1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 *
7 *===-----------------------------------------------------------------------===
8 */
9
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31 * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41
42 #ifdef __SSE2__
43 /* Both _Float16 and __bf16 require SSE2 being enabled. */
44 typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45 typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46 typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47
48 typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49 typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50 #endif
51
52 /* Define the default attributes for the functions in this file. */
53 #define __DEFAULT_FN_ATTRS \
54 __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
55 __min_vector_width__(256)))
56 #define __DEFAULT_FN_ATTRS128 \
57 __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
58 __min_vector_width__(128)))
59
60 /* Arithmetic */
61 /// Adds two 256-bit vectors of [4 x double].
62 ///
63 /// \headerfile <x86intrin.h>
64 ///
65 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
66 ///
67 /// \param __a
68 /// A 256-bit vector of [4 x double] containing one of the source operands.
69 /// \param __b
70 /// A 256-bit vector of [4 x double] containing one of the source operands.
71 /// \returns A 256-bit vector of [4 x double] containing the sums of both
72 /// operands.
73 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)74 _mm256_add_pd(__m256d __a, __m256d __b)
75 {
76 return (__m256d)((__v4df)__a+(__v4df)__b);
77 }
78
79 /// Adds two 256-bit vectors of [8 x float].
80 ///
81 /// \headerfile <x86intrin.h>
82 ///
83 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
84 ///
85 /// \param __a
86 /// A 256-bit vector of [8 x float] containing one of the source operands.
87 /// \param __b
88 /// A 256-bit vector of [8 x float] containing one of the source operands.
89 /// \returns A 256-bit vector of [8 x float] containing the sums of both
90 /// operands.
91 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)92 _mm256_add_ps(__m256 __a, __m256 __b)
93 {
94 return (__m256)((__v8sf)__a+(__v8sf)__b);
95 }
96
97 /// Subtracts two 256-bit vectors of [4 x double].
98 ///
99 /// \headerfile <x86intrin.h>
100 ///
101 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
102 ///
103 /// \param __a
104 /// A 256-bit vector of [4 x double] containing the minuend.
105 /// \param __b
106 /// A 256-bit vector of [4 x double] containing the subtrahend.
107 /// \returns A 256-bit vector of [4 x double] containing the differences between
108 /// both operands.
109 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)110 _mm256_sub_pd(__m256d __a, __m256d __b)
111 {
112 return (__m256d)((__v4df)__a-(__v4df)__b);
113 }
114
115 /// Subtracts two 256-bit vectors of [8 x float].
116 ///
117 /// \headerfile <x86intrin.h>
118 ///
119 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
120 ///
121 /// \param __a
122 /// A 256-bit vector of [8 x float] containing the minuend.
123 /// \param __b
124 /// A 256-bit vector of [8 x float] containing the subtrahend.
125 /// \returns A 256-bit vector of [8 x float] containing the differences between
126 /// both operands.
127 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)128 _mm256_sub_ps(__m256 __a, __m256 __b)
129 {
130 return (__m256)((__v8sf)__a-(__v8sf)__b);
131 }
132
133 /// Adds the even-indexed values and subtracts the odd-indexed values of
134 /// two 256-bit vectors of [4 x double].
135 ///
136 /// \headerfile <x86intrin.h>
137 ///
138 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
139 ///
140 /// \param __a
141 /// A 256-bit vector of [4 x double] containing the left source operand.
142 /// \param __b
143 /// A 256-bit vector of [4 x double] containing the right source operand.
144 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
145 /// and differences between both operands.
146 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)147 _mm256_addsub_pd(__m256d __a, __m256d __b)
148 {
149 return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
150 }
151
152 /// Adds the even-indexed values and subtracts the odd-indexed values of
153 /// two 256-bit vectors of [8 x float].
154 ///
155 /// \headerfile <x86intrin.h>
156 ///
157 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
158 ///
159 /// \param __a
160 /// A 256-bit vector of [8 x float] containing the left source operand.
161 /// \param __b
162 /// A 256-bit vector of [8 x float] containing the right source operand.
163 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
164 /// differences between both operands.
165 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)166 _mm256_addsub_ps(__m256 __a, __m256 __b)
167 {
168 return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
169 }
170
171 /// Divides two 256-bit vectors of [4 x double].
172 ///
173 /// \headerfile <x86intrin.h>
174 ///
175 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
176 ///
177 /// \param __a
178 /// A 256-bit vector of [4 x double] containing the dividend.
179 /// \param __b
180 /// A 256-bit vector of [4 x double] containing the divisor.
181 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
182 /// operands.
183 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)184 _mm256_div_pd(__m256d __a, __m256d __b)
185 {
186 return (__m256d)((__v4df)__a/(__v4df)__b);
187 }
188
189 /// Divides two 256-bit vectors of [8 x float].
190 ///
191 /// \headerfile <x86intrin.h>
192 ///
193 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
194 ///
195 /// \param __a
196 /// A 256-bit vector of [8 x float] containing the dividend.
197 /// \param __b
198 /// A 256-bit vector of [8 x float] containing the divisor.
199 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
200 /// operands.
201 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)202 _mm256_div_ps(__m256 __a, __m256 __b)
203 {
204 return (__m256)((__v8sf)__a/(__v8sf)__b);
205 }
206
207 /// Compares two 256-bit vectors of [4 x double] and returns the greater
208 /// of each pair of values.
209 ///
210 /// If either value in a comparison is NaN, returns the value from \a __b.
211 ///
212 /// \headerfile <x86intrin.h>
213 ///
214 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
215 ///
216 /// \param __a
217 /// A 256-bit vector of [4 x double] containing one of the operands.
218 /// \param __b
219 /// A 256-bit vector of [4 x double] containing one of the operands.
220 /// \returns A 256-bit vector of [4 x double] containing the maximum values
221 /// between both operands.
222 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)223 _mm256_max_pd(__m256d __a, __m256d __b)
224 {
225 return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
226 }
227
228 /// Compares two 256-bit vectors of [8 x float] and returns the greater
229 /// of each pair of values.
230 ///
231 /// If either value in a comparison is NaN, returns the value from \a __b.
232 ///
233 /// \headerfile <x86intrin.h>
234 ///
235 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
236 ///
237 /// \param __a
238 /// A 256-bit vector of [8 x float] containing one of the operands.
239 /// \param __b
240 /// A 256-bit vector of [8 x float] containing one of the operands.
241 /// \returns A 256-bit vector of [8 x float] containing the maximum values
242 /// between both operands.
243 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)244 _mm256_max_ps(__m256 __a, __m256 __b)
245 {
246 return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
247 }
248
249 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
250 /// of each pair of values.
251 ///
252 /// If either value in a comparison is NaN, returns the value from \a __b.
253 ///
254 /// \headerfile <x86intrin.h>
255 ///
256 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
257 ///
258 /// \param __a
259 /// A 256-bit vector of [4 x double] containing one of the operands.
260 /// \param __b
261 /// A 256-bit vector of [4 x double] containing one of the operands.
262 /// \returns A 256-bit vector of [4 x double] containing the minimum values
263 /// between both operands.
264 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)265 _mm256_min_pd(__m256d __a, __m256d __b)
266 {
267 return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
268 }
269
270 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
271 /// of each pair of values.
272 ///
273 /// If either value in a comparison is NaN, returns the value from \a __b.
274 ///
275 /// \headerfile <x86intrin.h>
276 ///
277 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
278 ///
279 /// \param __a
280 /// A 256-bit vector of [8 x float] containing one of the operands.
281 /// \param __b
282 /// A 256-bit vector of [8 x float] containing one of the operands.
283 /// \returns A 256-bit vector of [8 x float] containing the minimum values
284 /// between both operands.
285 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)286 _mm256_min_ps(__m256 __a, __m256 __b)
287 {
288 return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
289 }
290
291 /// Multiplies two 256-bit vectors of [4 x double].
292 ///
293 /// \headerfile <x86intrin.h>
294 ///
295 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
296 ///
297 /// \param __a
298 /// A 256-bit vector of [4 x double] containing one of the operands.
299 /// \param __b
300 /// A 256-bit vector of [4 x double] containing one of the operands.
301 /// \returns A 256-bit vector of [4 x double] containing the products of both
302 /// operands.
303 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)304 _mm256_mul_pd(__m256d __a, __m256d __b)
305 {
306 return (__m256d)((__v4df)__a * (__v4df)__b);
307 }
308
309 /// Multiplies two 256-bit vectors of [8 x float].
310 ///
311 /// \headerfile <x86intrin.h>
312 ///
313 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
314 ///
315 /// \param __a
316 /// A 256-bit vector of [8 x float] containing one of the operands.
317 /// \param __b
318 /// A 256-bit vector of [8 x float] containing one of the operands.
319 /// \returns A 256-bit vector of [8 x float] containing the products of both
320 /// operands.
321 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)322 _mm256_mul_ps(__m256 __a, __m256 __b)
323 {
324 return (__m256)((__v8sf)__a * (__v8sf)__b);
325 }
326
327 /// Calculates the square roots of the values in a 256-bit vector of
328 /// [4 x double].
329 ///
330 /// \headerfile <x86intrin.h>
331 ///
332 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
333 ///
334 /// \param __a
335 /// A 256-bit vector of [4 x double].
336 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
337 /// values in the operand.
338 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)339 _mm256_sqrt_pd(__m256d __a)
340 {
341 return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
342 }
343
344 /// Calculates the square roots of the values in a 256-bit vector of
345 /// [8 x float].
346 ///
347 /// \headerfile <x86intrin.h>
348 ///
349 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
350 ///
351 /// \param __a
352 /// A 256-bit vector of [8 x float].
353 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
354 /// values in the operand.
355 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)356 _mm256_sqrt_ps(__m256 __a)
357 {
358 return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
359 }
360
361 /// Calculates the reciprocal square roots of the values in a 256-bit
362 /// vector of [8 x float].
363 ///
364 /// \headerfile <x86intrin.h>
365 ///
366 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
367 ///
368 /// \param __a
369 /// A 256-bit vector of [8 x float].
370 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
371 /// roots of the values in the operand.
372 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)373 _mm256_rsqrt_ps(__m256 __a)
374 {
375 return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
376 }
377
378 /// Calculates the reciprocals of the values in a 256-bit vector of
379 /// [8 x float].
380 ///
381 /// \headerfile <x86intrin.h>
382 ///
383 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
384 ///
385 /// \param __a
386 /// A 256-bit vector of [8 x float].
387 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
388 /// values in the operand.
389 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)390 _mm256_rcp_ps(__m256 __a)
391 {
392 return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
393 }
394
395 /// Rounds the values in a 256-bit vector of [4 x double] as specified
396 /// by the byte operand. The source values are rounded to integer values and
397 /// returned as 64-bit double-precision floating-point values.
398 ///
399 /// \headerfile <x86intrin.h>
400 ///
401 /// \code
402 /// __m256d _mm256_round_pd(__m256d V, const int M);
403 /// \endcode
404 ///
405 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
406 ///
407 /// \param V
408 /// A 256-bit vector of [4 x double].
409 /// \param M
410 /// An integer value that specifies the rounding operation. \n
411 /// Bits [7:4] are reserved. \n
412 /// Bit [3] is a precision exception value: \n
413 /// 0: A normal PE exception is used. \n
414 /// 1: The PE field is not updated. \n
415 /// Bit [2] is the rounding control source: \n
416 /// 0: Use bits [1:0] of \a M. \n
417 /// 1: Use the current MXCSR setting. \n
418 /// Bits [1:0] contain the rounding control definition: \n
419 /// 00: Nearest. \n
420 /// 01: Downward (toward negative infinity). \n
421 /// 10: Upward (toward positive infinity). \n
422 /// 11: Truncated.
423 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
424 #define _mm256_round_pd(V, M) \
425 ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
426
427 /// Rounds the values stored in a 256-bit vector of [8 x float] as
428 /// specified by the byte operand. The source values are rounded to integer
429 /// values and returned as floating-point values.
430 ///
431 /// \headerfile <x86intrin.h>
432 ///
433 /// \code
434 /// __m256 _mm256_round_ps(__m256 V, const int M);
435 /// \endcode
436 ///
437 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
438 ///
439 /// \param V
440 /// A 256-bit vector of [8 x float].
441 /// \param M
442 /// An integer value that specifies the rounding operation. \n
443 /// Bits [7:4] are reserved. \n
444 /// Bit [3] is a precision exception value: \n
445 /// 0: A normal PE exception is used. \n
446 /// 1: The PE field is not updated. \n
447 /// Bit [2] is the rounding control source: \n
448 /// 0: Use bits [1:0] of \a M. \n
449 /// 1: Use the current MXCSR setting. \n
450 /// Bits [1:0] contain the rounding control definition: \n
451 /// 00: Nearest. \n
452 /// 01: Downward (toward negative infinity). \n
453 /// 10: Upward (toward positive infinity). \n
454 /// 11: Truncated.
455 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
456 #define _mm256_round_ps(V, M) \
457 ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
458
459 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
460 /// source values are rounded up to integer values and returned as 64-bit
461 /// double-precision floating-point values.
462 ///
463 /// \headerfile <x86intrin.h>
464 ///
465 /// \code
466 /// __m256d _mm256_ceil_pd(__m256d V);
467 /// \endcode
468 ///
469 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
470 ///
471 /// \param V
472 /// A 256-bit vector of [4 x double].
473 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
474 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
475
476 /// Rounds down the values stored in a 256-bit vector of [4 x double].
477 /// The source values are rounded down to integer values and returned as
478 /// 64-bit double-precision floating-point values.
479 ///
480 /// \headerfile <x86intrin.h>
481 ///
482 /// \code
483 /// __m256d _mm256_floor_pd(__m256d V);
484 /// \endcode
485 ///
486 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
487 ///
488 /// \param V
489 /// A 256-bit vector of [4 x double].
490 /// \returns A 256-bit vector of [4 x double] containing the rounded down
491 /// values.
492 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
493
494 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
495 /// source values are rounded up to integer values and returned as
496 /// floating-point values.
497 ///
498 /// \headerfile <x86intrin.h>
499 ///
500 /// \code
501 /// __m256 _mm256_ceil_ps(__m256 V);
502 /// \endcode
503 ///
504 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
505 ///
506 /// \param V
507 /// A 256-bit vector of [8 x float].
508 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
509 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
510
511 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
512 /// source values are rounded down to integer values and returned as
513 /// floating-point values.
514 ///
515 /// \headerfile <x86intrin.h>
516 ///
517 /// \code
518 /// __m256 _mm256_floor_ps(__m256 V);
519 /// \endcode
520 ///
521 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
522 ///
523 /// \param V
524 /// A 256-bit vector of [8 x float].
525 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
526 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
527
528 /* Logical */
529 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
530 ///
531 /// \headerfile <x86intrin.h>
532 ///
533 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
534 ///
535 /// \param __a
536 /// A 256-bit vector of [4 x double] containing one of the source operands.
537 /// \param __b
538 /// A 256-bit vector of [4 x double] containing one of the source operands.
539 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
540 /// values between both operands.
541 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)542 _mm256_and_pd(__m256d __a, __m256d __b)
543 {
544 return (__m256d)((__v4du)__a & (__v4du)__b);
545 }
546
547 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
548 ///
549 /// \headerfile <x86intrin.h>
550 ///
551 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
552 ///
553 /// \param __a
554 /// A 256-bit vector of [8 x float] containing one of the source operands.
555 /// \param __b
556 /// A 256-bit vector of [8 x float] containing one of the source operands.
557 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
558 /// values between both operands.
559 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)560 _mm256_and_ps(__m256 __a, __m256 __b)
561 {
562 return (__m256)((__v8su)__a & (__v8su)__b);
563 }
564
565 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
566 /// the one's complement of the values contained in the first source operand.
567 ///
568 /// \headerfile <x86intrin.h>
569 ///
570 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
571 ///
572 /// \param __a
573 /// A 256-bit vector of [4 x double] containing the left source operand. The
574 /// one's complement of this value is used in the bitwise AND.
575 /// \param __b
576 /// A 256-bit vector of [4 x double] containing the right source operand.
577 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
578 /// values of the second operand and the one's complement of the first
579 /// operand.
580 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)581 _mm256_andnot_pd(__m256d __a, __m256d __b)
582 {
583 return (__m256d)(~(__v4du)__a & (__v4du)__b);
584 }
585
586 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
587 /// the one's complement of the values contained in the first source operand.
588 ///
589 /// \headerfile <x86intrin.h>
590 ///
591 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
592 ///
593 /// \param __a
594 /// A 256-bit vector of [8 x float] containing the left source operand. The
595 /// one's complement of this value is used in the bitwise AND.
596 /// \param __b
597 /// A 256-bit vector of [8 x float] containing the right source operand.
598 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
599 /// values of the second operand and the one's complement of the first
600 /// operand.
601 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)602 _mm256_andnot_ps(__m256 __a, __m256 __b)
603 {
604 return (__m256)(~(__v8su)__a & (__v8su)__b);
605 }
606
607 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
608 ///
609 /// \headerfile <x86intrin.h>
610 ///
611 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
612 ///
613 /// \param __a
614 /// A 256-bit vector of [4 x double] containing one of the source operands.
615 /// \param __b
616 /// A 256-bit vector of [4 x double] containing one of the source operands.
617 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
618 /// values between both operands.
619 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)620 _mm256_or_pd(__m256d __a, __m256d __b)
621 {
622 return (__m256d)((__v4du)__a | (__v4du)__b);
623 }
624
625 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
626 ///
627 /// \headerfile <x86intrin.h>
628 ///
629 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
630 ///
631 /// \param __a
632 /// A 256-bit vector of [8 x float] containing one of the source operands.
633 /// \param __b
634 /// A 256-bit vector of [8 x float] containing one of the source operands.
635 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
636 /// values between both operands.
637 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)638 _mm256_or_ps(__m256 __a, __m256 __b)
639 {
640 return (__m256)((__v8su)__a | (__v8su)__b);
641 }
642
643 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
644 ///
645 /// \headerfile <x86intrin.h>
646 ///
647 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
648 ///
649 /// \param __a
650 /// A 256-bit vector of [4 x double] containing one of the source operands.
651 /// \param __b
652 /// A 256-bit vector of [4 x double] containing one of the source operands.
653 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
654 /// values between both operands.
655 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)656 _mm256_xor_pd(__m256d __a, __m256d __b)
657 {
658 return (__m256d)((__v4du)__a ^ (__v4du)__b);
659 }
660
661 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
662 ///
663 /// \headerfile <x86intrin.h>
664 ///
665 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
666 ///
667 /// \param __a
668 /// A 256-bit vector of [8 x float] containing one of the source operands.
669 /// \param __b
670 /// A 256-bit vector of [8 x float] containing one of the source operands.
671 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
672 /// values between both operands.
673 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)674 _mm256_xor_ps(__m256 __a, __m256 __b)
675 {
676 return (__m256)((__v8su)__a ^ (__v8su)__b);
677 }
678
679 /* Horizontal arithmetic */
680 /// Horizontally adds the adjacent pairs of values contained in two
681 /// 256-bit vectors of [4 x double].
682 ///
683 /// \headerfile <x86intrin.h>
684 ///
685 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
686 ///
687 /// \param __a
688 /// A 256-bit vector of [4 x double] containing one of the source operands.
689 /// The horizontal sums of the values are returned in the even-indexed
690 /// elements of a vector of [4 x double].
691 /// \param __b
692 /// A 256-bit vector of [4 x double] containing one of the source operands.
693 /// The horizontal sums of the values are returned in the odd-indexed
694 /// elements of a vector of [4 x double].
695 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
696 /// both operands.
697 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)698 _mm256_hadd_pd(__m256d __a, __m256d __b)
699 {
700 return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
701 }
702
703 /// Horizontally adds the adjacent pairs of values contained in two
704 /// 256-bit vectors of [8 x float].
705 ///
706 /// \headerfile <x86intrin.h>
707 ///
708 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
709 ///
710 /// \param __a
711 /// A 256-bit vector of [8 x float] containing one of the source operands.
712 /// The horizontal sums of the values are returned in the elements with
713 /// index 0, 1, 4, 5 of a vector of [8 x float].
714 /// \param __b
715 /// A 256-bit vector of [8 x float] containing one of the source operands.
716 /// The horizontal sums of the values are returned in the elements with
717 /// index 2, 3, 6, 7 of a vector of [8 x float].
718 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
719 /// both operands.
720 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)721 _mm256_hadd_ps(__m256 __a, __m256 __b)
722 {
723 return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
724 }
725
726 /// Horizontally subtracts the adjacent pairs of values contained in two
727 /// 256-bit vectors of [4 x double].
728 ///
729 /// \headerfile <x86intrin.h>
730 ///
731 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
732 ///
733 /// \param __a
734 /// A 256-bit vector of [4 x double] containing one of the source operands.
735 /// The horizontal differences between the values are returned in the
736 /// even-indexed elements of a vector of [4 x double].
737 /// \param __b
738 /// A 256-bit vector of [4 x double] containing one of the source operands.
739 /// The horizontal differences between the values are returned in the
740 /// odd-indexed elements of a vector of [4 x double].
741 /// \returns A 256-bit vector of [4 x double] containing the horizontal
742 /// differences of both operands.
743 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)744 _mm256_hsub_pd(__m256d __a, __m256d __b)
745 {
746 return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
747 }
748
749 /// Horizontally subtracts the adjacent pairs of values contained in two
750 /// 256-bit vectors of [8 x float].
751 ///
752 /// \headerfile <x86intrin.h>
753 ///
754 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
755 ///
756 /// \param __a
757 /// A 256-bit vector of [8 x float] containing one of the source operands.
758 /// The horizontal differences between the values are returned in the
759 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
760 /// \param __b
761 /// A 256-bit vector of [8 x float] containing one of the source operands.
762 /// The horizontal differences between the values are returned in the
763 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
764 /// \returns A 256-bit vector of [8 x float] containing the horizontal
765 /// differences of both operands.
766 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)767 _mm256_hsub_ps(__m256 __a, __m256 __b)
768 {
769 return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
770 }
771
772 /* Vector permutations */
773 /// Copies the values in a 128-bit vector of [2 x double] as specified
774 /// by the 128-bit integer vector operand.
775 ///
776 /// \headerfile <x86intrin.h>
777 ///
778 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
779 ///
780 /// \param __a
781 /// A 128-bit vector of [2 x double].
782 /// \param __c
783 /// A 128-bit integer vector operand specifying how the values are to be
784 /// copied. \n
785 /// Bit [1]: \n
786 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
787 /// vector. \n
788 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
789 /// returned vector. \n
790 /// Bit [65]: \n
791 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
792 /// returned vector. \n
793 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
794 /// returned vector.
795 /// \returns A 128-bit vector of [2 x double] containing the copied values.
796 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_permutevar_pd(__m128d __a,__m128i __c)797 _mm_permutevar_pd(__m128d __a, __m128i __c)
798 {
799 return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
800 }
801
802 /// Copies the values in a 256-bit vector of [4 x double] as specified
803 /// by the 256-bit integer vector operand.
804 ///
805 /// \headerfile <x86intrin.h>
806 ///
807 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
808 ///
809 /// \param __a
810 /// A 256-bit vector of [4 x double].
811 /// \param __c
812 /// A 256-bit integer vector operand specifying how the values are to be
813 /// copied. \n
814 /// Bit [1]: \n
815 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
816 /// vector. \n
817 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
818 /// returned vector. \n
819 /// Bit [65]: \n
820 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
821 /// returned vector. \n
822 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
823 /// returned vector. \n
824 /// Bit [129]: \n
825 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
826 /// returned vector. \n
827 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
828 /// returned vector. \n
829 /// Bit [193]: \n
830 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
831 /// returned vector. \n
832 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
833 /// returned vector.
834 /// \returns A 256-bit vector of [4 x double] containing the copied values.
835 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)836 _mm256_permutevar_pd(__m256d __a, __m256i __c)
837 {
838 return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
839 }
840
841 /// Copies the values stored in a 128-bit vector of [4 x float] as
842 /// specified by the 128-bit integer vector operand.
843 ///
844 /// \headerfile <x86intrin.h>
845 ///
846 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
847 ///
848 /// \param __a
849 /// A 128-bit vector of [4 x float].
850 /// \param __c
851 /// A 128-bit integer vector operand specifying how the values are to be
852 /// copied. \n
853 /// Bits [1:0]: \n
854 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
855 /// returned vector. \n
856 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
857 /// returned vector. \n
858 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
859 /// returned vector. \n
860 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
861 /// returned vector. \n
862 /// Bits [33:32]: \n
863 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
864 /// returned vector. \n
865 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
866 /// returned vector. \n
867 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
868 /// returned vector. \n
869 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
870 /// returned vector. \n
871 /// Bits [65:64]: \n
872 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
873 /// returned vector. \n
874 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
875 /// returned vector. \n
876 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
877 /// returned vector. \n
878 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
879 /// returned vector. \n
880 /// Bits [97:96]: \n
881 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
882 /// returned vector. \n
883 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
884 /// returned vector. \n
885 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
886 /// returned vector. \n
887 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
888 /// returned vector.
889 /// \returns A 128-bit vector of [4 x float] containing the copied values.
890 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_permutevar_ps(__m128 __a,__m128i __c)891 _mm_permutevar_ps(__m128 __a, __m128i __c)
892 {
893 return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
894 }
895
896 /// Copies the values stored in a 256-bit vector of [8 x float] as
897 /// specified by the 256-bit integer vector operand.
898 ///
899 /// \headerfile <x86intrin.h>
900 ///
901 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
902 ///
903 /// \param __a
904 /// A 256-bit vector of [8 x float].
905 /// \param __c
906 /// A 256-bit integer vector operand specifying how the values are to be
907 /// copied. \n
908 /// Bits [1:0]: \n
909 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
910 /// returned vector. \n
911 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
912 /// returned vector. \n
913 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
914 /// returned vector. \n
915 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
916 /// returned vector. \n
917 /// Bits [33:32]: \n
918 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
919 /// returned vector. \n
920 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
921 /// returned vector. \n
922 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
923 /// returned vector. \n
924 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
925 /// returned vector. \n
926 /// Bits [65:64]: \n
927 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
928 /// returned vector. \n
929 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
930 /// returned vector. \n
931 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
932 /// returned vector. \n
933 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
934 /// returned vector. \n
935 /// Bits [97:96]: \n
936 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
937 /// returned vector. \n
938 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
939 /// returned vector. \n
940 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
941 /// returned vector. \n
942 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
943 /// returned vector. \n
944 /// Bits [129:128]: \n
945 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
946 /// returned vector. \n
947 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
948 /// returned vector. \n
949 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
950 /// returned vector. \n
951 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
952 /// returned vector. \n
953 /// Bits [161:160]: \n
954 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
955 /// returned vector. \n
956 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
957 /// returned vector. \n
958 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
959 /// returned vector. \n
960 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
961 /// returned vector. \n
962 /// Bits [193:192]: \n
963 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
964 /// returned vector. \n
965 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
966 /// returned vector. \n
967 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
968 /// returned vector. \n
969 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
970 /// returned vector. \n
971 /// Bits [225:224]: \n
972 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
973 /// returned vector. \n
974 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
975 /// returned vector. \n
976 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
977 /// returned vector. \n
978 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
979 /// returned vector.
980 /// \returns A 256-bit vector of [8 x float] containing the copied values.
981 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)982 _mm256_permutevar_ps(__m256 __a, __m256i __c)
983 {
984 return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
985 }
986
987 /// Copies the values in a 128-bit vector of [2 x double] as specified
988 /// by the immediate integer operand.
989 ///
990 /// \headerfile <x86intrin.h>
991 ///
992 /// \code
993 /// __m128d _mm_permute_pd(__m128d A, const int C);
994 /// \endcode
995 ///
996 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
997 ///
998 /// \param A
999 /// A 128-bit vector of [2 x double].
1000 /// \param C
1001 /// An immediate integer operand specifying how the values are to be
1002 /// copied. \n
1003 /// Bit [0]: \n
1004 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1005 /// vector. \n
1006 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1007 /// returned vector. \n
1008 /// Bit [1]: \n
1009 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1010 /// returned vector. \n
1011 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1012 /// returned vector.
1013 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1014 #define _mm_permute_pd(A, C) \
1015 ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1016
1017 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1018 /// the immediate integer operand.
1019 ///
1020 /// \headerfile <x86intrin.h>
1021 ///
1022 /// \code
1023 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1024 /// \endcode
1025 ///
1026 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1027 ///
1028 /// \param A
1029 /// A 256-bit vector of [4 x double].
1030 /// \param C
1031 /// An immediate integer operand specifying how the values are to be
1032 /// copied. \n
1033 /// Bit [0]: \n
1034 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1035 /// vector. \n
1036 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1037 /// returned vector. \n
1038 /// Bit [1]: \n
1039 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1040 /// returned vector. \n
1041 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1042 /// returned vector. \n
1043 /// Bit [2]: \n
1044 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1045 /// returned vector. \n
1046 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1047 /// returned vector. \n
1048 /// Bit [3]: \n
1049 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1050 /// returned vector. \n
1051 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1052 /// returned vector.
1053 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1054 #define _mm256_permute_pd(A, C) \
1055 ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1056
1057 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1058 /// the immediate integer operand.
1059 ///
1060 /// \headerfile <x86intrin.h>
1061 ///
1062 /// \code
1063 /// __m128 _mm_permute_ps(__m128 A, const int C);
1064 /// \endcode
1065 ///
1066 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1067 ///
1068 /// \param A
1069 /// A 128-bit vector of [4 x float].
1070 /// \param C
1071 /// An immediate integer operand specifying how the values are to be
1072 /// copied. \n
1073 /// Bits [1:0]: \n
1074 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1075 /// returned vector. \n
1076 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1077 /// returned vector. \n
1078 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1079 /// returned vector. \n
1080 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1081 /// returned vector. \n
1082 /// Bits [3:2]: \n
1083 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1084 /// returned vector. \n
1085 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1086 /// returned vector. \n
1087 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1088 /// returned vector. \n
1089 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1090 /// returned vector. \n
1091 /// Bits [5:4]: \n
1092 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1093 /// returned vector. \n
1094 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1095 /// returned vector. \n
1096 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1097 /// returned vector. \n
1098 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1099 /// returned vector. \n
1100 /// Bits [7:6]: \n
1101 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1102 /// returned vector. \n
1103 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1104 /// returned vector. \n
1105 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1106 /// returned vector. \n
1107 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1108 /// returned vector.
1109 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1110 #define _mm_permute_ps(A, C) \
1111 ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1112
1113 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1114 /// the immediate integer operand.
1115 ///
1116 /// \headerfile <x86intrin.h>
1117 ///
1118 /// \code
1119 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1120 /// \endcode
1121 ///
1122 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1123 ///
1124 /// \param A
1125 /// A 256-bit vector of [8 x float].
1126 /// \param C
1127 /// An immediate integer operand specifying how the values are to be
1128 /// copied. \n
1129 /// Bits [1:0]: \n
1130 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1131 /// returned vector. \n
1132 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1133 /// returned vector. \n
1134 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1135 /// returned vector. \n
1136 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1137 /// returned vector. \n
1138 /// Bits [3:2]: \n
1139 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1140 /// returned vector. \n
1141 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1142 /// returned vector. \n
1143 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1144 /// returned vector. \n
1145 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1146 /// returned vector. \n
1147 /// Bits [5:4]: \n
1148 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1149 /// returned vector. \n
1150 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1151 /// returned vector. \n
1152 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1153 /// returned vector. \n
1154 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1155 /// returned vector. \n
1156 /// Bits [7:6]: \n
1157 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1158 /// returned vector. \n
1159 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1160 /// returned vector. \n
1161 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1162 /// returned vector. \n
1163 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1164 /// returned vector. \n
1165 /// Bits [1:0]: \n
1166 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1167 /// returned vector. \n
1168 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1169 /// returned vector. \n
1170 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1171 /// returned vector. \n
1172 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1173 /// returned vector. \n
1174 /// Bits [3:2]: \n
1175 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1176 /// returned vector. \n
1177 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1178 /// returned vector. \n
1179 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1180 /// returned vector. \n
1181 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1182 /// returned vector. \n
1183 /// Bits [5:4]: \n
1184 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1185 /// returned vector. \n
1186 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1187 /// returned vector. \n
1188 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1189 /// returned vector. \n
1190 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1191 /// returned vector. \n
1192 /// Bits [7:6]: \n
1193 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1194 /// returned vector. \n
1195 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1196 /// returned vector. \n
1197 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1198 /// returned vector. \n
1199 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1200 /// returned vector.
1201 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1202 #define _mm256_permute_ps(A, C) \
1203 ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1204
1205 /// Permutes 128-bit data values stored in two 256-bit vectors of
1206 /// [4 x double], as specified by the immediate integer operand.
1207 ///
1208 /// \headerfile <x86intrin.h>
1209 ///
1210 /// \code
1211 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1212 /// \endcode
1213 ///
1214 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1215 ///
1216 /// \param V1
1217 /// A 256-bit vector of [4 x double].
1218 /// \param V2
1219 /// A 256-bit vector of [4 x double.
1220 /// \param M
1221 /// An immediate integer operand specifying how the values are to be
1222 /// permuted. \n
1223 /// Bits [1:0]: \n
1224 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1225 /// destination. \n
1226 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1227 /// destination. \n
1228 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1229 /// destination. \n
1230 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1231 /// destination. \n
1232 /// Bits [5:4]: \n
1233 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1234 /// destination. \n
1235 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1236 /// destination. \n
1237 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1238 /// destination. \n
1239 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1240 /// destination.
1241 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1242 #define _mm256_permute2f128_pd(V1, V2, M) \
1243 ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1244 (__v4df)(__m256d)(V2), (int)(M)))
1245
1246 /// Permutes 128-bit data values stored in two 256-bit vectors of
1247 /// [8 x float], as specified by the immediate integer operand.
1248 ///
1249 /// \headerfile <x86intrin.h>
1250 ///
1251 /// \code
1252 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1253 /// \endcode
1254 ///
1255 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1256 ///
1257 /// \param V1
1258 /// A 256-bit vector of [8 x float].
1259 /// \param V2
1260 /// A 256-bit vector of [8 x float].
1261 /// \param M
1262 /// An immediate integer operand specifying how the values are to be
1263 /// permuted. \n
1264 /// Bits [1:0]: \n
1265 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1266 /// destination. \n
1267 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1268 /// destination. \n
1269 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1270 /// destination. \n
1271 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1272 /// destination. \n
1273 /// Bits [5:4]: \n
1274 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1275 /// destination. \n
1276 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1277 /// destination. \n
1278 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1279 /// destination. \n
1280 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1281 /// destination.
1282 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1283 #define _mm256_permute2f128_ps(V1, V2, M) \
1284 ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1285 (__v8sf)(__m256)(V2), (int)(M)))
1286
1287 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1288 /// as specified by the immediate integer operand.
1289 ///
1290 /// \headerfile <x86intrin.h>
1291 ///
1292 /// \code
1293 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1294 /// \endcode
1295 ///
1296 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1297 ///
1298 /// \param V1
1299 /// A 256-bit integer vector.
1300 /// \param V2
1301 /// A 256-bit integer vector.
1302 /// \param M
1303 /// An immediate integer operand specifying how the values are to be copied.
1304 /// Bits [1:0]: \n
1305 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1306 /// destination. \n
1307 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1308 /// destination. \n
1309 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1310 /// destination. \n
1311 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1312 /// destination. \n
1313 /// Bits [5:4]: \n
1314 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1315 /// destination. \n
1316 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1317 /// destination. \n
1318 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1319 /// destination. \n
1320 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1321 /// destination.
1322 /// \returns A 256-bit integer vector containing the copied values.
1323 #define _mm256_permute2f128_si256(V1, V2, M) \
1324 ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1325 (__v8si)(__m256i)(V2), (int)(M)))
1326
1327 /* Vector Blend */
1328 /// Merges 64-bit double-precision data values stored in either of the
1329 /// two 256-bit vectors of [4 x double], as specified by the immediate
1330 /// integer operand.
1331 ///
1332 /// \headerfile <x86intrin.h>
1333 ///
1334 /// \code
1335 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1336 /// \endcode
1337 ///
1338 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1339 ///
1340 /// \param V1
1341 /// A 256-bit vector of [4 x double].
1342 /// \param V2
1343 /// A 256-bit vector of [4 x double].
1344 /// \param M
1345 /// An immediate integer operand, with mask bits [3:0] specifying how the
1346 /// values are to be copied. The position of the mask bit corresponds to the
1347 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1348 /// element in operand \a V1 is copied to the same position in the
1349 /// destination. When a mask bit is 1, the corresponding 64-bit element in
1350 /// operand \a V2 is copied to the same position in the destination.
1351 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1352 #define _mm256_blend_pd(V1, V2, M) \
1353 ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1354 (__v4df)(__m256d)(V2), (int)(M)))
1355
1356 /// Merges 32-bit single-precision data values stored in either of the
1357 /// two 256-bit vectors of [8 x float], as specified by the immediate
1358 /// integer operand.
1359 ///
1360 /// \headerfile <x86intrin.h>
1361 ///
1362 /// \code
1363 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1364 /// \endcode
1365 ///
1366 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1367 ///
1368 /// \param V1
1369 /// A 256-bit vector of [8 x float].
1370 /// \param V2
1371 /// A 256-bit vector of [8 x float].
1372 /// \param M
1373 /// An immediate integer operand, with mask bits [7:0] specifying how the
1374 /// values are to be copied. The position of the mask bit corresponds to the
1375 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1376 /// element in operand \a V1 is copied to the same position in the
1377 /// destination. When a mask bit is 1, the corresponding 32-bit element in
1378 /// operand \a V2 is copied to the same position in the destination.
1379 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1380 #define _mm256_blend_ps(V1, V2, M) \
1381 ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1382 (__v8sf)(__m256)(V2), (int)(M)))
1383
1384 /// Merges 64-bit double-precision data values stored in either of the
1385 /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1386 /// operand.
1387 ///
1388 /// \headerfile <x86intrin.h>
1389 ///
1390 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1391 ///
1392 /// \param __a
1393 /// A 256-bit vector of [4 x double].
1394 /// \param __b
1395 /// A 256-bit vector of [4 x double].
1396 /// \param __c
1397 /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1398 /// how the values are to be copied. The position of the mask bit corresponds
1399 /// to the most significant bit of a copied value. When a mask bit is 0, the
1400 /// corresponding 64-bit element in operand \a __a is copied to the same
1401 /// position in the destination. When a mask bit is 1, the corresponding
1402 /// 64-bit element in operand \a __b is copied to the same position in the
1403 /// destination.
1404 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1405 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1406 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1407 {
1408 return (__m256d)__builtin_ia32_blendvpd256(
1409 (__v4df)__a, (__v4df)__b, (__v4df)__c);
1410 }
1411
1412 /// Merges 32-bit single-precision data values stored in either of the
1413 /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1414 /// operand.
1415 ///
1416 /// \headerfile <x86intrin.h>
1417 ///
1418 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1419 ///
1420 /// \param __a
1421 /// A 256-bit vector of [8 x float].
1422 /// \param __b
1423 /// A 256-bit vector of [8 x float].
1424 /// \param __c
1425 /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1426 /// and 31 specifying how the values are to be copied. The position of the
1427 /// mask bit corresponds to the most significant bit of a copied value. When
1428 /// a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1429 /// copied to the same position in the destination. When a mask bit is 1, the
1430 /// corresponding 32-bit element in operand \a __b is copied to the same
1431 /// position in the destination.
1432 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1433 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1434 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1435 {
1436 return (__m256)__builtin_ia32_blendvps256(
1437 (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1438 }
1439
1440 /* Vector Dot Product */
1441 /// Computes two dot products in parallel, using the lower and upper
1442 /// halves of two [8 x float] vectors as input to the two computations, and
1443 /// returning the two dot products in the lower and upper halves of the
1444 /// [8 x float] result.
1445 ///
1446 /// The immediate integer operand controls which input elements will
1447 /// contribute to the dot product, and where the final results are returned.
1448 /// In general, for each dot product, the four corresponding elements of the
1449 /// input vectors are multiplied; the first two and second two products are
1450 /// summed, then the two sums are added to form the final result.
1451 ///
1452 /// \headerfile <x86intrin.h>
1453 ///
1454 /// \code
1455 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1456 /// \endcode
1457 ///
1458 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1459 ///
1460 /// \param V1
1461 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1462 /// \param V2
1463 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1464 /// \param M
1465 /// An immediate integer argument. Bits [7:4] determine which elements of
1466 /// the input vectors are used, with bit [4] corresponding to the lowest
1467 /// element and bit [7] corresponding to the highest element of each [4 x
1468 /// float] subvector. If a bit is set, the corresponding elements from the
1469 /// two input vectors are used as an input for dot product; otherwise that
1470 /// input is treated as zero. Bits [3:0] determine which elements of the
1471 /// result will receive a copy of the final dot product, with bit [0]
1472 /// corresponding to the lowest element and bit [3] corresponding to the
1473 /// highest element of each [4 x float] subvector. If a bit is set, the dot
1474 /// product is returned in the corresponding element; otherwise that element
1475 /// is set to zero. The bitmask is applied in the same way to each of the
1476 /// two parallel dot product computations.
1477 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1478 #define _mm256_dp_ps(V1, V2, M) \
1479 ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1480 (__v8sf)(__m256)(V2), (M)))
1481
1482 /* Vector shuffle */
1483 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1484 /// specified by the immediate value operand.
1485 ///
1486 /// The four selected elements in each operand are copied to the destination
1487 /// according to the bits specified in the immediate operand. The selected
1488 /// elements from the first 256-bit operand are copied to bits [63:0] and
1489 /// bits [191:128] of the destination, and the selected elements from the
1490 /// second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1491 /// the destination. For example, if bits [7:0] of the immediate operand
1492 /// contain a value of 0xFF, the 256-bit destination vector would contain the
1493 /// following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1494 ///
1495 /// \headerfile <x86intrin.h>
1496 ///
1497 /// \code
1498 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1499 /// \endcode
1500 ///
1501 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1502 ///
1503 /// \param a
1504 /// A 256-bit vector of [8 x float]. The four selected elements in this
1505 /// operand are copied to bits [63:0] and bits [191:128] in the destination,
1506 /// according to the bits specified in the immediate operand.
1507 /// \param b
1508 /// A 256-bit vector of [8 x float]. The four selected elements in this
1509 /// operand are copied to bits [127:64] and bits [255:192] in the
1510 /// destination, according to the bits specified in the immediate operand.
1511 /// \param mask
1512 /// An immediate value containing an 8-bit value specifying which elements to
1513 /// copy from \a a and \a b \n.
1514 /// Bits [3:0] specify the values copied from operand \a a. \n
1515 /// Bits [7:4] specify the values copied from operand \a b. \n
1516 /// The destinations within the 256-bit destination are assigned values as
1517 /// follows, according to the bit value assignments described below: \n
1518 /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1519 /// destination. \n
1520 /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1521 /// destination. \n
1522 /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1523 /// destination. \n
1524 /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1525 /// the destination. \n
1526 /// Bit value assignments: \n
1527 /// 00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1528 /// 01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1529 /// 10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1530 /// 11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1531 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1532 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1533 /// <c>[b6, b4, b2, b0]</c>.
1534 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1535 #define _mm256_shuffle_ps(a, b, mask) \
1536 ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1537 (__v8sf)(__m256)(b), (int)(mask)))
1538
1539 /// Selects four double-precision values from the 256-bit operands of
1540 /// [4 x double], as specified by the immediate value operand.
1541 ///
1542 /// The selected elements from the first 256-bit operand are copied to bits
1543 /// [63:0] and bits [191:128] in the destination, and the selected elements
1544 /// from the second 256-bit operand are copied to bits [127:64] and bits
1545 /// [255:192] in the destination. For example, if bits [3:0] of the immediate
1546 /// operand contain a value of 0xF, the 256-bit destination vector would
1547 /// contain the following values: b[3], a[3], b[1], a[1].
1548 ///
1549 /// \headerfile <x86intrin.h>
1550 ///
1551 /// \code
1552 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1553 /// \endcode
1554 ///
1555 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1556 ///
1557 /// \param a
1558 /// A 256-bit vector of [4 x double].
1559 /// \param b
1560 /// A 256-bit vector of [4 x double].
1561 /// \param mask
1562 /// An immediate value containing 8-bit values specifying which elements to
1563 /// copy from \a a and \a b: \n
1564 /// Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1565 /// destination. \n
1566 /// Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1567 /// destination. \n
1568 /// Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1569 /// destination. \n
1570 /// Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1571 /// destination. \n
1572 /// Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1573 /// destination. \n
1574 /// Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1575 /// destination. \n
1576 /// Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1577 /// destination. \n
1578 /// Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1579 /// destination.
1580 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1581 #define _mm256_shuffle_pd(a, b, mask) \
1582 ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1583 (__v4df)(__m256d)(b), (int)(mask)))
1584
1585 /* Compare */
1586 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1587 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */
1588 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1589 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1590 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1591 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1592 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1593 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1594 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1595 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1596 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1597 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1598 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1599 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1600 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, non-signaling) */
1601 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1602 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1603 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, non-signaling) */
1604 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1605 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1606 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1607 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1608 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1609 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1610
1611 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1612 /// Compares each of the corresponding double-precision values of two
1613 /// 128-bit vectors of [2 x double], using the operation specified by the
1614 /// immediate integer operand.
1615 ///
1616 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1617 /// If either value in a comparison is NaN, comparisons that are ordered
1618 /// return false, and comparisons that are unordered return true.
1619 ///
1620 /// \headerfile <x86intrin.h>
1621 ///
1622 /// \code
1623 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1624 /// \endcode
1625 ///
1626 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1627 ///
1628 /// \param a
1629 /// A 128-bit vector of [2 x double].
1630 /// \param b
1631 /// A 128-bit vector of [2 x double].
1632 /// \param c
1633 /// An immediate integer operand, with bits [4:0] specifying which comparison
1634 /// operation to use: \n
1635 /// 0x00: Equal (ordered, non-signaling) \n
1636 /// 0x01: Less-than (ordered, signaling) \n
1637 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1638 /// 0x03: Unordered (non-signaling) \n
1639 /// 0x04: Not-equal (unordered, non-signaling) \n
1640 /// 0x05: Not-less-than (unordered, signaling) \n
1641 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1642 /// 0x07: Ordered (non-signaling) \n
1643 /// 0x08: Equal (unordered, non-signaling) \n
1644 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1645 /// 0x0A: Not-greater-than (unordered, signaling) \n
1646 /// 0x0B: False (ordered, non-signaling) \n
1647 /// 0x0C: Not-equal (ordered, non-signaling) \n
1648 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1649 /// 0x0E: Greater-than (ordered, signaling) \n
1650 /// 0x0F: True (unordered, non-signaling) \n
1651 /// 0x10: Equal (ordered, signaling) \n
1652 /// 0x11: Less-than (ordered, non-signaling) \n
1653 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1654 /// 0x13: Unordered (signaling) \n
1655 /// 0x14: Not-equal (unordered, signaling) \n
1656 /// 0x15: Not-less-than (unordered, non-signaling) \n
1657 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1658 /// 0x17: Ordered (signaling) \n
1659 /// 0x18: Equal (unordered, signaling) \n
1660 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1661 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1662 /// 0x1B: False (ordered, signaling) \n
1663 /// 0x1C: Not-equal (ordered, signaling) \n
1664 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1665 /// 0x1E: Greater-than (ordered, non-signaling) \n
1666 /// 0x1F: True (unordered, signaling)
1667 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1668 /// \fn __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c)
1669
1670 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1671 /// Compares each of the corresponding values of two 128-bit vectors of
1672 /// [4 x float], using the operation specified by the immediate integer
1673 /// operand.
1674 ///
1675 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1676 /// If either value in a comparison is NaN, comparisons that are ordered
1677 /// return false, and comparisons that are unordered return true.
1678 ///
1679 /// \headerfile <x86intrin.h>
1680 ///
1681 /// \code
1682 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1683 /// \endcode
1684 ///
1685 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1686 ///
1687 /// \param a
1688 /// A 128-bit vector of [4 x float].
1689 /// \param b
1690 /// A 128-bit vector of [4 x float].
1691 /// \param c
1692 /// An immediate integer operand, with bits [4:0] specifying which comparison
1693 /// operation to use: \n
1694 /// 0x00: Equal (ordered, non-signaling) \n
1695 /// 0x01: Less-than (ordered, signaling) \n
1696 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1697 /// 0x03: Unordered (non-signaling) \n
1698 /// 0x04: Not-equal (unordered, non-signaling) \n
1699 /// 0x05: Not-less-than (unordered, signaling) \n
1700 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1701 /// 0x07: Ordered (non-signaling) \n
1702 /// 0x08: Equal (unordered, non-signaling) \n
1703 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1704 /// 0x0A: Not-greater-than (unordered, signaling) \n
1705 /// 0x0B: False (ordered, non-signaling) \n
1706 /// 0x0C: Not-equal (ordered, non-signaling) \n
1707 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1708 /// 0x0E: Greater-than (ordered, signaling) \n
1709 /// 0x0F: True (unordered, non-signaling) \n
1710 /// 0x10: Equal (ordered, signaling) \n
1711 /// 0x11: Less-than (ordered, non-signaling) \n
1712 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1713 /// 0x13: Unordered (signaling) \n
1714 /// 0x14: Not-equal (unordered, signaling) \n
1715 /// 0x15: Not-less-than (unordered, non-signaling) \n
1716 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1717 /// 0x17: Ordered (signaling) \n
1718 /// 0x18: Equal (unordered, signaling) \n
1719 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1720 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1721 /// 0x1B: False (ordered, signaling) \n
1722 /// 0x1C: Not-equal (ordered, signaling) \n
1723 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1724 /// 0x1E: Greater-than (ordered, non-signaling) \n
1725 /// 0x1F: True (unordered, signaling)
1726 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1727 /// \fn __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c)
1728
1729 /// Compares each of the corresponding double-precision values of two
1730 /// 256-bit vectors of [4 x double], using the operation specified by the
1731 /// immediate integer operand.
1732 ///
1733 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1734 /// If either value in a comparison is NaN, comparisons that are ordered
1735 /// return false, and comparisons that are unordered return true.
1736 ///
1737 /// \headerfile <x86intrin.h>
1738 ///
1739 /// \code
1740 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1741 /// \endcode
1742 ///
1743 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1744 ///
1745 /// \param a
1746 /// A 256-bit vector of [4 x double].
1747 /// \param b
1748 /// A 256-bit vector of [4 x double].
1749 /// \param c
1750 /// An immediate integer operand, with bits [4:0] specifying which comparison
1751 /// operation to use: \n
1752 /// 0x00: Equal (ordered, non-signaling) \n
1753 /// 0x01: Less-than (ordered, signaling) \n
1754 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1755 /// 0x03: Unordered (non-signaling) \n
1756 /// 0x04: Not-equal (unordered, non-signaling) \n
1757 /// 0x05: Not-less-than (unordered, signaling) \n
1758 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1759 /// 0x07: Ordered (non-signaling) \n
1760 /// 0x08: Equal (unordered, non-signaling) \n
1761 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1762 /// 0x0A: Not-greater-than (unordered, signaling) \n
1763 /// 0x0B: False (ordered, non-signaling) \n
1764 /// 0x0C: Not-equal (ordered, non-signaling) \n
1765 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1766 /// 0x0E: Greater-than (ordered, signaling) \n
1767 /// 0x0F: True (unordered, non-signaling) \n
1768 /// 0x10: Equal (ordered, signaling) \n
1769 /// 0x11: Less-than (ordered, non-signaling) \n
1770 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1771 /// 0x13: Unordered (signaling) \n
1772 /// 0x14: Not-equal (unordered, signaling) \n
1773 /// 0x15: Not-less-than (unordered, non-signaling) \n
1774 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1775 /// 0x17: Ordered (signaling) \n
1776 /// 0x18: Equal (unordered, signaling) \n
1777 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1778 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1779 /// 0x1B: False (ordered, signaling) \n
1780 /// 0x1C: Not-equal (ordered, signaling) \n
1781 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1782 /// 0x1E: Greater-than (ordered, non-signaling) \n
1783 /// 0x1F: True (unordered, signaling)
1784 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1785 #define _mm256_cmp_pd(a, b, c) \
1786 ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1787 (__v4df)(__m256d)(b), (c)))
1788
1789 /// Compares each of the corresponding values of two 256-bit vectors of
1790 /// [8 x float], using the operation specified by the immediate integer
1791 /// operand.
1792 ///
1793 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1794 /// If either value in a comparison is NaN, comparisons that are ordered
1795 /// return false, and comparisons that are unordered return true.
1796 ///
1797 /// \headerfile <x86intrin.h>
1798 ///
1799 /// \code
1800 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1801 /// \endcode
1802 ///
1803 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1804 ///
1805 /// \param a
1806 /// A 256-bit vector of [8 x float].
1807 /// \param b
1808 /// A 256-bit vector of [8 x float].
1809 /// \param c
1810 /// An immediate integer operand, with bits [4:0] specifying which comparison
1811 /// operation to use: \n
1812 /// 0x00: Equal (ordered, non-signaling) \n
1813 /// 0x01: Less-than (ordered, signaling) \n
1814 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1815 /// 0x03: Unordered (non-signaling) \n
1816 /// 0x04: Not-equal (unordered, non-signaling) \n
1817 /// 0x05: Not-less-than (unordered, signaling) \n
1818 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1819 /// 0x07: Ordered (non-signaling) \n
1820 /// 0x08: Equal (unordered, non-signaling) \n
1821 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1822 /// 0x0A: Not-greater-than (unordered, signaling) \n
1823 /// 0x0B: False (ordered, non-signaling) \n
1824 /// 0x0C: Not-equal (ordered, non-signaling) \n
1825 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1826 /// 0x0E: Greater-than (ordered, signaling) \n
1827 /// 0x0F: True (unordered, non-signaling) \n
1828 /// 0x10: Equal (ordered, signaling) \n
1829 /// 0x11: Less-than (ordered, non-signaling) \n
1830 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1831 /// 0x13: Unordered (signaling) \n
1832 /// 0x14: Not-equal (unordered, signaling) \n
1833 /// 0x15: Not-less-than (unordered, non-signaling) \n
1834 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1835 /// 0x17: Ordered (signaling) \n
1836 /// 0x18: Equal (unordered, signaling) \n
1837 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1838 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1839 /// 0x1B: False (ordered, signaling) \n
1840 /// 0x1C: Not-equal (ordered, signaling) \n
1841 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1842 /// 0x1E: Greater-than (ordered, non-signaling) \n
1843 /// 0x1F: True (unordered, signaling)
1844 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1845 #define _mm256_cmp_ps(a, b, c) \
1846 ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1847 (__v8sf)(__m256)(b), (c)))
1848
1849 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1850 /// Compares each of the corresponding scalar double-precision values of
1851 /// two 128-bit vectors of [2 x double], using the operation specified by the
1852 /// immediate integer operand.
1853 ///
1854 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1855 /// If either value in a comparison is NaN, comparisons that are ordered
1856 /// return false, and comparisons that are unordered return true.
1857 ///
1858 /// \headerfile <x86intrin.h>
1859 ///
1860 /// \code
1861 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1862 /// \endcode
1863 ///
1864 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1865 ///
1866 /// \param a
1867 /// A 128-bit vector of [2 x double].
1868 /// \param b
1869 /// A 128-bit vector of [2 x double].
1870 /// \param c
1871 /// An immediate integer operand, with bits [4:0] specifying which comparison
1872 /// operation to use: \n
1873 /// 0x00: Equal (ordered, non-signaling) \n
1874 /// 0x01: Less-than (ordered, signaling) \n
1875 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1876 /// 0x03: Unordered (non-signaling) \n
1877 /// 0x04: Not-equal (unordered, non-signaling) \n
1878 /// 0x05: Not-less-than (unordered, signaling) \n
1879 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1880 /// 0x07: Ordered (non-signaling) \n
1881 /// 0x08: Equal (unordered, non-signaling) \n
1882 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1883 /// 0x0A: Not-greater-than (unordered, signaling) \n
1884 /// 0x0B: False (ordered, non-signaling) \n
1885 /// 0x0C: Not-equal (ordered, non-signaling) \n
1886 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1887 /// 0x0E: Greater-than (ordered, signaling) \n
1888 /// 0x0F: True (unordered, non-signaling) \n
1889 /// 0x10: Equal (ordered, signaling) \n
1890 /// 0x11: Less-than (ordered, non-signaling) \n
1891 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1892 /// 0x13: Unordered (signaling) \n
1893 /// 0x14: Not-equal (unordered, signaling) \n
1894 /// 0x15: Not-less-than (unordered, non-signaling) \n
1895 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1896 /// 0x17: Ordered (signaling) \n
1897 /// 0x18: Equal (unordered, signaling) \n
1898 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1899 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1900 /// 0x1B: False (ordered, signaling) \n
1901 /// 0x1C: Not-equal (ordered, signaling) \n
1902 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1903 /// 0x1E: Greater-than (ordered, non-signaling) \n
1904 /// 0x1F: True (unordered, signaling)
1905 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1906 /// \fn __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c)
1907
1908 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1909 /// Compares each of the corresponding scalar values of two 128-bit
1910 /// vectors of [4 x float], using the operation specified by the immediate
1911 /// integer operand.
1912 ///
1913 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1914 /// If either value in a comparison is NaN, comparisons that are ordered
1915 /// return false, and comparisons that are unordered return true.
1916 ///
1917 /// \headerfile <x86intrin.h>
1918 ///
1919 /// \code
1920 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1921 /// \endcode
1922 ///
1923 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1924 ///
1925 /// \param a
1926 /// A 128-bit vector of [4 x float].
1927 /// \param b
1928 /// A 128-bit vector of [4 x float].
1929 /// \param c
1930 /// An immediate integer operand, with bits [4:0] specifying which comparison
1931 /// operation to use: \n
1932 /// 0x00: Equal (ordered, non-signaling) \n
1933 /// 0x01: Less-than (ordered, signaling) \n
1934 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1935 /// 0x03: Unordered (non-signaling) \n
1936 /// 0x04: Not-equal (unordered, non-signaling) \n
1937 /// 0x05: Not-less-than (unordered, signaling) \n
1938 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1939 /// 0x07: Ordered (non-signaling) \n
1940 /// 0x08: Equal (unordered, non-signaling) \n
1941 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1942 /// 0x0A: Not-greater-than (unordered, signaling) \n
1943 /// 0x0B: False (ordered, non-signaling) \n
1944 /// 0x0C: Not-equal (ordered, non-signaling) \n
1945 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1946 /// 0x0E: Greater-than (ordered, signaling) \n
1947 /// 0x0F: True (unordered, non-signaling) \n
1948 /// 0x10: Equal (ordered, signaling) \n
1949 /// 0x11: Less-than (ordered, non-signaling) \n
1950 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1951 /// 0x13: Unordered (signaling) \n
1952 /// 0x14: Not-equal (unordered, signaling) \n
1953 /// 0x15: Not-less-than (unordered, non-signaling) \n
1954 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1955 /// 0x17: Ordered (signaling) \n
1956 /// 0x18: Equal (unordered, signaling) \n
1957 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1958 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1959 /// 0x1B: False (ordered, signaling) \n
1960 /// 0x1C: Not-equal (ordered, signaling) \n
1961 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1962 /// 0x1E: Greater-than (ordered, non-signaling) \n
1963 /// 0x1F: True (unordered, signaling)
1964 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1965 /// \fn __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c)
1966
1967 /// Takes a [8 x i32] vector and returns the vector element value
1968 /// indexed by the immediate constant operand.
1969 ///
1970 /// \headerfile <x86intrin.h>
1971 ///
1972 /// \code
1973 /// int _mm256_extract_epi32(__m256i X, const int N);
1974 /// \endcode
1975 ///
1976 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1977 /// instruction.
1978 ///
1979 /// \param X
1980 /// A 256-bit vector of [8 x i32].
1981 /// \param N
1982 /// An immediate integer operand with bits [2:0] determining which vector
1983 /// element is extracted and returned.
1984 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1985 /// packed data.
1986 #define _mm256_extract_epi32(X, N) \
1987 ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1988
1989 /// Takes a [16 x i16] vector and returns the vector element value
1990 /// indexed by the immediate constant operand.
1991 ///
1992 /// \headerfile <x86intrin.h>
1993 ///
1994 /// \code
1995 /// int _mm256_extract_epi16(__m256i X, const int N);
1996 /// \endcode
1997 ///
1998 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1999 /// instruction.
2000 ///
2001 /// \param X
2002 /// A 256-bit integer vector of [16 x i16].
2003 /// \param N
2004 /// An immediate integer operand with bits [3:0] determining which vector
2005 /// element is extracted and returned.
2006 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2007 /// packed data.
2008 #define _mm256_extract_epi16(X, N) \
2009 ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2010 (int)(N)))
2011
2012 /// Takes a [32 x i8] vector and returns the vector element value
2013 /// indexed by the immediate constant operand.
2014 ///
2015 /// \headerfile <x86intrin.h>
2016 ///
2017 /// \code
2018 /// int _mm256_extract_epi8(__m256i X, const int N);
2019 /// \endcode
2020 ///
2021 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2022 /// instruction.
2023 ///
2024 /// \param X
2025 /// A 256-bit integer vector of [32 x i8].
2026 /// \param N
2027 /// An immediate integer operand with bits [4:0] determining which vector
2028 /// element is extracted and returned.
2029 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2030 /// packed data.
2031 #define _mm256_extract_epi8(X, N) \
2032 ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2033 (int)(N)))
2034
2035 #ifdef __x86_64__
2036 /// Takes a [4 x i64] vector and returns the vector element value
2037 /// indexed by the immediate constant operand.
2038 ///
2039 /// \headerfile <x86intrin.h>
2040 ///
2041 /// \code
2042 /// long long _mm256_extract_epi64(__m256i X, const int N);
2043 /// \endcode
2044 ///
2045 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2046 /// instruction.
2047 ///
2048 /// \param X
2049 /// A 256-bit integer vector of [4 x i64].
2050 /// \param N
2051 /// An immediate integer operand with bits [1:0] determining which vector
2052 /// element is extracted and returned.
2053 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2054 /// packed data.
2055 #define _mm256_extract_epi64(X, N) \
2056 ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2057 #endif
2058
2059 /// Takes a [8 x i32] vector and replaces the vector element value
2060 /// indexed by the immediate constant operand by a new value. Returns the
2061 /// modified vector.
2062 ///
2063 /// \headerfile <x86intrin.h>
2064 ///
2065 /// \code
2066 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2067 /// \endcode
2068 ///
2069 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2070 /// instruction.
2071 ///
2072 /// \param X
2073 /// A vector of [8 x i32] to be used by the insert operation.
2074 /// \param I
2075 /// An integer value. The replacement value for the insert operation.
2076 /// \param N
2077 /// An immediate integer specifying the index of the vector element to be
2078 /// replaced.
2079 /// \returns A copy of vector \a X, after replacing its element indexed by
2080 /// \a N with \a I.
2081 #define _mm256_insert_epi32(X, I, N) \
2082 ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2083 (int)(I), (int)(N)))
2084
2085
2086 /// Takes a [16 x i16] vector and replaces the vector element value
2087 /// indexed by the immediate constant operand with a new value. Returns the
2088 /// modified vector.
2089 ///
2090 /// \headerfile <x86intrin.h>
2091 ///
2092 /// \code
2093 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2094 /// \endcode
2095 ///
2096 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2097 /// instruction.
2098 ///
2099 /// \param X
2100 /// A vector of [16 x i16] to be used by the insert operation.
2101 /// \param I
2102 /// An i16 integer value. The replacement value for the insert operation.
2103 /// \param N
2104 /// An immediate integer specifying the index of the vector element to be
2105 /// replaced.
2106 /// \returns A copy of vector \a X, after replacing its element indexed by
2107 /// \a N with \a I.
2108 #define _mm256_insert_epi16(X, I, N) \
2109 ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2110 (int)(I), (int)(N)))
2111
2112 /// Takes a [32 x i8] vector and replaces the vector element value
2113 /// indexed by the immediate constant operand with a new value. Returns the
2114 /// modified vector.
2115 ///
2116 /// \headerfile <x86intrin.h>
2117 ///
2118 /// \code
2119 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2120 /// \endcode
2121 ///
2122 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2123 /// instruction.
2124 ///
2125 /// \param X
2126 /// A vector of [32 x i8] to be used by the insert operation.
2127 /// \param I
2128 /// An i8 integer value. The replacement value for the insert operation.
2129 /// \param N
2130 /// An immediate integer specifying the index of the vector element to be
2131 /// replaced.
2132 /// \returns A copy of vector \a X, after replacing its element indexed by
2133 /// \a N with \a I.
2134 #define _mm256_insert_epi8(X, I, N) \
2135 ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2136 (int)(I), (int)(N)))
2137
2138 #ifdef __x86_64__
2139 /// Takes a [4 x i64] vector and replaces the vector element value
2140 /// indexed by the immediate constant operand with a new value. Returns the
2141 /// modified vector.
2142 ///
2143 /// \headerfile <x86intrin.h>
2144 ///
2145 /// \code
2146 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2147 /// \endcode
2148 ///
2149 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2150 /// instruction.
2151 ///
2152 /// \param X
2153 /// A vector of [4 x i64] to be used by the insert operation.
2154 /// \param I
2155 /// A 64-bit integer value. The replacement value for the insert operation.
2156 /// \param N
2157 /// An immediate integer specifying the index of the vector element to be
2158 /// replaced.
2159 /// \returns A copy of vector \a X, after replacing its element indexed by
2160 /// \a N with \a I.
2161 #define _mm256_insert_epi64(X, I, N) \
2162 ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2163 (long long)(I), (int)(N)))
2164 #endif
2165
2166 /* Conversion */
2167 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2168 ///
2169 /// \headerfile <x86intrin.h>
2170 ///
2171 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2172 ///
2173 /// \param __a
2174 /// A 128-bit integer vector of [4 x i32].
2175 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2176 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)2177 _mm256_cvtepi32_pd(__m128i __a)
2178 {
2179 return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2180 }
2181
2182 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2183 ///
2184 /// \headerfile <x86intrin.h>
2185 ///
2186 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2187 ///
2188 /// \param __a
2189 /// A 256-bit integer vector.
2190 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2191 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)2192 _mm256_cvtepi32_ps(__m256i __a)
2193 {
2194 return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2195 }
2196
2197 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2198 /// [4 x float].
2199 ///
2200 /// \headerfile <x86intrin.h>
2201 ///
2202 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2203 ///
2204 /// \param __a
2205 /// A 256-bit vector of [4 x double].
2206 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2207 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)2208 _mm256_cvtpd_ps(__m256d __a)
2209 {
2210 return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2211 }
2212
2213 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2214 ///
2215 /// If a converted value does not fit in a 32-bit integer, raises a
2216 /// floating-point invalid exception. If the exception is masked, returns
2217 /// the most negative integer.
2218 ///
2219 /// \headerfile <x86intrin.h>
2220 ///
2221 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2222 ///
2223 /// \param __a
2224 /// A 256-bit vector of [8 x float].
2225 /// \returns A 256-bit integer vector containing the converted values.
2226 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)2227 _mm256_cvtps_epi32(__m256 __a)
2228 {
2229 return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2230 }
2231
2232 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2233 /// x double].
2234 ///
2235 /// \headerfile <x86intrin.h>
2236 ///
2237 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2238 ///
2239 /// \param __a
2240 /// A 128-bit vector of [4 x float].
2241 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2242 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)2243 _mm256_cvtps_pd(__m128 __a)
2244 {
2245 return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2246 }
2247
2248 /// Converts a 256-bit vector of [4 x double] into four signed truncated
2249 /// (rounded toward zero) 32-bit integers returned in a 128-bit vector of
2250 /// [4 x i32].
2251 ///
2252 /// If a converted value does not fit in a 32-bit integer, raises a
2253 /// floating-point invalid exception. If the exception is masked, returns
2254 /// the most negative integer.
2255 ///
2256 /// \headerfile <x86intrin.h>
2257 ///
2258 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2259 ///
2260 /// \param __a
2261 /// A 256-bit vector of [4 x double].
2262 /// \returns A 128-bit integer vector containing the converted values.
2263 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)2264 _mm256_cvttpd_epi32(__m256d __a)
2265 {
2266 return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2267 }
2268
2269 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2270 /// [4 x i32].
2271 ///
2272 /// If a converted value does not fit in a 32-bit integer, raises a
2273 /// floating-point invalid exception. If the exception is masked, returns
2274 /// the most negative integer.
2275 ///
2276 /// \headerfile <x86intrin.h>
2277 ///
2278 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2279 ///
2280 /// \param __a
2281 /// A 256-bit vector of [4 x double].
2282 /// \returns A 128-bit integer vector containing the converted values.
2283 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)2284 _mm256_cvtpd_epi32(__m256d __a)
2285 {
2286 return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2287 }
2288
2289 /// Converts a vector of [8 x float] into eight signed truncated (rounded
2290 /// toward zero) 32-bit integers returned in a vector of [8 x i32].
2291 ///
2292 /// If a converted value does not fit in a 32-bit integer, raises a
2293 /// floating-point invalid exception. If the exception is masked, returns
2294 /// the most negative integer.
2295 ///
2296 /// \headerfile <x86intrin.h>
2297 ///
2298 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2299 ///
2300 /// \param __a
2301 /// A 256-bit vector of [8 x float].
2302 /// \returns A 256-bit integer vector containing the converted values.
2303 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)2304 _mm256_cvttps_epi32(__m256 __a)
2305 {
2306 return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2307 }
2308
2309 /// Returns the first element of the input vector of [4 x double].
2310 ///
2311 /// \headerfile <x86intrin.h>
2312 ///
2313 /// This intrinsic is a utility function and does not correspond to a specific
2314 /// instruction.
2315 ///
2316 /// \param __a
2317 /// A 256-bit vector of [4 x double].
2318 /// \returns A 64 bit double containing the first element of the input vector.
2319 static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)2320 _mm256_cvtsd_f64(__m256d __a)
2321 {
2322 return __a[0];
2323 }
2324
2325 /// Returns the first element of the input vector of [8 x i32].
2326 ///
2327 /// \headerfile <x86intrin.h>
2328 ///
2329 /// This intrinsic is a utility function and does not correspond to a specific
2330 /// instruction.
2331 ///
2332 /// \param __a
2333 /// A 256-bit vector of [8 x i32].
2334 /// \returns A 32 bit integer containing the first element of the input vector.
2335 static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)2336 _mm256_cvtsi256_si32(__m256i __a)
2337 {
2338 __v8si __b = (__v8si)__a;
2339 return __b[0];
2340 }
2341
2342 /// Returns the first element of the input vector of [8 x float].
2343 ///
2344 /// \headerfile <x86intrin.h>
2345 ///
2346 /// This intrinsic is a utility function and does not correspond to a specific
2347 /// instruction.
2348 ///
2349 /// \param __a
2350 /// A 256-bit vector of [8 x float].
2351 /// \returns A 32 bit float containing the first element of the input vector.
2352 static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)2353 _mm256_cvtss_f32(__m256 __a)
2354 {
2355 return __a[0];
2356 }
2357
2358 /* Vector replicate */
2359 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2360 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2361 ///
2362 /// \headerfile <x86intrin.h>
2363 ///
2364 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2365 ///
2366 /// \param __a
2367 /// A 256-bit vector of [8 x float]. \n
2368 /// Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2369 /// the return value. \n
2370 /// Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2371 /// the return value. \n
2372 /// Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2373 /// return value. \n
2374 /// Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2375 /// return value.
2376 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2377 /// values.
2378 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)2379 _mm256_movehdup_ps(__m256 __a)
2380 {
2381 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2382 }
2383
2384 /// Moves and duplicates even-indexed values from a 256-bit vector of
2385 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2386 ///
2387 /// \headerfile <x86intrin.h>
2388 ///
2389 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2390 ///
2391 /// \param __a
2392 /// A 256-bit vector of [8 x float]. \n
2393 /// Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2394 /// the return value. \n
2395 /// Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2396 /// the return value. \n
2397 /// Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2398 /// return value. \n
2399 /// Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2400 /// return value.
2401 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2402 /// values.
2403 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)2404 _mm256_moveldup_ps(__m256 __a)
2405 {
2406 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2407 }
2408
2409 /// Moves and duplicates double-precision floating point values from a
2410 /// 256-bit vector of [4 x double] to double-precision values in a 256-bit
2411 /// vector of [4 x double].
2412 ///
2413 /// \headerfile <x86intrin.h>
2414 ///
2415 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2416 ///
2417 /// \param __a
2418 /// A 256-bit vector of [4 x double]. \n
2419 /// Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2420 /// return value. \n
2421 /// Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2422 /// the return value.
2423 /// \returns A 256-bit vector of [4 x double] containing the moved and
2424 /// duplicated values.
2425 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)2426 _mm256_movedup_pd(__m256d __a)
2427 {
2428 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2429 }
2430
2431 /* Unpack and Interleave */
2432 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2433 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2434 ///
2435 /// \headerfile <x86intrin.h>
2436 ///
2437 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2438 ///
2439 /// \param __a
2440 /// A 256-bit floating-point vector of [4 x double]. \n
2441 /// Bits [127:64] are written to bits [63:0] of the return value. \n
2442 /// Bits [255:192] are written to bits [191:128] of the return value. \n
2443 /// \param __b
2444 /// A 256-bit floating-point vector of [4 x double]. \n
2445 /// Bits [127:64] are written to bits [127:64] of the return value. \n
2446 /// Bits [255:192] are written to bits [255:192] of the return value. \n
2447 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2448 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)2449 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2450 {
2451 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2452 }
2453
2454 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2455 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2456 ///
2457 /// \headerfile <x86intrin.h>
2458 ///
2459 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2460 ///
2461 /// \param __a
2462 /// A 256-bit floating-point vector of [4 x double]. \n
2463 /// Bits [63:0] are written to bits [63:0] of the return value. \n
2464 /// Bits [191:128] are written to bits [191:128] of the return value.
2465 /// \param __b
2466 /// A 256-bit floating-point vector of [4 x double]. \n
2467 /// Bits [63:0] are written to bits [127:64] of the return value. \n
2468 /// Bits [191:128] are written to bits [255:192] of the return value. \n
2469 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2470 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)2471 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2472 {
2473 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2474 }
2475
2476 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2477 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2478 /// vector of [8 x float].
2479 ///
2480 /// \headerfile <x86intrin.h>
2481 ///
2482 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2483 ///
2484 /// \param __a
2485 /// A 256-bit vector of [8 x float]. \n
2486 /// Bits [95:64] are written to bits [31:0] of the return value. \n
2487 /// Bits [127:96] are written to bits [95:64] of the return value. \n
2488 /// Bits [223:192] are written to bits [159:128] of the return value. \n
2489 /// Bits [255:224] are written to bits [223:192] of the return value.
2490 /// \param __b
2491 /// A 256-bit vector of [8 x float]. \n
2492 /// Bits [95:64] are written to bits [63:32] of the return value. \n
2493 /// Bits [127:96] are written to bits [127:96] of the return value. \n
2494 /// Bits [223:192] are written to bits [191:160] of the return value. \n
2495 /// Bits [255:224] are written to bits [255:224] of the return value.
2496 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2497 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)2498 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2499 {
2500 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2501 }
2502
2503 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2504 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2505 /// vector of [8 x float].
2506 ///
2507 /// \headerfile <x86intrin.h>
2508 ///
2509 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2510 ///
2511 /// \param __a
2512 /// A 256-bit vector of [8 x float]. \n
2513 /// Bits [31:0] are written to bits [31:0] of the return value. \n
2514 /// Bits [63:32] are written to bits [95:64] of the return value. \n
2515 /// Bits [159:128] are written to bits [159:128] of the return value. \n
2516 /// Bits [191:160] are written to bits [223:192] of the return value.
2517 /// \param __b
2518 /// A 256-bit vector of [8 x float]. \n
2519 /// Bits [31:0] are written to bits [63:32] of the return value. \n
2520 /// Bits [63:32] are written to bits [127:96] of the return value. \n
2521 /// Bits [159:128] are written to bits [191:160] of the return value. \n
2522 /// Bits [191:160] are written to bits [255:224] of the return value.
2523 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2524 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)2525 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2526 {
2527 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2528 }
2529
2530 /* Bit Test */
2531 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2532 /// element-by-element comparison of the double-precision element in the
2533 /// first source vector and the corresponding element in the second source
2534 /// vector.
2535 ///
2536 /// The EFLAGS register is updated as follows: \n
2537 /// If there is at least one pair of double-precision elements where the
2538 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2539 /// ZF flag is set to 1. \n
2540 /// If there is at least one pair of double-precision elements where the
2541 /// sign-bit of the first element is 0 and the sign-bit of the second element
2542 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2543 /// This intrinsic returns the value of the ZF flag.
2544 ///
2545 /// \headerfile <x86intrin.h>
2546 ///
2547 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2548 ///
2549 /// \param __a
2550 /// A 128-bit vector of [2 x double].
2551 /// \param __b
2552 /// A 128-bit vector of [2 x double].
2553 /// \returns the ZF flag in the EFLAGS register.
2554 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_pd(__m128d __a,__m128d __b)2555 _mm_testz_pd(__m128d __a, __m128d __b)
2556 {
2557 return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2558 }
2559
2560 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2561 /// element-by-element comparison of the double-precision element in the
2562 /// first source vector and the corresponding element in the second source
2563 /// vector.
2564 ///
2565 /// The EFLAGS register is updated as follows: \n
2566 /// If there is at least one pair of double-precision elements where the
2567 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2568 /// ZF flag is set to 1. \n
2569 /// If there is at least one pair of double-precision elements where the
2570 /// sign-bit of the first element is 0 and the sign-bit of the second element
2571 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2572 /// This intrinsic returns the value of the CF flag.
2573 ///
2574 /// \headerfile <x86intrin.h>
2575 ///
2576 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2577 ///
2578 /// \param __a
2579 /// A 128-bit vector of [2 x double].
2580 /// \param __b
2581 /// A 128-bit vector of [2 x double].
2582 /// \returns the CF flag in the EFLAGS register.
2583 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_pd(__m128d __a,__m128d __b)2584 _mm_testc_pd(__m128d __a, __m128d __b)
2585 {
2586 return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2587 }
2588
2589 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2590 /// element-by-element comparison of the double-precision element in the
2591 /// first source vector and the corresponding element in the second source
2592 /// vector.
2593 ///
2594 /// The EFLAGS register is updated as follows: \n
2595 /// If there is at least one pair of double-precision elements where the
2596 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2597 /// ZF flag is set to 1. \n
2598 /// If there is at least one pair of double-precision elements where the
2599 /// sign-bit of the first element is 0 and the sign-bit of the second element
2600 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2601 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2602 /// otherwise it returns 0.
2603 ///
2604 /// \headerfile <x86intrin.h>
2605 ///
2606 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2607 ///
2608 /// \param __a
2609 /// A 128-bit vector of [2 x double].
2610 /// \param __b
2611 /// A 128-bit vector of [2 x double].
2612 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2613 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_pd(__m128d __a,__m128d __b)2614 _mm_testnzc_pd(__m128d __a, __m128d __b)
2615 {
2616 return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2617 }
2618
2619 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2620 /// element-by-element comparison of the single-precision element in the
2621 /// first source vector and the corresponding element in the second source
2622 /// vector.
2623 ///
2624 /// The EFLAGS register is updated as follows: \n
2625 /// If there is at least one pair of single-precision elements where the
2626 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2627 /// ZF flag is set to 1. \n
2628 /// If there is at least one pair of single-precision elements where the
2629 /// sign-bit of the first element is 0 and the sign-bit of the second element
2630 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2631 /// This intrinsic returns the value of the ZF flag.
2632 ///
2633 /// \headerfile <x86intrin.h>
2634 ///
2635 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2636 ///
2637 /// \param __a
2638 /// A 128-bit vector of [4 x float].
2639 /// \param __b
2640 /// A 128-bit vector of [4 x float].
2641 /// \returns the ZF flag.
2642 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_ps(__m128 __a,__m128 __b)2643 _mm_testz_ps(__m128 __a, __m128 __b)
2644 {
2645 return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2646 }
2647
2648 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2649 /// element-by-element comparison of the single-precision element in the
2650 /// first source vector and the corresponding element in the second source
2651 /// vector.
2652 ///
2653 /// The EFLAGS register is updated as follows: \n
2654 /// If there is at least one pair of single-precision elements where the
2655 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2656 /// ZF flag is set to 1. \n
2657 /// If there is at least one pair of single-precision elements where the
2658 /// sign-bit of the first element is 0 and the sign-bit of the second element
2659 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2660 /// This intrinsic returns the value of the CF flag.
2661 ///
2662 /// \headerfile <x86intrin.h>
2663 ///
2664 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2665 ///
2666 /// \param __a
2667 /// A 128-bit vector of [4 x float].
2668 /// \param __b
2669 /// A 128-bit vector of [4 x float].
2670 /// \returns the CF flag.
2671 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_ps(__m128 __a,__m128 __b)2672 _mm_testc_ps(__m128 __a, __m128 __b)
2673 {
2674 return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2675 }
2676
2677 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2678 /// element-by-element comparison of the single-precision element in the
2679 /// first source vector and the corresponding element in the second source
2680 /// vector.
2681 ///
2682 /// The EFLAGS register is updated as follows: \n
2683 /// If there is at least one pair of single-precision elements where the
2684 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2685 /// ZF flag is set to 1. \n
2686 /// If there is at least one pair of single-precision elements where the
2687 /// sign-bit of the first element is 0 and the sign-bit of the second element
2688 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2689 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2690 /// otherwise it returns 0.
2691 ///
2692 /// \headerfile <x86intrin.h>
2693 ///
2694 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2695 ///
2696 /// \param __a
2697 /// A 128-bit vector of [4 x float].
2698 /// \param __b
2699 /// A 128-bit vector of [4 x float].
2700 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2701 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_ps(__m128 __a,__m128 __b)2702 _mm_testnzc_ps(__m128 __a, __m128 __b)
2703 {
2704 return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2705 }
2706
2707 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2708 /// element-by-element comparison of the double-precision elements in the
2709 /// first source vector and the corresponding elements in the second source
2710 /// vector.
2711 ///
2712 /// The EFLAGS register is updated as follows: \n
2713 /// If there is at least one pair of double-precision elements where the
2714 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2715 /// ZF flag is set to 1. \n
2716 /// If there is at least one pair of double-precision elements where the
2717 /// sign-bit of the first element is 0 and the sign-bit of the second element
2718 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2719 /// This intrinsic returns the value of the ZF flag.
2720 ///
2721 /// \headerfile <x86intrin.h>
2722 ///
2723 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2724 ///
2725 /// \param __a
2726 /// A 256-bit vector of [4 x double].
2727 /// \param __b
2728 /// A 256-bit vector of [4 x double].
2729 /// \returns the ZF flag.
2730 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)2731 _mm256_testz_pd(__m256d __a, __m256d __b)
2732 {
2733 return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2734 }
2735
2736 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2737 /// element-by-element comparison of the double-precision elements in the
2738 /// first source vector and the corresponding elements in the second source
2739 /// vector.
2740 ///
2741 /// The EFLAGS register is updated as follows: \n
2742 /// If there is at least one pair of double-precision elements where the
2743 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2744 /// ZF flag is set to 1. \n
2745 /// If there is at least one pair of double-precision elements where the
2746 /// sign-bit of the first element is 0 and the sign-bit of the second element
2747 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2748 /// This intrinsic returns the value of the CF flag.
2749 ///
2750 /// \headerfile <x86intrin.h>
2751 ///
2752 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2753 ///
2754 /// \param __a
2755 /// A 256-bit vector of [4 x double].
2756 /// \param __b
2757 /// A 256-bit vector of [4 x double].
2758 /// \returns the CF flag.
2759 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)2760 _mm256_testc_pd(__m256d __a, __m256d __b)
2761 {
2762 return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2763 }
2764
2765 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2766 /// element-by-element comparison of the double-precision elements in the
2767 /// first source vector and the corresponding elements in the second source
2768 /// vector.
2769 ///
2770 /// The EFLAGS register is updated as follows: \n
2771 /// If there is at least one pair of double-precision elements where the
2772 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2773 /// ZF flag is set to 1. \n
2774 /// If there is at least one pair of double-precision elements where the
2775 /// sign-bit of the first element is 0 and the sign-bit of the second element
2776 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2777 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2778 /// otherwise it returns 0.
2779 ///
2780 /// \headerfile <x86intrin.h>
2781 ///
2782 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2783 ///
2784 /// \param __a
2785 /// A 256-bit vector of [4 x double].
2786 /// \param __b
2787 /// A 256-bit vector of [4 x double].
2788 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2789 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)2790 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2791 {
2792 return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2793 }
2794
2795 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2796 /// element-by-element comparison of the single-precision element in the
2797 /// first source vector and the corresponding element in the second source
2798 /// vector.
2799 ///
2800 /// The EFLAGS register is updated as follows: \n
2801 /// If there is at least one pair of single-precision elements where the
2802 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2803 /// ZF flag is set to 1. \n
2804 /// If there is at least one pair of single-precision elements where the
2805 /// sign-bit of the first element is 0 and the sign-bit of the second element
2806 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2807 /// This intrinsic returns the value of the ZF flag.
2808 ///
2809 /// \headerfile <x86intrin.h>
2810 ///
2811 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2812 ///
2813 /// \param __a
2814 /// A 256-bit vector of [8 x float].
2815 /// \param __b
2816 /// A 256-bit vector of [8 x float].
2817 /// \returns the ZF flag.
2818 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)2819 _mm256_testz_ps(__m256 __a, __m256 __b)
2820 {
2821 return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2822 }
2823
2824 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2825 /// element-by-element comparison of the single-precision element in the
2826 /// first source vector and the corresponding element in the second source
2827 /// vector.
2828 ///
2829 /// The EFLAGS register is updated as follows: \n
2830 /// If there is at least one pair of single-precision elements where the
2831 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2832 /// ZF flag is set to 1. \n
2833 /// If there is at least one pair of single-precision elements where the
2834 /// sign-bit of the first element is 0 and the sign-bit of the second element
2835 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2836 /// This intrinsic returns the value of the CF flag.
2837 ///
2838 /// \headerfile <x86intrin.h>
2839 ///
2840 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2841 ///
2842 /// \param __a
2843 /// A 256-bit vector of [8 x float].
2844 /// \param __b
2845 /// A 256-bit vector of [8 x float].
2846 /// \returns the CF flag.
2847 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)2848 _mm256_testc_ps(__m256 __a, __m256 __b)
2849 {
2850 return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2851 }
2852
2853 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2854 /// element-by-element comparison of the single-precision elements in the
2855 /// first source vector and the corresponding elements in the second source
2856 /// vector.
2857 ///
2858 /// The EFLAGS register is updated as follows: \n
2859 /// If there is at least one pair of single-precision elements where the
2860 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2861 /// ZF flag is set to 1. \n
2862 /// If there is at least one pair of single-precision elements where the
2863 /// sign-bit of the first element is 0 and the sign-bit of the second element
2864 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2865 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2866 /// otherwise it returns 0.
2867 ///
2868 /// \headerfile <x86intrin.h>
2869 ///
2870 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2871 ///
2872 /// \param __a
2873 /// A 256-bit vector of [8 x float].
2874 /// \param __b
2875 /// A 256-bit vector of [8 x float].
2876 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2877 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)2878 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2879 {
2880 return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2881 }
2882
2883 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2884 /// of the two source vectors.
2885 ///
2886 /// The EFLAGS register is updated as follows: \n
2887 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2888 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2889 /// If there is at least one pair of bits where the bit from the first source
2890 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2891 /// is set to 0. Otherwise the CF flag is set to 1. \n
2892 /// This intrinsic returns the value of the ZF flag.
2893 ///
2894 /// \headerfile <x86intrin.h>
2895 ///
2896 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2897 ///
2898 /// \param __a
2899 /// A 256-bit integer vector.
2900 /// \param __b
2901 /// A 256-bit integer vector.
2902 /// \returns the ZF flag.
2903 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)2904 _mm256_testz_si256(__m256i __a, __m256i __b)
2905 {
2906 return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2907 }
2908
2909 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2910 /// of the two source vectors.
2911 ///
2912 /// The EFLAGS register is updated as follows: \n
2913 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2914 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2915 /// If there is at least one pair of bits where the bit from the first source
2916 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2917 /// is set to 0. Otherwise the CF flag is set to 1. \n
2918 /// This intrinsic returns the value of the CF flag.
2919 ///
2920 /// \headerfile <x86intrin.h>
2921 ///
2922 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2923 ///
2924 /// \param __a
2925 /// A 256-bit integer vector.
2926 /// \param __b
2927 /// A 256-bit integer vector.
2928 /// \returns the CF flag.
2929 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)2930 _mm256_testc_si256(__m256i __a, __m256i __b)
2931 {
2932 return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2933 }
2934
2935 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2936 /// of the two source vectors.
2937 ///
2938 /// The EFLAGS register is updated as follows: \n
2939 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2940 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2941 /// If there is at least one pair of bits where the bit from the first source
2942 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2943 /// is set to 0. Otherwise the CF flag is set to 1. \n
2944 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2945 /// otherwise it returns 0.
2946 ///
2947 /// \headerfile <x86intrin.h>
2948 ///
2949 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2950 ///
2951 /// \param __a
2952 /// A 256-bit integer vector.
2953 /// \param __b
2954 /// A 256-bit integer vector.
2955 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2956 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)2957 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2958 {
2959 return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2960 }
2961
2962 /* Vector extract sign mask */
2963 /// Extracts the sign bits of double-precision floating point elements
2964 /// in a 256-bit vector of [4 x double] and writes them to the lower order
2965 /// bits of the return value.
2966 ///
2967 /// \headerfile <x86intrin.h>
2968 ///
2969 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2970 ///
2971 /// \param __a
2972 /// A 256-bit vector of [4 x double] containing the double-precision
2973 /// floating point values with sign bits to be extracted.
2974 /// \returns The sign bits from the operand, written to bits [3:0].
2975 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)2976 _mm256_movemask_pd(__m256d __a)
2977 {
2978 return __builtin_ia32_movmskpd256((__v4df)__a);
2979 }
2980
2981 /// Extracts the sign bits of single-precision floating point elements
2982 /// in a 256-bit vector of [8 x float] and writes them to the lower order
2983 /// bits of the return value.
2984 ///
2985 /// \headerfile <x86intrin.h>
2986 ///
2987 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2988 ///
2989 /// \param __a
2990 /// A 256-bit vector of [8 x float] containing the single-precision floating
2991 /// point values with sign bits to be extracted.
2992 /// \returns The sign bits from the operand, written to bits [7:0].
2993 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)2994 _mm256_movemask_ps(__m256 __a)
2995 {
2996 return __builtin_ia32_movmskps256((__v8sf)__a);
2997 }
2998
2999 /* Vector __zero */
3000 /// Zeroes the contents of all XMM or YMM registers.
3001 ///
3002 /// \headerfile <x86intrin.h>
3003 ///
3004 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
3005 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroall(void)3006 _mm256_zeroall(void)
3007 {
3008 __builtin_ia32_vzeroall();
3009 }
3010
3011 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
3012 ///
3013 /// \headerfile <x86intrin.h>
3014 ///
3015 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
3016 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroupper(void)3017 _mm256_zeroupper(void)
3018 {
3019 __builtin_ia32_vzeroupper();
3020 }
3021
3022 /* Vector load with broadcast */
3023 /// Loads a scalar single-precision floating point value from the
3024 /// specified address pointed to by \a __a and broadcasts it to the elements
3025 /// of a [4 x float] vector.
3026 ///
3027 /// \headerfile <x86intrin.h>
3028 ///
3029 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3030 ///
3031 /// \param __a
3032 /// The single-precision floating point value to be broadcast.
3033 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3034 /// equal to the broadcast value.
3035 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_broadcast_ss(float const * __a)3036 _mm_broadcast_ss(float const *__a)
3037 {
3038 struct __mm_broadcast_ss_struct {
3039 float __f;
3040 } __attribute__((__packed__, __may_alias__));
3041 float __f = ((const struct __mm_broadcast_ss_struct*)__a)->__f;
3042 return __extension__ (__m128){ __f, __f, __f, __f };
3043 }
3044
3045 /// Loads a scalar double-precision floating point value from the
3046 /// specified address pointed to by \a __a and broadcasts it to the elements
3047 /// of a [4 x double] vector.
3048 ///
3049 /// \headerfile <x86intrin.h>
3050 ///
3051 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3052 ///
3053 /// \param __a
3054 /// The double-precision floating point value to be broadcast.
3055 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3056 /// equal to the broadcast value.
3057 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)3058 _mm256_broadcast_sd(double const *__a)
3059 {
3060 struct __mm256_broadcast_sd_struct {
3061 double __d;
3062 } __attribute__((__packed__, __may_alias__));
3063 double __d = ((const struct __mm256_broadcast_sd_struct*)__a)->__d;
3064 return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3065 }
3066
3067 /// Loads a scalar single-precision floating point value from the
3068 /// specified address pointed to by \a __a and broadcasts it to the elements
3069 /// of a [8 x float] vector.
3070 ///
3071 /// \headerfile <x86intrin.h>
3072 ///
3073 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3074 ///
3075 /// \param __a
3076 /// The single-precision floating point value to be broadcast.
3077 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3078 /// equal to the broadcast value.
3079 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)3080 _mm256_broadcast_ss(float const *__a)
3081 {
3082 struct __mm256_broadcast_ss_struct {
3083 float __f;
3084 } __attribute__((__packed__, __may_alias__));
3085 float __f = ((const struct __mm256_broadcast_ss_struct*)__a)->__f;
3086 return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3087 }
3088
3089 /// Loads the data from a 128-bit vector of [2 x double] from the
3090 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3091 /// elements in a 256-bit vector of [4 x double].
3092 ///
3093 /// \headerfile <x86intrin.h>
3094 ///
3095 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3096 ///
3097 /// \param __a
3098 /// The 128-bit vector of [2 x double] to be broadcast.
3099 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3100 /// equal to the broadcast value.
3101 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)3102 _mm256_broadcast_pd(__m128d const *__a)
3103 {
3104 __m128d __b = _mm_loadu_pd((const double *)__a);
3105 return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3106 0, 1, 0, 1);
3107 }
3108
3109 /// Loads the data from a 128-bit vector of [4 x float] from the
3110 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3111 /// elements in a 256-bit vector of [8 x float].
3112 ///
3113 /// \headerfile <x86intrin.h>
3114 ///
3115 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3116 ///
3117 /// \param __a
3118 /// The 128-bit vector of [4 x float] to be broadcast.
3119 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3120 /// equal to the broadcast value.
3121 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)3122 _mm256_broadcast_ps(__m128 const *__a)
3123 {
3124 __m128 __b = _mm_loadu_ps((const float *)__a);
3125 return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3126 0, 1, 2, 3, 0, 1, 2, 3);
3127 }
3128
3129 /* SIMD load ops */
3130 /// Loads 4 double-precision floating point values from a 32-byte aligned
3131 /// memory location pointed to by \a __p into a vector of [4 x double].
3132 ///
3133 /// \headerfile <x86intrin.h>
3134 ///
3135 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3136 ///
3137 /// \param __p
3138 /// A 32-byte aligned pointer to a memory location containing
3139 /// double-precision floating point values.
3140 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3141 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)3142 _mm256_load_pd(double const *__p)
3143 {
3144 return *(const __m256d *)__p;
3145 }
3146
3147 /// Loads 8 single-precision floating point values from a 32-byte aligned
3148 /// memory location pointed to by \a __p into a vector of [8 x float].
3149 ///
3150 /// \headerfile <x86intrin.h>
3151 ///
3152 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3153 ///
3154 /// \param __p
3155 /// A 32-byte aligned pointer to a memory location containing float values.
3156 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3157 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)3158 _mm256_load_ps(float const *__p)
3159 {
3160 return *(const __m256 *)__p;
3161 }
3162
3163 /// Loads 4 double-precision floating point values from an unaligned
3164 /// memory location pointed to by \a __p into a vector of [4 x double].
3165 ///
3166 /// \headerfile <x86intrin.h>
3167 ///
3168 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3169 ///
3170 /// \param __p
3171 /// A pointer to a memory location containing double-precision floating
3172 /// point values.
3173 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3174 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)3175 _mm256_loadu_pd(double const *__p)
3176 {
3177 struct __loadu_pd {
3178 __m256d_u __v;
3179 } __attribute__((__packed__, __may_alias__));
3180 return ((const struct __loadu_pd*)__p)->__v;
3181 }
3182
3183 /// Loads 8 single-precision floating point values from an unaligned
3184 /// memory location pointed to by \a __p into a vector of [8 x float].
3185 ///
3186 /// \headerfile <x86intrin.h>
3187 ///
3188 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3189 ///
3190 /// \param __p
3191 /// A pointer to a memory location containing single-precision floating
3192 /// point values.
3193 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3194 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)3195 _mm256_loadu_ps(float const *__p)
3196 {
3197 struct __loadu_ps {
3198 __m256_u __v;
3199 } __attribute__((__packed__, __may_alias__));
3200 return ((const struct __loadu_ps*)__p)->__v;
3201 }
3202
3203 /// Loads 256 bits of integer data from a 32-byte aligned memory
3204 /// location pointed to by \a __p into elements of a 256-bit integer vector.
3205 ///
3206 /// \headerfile <x86intrin.h>
3207 ///
3208 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3209 ///
3210 /// \param __p
3211 /// A 32-byte aligned pointer to a 256-bit integer vector containing integer
3212 /// values.
3213 /// \returns A 256-bit integer vector containing the moved values.
3214 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)3215 _mm256_load_si256(__m256i const *__p)
3216 {
3217 return *__p;
3218 }
3219
3220 /// Loads 256 bits of integer data from an unaligned memory location
3221 /// pointed to by \a __p into a 256-bit integer vector.
3222 ///
3223 /// \headerfile <x86intrin.h>
3224 ///
3225 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3226 ///
3227 /// \param __p
3228 /// A pointer to a 256-bit integer vector containing integer values.
3229 /// \returns A 256-bit integer vector containing the moved values.
3230 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i_u const * __p)3231 _mm256_loadu_si256(__m256i_u const *__p)
3232 {
3233 struct __loadu_si256 {
3234 __m256i_u __v;
3235 } __attribute__((__packed__, __may_alias__));
3236 return ((const struct __loadu_si256*)__p)->__v;
3237 }
3238
3239 /// Loads 256 bits of integer data from an unaligned memory location
3240 /// pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3241 /// perform better than \c _mm256_loadu_si256 when the data crosses a cache
3242 /// line boundary.
3243 ///
3244 /// \headerfile <x86intrin.h>
3245 ///
3246 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3247 ///
3248 /// \param __p
3249 /// A pointer to a 256-bit integer vector containing integer values.
3250 /// \returns A 256-bit integer vector containing the moved values.
3251 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i_u const * __p)3252 _mm256_lddqu_si256(__m256i_u const *__p)
3253 {
3254 return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3255 }
3256
3257 /* SIMD store ops */
3258 /// Stores double-precision floating point values from a 256-bit vector
3259 /// of [4 x double] to a 32-byte aligned memory location pointed to by
3260 /// \a __p.
3261 ///
3262 /// \headerfile <x86intrin.h>
3263 ///
3264 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3265 ///
3266 /// \param __p
3267 /// A 32-byte aligned pointer to a memory location that will receive the
3268 /// double-precision floaing point values.
3269 /// \param __a
3270 /// A 256-bit vector of [4 x double] containing the values to be moved.
3271 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)3272 _mm256_store_pd(double *__p, __m256d __a)
3273 {
3274 *(__m256d *)__p = __a;
3275 }
3276
3277 /// Stores single-precision floating point values from a 256-bit vector
3278 /// of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3279 ///
3280 /// \headerfile <x86intrin.h>
3281 ///
3282 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3283 ///
3284 /// \param __p
3285 /// A 32-byte aligned pointer to a memory location that will receive the
3286 /// float values.
3287 /// \param __a
3288 /// A 256-bit vector of [8 x float] containing the values to be moved.
3289 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)3290 _mm256_store_ps(float *__p, __m256 __a)
3291 {
3292 *(__m256 *)__p = __a;
3293 }
3294
3295 /// Stores double-precision floating point values from a 256-bit vector
3296 /// of [4 x double] to an unaligned memory location pointed to by \a __p.
3297 ///
3298 /// \headerfile <x86intrin.h>
3299 ///
3300 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3301 ///
3302 /// \param __p
3303 /// A pointer to a memory location that will receive the double-precision
3304 /// floating point values.
3305 /// \param __a
3306 /// A 256-bit vector of [4 x double] containing the values to be moved.
3307 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)3308 _mm256_storeu_pd(double *__p, __m256d __a)
3309 {
3310 struct __storeu_pd {
3311 __m256d_u __v;
3312 } __attribute__((__packed__, __may_alias__));
3313 ((struct __storeu_pd*)__p)->__v = __a;
3314 }
3315
3316 /// Stores single-precision floating point values from a 256-bit vector
3317 /// of [8 x float] to an unaligned memory location pointed to by \a __p.
3318 ///
3319 /// \headerfile <x86intrin.h>
3320 ///
3321 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3322 ///
3323 /// \param __p
3324 /// A pointer to a memory location that will receive the float values.
3325 /// \param __a
3326 /// A 256-bit vector of [8 x float] containing the values to be moved.
3327 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)3328 _mm256_storeu_ps(float *__p, __m256 __a)
3329 {
3330 struct __storeu_ps {
3331 __m256_u __v;
3332 } __attribute__((__packed__, __may_alias__));
3333 ((struct __storeu_ps*)__p)->__v = __a;
3334 }
3335
3336 /// Stores integer values from a 256-bit integer vector to a 32-byte
3337 /// aligned memory location pointed to by \a __p.
3338 ///
3339 /// \headerfile <x86intrin.h>
3340 ///
3341 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3342 ///
3343 /// \param __p
3344 /// A 32-byte aligned pointer to a memory location that will receive the
3345 /// integer values.
3346 /// \param __a
3347 /// A 256-bit integer vector containing the values to be moved.
3348 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)3349 _mm256_store_si256(__m256i *__p, __m256i __a)
3350 {
3351 *__p = __a;
3352 }
3353
3354 /// Stores integer values from a 256-bit integer vector to an unaligned
3355 /// memory location pointed to by \a __p.
3356 ///
3357 /// \headerfile <x86intrin.h>
3358 ///
3359 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3360 ///
3361 /// \param __p
3362 /// A pointer to a memory location that will receive the integer values.
3363 /// \param __a
3364 /// A 256-bit integer vector containing the values to be moved.
3365 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i_u * __p,__m256i __a)3366 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3367 {
3368 struct __storeu_si256 {
3369 __m256i_u __v;
3370 } __attribute__((__packed__, __may_alias__));
3371 ((struct __storeu_si256*)__p)->__v = __a;
3372 }
3373
3374 /* Conditional load ops */
3375 /// Conditionally loads double-precision floating point elements from a
3376 /// memory location pointed to by \a __p into a 128-bit vector of
3377 /// [2 x double], depending on the mask bits associated with each data
3378 /// element.
3379 ///
3380 /// \headerfile <x86intrin.h>
3381 ///
3382 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3383 ///
3384 /// \param __p
3385 /// A pointer to a memory location that contains the double-precision
3386 /// floating point values.
3387 /// \param __m
3388 /// A 128-bit integer vector containing the mask. The most significant bit of
3389 /// each data element represents the mask bits. If a mask bit is zero, the
3390 /// corresponding value in the memory location is not loaded and the
3391 /// corresponding field in the return value is set to zero.
3392 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3393 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_maskload_pd(double const * __p,__m128i __m)3394 _mm_maskload_pd(double const *__p, __m128i __m)
3395 {
3396 return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3397 }
3398
3399 /// Conditionally loads double-precision floating point elements from a
3400 /// memory location pointed to by \a __p into a 256-bit vector of
3401 /// [4 x double], depending on the mask bits associated with each data
3402 /// element.
3403 ///
3404 /// \headerfile <x86intrin.h>
3405 ///
3406 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3407 ///
3408 /// \param __p
3409 /// A pointer to a memory location that contains the double-precision
3410 /// floating point values.
3411 /// \param __m
3412 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3413 /// significant bit of each quadword element represents the mask bits. If a
3414 /// mask bit is zero, the corresponding value in the memory location is not
3415 /// loaded and the corresponding field in the return value is set to zero.
3416 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3417 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)3418 _mm256_maskload_pd(double const *__p, __m256i __m)
3419 {
3420 return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3421 (__v4di)__m);
3422 }
3423
3424 /// Conditionally loads single-precision floating point elements from a
3425 /// memory location pointed to by \a __p into a 128-bit vector of
3426 /// [4 x float], depending on the mask bits associated with each data
3427 /// element.
3428 ///
3429 /// \headerfile <x86intrin.h>
3430 ///
3431 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3432 ///
3433 /// \param __p
3434 /// A pointer to a memory location that contains the single-precision
3435 /// floating point values.
3436 /// \param __m
3437 /// A 128-bit integer vector containing the mask. The most significant bit of
3438 /// each data element represents the mask bits. If a mask bit is zero, the
3439 /// corresponding value in the memory location is not loaded and the
3440 /// corresponding field in the return value is set to zero.
3441 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3442 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_maskload_ps(float const * __p,__m128i __m)3443 _mm_maskload_ps(float const *__p, __m128i __m)
3444 {
3445 return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3446 }
3447
3448 /// Conditionally loads single-precision floating point elements from a
3449 /// memory location pointed to by \a __p into a 256-bit vector of
3450 /// [8 x float], depending on the mask bits associated with each data
3451 /// element.
3452 ///
3453 /// \headerfile <x86intrin.h>
3454 ///
3455 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3456 ///
3457 /// \param __p
3458 /// A pointer to a memory location that contains the single-precision
3459 /// floating point values.
3460 /// \param __m
3461 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3462 /// significant bit of each dword element represents the mask bits. If a mask
3463 /// bit is zero, the corresponding value in the memory location is not loaded
3464 /// and the corresponding field in the return value is set to zero.
3465 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3466 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)3467 _mm256_maskload_ps(float const *__p, __m256i __m)
3468 {
3469 return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3470 }
3471
3472 /* Conditional store ops */
3473 /// Moves single-precision floating point values from a 256-bit vector
3474 /// of [8 x float] to a memory location pointed to by \a __p, according to
3475 /// the specified mask.
3476 ///
3477 /// \headerfile <x86intrin.h>
3478 ///
3479 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3480 ///
3481 /// \param __p
3482 /// A pointer to a memory location that will receive the float values.
3483 /// \param __m
3484 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3485 /// significant bit of each dword element in the mask vector represents the
3486 /// mask bits. If a mask bit is zero, the corresponding value from vector
3487 /// \a __a is not stored and the corresponding field in the memory location
3488 /// pointed to by \a __p is not changed.
3489 /// \param __a
3490 /// A 256-bit vector of [8 x float] containing the values to be stored.
3491 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)3492 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3493 {
3494 __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3495 }
3496
3497 /// Moves double-precision values from a 128-bit vector of [2 x double]
3498 /// to a memory location pointed to by \a __p, according to the specified
3499 /// mask.
3500 ///
3501 /// \headerfile <x86intrin.h>
3502 ///
3503 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3504 ///
3505 /// \param __p
3506 /// A pointer to a memory location that will receive the float values.
3507 /// \param __m
3508 /// A 128-bit integer vector containing the mask. The most significant bit of
3509 /// each field in the mask vector represents the mask bits. If a mask bit is
3510 /// zero, the corresponding value from vector \a __a is not stored and the
3511 /// corresponding field in the memory location pointed to by \a __p is not
3512 /// changed.
3513 /// \param __a
3514 /// A 128-bit vector of [2 x double] containing the values to be stored.
3515 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)3516 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3517 {
3518 __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3519 }
3520
3521 /// Moves double-precision values from a 256-bit vector of [4 x double]
3522 /// to a memory location pointed to by \a __p, according to the specified
3523 /// mask.
3524 ///
3525 /// \headerfile <x86intrin.h>
3526 ///
3527 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3528 ///
3529 /// \param __p
3530 /// A pointer to a memory location that will receive the float values.
3531 /// \param __m
3532 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3533 /// significant bit of each quadword element in the mask vector represents
3534 /// the mask bits. If a mask bit is zero, the corresponding value from vector
3535 /// __a is not stored and the corresponding field in the memory location
3536 /// pointed to by \a __p is not changed.
3537 /// \param __a
3538 /// A 256-bit vector of [4 x double] containing the values to be stored.
3539 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)3540 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3541 {
3542 __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3543 }
3544
3545 /// Moves single-precision floating point values from a 128-bit vector
3546 /// of [4 x float] to a memory location pointed to by \a __p, according to
3547 /// the specified mask.
3548 ///
3549 /// \headerfile <x86intrin.h>
3550 ///
3551 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3552 ///
3553 /// \param __p
3554 /// A pointer to a memory location that will receive the float values.
3555 /// \param __m
3556 /// A 128-bit integer vector containing the mask. The most significant bit of
3557 /// each field in the mask vector represents the mask bits. If a mask bit is
3558 /// zero, the corresponding value from vector __a is not stored and the
3559 /// corresponding field in the memory location pointed to by \a __p is not
3560 /// changed.
3561 /// \param __a
3562 /// A 128-bit vector of [4 x float] containing the values to be stored.
3563 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)3564 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3565 {
3566 __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3567 }
3568
3569 /* Cacheability support ops */
3570 /// Moves integer data from a 256-bit integer vector to a 32-byte
3571 /// aligned memory location. To minimize caching, the data is flagged as
3572 /// non-temporal (unlikely to be used again soon).
3573 ///
3574 /// \headerfile <x86intrin.h>
3575 ///
3576 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3577 ///
3578 /// \param __a
3579 /// A pointer to a 32-byte aligned memory location that will receive the
3580 /// integer values.
3581 /// \param __b
3582 /// A 256-bit integer vector containing the values to be moved.
3583 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(void * __a,__m256i __b)3584 _mm256_stream_si256(void *__a, __m256i __b)
3585 {
3586 typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3587 __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3588 }
3589
3590 /// Moves double-precision values from a 256-bit vector of [4 x double]
3591 /// to a 32-byte aligned memory location. To minimize caching, the data is
3592 /// flagged as non-temporal (unlikely to be used again soon).
3593 ///
3594 /// \headerfile <x86intrin.h>
3595 ///
3596 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3597 ///
3598 /// \param __a
3599 /// A pointer to a 32-byte aligned memory location that will receive the
3600 /// double-precision floating-point values.
3601 /// \param __b
3602 /// A 256-bit vector of [4 x double] containing the values to be moved.
3603 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(void * __a,__m256d __b)3604 _mm256_stream_pd(void *__a, __m256d __b)
3605 {
3606 typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3607 __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3608 }
3609
3610 /// Moves single-precision floating point values from a 256-bit vector
3611 /// of [8 x float] to a 32-byte aligned memory location. To minimize
3612 /// caching, the data is flagged as non-temporal (unlikely to be used again
3613 /// soon).
3614 ///
3615 /// \headerfile <x86intrin.h>
3616 ///
3617 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3618 ///
3619 /// \param __p
3620 /// A pointer to a 32-byte aligned memory location that will receive the
3621 /// single-precision floating point values.
3622 /// \param __a
3623 /// A 256-bit vector of [8 x float] containing the values to be moved.
3624 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(void * __p,__m256 __a)3625 _mm256_stream_ps(void *__p, __m256 __a)
3626 {
3627 typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3628 __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3629 }
3630
3631 /* Create vectors */
3632 /// Create a 256-bit vector of [4 x double] with undefined values.
3633 ///
3634 /// \headerfile <x86intrin.h>
3635 ///
3636 /// This intrinsic has no corresponding instruction.
3637 ///
3638 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3639 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)3640 _mm256_undefined_pd(void)
3641 {
3642 return (__m256d)__builtin_ia32_undef256();
3643 }
3644
3645 /// Create a 256-bit vector of [8 x float] with undefined values.
3646 ///
3647 /// \headerfile <x86intrin.h>
3648 ///
3649 /// This intrinsic has no corresponding instruction.
3650 ///
3651 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3652 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)3653 _mm256_undefined_ps(void)
3654 {
3655 return (__m256)__builtin_ia32_undef256();
3656 }
3657
3658 /// Create a 256-bit integer vector with undefined values.
3659 ///
3660 /// \headerfile <x86intrin.h>
3661 ///
3662 /// This intrinsic has no corresponding instruction.
3663 ///
3664 /// \returns A 256-bit integer vector containing undefined values.
3665 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)3666 _mm256_undefined_si256(void)
3667 {
3668 return (__m256i)__builtin_ia32_undef256();
3669 }
3670
3671 /// Constructs a 256-bit floating-point vector of [4 x double]
3672 /// initialized with the specified double-precision floating-point values.
3673 ///
3674 /// \headerfile <x86intrin.h>
3675 ///
3676 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3677 /// instruction.
3678 ///
3679 /// \param __a
3680 /// A double-precision floating-point value used to initialize bits [255:192]
3681 /// of the result.
3682 /// \param __b
3683 /// A double-precision floating-point value used to initialize bits [191:128]
3684 /// of the result.
3685 /// \param __c
3686 /// A double-precision floating-point value used to initialize bits [127:64]
3687 /// of the result.
3688 /// \param __d
3689 /// A double-precision floating-point value used to initialize bits [63:0]
3690 /// of the result.
3691 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3692 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)3693 _mm256_set_pd(double __a, double __b, double __c, double __d)
3694 {
3695 return __extension__ (__m256d){ __d, __c, __b, __a };
3696 }
3697
3698 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3699 /// with the specified single-precision floating-point values.
3700 ///
3701 /// \headerfile <x86intrin.h>
3702 ///
3703 /// This intrinsic is a utility function and does not correspond to a specific
3704 /// instruction.
3705 ///
3706 /// \param __a
3707 /// A single-precision floating-point value used to initialize bits [255:224]
3708 /// of the result.
3709 /// \param __b
3710 /// A single-precision floating-point value used to initialize bits [223:192]
3711 /// of the result.
3712 /// \param __c
3713 /// A single-precision floating-point value used to initialize bits [191:160]
3714 /// of the result.
3715 /// \param __d
3716 /// A single-precision floating-point value used to initialize bits [159:128]
3717 /// of the result.
3718 /// \param __e
3719 /// A single-precision floating-point value used to initialize bits [127:96]
3720 /// of the result.
3721 /// \param __f
3722 /// A single-precision floating-point value used to initialize bits [95:64]
3723 /// of the result.
3724 /// \param __g
3725 /// A single-precision floating-point value used to initialize bits [63:32]
3726 /// of the result.
3727 /// \param __h
3728 /// A single-precision floating-point value used to initialize bits [31:0]
3729 /// of the result.
3730 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3731 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)3732 _mm256_set_ps(float __a, float __b, float __c, float __d,
3733 float __e, float __f, float __g, float __h)
3734 {
3735 return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3736 }
3737
3738 /// Constructs a 256-bit integer vector initialized with the specified
3739 /// 32-bit integral values.
3740 ///
3741 /// \headerfile <x86intrin.h>
3742 ///
3743 /// This intrinsic is a utility function and does not correspond to a specific
3744 /// instruction.
3745 ///
3746 /// \param __i0
3747 /// A 32-bit integral value used to initialize bits [255:224] of the result.
3748 /// \param __i1
3749 /// A 32-bit integral value used to initialize bits [223:192] of the result.
3750 /// \param __i2
3751 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3752 /// \param __i3
3753 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3754 /// \param __i4
3755 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3756 /// \param __i5
3757 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3758 /// \param __i6
3759 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3760 /// \param __i7
3761 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3762 /// \returns An initialized 256-bit integer vector.
3763 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)3764 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3765 int __i4, int __i5, int __i6, int __i7)
3766 {
3767 return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3768 }
3769
3770 /// Constructs a 256-bit integer vector initialized with the specified
3771 /// 16-bit integral values.
3772 ///
3773 /// \headerfile <x86intrin.h>
3774 ///
3775 /// This intrinsic is a utility function and does not correspond to a specific
3776 /// instruction.
3777 ///
3778 /// \param __w15
3779 /// A 16-bit integral value used to initialize bits [255:240] of the result.
3780 /// \param __w14
3781 /// A 16-bit integral value used to initialize bits [239:224] of the result.
3782 /// \param __w13
3783 /// A 16-bit integral value used to initialize bits [223:208] of the result.
3784 /// \param __w12
3785 /// A 16-bit integral value used to initialize bits [207:192] of the result.
3786 /// \param __w11
3787 /// A 16-bit integral value used to initialize bits [191:176] of the result.
3788 /// \param __w10
3789 /// A 16-bit integral value used to initialize bits [175:160] of the result.
3790 /// \param __w09
3791 /// A 16-bit integral value used to initialize bits [159:144] of the result.
3792 /// \param __w08
3793 /// A 16-bit integral value used to initialize bits [143:128] of the result.
3794 /// \param __w07
3795 /// A 16-bit integral value used to initialize bits [127:112] of the result.
3796 /// \param __w06
3797 /// A 16-bit integral value used to initialize bits [111:96] of the result.
3798 /// \param __w05
3799 /// A 16-bit integral value used to initialize bits [95:80] of the result.
3800 /// \param __w04
3801 /// A 16-bit integral value used to initialize bits [79:64] of the result.
3802 /// \param __w03
3803 /// A 16-bit integral value used to initialize bits [63:48] of the result.
3804 /// \param __w02
3805 /// A 16-bit integral value used to initialize bits [47:32] of the result.
3806 /// \param __w01
3807 /// A 16-bit integral value used to initialize bits [31:16] of the result.
3808 /// \param __w00
3809 /// A 16-bit integral value used to initialize bits [15:0] of the result.
3810 /// \returns An initialized 256-bit integer vector.
3811 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)3812 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3813 short __w11, short __w10, short __w09, short __w08,
3814 short __w07, short __w06, short __w05, short __w04,
3815 short __w03, short __w02, short __w01, short __w00)
3816 {
3817 return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3818 __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3819 }
3820
3821 /// Constructs a 256-bit integer vector initialized with the specified
3822 /// 8-bit integral values.
3823 ///
3824 /// \headerfile <x86intrin.h>
3825 ///
3826 /// This intrinsic is a utility function and does not correspond to a specific
3827 /// instruction.
3828 ///
3829 /// \param __b31
3830 /// An 8-bit integral value used to initialize bits [255:248] of the result.
3831 /// \param __b30
3832 /// An 8-bit integral value used to initialize bits [247:240] of the result.
3833 /// \param __b29
3834 /// An 8-bit integral value used to initialize bits [239:232] of the result.
3835 /// \param __b28
3836 /// An 8-bit integral value used to initialize bits [231:224] of the result.
3837 /// \param __b27
3838 /// An 8-bit integral value used to initialize bits [223:216] of the result.
3839 /// \param __b26
3840 /// An 8-bit integral value used to initialize bits [215:208] of the result.
3841 /// \param __b25
3842 /// An 8-bit integral value used to initialize bits [207:200] of the result.
3843 /// \param __b24
3844 /// An 8-bit integral value used to initialize bits [199:192] of the result.
3845 /// \param __b23
3846 /// An 8-bit integral value used to initialize bits [191:184] of the result.
3847 /// \param __b22
3848 /// An 8-bit integral value used to initialize bits [183:176] of the result.
3849 /// \param __b21
3850 /// An 8-bit integral value used to initialize bits [175:168] of the result.
3851 /// \param __b20
3852 /// An 8-bit integral value used to initialize bits [167:160] of the result.
3853 /// \param __b19
3854 /// An 8-bit integral value used to initialize bits [159:152] of the result.
3855 /// \param __b18
3856 /// An 8-bit integral value used to initialize bits [151:144] of the result.
3857 /// \param __b17
3858 /// An 8-bit integral value used to initialize bits [143:136] of the result.
3859 /// \param __b16
3860 /// An 8-bit integral value used to initialize bits [135:128] of the result.
3861 /// \param __b15
3862 /// An 8-bit integral value used to initialize bits [127:120] of the result.
3863 /// \param __b14
3864 /// An 8-bit integral value used to initialize bits [119:112] of the result.
3865 /// \param __b13
3866 /// An 8-bit integral value used to initialize bits [111:104] of the result.
3867 /// \param __b12
3868 /// An 8-bit integral value used to initialize bits [103:96] of the result.
3869 /// \param __b11
3870 /// An 8-bit integral value used to initialize bits [95:88] of the result.
3871 /// \param __b10
3872 /// An 8-bit integral value used to initialize bits [87:80] of the result.
3873 /// \param __b09
3874 /// An 8-bit integral value used to initialize bits [79:72] of the result.
3875 /// \param __b08
3876 /// An 8-bit integral value used to initialize bits [71:64] of the result.
3877 /// \param __b07
3878 /// An 8-bit integral value used to initialize bits [63:56] of the result.
3879 /// \param __b06
3880 /// An 8-bit integral value used to initialize bits [55:48] of the result.
3881 /// \param __b05
3882 /// An 8-bit integral value used to initialize bits [47:40] of the result.
3883 /// \param __b04
3884 /// An 8-bit integral value used to initialize bits [39:32] of the result.
3885 /// \param __b03
3886 /// An 8-bit integral value used to initialize bits [31:24] of the result.
3887 /// \param __b02
3888 /// An 8-bit integral value used to initialize bits [23:16] of the result.
3889 /// \param __b01
3890 /// An 8-bit integral value used to initialize bits [15:8] of the result.
3891 /// \param __b00
3892 /// An 8-bit integral value used to initialize bits [7:0] of the result.
3893 /// \returns An initialized 256-bit integer vector.
3894 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)3895 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3896 char __b27, char __b26, char __b25, char __b24,
3897 char __b23, char __b22, char __b21, char __b20,
3898 char __b19, char __b18, char __b17, char __b16,
3899 char __b15, char __b14, char __b13, char __b12,
3900 char __b11, char __b10, char __b09, char __b08,
3901 char __b07, char __b06, char __b05, char __b04,
3902 char __b03, char __b02, char __b01, char __b00)
3903 {
3904 return __extension__ (__m256i)(__v32qi){
3905 __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3906 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3907 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3908 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3909 };
3910 }
3911
3912 /// Constructs a 256-bit integer vector initialized with the specified
3913 /// 64-bit integral values.
3914 ///
3915 /// \headerfile <x86intrin.h>
3916 ///
3917 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3918 /// instruction.
3919 ///
3920 /// \param __a
3921 /// A 64-bit integral value used to initialize bits [255:192] of the result.
3922 /// \param __b
3923 /// A 64-bit integral value used to initialize bits [191:128] of the result.
3924 /// \param __c
3925 /// A 64-bit integral value used to initialize bits [127:64] of the result.
3926 /// \param __d
3927 /// A 64-bit integral value used to initialize bits [63:0] of the result.
3928 /// \returns An initialized 256-bit integer vector.
3929 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)3930 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3931 {
3932 return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3933 }
3934
3935 /* Create vectors with elements in reverse order */
3936 /// Constructs a 256-bit floating-point vector of [4 x double],
3937 /// initialized in reverse order with the specified double-precision
3938 /// floating-point values.
3939 ///
3940 /// \headerfile <x86intrin.h>
3941 ///
3942 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3943 /// instruction.
3944 ///
3945 /// \param __a
3946 /// A double-precision floating-point value used to initialize bits [63:0]
3947 /// of the result.
3948 /// \param __b
3949 /// A double-precision floating-point value used to initialize bits [127:64]
3950 /// of the result.
3951 /// \param __c
3952 /// A double-precision floating-point value used to initialize bits [191:128]
3953 /// of the result.
3954 /// \param __d
3955 /// A double-precision floating-point value used to initialize bits [255:192]
3956 /// of the result.
3957 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3958 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)3959 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3960 {
3961 return _mm256_set_pd(__d, __c, __b, __a);
3962 }
3963
3964 /// Constructs a 256-bit floating-point vector of [8 x float],
3965 /// initialized in reverse order with the specified single-precision
3966 /// float-point values.
3967 ///
3968 /// \headerfile <x86intrin.h>
3969 ///
3970 /// This intrinsic is a utility function and does not correspond to a specific
3971 /// instruction.
3972 ///
3973 /// \param __a
3974 /// A single-precision floating-point value used to initialize bits [31:0]
3975 /// of the result.
3976 /// \param __b
3977 /// A single-precision floating-point value used to initialize bits [63:32]
3978 /// of the result.
3979 /// \param __c
3980 /// A single-precision floating-point value used to initialize bits [95:64]
3981 /// of the result.
3982 /// \param __d
3983 /// A single-precision floating-point value used to initialize bits [127:96]
3984 /// of the result.
3985 /// \param __e
3986 /// A single-precision floating-point value used to initialize bits [159:128]
3987 /// of the result.
3988 /// \param __f
3989 /// A single-precision floating-point value used to initialize bits [191:160]
3990 /// of the result.
3991 /// \param __g
3992 /// A single-precision floating-point value used to initialize bits [223:192]
3993 /// of the result.
3994 /// \param __h
3995 /// A single-precision floating-point value used to initialize bits [255:224]
3996 /// of the result.
3997 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3998 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)3999 _mm256_setr_ps(float __a, float __b, float __c, float __d,
4000 float __e, float __f, float __g, float __h)
4001 {
4002 return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
4003 }
4004
4005 /// Constructs a 256-bit integer vector, initialized in reverse order
4006 /// with the specified 32-bit integral values.
4007 ///
4008 /// \headerfile <x86intrin.h>
4009 ///
4010 /// This intrinsic is a utility function and does not correspond to a specific
4011 /// instruction.
4012 ///
4013 /// \param __i0
4014 /// A 32-bit integral value used to initialize bits [31:0] of the result.
4015 /// \param __i1
4016 /// A 32-bit integral value used to initialize bits [63:32] of the result.
4017 /// \param __i2
4018 /// A 32-bit integral value used to initialize bits [95:64] of the result.
4019 /// \param __i3
4020 /// A 32-bit integral value used to initialize bits [127:96] of the result.
4021 /// \param __i4
4022 /// A 32-bit integral value used to initialize bits [159:128] of the result.
4023 /// \param __i5
4024 /// A 32-bit integral value used to initialize bits [191:160] of the result.
4025 /// \param __i6
4026 /// A 32-bit integral value used to initialize bits [223:192] of the result.
4027 /// \param __i7
4028 /// A 32-bit integral value used to initialize bits [255:224] of the result.
4029 /// \returns An initialized 256-bit integer vector.
4030 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)4031 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4032 int __i4, int __i5, int __i6, int __i7)
4033 {
4034 return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4035 }
4036
4037 /// Constructs a 256-bit integer vector, initialized in reverse order
4038 /// with the specified 16-bit integral values.
4039 ///
4040 /// \headerfile <x86intrin.h>
4041 ///
4042 /// This intrinsic is a utility function and does not correspond to a specific
4043 /// instruction.
4044 ///
4045 /// \param __w15
4046 /// A 16-bit integral value used to initialize bits [15:0] of the result.
4047 /// \param __w14
4048 /// A 16-bit integral value used to initialize bits [31:16] of the result.
4049 /// \param __w13
4050 /// A 16-bit integral value used to initialize bits [47:32] of the result.
4051 /// \param __w12
4052 /// A 16-bit integral value used to initialize bits [63:48] of the result.
4053 /// \param __w11
4054 /// A 16-bit integral value used to initialize bits [79:64] of the result.
4055 /// \param __w10
4056 /// A 16-bit integral value used to initialize bits [95:80] of the result.
4057 /// \param __w09
4058 /// A 16-bit integral value used to initialize bits [111:96] of the result.
4059 /// \param __w08
4060 /// A 16-bit integral value used to initialize bits [127:112] of the result.
4061 /// \param __w07
4062 /// A 16-bit integral value used to initialize bits [143:128] of the result.
4063 /// \param __w06
4064 /// A 16-bit integral value used to initialize bits [159:144] of the result.
4065 /// \param __w05
4066 /// A 16-bit integral value used to initialize bits [175:160] of the result.
4067 /// \param __w04
4068 /// A 16-bit integral value used to initialize bits [191:176] of the result.
4069 /// \param __w03
4070 /// A 16-bit integral value used to initialize bits [207:192] of the result.
4071 /// \param __w02
4072 /// A 16-bit integral value used to initialize bits [223:208] of the result.
4073 /// \param __w01
4074 /// A 16-bit integral value used to initialize bits [239:224] of the result.
4075 /// \param __w00
4076 /// A 16-bit integral value used to initialize bits [255:240] of the result.
4077 /// \returns An initialized 256-bit integer vector.
4078 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)4079 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4080 short __w11, short __w10, short __w09, short __w08,
4081 short __w07, short __w06, short __w05, short __w04,
4082 short __w03, short __w02, short __w01, short __w00)
4083 {
4084 return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4085 __w04, __w05, __w06, __w07,
4086 __w08, __w09, __w10, __w11,
4087 __w12, __w13, __w14, __w15);
4088 }
4089
4090 /// Constructs a 256-bit integer vector, initialized in reverse order
4091 /// with the specified 8-bit integral values.
4092 ///
4093 /// \headerfile <x86intrin.h>
4094 ///
4095 /// This intrinsic is a utility function and does not correspond to a specific
4096 /// instruction.
4097 ///
4098 /// \param __b31
4099 /// An 8-bit integral value used to initialize bits [7:0] of the result.
4100 /// \param __b30
4101 /// An 8-bit integral value used to initialize bits [15:8] of the result.
4102 /// \param __b29
4103 /// An 8-bit integral value used to initialize bits [23:16] of the result.
4104 /// \param __b28
4105 /// An 8-bit integral value used to initialize bits [31:24] of the result.
4106 /// \param __b27
4107 /// An 8-bit integral value used to initialize bits [39:32] of the result.
4108 /// \param __b26
4109 /// An 8-bit integral value used to initialize bits [47:40] of the result.
4110 /// \param __b25
4111 /// An 8-bit integral value used to initialize bits [55:48] of the result.
4112 /// \param __b24
4113 /// An 8-bit integral value used to initialize bits [63:56] of the result.
4114 /// \param __b23
4115 /// An 8-bit integral value used to initialize bits [71:64] of the result.
4116 /// \param __b22
4117 /// An 8-bit integral value used to initialize bits [79:72] of the result.
4118 /// \param __b21
4119 /// An 8-bit integral value used to initialize bits [87:80] of the result.
4120 /// \param __b20
4121 /// An 8-bit integral value used to initialize bits [95:88] of the result.
4122 /// \param __b19
4123 /// An 8-bit integral value used to initialize bits [103:96] of the result.
4124 /// \param __b18
4125 /// An 8-bit integral value used to initialize bits [111:104] of the result.
4126 /// \param __b17
4127 /// An 8-bit integral value used to initialize bits [119:112] of the result.
4128 /// \param __b16
4129 /// An 8-bit integral value used to initialize bits [127:120] of the result.
4130 /// \param __b15
4131 /// An 8-bit integral value used to initialize bits [135:128] of the result.
4132 /// \param __b14
4133 /// An 8-bit integral value used to initialize bits [143:136] of the result.
4134 /// \param __b13
4135 /// An 8-bit integral value used to initialize bits [151:144] of the result.
4136 /// \param __b12
4137 /// An 8-bit integral value used to initialize bits [159:152] of the result.
4138 /// \param __b11
4139 /// An 8-bit integral value used to initialize bits [167:160] of the result.
4140 /// \param __b10
4141 /// An 8-bit integral value used to initialize bits [175:168] of the result.
4142 /// \param __b09
4143 /// An 8-bit integral value used to initialize bits [183:176] of the result.
4144 /// \param __b08
4145 /// An 8-bit integral value used to initialize bits [191:184] of the result.
4146 /// \param __b07
4147 /// An 8-bit integral value used to initialize bits [199:192] of the result.
4148 /// \param __b06
4149 /// An 8-bit integral value used to initialize bits [207:200] of the result.
4150 /// \param __b05
4151 /// An 8-bit integral value used to initialize bits [215:208] of the result.
4152 /// \param __b04
4153 /// An 8-bit integral value used to initialize bits [223:216] of the result.
4154 /// \param __b03
4155 /// An 8-bit integral value used to initialize bits [231:224] of the result.
4156 /// \param __b02
4157 /// An 8-bit integral value used to initialize bits [239:232] of the result.
4158 /// \param __b01
4159 /// An 8-bit integral value used to initialize bits [247:240] of the result.
4160 /// \param __b00
4161 /// An 8-bit integral value used to initialize bits [255:248] of the result.
4162 /// \returns An initialized 256-bit integer vector.
4163 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)4164 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4165 char __b27, char __b26, char __b25, char __b24,
4166 char __b23, char __b22, char __b21, char __b20,
4167 char __b19, char __b18, char __b17, char __b16,
4168 char __b15, char __b14, char __b13, char __b12,
4169 char __b11, char __b10, char __b09, char __b08,
4170 char __b07, char __b06, char __b05, char __b04,
4171 char __b03, char __b02, char __b01, char __b00)
4172 {
4173 return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4174 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4175 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4176 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4177 }
4178
4179 /// Constructs a 256-bit integer vector, initialized in reverse order
4180 /// with the specified 64-bit integral values.
4181 ///
4182 /// \headerfile <x86intrin.h>
4183 ///
4184 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4185 /// instruction.
4186 ///
4187 /// \param __a
4188 /// A 64-bit integral value used to initialize bits [63:0] of the result.
4189 /// \param __b
4190 /// A 64-bit integral value used to initialize bits [127:64] of the result.
4191 /// \param __c
4192 /// A 64-bit integral value used to initialize bits [191:128] of the result.
4193 /// \param __d
4194 /// A 64-bit integral value used to initialize bits [255:192] of the result.
4195 /// \returns An initialized 256-bit integer vector.
4196 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)4197 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4198 {
4199 return _mm256_set_epi64x(__d, __c, __b, __a);
4200 }
4201
4202 /* Create vectors with repeated elements */
4203 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4204 /// of the four double-precision floating-point vector elements set to the
4205 /// specified double-precision floating-point value.
4206 ///
4207 /// \headerfile <x86intrin.h>
4208 ///
4209 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4210 ///
4211 /// \param __w
4212 /// A double-precision floating-point value used to initialize each vector
4213 /// element of the result.
4214 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4215 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)4216 _mm256_set1_pd(double __w)
4217 {
4218 return _mm256_set_pd(__w, __w, __w, __w);
4219 }
4220
4221 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4222 /// of the eight single-precision floating-point vector elements set to the
4223 /// specified single-precision floating-point value.
4224 ///
4225 /// \headerfile <x86intrin.h>
4226 ///
4227 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4228 /// instruction.
4229 ///
4230 /// \param __w
4231 /// A single-precision floating-point value used to initialize each vector
4232 /// element of the result.
4233 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4234 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)4235 _mm256_set1_ps(float __w)
4236 {
4237 return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4238 }
4239
4240 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4241 /// 32-bit integral vector elements set to the specified 32-bit integral
4242 /// value.
4243 ///
4244 /// \headerfile <x86intrin.h>
4245 ///
4246 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4247 /// instruction.
4248 ///
4249 /// \param __i
4250 /// A 32-bit integral value used to initialize each vector element of the
4251 /// result.
4252 /// \returns An initialized 256-bit integer vector of [8 x i32].
4253 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)4254 _mm256_set1_epi32(int __i)
4255 {
4256 return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4257 }
4258
4259 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4260 /// 16-bit integral vector elements set to the specified 16-bit integral
4261 /// value.
4262 ///
4263 /// \headerfile <x86intrin.h>
4264 ///
4265 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4266 ///
4267 /// \param __w
4268 /// A 16-bit integral value used to initialize each vector element of the
4269 /// result.
4270 /// \returns An initialized 256-bit integer vector of [16 x i16].
4271 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)4272 _mm256_set1_epi16(short __w)
4273 {
4274 return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4275 __w, __w, __w, __w, __w, __w, __w, __w);
4276 }
4277
4278 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4279 /// 8-bit integral vector elements set to the specified 8-bit integral value.
4280 ///
4281 /// \headerfile <x86intrin.h>
4282 ///
4283 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4284 ///
4285 /// \param __b
4286 /// An 8-bit integral value used to initialize each vector element of the
4287 /// result.
4288 /// \returns An initialized 256-bit integer vector of [32 x i8].
4289 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)4290 _mm256_set1_epi8(char __b)
4291 {
4292 return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4293 __b, __b, __b, __b, __b, __b, __b, __b,
4294 __b, __b, __b, __b, __b, __b, __b, __b,
4295 __b, __b, __b, __b, __b, __b, __b, __b);
4296 }
4297
4298 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4299 /// 64-bit integral vector elements set to the specified 64-bit integral
4300 /// value.
4301 ///
4302 /// \headerfile <x86intrin.h>
4303 ///
4304 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4305 ///
4306 /// \param __q
4307 /// A 64-bit integral value used to initialize each vector element of the
4308 /// result.
4309 /// \returns An initialized 256-bit integer vector of [4 x i64].
4310 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)4311 _mm256_set1_epi64x(long long __q)
4312 {
4313 return _mm256_set_epi64x(__q, __q, __q, __q);
4314 }
4315
4316 /* Create __zeroed vectors */
4317 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4318 /// vector elements initialized to zero.
4319 ///
4320 /// \headerfile <x86intrin.h>
4321 ///
4322 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4323 ///
4324 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4325 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)4326 _mm256_setzero_pd(void)
4327 {
4328 return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 };
4329 }
4330
4331 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4332 /// vector elements initialized to zero.
4333 ///
4334 /// \headerfile <x86intrin.h>
4335 ///
4336 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4337 ///
4338 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4339 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)4340 _mm256_setzero_ps(void)
4341 {
4342 return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4343 }
4344
4345 /// Constructs a 256-bit integer vector initialized to zero.
4346 ///
4347 /// \headerfile <x86intrin.h>
4348 ///
4349 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4350 ///
4351 /// \returns A 256-bit integer vector initialized to zero.
4352 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)4353 _mm256_setzero_si256(void)
4354 {
4355 return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4356 }
4357
4358 /* Cast between vector types */
4359 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4360 /// floating-point vector of [8 x float].
4361 ///
4362 /// \headerfile <x86intrin.h>
4363 ///
4364 /// This intrinsic has no corresponding instruction.
4365 ///
4366 /// \param __a
4367 /// A 256-bit floating-point vector of [4 x double].
4368 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4369 /// bitwise pattern as the parameter.
4370 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)4371 _mm256_castpd_ps(__m256d __a)
4372 {
4373 return (__m256)__a;
4374 }
4375
4376 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4377 /// integer vector.
4378 ///
4379 /// \headerfile <x86intrin.h>
4380 ///
4381 /// This intrinsic has no corresponding instruction.
4382 ///
4383 /// \param __a
4384 /// A 256-bit floating-point vector of [4 x double].
4385 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4386 /// parameter.
4387 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)4388 _mm256_castpd_si256(__m256d __a)
4389 {
4390 return (__m256i)__a;
4391 }
4392
4393 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4394 /// floating-point vector of [4 x double].
4395 ///
4396 /// \headerfile <x86intrin.h>
4397 ///
4398 /// This intrinsic has no corresponding instruction.
4399 ///
4400 /// \param __a
4401 /// A 256-bit floating-point vector of [8 x float].
4402 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4403 /// bitwise pattern as the parameter.
4404 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)4405 _mm256_castps_pd(__m256 __a)
4406 {
4407 return (__m256d)__a;
4408 }
4409
4410 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4411 /// integer vector.
4412 ///
4413 /// \headerfile <x86intrin.h>
4414 ///
4415 /// This intrinsic has no corresponding instruction.
4416 ///
4417 /// \param __a
4418 /// A 256-bit floating-point vector of [8 x float].
4419 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4420 /// parameter.
4421 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)4422 _mm256_castps_si256(__m256 __a)
4423 {
4424 return (__m256i)__a;
4425 }
4426
4427 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4428 /// of [8 x float].
4429 ///
4430 /// \headerfile <x86intrin.h>
4431 ///
4432 /// This intrinsic has no corresponding instruction.
4433 ///
4434 /// \param __a
4435 /// A 256-bit integer vector.
4436 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4437 /// bitwise pattern as the parameter.
4438 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)4439 _mm256_castsi256_ps(__m256i __a)
4440 {
4441 return (__m256)__a;
4442 }
4443
4444 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4445 /// of [4 x double].
4446 ///
4447 /// \headerfile <x86intrin.h>
4448 ///
4449 /// This intrinsic has no corresponding instruction.
4450 ///
4451 /// \param __a
4452 /// A 256-bit integer vector.
4453 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4454 /// bitwise pattern as the parameter.
4455 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)4456 _mm256_castsi256_pd(__m256i __a)
4457 {
4458 return (__m256d)__a;
4459 }
4460
4461 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4462 /// [4 x double] as a 128-bit floating-point vector of [2 x double].
4463 ///
4464 /// \headerfile <x86intrin.h>
4465 ///
4466 /// This intrinsic has no corresponding instruction.
4467 ///
4468 /// \param __a
4469 /// A 256-bit floating-point vector of [4 x double].
4470 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4471 /// lower 128 bits of the parameter.
4472 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)4473 _mm256_castpd256_pd128(__m256d __a)
4474 {
4475 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4476 }
4477
4478 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4479 /// [8 x float] as a 128-bit floating-point vector of [4 x float].
4480 ///
4481 /// \headerfile <x86intrin.h>
4482 ///
4483 /// This intrinsic has no corresponding instruction.
4484 ///
4485 /// \param __a
4486 /// A 256-bit floating-point vector of [8 x float].
4487 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4488 /// lower 128 bits of the parameter.
4489 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)4490 _mm256_castps256_ps128(__m256 __a)
4491 {
4492 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4493 }
4494
4495 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4496 ///
4497 /// \headerfile <x86intrin.h>
4498 ///
4499 /// This intrinsic has no corresponding instruction.
4500 ///
4501 /// \param __a
4502 /// A 256-bit integer vector.
4503 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4504 /// parameter.
4505 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)4506 _mm256_castsi256_si128(__m256i __a)
4507 {
4508 return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4509 }
4510
4511 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4512 /// 128-bit floating-point vector of [2 x double].
4513 ///
4514 /// The lower 128 bits contain the value of the source vector. The contents
4515 /// of the upper 128 bits are undefined.
4516 ///
4517 /// \headerfile <x86intrin.h>
4518 ///
4519 /// This intrinsic has no corresponding instruction.
4520 ///
4521 /// \param __a
4522 /// A 128-bit vector of [2 x double].
4523 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4524 /// contain the value of the parameter. The contents of the upper 128 bits
4525 /// are undefined.
4526 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)4527 _mm256_castpd128_pd256(__m128d __a)
4528 {
4529 return __builtin_shufflevector(
4530 (__v2df)__a, (__v2df)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4531 }
4532
4533 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4534 /// 128-bit floating-point vector of [4 x float].
4535 ///
4536 /// The lower 128 bits contain the value of the source vector. The contents
4537 /// of the upper 128 bits are undefined.
4538 ///
4539 /// \headerfile <x86intrin.h>
4540 ///
4541 /// This intrinsic has no corresponding instruction.
4542 ///
4543 /// \param __a
4544 /// A 128-bit vector of [4 x float].
4545 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4546 /// contain the value of the parameter. The contents of the upper 128 bits
4547 /// are undefined.
4548 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)4549 _mm256_castps128_ps256(__m128 __a)
4550 {
4551 return __builtin_shufflevector((__v4sf)__a,
4552 (__v4sf)__builtin_nondeterministic_value(__a),
4553 0, 1, 2, 3, 4, 5, 6, 7);
4554 }
4555
4556 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4557 ///
4558 /// The lower 128 bits contain the value of the source vector. The contents
4559 /// of the upper 128 bits are undefined.
4560 ///
4561 /// \headerfile <x86intrin.h>
4562 ///
4563 /// This intrinsic has no corresponding instruction.
4564 ///
4565 /// \param __a
4566 /// A 128-bit integer vector.
4567 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4568 /// the parameter. The contents of the upper 128 bits are undefined.
4569 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)4570 _mm256_castsi128_si256(__m128i __a)
4571 {
4572 return __builtin_shufflevector(
4573 (__v2di)__a, (__v2di)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4574 }
4575
4576 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4577 /// 128-bit floating-point vector of [2 x double]. The lower 128 bits
4578 /// contain the value of the source vector. The upper 128 bits are set
4579 /// to zero.
4580 ///
4581 /// \headerfile <x86intrin.h>
4582 ///
4583 /// This intrinsic has no corresponding instruction.
4584 ///
4585 /// \param __a
4586 /// A 128-bit vector of [2 x double].
4587 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4588 /// contain the value of the parameter. The upper 128 bits are set to zero.
4589 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_zextpd128_pd256(__m128d __a)4590 _mm256_zextpd128_pd256(__m128d __a)
4591 {
4592 return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4593 }
4594
4595 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4596 /// 128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4597 /// the value of the source vector. The upper 128 bits are set to zero.
4598 ///
4599 /// \headerfile <x86intrin.h>
4600 ///
4601 /// This intrinsic has no corresponding instruction.
4602 ///
4603 /// \param __a
4604 /// A 128-bit vector of [4 x float].
4605 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4606 /// contain the value of the parameter. The upper 128 bits are set to zero.
4607 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_zextps128_ps256(__m128 __a)4608 _mm256_zextps128_ps256(__m128 __a)
4609 {
4610 return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4611 }
4612
4613 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4614 /// The lower 128 bits contain the value of the source vector. The upper
4615 /// 128 bits are set to zero.
4616 ///
4617 /// \headerfile <x86intrin.h>
4618 ///
4619 /// This intrinsic has no corresponding instruction.
4620 ///
4621 /// \param __a
4622 /// A 128-bit integer vector.
4623 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4624 /// the parameter. The upper 128 bits are set to zero.
4625 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_zextsi128_si256(__m128i __a)4626 _mm256_zextsi128_si256(__m128i __a)
4627 {
4628 return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4629 }
4630
4631 /*
4632 Vector insert.
4633 We use macros rather than inlines because we only want to accept
4634 invocations where the immediate M is a constant expression.
4635 */
4636 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4637 /// a 256-bit vector of [8 x float] given in the first parameter, and then
4638 /// replacing either the upper or the lower 128 bits with the contents of a
4639 /// 128-bit vector of [4 x float] in the second parameter.
4640 ///
4641 /// The immediate integer parameter determines between the upper or the lower
4642 /// 128 bits.
4643 ///
4644 /// \headerfile <x86intrin.h>
4645 ///
4646 /// \code
4647 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4648 /// \endcode
4649 ///
4650 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4651 ///
4652 /// \param V1
4653 /// A 256-bit vector of [8 x float]. This vector is copied to the result
4654 /// first, and then either the upper or the lower 128 bits of the result will
4655 /// be replaced by the contents of \a V2.
4656 /// \param V2
4657 /// A 128-bit vector of [4 x float]. The contents of this parameter are
4658 /// written to either the upper or the lower 128 bits of the result depending
4659 /// on the value of parameter \a M.
4660 /// \param M
4661 /// An immediate integer. The least significant bit determines how the values
4662 /// from the two parameters are interleaved: \n
4663 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4664 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4665 /// result. \n
4666 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4667 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4668 /// result.
4669 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4670 #define _mm256_insertf128_ps(V1, V2, M) \
4671 ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4672 (__v4sf)(__m128)(V2), (int)(M)))
4673
4674 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4675 /// a 256-bit vector of [4 x double] given in the first parameter, and then
4676 /// replacing either the upper or the lower 128 bits with the contents of a
4677 /// 128-bit vector of [2 x double] in the second parameter.
4678 ///
4679 /// The immediate integer parameter determines between the upper or the lower
4680 /// 128 bits.
4681 ///
4682 /// \headerfile <x86intrin.h>
4683 ///
4684 /// \code
4685 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4686 /// \endcode
4687 ///
4688 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4689 ///
4690 /// \param V1
4691 /// A 256-bit vector of [4 x double]. This vector is copied to the result
4692 /// first, and then either the upper or the lower 128 bits of the result will
4693 /// be replaced by the contents of \a V2.
4694 /// \param V2
4695 /// A 128-bit vector of [2 x double]. The contents of this parameter are
4696 /// written to either the upper or the lower 128 bits of the result depending
4697 /// on the value of parameter \a M.
4698 /// \param M
4699 /// An immediate integer. The least significant bit determines how the values
4700 /// from the two parameters are interleaved: \n
4701 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4702 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4703 /// result. \n
4704 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4705 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4706 /// result.
4707 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4708 #define _mm256_insertf128_pd(V1, V2, M) \
4709 ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4710 (__v2df)(__m128d)(V2), (int)(M)))
4711
4712 /// Constructs a new 256-bit integer vector by first duplicating a
4713 /// 256-bit integer vector given in the first parameter, and then replacing
4714 /// either the upper or the lower 128 bits with the contents of a 128-bit
4715 /// integer vector in the second parameter.
4716 ///
4717 /// The immediate integer parameter determines between the upper or the lower
4718 /// 128 bits.
4719 ///
4720 /// \headerfile <x86intrin.h>
4721 ///
4722 /// \code
4723 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4724 /// \endcode
4725 ///
4726 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4727 ///
4728 /// \param V1
4729 /// A 256-bit integer vector. This vector is copied to the result first, and
4730 /// then either the upper or the lower 128 bits of the result will be
4731 /// replaced by the contents of \a V2.
4732 /// \param V2
4733 /// A 128-bit integer vector. The contents of this parameter are written to
4734 /// either the upper or the lower 128 bits of the result depending on the
4735 /// value of parameter \a M.
4736 /// \param M
4737 /// An immediate integer. The least significant bit determines how the values
4738 /// from the two parameters are interleaved: \n
4739 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4740 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4741 /// result. \n
4742 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4743 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4744 /// result.
4745 /// \returns A 256-bit integer vector containing the interleaved values.
4746 #define _mm256_insertf128_si256(V1, V2, M) \
4747 ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4748 (__v4si)(__m128i)(V2), (int)(M)))
4749
4750 /*
4751 Vector extract.
4752 We use macros rather than inlines because we only want to accept
4753 invocations where the immediate M is a constant expression.
4754 */
4755 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4756 /// of [8 x float], as determined by the immediate integer parameter, and
4757 /// returns the extracted bits as a 128-bit vector of [4 x float].
4758 ///
4759 /// \headerfile <x86intrin.h>
4760 ///
4761 /// \code
4762 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4763 /// \endcode
4764 ///
4765 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4766 ///
4767 /// \param V
4768 /// A 256-bit vector of [8 x float].
4769 /// \param M
4770 /// An immediate integer. The least significant bit determines which bits are
4771 /// extracted from the first parameter: \n
4772 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4773 /// result. \n
4774 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4775 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4776 #define _mm256_extractf128_ps(V, M) \
4777 ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4778
4779 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4780 /// of [4 x double], as determined by the immediate integer parameter, and
4781 /// returns the extracted bits as a 128-bit vector of [2 x double].
4782 ///
4783 /// \headerfile <x86intrin.h>
4784 ///
4785 /// \code
4786 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4787 /// \endcode
4788 ///
4789 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4790 ///
4791 /// \param V
4792 /// A 256-bit vector of [4 x double].
4793 /// \param M
4794 /// An immediate integer. The least significant bit determines which bits are
4795 /// extracted from the first parameter: \n
4796 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4797 /// result. \n
4798 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4799 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4800 #define _mm256_extractf128_pd(V, M) \
4801 ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4802
4803 /// Extracts either the upper or the lower 128 bits from a 256-bit
4804 /// integer vector, as determined by the immediate integer parameter, and
4805 /// returns the extracted bits as a 128-bit integer vector.
4806 ///
4807 /// \headerfile <x86intrin.h>
4808 ///
4809 /// \code
4810 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4811 /// \endcode
4812 ///
4813 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4814 ///
4815 /// \param V
4816 /// A 256-bit integer vector.
4817 /// \param M
4818 /// An immediate integer. The least significant bit determines which bits are
4819 /// extracted from the first parameter: \n
4820 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4821 /// result. \n
4822 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4823 /// \returns A 128-bit integer vector containing the extracted bits.
4824 #define _mm256_extractf128_si256(V, M) \
4825 ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4826
4827 /// Constructs a 256-bit floating-point vector of [8 x float] by
4828 /// concatenating two 128-bit floating-point vectors of [4 x float].
4829 ///
4830 /// \headerfile <x86intrin.h>
4831 ///
4832 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4833 ///
4834 /// \param __hi
4835 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4836 /// 128 bits of the result.
4837 /// \param __lo
4838 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4839 /// 128 bits of the result.
4840 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4841 /// concatenated result.
4842 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)4843 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4844 {
4845 return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4846 }
4847
4848 /// Constructs a 256-bit floating-point vector of [4 x double] by
4849 /// concatenating two 128-bit floating-point vectors of [2 x double].
4850 ///
4851 /// \headerfile <x86intrin.h>
4852 ///
4853 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4854 ///
4855 /// \param __hi
4856 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4857 /// 128 bits of the result.
4858 /// \param __lo
4859 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4860 /// 128 bits of the result.
4861 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4862 /// concatenated result.
4863 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)4864 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4865 {
4866 return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4867 }
4868
4869 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4870 /// integer vectors.
4871 ///
4872 /// \headerfile <x86intrin.h>
4873 ///
4874 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4875 ///
4876 /// \param __hi
4877 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4878 /// result.
4879 /// \param __lo
4880 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4881 /// result.
4882 /// \returns A 256-bit integer vector containing the concatenated result.
4883 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)4884 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4885 {
4886 return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4887 }
4888
4889 /// Constructs a 256-bit floating-point vector of [8 x float] by
4890 /// concatenating two 128-bit floating-point vectors of [4 x float]. This is
4891 /// similar to _mm256_set_m128, but the order of the input parameters is
4892 /// swapped.
4893 ///
4894 /// \headerfile <x86intrin.h>
4895 ///
4896 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4897 ///
4898 /// \param __lo
4899 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4900 /// 128 bits of the result.
4901 /// \param __hi
4902 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4903 /// 128 bits of the result.
4904 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4905 /// concatenated result.
4906 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)4907 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4908 {
4909 return _mm256_set_m128(__hi, __lo);
4910 }
4911
4912 /// Constructs a 256-bit floating-point vector of [4 x double] by
4913 /// concatenating two 128-bit floating-point vectors of [2 x double]. This is
4914 /// similar to _mm256_set_m128d, but the order of the input parameters is
4915 /// swapped.
4916 ///
4917 /// \headerfile <x86intrin.h>
4918 ///
4919 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4920 ///
4921 /// \param __lo
4922 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4923 /// 128 bits of the result.
4924 /// \param __hi
4925 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4926 /// 128 bits of the result.
4927 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4928 /// concatenated result.
4929 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)4930 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4931 {
4932 return (__m256d)_mm256_set_m128d(__hi, __lo);
4933 }
4934
4935 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4936 /// integer vectors. This is similar to _mm256_set_m128i, but the order of
4937 /// the input parameters is swapped.
4938 ///
4939 /// \headerfile <x86intrin.h>
4940 ///
4941 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4942 ///
4943 /// \param __lo
4944 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4945 /// result.
4946 /// \param __hi
4947 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4948 /// result.
4949 /// \returns A 256-bit integer vector containing the concatenated result.
4950 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)4951 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4952 {
4953 return (__m256i)_mm256_set_m128i(__hi, __lo);
4954 }
4955
4956 /* SIMD load ops (unaligned) */
4957 /// Loads two 128-bit floating-point vectors of [4 x float] from
4958 /// unaligned memory locations and constructs a 256-bit floating-point vector
4959 /// of [8 x float] by concatenating the two 128-bit vectors.
4960 ///
4961 /// \headerfile <x86intrin.h>
4962 ///
4963 /// This intrinsic corresponds to load instructions followed by the
4964 /// <c> VINSERTF128 </c> instruction.
4965 ///
4966 /// \param __addr_hi
4967 /// A pointer to a 128-bit memory location containing 4 consecutive
4968 /// single-precision floating-point values. These values are to be copied to
4969 /// bits[255:128] of the result. The address of the memory location does not
4970 /// have to be aligned.
4971 /// \param __addr_lo
4972 /// A pointer to a 128-bit memory location containing 4 consecutive
4973 /// single-precision floating-point values. These values are to be copied to
4974 /// bits[127:0] of the result. The address of the memory location does not
4975 /// have to be aligned.
4976 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4977 /// concatenated result.
4978 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)4979 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4980 {
4981 return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4982 }
4983
4984 /// Loads two 128-bit floating-point vectors of [2 x double] from
4985 /// unaligned memory locations and constructs a 256-bit floating-point vector
4986 /// of [4 x double] by concatenating the two 128-bit vectors.
4987 ///
4988 /// \headerfile <x86intrin.h>
4989 ///
4990 /// This intrinsic corresponds to load instructions followed by the
4991 /// <c> VINSERTF128 </c> instruction.
4992 ///
4993 /// \param __addr_hi
4994 /// A pointer to a 128-bit memory location containing two consecutive
4995 /// double-precision floating-point values. These values are to be copied to
4996 /// bits[255:128] of the result. The address of the memory location does not
4997 /// have to be aligned.
4998 /// \param __addr_lo
4999 /// A pointer to a 128-bit memory location containing two consecutive
5000 /// double-precision floating-point values. These values are to be copied to
5001 /// bits[127:0] of the result. The address of the memory location does not
5002 /// have to be aligned.
5003 /// \returns A 256-bit floating-point vector of [4 x double] containing the
5004 /// concatenated result.
5005 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)5006 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
5007 {
5008 return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
5009 }
5010
5011 /// Loads two 128-bit integer vectors from unaligned memory locations and
5012 /// constructs a 256-bit integer vector by concatenating the two 128-bit
5013 /// vectors.
5014 ///
5015 /// \headerfile <x86intrin.h>
5016 ///
5017 /// This intrinsic corresponds to load instructions followed by the
5018 /// <c> VINSERTF128 </c> instruction.
5019 ///
5020 /// \param __addr_hi
5021 /// A pointer to a 128-bit memory location containing a 128-bit integer
5022 /// vector. This vector is to be copied to bits[255:128] of the result. The
5023 /// address of the memory location does not have to be aligned.
5024 /// \param __addr_lo
5025 /// A pointer to a 128-bit memory location containing a 128-bit integer
5026 /// vector. This vector is to be copied to bits[127:0] of the result. The
5027 /// address of the memory location does not have to be aligned.
5028 /// \returns A 256-bit integer vector containing the concatenated result.
5029 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i_u const * __addr_hi,__m128i_u const * __addr_lo)5030 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5031 {
5032 return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5033 }
5034
5035 /* SIMD store ops (unaligned) */
5036 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5037 /// vector of [8 x float] into two different unaligned memory locations.
5038 ///
5039 /// \headerfile <x86intrin.h>
5040 ///
5041 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5042 /// store instructions.
5043 ///
5044 /// \param __addr_hi
5045 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5046 /// copied to this memory location. The address of this memory location does
5047 /// not have to be aligned.
5048 /// \param __addr_lo
5049 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5050 /// copied to this memory location. The address of this memory location does
5051 /// not have to be aligned.
5052 /// \param __a
5053 /// A 256-bit floating-point vector of [8 x float].
5054 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)5055 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5056 {
5057 __m128 __v128;
5058
5059 __v128 = _mm256_castps256_ps128(__a);
5060 _mm_storeu_ps(__addr_lo, __v128);
5061 __v128 = _mm256_extractf128_ps(__a, 1);
5062 _mm_storeu_ps(__addr_hi, __v128);
5063 }
5064
5065 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5066 /// vector of [4 x double] into two different unaligned memory locations.
5067 ///
5068 /// \headerfile <x86intrin.h>
5069 ///
5070 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5071 /// store instructions.
5072 ///
5073 /// \param __addr_hi
5074 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5075 /// copied to this memory location. The address of this memory location does
5076 /// not have to be aligned.
5077 /// \param __addr_lo
5078 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5079 /// copied to this memory location. The address of this memory location does
5080 /// not have to be aligned.
5081 /// \param __a
5082 /// A 256-bit floating-point vector of [4 x double].
5083 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)5084 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5085 {
5086 __m128d __v128;
5087
5088 __v128 = _mm256_castpd256_pd128(__a);
5089 _mm_storeu_pd(__addr_lo, __v128);
5090 __v128 = _mm256_extractf128_pd(__a, 1);
5091 _mm_storeu_pd(__addr_hi, __v128);
5092 }
5093
5094 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5095 /// two different unaligned memory locations.
5096 ///
5097 /// \headerfile <x86intrin.h>
5098 ///
5099 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5100 /// store instructions.
5101 ///
5102 /// \param __addr_hi
5103 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5104 /// copied to this memory location. The address of this memory location does
5105 /// not have to be aligned.
5106 /// \param __addr_lo
5107 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5108 /// copied to this memory location. The address of this memory location does
5109 /// not have to be aligned.
5110 /// \param __a
5111 /// A 256-bit integer vector.
5112 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i_u * __addr_hi,__m128i_u * __addr_lo,__m256i __a)5113 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5114 {
5115 __m128i __v128;
5116
5117 __v128 = _mm256_castsi256_si128(__a);
5118 _mm_storeu_si128(__addr_lo, __v128);
5119 __v128 = _mm256_extractf128_si256(__a, 1);
5120 _mm_storeu_si128(__addr_hi, __v128);
5121 }
5122
5123 #undef __DEFAULT_FN_ATTRS
5124 #undef __DEFAULT_FN_ATTRS128
5125
5126 #endif /* __AVXINTRIN_H */
5127