_size and arc_c_min.
4846 *
4847 * 2.2. arc_size is less than arc_c_min
4848 * (i.e. arc_c_min > arc_size > amount of dirty data)
4849 *
4850 * In this case, none of the data contained in the mru and mfu
4851 * lists is evictable, even if it's clean. Since arc_size is
4852 * already below arc_c_min, evicting any more would only
4853 * increase this negative difference.
4854 */
4855
4856 #endif /* _KERNEL */
4857
4858 /*
4859 * Adapt arc info given the number of bytes we are trying to add and
4860 * the state that we are coming from. This function is only called
4861 * when we are adding new content to the cache.
4862 */
4863 static void
arc_adapt(uint64_t bytes)4864 arc_adapt(uint64_t bytes)
4865 {
4866 /*
4867 * Wake reap thread if we do not have any available memory
4868 */
4869 if (arc_reclaim_needed()) {
4870 zthr_wakeup(arc_reap_zthr);
4871 return;
4872 }
4873
4874 if (arc_no_grow)
4875 return;
4876
4877 if (arc_c >= arc_c_max)
4878 return;
4879
4880 /*
4881 * If we're within (2 * maxblocksize) bytes of the target
4882 * cache size, increment the target cache size
4883 */
4884 if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4885 2 * SPA_MAXBLOCKSIZE >= arc_c) {
4886 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4887 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4888 arc_c = arc_c_max;
4889 }
4890 }
4891
4892 /*
4893 * Check if ARC current size has grown past our upper thresholds.
4894 */
4895 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)4896 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
4897 {
4898 /*
4899 * We just compare the lower bound here for performance reasons. Our
4900 * primary goals are to make sure that the arc never grows without
4901 * bound, and that it can reach its maximum size. This check
4902 * accomplishes both goals. The maximum amount we could run over by is
4903 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4904 * in the ARC. In practice, that's in the tens of MB, which is low
4905 * enough to be safe.
4906 */
4907 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
4908 zfs_max_recordsize;
4909
4910 /* Always allow at least one block of overflow. */
4911 if (over < 0)
4912 return (ARC_OVF_NONE);
4913
4914 /* If we are under memory pressure, report severe overflow. */
4915 if (!lax)
4916 return (ARC_OVF_SEVERE);
4917
4918 /* We are not under pressure, so be more or less relaxed. */
4919 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
4920 if (use_reserve)
4921 overflow *= 3;
4922 return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4923 }
4924
4925 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)4926 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4927 int alloc_flags)
4928 {
4929 arc_buf_contents_t type = arc_buf_type(hdr);
4930
4931 arc_get_data_impl(hdr, size, tag, alloc_flags);
4932 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4933 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4934 else
4935 return (abd_alloc(size, type == ARC_BUFC_METADATA));
4936 }
4937
4938 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)4939 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4940 {
4941 arc_buf_contents_t type = arc_buf_type(hdr);
4942
4943 arc_get_data_impl(hdr, size, tag, 0);
4944 if (type == ARC_BUFC_METADATA) {
4945 return (zio_buf_alloc(size));
4946 } else {
4947 ASSERT(type == ARC_BUFC_DATA);
4948 return (zio_data_buf_alloc(size));
4949 }
4950 }
4951
4952 /*
4953 * Wait for the specified amount of data (in bytes) to be evicted from the
4954 * ARC, and for there to be sufficient free memory in the system.
4955 * The lax argument specifies that caller does not have a specific reason
4956 * to wait, not aware of any memory pressure. Low memory handlers though
4957 * should set it to B_FALSE to wait for all required evictions to complete.
4958 * The use_reserve argument allows some callers to wait less than others
4959 * to not block critical code paths, possibly blocking other resources.
4960 */
4961 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)4962 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
4963 {
4964 switch (arc_is_overflowing(lax, use_reserve)) {
4965 case ARC_OVF_NONE:
4966 return;
4967 case ARC_OVF_SOME:
4968 /*
4969 * This is a bit racy without taking arc_evict_lock, but the
4970 * worst that can happen is we either call zthr_wakeup() extra
4971 * time due to race with other thread here, or the set flag
4972 * get cleared by arc_evict_cb(), which is unlikely due to
4973 * big hysteresis, but also not important since at this level
4974 * of overflow the eviction is purely advisory. Same time
4975 * taking the global lock here every time without waiting for
4976 * the actual eviction creates a significant lock contention.
4977 */
4978 if (!arc_evict_needed) {
4979 arc_evict_needed = B_TRUE;
4980 zthr_wakeup(arc_evict_zthr);
4981 }
4982 return;
4983 case ARC_OVF_SEVERE:
4984 default:
4985 {
4986 arc_evict_waiter_t aw;
4987 list_link_init(&aw.aew_node);
4988 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4989
4990 uint64_t last_count = 0;
4991 mutex_enter(&arc_evict_lock);
4992 if (!list_is_empty(&arc_evict_waiters)) {
4993 arc_evict_waiter_t *last =
4994 list_tail(&arc_evict_waiters);
4995 last_count = last->aew_count;
4996 } else if (!arc_evict_needed) {
4997 arc_evict_needed = B_TRUE;
4998 zthr_wakeup(arc_evict_zthr);
4999 }
5000 /*
5001 * Note, the last waiter's count may be less than
5002 * arc_evict_count if we are low on memory in which
5003 * case arc_evict_state_impl() may have deferred
5004 * wakeups (but still incremented arc_evict_count).
5005 */
5006 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5007
5008 list_insert_tail(&arc_evict_waiters, &aw);
5009
5010 arc_set_need_free();
5011
5012 DTRACE_PROBE3(arc__wait__for__eviction,
5013 uint64_t, amount,
5014 uint64_t, arc_evict_count,
5015 uint64_t, aw.aew_count);
5016
5017 /*
5018 * We will be woken up either when arc_evict_count reaches
5019 * aew_count, or when the ARC is no longer overflowing and
5020 * eviction completes.
5021 * In case of "false" wakeup, we will still be on the list.
5022 */
5023 do {
5024 cv_wait(&aw.aew_cv, &arc_evict_lock);
5025 } while (list_link_active(&aw.aew_node));
5026 mutex_exit(&arc_evict_lock);
5027
5028 cv_destroy(&aw.aew_cv);
5029 }
5030 }
5031 }
5032
5033 /*
5034 * Allocate a block and return it to the caller. If we are hitting the
5035 * hard limit for the cache size, we must sleep, waiting for the eviction
5036 * thread to catch up. If we're past the target size but below the hard
5037 * limit, we'll only signal the reclaim thread and continue on.
5038 */
5039 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5040 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5041 int alloc_flags)
5042 {
5043 arc_adapt(size);
5044
5045 /*
5046 * If arc_size is currently overflowing, we must be adding data
5047 * faster than we are evicting. To ensure we don't compound the
5048 * problem by adding more data and forcing arc_size to grow even
5049 * further past it's target size, we wait for the eviction thread to
5050 * make some progress. We also wait for there to be sufficient free
5051 * memory in the system, as measured by arc_free_memory().
5052 *
5053 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5054 * requested size to be evicted. This should be more than 100%, to
5055 * ensure that that progress is also made towards getting arc_size
5056 * under arc_c. See the comment above zfs_arc_eviction_pct.
5057 */
5058 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5059 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5060
5061 arc_buf_contents_t type = arc_buf_type(hdr);
5062 if (type == ARC_BUFC_METADATA) {
5063 arc_space_consume(size, ARC_SPACE_META);
5064 } else {
5065 arc_space_consume(size, ARC_SPACE_DATA);
5066 }
5067
5068 /*
5069 * Update the state size. Note that ghost states have a
5070 * "ghost size" and so don't need to be updated.
5071 */
5072 arc_state_t *state = hdr->b_l1hdr.b_state;
5073 if (!GHOST_STATE(state)) {
5074
5075 (void) zfs_refcount_add_many(&state->arcs_size[type], size,
5076 tag);
5077
5078 /*
5079 * If this is reached via arc_read, the link is
5080 * protected by the hash lock. If reached via
5081 * arc_buf_alloc, the header should not be accessed by
5082 * any other thread. And, if reached via arc_read_done,
5083 * the hash lock will protect it if it's found in the
5084 * hash table; otherwise no other thread should be
5085 * trying to [add|remove]_reference it.
5086 */
5087 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5088 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5089 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5090 size, tag);
5091 }
5092 }
5093 }
5094
5095 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)5096 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5097 const void *tag)
5098 {
5099 arc_free_data_impl(hdr, size, tag);
5100 abd_free(abd);
5101 }
5102
5103 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)5104 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5105 {
5106 arc_buf_contents_t type = arc_buf_type(hdr);
5107
5108 arc_free_data_impl(hdr, size, tag);
5109 if (type == ARC_BUFC_METADATA) {
5110 zio_buf_free(buf, size);
5111 } else {
5112 ASSERT(type == ARC_BUFC_DATA);
5113 zio_data_buf_free(buf, size);
5114 }
5115 }
5116
5117 /*
5118 * Free the arc data buffer.
5119 */
5120 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5121 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5122 {
5123 arc_state_t *state = hdr->b_l1hdr.b_state;
5124 arc_buf_contents_t type = arc_buf_type(hdr);
5125
5126 /* protected by hash lock, if in the hash table */
5127 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5128 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5129 ASSERT(state != arc_anon && state != arc_l2c_only);
5130
5131 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5132 size, tag);
5133 }
5134 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5135
5136 VERIFY3U(hdr->b_type, ==, type);
5137 if (type == ARC_BUFC_METADATA) {
5138 arc_space_return(size, ARC_SPACE_META);
5139 } else {
5140 ASSERT(type == ARC_BUFC_DATA);
5141 arc_space_return(size, ARC_SPACE_DATA);
5142 }
5143 }
5144
5145 /*
5146 * This routine is called whenever a buffer is accessed.
5147 */
5148 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5149 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5150 {
5151 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5152 ASSERT(HDR_HAS_L1HDR(hdr));
5153
5154 /*
5155 * Update buffer prefetch status.
5156 */
5157 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5158 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5159 if (was_prefetch != now_prefetch) {
5160 if (was_prefetch) {
5161 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5162 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5163 prefetch);
5164 }
5165 if (HDR_HAS_L2HDR(hdr))
5166 l2arc_hdr_arcstats_decrement_state(hdr);
5167 if (was_prefetch) {
5168 arc_hdr_clear_flags(hdr,
5169 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5170 } else {
5171 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5172 }
5173 if (HDR_HAS_L2HDR(hdr))
5174 l2arc_hdr_arcstats_increment_state(hdr);
5175 }
5176 if (now_prefetch) {
5177 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5178 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5179 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5180 } else {
5181 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5182 }
5183 }
5184 if (arc_flags & ARC_FLAG_L2CACHE)
5185 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5186
5187 clock_t now = ddi_get_lbolt();
5188 if (hdr->b_l1hdr.b_state == arc_anon) {
5189 arc_state_t *new_state;
5190 /*
5191 * This buffer is not in the cache, and does not appear in
5192 * our "ghost" lists. Add it to the MRU or uncached state.
5193 */
5194 ASSERT0(hdr->b_l1hdr.b_arc_access);
5195 hdr->b_l1hdr.b_arc_access = now;
5196 if (HDR_UNCACHED(hdr)) {
5197 new_state = arc_uncached;
5198 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5199 hdr);
5200 } else {
5201 new_state = arc_mru;
5202 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5203 }
5204 arc_change_state(new_state, hdr);
5205 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5206 /*
5207 * This buffer has been accessed once recently and either
5208 * its read is still in progress or it is in the cache.
5209 */
5210 if (HDR_IO_IN_PROGRESS(hdr)) {
5211 hdr->b_l1hdr.b_arc_access = now;
5212 return;
5213 }
5214 hdr->b_l1hdr.b_mru_hits++;
5215 ARCSTAT_BUMP(arcstat_mru_hits);
5216
5217 /*
5218 * If the previous access was a prefetch, then it already
5219 * handled possible promotion, so nothing more to do for now.
5220 */
5221 if (was_prefetch) {
5222 hdr->b_l1hdr.b_arc_access = now;
5223 return;
5224 }
5225
5226 /*
5227 * If more than ARC_MINTIME have passed from the previous
5228 * hit, promote the buffer to the MFU state.
5229 */
5230 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5231 ARC_MINTIME)) {
5232 hdr->b_l1hdr.b_arc_access = now;
5233 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5234 arc_change_state(arc_mfu, hdr);
5235 }
5236 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5237 arc_state_t *new_state;
5238 /*
5239 * This buffer has been accessed once recently, but was
5240 * evicted from the cache. Would we have bigger MRU, it
5241 * would be an MRU hit, so handle it the same way, except
5242 * we don't need to check the previous access time.
5243 */
5244 hdr->b_l1hdr.b_mru_ghost_hits++;
5245 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5246 hdr->b_l1hdr.b_arc_access = now;
5247 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5248 arc_hdr_size(hdr));
5249 if (was_prefetch) {
5250 new_state = arc_mru;
5251 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5252 } else {
5253 new_state = arc_mfu;
5254 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5255 }
5256 arc_change_state(new_state, hdr);
5257 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5258 /*
5259 * This buffer has been accessed more than once and either
5260 * still in the cache or being restored from one of ghosts.
5261 */
5262 if (!HDR_IO_IN_PROGRESS(hdr)) {
5263 hdr->b_l1hdr.b_mfu_hits++;
5264 ARCSTAT_BUMP(arcstat_mfu_hits);
5265 }
5266 hdr->b_l1hdr.b_arc_access = now;
5267 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5268 /*
5269 * This buffer has been accessed more than once recently, but
5270 * has been evicted from the cache. Would we have bigger MFU
5271 * it would stay in cache, so move it back to MFU state.
5272 */
5273 hdr->b_l1hdr.b_mfu_ghost_hits++;
5274 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5275 hdr->b_l1hdr.b_arc_access = now;
5276 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5277 arc_hdr_size(hdr));
5278 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5279 arc_change_state(arc_mfu, hdr);
5280 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5281 /*
5282 * This buffer is uncacheable, but we got a hit. Probably
5283 * a demand read after prefetch. Nothing more to do here.
5284 */
5285 if (!HDR_IO_IN_PROGRESS(hdr))
5286 ARCSTAT_BUMP(arcstat_uncached_hits);
5287 hdr->b_l1hdr.b_arc_access = now;
5288 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5289 /*
5290 * This buffer is on the 2nd Level ARC and was not accessed
5291 * for a long time, so treat it as new and put into MRU.
5292 */
5293 hdr->b_l1hdr.b_arc_access = now;
5294 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5295 arc_change_state(arc_mru, hdr);
5296 } else {
5297 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5298 hdr->b_l1hdr.b_state);
5299 }
5300 }
5301
5302 /*
5303 * This routine is called by dbuf_hold() to update the arc_access() state
5304 * which otherwise would be skipped for entries in the dbuf cache.
5305 */
5306 void
arc_buf_access(arc_buf_t * buf)5307 arc_buf_access(arc_buf_t *buf)
5308 {
5309 arc_buf_hdr_t *hdr = buf->b_hdr;
5310
5311 /*
5312 * Avoid taking the hash_lock when possible as an optimization.
5313 * The header must be checked again under the hash_lock in order
5314 * to handle the case where it is concurrently being released.
5315 */
5316 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5317 return;
5318
5319 kmutex_t *hash_lock = HDR_LOCK(hdr);
5320 mutex_enter(hash_lock);
5321
5322 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5323 mutex_exit(hash_lock);
5324 ARCSTAT_BUMP(arcstat_access_skip);
5325 return;
5326 }
5327
5328 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5329 hdr->b_l1hdr.b_state == arc_mfu ||
5330 hdr->b_l1hdr.b_state == arc_uncached);
5331
5332 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5333 arc_access(hdr, 0, B_TRUE);
5334 mutex_exit(hash_lock);
5335
5336 ARCSTAT_BUMP(arcstat_hits);
5337 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5338 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5339 }
5340
5341 /* a generic arc_read_done_func_t which you can use */
5342 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5343 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5344 arc_buf_t *buf, void *arg)
5345 {
5346 (void) zio, (void) zb, (void) bp;
5347
5348 if (buf == NULL)
5349 return;
5350
5351 memcpy(arg, buf->b_data, arc_buf_size(buf));
5352 arc_buf_destroy(buf, arg);
5353 }
5354
5355 /* a generic arc_read_done_func_t */
5356 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5357 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5358 arc_buf_t *buf, void *arg)
5359 {
5360 (void) zb, (void) bp;
5361 arc_buf_t **bufp = arg;
5362
5363 if (buf == NULL) {
5364 ASSERT(zio == NULL || zio->io_error != 0);
5365 *bufp = NULL;
5366 } else {
5367 ASSERT(zio == NULL || zio->io_error == 0);
5368 *bufp = buf;
5369 ASSERT(buf->b_data != NULL);
5370 }
5371 }
5372
5373 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5374 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5375 {
5376 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5377 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5378 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5379 } else {
5380 if (HDR_COMPRESSION_ENABLED(hdr)) {
5381 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5382 BP_GET_COMPRESS(bp));
5383 }
5384 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5385 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5386 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5387 }
5388 }
5389
5390 static void
arc_read_done(zio_t * zio)5391 arc_read_done(zio_t *zio)
5392 {
5393 blkptr_t *bp = zio->io_bp;
5394 arc_buf_hdr_t *hdr = zio->io_private;
5395 kmutex_t *hash_lock = NULL;
5396 arc_callback_t *callback_list;
5397 arc_callback_t *acb;
5398
5399 /*
5400 * The hdr was inserted into hash-table and removed from lists
5401 * prior to starting I/O. We should find this header, since
5402 * it's in the hash table, and it should be legit since it's
5403 * not possible to evict it during the I/O. The only possible
5404 * reason for it not to be found is if we were freed during the
5405 * read.
5406 */
5407 if (HDR_IN_HASH_TABLE(hdr)) {
5408 arc_buf_hdr_t *found;
5409
5410 ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5411 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5412 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5413 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5414 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5415
5416 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5417
5418 ASSERT((found == hdr &&
5419 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5420 (found == hdr && HDR_L2_READING(hdr)));
5421 ASSERT3P(hash_lock, !=, NULL);
5422 }
5423
5424 if (BP_IS_PROTECTED(bp)) {
5425 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5426 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5427 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5428 hdr->b_crypt_hdr.b_iv);
5429
5430 if (zio->io_error == 0) {
5431 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5432 void *tmpbuf;
5433
5434 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5435 sizeof (zil_chain_t));
5436 zio_crypt_decode_mac_zil(tmpbuf,
5437 hdr->b_crypt_hdr.b_mac);
5438 abd_return_buf(zio->io_abd, tmpbuf,
5439 sizeof (zil_chain_t));
5440 } else {
5441 zio_crypt_decode_mac_bp(bp,
5442 hdr->b_crypt_hdr.b_mac);
5443 }
5444 }
5445 }
5446
5447 if (zio->io_error == 0) {
5448 /* byteswap if necessary */
5449 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5450 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5451 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5452 } else {
5453 hdr->b_l1hdr.b_byteswap =
5454 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5455 }
5456 } else {
5457 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5458 }
5459 if (!HDR_L2_READING(hdr)) {
5460 hdr->b_complevel = zio->io_prop.zp_complevel;
5461 }
5462 }
5463
5464 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5465 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5466 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5467
5468 callback_list = hdr->b_l1hdr.b_acb;
5469 ASSERT3P(callback_list, !=, NULL);
5470 hdr->b_l1hdr.b_acb = NULL;
5471
5472 /*
5473 * If a read request has a callback (i.e. acb_done is not NULL), then we
5474 * make a buf containing the data according to the parameters which were
5475 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5476 * aren't needlessly decompressing the data multiple times.
5477 */
5478 int callback_cnt = 0;
5479 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5480
5481 /* We need the last one to call below in original order. */
5482 callback_list = acb;
5483
5484 if (!acb->acb_done || acb->acb_nobuf)
5485 continue;
5486
5487 callback_cnt++;
5488
5489 if (zio->io_error != 0)
5490 continue;
5491
5492 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5493 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5494 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5495 &acb->acb_buf);
5496
5497 /*
5498 * Assert non-speculative zios didn't fail because an
5499 * encryption key wasn't loaded
5500 */
5501 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5502 error != EACCES);
5503
5504 /*
5505 * If we failed to decrypt, report an error now (as the zio
5506 * layer would have done if it had done the transforms).
5507 */
5508 if (error == ECKSUM) {
5509 ASSERT(BP_IS_PROTECTED(bp));
5510 error = SET_ERROR(EIO);
5511 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5512 spa_log_error(zio->io_spa, &acb->acb_zb,
5513 BP_GET_LOGICAL_BIRTH(zio->io_bp));
5514 (void) zfs_ereport_post(
5515 FM_EREPORT_ZFS_AUTHENTICATION,
5516 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5517 }
5518 }
5519
5520 if (error != 0) {
5521 /*
5522 * Decompression or decryption failed. Set
5523 * io_error so that when we call acb_done
5524 * (below), we will indicate that the read
5525 * failed. Note that in the unusual case
5526 * where one callback is compressed and another
5527 * uncompressed, we will mark all of them
5528 * as failed, even though the uncompressed
5529 * one can't actually fail. In this case,
5530 * the hdr will not be anonymous, because
5531 * if there are multiple callbacks, it's
5532 * because multiple threads found the same
5533 * arc buf in the hash table.
5534 */
5535 zio->io_error = error;
5536 }
5537 }
5538
5539 /*
5540 * If there are multiple callbacks, we must have the hash lock,
5541 * because the only way for multiple threads to find this hdr is
5542 * in the hash table. This ensures that if there are multiple
5543 * callbacks, the hdr is not anonymous. If it were anonymous,
5544 * we couldn't use arc_buf_destroy() in the error case below.
5545 */
5546 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5547
5548 if (zio->io_error == 0) {
5549 arc_hdr_verify(hdr, zio->io_bp);
5550 } else {
5551 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5552 if (hdr->b_l1hdr.b_state != arc_anon)
5553 arc_change_state(arc_anon, hdr);
5554 if (HDR_IN_HASH_TABLE(hdr))
5555 buf_hash_remove(hdr);
5556 }
5557
5558 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5559 (void) remove_reference(hdr, hdr);
5560
5561 if (hash_lock != NULL)
5562 mutex_exit(hash_lock);
5563
5564 /* execute each callback and free its structure */
5565 while ((acb = callback_list) != NULL) {
5566 if (acb->acb_done != NULL) {
5567 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5568 /*
5569 * If arc_buf_alloc_impl() fails during
5570 * decompression, the buf will still be
5571 * allocated, and needs to be freed here.
5572 */
5573 arc_buf_destroy(acb->acb_buf,
5574 acb->acb_private);
5575 acb->acb_buf = NULL;
5576 }
5577 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5578 acb->acb_buf, acb->acb_private);
5579 }
5580
5581 if (acb->acb_zio_dummy != NULL) {
5582 acb->acb_zio_dummy->io_error = zio->io_error;
5583 zio_nowait(acb->acb_zio_dummy);
5584 }
5585
5586 callback_list = acb->acb_prev;
5587 if (acb->acb_wait) {
5588 mutex_enter(&acb->acb_wait_lock);
5589 acb->acb_wait_error = zio->io_error;
5590 acb->acb_wait = B_FALSE;
5591 cv_signal(&acb->acb_wait_cv);
5592 mutex_exit(&acb->acb_wait_lock);
5593 /* acb will be freed by the waiting thread. */
5594 } else {
5595 kmem_free(acb, sizeof (arc_callback_t));
5596 }
5597 }
5598 }
5599
5600 /*
5601 * Lookup the block at the specified DVA (in bp), and return the manner in
5602 * which the block is cached. A zero return indicates not cached.
5603 */
5604 int
arc_cached(spa_t * spa,const blkptr_t * bp)5605 arc_cached(spa_t *spa, const blkptr_t *bp)
5606 {
5607 arc_buf_hdr_t *hdr = NULL;
5608 kmutex_t *hash_lock = NULL;
5609 uint64_t guid = spa_load_guid(spa);
5610 int flags = 0;
5611
5612 if (BP_IS_EMBEDDED(bp))
5613 return (ARC_CACHED_EMBEDDED);
5614
5615 hdr = buf_hash_find(guid, bp, &hash_lock);
5616 if (hdr == NULL)
5617 return (0);
5618
5619 if (HDR_HAS_L1HDR(hdr)) {
5620 arc_state_t *state = hdr->b_l1hdr.b_state;
5621 /*
5622 * We switch to ensure that any future arc_state_type_t
5623 * changes are handled. This is just a shift to promote
5624 * more compile-time checking.
5625 */
5626 switch (state->arcs_state) {
5627 case ARC_STATE_ANON:
5628 break;
5629 case ARC_STATE_MRU:
5630 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5631 break;
5632 case ARC_STATE_MFU:
5633 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5634 break;
5635 case ARC_STATE_UNCACHED:
5636 /* The header is still in L1, probably not for long */
5637 flags |= ARC_CACHED_IN_L1;
5638 break;
5639 default:
5640 break;
5641 }
5642 }
5643 if (HDR_HAS_L2HDR(hdr))
5644 flags |= ARC_CACHED_IN_L2;
5645
5646 mutex_exit(hash_lock);
5647
5648 return (flags);
5649 }
5650
5651 /*
5652 * "Read" the block at the specified DVA (in bp) via the
5653 * cache. If the block is found in the cache, invoke the provided
5654 * callback immediately and return. Note that the `zio' parameter
5655 * in the callback will be NULL in this case, since no IO was
5656 * required. If the block is not in the cache pass the read request
5657 * on to the spa with a substitute callback function, so that the
5658 * requested block will be added to the cache.
5659 *
5660 * If a read request arrives for a block that has a read in-progress,
5661 * either wait for the in-progress read to complete (and return the
5662 * results); or, if this is a read with a "done" func, add a record
5663 * to the read to invoke the "done" func when the read completes,
5664 * and return; or just return.
5665 *
5666 * arc_read_done() will invoke all the requested "done" functions
5667 * for readers of this block.
5668 */
5669 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5670 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5671 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5672 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5673 {
5674 arc_buf_hdr_t *hdr = NULL;
5675 kmutex_t *hash_lock = NULL;
5676 zio_t *rzio;
5677 uint64_t guid = spa_load_guid(spa);
5678 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5679 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5680 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5681 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5682 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5683 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5684 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5685 arc_buf_t *buf = NULL;
5686 int rc = 0;
5687 boolean_t bp_validation = B_FALSE;
5688
5689 ASSERT(!embedded_bp ||
5690 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5691 ASSERT(!BP_IS_HOLE(bp));
5692 ASSERT(!BP_IS_REDACTED(bp));
5693
5694 /*
5695 * Normally SPL_FSTRANS will already be set since kernel threads which
5696 * expect to call the DMU interfaces will set it when created. System
5697 * calls are similarly handled by setting/cleaning the bit in the
5698 * registered callback (module/os/.../zfs/zpl_*).
5699 *
5700 * External consumers such as Lustre which call the exported DMU
5701 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5702 * on the hash_lock always set and clear the bit.
5703 */
5704 fstrans_cookie_t cookie = spl_fstrans_mark();
5705 top:
5706 if (!embedded_bp) {
5707 /*
5708 * Embedded BP's have no DVA and require no I/O to "read".
5709 * Create an anonymous arc buf to back it.
5710 */
5711 hdr = buf_hash_find(guid, bp, &hash_lock);
5712 }
5713
5714 /*
5715 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5716 * we maintain encrypted data separately from compressed / uncompressed
5717 * data. If the user is requesting raw encrypted data and we don't have
5718 * that in the header we will read from disk to guarantee that we can
5719 * get it even if the encryption keys aren't loaded.
5720 */
5721 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5722 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5723 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5724
5725 /*
5726 * Verify the block pointer contents are reasonable. This
5727 * should always be the case since the blkptr is protected by
5728 * a checksum.
5729 */
5730 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5731 BLK_VERIFY_LOG)) {
5732 mutex_exit(hash_lock);
5733 rc = SET_ERROR(ECKSUM);
5734 goto done;
5735 }
5736
5737 if (HDR_IO_IN_PROGRESS(hdr)) {
5738 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5739 mutex_exit(hash_lock);
5740 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5741 rc = SET_ERROR(ENOENT);
5742 goto done;
5743 }
5744
5745 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5746 ASSERT3P(head_zio, !=, NULL);
5747 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5748 priority == ZIO_PRIORITY_SYNC_READ) {
5749 /*
5750 * This is a sync read that needs to wait for
5751 * an in-flight async read. Request that the
5752 * zio have its priority upgraded.
5753 */
5754 zio_change_priority(head_zio, priority);
5755 DTRACE_PROBE1(arc__async__upgrade__sync,
5756 arc_buf_hdr_t *, hdr);
5757 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5758 }
5759
5760 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5761 arc_access(hdr, *arc_flags, B_FALSE);
5762
5763 /*
5764 * If there are multiple threads reading the same block
5765 * and that block is not yet in the ARC, then only one
5766 * thread will do the physical I/O and all other
5767 * threads will wait until that I/O completes.
5768 * Synchronous reads use the acb_wait_cv whereas nowait
5769 * reads register a callback. Both are signalled/called
5770 * in arc_read_done.
5771 *
5772 * Errors of the physical I/O may need to be propagated.
5773 * Synchronous read errors are returned here from
5774 * arc_read_done via acb_wait_error. Nowait reads
5775 * attach the acb_zio_dummy zio to pio and
5776 * arc_read_done propagates the physical I/O's io_error
5777 * to acb_zio_dummy, and thereby to pio.
5778 */
5779 arc_callback_t *acb = NULL;
5780 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5781 acb = kmem_zalloc(sizeof (arc_callback_t),
5782 KM_SLEEP);
5783 acb->acb_done = done;
5784 acb->acb_private = private;
5785 acb->acb_compressed = compressed_read;
5786 acb->acb_encrypted = encrypted_read;
5787 acb->acb_noauth = noauth_read;
5788 acb->acb_nobuf = no_buf;
5789 if (*arc_flags & ARC_FLAG_WAIT) {
5790 acb->acb_wait = B_TRUE;
5791 mutex_init(&acb->acb_wait_lock, NULL,
5792 MUTEX_DEFAULT, NULL);
5793 cv_init(&acb->acb_wait_cv, NULL,
5794 CV_DEFAULT, NULL);
5795 }
5796 acb->acb_zb = *zb;
5797 if (pio != NULL) {
5798 acb->acb_zio_dummy = zio_null(pio,
5799 spa, NULL, NULL, NULL, zio_flags);
5800 }
5801 acb->acb_zio_head = head_zio;
5802 acb->acb_next = hdr->b_l1hdr.b_acb;
5803 hdr->b_l1hdr.b_acb->acb_prev = acb;
5804 hdr->b_l1hdr.b_acb = acb;
5805 }
5806 mutex_exit(hash_lock);
5807
5808 ARCSTAT_BUMP(arcstat_iohits);
5809 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5810 demand, prefetch, is_data, data, metadata, iohits);
5811
5812 if (*arc_flags & ARC_FLAG_WAIT) {
5813 mutex_enter(&acb->acb_wait_lock);
5814 while (acb->acb_wait) {
5815 cv_wait(&acb->acb_wait_cv,
5816 &acb->acb_wait_lock);
5817 }
5818 rc = acb->acb_wait_error;
5819 mutex_exit(&acb->acb_wait_lock);
5820 mutex_destroy(&acb->acb_wait_lock);
5821 cv_destroy(&acb->acb_wait_cv);
5822 kmem_free(acb, sizeof (arc_callback_t));
5823 }
5824 goto out;
5825 }
5826
5827 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5828 hdr->b_l1hdr.b_state == arc_mfu ||
5829 hdr->b_l1hdr.b_state == arc_uncached);
5830
5831 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5832 arc_access(hdr, *arc_flags, B_TRUE);
5833
5834 if (done && !no_buf) {
5835 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5836
5837 /* Get a buf with the desired data in it. */
5838 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5839 encrypted_read, compressed_read, noauth_read,
5840 B_TRUE, &buf);
5841 if (rc == ECKSUM) {
5842 /*
5843 * Convert authentication and decryption errors
5844 * to EIO (and generate an ereport if needed)
5845 * before leaving the ARC.
5846 */
5847 rc = SET_ERROR(EIO);
5848 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5849 spa_log_error(spa, zb, hdr->b_birth);
5850 (void) zfs_ereport_post(
5851 FM_EREPORT_ZFS_AUTHENTICATION,
5852 spa, NULL, zb, NULL, 0);
5853 }
5854 }
5855 if (rc != 0) {
5856 arc_buf_destroy_impl(buf);
5857 buf = NULL;
5858 (void) remove_reference(hdr, private);
5859 }
5860
5861 /* assert any errors weren't due to unloaded keys */
5862 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5863 rc != EACCES);
5864 }
5865 mutex_exit(hash_lock);
5866 ARCSTAT_BUMP(arcstat_hits);
5867 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5868 demand, prefetch, is_data, data, metadata, hits);
5869 *arc_flags |= ARC_FLAG_CACHED;
5870 goto done;
5871 } else {
5872 uint64_t lsize = BP_GET_LSIZE(bp);
5873 uint64_t psize = BP_GET_PSIZE(bp);
5874 arc_callback_t *acb;
5875 vdev_t *vd = NULL;
5876 uint64_t addr = 0;
5877 boolean_t devw = B_FALSE;
5878 uint64_t size;
5879 abd_t *hdr_abd;
5880 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5881 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5882 int config_lock;
5883 int error;
5884
5885 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5886 if (hash_lock != NULL)
5887 mutex_exit(hash_lock);
5888 rc = SET_ERROR(ENOENT);
5889 goto done;
5890 }
5891
5892 if (zio_flags & ZIO_FLAG_CONFIG_WRITER) {
5893 config_lock = BLK_CONFIG_HELD;
5894 } else if (hash_lock != NULL) {
5895 /*
5896 * Prevent lock order reversal
5897 */
5898 config_lock = BLK_CONFIG_NEEDED_TRY;
5899 } else {
5900 config_lock = BLK_CONFIG_NEEDED;
5901 }
5902
5903 /*
5904 * Verify the block pointer contents are reasonable. This
5905 * should always be the case since the blkptr is protected by
5906 * a checksum.
5907 */
5908 if (!bp_validation && (error = zfs_blkptr_verify(spa, bp,
5909 config_lock, BLK_VERIFY_LOG))) {
5910 if (hash_lock != NULL)
5911 mutex_exit(hash_lock);
5912 if (error == EBUSY && !zfs_blkptr_verify(spa, bp,
5913 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5914 bp_validation = B_TRUE;
5915 goto top;
5916 }
5917 rc = SET_ERROR(ECKSUM);
5918 goto done;
5919 }
5920
5921 if (hdr == NULL) {
5922 /*
5923 * This block is not in the cache or it has
5924 * embedded data.
5925 */
5926 arc_buf_hdr_t *exists = NULL;
5927 hdr = arc_hdr_alloc(guid, psize, lsize,
5928 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5929
5930 if (!embedded_bp) {
5931 hdr->b_dva = *BP_IDENTITY(bp);
5932 hdr->b_birth = BP_GET_BIRTH(bp);
5933 exists = buf_hash_insert(hdr, &hash_lock);
5934 }
5935 if (exists != NULL) {
5936 /* somebody beat us to the hash insert */
5937 mutex_exit(hash_lock);
5938 buf_discard_identity(hdr);
5939 arc_hdr_destroy(hdr);
5940 goto top; /* restart the IO request */
5941 }
5942 } else {
5943 /*
5944 * This block is in the ghost cache or encrypted data
5945 * was requested and we didn't have it. If it was
5946 * L2-only (and thus didn't have an L1 hdr),
5947 * we realloc the header to add an L1 hdr.
5948 */
5949 if (!HDR_HAS_L1HDR(hdr)) {
5950 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5951 hdr_full_cache);
5952 }
5953
5954 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5955 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5956 ASSERT(!HDR_HAS_RABD(hdr));
5957 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5958 ASSERT0(zfs_refcount_count(
5959 &hdr->b_l1hdr.b_refcnt));
5960 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5961 #ifdef ZFS_DEBUG
5962 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5963 #endif
5964 } else if (HDR_IO_IN_PROGRESS(hdr)) {
5965 /*
5966 * If this header already had an IO in progress
5967 * and we are performing another IO to fetch
5968 * encrypted data we must wait until the first
5969 * IO completes so as not to confuse
5970 * arc_read_done(). This should be very rare
5971 * and so the performance impact shouldn't
5972 * matter.
5973 */
5974 arc_callback_t *acb = kmem_zalloc(
5975 sizeof (arc_callback_t), KM_SLEEP);
5976 acb->acb_wait = B_TRUE;
5977 mutex_init(&acb->acb_wait_lock, NULL,
5978 MUTEX_DEFAULT, NULL);
5979 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5980 NULL);
5981 acb->acb_zio_head =
5982 hdr->b_l1hdr.b_acb->acb_zio_head;
5983 acb->acb_next = hdr->b_l1hdr.b_acb;
5984 hdr->b_l1hdr.b_acb->acb_prev = acb;
5985 hdr->b_l1hdr.b_acb = acb;
5986 mutex_exit(hash_lock);
5987 mutex_enter(&acb->acb_wait_lock);
5988 while (acb->acb_wait) {
5989 cv_wait(&acb->acb_wait_cv,
5990 &acb->acb_wait_lock);
5991 }
5992 mutex_exit(&acb->acb_wait_lock);
5993 mutex_destroy(&acb->acb_wait_lock);
5994 cv_destroy(&acb->acb_wait_cv);
5995 kmem_free(acb, sizeof (arc_callback_t));
5996 goto top;
5997 }
5998 }
5999 if (*arc_flags & ARC_FLAG_UNCACHED) {
6000 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6001 if (!encrypted_read)
6002 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6003 }
6004
6005 /*
6006 * Take additional reference for IO_IN_PROGRESS. It stops
6007 * arc_access() from putting this header without any buffers
6008 * and so other references but obviously nonevictable onto
6009 * the evictable list of MRU or MFU state.
6010 */
6011 add_reference(hdr, hdr);
6012 if (!embedded_bp)
6013 arc_access(hdr, *arc_flags, B_FALSE);
6014 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6015 arc_hdr_alloc_abd(hdr, alloc_flags);
6016 if (encrypted_read) {
6017 ASSERT(HDR_HAS_RABD(hdr));
6018 size = HDR_GET_PSIZE(hdr);
6019 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6020 zio_flags |= ZIO_FLAG_RAW;
6021 } else {
6022 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6023 size = arc_hdr_size(hdr);
6024 hdr_abd = hdr->b_l1hdr.b_pabd;
6025
6026 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6027 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6028 }
6029
6030 /*
6031 * For authenticated bp's, we do not ask the ZIO layer
6032 * to authenticate them since this will cause the entire
6033 * IO to fail if the key isn't loaded. Instead, we
6034 * defer authentication until arc_buf_fill(), which will
6035 * verify the data when the key is available.
6036 */
6037 if (BP_IS_AUTHENTICATED(bp))
6038 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6039 }
6040
6041 if (BP_IS_AUTHENTICATED(bp))
6042 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6043 if (BP_GET_LEVEL(bp) > 0)
6044 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6045 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6046
6047 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6048 acb->acb_done = done;
6049 acb->acb_private = private;
6050 acb->acb_compressed = compressed_read;
6051 acb->acb_encrypted = encrypted_read;
6052 acb->acb_noauth = noauth_read;
6053 acb->acb_nobuf = no_buf;
6054 acb->acb_zb = *zb;
6055
6056 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6057 hdr->b_l1hdr.b_acb = acb;
6058
6059 if (HDR_HAS_L2HDR(hdr) &&
6060 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6061 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6062 addr = hdr->b_l2hdr.b_daddr;
6063 /*
6064 * Lock out L2ARC device removal.
6065 */
6066 if (vdev_is_dead(vd) ||
6067 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6068 vd = NULL;
6069 }
6070
6071 /*
6072 * We count both async reads and scrub IOs as asynchronous so
6073 * that both can be upgraded in the event of a cache hit while
6074 * the read IO is still in-flight.
6075 */
6076 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6077 priority == ZIO_PRIORITY_SCRUB)
6078 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6079 else
6080 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6081
6082 /*
6083 * At this point, we have a level 1 cache miss or a blkptr
6084 * with embedded data. Try again in L2ARC if possible.
6085 */
6086 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6087
6088 /*
6089 * Skip ARC stat bump for block pointers with embedded
6090 * data. The data are read from the blkptr itself via
6091 * decode_embedded_bp_compressed().
6092 */
6093 if (!embedded_bp) {
6094 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6095 blkptr_t *, bp, uint64_t, lsize,
6096 zbookmark_phys_t *, zb);
6097 ARCSTAT_BUMP(arcstat_misses);
6098 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6099 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6100 metadata, misses);
6101 zfs_racct_read(spa, size, 1, 0);
6102 }
6103
6104 /* Check if the spa even has l2 configured */
6105 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6106 spa->spa_l2cache.sav_count > 0;
6107
6108 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6109 /*
6110 * Read from the L2ARC if the following are true:
6111 * 1. The L2ARC vdev was previously cached.
6112 * 2. This buffer still has L2ARC metadata.
6113 * 3. This buffer isn't currently writing to the L2ARC.
6114 * 4. The L2ARC entry wasn't evicted, which may
6115 * also have invalidated the vdev.
6116 */
6117 if (HDR_HAS_L2HDR(hdr) &&
6118 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6119 l2arc_read_callback_t *cb;
6120 abd_t *abd;
6121 uint64_t asize;
6122
6123 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6124 ARCSTAT_BUMP(arcstat_l2_hits);
6125 hdr->b_l2hdr.b_hits++;
6126
6127 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6128 KM_SLEEP);
6129 cb->l2rcb_hdr = hdr;
6130 cb->l2rcb_bp = *bp;
6131 cb->l2rcb_zb = *zb;
6132 cb->l2rcb_flags = zio_flags;
6133
6134 /*
6135 * When Compressed ARC is disabled, but the
6136 * L2ARC block is compressed, arc_hdr_size()
6137 * will have returned LSIZE rather than PSIZE.
6138 */
6139 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6140 !HDR_COMPRESSION_ENABLED(hdr) &&
6141 HDR_GET_PSIZE(hdr) != 0) {
6142 size = HDR_GET_PSIZE(hdr);
6143 }
6144
6145 asize = vdev_psize_to_asize(vd, size);
6146 if (asize != size) {
6147 abd = abd_alloc_for_io(asize,
6148 HDR_ISTYPE_METADATA(hdr));
6149 cb->l2rcb_abd = abd;
6150 } else {
6151 abd = hdr_abd;
6152 }
6153
6154 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6155 addr + asize <= vd->vdev_psize -
6156 VDEV_LABEL_END_SIZE);
6157
6158 /*
6159 * l2arc read. The SCL_L2ARC lock will be
6160 * released by l2arc_read_done().
6161 * Issue a null zio if the underlying buffer
6162 * was squashed to zero size by compression.
6163 */
6164 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6165 ZIO_COMPRESS_EMPTY);
6166 rzio = zio_read_phys(pio, vd, addr,
6167 asize, abd,
6168 ZIO_CHECKSUM_OFF,
6169 l2arc_read_done, cb, priority,
6170 zio_flags | ZIO_FLAG_CANFAIL |
6171 ZIO_FLAG_DONT_PROPAGATE |
6172 ZIO_FLAG_DONT_RETRY, B_FALSE);
6173 acb->acb_zio_head = rzio;
6174
6175 if (hash_lock != NULL)
6176 mutex_exit(hash_lock);
6177
6178 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6179 zio_t *, rzio);
6180 ARCSTAT_INCR(arcstat_l2_read_bytes,
6181 HDR_GET_PSIZE(hdr));
6182
6183 if (*arc_flags & ARC_FLAG_NOWAIT) {
6184 zio_nowait(rzio);
6185 goto out;
6186 }
6187
6188 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6189 if (zio_wait(rzio) == 0)
6190 goto out;
6191
6192 /* l2arc read error; goto zio_read() */
6193 if (hash_lock != NULL)
6194 mutex_enter(hash_lock);
6195 } else {
6196 DTRACE_PROBE1(l2arc__miss,
6197 arc_buf_hdr_t *, hdr);
6198 ARCSTAT_BUMP(arcstat_l2_misses);
6199 if (HDR_L2_WRITING(hdr))
6200 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6201 spa_config_exit(spa, SCL_L2ARC, vd);
6202 }
6203 } else {
6204 if (vd != NULL)
6205 spa_config_exit(spa, SCL_L2ARC, vd);
6206
6207 /*
6208 * Only a spa with l2 should contribute to l2
6209 * miss stats. (Including the case of having a
6210 * faulted cache device - that's also a miss.)
6211 */
6212 if (spa_has_l2) {
6213 /*
6214 * Skip ARC stat bump for block pointers with
6215 * embedded data. The data are read from the
6216 * blkptr itself via
6217 * decode_embedded_bp_compressed().
6218 */
6219 if (!embedded_bp) {
6220 DTRACE_PROBE1(l2arc__miss,
6221 arc_buf_hdr_t *, hdr);
6222 ARCSTAT_BUMP(arcstat_l2_misses);
6223 }
6224 }
6225 }
6226
6227 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6228 arc_read_done, hdr, priority, zio_flags, zb);
6229 acb->acb_zio_head = rzio;
6230
6231 if (hash_lock != NULL)
6232 mutex_exit(hash_lock);
6233
6234 if (*arc_flags & ARC_FLAG_WAIT) {
6235 rc = zio_wait(rzio);
6236 goto out;
6237 }
6238
6239 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6240 zio_nowait(rzio);
6241 }
6242
6243 out:
6244 /* embedded bps don't actually go to disk */
6245 if (!embedded_bp)
6246 spa_read_history_add(spa, zb, *arc_flags);
6247 spl_fstrans_unmark(cookie);
6248 return (rc);
6249
6250 done:
6251 if (done)
6252 done(NULL, zb, bp, buf, private);
6253 if (pio && rc != 0) {
6254 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6255 zio->io_error = rc;
6256 zio_nowait(zio);
6257 }
6258 goto out;
6259 }
6260
6261 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6262 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6263 {
6264 arc_prune_t *p;
6265
6266 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6267 p->p_pfunc = func;
6268 p->p_private = private;
6269 list_link_init(&p->p_node);
6270 zfs_refcount_create(&p->p_refcnt);
6271
6272 mutex_enter(&arc_prune_mtx);
6273 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6274 list_insert_head(&arc_prune_list, p);
6275 mutex_exit(&arc_prune_mtx);
6276
6277 return (p);
6278 }
6279
6280 void
arc_remove_prune_callback(arc_prune_t * p)6281 arc_remove_prune_callback(arc_prune_t *p)
6282 {
6283 boolean_t wait = B_FALSE;
6284 mutex_enter(&arc_prune_mtx);
6285 list_remove(&arc_prune_list, p);
6286 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6287 wait = B_TRUE;
6288 mutex_exit(&arc_prune_mtx);
6289
6290 /* wait for arc_prune_task to finish */
6291 if (wait)
6292 taskq_wait_outstanding(arc_prune_taskq, 0);
6293 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6294 zfs_refcount_destroy(&p->p_refcnt);
6295 kmem_free(p, sizeof (*p));
6296 }
6297
6298 /*
6299 * Helper function for arc_prune_async() it is responsible for safely
6300 * handling the execution of a registered arc_prune_func_t.
6301 */
6302 static void
arc_prune_task(void * ptr)6303 arc_prune_task(void *ptr)
6304 {
6305 arc_prune_t *ap = (arc_prune_t *)ptr;
6306 arc_prune_func_t *func = ap->p_pfunc;
6307
6308 if (func != NULL)
6309 func(ap->p_adjust, ap->p_private);
6310
6311 (void) zfs_refcount_remove(&ap->p_refcnt, func);
6312 }
6313
6314 /*
6315 * Notify registered consumers they must drop holds on a portion of the ARC
6316 * buffers they reference. This provides a mechanism to ensure the ARC can
6317 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6318 *
6319 * This operation is performed asynchronously so it may be safely called
6320 * in the context of the arc_reclaim_thread(). A reference is taken here
6321 * for each registered arc_prune_t and the arc_prune_task() is responsible
6322 * for releasing it once the registered arc_prune_func_t has completed.
6323 */
6324 static void
arc_prune_async(uint64_t adjust)6325 arc_prune_async(uint64_t adjust)
6326 {
6327 arc_prune_t *ap;
6328
6329 mutex_enter(&arc_prune_mtx);
6330 for (ap = list_head(&arc_prune_list); ap != NULL;
6331 ap = list_next(&arc_prune_list, ap)) {
6332
6333 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6334 continue;
6335
6336 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6337 ap->p_adjust = adjust;
6338 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6339 ap, TQ_SLEEP) == TASKQID_INVALID) {
6340 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6341 continue;
6342 }
6343 ARCSTAT_BUMP(arcstat_prune);
6344 }
6345 mutex_exit(&arc_prune_mtx);
6346 }
6347
6348 /*
6349 * Notify the arc that a block was freed, and thus will never be used again.
6350 */
6351 void
arc_freed(spa_t * spa,const blkptr_t * bp)6352 arc_freed(spa_t *spa, const blkptr_t *bp)
6353 {
6354 arc_buf_hdr_t *hdr;
6355 kmutex_t *hash_lock;
6356 uint64_t guid = spa_load_guid(spa);
6357
6358 ASSERT(!BP_IS_EMBEDDED(bp));
6359
6360 hdr = buf_hash_find(guid, bp, &hash_lock);
6361 if (hdr == NULL)
6362 return;
6363
6364 /*
6365 * We might be trying to free a block that is still doing I/O
6366 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6367 * dmu_sync-ed block). A block may also have a reference if it is
6368 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6369 * have written the new block to its final resting place on disk but
6370 * without the dedup flag set. This would have left the hdr in the MRU
6371 * state and discoverable. When the txg finally syncs it detects that
6372 * the block was overridden in open context and issues an override I/O.
6373 * Since this is a dedup block, the override I/O will determine if the
6374 * block is already in the DDT. If so, then it will replace the io_bp
6375 * with the bp from the DDT and allow the I/O to finish. When the I/O
6376 * reaches the done callback, dbuf_write_override_done, it will
6377 * check to see if the io_bp and io_bp_override are identical.
6378 * If they are not, then it indicates that the bp was replaced with
6379 * the bp in the DDT and the override bp is freed. This allows
6380 * us to arrive here with a reference on a block that is being
6381 * freed. So if we have an I/O in progress, or a reference to
6382 * this hdr, then we don't destroy the hdr.
6383 */
6384 if (!HDR_HAS_L1HDR(hdr) ||
6385 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6386 arc_change_state(arc_anon, hdr);
6387 arc_hdr_destroy(hdr);
6388 mutex_exit(hash_lock);
6389 } else {
6390 mutex_exit(hash_lock);
6391 }
6392
6393 }
6394
6395 /*
6396 * Release this buffer from the cache, making it an anonymous buffer. This
6397 * must be done after a read and prior to modifying the buffer contents.
6398 * If the buffer has more than one reference, we must make
6399 * a new hdr for the buffer.
6400 */
6401 void
arc_release(arc_buf_t * buf,const void * tag)6402 arc_release(arc_buf_t *buf, const void *tag)
6403 {
6404 arc_buf_hdr_t *hdr = buf->b_hdr;
6405
6406 /*
6407 * It would be nice to assert that if its DMU metadata (level >
6408 * 0 || it's the dnode file), then it must be syncing context.
6409 * But we don't know that information at this level.
6410 */
6411
6412 ASSERT(HDR_HAS_L1HDR(hdr));
6413
6414 /*
6415 * We don't grab the hash lock prior to this check, because if
6416 * the buffer's header is in the arc_anon state, it won't be
6417 * linked into the hash table.
6418 */
6419 if (hdr->b_l1hdr.b_state == arc_anon) {
6420 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6421 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6422 ASSERT(!HDR_HAS_L2HDR(hdr));
6423
6424 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6425 ASSERT(ARC_BUF_LAST(buf));
6426 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6427 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6428
6429 hdr->b_l1hdr.b_arc_access = 0;
6430
6431 /*
6432 * If the buf is being overridden then it may already
6433 * have a hdr that is not empty.
6434 */
6435 buf_discard_identity(hdr);
6436 arc_buf_thaw(buf);
6437
6438 return;
6439 }
6440
6441 kmutex_t *hash_lock = HDR_LOCK(hdr);
6442 mutex_enter(hash_lock);
6443
6444 /*
6445 * This assignment is only valid as long as the hash_lock is
6446 * held, we must be careful not to reference state or the
6447 * b_state field after dropping the lock.
6448 */
6449 arc_state_t *state = hdr->b_l1hdr.b_state;
6450 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6451 ASSERT3P(state, !=, arc_anon);
6452 ASSERT3P(state, !=, arc_l2c_only);
6453
6454 /* this buffer is not on any list */
6455 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6456
6457 /*
6458 * Do we have more than one buf?
6459 */
6460 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6461 arc_buf_hdr_t *nhdr;
6462 uint64_t spa = hdr->b_spa;
6463 uint64_t psize = HDR_GET_PSIZE(hdr);
6464 uint64_t lsize = HDR_GET_LSIZE(hdr);
6465 boolean_t protected = HDR_PROTECTED(hdr);
6466 enum zio_compress compress = arc_hdr_get_compress(hdr);
6467 arc_buf_contents_t type = arc_buf_type(hdr);
6468
6469 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6470 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6471 ASSERT(ARC_BUF_LAST(buf));
6472 }
6473
6474 /*
6475 * Pull the buffer off of this hdr and find the last buffer
6476 * in the hdr's buffer list.
6477 */
6478 VERIFY3S(remove_reference(hdr, tag), >, 0);
6479 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6480 ASSERT3P(lastbuf, !=, NULL);
6481
6482 /*
6483 * If the current arc_buf_t and the hdr are sharing their data
6484 * buffer, then we must stop sharing that block.
6485 */
6486 if (ARC_BUF_SHARED(buf)) {
6487 ASSERT(!arc_buf_is_shared(lastbuf));
6488
6489 /*
6490 * First, sever the block sharing relationship between
6491 * buf and the arc_buf_hdr_t.
6492 */
6493 arc_unshare_buf(hdr, buf);
6494
6495 /*
6496 * Now we need to recreate the hdr's b_pabd. Since we
6497 * have lastbuf handy, we try to share with it, but if
6498 * we can't then we allocate a new b_pabd and copy the
6499 * data from buf into it.
6500 */
6501 if (arc_can_share(hdr, lastbuf)) {
6502 arc_share_buf(hdr, lastbuf);
6503 } else {
6504 arc_hdr_alloc_abd(hdr, 0);
6505 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6506 buf->b_data, psize);
6507 }
6508 } else if (HDR_SHARED_DATA(hdr)) {
6509 /*
6510 * Uncompressed shared buffers are always at the end
6511 * of the list. Compressed buffers don't have the
6512 * same requirements. This makes it hard to
6513 * simply assert that the lastbuf is shared so
6514 * we rely on the hdr's compression flags to determine
6515 * if we have a compressed, shared buffer.
6516 */
6517 ASSERT(arc_buf_is_shared(lastbuf) ||
6518 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6519 ASSERT(!arc_buf_is_shared(buf));
6520 }
6521
6522 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6523
6524 (void) zfs_refcount_remove_many(&state->arcs_size[type],
6525 arc_buf_size(buf), buf);
6526
6527 arc_cksum_verify(buf);
6528 arc_buf_unwatch(buf);
6529
6530 /* if this is the last uncompressed buf free the checksum */
6531 if (!arc_hdr_has_uncompressed_buf(hdr))
6532 arc_cksum_free(hdr);
6533
6534 mutex_exit(hash_lock);
6535
6536 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6537 compress, hdr->b_complevel, type);
6538 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6539 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6540 VERIFY3U(nhdr->b_type, ==, type);
6541 ASSERT(!HDR_SHARED_DATA(nhdr));
6542
6543 nhdr->b_l1hdr.b_buf = buf;
6544 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6545 buf->b_hdr = nhdr;
6546
6547 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6548 arc_buf_size(buf), buf);
6549 } else {
6550 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6551 /* protected by hash lock, or hdr is on arc_anon */
6552 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6553 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6554
6555 if (HDR_HAS_L2HDR(hdr)) {
6556 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6557 /* Recheck to prevent race with l2arc_evict(). */
6558 if (HDR_HAS_L2HDR(hdr))
6559 arc_hdr_l2hdr_destroy(hdr);
6560 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6561 }
6562
6563 hdr->b_l1hdr.b_mru_hits = 0;
6564 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6565 hdr->b_l1hdr.b_mfu_hits = 0;
6566 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6567 arc_change_state(arc_anon, hdr);
6568 hdr->b_l1hdr.b_arc_access = 0;
6569
6570 mutex_exit(hash_lock);
6571 buf_discard_identity(hdr);
6572 arc_buf_thaw(buf);
6573 }
6574 }
6575
6576 int
arc_released(arc_buf_t * buf)6577 arc_released(arc_buf_t *buf)
6578 {
6579 return (buf->b_data != NULL &&
6580 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6581 }
6582
6583 #ifdef ZFS_DEBUG
6584 int
arc_referenced(arc_buf_t * buf)6585 arc_referenced(arc_buf_t *buf)
6586 {
6587 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6588 }
6589 #endif
6590
6591 static void
arc_write_ready(zio_t * zio)6592 arc_write_ready(zio_t *zio)
6593 {
6594 arc_write_callback_t *callback = zio->io_private;
6595 arc_buf_t *buf = callback->awcb_buf;
6596 arc_buf_hdr_t *hdr = buf->b_hdr;
6597 blkptr_t *bp = zio->io_bp;
6598 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6599 fstrans_cookie_t cookie = spl_fstrans_mark();
6600
6601 ASSERT(HDR_HAS_L1HDR(hdr));
6602 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6603 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6604
6605 /*
6606 * If we're reexecuting this zio because the pool suspended, then
6607 * cleanup any state that was previously set the first time the
6608 * callback was invoked.
6609 */
6610 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6611 arc_cksum_free(hdr);
6612 arc_buf_unwatch(buf);
6613 if (hdr->b_l1hdr.b_pabd != NULL) {
6614 if (ARC_BUF_SHARED(buf)) {
6615 arc_unshare_buf(hdr, buf);
6616 } else {
6617 ASSERT(!arc_buf_is_shared(buf));
6618 arc_hdr_free_abd(hdr, B_FALSE);
6619 }
6620 }
6621
6622 if (HDR_HAS_RABD(hdr))
6623 arc_hdr_free_abd(hdr, B_TRUE);
6624 }
6625 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6626 ASSERT(!HDR_HAS_RABD(hdr));
6627 ASSERT(!HDR_SHARED_DATA(hdr));
6628 ASSERT(!arc_buf_is_shared(buf));
6629
6630 callback->awcb_ready(zio, buf, callback->awcb_private);
6631
6632 if (HDR_IO_IN_PROGRESS(hdr)) {
6633 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6634 } else {
6635 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6636 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6637 }
6638
6639 if (BP_IS_PROTECTED(bp)) {
6640 /* ZIL blocks are written through zio_rewrite */
6641 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6642
6643 if (BP_SHOULD_BYTESWAP(bp)) {
6644 if (BP_GET_LEVEL(bp) > 0) {
6645 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6646 } else {
6647 hdr->b_l1hdr.b_byteswap =
6648 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6649 }
6650 } else {
6651 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6652 }
6653
6654 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6655 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6656 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6657 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6658 hdr->b_crypt_hdr.b_iv);
6659 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6660 } else {
6661 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6662 }
6663
6664 /*
6665 * If this block was written for raw encryption but the zio layer
6666 * ended up only authenticating it, adjust the buffer flags now.
6667 */
6668 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6669 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6670 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6671 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6672 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6673 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6674 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6675 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6676 }
6677
6678 /* this must be done after the buffer flags are adjusted */
6679 arc_cksum_compute(buf);
6680
6681 enum zio_compress compress;
6682 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6683 compress = ZIO_COMPRESS_OFF;
6684 } else {
6685 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6686 compress = BP_GET_COMPRESS(bp);
6687 }
6688 HDR_SET_PSIZE(hdr, psize);
6689 arc_hdr_set_compress(hdr, compress);
6690 hdr->b_complevel = zio->io_prop.zp_complevel;
6691
6692 if (zio->io_error != 0 || psize == 0)
6693 goto out;
6694
6695 /*
6696 * Fill the hdr with data. If the buffer is encrypted we have no choice
6697 * but to copy the data into b_radb. If the hdr is compressed, the data
6698 * we want is available from the zio, otherwise we can take it from
6699 * the buf.
6700 *
6701 * We might be able to share the buf's data with the hdr here. However,
6702 * doing so would cause the ARC to be full of linear ABDs if we write a
6703 * lot of shareable data. As a compromise, we check whether scattered
6704 * ABDs are allowed, and assume that if they are then the user wants
6705 * the ARC to be primarily filled with them regardless of the data being
6706 * written. Therefore, if they're allowed then we allocate one and copy
6707 * the data into it; otherwise, we share the data directly if we can.
6708 */
6709 if (ARC_BUF_ENCRYPTED(buf)) {
6710 ASSERT3U(psize, >, 0);
6711 ASSERT(ARC_BUF_COMPRESSED(buf));
6712 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6713 ARC_HDR_USE_RESERVE);
6714 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6715 } else if (!(HDR_UNCACHED(hdr) ||
6716 abd_size_alloc_linear(arc_buf_size(buf))) ||
6717 !arc_can_share(hdr, buf)) {
6718 /*
6719 * Ideally, we would always copy the io_abd into b_pabd, but the
6720 * user may have disabled compressed ARC, thus we must check the
6721 * hdr's compression setting rather than the io_bp's.
6722 */
6723 if (BP_IS_ENCRYPTED(bp)) {
6724 ASSERT3U(psize, >, 0);
6725 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6726 ARC_HDR_USE_RESERVE);
6727 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6728 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6729 !ARC_BUF_COMPRESSED(buf)) {
6730 ASSERT3U(psize, >, 0);
6731 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6732 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6733 } else {
6734 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6735 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6736 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6737 arc_buf_size(buf));
6738 }
6739 } else {
6740 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6741 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6742 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6743 ASSERT(ARC_BUF_LAST(buf));
6744
6745 arc_share_buf(hdr, buf);
6746 }
6747
6748 out:
6749 arc_hdr_verify(hdr, bp);
6750 spl_fstrans_unmark(cookie);
6751 }
6752
6753 static void
arc_write_children_ready(zio_t * zio)6754 arc_write_children_ready(zio_t *zio)
6755 {
6756 arc_write_callback_t *callback = zio->io_private;
6757 arc_buf_t *buf = callback->awcb_buf;
6758
6759 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6760 }
6761
6762 static void
arc_write_done(zio_t * zio)6763 arc_write_done(zio_t *zio)
6764 {
6765 arc_write_callback_t *callback = zio->io_private;
6766 arc_buf_t *buf = callback->awcb_buf;
6767 arc_buf_hdr_t *hdr = buf->b_hdr;
6768
6769 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6770
6771 if (zio->io_error == 0) {
6772 arc_hdr_verify(hdr, zio->io_bp);
6773
6774 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6775 buf_discard_identity(hdr);
6776 } else {
6777 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6778 hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6779 }
6780 } else {
6781 ASSERT(HDR_EMPTY(hdr));
6782 }
6783
6784 /*
6785 * If the block to be written was all-zero or compressed enough to be
6786 * embedded in the BP, no write was performed so there will be no
6787 * dva/birth/checksum. The buffer must therefore remain anonymous
6788 * (and uncached).
6789 */
6790 if (!HDR_EMPTY(hdr)) {
6791 arc_buf_hdr_t *exists;
6792 kmutex_t *hash_lock;
6793
6794 ASSERT3U(zio->io_error, ==, 0);
6795
6796 arc_cksum_verify(buf);
6797
6798 exists = buf_hash_insert(hdr, &hash_lock);
6799 if (exists != NULL) {
6800 /*
6801 * This can only happen if we overwrite for
6802 * sync-to-convergence, because we remove
6803 * buffers from the hash table when we arc_free().
6804 */
6805 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6806 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6807 panic("bad overwrite, hdr=%p exists=%p",
6808 (void *)hdr, (void *)exists);
6809 ASSERT(zfs_refcount_is_zero(
6810 &exists->b_l1hdr.b_refcnt));
6811 arc_change_state(arc_anon, exists);
6812 arc_hdr_destroy(exists);
6813 mutex_exit(hash_lock);
6814 exists = buf_hash_insert(hdr, &hash_lock);
6815 ASSERT3P(exists, ==, NULL);
6816 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6817 /* nopwrite */
6818 ASSERT(zio->io_prop.zp_nopwrite);
6819 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6820 panic("bad nopwrite, hdr=%p exists=%p",
6821 (void *)hdr, (void *)exists);
6822 } else {
6823 /* Dedup */
6824 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6825 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6826 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6827 ASSERT(BP_GET_DEDUP(zio->io_bp));
6828 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6829 }
6830 }
6831 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6832 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6833 /* if it's not anon, we are doing a scrub */
6834 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6835 arc_access(hdr, 0, B_FALSE);
6836 mutex_exit(hash_lock);
6837 } else {
6838 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6839 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6840 }
6841
6842 callback->awcb_done(zio, buf, callback->awcb_private);
6843
6844 abd_free(zio->io_abd);
6845 kmem_free(callback, sizeof (arc_write_callback_t));
6846 }
6847
6848 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)6849 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6850 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6851 const zio_prop_t *zp, arc_write_done_func_t *ready,
6852 arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6853 void *private, zio_priority_t priority, int zio_flags,
6854 const zbookmark_phys_t *zb)
6855 {
6856 arc_buf_hdr_t *hdr = buf->b_hdr;
6857 arc_write_callback_t *callback;
6858 zio_t *zio;
6859 zio_prop_t localprop = *zp;
6860
6861 ASSERT3P(ready, !=, NULL);
6862 ASSERT3P(done, !=, NULL);
6863 ASSERT(!HDR_IO_ERROR(hdr));
6864 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6865 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6866 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6867 if (uncached)
6868 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6869 else if (l2arc)
6870 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6871
6872 if (ARC_BUF_ENCRYPTED(buf)) {
6873 ASSERT(ARC_BUF_COMPRESSED(buf));
6874 localprop.zp_encrypt = B_TRUE;
6875 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6876 localprop.zp_complevel = hdr->b_complevel;
6877 localprop.zp_byteorder =
6878 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6879 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6880 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6881 ZIO_DATA_SALT_LEN);
6882 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6883 ZIO_DATA_IV_LEN);
6884 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6885 ZIO_DATA_MAC_LEN);
6886 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6887 localprop.zp_nopwrite = B_FALSE;
6888 localprop.zp_copies =
6889 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6890 localprop.zp_gang_copies =
6891 MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1);
6892 }
6893 zio_flags |= ZIO_FLAG_RAW;
6894 } else if (ARC_BUF_COMPRESSED(buf)) {
6895 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6896 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6897 localprop.zp_complevel = hdr->b_complevel;
6898 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6899 }
6900 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6901 callback->awcb_ready = ready;
6902 callback->awcb_children_ready = children_ready;
6903 callback->awcb_done = done;
6904 callback->awcb_private = private;
6905 callback->awcb_buf = buf;
6906
6907 /*
6908 * The hdr's b_pabd is now stale, free it now. A new data block
6909 * will be allocated when the zio pipeline calls arc_write_ready().
6910 */
6911 if (hdr->b_l1hdr.b_pabd != NULL) {
6912 /*
6913 * If the buf is currently sharing the data block with
6914 * the hdr then we need to break that relationship here.
6915 * The hdr will remain with a NULL data pointer and the
6916 * buf will take sole ownership of the block.
6917 */
6918 if (ARC_BUF_SHARED(buf)) {
6919 arc_unshare_buf(hdr, buf);
6920 } else {
6921 ASSERT(!arc_buf_is_shared(buf));
6922 arc_hdr_free_abd(hdr, B_FALSE);
6923 }
6924 VERIFY3P(buf->b_data, !=, NULL);
6925 }
6926
6927 if (HDR_HAS_RABD(hdr))
6928 arc_hdr_free_abd(hdr, B_TRUE);
6929
6930 if (!(zio_flags & ZIO_FLAG_RAW))
6931 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6932
6933 ASSERT(!arc_buf_is_shared(buf));
6934 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6935
6936 zio = zio_write(pio, spa, txg, bp,
6937 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6938 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6939 (children_ready != NULL) ? arc_write_children_ready : NULL,
6940 arc_write_done, callback, priority, zio_flags, zb);
6941
6942 return (zio);
6943 }
6944
6945 void
arc_tempreserve_clear(uint64_t reserve)6946 arc_tempreserve_clear(uint64_t reserve)
6947 {
6948 atomic_add_64(&arc_tempreserve, -reserve);
6949 ASSERT((int64_t)arc_tempreserve >= 0);
6950 }
6951
6952 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)6953 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6954 {
6955 int error;
6956 uint64_t anon_size;
6957
6958 if (!arc_no_grow &&
6959 reserve > arc_c/4 &&
6960 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6961 arc_c = MIN(arc_c_max, reserve * 4);
6962
6963 /*
6964 * Throttle when the calculated memory footprint for the TXG
6965 * exceeds the target ARC size.
6966 */
6967 if (reserve > arc_c) {
6968 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6969 return (SET_ERROR(ERESTART));
6970 }
6971
6972 /*
6973 * Don't count loaned bufs as in flight dirty data to prevent long
6974 * network delays from blocking transactions that are ready to be
6975 * assigned to a txg.
6976 */
6977
6978 /* assert that it has not wrapped around */
6979 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6980
6981 anon_size = MAX((int64_t)
6982 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6983 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6984 arc_loaned_bytes), 0);
6985
6986 /*
6987 * Writes will, almost always, require additional memory allocations
6988 * in order to compress/encrypt/etc the data. We therefore need to
6989 * make sure that there is sufficient available memory for this.
6990 */
6991 error = arc_memory_throttle(spa, reserve, txg);
6992 if (error != 0)
6993 return (error);
6994
6995 /*
6996 * Throttle writes when the amount of dirty data in the cache
6997 * gets too large. We try to keep the cache less than half full
6998 * of dirty blocks so that our sync times don't grow too large.
6999 *
7000 * In the case of one pool being built on another pool, we want
7001 * to make sure we don't end up throttling the lower (backing)
7002 * pool when the upper pool is the majority contributor to dirty
7003 * data. To insure we make forward progress during throttling, we
7004 * also check the current pool's net dirty data and only throttle
7005 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7006 * data in the cache.
7007 *
7008 * Note: if two requests come in concurrently, we might let them
7009 * both succeed, when one of them should fail. Not a huge deal.
7010 */
7011 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7012 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7013 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7014 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7015 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7016 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7017 #ifdef ZFS_DEBUG
7018 uint64_t meta_esize = zfs_refcount_count(
7019 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7020 uint64_t data_esize =
7021 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7022 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7023 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7024 (u_longlong_t)arc_tempreserve >> 10,
7025 (u_longlong_t)meta_esize >> 10,
7026 (u_longlong_t)data_esize >> 10,
7027 (u_longlong_t)reserve >> 10,
7028 (u_longlong_t)rarc_c >> 10);
7029 #endif
7030 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7031 return (SET_ERROR(ERESTART));
7032 }
7033 atomic_add_64(&arc_tempreserve, reserve);
7034 return (0);
7035 }
7036
7037 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7038 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7039 kstat_named_t *data, kstat_named_t *metadata,
7040 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7041 {
7042 data->value.ui64 =
7043 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7044 metadata->value.ui64 =
7045 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7046 size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7047 evict_data->value.ui64 =
7048 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7049 evict_metadata->value.ui64 =
7050 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7051 }
7052
7053 static int
arc_kstat_update(kstat_t * ksp,int rw)7054 arc_kstat_update(kstat_t *ksp, int rw)
7055 {
7056 arc_stats_t *as = ksp->ks_data;
7057
7058 if (rw == KSTAT_WRITE)
7059 return (SET_ERROR(EACCES));
7060
7061 as->arcstat_hits.value.ui64 =
7062 wmsum_value(&arc_sums.arcstat_hits);
7063 as->arcstat_iohits.value.ui64 =
7064 wmsum_value(&arc_sums.arcstat_iohits);
7065 as->arcstat_misses.value.ui64 =
7066 wmsum_value(&arc_sums.arcstat_misses);
7067 as->arcstat_demand_data_hits.value.ui64 =
7068 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7069 as->arcstat_demand_data_iohits.value.ui64 =
7070 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7071 as->arcstat_demand_data_misses.value.ui64 =
7072 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7073 as->arcstat_demand_metadata_hits.value.ui64 =
7074 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7075 as->arcstat_demand_metadata_iohits.value.ui64 =
7076 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7077 as->arcstat_demand_metadata_misses.value.ui64 =
7078 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7079 as->arcstat_prefetch_data_hits.value.ui64 =
7080 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7081 as->arcstat_prefetch_data_iohits.value.ui64 =
7082 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7083 as->arcstat_prefetch_data_misses.value.ui64 =
7084 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7085 as->arcstat_prefetch_metadata_hits.value.ui64 =
7086 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7087 as->arcstat_prefetch_metadata_iohits.value.ui64 =
7088 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7089 as->arcstat_prefetch_metadata_misses.value.ui64 =
7090 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7091 as->arcstat_mru_hits.value.ui64 =
7092 wmsum_value(&arc_sums.arcstat_mru_hits);
7093 as->arcstat_mru_ghost_hits.value.ui64 =
7094 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7095 as->arcstat_mfu_hits.value.ui64 =
7096 wmsum_value(&arc_sums.arcstat_mfu_hits);
7097 as->arcstat_mfu_ghost_hits.value.ui64 =
7098 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7099 as->arcstat_uncached_hits.value.ui64 =
7100 wmsum_value(&arc_sums.arcstat_uncached_hits);
7101 as->arcstat_deleted.value.ui64 =
7102 wmsum_value(&arc_sums.arcstat_deleted);
7103 as->arcstat_mutex_miss.value.ui64 =
7104 wmsum_value(&arc_sums.arcstat_mutex_miss);
7105 as->arcstat_access_skip.value.ui64 =
7106 wmsum_value(&arc_sums.arcstat_access_skip);
7107 as->arcstat_evict_skip.value.ui64 =
7108 wmsum_value(&arc_sums.arcstat_evict_skip);
7109 as->arcstat_evict_not_enough.value.ui64 =
7110 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7111 as->arcstat_evict_l2_cached.value.ui64 =
7112 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7113 as->arcstat_evict_l2_eligible.value.ui64 =
7114 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7115 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7116 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7117 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7118 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7119 as->arcstat_evict_l2_ineligible.value.ui64 =
7120 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7121 as->arcstat_evict_l2_skip.value.ui64 =
7122 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7123 as->arcstat_hash_elements.value.ui64 =
7124 as->arcstat_hash_elements_max.value.ui64 =
7125 wmsum_value(&arc_sums.arcstat_hash_elements);
7126 as->arcstat_hash_collisions.value.ui64 =
7127 wmsum_value(&arc_sums.arcstat_hash_collisions);
7128 as->arcstat_hash_chains.value.ui64 =
7129 wmsum_value(&arc_sums.arcstat_hash_chains);
7130 as->arcstat_size.value.ui64 =
7131 aggsum_value(&arc_sums.arcstat_size);
7132 as->arcstat_compressed_size.value.ui64 =
7133 wmsum_value(&arc_sums.arcstat_compressed_size);
7134 as->arcstat_uncompressed_size.value.ui64 =
7135 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7136 as->arcstat_overhead_size.value.ui64 =
7137 wmsum_value(&arc_sums.arcstat_overhead_size);
7138 as->arcstat_hdr_size.value.ui64 =
7139 wmsum_value(&arc_sums.arcstat_hdr_size);
7140 as->arcstat_data_size.value.ui64 =
7141 wmsum_value(&arc_sums.arcstat_data_size);
7142 as->arcstat_metadata_size.value.ui64 =
7143 wmsum_value(&arc_sums.arcstat_metadata_size);
7144 as->arcstat_dbuf_size.value.ui64 =
7145 wmsum_value(&arc_sums.arcstat_dbuf_size);
7146 #if defined(COMPAT_FREEBSD11)
7147 as->arcstat_other_size.value.ui64 =
7148 wmsum_value(&arc_sums.arcstat_bonus_size) +
7149 wmsum_value(&arc_sums.arcstat_dnode_size) +
7150 wmsum_value(&arc_sums.arcstat_dbuf_size);
7151 #endif
7152
7153 arc_kstat_update_state(arc_anon,
7154 &as->arcstat_anon_size,
7155 &as->arcstat_anon_data,
7156 &as->arcstat_anon_metadata,
7157 &as->arcstat_anon_evictable_data,
7158 &as->arcstat_anon_evictable_metadata);
7159 arc_kstat_update_state(arc_mru,
7160 &as->arcstat_mru_size,
7161 &as->arcstat_mru_data,
7162 &as->arcstat_mru_metadata,
7163 &as->arcstat_mru_evictable_data,
7164 &as->arcstat_mru_evictable_metadata);
7165 arc_kstat_update_state(arc_mru_ghost,
7166 &as->arcstat_mru_ghost_size,
7167 &as->arcstat_mru_ghost_data,
7168 &as->arcstat_mru_ghost_metadata,
7169 &as->arcstat_mru_ghost_evictable_data,
7170 &as->arcstat_mru_ghost_evictable_metadata);
7171 arc_kstat_update_state(arc_mfu,
7172 &as->arcstat_mfu_size,
7173 &as->arcstat_mfu_data,
7174 &as->arcstat_mfu_metadata,
7175 &as->arcstat_mfu_evictable_data,
7176 &as->arcstat_mfu_evictable_metadata);
7177 arc_kstat_update_state(arc_mfu_ghost,
7178 &as->arcstat_mfu_ghost_size,
7179 &as->arcstat_mfu_ghost_data,
7180 &as->arcstat_mfu_ghost_metadata,
7181 &as->arcstat_mfu_ghost_evictable_data,
7182 &as->arcstat_mfu_ghost_evictable_metadata);
7183 arc_kstat_update_state(arc_uncached,
7184 &as->arcstat_uncached_size,
7185 &as->arcstat_uncached_data,
7186 &as->arcstat_uncached_metadata,
7187 &as->arcstat_uncached_evictable_data,
7188 &as->arcstat_uncached_evictable_metadata);
7189
7190 as->arcstat_dnode_size.value.ui64 =
7191 wmsum_value(&arc_sums.arcstat_dnode_size);
7192 as->arcstat_bonus_size.value.ui64 =
7193 wmsum_value(&arc_sums.arcstat_bonus_size);
7194 as->arcstat_l2_hits.value.ui64 =
7195 wmsum_value(&arc_sums.arcstat_l2_hits);
7196 as->arcstat_l2_misses.value.ui64 =
7197 wmsum_value(&arc_sums.arcstat_l2_misses);
7198 as->arcstat_l2_prefetch_asize.value.ui64 =
7199 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7200 as->arcstat_l2_mru_asize.value.ui64 =
7201 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7202 as->arcstat_l2_mfu_asize.value.ui64 =
7203 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7204 as->arcstat_l2_bufc_data_asize.value.ui64 =
7205 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7206 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7207 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7208 as->arcstat_l2_feeds.value.ui64 =
7209 wmsum_value(&arc_sums.arcstat_l2_feeds);
7210 as->arcstat_l2_rw_clash.value.ui64 =
7211 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7212 as->arcstat_l2_read_bytes.value.ui64 =
7213 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7214 as->arcstat_l2_write_bytes.value.ui64 =
7215 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7216 as->arcstat_l2_writes_sent.value.ui64 =
7217 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7218 as->arcstat_l2_writes_done.value.ui64 =
7219 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7220 as->arcstat_l2_writes_error.value.ui64 =
7221 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7222 as->arcstat_l2_writes_lock_retry.value.ui64 =
7223 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7224 as->arcstat_l2_evict_lock_retry.value.ui64 =
7225 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7226 as->arcstat_l2_evict_reading.value.ui64 =
7227 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7228 as->arcstat_l2_evict_l1cached.value.ui64 =
7229 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7230 as->arcstat_l2_free_on_write.value.ui64 =
7231 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7232 as->arcstat_l2_abort_lowmem.value.ui64 =
7233 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7234 as->arcstat_l2_cksum_bad.value.ui64 =
7235 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7236 as->arcstat_l2_io_error.value.ui64 =
7237 wmsum_value(&arc_sums.arcstat_l2_io_error);
7238 as->arcstat_l2_lsize.value.ui64 =
7239 wmsum_value(&arc_sums.arcstat_l2_lsize);
7240 as->arcstat_l2_psize.value.ui64 =
7241 wmsum_value(&arc_sums.arcstat_l2_psize);
7242 as->arcstat_l2_hdr_size.value.ui64 =
7243 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7244 as->arcstat_l2_log_blk_writes.value.ui64 =
7245 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7246 as->arcstat_l2_log_blk_asize.value.ui64 =
7247 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7248 as->arcstat_l2_log_blk_count.value.ui64 =
7249 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7250 as->arcstat_l2_rebuild_success.value.ui64 =
7251 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7252 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7253 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7254 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7255 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7256 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7257 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7258 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7259 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7260 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7261 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7262 as->arcstat_l2_rebuild_size.value.ui64 =
7263 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7264 as->arcstat_l2_rebuild_asize.value.ui64 =
7265 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7266 as->arcstat_l2_rebuild_bufs.value.ui64 =
7267 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7268 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7269 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7270 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7271 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7272 as->arcstat_memory_throttle_count.value.ui64 =
7273 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7274 as->arcstat_memory_direct_count.value.ui64 =
7275 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7276 as->arcstat_memory_indirect_count.value.ui64 =
7277 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7278
7279 as->arcstat_memory_all_bytes.value.ui64 =
7280 arc_all_memory();
7281 as->arcstat_memory_free_bytes.value.ui64 =
7282 arc_free_memory();
7283 as->arcstat_memory_available_bytes.value.i64 =
7284 arc_available_memory();
7285
7286 as->arcstat_prune.value.ui64 =
7287 wmsum_value(&arc_sums.arcstat_prune);
7288 as->arcstat_meta_used.value.ui64 =
7289 wmsum_value(&arc_sums.arcstat_meta_used);
7290 as->arcstat_async_upgrade_sync.value.ui64 =
7291 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7292 as->arcstat_predictive_prefetch.value.ui64 =
7293 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7294 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7295 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7296 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7297 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7298 as->arcstat_prescient_prefetch.value.ui64 =
7299 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7300 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7301 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7302 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7303 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7304 as->arcstat_raw_size.value.ui64 =
7305 wmsum_value(&arc_sums.arcstat_raw_size);
7306 as->arcstat_cached_only_in_progress.value.ui64 =
7307 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7308 as->arcstat_abd_chunk_waste_size.value.ui64 =
7309 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7310
7311 return (0);
7312 }
7313
7314 /*
7315 * This function *must* return indices evenly distributed between all
7316 * sublists of the multilist. This is needed due to how the ARC eviction
7317 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7318 * distributed between all sublists and uses this assumption when
7319 * deciding which sublist to evict from and how much to evict from it.
7320 */
7321 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7322 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7323 {
7324 arc_buf_hdr_t *hdr = obj;
7325
7326 /*
7327 * We rely on b_dva to generate evenly distributed index
7328 * numbers using buf_hash below. So, as an added precaution,
7329 * let's make sure we never add empty buffers to the arc lists.
7330 */
7331 ASSERT(!HDR_EMPTY(hdr));
7332
7333 /*
7334 * The assumption here, is the hash value for a given
7335 * arc_buf_hdr_t will remain constant throughout its lifetime
7336 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7337 * Thus, we don't need to store the header's sublist index
7338 * on insertion, as this index can be recalculated on removal.
7339 *
7340 * Also, the low order bits of the hash value are thought to be
7341 * distributed evenly. Otherwise, in the case that the multilist
7342 * has a power of two number of sublists, each sublists' usage
7343 * would not be evenly distributed. In this context full 64bit
7344 * division would be a waste of time, so limit it to 32 bits.
7345 */
7346 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7347 multilist_get_num_sublists(ml));
7348 }
7349
7350 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7351 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7352 {
7353 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7354 }
7355
7356 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7357 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7358 cmn_err(CE_WARN, \
7359 "ignoring tunable %s (using %llu instead)", \
7360 (#tuning), (u_longlong_t)(value)); \
7361 } \
7362 } while (0)
7363
7364 /*
7365 * Called during module initialization and periodically thereafter to
7366 * apply reasonable changes to the exposed performance tunings. Can also be
7367 * called explicitly by param_set_arc_*() functions when ARC tunables are
7368 * updated manually. Non-zero zfs_* values which differ from the currently set
7369 * values will be applied.
7370 */
7371 void
arc_tuning_update(boolean_t verbose)7372 arc_tuning_update(boolean_t verbose)
7373 {
7374 uint64_t allmem = arc_all_memory();
7375
7376 /* Valid range: 32M - <arc_c_max> */
7377 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7378 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7379 (zfs_arc_min <= arc_c_max)) {
7380 arc_c_min = zfs_arc_min;
7381 arc_c = MAX(arc_c, arc_c_min);
7382 }
7383 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7384
7385 /* Valid range: 64M - <all physical memory> */
7386 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7387 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7388 (zfs_arc_max > arc_c_min)) {
7389 arc_c_max = zfs_arc_max;
7390 arc_c = MIN(arc_c, arc_c_max);
7391 if (arc_dnode_limit > arc_c_max)
7392 arc_dnode_limit = arc_c_max;
7393 }
7394 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7395
7396 /* Valid range: 0 - <all physical memory> */
7397 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7398 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7399 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7400
7401 /* Valid range: 1 - N */
7402 if (zfs_arc_grow_retry)
7403 arc_grow_retry = zfs_arc_grow_retry;
7404
7405 /* Valid range: 1 - N */
7406 if (zfs_arc_shrink_shift) {
7407 arc_shrink_shift = zfs_arc_shrink_shift;
7408 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7409 }
7410
7411 /* Valid range: 1 - N ms */
7412 if (zfs_arc_min_prefetch_ms)
7413 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7414
7415 /* Valid range: 1 - N ms */
7416 if (zfs_arc_min_prescient_prefetch_ms) {
7417 arc_min_prescient_prefetch_ms =
7418 zfs_arc_min_prescient_prefetch_ms;
7419 }
7420
7421 /* Valid range: 0 - 100 */
7422 if (zfs_arc_lotsfree_percent <= 100)
7423 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7424 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7425 verbose);
7426
7427 /* Valid range: 0 - <all physical memory> */
7428 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7429 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7430 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7431 }
7432
7433 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7434 arc_state_multilist_init(multilist_t *ml,
7435 multilist_sublist_index_func_t *index_func, int *maxcountp)
7436 {
7437 multilist_create(ml, sizeof (arc_buf_hdr_t),
7438 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7439 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7440 }
7441
7442 static void
arc_state_init(void)7443 arc_state_init(void)
7444 {
7445 int num_sublists = 0;
7446
7447 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7448 arc_state_multilist_index_func, &num_sublists);
7449 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7450 arc_state_multilist_index_func, &num_sublists);
7451 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7452 arc_state_multilist_index_func, &num_sublists);
7453 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7454 arc_state_multilist_index_func, &num_sublists);
7455 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7456 arc_state_multilist_index_func, &num_sublists);
7457 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7458 arc_state_multilist_index_func, &num_sublists);
7459 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7460 arc_state_multilist_index_func, &num_sublists);
7461 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7462 arc_state_multilist_index_func, &num_sublists);
7463 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7464 arc_state_multilist_index_func, &num_sublists);
7465 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7466 arc_state_multilist_index_func, &num_sublists);
7467
7468 /*
7469 * L2 headers should never be on the L2 state list since they don't
7470 * have L1 headers allocated. Special index function asserts that.
7471 */
7472 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7473 arc_state_l2c_multilist_index_func, &num_sublists);
7474 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7475 arc_state_l2c_multilist_index_func, &num_sublists);
7476
7477 /*
7478 * Keep track of the number of markers needed to reclaim buffers from
7479 * any ARC state. The markers will be pre-allocated so as to minimize
7480 * the number of memory allocations performed by the eviction thread.
7481 */
7482 arc_state_evict_marker_count = num_sublists;
7483
7484 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7485 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7486 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7487 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7488 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7489 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7490 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7491 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7492 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7493 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7494 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7495 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7496 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7497 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7498
7499 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7500 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7501 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7502 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7503 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7504 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7505 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7506 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7507 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7508 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7509 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7510 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7511 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7512 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7513
7514 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7515 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7516 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7517 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7518
7519 wmsum_init(&arc_sums.arcstat_hits, 0);
7520 wmsum_init(&arc_sums.arcstat_iohits, 0);
7521 wmsum_init(&arc_sums.arcstat_misses, 0);
7522 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7523 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7524 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7525 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7526 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7527 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7528 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7529 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7530 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7531 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7532 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7533 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7534 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7535 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7536 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7537 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7538 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7539 wmsum_init(&arc_sums.arcstat_deleted, 0);
7540 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7541 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7542 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7543 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7544 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7545 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7546 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7547 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7548 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7549 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7550 wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7551 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7552 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7553 aggsum_init(&arc_sums.arcstat_size, 0);
7554 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7555 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7556 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7557 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7558 wmsum_init(&arc_sums.arcstat_data_size, 0);
7559 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7560 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7561 wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7562 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7563 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7564 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7565 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7566 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7567 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7568 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7569 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7570 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7571 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7572 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7573 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7574 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7575 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7576 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7577 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7578 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7579 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7580 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7581 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7582 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7583 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7584 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7585 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7586 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7587 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7588 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7589 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7590 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7591 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7592 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7593 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7594 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7595 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7596 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7597 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7598 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7599 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7600 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7601 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7602 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7603 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7604 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7605 wmsum_init(&arc_sums.arcstat_prune, 0);
7606 wmsum_init(&arc_sums.arcstat_meta_used, 0);
7607 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7608 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7609 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7610 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7611 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7612 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7613 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7614 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7615 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7616 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7617
7618 arc_anon->arcs_state = ARC_STATE_ANON;
7619 arc_mru->arcs_state = ARC_STATE_MRU;
7620 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7621 arc_mfu->arcs_state = ARC_STATE_MFU;
7622 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7623 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7624 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7625 }
7626
7627 static void
arc_state_fini(void)7628 arc_state_fini(void)
7629 {
7630 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7631 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7632 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7633 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7634 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7635 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7636 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7637 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7638 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7639 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7640 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7641 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7642 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7643 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7644
7645 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7646 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7647 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7648 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7649 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7650 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7651 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7652 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7653 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7654 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7655 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7656 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7657 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7658 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7659
7660 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7661 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7662 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7663 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7664 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7665 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7666 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7667 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7668 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7669 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7670 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7671 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7672
7673 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7674 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7675 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7676 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7677
7678 wmsum_fini(&arc_sums.arcstat_hits);
7679 wmsum_fini(&arc_sums.arcstat_iohits);
7680 wmsum_fini(&arc_sums.arcstat_misses);
7681 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7682 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7683 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7684 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7685 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7686 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7687 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7688 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7689 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7690 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7691 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7692 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7693 wmsum_fini(&arc_sums.arcstat_mru_hits);
7694 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7695 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7696 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7697 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7698 wmsum_fini(&arc_sums.arcstat_deleted);
7699 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7700 wmsum_fini(&arc_sums.arcstat_access_skip);
7701 wmsum_fini(&arc_sums.arcstat_evict_skip);
7702 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7703 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7704 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7705 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7706 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7707 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7708 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7709 wmsum_fini(&arc_sums.arcstat_hash_elements);
7710 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7711 wmsum_fini(&arc_sums.arcstat_hash_chains);
7712 aggsum_fini(&arc_sums.arcstat_size);
7713 wmsum_fini(&arc_sums.arcstat_compressed_size);
7714 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7715 wmsum_fini(&arc_sums.arcstat_overhead_size);
7716 wmsum_fini(&arc_sums.arcstat_hdr_size);
7717 wmsum_fini(&arc_sums.arcstat_data_size);
7718 wmsum_fini(&arc_sums.arcstat_metadata_size);
7719 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7720 wmsum_fini(&arc_sums.arcstat_dnode_size);
7721 wmsum_fini(&arc_sums.arcstat_bonus_size);
7722 wmsum_fini(&arc_sums.arcstat_l2_hits);
7723 wmsum_fini(&arc_sums.arcstat_l2_misses);
7724 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7725 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7726 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7727 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7728 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7729 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7730 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7731 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7732 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7733 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7734 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7735 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7736 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7737 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7738 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7739 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7740 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7741 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7742 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7743 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7744 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7745 wmsum_fini(&arc_sums.arcstat_l2_psize);
7746 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7747 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7748 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7749 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7750 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7751 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7752 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7753 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7754 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7755 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7756 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7757 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7758 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7759 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7760 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7761 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7762 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7763 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7764 wmsum_fini(&arc_sums.arcstat_prune);
7765 wmsum_fini(&arc_sums.arcstat_meta_used);
7766 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7767 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7768 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7769 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7770 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7771 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7772 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7773 wmsum_fini(&arc_sums.arcstat_raw_size);
7774 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7775 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7776 }
7777
7778 uint64_t
arc_target_bytes(void)7779 arc_target_bytes(void)
7780 {
7781 return (arc_c);
7782 }
7783
7784 void
arc_set_limits(uint64_t allmem)7785 arc_set_limits(uint64_t allmem)
7786 {
7787 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7788 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7789
7790 /* How to set default max varies by platform. */
7791 arc_c_max = arc_default_max(arc_c_min, allmem);
7792 }
7793 void
arc_init(void)7794 arc_init(void)
7795 {
7796 uint64_t percent, allmem = arc_all_memory();
7797 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7798 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7799 offsetof(arc_evict_waiter_t, aew_node));
7800
7801 arc_min_prefetch_ms = 1000;
7802 arc_min_prescient_prefetch_ms = 6000;
7803
7804 #if defined(_KERNEL)
7805 arc_lowmem_init();
7806 #endif
7807
7808 arc_set_limits(allmem);
7809
7810 #ifdef _KERNEL
7811 /*
7812 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7813 * environment before the module was loaded, don't block setting the
7814 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7815 * to a lower value.
7816 * zfs_arc_min will be handled by arc_tuning_update().
7817 */
7818 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7819 zfs_arc_max < allmem) {
7820 arc_c_max = zfs_arc_max;
7821 if (arc_c_min >= arc_c_max) {
7822 arc_c_min = MAX(zfs_arc_max / 2,
7823 2ULL << SPA_MAXBLOCKSHIFT);
7824 }
7825 }
7826 #else
7827 /*
7828 * In userland, there's only the memory pressure that we artificially
7829 * create (see arc_available_memory()). Don't let arc_c get too
7830 * small, because it can cause transactions to be larger than
7831 * arc_c, causing arc_tempreserve_space() to fail.
7832 */
7833 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7834 #endif
7835
7836 arc_c = arc_c_min;
7837 /*
7838 * 32-bit fixed point fractions of metadata from total ARC size,
7839 * MRU data from all data and MRU metadata from all metadata.
7840 */
7841 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
7842 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */
7843 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
7844
7845 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7846 arc_dnode_limit = arc_c_max * percent / 100;
7847
7848 /* Apply user specified tunings */
7849 arc_tuning_update(B_TRUE);
7850
7851 /* if kmem_flags are set, lets try to use less memory */
7852 if (kmem_debugging())
7853 arc_c = arc_c / 2;
7854 if (arc_c < arc_c_min)
7855 arc_c = arc_c_min;
7856
7857 arc_register_hotplug();
7858
7859 arc_state_init();
7860
7861 buf_init();
7862
7863 list_create(&arc_prune_list, sizeof (arc_prune_t),
7864 offsetof(arc_prune_t, p_node));
7865 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7866
7867 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7868 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7869
7870 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
7871 offsetof(arc_async_flush_t, af_node));
7872 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
7873 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
7874 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
7875
7876 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7877 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7878
7879 if (arc_ksp != NULL) {
7880 arc_ksp->ks_data = &arc_stats;
7881 arc_ksp->ks_update = arc_kstat_update;
7882 kstat_install(arc_ksp);
7883 }
7884
7885 arc_state_evict_markers =
7886 arc_state_alloc_markers(arc_state_evict_marker_count);
7887 arc_evict_zthr = zthr_create_timer("arc_evict",
7888 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7889 arc_reap_zthr = zthr_create_timer("arc_reap",
7890 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7891
7892 arc_warm = B_FALSE;
7893
7894 /*
7895 * Calculate maximum amount of dirty data per pool.
7896 *
7897 * If it has been set by a module parameter, take that.
7898 * Otherwise, use a percentage of physical memory defined by
7899 * zfs_dirty_data_max_percent (default 10%) with a cap at
7900 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7901 */
7902 #ifdef __LP64__
7903 if (zfs_dirty_data_max_max == 0)
7904 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7905 allmem * zfs_dirty_data_max_max_percent / 100);
7906 #else
7907 if (zfs_dirty_data_max_max == 0)
7908 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7909 allmem * zfs_dirty_data_max_max_percent / 100);
7910 #endif
7911
7912 if (zfs_dirty_data_max == 0) {
7913 zfs_dirty_data_max = allmem *
7914 zfs_dirty_data_max_percent / 100;
7915 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7916 zfs_dirty_data_max_max);
7917 }
7918
7919 if (zfs_wrlog_data_max == 0) {
7920
7921 /*
7922 * dp_wrlog_total is reduced for each txg at the end of
7923 * spa_sync(). However, dp_dirty_total is reduced every time
7924 * a block is written out. Thus under normal operation,
7925 * dp_wrlog_total could grow 2 times as big as
7926 * zfs_dirty_data_max.
7927 */
7928 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7929 }
7930 }
7931
7932 void
arc_fini(void)7933 arc_fini(void)
7934 {
7935 arc_prune_t *p;
7936
7937 #ifdef _KERNEL
7938 arc_lowmem_fini();
7939 #endif /* _KERNEL */
7940
7941 /* Wait for any background flushes */
7942 taskq_wait(arc_flush_taskq);
7943 taskq_destroy(arc_flush_taskq);
7944
7945 /* Use B_TRUE to ensure *all* buffers are evicted */
7946 arc_flush(NULL, B_TRUE);
7947
7948 if (arc_ksp != NULL) {
7949 kstat_delete(arc_ksp);
7950 arc_ksp = NULL;
7951 }
7952
7953 taskq_wait(arc_prune_taskq);
7954 taskq_destroy(arc_prune_taskq);
7955
7956 list_destroy(&arc_async_flush_list);
7957 mutex_destroy(&arc_async_flush_lock);
7958
7959 mutex_enter(&arc_prune_mtx);
7960 while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7961 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7962 zfs_refcount_destroy(&p->p_refcnt);
7963 kmem_free(p, sizeof (*p));
7964 }
7965 mutex_exit(&arc_prune_mtx);
7966
7967 list_destroy(&arc_prune_list);
7968 mutex_destroy(&arc_prune_mtx);
7969
7970 (void) zthr_cancel(arc_evict_zthr);
7971 (void) zthr_cancel(arc_reap_zthr);
7972 arc_state_free_markers(arc_state_evict_markers,
7973 arc_state_evict_marker_count);
7974
7975 mutex_destroy(&arc_evict_lock);
7976 list_destroy(&arc_evict_waiters);
7977
7978 /*
7979 * Free any buffers that were tagged for destruction. This needs
7980 * to occur before arc_state_fini() runs and destroys the aggsum
7981 * values which are updated when freeing scatter ABDs.
7982 */
7983 l2arc_do_free_on_write();
7984
7985 /*
7986 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7987 * trigger the release of kmem magazines, which can callback to
7988 * arc_space_return() which accesses aggsums freed in act_state_fini().
7989 */
7990 buf_fini();
7991 arc_state_fini();
7992
7993 arc_unregister_hotplug();
7994
7995 /*
7996 * We destroy the zthrs after all the ARC state has been
7997 * torn down to avoid the case of them receiving any
7998 * wakeup() signals after they are destroyed.
7999 */
8000 zthr_destroy(arc_evict_zthr);
8001 zthr_destroy(arc_reap_zthr);
8002
8003 ASSERT0(arc_loaned_bytes);
8004 }
8005
8006 /*
8007 * Level 2 ARC
8008 *
8009 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8010 * It uses dedicated storage devices to hold cached data, which are populated
8011 * using large infrequent writes. The main role of this cache is to boost
8012 * the performance of random read workloads. The intended L2ARC devices
8013 * include short-stroked disks, solid state disks, and other media with
8014 * substantially faster read latency than disk.
8015 *
8016 * +-----------------------+
8017 * | ARC |
8018 * +-----------------------+
8019 * | ^ ^
8020 * | | |
8021 * l2arc_feed_thread() arc_read()
8022 * | | |
8023 * | l2arc read |
8024 * V | |
8025 * +---------------+ |
8026 * | L2ARC | |
8027 * +---------------+ |
8028 * | ^ |
8029 * l2arc_write() | |
8030 * | | |
8031 * V | |
8032 * +-------+ +-------+
8033 * | vdev | | vdev |
8034 * | cache | | cache |
8035 * +-------+ +-------+
8036 * +=========+ .-----.
8037 * : L2ARC : |-_____-|
8038 * : devices : | Disks |
8039 * +=========+ `-_____-'
8040 *
8041 * Read requests are satisfied from the following sources, in order:
8042 *
8043 * 1) ARC
8044 * 2) vdev cache of L2ARC devices
8045 * 3) L2ARC devices
8046 * 4) vdev cache of disks
8047 * 5) disks
8048 *
8049 * Some L2ARC device types exhibit extremely slow write performance.
8050 * To accommodate for this there are some significant differences between
8051 * the L2ARC and traditional cache design:
8052 *
8053 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8054 * the ARC behave as usual, freeing buffers and placing headers on ghost
8055 * lists. The ARC does not send buffers to the L2ARC during eviction as
8056 * this would add inflated write latencies for all ARC memory pressure.
8057 *
8058 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8059 * It does this by periodically scanning buffers from the eviction-end of
8060 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8061 * not already there. It scans until a headroom of buffers is satisfied,
8062 * which itself is a buffer for ARC eviction. If a compressible buffer is
8063 * found during scanning and selected for writing to an L2ARC device, we
8064 * temporarily boost scanning headroom during the next scan cycle to make
8065 * sure we adapt to compression effects (which might significantly reduce
8066 * the data volume we write to L2ARC). The thread that does this is
8067 * l2arc_feed_thread(), illustrated below; example sizes are included to
8068 * provide a better sense of ratio than this diagram:
8069 *
8070 * head --> tail
8071 * +---------------------+----------+
8072 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8073 * +---------------------+----------+ | o L2ARC eligible
8074 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8075 * +---------------------+----------+ |
8076 * 15.9 Gbytes ^ 32 Mbytes |
8077 * headroom |
8078 * l2arc_feed_thread()
8079 * |
8080 * l2arc write hand <--[oooo]--'
8081 * | 8 Mbyte
8082 * | write max
8083 * V
8084 * +==============================+
8085 * L2ARC dev |####|#|###|###| |####| ... |
8086 * +==============================+
8087 * 32 Gbytes
8088 *
8089 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8090 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8091 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8092 * safe to say that this is an uncommon case, since buffers at the end of
8093 * the ARC lists have moved there due to inactivity.
8094 *
8095 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8096 * then the L2ARC simply misses copying some buffers. This serves as a
8097 * pressure valve to prevent heavy read workloads from both stalling the ARC
8098 * with waits and clogging the L2ARC with writes. This also helps prevent
8099 * the potential for the L2ARC to churn if it attempts to cache content too
8100 * quickly, such as during backups of the entire pool.
8101 *
8102 * 5. After system boot and before the ARC has filled main memory, there are
8103 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8104 * lists can remain mostly static. Instead of searching from tail of these
8105 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8106 * for eligible buffers, greatly increasing its chance of finding them.
8107 *
8108 * The L2ARC device write speed is also boosted during this time so that
8109 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8110 * there are no L2ARC reads, and no fear of degrading read performance
8111 * through increased writes.
8112 *
8113 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8114 * the vdev queue can aggregate them into larger and fewer writes. Each
8115 * device is written to in a rotor fashion, sweeping writes through
8116 * available space then repeating.
8117 *
8118 * 7. The L2ARC does not store dirty content. It never needs to flush
8119 * write buffers back to disk based storage.
8120 *
8121 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8122 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8123 *
8124 * The performance of the L2ARC can be tweaked by a number of tunables, which
8125 * may be necessary for different workloads:
8126 *
8127 * l2arc_write_max max write bytes per interval
8128 * l2arc_write_boost extra write bytes during device warmup
8129 * l2arc_noprefetch skip caching prefetched buffers
8130 * l2arc_headroom number of max device writes to precache
8131 * l2arc_headroom_boost when we find compressed buffers during ARC
8132 * scanning, we multiply headroom by this
8133 * percentage factor for the next scan cycle,
8134 * since more compressed buffers are likely to
8135 * be present
8136 * l2arc_feed_secs seconds between L2ARC writing
8137 *
8138 * Tunables may be removed or added as future performance improvements are
8139 * integrated, and also may become zpool properties.
8140 *
8141 * There are three key functions that control how the L2ARC warms up:
8142 *
8143 * l2arc_write_eligible() check if a buffer is eligible to cache
8144 * l2arc_write_size() calculate how much to write
8145 * l2arc_write_interval() calculate sleep delay between writes
8146 *
8147 * These three functions determine what to write, how much, and how quickly
8148 * to send writes.
8149 *
8150 * L2ARC persistence:
8151 *
8152 * When writing buffers to L2ARC, we periodically add some metadata to
8153 * make sure we can pick them up after reboot, thus dramatically reducing
8154 * the impact that any downtime has on the performance of storage systems
8155 * with large caches.
8156 *
8157 * The implementation works fairly simply by integrating the following two
8158 * modifications:
8159 *
8160 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8161 * which is an additional piece of metadata which describes what's been
8162 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8163 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8164 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8165 * time-wise and offset-wise interleaved, but that is an optimization rather
8166 * than for correctness. The log block also includes a pointer to the
8167 * previous block in its chain.
8168 *
8169 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8170 * for our header bookkeeping purposes. This contains a device header,
8171 * which contains our top-level reference structures. We update it each
8172 * time we write a new log block, so that we're able to locate it in the
8173 * L2ARC device. If this write results in an inconsistent device header
8174 * (e.g. due to power failure), we detect this by verifying the header's
8175 * checksum and simply fail to reconstruct the L2ARC after reboot.
8176 *
8177 * Implementation diagram:
8178 *
8179 * +=== L2ARC device (not to scale) ======================================+
8180 * | ___two newest log block pointers__.__________ |
8181 * | / \dh_start_lbps[1] |
8182 * | / \ \dh_start_lbps[0]|
8183 * |.___/__. V V |
8184 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8185 * || hdr| ^ /^ /^ / / |
8186 * |+------+ ...--\-------/ \-----/--\------/ / |
8187 * | \--------------/ \--------------/ |
8188 * +======================================================================+
8189 *
8190 * As can be seen on the diagram, rather than using a simple linked list,
8191 * we use a pair of linked lists with alternating elements. This is a
8192 * performance enhancement due to the fact that we only find out the
8193 * address of the next log block access once the current block has been
8194 * completely read in. Obviously, this hurts performance, because we'd be
8195 * keeping the device's I/O queue at only a 1 operation deep, thus
8196 * incurring a large amount of I/O round-trip latency. Having two lists
8197 * allows us to fetch two log blocks ahead of where we are currently
8198 * rebuilding L2ARC buffers.
8199 *
8200 * On-device data structures:
8201 *
8202 * L2ARC device header: l2arc_dev_hdr_phys_t
8203 * L2ARC log block: l2arc_log_blk_phys_t
8204 *
8205 * L2ARC reconstruction:
8206 *
8207 * When writing data, we simply write in the standard rotary fashion,
8208 * evicting buffers as we go and simply writing new data over them (writing
8209 * a new log block every now and then). This obviously means that once we
8210 * loop around the end of the device, we will start cutting into an already
8211 * committed log block (and its referenced data buffers), like so:
8212 *
8213 * current write head__ __old tail
8214 * \ /
8215 * V V
8216 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8217 * ^ ^^^^^^^^^___________________________________
8218 * | \
8219 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8220 *
8221 * When importing the pool, we detect this situation and use it to stop
8222 * our scanning process (see l2arc_rebuild).
8223 *
8224 * There is one significant caveat to consider when rebuilding ARC contents
8225 * from an L2ARC device: what about invalidated buffers? Given the above
8226 * construction, we cannot update blocks which we've already written to amend
8227 * them to remove buffers which were invalidated. Thus, during reconstruction,
8228 * we might be populating the cache with buffers for data that's not on the
8229 * main pool anymore, or may have been overwritten!
8230 *
8231 * As it turns out, this isn't a problem. Every arc_read request includes
8232 * both the DVA and, crucially, the birth TXG of the BP the caller is
8233 * looking for. So even if the cache were populated by completely rotten
8234 * blocks for data that had been long deleted and/or overwritten, we'll
8235 * never actually return bad data from the cache, since the DVA with the
8236 * birth TXG uniquely identify a block in space and time - once created,
8237 * a block is immutable on disk. The worst thing we have done is wasted
8238 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8239 * entries that will get dropped from the l2arc as it is being updated
8240 * with new blocks.
8241 *
8242 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8243 * hand are not restored. This is done by saving the offset (in bytes)
8244 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8245 * into account when restoring buffers.
8246 */
8247
8248 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8249 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8250 {
8251 /*
8252 * A buffer is *not* eligible for the L2ARC if it:
8253 * 1. belongs to a different spa.
8254 * 2. is already cached on the L2ARC.
8255 * 3. has an I/O in progress (it may be an incomplete read).
8256 * 4. is flagged not eligible (zfs property).
8257 */
8258 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8259 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8260 return (B_FALSE);
8261
8262 return (B_TRUE);
8263 }
8264
8265 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8266 l2arc_write_size(l2arc_dev_t *dev)
8267 {
8268 uint64_t size;
8269
8270 /*
8271 * Make sure our globals have meaningful values in case the user
8272 * altered them.
8273 */
8274 size = l2arc_write_max;
8275 if (size == 0) {
8276 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8277 "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8278 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8279 }
8280
8281 if (arc_warm == B_FALSE)
8282 size += l2arc_write_boost;
8283
8284 /* We need to add in the worst case scenario of log block overhead. */
8285 size += l2arc_log_blk_overhead(size, dev);
8286 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8287 /*
8288 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8289 * times the writesize, whichever is greater.
8290 */
8291 size += MAX(64 * 1024 * 1024,
8292 (size * l2arc_trim_ahead) / 100);
8293 }
8294
8295 /*
8296 * Make sure the write size does not exceed the size of the cache
8297 * device. This is important in l2arc_evict(), otherwise infinite
8298 * iteration can occur.
8299 */
8300 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8301
8302 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8303
8304 return (size);
8305
8306 }
8307
8308 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8309 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8310 {
8311 clock_t interval, next, now;
8312
8313 /*
8314 * If the ARC lists are busy, increase our write rate; if the
8315 * lists are stale, idle back. This is achieved by checking
8316 * how much we previously wrote - if it was more than half of
8317 * what we wanted, schedule the next write much sooner.
8318 */
8319 if (l2arc_feed_again && wrote > (wanted / 2))
8320 interval = (hz * l2arc_feed_min_ms) / 1000;
8321 else
8322 interval = hz * l2arc_feed_secs;
8323
8324 now = ddi_get_lbolt();
8325 next = MAX(now, MIN(now + interval, began + interval));
8326
8327 return (next);
8328 }
8329
8330 static boolean_t
l2arc_dev_invalid(const l2arc_dev_t * dev)8331 l2arc_dev_invalid(const l2arc_dev_t *dev)
8332 {
8333 /*
8334 * We want to skip devices that are being rebuilt, trimmed,
8335 * removed, or belong to a spa that is being exported.
8336 */
8337 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8338 dev->l2ad_rebuild || dev->l2ad_trim_all ||
8339 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8340 }
8341
8342 /*
8343 * Cycle through L2ARC devices. This is how L2ARC load balances.
8344 * If a device is returned, this also returns holding the spa config lock.
8345 */
8346 static l2arc_dev_t *
l2arc_dev_get_next(void)8347 l2arc_dev_get_next(void)
8348 {
8349 l2arc_dev_t *first, *next = NULL;
8350
8351 /*
8352 * Lock out the removal of spas (spa_namespace_lock), then removal
8353 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8354 * both locks will be dropped and a spa config lock held instead.
8355 */
8356 mutex_enter(&spa_namespace_lock);
8357 mutex_enter(&l2arc_dev_mtx);
8358
8359 /* if there are no vdevs, there is nothing to do */
8360 if (l2arc_ndev == 0)
8361 goto out;
8362
8363 first = NULL;
8364 next = l2arc_dev_last;
8365 do {
8366 /* loop around the list looking for a non-faulted vdev */
8367 if (next == NULL) {
8368 next = list_head(l2arc_dev_list);
8369 } else {
8370 next = list_next(l2arc_dev_list, next);
8371 if (next == NULL)
8372 next = list_head(l2arc_dev_list);
8373 }
8374
8375 /* if we have come back to the start, bail out */
8376 if (first == NULL)
8377 first = next;
8378 else if (next == first)
8379 break;
8380
8381 ASSERT3P(next, !=, NULL);
8382 } while (l2arc_dev_invalid(next));
8383
8384 /* if we were unable to find any usable vdevs, return NULL */
8385 if (l2arc_dev_invalid(next))
8386 next = NULL;
8387
8388 l2arc_dev_last = next;
8389
8390 out:
8391 mutex_exit(&l2arc_dev_mtx);
8392
8393 /*
8394 * Grab the config lock to prevent the 'next' device from being
8395 * removed while we are writing to it.
8396 */
8397 if (next != NULL)
8398 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8399 mutex_exit(&spa_namespace_lock);
8400
8401 return (next);
8402 }
8403
8404 /*
8405 * Free buffers that were tagged for destruction.
8406 */
8407 static void
l2arc_do_free_on_write(void)8408 l2arc_do_free_on_write(void)
8409 {
8410 l2arc_data_free_t *df;
8411
8412 mutex_enter(&l2arc_free_on_write_mtx);
8413 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8414 ASSERT3P(df->l2df_abd, !=, NULL);
8415 abd_free(df->l2df_abd);
8416 kmem_free(df, sizeof (l2arc_data_free_t));
8417 }
8418 mutex_exit(&l2arc_free_on_write_mtx);
8419 }
8420
8421 /*
8422 * A write to a cache device has completed. Update all headers to allow
8423 * reads from these buffers to begin.
8424 */
8425 static void
l2arc_write_done(zio_t * zio)8426 l2arc_write_done(zio_t *zio)
8427 {
8428 l2arc_write_callback_t *cb;
8429 l2arc_lb_abd_buf_t *abd_buf;
8430 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8431 l2arc_dev_t *dev;
8432 l2arc_dev_hdr_phys_t *l2dhdr;
8433 list_t *buflist;
8434 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8435 kmutex_t *hash_lock;
8436 int64_t bytes_dropped = 0;
8437
8438 cb = zio->io_private;
8439 ASSERT3P(cb, !=, NULL);
8440 dev = cb->l2wcb_dev;
8441 l2dhdr = dev->l2ad_dev_hdr;
8442 ASSERT3P(dev, !=, NULL);
8443 head = cb->l2wcb_head;
8444 ASSERT3P(head, !=, NULL);
8445 buflist = &dev->l2ad_buflist;
8446 ASSERT3P(buflist, !=, NULL);
8447 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8448 l2arc_write_callback_t *, cb);
8449
8450 /*
8451 * All writes completed, or an error was hit.
8452 */
8453 top:
8454 mutex_enter(&dev->l2ad_mtx);
8455 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8456 hdr_prev = list_prev(buflist, hdr);
8457
8458 hash_lock = HDR_LOCK(hdr);
8459
8460 /*
8461 * We cannot use mutex_enter or else we can deadlock
8462 * with l2arc_write_buffers (due to swapping the order
8463 * the hash lock and l2ad_mtx are taken).
8464 */
8465 if (!mutex_tryenter(hash_lock)) {
8466 /*
8467 * Missed the hash lock. We must retry so we
8468 * don't leave the ARC_FLAG_L2_WRITING bit set.
8469 */
8470 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8471
8472 /*
8473 * We don't want to rescan the headers we've
8474 * already marked as having been written out, so
8475 * we reinsert the head node so we can pick up
8476 * where we left off.
8477 */
8478 list_remove(buflist, head);
8479 list_insert_after(buflist, hdr, head);
8480
8481 mutex_exit(&dev->l2ad_mtx);
8482
8483 /*
8484 * We wait for the hash lock to become available
8485 * to try and prevent busy waiting, and increase
8486 * the chance we'll be able to acquire the lock
8487 * the next time around.
8488 */
8489 mutex_enter(hash_lock);
8490 mutex_exit(hash_lock);
8491 goto top;
8492 }
8493
8494 /*
8495 * We could not have been moved into the arc_l2c_only
8496 * state while in-flight due to our ARC_FLAG_L2_WRITING
8497 * bit being set. Let's just ensure that's being enforced.
8498 */
8499 ASSERT(HDR_HAS_L1HDR(hdr));
8500
8501 /*
8502 * Skipped - drop L2ARC entry and mark the header as no
8503 * longer L2 eligibile.
8504 */
8505 if (zio->io_error != 0) {
8506 /*
8507 * Error - drop L2ARC entry.
8508 */
8509 list_remove(buflist, hdr);
8510 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8511
8512 uint64_t psize = HDR_GET_PSIZE(hdr);
8513 l2arc_hdr_arcstats_decrement(hdr);
8514
8515 ASSERT(dev->l2ad_vdev != NULL);
8516
8517 bytes_dropped +=
8518 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8519 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8520 arc_hdr_size(hdr), hdr);
8521 }
8522
8523 /*
8524 * Allow ARC to begin reads and ghost list evictions to
8525 * this L2ARC entry.
8526 */
8527 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8528
8529 mutex_exit(hash_lock);
8530 }
8531
8532 /*
8533 * Free the allocated abd buffers for writing the log blocks.
8534 * If the zio failed reclaim the allocated space and remove the
8535 * pointers to these log blocks from the log block pointer list
8536 * of the L2ARC device.
8537 */
8538 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8539 abd_free(abd_buf->abd);
8540 zio_buf_free(abd_buf, sizeof (*abd_buf));
8541 if (zio->io_error != 0) {
8542 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8543 /*
8544 * L2BLK_GET_PSIZE returns aligned size for log
8545 * blocks.
8546 */
8547 uint64_t asize =
8548 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8549 bytes_dropped += asize;
8550 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8551 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8552 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8553 lb_ptr_buf);
8554 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
8555 lb_ptr_buf);
8556 kmem_free(lb_ptr_buf->lb_ptr,
8557 sizeof (l2arc_log_blkptr_t));
8558 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8559 }
8560 }
8561 list_destroy(&cb->l2wcb_abd_list);
8562
8563 if (zio->io_error != 0) {
8564 ARCSTAT_BUMP(arcstat_l2_writes_error);
8565
8566 /*
8567 * Restore the lbps array in the header to its previous state.
8568 * If the list of log block pointers is empty, zero out the
8569 * log block pointers in the device header.
8570 */
8571 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8572 for (int i = 0; i < 2; i++) {
8573 if (lb_ptr_buf == NULL) {
8574 /*
8575 * If the list is empty zero out the device
8576 * header. Otherwise zero out the second log
8577 * block pointer in the header.
8578 */
8579 if (i == 0) {
8580 memset(l2dhdr, 0,
8581 dev->l2ad_dev_hdr_asize);
8582 } else {
8583 memset(&l2dhdr->dh_start_lbps[i], 0,
8584 sizeof (l2arc_log_blkptr_t));
8585 }
8586 break;
8587 }
8588 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8589 sizeof (l2arc_log_blkptr_t));
8590 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8591 lb_ptr_buf);
8592 }
8593 }
8594
8595 ARCSTAT_BUMP(arcstat_l2_writes_done);
8596 list_remove(buflist, head);
8597 ASSERT(!HDR_HAS_L1HDR(head));
8598 kmem_cache_free(hdr_l2only_cache, head);
8599 mutex_exit(&dev->l2ad_mtx);
8600
8601 ASSERT(dev->l2ad_vdev != NULL);
8602 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8603
8604 l2arc_do_free_on_write();
8605
8606 kmem_free(cb, sizeof (l2arc_write_callback_t));
8607 }
8608
8609 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8610 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8611 {
8612 int ret;
8613 spa_t *spa = zio->io_spa;
8614 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8615 blkptr_t *bp = zio->io_bp;
8616 uint8_t salt[ZIO_DATA_SALT_LEN];
8617 uint8_t iv[ZIO_DATA_IV_LEN];
8618 uint8_t mac[ZIO_DATA_MAC_LEN];
8619 boolean_t no_crypt = B_FALSE;
8620
8621 /*
8622 * ZIL data is never be written to the L2ARC, so we don't need
8623 * special handling for its unique MAC storage.
8624 */
8625 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8626 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8627 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8628
8629 /*
8630 * If the data was encrypted, decrypt it now. Note that
8631 * we must check the bp here and not the hdr, since the
8632 * hdr does not have its encryption parameters updated
8633 * until arc_read_done().
8634 */
8635 if (BP_IS_ENCRYPTED(bp)) {
8636 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8637 ARC_HDR_USE_RESERVE);
8638
8639 zio_crypt_decode_params_bp(bp, salt, iv);
8640 zio_crypt_decode_mac_bp(bp, mac);
8641
8642 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8643 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8644 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8645 hdr->b_l1hdr.b_pabd, &no_crypt);
8646 if (ret != 0) {
8647 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8648 goto error;
8649 }
8650
8651 /*
8652 * If we actually performed decryption, replace b_pabd
8653 * with the decrypted data. Otherwise we can just throw
8654 * our decryption buffer away.
8655 */
8656 if (!no_crypt) {
8657 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8658 arc_hdr_size(hdr), hdr);
8659 hdr->b_l1hdr.b_pabd = eabd;
8660 zio->io_abd = eabd;
8661 } else {
8662 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8663 }
8664 }
8665
8666 /*
8667 * If the L2ARC block was compressed, but ARC compression
8668 * is disabled we decompress the data into a new buffer and
8669 * replace the existing data.
8670 */
8671 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8672 !HDR_COMPRESSION_ENABLED(hdr)) {
8673 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8674 ARC_HDR_USE_RESERVE);
8675
8676 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8677 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8678 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8679 if (ret != 0) {
8680 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8681 goto error;
8682 }
8683
8684 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8685 arc_hdr_size(hdr), hdr);
8686 hdr->b_l1hdr.b_pabd = cabd;
8687 zio->io_abd = cabd;
8688 zio->io_size = HDR_GET_LSIZE(hdr);
8689 }
8690
8691 return (0);
8692
8693 error:
8694 return (ret);
8695 }
8696
8697
8698 /*
8699 * A read to a cache device completed. Validate buffer contents before
8700 * handing over to the regular ARC routines.
8701 */
8702 static void
l2arc_read_done(zio_t * zio)8703 l2arc_read_done(zio_t *zio)
8704 {
8705 int tfm_error = 0;
8706 l2arc_read_callback_t *cb = zio->io_private;
8707 arc_buf_hdr_t *hdr;
8708 kmutex_t *hash_lock;
8709 boolean_t valid_cksum;
8710 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8711 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8712
8713 ASSERT3P(zio->io_vd, !=, NULL);
8714 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8715
8716 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8717
8718 ASSERT3P(cb, !=, NULL);
8719 hdr = cb->l2rcb_hdr;
8720 ASSERT3P(hdr, !=, NULL);
8721
8722 hash_lock = HDR_LOCK(hdr);
8723 mutex_enter(hash_lock);
8724 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8725
8726 /*
8727 * If the data was read into a temporary buffer,
8728 * move it and free the buffer.
8729 */
8730 if (cb->l2rcb_abd != NULL) {
8731 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8732 if (zio->io_error == 0) {
8733 if (using_rdata) {
8734 abd_copy(hdr->b_crypt_hdr.b_rabd,
8735 cb->l2rcb_abd, arc_hdr_size(hdr));
8736 } else {
8737 abd_copy(hdr->b_l1hdr.b_pabd,
8738 cb->l2rcb_abd, arc_hdr_size(hdr));
8739 }
8740 }
8741
8742 /*
8743 * The following must be done regardless of whether
8744 * there was an error:
8745 * - free the temporary buffer
8746 * - point zio to the real ARC buffer
8747 * - set zio size accordingly
8748 * These are required because zio is either re-used for
8749 * an I/O of the block in the case of the error
8750 * or the zio is passed to arc_read_done() and it
8751 * needs real data.
8752 */
8753 abd_free(cb->l2rcb_abd);
8754 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8755
8756 if (using_rdata) {
8757 ASSERT(HDR_HAS_RABD(hdr));
8758 zio->io_abd = zio->io_orig_abd =
8759 hdr->b_crypt_hdr.b_rabd;
8760 } else {
8761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8762 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8763 }
8764 }
8765
8766 ASSERT3P(zio->io_abd, !=, NULL);
8767
8768 /*
8769 * Check this survived the L2ARC journey.
8770 */
8771 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8772 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8773 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8774 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8775 zio->io_prop.zp_complevel = hdr->b_complevel;
8776
8777 valid_cksum = arc_cksum_is_equal(hdr, zio);
8778
8779 /*
8780 * b_rabd will always match the data as it exists on disk if it is
8781 * being used. Therefore if we are reading into b_rabd we do not
8782 * attempt to untransform the data.
8783 */
8784 if (valid_cksum && !using_rdata)
8785 tfm_error = l2arc_untransform(zio, cb);
8786
8787 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8788 !HDR_L2_EVICTED(hdr)) {
8789 mutex_exit(hash_lock);
8790 zio->io_private = hdr;
8791 arc_read_done(zio);
8792 } else {
8793 /*
8794 * Buffer didn't survive caching. Increment stats and
8795 * reissue to the original storage device.
8796 */
8797 if (zio->io_error != 0) {
8798 ARCSTAT_BUMP(arcstat_l2_io_error);
8799 } else {
8800 zio->io_error = SET_ERROR(EIO);
8801 }
8802 if (!valid_cksum || tfm_error != 0)
8803 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8804
8805 /*
8806 * If there's no waiter, issue an async i/o to the primary
8807 * storage now. If there *is* a waiter, the caller must
8808 * issue the i/o in a context where it's OK to block.
8809 */
8810 if (zio->io_waiter == NULL) {
8811 zio_t *pio = zio_unique_parent(zio);
8812 void *abd = (using_rdata) ?
8813 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8814
8815 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8816
8817 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8818 abd, zio->io_size, arc_read_done,
8819 hdr, zio->io_priority, cb->l2rcb_flags,
8820 &cb->l2rcb_zb);
8821
8822 /*
8823 * Original ZIO will be freed, so we need to update
8824 * ARC header with the new ZIO pointer to be used
8825 * by zio_change_priority() in arc_read().
8826 */
8827 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8828 acb != NULL; acb = acb->acb_next)
8829 acb->acb_zio_head = zio;
8830
8831 mutex_exit(hash_lock);
8832 zio_nowait(zio);
8833 } else {
8834 mutex_exit(hash_lock);
8835 }
8836 }
8837
8838 kmem_free(cb, sizeof (l2arc_read_callback_t));
8839 }
8840
8841 /*
8842 * This is the list priority from which the L2ARC will search for pages to
8843 * cache. This is used within loops (0..3) to cycle through lists in the
8844 * desired order. This order can have a significant effect on cache
8845 * performance.
8846 *
8847 * Currently the metadata lists are hit first, MFU then MRU, followed by
8848 * the data lists. This function returns a locked list, and also returns
8849 * the lock pointer.
8850 */
8851 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)8852 l2arc_sublist_lock(int list_num)
8853 {
8854 multilist_t *ml = NULL;
8855 unsigned int idx;
8856
8857 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8858
8859 switch (list_num) {
8860 case 0:
8861 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8862 break;
8863 case 1:
8864 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8865 break;
8866 case 2:
8867 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8868 break;
8869 case 3:
8870 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8871 break;
8872 default:
8873 return (NULL);
8874 }
8875
8876 /*
8877 * Return a randomly-selected sublist. This is acceptable
8878 * because the caller feeds only a little bit of data for each
8879 * call (8MB). Subsequent calls will result in different
8880 * sublists being selected.
8881 */
8882 idx = multilist_get_random_index(ml);
8883 return (multilist_sublist_lock_idx(ml, idx));
8884 }
8885
8886 /*
8887 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8888 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8889 * overhead in processing to make sure there is enough headroom available
8890 * when writing buffers.
8891 */
8892 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)8893 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8894 {
8895 if (dev->l2ad_log_entries == 0) {
8896 return (0);
8897 } else {
8898 ASSERT(dev->l2ad_vdev != NULL);
8899
8900 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8901
8902 uint64_t log_blocks = (log_entries +
8903 dev->l2ad_log_entries - 1) /
8904 dev->l2ad_log_entries;
8905
8906 return (vdev_psize_to_asize(dev->l2ad_vdev,
8907 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8908 }
8909 }
8910
8911 /*
8912 * Evict buffers from the device write hand to the distance specified in
8913 * bytes. This distance may span populated buffers, it may span nothing.
8914 * This is clearing a region on the L2ARC device ready for writing.
8915 * If the 'all' boolean is set, every buffer is evicted.
8916 */
8917 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)8918 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8919 {
8920 list_t *buflist;
8921 arc_buf_hdr_t *hdr, *hdr_prev;
8922 kmutex_t *hash_lock;
8923 uint64_t taddr;
8924 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8925 vdev_t *vd = dev->l2ad_vdev;
8926 boolean_t rerun;
8927
8928 ASSERT(vd != NULL || all);
8929 ASSERT(dev->l2ad_spa != NULL || all);
8930
8931 buflist = &dev->l2ad_buflist;
8932
8933 top:
8934 rerun = B_FALSE;
8935 if (dev->l2ad_hand + distance > dev->l2ad_end) {
8936 /*
8937 * When there is no space to accommodate upcoming writes,
8938 * evict to the end. Then bump the write and evict hands
8939 * to the start and iterate. This iteration does not
8940 * happen indefinitely as we make sure in
8941 * l2arc_write_size() that when the write hand is reset,
8942 * the write size does not exceed the end of the device.
8943 */
8944 rerun = B_TRUE;
8945 taddr = dev->l2ad_end;
8946 } else {
8947 taddr = dev->l2ad_hand + distance;
8948 }
8949 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8950 uint64_t, taddr, boolean_t, all);
8951
8952 if (!all) {
8953 /*
8954 * This check has to be placed after deciding whether to
8955 * iterate (rerun).
8956 */
8957 if (dev->l2ad_first) {
8958 /*
8959 * This is the first sweep through the device. There is
8960 * nothing to evict. We have already trimmmed the
8961 * whole device.
8962 */
8963 goto out;
8964 } else {
8965 /*
8966 * Trim the space to be evicted.
8967 */
8968 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8969 l2arc_trim_ahead > 0) {
8970 /*
8971 * We have to drop the spa_config lock because
8972 * vdev_trim_range() will acquire it.
8973 * l2ad_evict already accounts for the label
8974 * size. To prevent vdev_trim_ranges() from
8975 * adding it again, we subtract it from
8976 * l2ad_evict.
8977 */
8978 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8979 vdev_trim_simple(vd,
8980 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8981 taddr - dev->l2ad_evict);
8982 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8983 RW_READER);
8984 }
8985
8986 /*
8987 * When rebuilding L2ARC we retrieve the evict hand
8988 * from the header of the device. Of note, l2arc_evict()
8989 * does not actually delete buffers from the cache
8990 * device, but trimming may do so depending on the
8991 * hardware implementation. Thus keeping track of the
8992 * evict hand is useful.
8993 */
8994 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8995 }
8996 }
8997
8998 retry:
8999 mutex_enter(&dev->l2ad_mtx);
9000 /*
9001 * We have to account for evicted log blocks. Run vdev_space_update()
9002 * on log blocks whose offset (in bytes) is before the evicted offset
9003 * (in bytes) by searching in the list of pointers to log blocks
9004 * present in the L2ARC device.
9005 */
9006 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9007 lb_ptr_buf = lb_ptr_buf_prev) {
9008
9009 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9010
9011 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9012 uint64_t asize = L2BLK_GET_PSIZE(
9013 (lb_ptr_buf->lb_ptr)->lbp_prop);
9014
9015 /*
9016 * We don't worry about log blocks left behind (ie
9017 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9018 * will never write more than l2arc_evict() evicts.
9019 */
9020 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9021 break;
9022 } else {
9023 if (vd != NULL)
9024 vdev_space_update(vd, -asize, 0, 0);
9025 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9026 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9027 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9028 lb_ptr_buf);
9029 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
9030 lb_ptr_buf);
9031 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9032 kmem_free(lb_ptr_buf->lb_ptr,
9033 sizeof (l2arc_log_blkptr_t));
9034 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9035 }
9036 }
9037
9038 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9039 hdr_prev = list_prev(buflist, hdr);
9040
9041 ASSERT(!HDR_EMPTY(hdr));
9042 hash_lock = HDR_LOCK(hdr);
9043
9044 /*
9045 * We cannot use mutex_enter or else we can deadlock
9046 * with l2arc_write_buffers (due to swapping the order
9047 * the hash lock and l2ad_mtx are taken).
9048 */
9049 if (!mutex_tryenter(hash_lock)) {
9050 /*
9051 * Missed the hash lock. Retry.
9052 */
9053 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9054 mutex_exit(&dev->l2ad_mtx);
9055 mutex_enter(hash_lock);
9056 mutex_exit(hash_lock);
9057 goto retry;
9058 }
9059
9060 /*
9061 * A header can't be on this list if it doesn't have L2 header.
9062 */
9063 ASSERT(HDR_HAS_L2HDR(hdr));
9064
9065 /* Ensure this header has finished being written. */
9066 ASSERT(!HDR_L2_WRITING(hdr));
9067 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9068
9069 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9070 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9071 /*
9072 * We've evicted to the target address,
9073 * or the end of the device.
9074 */
9075 mutex_exit(hash_lock);
9076 break;
9077 }
9078
9079 if (!HDR_HAS_L1HDR(hdr)) {
9080 ASSERT(!HDR_L2_READING(hdr));
9081 /*
9082 * This doesn't exist in the ARC. Destroy.
9083 * arc_hdr_destroy() will call list_remove()
9084 * and decrement arcstat_l2_lsize.
9085 */
9086 arc_change_state(arc_anon, hdr);
9087 arc_hdr_destroy(hdr);
9088 } else {
9089 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9090 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9091 /*
9092 * Invalidate issued or about to be issued
9093 * reads, since we may be about to write
9094 * over this location.
9095 */
9096 if (HDR_L2_READING(hdr)) {
9097 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9098 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9099 }
9100
9101 arc_hdr_l2hdr_destroy(hdr);
9102 }
9103 mutex_exit(hash_lock);
9104 }
9105 mutex_exit(&dev->l2ad_mtx);
9106
9107 out:
9108 /*
9109 * We need to check if we evict all buffers, otherwise we may iterate
9110 * unnecessarily.
9111 */
9112 if (!all && rerun) {
9113 /*
9114 * Bump device hand to the device start if it is approaching the
9115 * end. l2arc_evict() has already evicted ahead for this case.
9116 */
9117 dev->l2ad_hand = dev->l2ad_start;
9118 dev->l2ad_evict = dev->l2ad_start;
9119 dev->l2ad_first = B_FALSE;
9120 goto top;
9121 }
9122
9123 if (!all) {
9124 /*
9125 * In case of cache device removal (all) the following
9126 * assertions may be violated without functional consequences
9127 * as the device is about to be removed.
9128 */
9129 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9130 if (!dev->l2ad_first)
9131 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9132 }
9133 }
9134
9135 /*
9136 * Handle any abd transforms that might be required for writing to the L2ARC.
9137 * If successful, this function will always return an abd with the data
9138 * transformed as it is on disk in a new abd of asize bytes.
9139 */
9140 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9141 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9142 abd_t **abd_out)
9143 {
9144 int ret;
9145 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9146 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9147 uint64_t psize = HDR_GET_PSIZE(hdr);
9148 uint64_t size = arc_hdr_size(hdr);
9149 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9150 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9151 dsl_crypto_key_t *dck = NULL;
9152 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9153 boolean_t no_crypt = B_FALSE;
9154
9155 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9156 !HDR_COMPRESSION_ENABLED(hdr)) ||
9157 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9158 ASSERT3U(psize, <=, asize);
9159
9160 /*
9161 * If this data simply needs its own buffer, we simply allocate it
9162 * and copy the data. This may be done to eliminate a dependency on a
9163 * shared buffer or to reallocate the buffer to match asize.
9164 */
9165 if (HDR_HAS_RABD(hdr)) {
9166 ASSERT3U(asize, >, psize);
9167 to_write = abd_alloc_for_io(asize, ismd);
9168 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9169 abd_zero_off(to_write, psize, asize - psize);
9170 goto out;
9171 }
9172
9173 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9174 !HDR_ENCRYPTED(hdr)) {
9175 ASSERT3U(size, ==, psize);
9176 to_write = abd_alloc_for_io(asize, ismd);
9177 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9178 if (asize > size)
9179 abd_zero_off(to_write, size, asize - size);
9180 goto out;
9181 }
9182
9183 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9184 cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9185 uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9186 size, MIN(size, psize), hdr->b_complevel);
9187 if (csize >= size || csize > psize) {
9188 /*
9189 * We can't re-compress the block into the original
9190 * psize. Even if it fits into asize, it does not
9191 * matter, since checksum will never match on read.
9192 */
9193 abd_free(cabd);
9194 return (SET_ERROR(EIO));
9195 }
9196 if (asize > csize)
9197 abd_zero_off(cabd, csize, asize - csize);
9198 to_write = cabd;
9199 }
9200
9201 if (HDR_ENCRYPTED(hdr)) {
9202 eabd = abd_alloc_for_io(asize, ismd);
9203
9204 /*
9205 * If the dataset was disowned before the buffer
9206 * made it to this point, the key to re-encrypt
9207 * it won't be available. In this case we simply
9208 * won't write the buffer to the L2ARC.
9209 */
9210 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9211 FTAG, &dck);
9212 if (ret != 0)
9213 goto error;
9214
9215 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9216 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9217 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9218 &no_crypt);
9219 if (ret != 0)
9220 goto error;
9221
9222 if (no_crypt)
9223 abd_copy(eabd, to_write, psize);
9224
9225 if (psize != asize)
9226 abd_zero_off(eabd, psize, asize - psize);
9227
9228 /* assert that the MAC we got here matches the one we saved */
9229 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9230 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9231
9232 if (to_write == cabd)
9233 abd_free(cabd);
9234
9235 to_write = eabd;
9236 }
9237
9238 out:
9239 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9240 *abd_out = to_write;
9241 return (0);
9242
9243 error:
9244 if (dck != NULL)
9245 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9246 if (cabd != NULL)
9247 abd_free(cabd);
9248 if (eabd != NULL)
9249 abd_free(eabd);
9250
9251 *abd_out = NULL;
9252 return (ret);
9253 }
9254
9255 static void
l2arc_blk_fetch_done(zio_t * zio)9256 l2arc_blk_fetch_done(zio_t *zio)
9257 {
9258 l2arc_read_callback_t *cb;
9259
9260 cb = zio->io_private;
9261 if (cb->l2rcb_abd != NULL)
9262 abd_free(cb->l2rcb_abd);
9263 kmem_free(cb, sizeof (l2arc_read_callback_t));
9264 }
9265
9266 /*
9267 * Find and write ARC buffers to the L2ARC device.
9268 *
9269 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9270 * for reading until they have completed writing.
9271 * The headroom_boost is an in-out parameter used to maintain headroom boost
9272 * state between calls to this function.
9273 *
9274 * Returns the number of bytes actually written (which may be smaller than
9275 * the delta by which the device hand has changed due to alignment and the
9276 * writing of log blocks).
9277 */
9278 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9279 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9280 {
9281 arc_buf_hdr_t *hdr, *head, *marker;
9282 uint64_t write_asize, write_psize, headroom;
9283 boolean_t full, from_head = !arc_warm;
9284 l2arc_write_callback_t *cb = NULL;
9285 zio_t *pio, *wzio;
9286 uint64_t guid = spa_load_guid(spa);
9287 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9288
9289 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9290
9291 pio = NULL;
9292 write_asize = write_psize = 0;
9293 full = B_FALSE;
9294 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9295 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9296 marker = arc_state_alloc_marker();
9297
9298 /*
9299 * Copy buffers for L2ARC writing.
9300 */
9301 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9302 /*
9303 * pass == 0: MFU meta
9304 * pass == 1: MRU meta
9305 * pass == 2: MFU data
9306 * pass == 3: MRU data
9307 */
9308 if (l2arc_mfuonly == 1) {
9309 if (pass == 1 || pass == 3)
9310 continue;
9311 } else if (l2arc_mfuonly > 1) {
9312 if (pass == 3)
9313 continue;
9314 }
9315
9316 uint64_t passed_sz = 0;
9317 headroom = target_sz * l2arc_headroom;
9318 if (zfs_compressed_arc_enabled)
9319 headroom = (headroom * l2arc_headroom_boost) / 100;
9320
9321 /*
9322 * Until the ARC is warm and starts to evict, read from the
9323 * head of the ARC lists rather than the tail.
9324 */
9325 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9326 ASSERT3P(mls, !=, NULL);
9327 if (from_head)
9328 hdr = multilist_sublist_head(mls);
9329 else
9330 hdr = multilist_sublist_tail(mls);
9331
9332 while (hdr != NULL) {
9333 kmutex_t *hash_lock;
9334 abd_t *to_write = NULL;
9335
9336 hash_lock = HDR_LOCK(hdr);
9337 if (!mutex_tryenter(hash_lock)) {
9338 skip:
9339 /* Skip this buffer rather than waiting. */
9340 if (from_head)
9341 hdr = multilist_sublist_next(mls, hdr);
9342 else
9343 hdr = multilist_sublist_prev(mls, hdr);
9344 continue;
9345 }
9346
9347 passed_sz += HDR_GET_LSIZE(hdr);
9348 if (l2arc_headroom != 0 && passed_sz > headroom) {
9349 /*
9350 * Searched too far.
9351 */
9352 mutex_exit(hash_lock);
9353 break;
9354 }
9355
9356 if (!l2arc_write_eligible(guid, hdr)) {
9357 mutex_exit(hash_lock);
9358 goto skip;
9359 }
9360
9361 ASSERT(HDR_HAS_L1HDR(hdr));
9362 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9363 ASSERT3U(arc_hdr_size(hdr), >, 0);
9364 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9365 HDR_HAS_RABD(hdr));
9366 uint64_t psize = HDR_GET_PSIZE(hdr);
9367 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9368 psize);
9369
9370 /*
9371 * If the allocated size of this buffer plus the max
9372 * size for the pending log block exceeds the evicted
9373 * target size, terminate writing buffers for this run.
9374 */
9375 if (write_asize + asize +
9376 sizeof (l2arc_log_blk_phys_t) > target_sz) {
9377 full = B_TRUE;
9378 mutex_exit(hash_lock);
9379 break;
9380 }
9381
9382 /*
9383 * We should not sleep with sublist lock held or it
9384 * may block ARC eviction. Insert a marker to save
9385 * the position and drop the lock.
9386 */
9387 if (from_head) {
9388 multilist_sublist_insert_after(mls, hdr,
9389 marker);
9390 } else {
9391 multilist_sublist_insert_before(mls, hdr,
9392 marker);
9393 }
9394 multilist_sublist_unlock(mls);
9395
9396 /*
9397 * If this header has b_rabd, we can use this since it
9398 * must always match the data exactly as it exists on
9399 * disk. Otherwise, the L2ARC can normally use the
9400 * hdr's data, but if we're sharing data between the
9401 * hdr and one of its bufs, L2ARC needs its own copy of
9402 * the data so that the ZIO below can't race with the
9403 * buf consumer. To ensure that this copy will be
9404 * available for the lifetime of the ZIO and be cleaned
9405 * up afterwards, we add it to the l2arc_free_on_write
9406 * queue. If we need to apply any transforms to the
9407 * data (compression, encryption) we will also need the
9408 * extra buffer.
9409 */
9410 if (HDR_HAS_RABD(hdr) && psize == asize) {
9411 to_write = hdr->b_crypt_hdr.b_rabd;
9412 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9413 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9414 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9415 psize == asize) {
9416 to_write = hdr->b_l1hdr.b_pabd;
9417 } else {
9418 int ret;
9419 arc_buf_contents_t type = arc_buf_type(hdr);
9420
9421 ret = l2arc_apply_transforms(spa, hdr, asize,
9422 &to_write);
9423 if (ret != 0) {
9424 arc_hdr_clear_flags(hdr,
9425 ARC_FLAG_L2CACHE);
9426 mutex_exit(hash_lock);
9427 goto next;
9428 }
9429
9430 l2arc_free_abd_on_write(to_write, asize, type);
9431 }
9432
9433 hdr->b_l2hdr.b_dev = dev;
9434 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9435 hdr->b_l2hdr.b_hits = 0;
9436 hdr->b_l2hdr.b_arcs_state =
9437 hdr->b_l1hdr.b_state->arcs_state;
9438 /* l2arc_hdr_arcstats_update() expects a valid asize */
9439 HDR_SET_L2SIZE(hdr, asize);
9440 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9441 ARC_FLAG_L2_WRITING);
9442
9443 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9444 arc_hdr_size(hdr), hdr);
9445 l2arc_hdr_arcstats_increment(hdr);
9446 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9447
9448 mutex_enter(&dev->l2ad_mtx);
9449 if (pio == NULL) {
9450 /*
9451 * Insert a dummy header on the buflist so
9452 * l2arc_write_done() can find where the
9453 * write buffers begin without searching.
9454 */
9455 list_insert_head(&dev->l2ad_buflist, head);
9456 }
9457 list_insert_head(&dev->l2ad_buflist, hdr);
9458 mutex_exit(&dev->l2ad_mtx);
9459
9460 boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9461 mutex_exit(hash_lock);
9462
9463 if (pio == NULL) {
9464 cb = kmem_alloc(
9465 sizeof (l2arc_write_callback_t), KM_SLEEP);
9466 cb->l2wcb_dev = dev;
9467 cb->l2wcb_head = head;
9468 list_create(&cb->l2wcb_abd_list,
9469 sizeof (l2arc_lb_abd_buf_t),
9470 offsetof(l2arc_lb_abd_buf_t, node));
9471 pio = zio_root(spa, l2arc_write_done, cb,
9472 ZIO_FLAG_CANFAIL);
9473 }
9474
9475 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9476 dev->l2ad_hand, asize, to_write,
9477 ZIO_CHECKSUM_OFF, NULL, hdr,
9478 ZIO_PRIORITY_ASYNC_WRITE,
9479 ZIO_FLAG_CANFAIL, B_FALSE);
9480
9481 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9482 zio_t *, wzio);
9483 zio_nowait(wzio);
9484
9485 write_psize += psize;
9486 write_asize += asize;
9487 dev->l2ad_hand += asize;
9488
9489 if (commit) {
9490 /* l2ad_hand will be adjusted inside. */
9491 write_asize +=
9492 l2arc_log_blk_commit(dev, pio, cb);
9493 }
9494
9495 next:
9496 multilist_sublist_lock(mls);
9497 if (from_head)
9498 hdr = multilist_sublist_next(mls, marker);
9499 else
9500 hdr = multilist_sublist_prev(mls, marker);
9501 multilist_sublist_remove(mls, marker);
9502 }
9503
9504 multilist_sublist_unlock(mls);
9505
9506 if (full == B_TRUE)
9507 break;
9508 }
9509
9510 arc_state_free_marker(marker);
9511
9512 /* No buffers selected for writing? */
9513 if (pio == NULL) {
9514 ASSERT0(write_psize);
9515 ASSERT(!HDR_HAS_L1HDR(head));
9516 kmem_cache_free(hdr_l2only_cache, head);
9517
9518 /*
9519 * Although we did not write any buffers l2ad_evict may
9520 * have advanced.
9521 */
9522 if (dev->l2ad_evict != l2dhdr->dh_evict)
9523 l2arc_dev_hdr_update(dev);
9524
9525 return (0);
9526 }
9527
9528 if (!dev->l2ad_first)
9529 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9530
9531 ASSERT3U(write_asize, <=, target_sz);
9532 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9533 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9534
9535 dev->l2ad_writing = B_TRUE;
9536 (void) zio_wait(pio);
9537 dev->l2ad_writing = B_FALSE;
9538
9539 /*
9540 * Update the device header after the zio completes as
9541 * l2arc_write_done() may have updated the memory holding the log block
9542 * pointers in the device header.
9543 */
9544 l2arc_dev_hdr_update(dev);
9545
9546 return (write_asize);
9547 }
9548
9549 static boolean_t
l2arc_hdr_limit_reached(void)9550 l2arc_hdr_limit_reached(void)
9551 {
9552 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9553
9554 return (arc_reclaim_needed() ||
9555 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9556 }
9557
9558 /*
9559 * This thread feeds the L2ARC at regular intervals. This is the beating
9560 * heart of the L2ARC.
9561 */
9562 static __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9563 l2arc_feed_thread(void *unused)
9564 {
9565 (void) unused;
9566 callb_cpr_t cpr;
9567 l2arc_dev_t *dev;
9568 spa_t *spa;
9569 uint64_t size, wrote;
9570 clock_t begin, next = ddi_get_lbolt();
9571 fstrans_cookie_t cookie;
9572
9573 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9574
9575 mutex_enter(&l2arc_feed_thr_lock);
9576
9577 cookie = spl_fstrans_mark();
9578 while (l2arc_thread_exit == 0) {
9579 CALLB_CPR_SAFE_BEGIN(&cpr);
9580 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9581 &l2arc_feed_thr_lock, next);
9582 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9583 next = ddi_get_lbolt() + hz;
9584
9585 /*
9586 * Quick check for L2ARC devices.
9587 */
9588 mutex_enter(&l2arc_dev_mtx);
9589 if (l2arc_ndev == 0) {
9590 mutex_exit(&l2arc_dev_mtx);
9591 continue;
9592 }
9593 mutex_exit(&l2arc_dev_mtx);
9594 begin = ddi_get_lbolt();
9595
9596 /*
9597 * This selects the next l2arc device to write to, and in
9598 * doing so the next spa to feed from: dev->l2ad_spa. This
9599 * will return NULL if there are now no l2arc devices or if
9600 * they are all faulted.
9601 *
9602 * If a device is returned, its spa's config lock is also
9603 * held to prevent device removal. l2arc_dev_get_next()
9604 * will grab and release l2arc_dev_mtx.
9605 */
9606 if ((dev = l2arc_dev_get_next()) == NULL)
9607 continue;
9608
9609 spa = dev->l2ad_spa;
9610 ASSERT3P(spa, !=, NULL);
9611
9612 /*
9613 * If the pool is read-only then force the feed thread to
9614 * sleep a little longer.
9615 */
9616 if (!spa_writeable(spa)) {
9617 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9618 spa_config_exit(spa, SCL_L2ARC, dev);
9619 continue;
9620 }
9621
9622 /*
9623 * Avoid contributing to memory pressure.
9624 */
9625 if (l2arc_hdr_limit_reached()) {
9626 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9627 spa_config_exit(spa, SCL_L2ARC, dev);
9628 continue;
9629 }
9630
9631 ARCSTAT_BUMP(arcstat_l2_feeds);
9632
9633 size = l2arc_write_size(dev);
9634
9635 /*
9636 * Evict L2ARC buffers that will be overwritten.
9637 */
9638 l2arc_evict(dev, size, B_FALSE);
9639
9640 /*
9641 * Write ARC buffers.
9642 */
9643 wrote = l2arc_write_buffers(spa, dev, size);
9644
9645 /*
9646 * Calculate interval between writes.
9647 */
9648 next = l2arc_write_interval(begin, size, wrote);
9649 spa_config_exit(spa, SCL_L2ARC, dev);
9650 }
9651 spl_fstrans_unmark(cookie);
9652
9653 l2arc_thread_exit = 0;
9654 cv_broadcast(&l2arc_feed_thr_cv);
9655 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9656 thread_exit();
9657 }
9658
9659 boolean_t
l2arc_vdev_present(vdev_t * vd)9660 l2arc_vdev_present(vdev_t *vd)
9661 {
9662 return (l2arc_vdev_get(vd) != NULL);
9663 }
9664
9665 /*
9666 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9667 * the vdev_t isn't an L2ARC device.
9668 */
9669 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9670 l2arc_vdev_get(vdev_t *vd)
9671 {
9672 l2arc_dev_t *dev;
9673
9674 mutex_enter(&l2arc_dev_mtx);
9675 for (dev = list_head(l2arc_dev_list); dev != NULL;
9676 dev = list_next(l2arc_dev_list, dev)) {
9677 if (dev->l2ad_vdev == vd)
9678 break;
9679 }
9680 mutex_exit(&l2arc_dev_mtx);
9681
9682 return (dev);
9683 }
9684
9685 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9686 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9687 {
9688 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9689 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9690 spa_t *spa = dev->l2ad_spa;
9691
9692 /*
9693 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9694 */
9695 if (spa == NULL)
9696 return;
9697
9698 /*
9699 * The L2ARC has to hold at least the payload of one log block for
9700 * them to be restored (persistent L2ARC). The payload of a log block
9701 * depends on the amount of its log entries. We always write log blocks
9702 * with 1022 entries. How many of them are committed or restored depends
9703 * on the size of the L2ARC device. Thus the maximum payload of
9704 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9705 * is less than that, we reduce the amount of committed and restored
9706 * log entries per block so as to enable persistence.
9707 */
9708 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9709 dev->l2ad_log_entries = 0;
9710 } else {
9711 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9712 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9713 L2ARC_LOG_BLK_MAX_ENTRIES);
9714 }
9715
9716 /*
9717 * Read the device header, if an error is returned do not rebuild L2ARC.
9718 */
9719 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9720 /*
9721 * If we are onlining a cache device (vdev_reopen) that was
9722 * still present (l2arc_vdev_present()) and rebuild is enabled,
9723 * we should evict all ARC buffers and pointers to log blocks
9724 * and reclaim their space before restoring its contents to
9725 * L2ARC.
9726 */
9727 if (reopen) {
9728 if (!l2arc_rebuild_enabled) {
9729 return;
9730 } else {
9731 l2arc_evict(dev, 0, B_TRUE);
9732 /* start a new log block */
9733 dev->l2ad_log_ent_idx = 0;
9734 dev->l2ad_log_blk_payload_asize = 0;
9735 dev->l2ad_log_blk_payload_start = 0;
9736 }
9737 }
9738 /*
9739 * Just mark the device as pending for a rebuild. We won't
9740 * be starting a rebuild in line here as it would block pool
9741 * import. Instead spa_load_impl will hand that off to an
9742 * async task which will call l2arc_spa_rebuild_start.
9743 */
9744 dev->l2ad_rebuild = B_TRUE;
9745 } else if (spa_writeable(spa)) {
9746 /*
9747 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9748 * otherwise create a new header. We zero out the memory holding
9749 * the header to reset dh_start_lbps. If we TRIM the whole
9750 * device the new header will be written by
9751 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9752 * trim_state in the header too. When reading the header, if
9753 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9754 * we opt to TRIM the whole device again.
9755 */
9756 if (l2arc_trim_ahead > 0) {
9757 dev->l2ad_trim_all = B_TRUE;
9758 } else {
9759 memset(l2dhdr, 0, l2dhdr_asize);
9760 l2arc_dev_hdr_update(dev);
9761 }
9762 }
9763 }
9764
9765 /*
9766 * Add a vdev for use by the L2ARC. By this point the spa has already
9767 * validated the vdev and opened it.
9768 */
9769 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9770 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9771 {
9772 l2arc_dev_t *adddev;
9773 uint64_t l2dhdr_asize;
9774
9775 ASSERT(!l2arc_vdev_present(vd));
9776
9777 /*
9778 * Create a new l2arc device entry.
9779 */
9780 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9781 adddev->l2ad_spa = spa;
9782 adddev->l2ad_vdev = vd;
9783 /* leave extra size for an l2arc device header */
9784 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9785 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9786 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9787 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9788 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9789 adddev->l2ad_hand = adddev->l2ad_start;
9790 adddev->l2ad_evict = adddev->l2ad_start;
9791 adddev->l2ad_first = B_TRUE;
9792 adddev->l2ad_writing = B_FALSE;
9793 adddev->l2ad_trim_all = B_FALSE;
9794 list_link_init(&adddev->l2ad_node);
9795 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9796
9797 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9798 /*
9799 * This is a list of all ARC buffers that are still valid on the
9800 * device.
9801 */
9802 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9803 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9804
9805 /*
9806 * This is a list of pointers to log blocks that are still present
9807 * on the device.
9808 */
9809 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9810 offsetof(l2arc_lb_ptr_buf_t, node));
9811
9812 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9813 zfs_refcount_create(&adddev->l2ad_alloc);
9814 zfs_refcount_create(&adddev->l2ad_lb_asize);
9815 zfs_refcount_create(&adddev->l2ad_lb_count);
9816
9817 /*
9818 * Decide if dev is eligible for L2ARC rebuild or whole device
9819 * trimming. This has to happen before the device is added in the
9820 * cache device list and l2arc_dev_mtx is released. Otherwise
9821 * l2arc_feed_thread() might already start writing on the
9822 * device.
9823 */
9824 l2arc_rebuild_dev(adddev, B_FALSE);
9825
9826 /*
9827 * Add device to global list
9828 */
9829 mutex_enter(&l2arc_dev_mtx);
9830 list_insert_head(l2arc_dev_list, adddev);
9831 atomic_inc_64(&l2arc_ndev);
9832 mutex_exit(&l2arc_dev_mtx);
9833 }
9834
9835 /*
9836 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9837 * in case of onlining a cache device.
9838 */
9839 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)9840 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9841 {
9842 l2arc_dev_t *dev = NULL;
9843
9844 dev = l2arc_vdev_get(vd);
9845 ASSERT3P(dev, !=, NULL);
9846
9847 /*
9848 * In contrast to l2arc_add_vdev() we do not have to worry about
9849 * l2arc_feed_thread() invalidating previous content when onlining a
9850 * cache device. The device parameters (l2ad*) are not cleared when
9851 * offlining the device and writing new buffers will not invalidate
9852 * all previous content. In worst case only buffers that have not had
9853 * their log block written to the device will be lost.
9854 * When onlining the cache device (ie offline->online without exporting
9855 * the pool in between) this happens:
9856 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9857 * | |
9858 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9859 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9860 * is set to B_TRUE we might write additional buffers to the device.
9861 */
9862 l2arc_rebuild_dev(dev, reopen);
9863 }
9864
9865 typedef struct {
9866 l2arc_dev_t *rva_l2arc_dev;
9867 uint64_t rva_spa_gid;
9868 uint64_t rva_vdev_gid;
9869 boolean_t rva_async;
9870
9871 } remove_vdev_args_t;
9872
9873 static void
l2arc_device_teardown(void * arg)9874 l2arc_device_teardown(void *arg)
9875 {
9876 remove_vdev_args_t *rva = arg;
9877 l2arc_dev_t *remdev = rva->rva_l2arc_dev;
9878 hrtime_t start_time = gethrtime();
9879
9880 /*
9881 * Clear all buflists and ARC references. L2ARC device flush.
9882 */
9883 l2arc_evict(remdev, 0, B_TRUE);
9884 list_destroy(&remdev->l2ad_buflist);
9885 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9886 list_destroy(&remdev->l2ad_lbptr_list);
9887 mutex_destroy(&remdev->l2ad_mtx);
9888 zfs_refcount_destroy(&remdev->l2ad_alloc);
9889 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9890 zfs_refcount_destroy(&remdev->l2ad_lb_count);
9891 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9892 vmem_free(remdev, sizeof (l2arc_dev_t));
9893
9894 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
9895 if (elaspsed > 0) {
9896 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
9897 (u_longlong_t)rva->rva_spa_gid,
9898 (u_longlong_t)rva->rva_vdev_gid,
9899 (u_longlong_t)elaspsed);
9900 }
9901
9902 if (rva->rva_async)
9903 arc_async_flush_remove(rva->rva_spa_gid, 2);
9904 kmem_free(rva, sizeof (remove_vdev_args_t));
9905 }
9906
9907 /*
9908 * Remove a vdev from the L2ARC.
9909 */
9910 void
l2arc_remove_vdev(vdev_t * vd)9911 l2arc_remove_vdev(vdev_t *vd)
9912 {
9913 spa_t *spa = vd->vdev_spa;
9914 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
9915 spa->spa_state == POOL_STATE_DESTROYED;
9916
9917 /*
9918 * Find the device by vdev
9919 */
9920 l2arc_dev_t *remdev = l2arc_vdev_get(vd);
9921 ASSERT3P(remdev, !=, NULL);
9922
9923 /*
9924 * Save info for final teardown
9925 */
9926 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
9927 KM_SLEEP);
9928 rva->rva_l2arc_dev = remdev;
9929 rva->rva_spa_gid = spa_load_guid(spa);
9930 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
9931
9932 /*
9933 * Cancel any ongoing or scheduled rebuild.
9934 */
9935 mutex_enter(&l2arc_rebuild_thr_lock);
9936 remdev->l2ad_rebuild_cancel = B_TRUE;
9937 if (remdev->l2ad_rebuild_began == B_TRUE) {
9938 while (remdev->l2ad_rebuild == B_TRUE)
9939 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9940 }
9941 mutex_exit(&l2arc_rebuild_thr_lock);
9942 rva->rva_async = asynchronous;
9943
9944 /*
9945 * Remove device from global list
9946 */
9947 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
9948 mutex_enter(&l2arc_dev_mtx);
9949 list_remove(l2arc_dev_list, remdev);
9950 l2arc_dev_last = NULL; /* may have been invalidated */
9951 atomic_dec_64(&l2arc_ndev);
9952
9953 /* During a pool export spa & vdev will no longer be valid */
9954 if (asynchronous) {
9955 remdev->l2ad_spa = NULL;
9956 remdev->l2ad_vdev = NULL;
9957 }
9958 mutex_exit(&l2arc_dev_mtx);
9959
9960 if (!asynchronous) {
9961 l2arc_device_teardown(rva);
9962 return;
9963 }
9964
9965 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
9966
9967 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
9968 TQ_SLEEP, &af->af_tqent);
9969 }
9970
9971 void
l2arc_init(void)9972 l2arc_init(void)
9973 {
9974 l2arc_thread_exit = 0;
9975 l2arc_ndev = 0;
9976
9977 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9978 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9979 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9980 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9981 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9982 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9983
9984 l2arc_dev_list = &L2ARC_dev_list;
9985 l2arc_free_on_write = &L2ARC_free_on_write;
9986 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9987 offsetof(l2arc_dev_t, l2ad_node));
9988 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9989 offsetof(l2arc_data_free_t, l2df_list_node));
9990 }
9991
9992 void
l2arc_fini(void)9993 l2arc_fini(void)
9994 {
9995 mutex_destroy(&l2arc_feed_thr_lock);
9996 cv_destroy(&l2arc_feed_thr_cv);
9997 mutex_destroy(&l2arc_rebuild_thr_lock);
9998 cv_destroy(&l2arc_rebuild_thr_cv);
9999 mutex_destroy(&l2arc_dev_mtx);
10000 mutex_destroy(&l2arc_free_on_write_mtx);
10001
10002 list_destroy(l2arc_dev_list);
10003 list_destroy(l2arc_free_on_write);
10004 }
10005
10006 void
l2arc_start(void)10007 l2arc_start(void)
10008 {
10009 if (!(spa_mode_global & SPA_MODE_WRITE))
10010 return;
10011
10012 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10013 TS_RUN, defclsyspri);
10014 }
10015
10016 void
l2arc_stop(void)10017 l2arc_stop(void)
10018 {
10019 if (!(spa_mode_global & SPA_MODE_WRITE))
10020 return;
10021
10022 mutex_enter(&l2arc_feed_thr_lock);
10023 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10024 l2arc_thread_exit = 1;
10025 while (l2arc_thread_exit != 0)
10026 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10027 mutex_exit(&l2arc_feed_thr_lock);
10028 }
10029
10030 /*
10031 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10032 * be called after pool import from the spa async thread, since starting
10033 * these threads directly from spa_import() will make them part of the
10034 * "zpool import" context and delay process exit (and thus pool import).
10035 */
10036 void
l2arc_spa_rebuild_start(spa_t * spa)10037 l2arc_spa_rebuild_start(spa_t *spa)
10038 {
10039 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10040
10041 /*
10042 * Locate the spa's l2arc devices and kick off rebuild threads.
10043 */
10044 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10045 l2arc_dev_t *dev =
10046 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10047 if (dev == NULL) {
10048 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10049 continue;
10050 }
10051 mutex_enter(&l2arc_rebuild_thr_lock);
10052 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10053 dev->l2ad_rebuild_began = B_TRUE;
10054 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10055 dev, 0, &p0, TS_RUN, minclsyspri);
10056 }
10057 mutex_exit(&l2arc_rebuild_thr_lock);
10058 }
10059 }
10060
10061 void
l2arc_spa_rebuild_stop(spa_t * spa)10062 l2arc_spa_rebuild_stop(spa_t *spa)
10063 {
10064 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
10065 spa->spa_export_thread == curthread);
10066
10067 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10068 l2arc_dev_t *dev =
10069 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10070 if (dev == NULL)
10071 continue;
10072 mutex_enter(&l2arc_rebuild_thr_lock);
10073 dev->l2ad_rebuild_cancel = B_TRUE;
10074 mutex_exit(&l2arc_rebuild_thr_lock);
10075 }
10076 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10077 l2arc_dev_t *dev =
10078 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10079 if (dev == NULL)
10080 continue;
10081 mutex_enter(&l2arc_rebuild_thr_lock);
10082 if (dev->l2ad_rebuild_began == B_TRUE) {
10083 while (dev->l2ad_rebuild == B_TRUE) {
10084 cv_wait(&l2arc_rebuild_thr_cv,
10085 &l2arc_rebuild_thr_lock);
10086 }
10087 }
10088 mutex_exit(&l2arc_rebuild_thr_lock);
10089 }
10090 }
10091
10092 /*
10093 * Main entry point for L2ARC rebuilding.
10094 */
10095 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)10096 l2arc_dev_rebuild_thread(void *arg)
10097 {
10098 l2arc_dev_t *dev = arg;
10099
10100 VERIFY(dev->l2ad_rebuild);
10101 (void) l2arc_rebuild(dev);
10102 mutex_enter(&l2arc_rebuild_thr_lock);
10103 dev->l2ad_rebuild_began = B_FALSE;
10104 dev->l2ad_rebuild = B_FALSE;
10105 cv_signal(&l2arc_rebuild_thr_cv);
10106 mutex_exit(&l2arc_rebuild_thr_lock);
10107
10108 thread_exit();
10109 }
10110
10111 /*
10112 * This function implements the actual L2ARC metadata rebuild. It:
10113 * starts reading the log block chain and restores each block's contents
10114 * to memory (reconstructing arc_buf_hdr_t's).
10115 *
10116 * Operation stops under any of the following conditions:
10117 *
10118 * 1) We reach the end of the log block chain.
10119 * 2) We encounter *any* error condition (cksum errors, io errors)
10120 */
10121 static int
l2arc_rebuild(l2arc_dev_t * dev)10122 l2arc_rebuild(l2arc_dev_t *dev)
10123 {
10124 vdev_t *vd = dev->l2ad_vdev;
10125 spa_t *spa = vd->vdev_spa;
10126 int err = 0;
10127 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10128 l2arc_log_blk_phys_t *this_lb, *next_lb;
10129 zio_t *this_io = NULL, *next_io = NULL;
10130 l2arc_log_blkptr_t lbps[2];
10131 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10132 boolean_t lock_held;
10133
10134 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10135 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10136
10137 /*
10138 * We prevent device removal while issuing reads to the device,
10139 * then during the rebuilding phases we drop this lock again so
10140 * that a spa_unload or device remove can be initiated - this is
10141 * safe, because the spa will signal us to stop before removing
10142 * our device and wait for us to stop.
10143 */
10144 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10145 lock_held = B_TRUE;
10146
10147 /*
10148 * Retrieve the persistent L2ARC device state.
10149 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10150 */
10151 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10152 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10153 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10154 dev->l2ad_start);
10155 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10156
10157 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10158 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10159
10160 /*
10161 * In case the zfs module parameter l2arc_rebuild_enabled is false
10162 * we do not start the rebuild process.
10163 */
10164 if (!l2arc_rebuild_enabled)
10165 goto out;
10166
10167 /* Prepare the rebuild process */
10168 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10169
10170 /* Start the rebuild process */
10171 for (;;) {
10172 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10173 break;
10174
10175 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10176 this_lb, next_lb, this_io, &next_io)) != 0)
10177 goto out;
10178
10179 /*
10180 * Our memory pressure valve. If the system is running low
10181 * on memory, rather than swamping memory with new ARC buf
10182 * hdrs, we opt not to rebuild the L2ARC. At this point,
10183 * however, we have already set up our L2ARC dev to chain in
10184 * new metadata log blocks, so the user may choose to offline/
10185 * online the L2ARC dev at a later time (or re-import the pool)
10186 * to reconstruct it (when there's less memory pressure).
10187 */
10188 if (l2arc_hdr_limit_reached()) {
10189 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10190 cmn_err(CE_NOTE, "System running low on memory, "
10191 "aborting L2ARC rebuild.");
10192 err = SET_ERROR(ENOMEM);
10193 goto out;
10194 }
10195
10196 spa_config_exit(spa, SCL_L2ARC, vd);
10197 lock_held = B_FALSE;
10198
10199 /*
10200 * Now that we know that the next_lb checks out alright, we
10201 * can start reconstruction from this log block.
10202 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10203 */
10204 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10205 l2arc_log_blk_restore(dev, this_lb, asize);
10206
10207 /*
10208 * log block restored, include its pointer in the list of
10209 * pointers to log blocks present in the L2ARC device.
10210 */
10211 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10212 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10213 KM_SLEEP);
10214 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10215 sizeof (l2arc_log_blkptr_t));
10216 mutex_enter(&dev->l2ad_mtx);
10217 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10218 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10219 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10220 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10221 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10222 mutex_exit(&dev->l2ad_mtx);
10223 vdev_space_update(vd, asize, 0, 0);
10224
10225 /*
10226 * Protection against loops of log blocks:
10227 *
10228 * l2ad_hand l2ad_evict
10229 * V V
10230 * l2ad_start |=======================================| l2ad_end
10231 * -----|||----|||---|||----|||
10232 * (3) (2) (1) (0)
10233 * ---|||---|||----|||---|||
10234 * (7) (6) (5) (4)
10235 *
10236 * In this situation the pointer of log block (4) passes
10237 * l2arc_log_blkptr_valid() but the log block should not be
10238 * restored as it is overwritten by the payload of log block
10239 * (0). Only log blocks (0)-(3) should be restored. We check
10240 * whether l2ad_evict lies in between the payload starting
10241 * offset of the next log block (lbps[1].lbp_payload_start)
10242 * and the payload starting offset of the present log block
10243 * (lbps[0].lbp_payload_start). If true and this isn't the
10244 * first pass, we are looping from the beginning and we should
10245 * stop.
10246 */
10247 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10248 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10249 !dev->l2ad_first)
10250 goto out;
10251
10252 kpreempt(KPREEMPT_SYNC);
10253 for (;;) {
10254 mutex_enter(&l2arc_rebuild_thr_lock);
10255 if (dev->l2ad_rebuild_cancel) {
10256 mutex_exit(&l2arc_rebuild_thr_lock);
10257 err = SET_ERROR(ECANCELED);
10258 goto out;
10259 }
10260 mutex_exit(&l2arc_rebuild_thr_lock);
10261 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10262 RW_READER)) {
10263 lock_held = B_TRUE;
10264 break;
10265 }
10266 /*
10267 * L2ARC config lock held by somebody in writer,
10268 * possibly due to them trying to remove us. They'll
10269 * likely to want us to shut down, so after a little
10270 * delay, we check l2ad_rebuild_cancel and retry
10271 * the lock again.
10272 */
10273 delay(1);
10274 }
10275
10276 /*
10277 * Continue with the next log block.
10278 */
10279 lbps[0] = lbps[1];
10280 lbps[1] = this_lb->lb_prev_lbp;
10281 PTR_SWAP(this_lb, next_lb);
10282 this_io = next_io;
10283 next_io = NULL;
10284 }
10285
10286 if (this_io != NULL)
10287 l2arc_log_blk_fetch_abort(this_io);
10288 out:
10289 if (next_io != NULL)
10290 l2arc_log_blk_fetch_abort(next_io);
10291 vmem_free(this_lb, sizeof (*this_lb));
10292 vmem_free(next_lb, sizeof (*next_lb));
10293
10294 if (err == ECANCELED) {
10295 /*
10296 * In case the rebuild was canceled do not log to spa history
10297 * log as the pool may be in the process of being removed.
10298 */
10299 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10300 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10301 return (err);
10302 } else if (!l2arc_rebuild_enabled) {
10303 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10304 "disabled");
10305 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10306 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10307 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10308 "successful, restored %llu blocks",
10309 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10310 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10311 /*
10312 * No error but also nothing restored, meaning the lbps array
10313 * in the device header points to invalid/non-present log
10314 * blocks. Reset the header.
10315 */
10316 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10317 "no valid log blocks");
10318 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10319 l2arc_dev_hdr_update(dev);
10320 } else if (err != 0) {
10321 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10322 "aborted, restored %llu blocks",
10323 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10324 }
10325
10326 if (lock_held)
10327 spa_config_exit(spa, SCL_L2ARC, vd);
10328
10329 return (err);
10330 }
10331
10332 /*
10333 * Attempts to read the device header on the provided L2ARC device and writes
10334 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10335 * error code is returned.
10336 */
10337 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10338 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10339 {
10340 int err;
10341 uint64_t guid;
10342 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10343 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10344 abd_t *abd;
10345
10346 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10347
10348 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10349
10350 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10351 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10352 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10353 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10354 ZIO_FLAG_SPECULATIVE, B_FALSE));
10355
10356 abd_free(abd);
10357
10358 if (err != 0) {
10359 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10360 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10361 "vdev guid: %llu", err,
10362 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10363 return (err);
10364 }
10365
10366 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10367 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10368
10369 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10370 l2dhdr->dh_spa_guid != guid ||
10371 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10372 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10373 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10374 l2dhdr->dh_end != dev->l2ad_end ||
10375 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10376 l2dhdr->dh_evict) ||
10377 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10378 l2arc_trim_ahead > 0)) {
10379 /*
10380 * Attempt to rebuild a device containing no actual dev hdr
10381 * or containing a header from some other pool or from another
10382 * version of persistent L2ARC.
10383 */
10384 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10385 return (SET_ERROR(ENOTSUP));
10386 }
10387
10388 return (0);
10389 }
10390
10391 /*
10392 * Reads L2ARC log blocks from storage and validates their contents.
10393 *
10394 * This function implements a simple fetcher to make sure that while
10395 * we're processing one buffer the L2ARC is already fetching the next
10396 * one in the chain.
10397 *
10398 * The arguments this_lp and next_lp point to the current and next log block
10399 * address in the block chain. Similarly, this_lb and next_lb hold the
10400 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10401 *
10402 * The `this_io' and `next_io' arguments are used for block fetching.
10403 * When issuing the first blk IO during rebuild, you should pass NULL for
10404 * `this_io'. This function will then issue a sync IO to read the block and
10405 * also issue an async IO to fetch the next block in the block chain. The
10406 * fetched IO is returned in `next_io'. On subsequent calls to this
10407 * function, pass the value returned in `next_io' from the previous call
10408 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10409 * Prior to the call, you should initialize your `next_io' pointer to be
10410 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10411 *
10412 * On success, this function returns 0, otherwise it returns an appropriate
10413 * error code. On error the fetching IO is aborted and cleared before
10414 * returning from this function. Therefore, if we return `success', the
10415 * caller can assume that we have taken care of cleanup of fetch IOs.
10416 */
10417 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10418 l2arc_log_blk_read(l2arc_dev_t *dev,
10419 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10420 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10421 zio_t *this_io, zio_t **next_io)
10422 {
10423 int err = 0;
10424 zio_cksum_t cksum;
10425 uint64_t asize;
10426
10427 ASSERT(this_lbp != NULL && next_lbp != NULL);
10428 ASSERT(this_lb != NULL && next_lb != NULL);
10429 ASSERT(next_io != NULL && *next_io == NULL);
10430 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10431
10432 /*
10433 * Check to see if we have issued the IO for this log block in a
10434 * previous run. If not, this is the first call, so issue it now.
10435 */
10436 if (this_io == NULL) {
10437 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10438 this_lb);
10439 }
10440
10441 /*
10442 * Peek to see if we can start issuing the next IO immediately.
10443 */
10444 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10445 /*
10446 * Start issuing IO for the next log block early - this
10447 * should help keep the L2ARC device busy while we
10448 * decompress and restore this log block.
10449 */
10450 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10451 next_lb);
10452 }
10453
10454 /* Wait for the IO to read this log block to complete */
10455 if ((err = zio_wait(this_io)) != 0) {
10456 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10457 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10458 "offset: %llu, vdev guid: %llu", err,
10459 (u_longlong_t)this_lbp->lbp_daddr,
10460 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10461 goto cleanup;
10462 }
10463
10464 /*
10465 * Make sure the buffer checks out.
10466 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10467 */
10468 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10469 fletcher_4_native(this_lb, asize, NULL, &cksum);
10470 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10471 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10472 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10473 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10474 (u_longlong_t)this_lbp->lbp_daddr,
10475 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10476 (u_longlong_t)dev->l2ad_hand,
10477 (u_longlong_t)dev->l2ad_evict);
10478 err = SET_ERROR(ECKSUM);
10479 goto cleanup;
10480 }
10481
10482 /* Now we can take our time decoding this buffer */
10483 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10484 case ZIO_COMPRESS_OFF:
10485 break;
10486 case ZIO_COMPRESS_LZ4: {
10487 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10488 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10489 abd_t dabd;
10490 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10491 err = zio_decompress_data(
10492 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10493 abd, &dabd, asize, sizeof (*this_lb), NULL);
10494 abd_free(&dabd);
10495 abd_free(abd);
10496 if (err != 0) {
10497 err = SET_ERROR(EINVAL);
10498 goto cleanup;
10499 }
10500 break;
10501 }
10502 default:
10503 err = SET_ERROR(EINVAL);
10504 goto cleanup;
10505 }
10506 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10507 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10508 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10509 err = SET_ERROR(EINVAL);
10510 goto cleanup;
10511 }
10512 cleanup:
10513 /* Abort an in-flight fetch I/O in case of error */
10514 if (err != 0 && *next_io != NULL) {
10515 l2arc_log_blk_fetch_abort(*next_io);
10516 *next_io = NULL;
10517 }
10518 return (err);
10519 }
10520
10521 /*
10522 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10523 * entries which only contain an l2arc hdr, essentially restoring the
10524 * buffers to their L2ARC evicted state. This function also updates space
10525 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10526 */
10527 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10528 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10529 uint64_t lb_asize)
10530 {
10531 uint64_t size = 0, asize = 0;
10532 uint64_t log_entries = dev->l2ad_log_entries;
10533
10534 /*
10535 * Usually arc_adapt() is called only for data, not headers, but
10536 * since we may allocate significant amount of memory here, let ARC
10537 * grow its arc_c.
10538 */
10539 arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10540
10541 for (int i = log_entries - 1; i >= 0; i--) {
10542 /*
10543 * Restore goes in the reverse temporal direction to preserve
10544 * correct temporal ordering of buffers in the l2ad_buflist.
10545 * l2arc_hdr_restore also does a list_insert_tail instead of
10546 * list_insert_head on the l2ad_buflist:
10547 *
10548 * LIST l2ad_buflist LIST
10549 * HEAD <------ (time) ------ TAIL
10550 * direction +-----+-----+-----+-----+-----+ direction
10551 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10552 * fill +-----+-----+-----+-----+-----+
10553 * ^ ^
10554 * | |
10555 * | |
10556 * l2arc_feed_thread l2arc_rebuild
10557 * will place new bufs here restores bufs here
10558 *
10559 * During l2arc_rebuild() the device is not used by
10560 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10561 */
10562 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10563 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10564 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10565 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10566 }
10567
10568 /*
10569 * Record rebuild stats:
10570 * size Logical size of restored buffers in the L2ARC
10571 * asize Aligned size of restored buffers in the L2ARC
10572 */
10573 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10574 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10575 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10576 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10577 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10578 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10579 }
10580
10581 /*
10582 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10583 * into a state indicating that it has been evicted to L2ARC.
10584 */
10585 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10586 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10587 {
10588 arc_buf_hdr_t *hdr, *exists;
10589 kmutex_t *hash_lock;
10590 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10591 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
10592 L2BLK_GET_PSIZE((le)->le_prop));
10593
10594 /*
10595 * Do all the allocation before grabbing any locks, this lets us
10596 * sleep if memory is full and we don't have to deal with failed
10597 * allocations.
10598 */
10599 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10600 dev, le->le_dva, le->le_daddr,
10601 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10602 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10603 L2BLK_GET_PROTECTED((le)->le_prop),
10604 L2BLK_GET_PREFETCH((le)->le_prop),
10605 L2BLK_GET_STATE((le)->le_prop));
10606
10607 /*
10608 * vdev_space_update() has to be called before arc_hdr_destroy() to
10609 * avoid underflow since the latter also calls vdev_space_update().
10610 */
10611 l2arc_hdr_arcstats_increment(hdr);
10612 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10613
10614 mutex_enter(&dev->l2ad_mtx);
10615 list_insert_tail(&dev->l2ad_buflist, hdr);
10616 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10617 mutex_exit(&dev->l2ad_mtx);
10618
10619 exists = buf_hash_insert(hdr, &hash_lock);
10620 if (exists) {
10621 /* Buffer was already cached, no need to restore it. */
10622 arc_hdr_destroy(hdr);
10623 /*
10624 * If the buffer is already cached, check whether it has
10625 * L2ARC metadata. If not, enter them and update the flag.
10626 * This is important is case of onlining a cache device, since
10627 * we previously evicted all L2ARC metadata from ARC.
10628 */
10629 if (!HDR_HAS_L2HDR(exists)) {
10630 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10631 exists->b_l2hdr.b_dev = dev;
10632 exists->b_l2hdr.b_daddr = le->le_daddr;
10633 exists->b_l2hdr.b_arcs_state =
10634 L2BLK_GET_STATE((le)->le_prop);
10635 /* l2arc_hdr_arcstats_update() expects a valid asize */
10636 HDR_SET_L2SIZE(exists, asize);
10637 mutex_enter(&dev->l2ad_mtx);
10638 list_insert_tail(&dev->l2ad_buflist, exists);
10639 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10640 arc_hdr_size(exists), exists);
10641 mutex_exit(&dev->l2ad_mtx);
10642 l2arc_hdr_arcstats_increment(exists);
10643 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10644 }
10645 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10646 }
10647
10648 mutex_exit(hash_lock);
10649 }
10650
10651 /*
10652 * Starts an asynchronous read IO to read a log block. This is used in log
10653 * block reconstruction to start reading the next block before we are done
10654 * decoding and reconstructing the current block, to keep the l2arc device
10655 * nice and hot with read IO to process.
10656 * The returned zio will contain a newly allocated memory buffers for the IO
10657 * data which should then be freed by the caller once the zio is no longer
10658 * needed (i.e. due to it having completed). If you wish to abort this
10659 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10660 * care of disposing of the allocated buffers correctly.
10661 */
10662 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10663 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10664 l2arc_log_blk_phys_t *lb)
10665 {
10666 uint32_t asize;
10667 zio_t *pio;
10668 l2arc_read_callback_t *cb;
10669
10670 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10671 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10672 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10673
10674 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10675 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10676 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10677 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10678 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10679 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10680 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10681 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10682
10683 return (pio);
10684 }
10685
10686 /*
10687 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10688 * buffers allocated for it.
10689 */
10690 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10691 l2arc_log_blk_fetch_abort(zio_t *zio)
10692 {
10693 (void) zio_wait(zio);
10694 }
10695
10696 /*
10697 * Creates a zio to update the device header on an l2arc device.
10698 */
10699 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10700 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10701 {
10702 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10703 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10704 abd_t *abd;
10705 int err;
10706
10707 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10708
10709 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10710 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10711 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10712 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10713 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10714 l2dhdr->dh_evict = dev->l2ad_evict;
10715 l2dhdr->dh_start = dev->l2ad_start;
10716 l2dhdr->dh_end = dev->l2ad_end;
10717 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10718 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10719 l2dhdr->dh_flags = 0;
10720 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10721 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10722 if (dev->l2ad_first)
10723 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10724
10725 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10726
10727 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10728 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10729 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10730
10731 abd_free(abd);
10732
10733 if (err != 0) {
10734 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10735 "vdev guid: %llu", err,
10736 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10737 }
10738 }
10739
10740 /*
10741 * Commits a log block to the L2ARC device. This routine is invoked from
10742 * l2arc_write_buffers when the log block fills up.
10743 * This function allocates some memory to temporarily hold the serialized
10744 * buffer to be written. This is then released in l2arc_write_done.
10745 */
10746 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10747 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10748 {
10749 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10750 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10751 uint64_t psize, asize;
10752 zio_t *wzio;
10753 l2arc_lb_abd_buf_t *abd_buf;
10754 abd_t *abd = NULL;
10755 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10756
10757 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10758
10759 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10760 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10761 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10762 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10763
10764 /* link the buffer into the block chain */
10765 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10766 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10767
10768 /*
10769 * l2arc_log_blk_commit() may be called multiple times during a single
10770 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10771 * so we can free them in l2arc_write_done() later on.
10772 */
10773 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10774
10775 /* try to compress the buffer, at least one sector to save */
10776 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10777 abd_buf->abd, &abd, sizeof (*lb),
10778 zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10779 dev->l2ad_vdev->vdev_ashift,
10780 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10781
10782 /* a log block is never entirely zero */
10783 ASSERT(psize != 0);
10784 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10785 ASSERT(asize <= sizeof (*lb));
10786
10787 /*
10788 * Update the start log block pointer in the device header to point
10789 * to the log block we're about to write.
10790 */
10791 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10792 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10793 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10794 dev->l2ad_log_blk_payload_asize;
10795 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10796 dev->l2ad_log_blk_payload_start;
10797 L2BLK_SET_LSIZE(
10798 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10799 L2BLK_SET_PSIZE(
10800 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10801 L2BLK_SET_CHECKSUM(
10802 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10803 ZIO_CHECKSUM_FLETCHER_4);
10804 if (asize < sizeof (*lb)) {
10805 /* compression succeeded */
10806 abd_zero_off(abd, psize, asize - psize);
10807 L2BLK_SET_COMPRESS(
10808 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10809 ZIO_COMPRESS_LZ4);
10810 } else {
10811 /* compression failed */
10812 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
10813 L2BLK_SET_COMPRESS(
10814 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10815 ZIO_COMPRESS_OFF);
10816 }
10817
10818 /* checksum what we're about to write */
10819 abd_fletcher_4_native(abd, asize, NULL,
10820 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10821
10822 abd_free(abd_buf->abd);
10823
10824 /* perform the write itself */
10825 abd_buf->abd = abd;
10826 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10827 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10828 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10829 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10830 (void) zio_nowait(wzio);
10831
10832 dev->l2ad_hand += asize;
10833 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10834
10835 /*
10836 * Include the committed log block's pointer in the list of pointers
10837 * to log blocks present in the L2ARC device.
10838 */
10839 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10840 sizeof (l2arc_log_blkptr_t));
10841 mutex_enter(&dev->l2ad_mtx);
10842 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10843 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10844 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10845 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10846 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10847 mutex_exit(&dev->l2ad_mtx);
10848
10849 /* bump the kstats */
10850 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10851 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10852 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10853 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10854 dev->l2ad_log_blk_payload_asize / asize);
10855
10856 /* start a new log block */
10857 dev->l2ad_log_ent_idx = 0;
10858 dev->l2ad_log_blk_payload_asize = 0;
10859 dev->l2ad_log_blk_payload_start = 0;
10860
10861 return (asize);
10862 }
10863
10864 /*
10865 * Validates an L2ARC log block address to make sure that it can be read
10866 * from the provided L2ARC device.
10867 */
10868 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)10869 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10870 {
10871 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10872 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10873 uint64_t end = lbp->lbp_daddr + asize - 1;
10874 uint64_t start = lbp->lbp_payload_start;
10875 boolean_t evicted = B_FALSE;
10876
10877 /*
10878 * A log block is valid if all of the following conditions are true:
10879 * - it fits entirely (including its payload) between l2ad_start and
10880 * l2ad_end
10881 * - it has a valid size
10882 * - neither the log block itself nor part of its payload was evicted
10883 * by l2arc_evict():
10884 *
10885 * l2ad_hand l2ad_evict
10886 * | | lbp_daddr
10887 * | start | | end
10888 * | | | | |
10889 * V V V V V
10890 * l2ad_start ============================================ l2ad_end
10891 * --------------------------||||
10892 * ^ ^
10893 * | log block
10894 * payload
10895 */
10896
10897 evicted =
10898 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10899 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10900 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10901 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10902
10903 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10904 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10905 (!evicted || dev->l2ad_first));
10906 }
10907
10908 /*
10909 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10910 * the device. The buffer being inserted must be present in L2ARC.
10911 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10912 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10913 */
10914 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)10915 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10916 {
10917 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10918 l2arc_log_ent_phys_t *le;
10919
10920 if (dev->l2ad_log_entries == 0)
10921 return (B_FALSE);
10922
10923 int index = dev->l2ad_log_ent_idx++;
10924
10925 ASSERT3S(index, <, dev->l2ad_log_entries);
10926 ASSERT(HDR_HAS_L2HDR(hdr));
10927
10928 le = &lb->lb_entries[index];
10929 memset(le, 0, sizeof (*le));
10930 le->le_dva = hdr->b_dva;
10931 le->le_birth = hdr->b_birth;
10932 le->le_daddr = hdr->b_l2hdr.b_daddr;
10933 if (index == 0)
10934 dev->l2ad_log_blk_payload_start = le->le_daddr;
10935 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10936 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10937 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10938 le->le_complevel = hdr->b_complevel;
10939 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10940 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10941 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10942 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10943
10944 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10945 HDR_GET_PSIZE(hdr));
10946
10947 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10948 }
10949
10950 /*
10951 * Checks whether a given L2ARC device address sits in a time-sequential
10952 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10953 * just do a range comparison, we need to handle the situation in which the
10954 * range wraps around the end of the L2ARC device. Arguments:
10955 * bottom -- Lower end of the range to check (written to earlier).
10956 * top -- Upper end of the range to check (written to later).
10957 * check -- The address for which we want to determine if it sits in
10958 * between the top and bottom.
10959 *
10960 * The 3-way conditional below represents the following cases:
10961 *
10962 * bottom < top : Sequentially ordered case:
10963 * <check>--------+-------------------+
10964 * | (overlap here?) |
10965 * L2ARC dev V V
10966 * |---------------<bottom>============<top>--------------|
10967 *
10968 * bottom > top: Looped-around case:
10969 * <check>--------+------------------+
10970 * | (overlap here?) |
10971 * L2ARC dev V V
10972 * |===============<top>---------------<bottom>===========|
10973 * ^ ^
10974 * | (or here?) |
10975 * +---------------+---------<check>
10976 *
10977 * top == bottom : Just a single address comparison.
10978 */
10979 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)10980 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10981 {
10982 if (bottom < top)
10983 return (bottom <= check && check <= top);
10984 else if (bottom > top)
10985 return (check <= top || bottom <= check);
10986 else
10987 return (check == top);
10988 }
10989
10990 EXPORT_SYMBOL(arc_buf_size);
10991 EXPORT_SYMBOL(arc_write);
10992 EXPORT_SYMBOL(arc_read);
10993 EXPORT_SYMBOL(arc_buf_info);
10994 EXPORT_SYMBOL(arc_getbuf_func);
10995 EXPORT_SYMBOL(arc_add_prune_callback);
10996 EXPORT_SYMBOL(arc_remove_prune_callback);
10997
10998 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10999 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11000
11001 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11002 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11003
11004 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11005 "Balance between metadata and data on ghost hits.");
11006
11007 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11008 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11009
11010 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11011 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11012
11013 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11014 "Percent of pagecache to reclaim ARC to");
11015
11016 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11017 "Target average block size");
11018
11019 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11020 "Disable compressed ARC buffers");
11021
11022 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11023 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11024
11025 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11026 param_set_arc_int, param_get_uint, ZMOD_RW,
11027 "Min life of prescient prefetched block in ms");
11028
11029 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11030 "Max write bytes per interval");
11031
11032 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11033 "Extra write bytes during device warmup");
11034
11035 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11036 "Number of max device writes to precache");
11037
11038 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11039 "Compressed l2arc_headroom multiplier");
11040
11041 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11042 "TRIM ahead L2ARC write size multiplier");
11043
11044 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11045 "Seconds between L2ARC writing");
11046
11047 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11048 "Min feed interval in milliseconds");
11049
11050 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11051 "Skip caching prefetched buffers");
11052
11053 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11054 "Turbo L2ARC warmup");
11055
11056 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11057 "No reads during writes");
11058
11059 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11060 "Percent of ARC size allowed for L2ARC-only headers");
11061
11062 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11063 "Rebuild the L2ARC when importing a pool");
11064
11065 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11066 "Min size in bytes to write rebuild log blocks in L2ARC");
11067
11068 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11069 "Cache only MFU data from ARC into L2ARC");
11070
11071 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11072 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11073
11074 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11075 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11076
11077 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11078 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11079
11080 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11081 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11082
11083 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11084 param_set_arc_int, param_get_uint, ZMOD_RW,
11085 "Percent of ARC meta buffers for dnodes");
11086
11087 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11088 "Percentage of excess dnodes to try to unpin");
11089
11090 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11091 "When full, ARC allocation waits for eviction of this % of alloc size");
11092
11093 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11094 "The number of headers to evict per sublist before moving to the next");
11095
11096 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11097 "Number of arc_prune threads");
11098