xref: /freebsd/contrib/llvm-project/clang/lib/Headers/raointintrin.h (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1 /*===----------------------- raointintrin.h - RAOINT ------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __X86GPRINTRIN_H
11 #error "Never use <raointintrin.h> directly; include <x86gprintrin.h> instead."
12 #endif // __X86GPRINTRIN_H
13 
14 #ifndef __RAOINTINTRIN_H
15 #define __RAOINTINTRIN_H
16 
17 #define __DEFAULT_FN_ATTRS                                                     \
18   __attribute__((__always_inline__, __nodebug__, __target__("raoint")))
19 
20 /// Atomically add a 32-bit value at memory operand \a __A and a 32-bit \a __B,
21 ///    and store the result to the same memory location.
22 ///
23 ///    This intrinsic should be used for contention or weak ordering. It may
24 ///    result in bad performance for hot data used by single thread only.
25 ///
26 /// \headerfile <x86intrin.h>
27 ///
28 /// This intrinsic corresponds to the \c AADD instruction.
29 ///
30 /// \param __A
31 ///    A pointer to a 32-bit memory location.
32 /// \param __B
33 ///    A 32-bit integer value.
34 ///
35 /// \code{.operation}
36 /// MEM[__A+31:__A] := MEM[__A+31:__A] + __B[31:0]
37 /// \endcode
_aadd_i32(int * __A,int __B)38 static __inline__ void __DEFAULT_FN_ATTRS _aadd_i32(int *__A, int __B) {
39   __builtin_ia32_aadd32((int *)__A, __B);
40 }
41 
42 /// Atomically and a 32-bit value at memory operand \a __A and a 32-bit \a __B,
43 ///    and store the result to the same memory location.
44 ///
45 ///    This intrinsic should be used for contention or weak ordering. It may
46 ///    result in bad performance for hot data used by single thread only.
47 ///
48 /// \headerfile <x86intrin.h>
49 ///
50 /// This intrinsic corresponds to the \c AAND instruction.
51 ///
52 /// \param __A
53 ///    A pointer to a 32-bit memory location.
54 /// \param __B
55 ///    A 32-bit integer value.
56 ///
57 /// \code{.operation}
58 /// MEM[__A+31:__A] := MEM[__A+31:__A] AND __B[31:0]
59 /// \endcode
_aand_i32(int * __A,int __B)60 static __inline__ void __DEFAULT_FN_ATTRS _aand_i32(int *__A, int __B) {
61   __builtin_ia32_aand32((int *)__A, __B);
62 }
63 
64 /// Atomically or a 32-bit value at memory operand \a __A and a 32-bit \a __B,
65 ///    and store the result to the same memory location.
66 ///
67 ///    This intrinsic should be used for contention or weak ordering. It may
68 ///    result in bad performance for hot data used by single thread only.
69 ///
70 /// \headerfile <x86intrin.h>
71 ///
72 /// This intrinsic corresponds to the \c AOR instruction.
73 ///
74 /// \param __A
75 ///    A pointer to a 32-bit memory location.
76 /// \param __B
77 ///    A 32-bit integer value.
78 ///
79 /// \code{.operation}
80 /// MEM[__A+31:__A] := MEM[__A+31:__A] OR __B[31:0]
81 /// \endcode
_aor_i32(int * __A,int __B)82 static __inline__ void __DEFAULT_FN_ATTRS _aor_i32(int *__A, int __B) {
83   __builtin_ia32_aor32((int *)__A, __B);
84 }
85 
86 /// Atomically xor a 32-bit value at memory operand \a __A and a 32-bit \a __B,
87 ///    and store the result to the same memory location.
88 ///
89 ///    This intrinsic should be used for contention or weak ordering. It may
90 ///    result in bad performance for hot data used by single thread only.
91 ///
92 /// \headerfile <x86intrin.h>
93 ///
94 /// This intrinsic corresponds to the \c AXOR instruction.
95 ///
96 /// \param __A
97 ///    A pointer to a 32-bit memory location.
98 /// \param __B
99 ///    A 32-bit integer value.
100 ///
101 /// \code{.operation}
102 /// MEM[__A+31:__A] := MEM[__A+31:__A] XOR __B[31:0]
103 /// \endcode
_axor_i32(int * __A,int __B)104 static __inline__ void __DEFAULT_FN_ATTRS _axor_i32(int *__A, int __B) {
105   __builtin_ia32_axor32((int *)__A, __B);
106 }
107 
108 #ifdef __x86_64__
109 /// Atomically add a 64-bit value at memory operand \a __A and a 64-bit \a __B,
110 ///    and store the result to the same memory location.
111 ///
112 ///    This intrinsic should be used for contention or weak ordering. It may
113 ///    result in bad performance for hot data used by single thread only.
114 ///
115 /// \headerfile <x86intrin.h>
116 ///
117 /// This intrinsic corresponds to the \c AADD instruction.
118 ///
119 /// \param __A
120 ///    A pointer to a 64-bit memory location.
121 /// \param __B
122 ///    A 64-bit integer value.
123 ///
124 /// \code{.operation}
125 /// MEM[__A+63:__A] := MEM[__A+63:__A] + __B[63:0]
126 /// \endcode
_aadd_i64(long long * __A,long long __B)127 static __inline__ void __DEFAULT_FN_ATTRS _aadd_i64(long long *__A,
128                                                     long long __B) {
129   __builtin_ia32_aadd64((long long *)__A, __B);
130 }
131 
132 /// Atomically and a 64-bit value at memory operand \a __A and a 64-bit \a __B,
133 ///    and store the result to the same memory location.
134 ///
135 ///    This intrinsic should be used for contention or weak ordering. It may
136 ///    result in bad performance for hot data used by single thread only.
137 ///
138 /// \headerfile <x86intrin.h>
139 ///
140 /// This intrinsic corresponds to the \c AAND instruction.
141 ///
142 /// \param __A
143 ///    A pointer to a 64-bit memory location.
144 /// \param __B
145 ///    A 64-bit integer value.
146 ///
147 /// \code{.operation}
148 /// MEM[__A+63:__A] := MEM[__A+63:__A] AND __B[63:0]
149 /// \endcode
_aand_i64(long long * __A,long long __B)150 static __inline__ void __DEFAULT_FN_ATTRS _aand_i64(long long *__A,
151                                                     long long __B) {
152   __builtin_ia32_aand64((long long *)__A, __B);
153 }
154 
155 /// Atomically or a 64-bit value at memory operand \a __A and a 64-bit \a __B,
156 ///    and store the result to the same memory location.
157 ///
158 ///    This intrinsic should be used for contention or weak ordering. It may
159 ///    result in bad performance for hot data used by single thread only.
160 ///
161 /// \headerfile <x86intrin.h>
162 ///
163 /// This intrinsic corresponds to the \c AOR instruction.
164 ///
165 /// \param __A
166 ///    A pointer to a 64-bit memory location.
167 /// \param __B
168 ///    A 64-bit integer value.
169 ///
170 /// \code{.operation}
171 /// MEM[__A+63:__A] := MEM[__A+63:__A] OR __B[63:0]
172 /// \endcode
_aor_i64(long long * __A,long long __B)173 static __inline__ void __DEFAULT_FN_ATTRS _aor_i64(long long *__A,
174                                                    long long __B) {
175   __builtin_ia32_aor64((long long *)__A, __B);
176 }
177 
178 /// Atomically xor a 64-bit value at memory operand \a __A and a 64-bit \a __B,
179 ///    and store the result to the same memory location.
180 ///
181 ///    This intrinsic should be used for contention or weak ordering. It may
182 ///    result in bad performance for hot data used by single thread only.
183 ///
184 /// \headerfile <x86intrin.h>
185 ///
186 /// This intrinsic corresponds to the \c AXOR instruction.
187 ///
188 /// \param __A
189 ///    A pointer to a 64-bit memory location.
190 /// \param __B
191 ///    A 64-bit integer value.
192 ///
193 /// \code{.operation}
194 /// MEM[__A+63:__A] := MEM[__A+63:__A] XOR __B[63:0]
195 /// \endcode
_axor_i64(long long * __A,long long __B)196 static __inline__ void __DEFAULT_FN_ATTRS _axor_i64(long long *__A,
197                                                     long long __B) {
198   __builtin_ia32_axor64((long long *)__A, __B);
199 }
200 #endif // __x86_64__
201 
202 #undef __DEFAULT_FN_ATTRS
203 #endif // __RAOINTINTRIN_H
204