1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013 Steven Hartland. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2023, Klara, Inc.
31 */
32
33 /*
34 * The objective of this program is to provide a DMU/ZAP/SPA stress test
35 * that runs entirely in userland, is easy to use, and easy to extend.
36 *
37 * The overall design of the ztest program is as follows:
38 *
39 * (1) For each major functional area (e.g. adding vdevs to a pool,
40 * creating and destroying datasets, reading and writing objects, etc)
41 * we have a simple routine to test that functionality. These
42 * individual routines do not have to do anything "stressful".
43 *
44 * (2) We turn these simple functionality tests into a stress test by
45 * running them all in parallel, with as many threads as desired,
46 * and spread across as many datasets, objects, and vdevs as desired.
47 *
48 * (3) While all this is happening, we inject faults into the pool to
49 * verify that self-healing data really works.
50 *
51 * (4) Every time we open a dataset, we change its checksum and compression
52 * functions. Thus even individual objects vary from block to block
53 * in which checksum they use and whether they're compressed.
54 *
55 * (5) To verify that we never lose on-disk consistency after a crash,
56 * we run the entire test in a child of the main process.
57 * At random times, the child self-immolates with a SIGKILL.
58 * This is the software equivalent of pulling the power cord.
59 * The parent then runs the test again, using the existing
60 * storage pool, as many times as desired. If backwards compatibility
61 * testing is enabled ztest will sometimes run the "older" version
62 * of ztest after a SIGKILL.
63 *
64 * (6) To verify that we don't have future leaks or temporal incursions,
65 * many of the functional tests record the transaction group number
66 * as part of their data. When reading old data, they verify that
67 * the transaction group number is less than the current, open txg.
68 * If you add a new test, please do this if applicable.
69 *
70 * (7) Threads are created with a reduced stack size, for sanity checking.
71 * Therefore, it's important not to allocate huge buffers on the stack.
72 *
73 * When run with no arguments, ztest runs for about five minutes and
74 * produces no output if successful. To get a little bit of information,
75 * specify -V. To get more information, specify -VV, and so on.
76 *
77 * To turn this into an overnight stress test, use -T to specify run time.
78 *
79 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
80 * to increase the pool capacity, fanout, and overall stress level.
81 *
82 * Use the -k option to set the desired frequency of kills.
83 *
84 * When ztest invokes itself it passes all relevant information through a
85 * temporary file which is mmap-ed in the child process. This allows shared
86 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
87 * stored at offset 0 of this file and contains information on the size and
88 * number of shared structures in the file. The information stored in this file
89 * must remain backwards compatible with older versions of ztest so that
90 * ztest can invoke them during backwards compatibility testing (-B).
91 */
92
93 #include <sys/zfs_context.h>
94 #include <sys/spa.h>
95 #include <sys/dmu.h>
96 #include <sys/txg.h>
97 #include <sys/dbuf.h>
98 #include <sys/zap.h>
99 #include <sys/dmu_objset.h>
100 #include <sys/poll.h>
101 #include <sys/stat.h>
102 #include <sys/time.h>
103 #include <sys/wait.h>
104 #include <sys/mman.h>
105 #include <sys/resource.h>
106 #include <sys/zio.h>
107 #include <sys/zil.h>
108 #include <sys/zil_impl.h>
109 #include <sys/vdev_draid.h>
110 #include <sys/vdev_impl.h>
111 #include <sys/vdev_file.h>
112 #include <sys/vdev_initialize.h>
113 #include <sys/vdev_raidz.h>
114 #include <sys/vdev_trim.h>
115 #include <sys/spa_impl.h>
116 #include <sys/metaslab_impl.h>
117 #include <sys/dsl_prop.h>
118 #include <sys/dsl_dataset.h>
119 #include <sys/dsl_destroy.h>
120 #include <sys/dsl_scan.h>
121 #include <sys/zio_checksum.h>
122 #include <sys/zfs_refcount.h>
123 #include <sys/zfeature.h>
124 #include <sys/dsl_userhold.h>
125 #include <sys/abd.h>
126 #include <sys/blake3.h>
127 #include <stdio.h>
128 #include <stdlib.h>
129 #include <unistd.h>
130 #include <getopt.h>
131 #include <signal.h>
132 #include <umem.h>
133 #include <ctype.h>
134 #include <math.h>
135 #include <sys/fs/zfs.h>
136 #include <zfs_fletcher.h>
137 #include <libnvpair.h>
138 #include <libzutil.h>
139 #include <sys/crypto/icp.h>
140 #include <sys/zfs_impl.h>
141 #include <sys/backtrace.h>
142
143 static int ztest_fd_data = -1;
144 static int ztest_fd_rand = -1;
145
146 typedef struct ztest_shared_hdr {
147 uint64_t zh_hdr_size;
148 uint64_t zh_opts_size;
149 uint64_t zh_size;
150 uint64_t zh_stats_size;
151 uint64_t zh_stats_count;
152 uint64_t zh_ds_size;
153 uint64_t zh_ds_count;
154 uint64_t zh_scratch_state_size;
155 } ztest_shared_hdr_t;
156
157 static ztest_shared_hdr_t *ztest_shared_hdr;
158
159 enum ztest_class_state {
160 ZTEST_VDEV_CLASS_OFF,
161 ZTEST_VDEV_CLASS_ON,
162 ZTEST_VDEV_CLASS_RND
163 };
164
165 /* Dedicated RAIDZ Expansion test states */
166 typedef enum {
167 RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
168 RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
169 RAIDZ_EXPAND_STARTED, /* Testing has commenced */
170 RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
171 RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
172 } raidz_expand_test_state_t;
173
174
175 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
176 #define ZO_GVARS_MAX_COUNT ((size_t)10)
177
178 typedef struct ztest_shared_opts {
179 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
180 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
181 char zo_alt_ztest[MAXNAMELEN];
182 char zo_alt_libpath[MAXNAMELEN];
183 uint64_t zo_vdevs;
184 uint64_t zo_vdevtime;
185 size_t zo_vdev_size;
186 int zo_ashift;
187 int zo_mirrors;
188 int zo_raid_do_expand;
189 int zo_raid_children;
190 int zo_raid_parity;
191 char zo_raid_type[8];
192 int zo_draid_data;
193 int zo_draid_spares;
194 int zo_datasets;
195 int zo_threads;
196 uint64_t zo_passtime;
197 uint64_t zo_killrate;
198 int zo_verbose;
199 int zo_init;
200 uint64_t zo_time;
201 uint64_t zo_maxloops;
202 uint64_t zo_metaslab_force_ganging;
203 raidz_expand_test_state_t zo_raidz_expand_test;
204 int zo_mmp_test;
205 int zo_special_vdevs;
206 int zo_dump_dbgmsg;
207 int zo_gvars_count;
208 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
209 } ztest_shared_opts_t;
210
211 /* Default values for command line options. */
212 #define DEFAULT_POOL "ztest"
213 #define DEFAULT_VDEV_DIR "/tmp"
214 #define DEFAULT_VDEV_COUNT 5
215 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
216 #define DEFAULT_VDEV_SIZE_STR "256M"
217 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
218 #define DEFAULT_MIRRORS 2
219 #define DEFAULT_RAID_CHILDREN 4
220 #define DEFAULT_RAID_PARITY 1
221 #define DEFAULT_DRAID_DATA 4
222 #define DEFAULT_DRAID_SPARES 1
223 #define DEFAULT_DATASETS_COUNT 7
224 #define DEFAULT_THREADS 23
225 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
226 #define DEFAULT_RUN_TIME_STR "300 sec"
227 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
228 #define DEFAULT_PASS_TIME_STR "60 sec"
229 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
230 #define DEFAULT_KILLRATE_STR "70%"
231 #define DEFAULT_INITS 1
232 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
233 #define DEFAULT_FORCE_GANGING (64 << 10)
234 #define DEFAULT_FORCE_GANGING_STR "64K"
235
236 /* Simplifying assumption: -1 is not a valid default. */
237 #define NO_DEFAULT -1
238
239 static const ztest_shared_opts_t ztest_opts_defaults = {
240 .zo_pool = DEFAULT_POOL,
241 .zo_dir = DEFAULT_VDEV_DIR,
242 .zo_alt_ztest = { '\0' },
243 .zo_alt_libpath = { '\0' },
244 .zo_vdevs = DEFAULT_VDEV_COUNT,
245 .zo_ashift = DEFAULT_ASHIFT,
246 .zo_mirrors = DEFAULT_MIRRORS,
247 .zo_raid_children = DEFAULT_RAID_CHILDREN,
248 .zo_raid_parity = DEFAULT_RAID_PARITY,
249 .zo_raid_type = VDEV_TYPE_RAIDZ,
250 .zo_vdev_size = DEFAULT_VDEV_SIZE,
251 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
252 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
253 .zo_datasets = DEFAULT_DATASETS_COUNT,
254 .zo_threads = DEFAULT_THREADS,
255 .zo_passtime = DEFAULT_PASS_TIME,
256 .zo_killrate = DEFAULT_KILL_RATE,
257 .zo_verbose = 0,
258 .zo_mmp_test = 0,
259 .zo_init = DEFAULT_INITS,
260 .zo_time = DEFAULT_RUN_TIME,
261 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
262 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
263 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
264 .zo_gvars_count = 0,
265 .zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
266 };
267
268 extern uint64_t metaslab_force_ganging;
269 extern uint64_t metaslab_df_alloc_threshold;
270 extern uint64_t zfs_deadman_synctime_ms;
271 extern uint_t metaslab_preload_limit;
272 extern int zfs_compressed_arc_enabled;
273 extern int zfs_abd_scatter_enabled;
274 extern uint_t dmu_object_alloc_chunk_shift;
275 extern boolean_t zfs_force_some_double_word_sm_entries;
276 extern unsigned long zio_decompress_fail_fraction;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278 extern uint64_t raidz_expand_max_reflow_bytes;
279 extern uint_t raidz_expand_pause_point;
280 extern boolean_t ddt_prune_artificial_age;
281 extern boolean_t ddt_dump_prune_histogram;
282
283
284 static ztest_shared_opts_t *ztest_shared_opts;
285 static ztest_shared_opts_t ztest_opts;
286 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287
288 typedef struct ztest_shared_ds {
289 uint64_t zd_seq;
290 } ztest_shared_ds_t;
291
292 static ztest_shared_ds_t *ztest_shared_ds;
293 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294
295 typedef struct ztest_scratch_state {
296 uint64_t zs_raidz_scratch_verify_pause;
297 } ztest_shared_scratch_state_t;
298
299 static ztest_shared_scratch_state_t *ztest_scratch_state;
300
301 #define BT_MAGIC 0x123456789abcdefULL
302 #define MAXFAULTS(zs) \
303 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304
305 enum ztest_io_type {
306 ZTEST_IO_WRITE_TAG,
307 ZTEST_IO_WRITE_PATTERN,
308 ZTEST_IO_WRITE_ZEROES,
309 ZTEST_IO_TRUNCATE,
310 ZTEST_IO_SETATTR,
311 ZTEST_IO_REWRITE,
312 ZTEST_IO_TYPES
313 };
314
315 typedef struct ztest_block_tag {
316 uint64_t bt_magic;
317 uint64_t bt_objset;
318 uint64_t bt_object;
319 uint64_t bt_dnodesize;
320 uint64_t bt_offset;
321 uint64_t bt_gen;
322 uint64_t bt_txg;
323 uint64_t bt_crtxg;
324 } ztest_block_tag_t;
325
326 typedef struct bufwad {
327 uint64_t bw_index;
328 uint64_t bw_txg;
329 uint64_t bw_data;
330 } bufwad_t;
331
332 /*
333 * It would be better to use a rangelock_t per object. Unfortunately
334 * the rangelock_t is not a drop-in replacement for rl_t, because we
335 * still need to map from object ID to rangelock_t.
336 */
337 typedef enum {
338 ZTRL_READER,
339 ZTRL_WRITER,
340 ZTRL_APPEND
341 } rl_type_t;
342
343 typedef struct rll {
344 void *rll_writer;
345 int rll_readers;
346 kmutex_t rll_lock;
347 kcondvar_t rll_cv;
348 } rll_t;
349
350 typedef struct rl {
351 uint64_t rl_object;
352 uint64_t rl_offset;
353 uint64_t rl_size;
354 rll_t *rl_lock;
355 } rl_t;
356
357 #define ZTEST_RANGE_LOCKS 64
358 #define ZTEST_OBJECT_LOCKS 64
359
360 /*
361 * Object descriptor. Used as a template for object lookup/create/remove.
362 */
363 typedef struct ztest_od {
364 uint64_t od_dir;
365 uint64_t od_object;
366 dmu_object_type_t od_type;
367 dmu_object_type_t od_crtype;
368 uint64_t od_blocksize;
369 uint64_t od_crblocksize;
370 uint64_t od_crdnodesize;
371 uint64_t od_gen;
372 uint64_t od_crgen;
373 char od_name[ZFS_MAX_DATASET_NAME_LEN];
374 } ztest_od_t;
375
376 /*
377 * Per-dataset state.
378 */
379 typedef struct ztest_ds {
380 ztest_shared_ds_t *zd_shared;
381 objset_t *zd_os;
382 pthread_rwlock_t zd_zilog_lock;
383 zilog_t *zd_zilog;
384 ztest_od_t *zd_od; /* debugging aid */
385 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
386 kmutex_t zd_dirobj_lock;
387 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
388 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
389 } ztest_ds_t;
390
391 /*
392 * Per-iteration state.
393 */
394 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395
396 typedef struct ztest_info {
397 ztest_func_t *zi_func; /* test function */
398 uint64_t zi_iters; /* iterations per execution */
399 uint64_t *zi_interval; /* execute every <interval> seconds */
400 const char *zi_funcname; /* name of test function */
401 } ztest_info_t;
402
403 typedef struct ztest_shared_callstate {
404 uint64_t zc_count; /* per-pass count */
405 uint64_t zc_time; /* per-pass time */
406 uint64_t zc_next; /* next time to call this function */
407 } ztest_shared_callstate_t;
408
409 static ztest_shared_callstate_t *ztest_shared_callstate;
410 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411
412 ztest_func_t ztest_dmu_read_write;
413 ztest_func_t ztest_dmu_write_parallel;
414 ztest_func_t ztest_dmu_object_alloc_free;
415 ztest_func_t ztest_dmu_object_next_chunk;
416 ztest_func_t ztest_dmu_commit_callbacks;
417 ztest_func_t ztest_zap;
418 ztest_func_t ztest_zap_parallel;
419 ztest_func_t ztest_zil_commit;
420 ztest_func_t ztest_zil_remount;
421 ztest_func_t ztest_dmu_read_write_zcopy;
422 ztest_func_t ztest_dmu_objset_create_destroy;
423 ztest_func_t ztest_dmu_prealloc;
424 ztest_func_t ztest_fzap;
425 ztest_func_t ztest_dmu_snapshot_create_destroy;
426 ztest_func_t ztest_dsl_prop_get_set;
427 ztest_func_t ztest_spa_prop_get_set;
428 ztest_func_t ztest_spa_create_destroy;
429 ztest_func_t ztest_fault_inject;
430 ztest_func_t ztest_dmu_snapshot_hold;
431 ztest_func_t ztest_mmp_enable_disable;
432 ztest_func_t ztest_scrub;
433 ztest_func_t ztest_dsl_dataset_promote_busy;
434 ztest_func_t ztest_vdev_attach_detach;
435 ztest_func_t ztest_vdev_raidz_attach;
436 ztest_func_t ztest_vdev_LUN_growth;
437 ztest_func_t ztest_vdev_add_remove;
438 ztest_func_t ztest_vdev_class_add;
439 ztest_func_t ztest_vdev_aux_add_remove;
440 ztest_func_t ztest_split_pool;
441 ztest_func_t ztest_reguid;
442 ztest_func_t ztest_spa_upgrade;
443 ztest_func_t ztest_device_removal;
444 ztest_func_t ztest_spa_checkpoint_create_discard;
445 ztest_func_t ztest_initialize;
446 ztest_func_t ztest_trim;
447 ztest_func_t ztest_blake3;
448 ztest_func_t ztest_fletcher;
449 ztest_func_t ztest_fletcher_incr;
450 ztest_func_t ztest_verify_dnode_bt;
451 ztest_func_t ztest_pool_prefetch_ddt;
452 ztest_func_t ztest_ddt_prune;
453
454 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
455 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
456 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
457 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
458 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
459
460 #define ZTI_INIT(func, iters, interval) \
461 { .zi_func = (func), \
462 .zi_iters = (iters), \
463 .zi_interval = (interval), \
464 .zi_funcname = # func }
465
466 static ztest_info_t ztest_info[] = {
467 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
468 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
469 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
470 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
471 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
472 ZTI_INIT(ztest_zap, 30, &zopt_always),
473 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
474 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
475 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
476 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
477 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
478 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
479 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
480 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
481 #if 0
482 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
483 #endif
484 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
485 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
486 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
487 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
488 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
489 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
490 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
491 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
492 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
493 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
494 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
495 ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
496 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
497 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
498 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
499 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
500 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
501 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
502 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
503 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
504 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
505 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
506 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
507 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
508 ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
509 ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
510 };
511
512 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
513
514 /*
515 * The following struct is used to hold a list of uncalled commit callbacks.
516 * The callbacks are ordered by txg number.
517 */
518 typedef struct ztest_cb_list {
519 kmutex_t zcl_callbacks_lock;
520 list_t zcl_callbacks;
521 } ztest_cb_list_t;
522
523 /*
524 * Stuff we need to share writably between parent and child.
525 */
526 typedef struct ztest_shared {
527 boolean_t zs_do_init;
528 hrtime_t zs_proc_start;
529 hrtime_t zs_proc_stop;
530 hrtime_t zs_thread_start;
531 hrtime_t zs_thread_stop;
532 hrtime_t zs_thread_kill;
533 uint64_t zs_enospc_count;
534 uint64_t zs_vdev_next_leaf;
535 uint64_t zs_vdev_aux;
536 uint64_t zs_alloc;
537 uint64_t zs_space;
538 uint64_t zs_splits;
539 uint64_t zs_mirrors;
540 uint64_t zs_metaslab_sz;
541 uint64_t zs_metaslab_df_alloc_threshold;
542 uint64_t zs_guid;
543 } ztest_shared_t;
544
545 #define ID_PARALLEL -1ULL
546
547 static char ztest_dev_template[] = "%s/%s.%llua";
548 static char ztest_aux_template[] = "%s/%s.%s.%llu";
549 static ztest_shared_t *ztest_shared;
550
551 static spa_t *ztest_spa = NULL;
552 static ztest_ds_t *ztest_ds;
553
554 static kmutex_t ztest_vdev_lock;
555 static boolean_t ztest_device_removal_active = B_FALSE;
556 static boolean_t ztest_pool_scrubbed = B_FALSE;
557 static kmutex_t ztest_checkpoint_lock;
558
559 /*
560 * The ztest_name_lock protects the pool and dataset namespace used by
561 * the individual tests. To modify the namespace, consumers must grab
562 * this lock as writer. Grabbing the lock as reader will ensure that the
563 * namespace does not change while the lock is held.
564 */
565 static pthread_rwlock_t ztest_name_lock;
566
567 static boolean_t ztest_dump_core = B_TRUE;
568 static boolean_t ztest_exiting;
569
570 /* Global commit callback list */
571 static ztest_cb_list_t zcl;
572 /* Commit cb delay */
573 static uint64_t zc_min_txg_delay = UINT64_MAX;
574 static int zc_cb_counter = 0;
575
576 /*
577 * Minimum number of commit callbacks that need to be registered for us to check
578 * whether the minimum txg delay is acceptable.
579 */
580 #define ZTEST_COMMIT_CB_MIN_REG 100
581
582 /*
583 * If a number of txgs equal to this threshold have been created after a commit
584 * callback has been registered but not called, then we assume there is an
585 * implementation bug.
586 */
587 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
588
589 enum ztest_object {
590 ZTEST_META_DNODE = 0,
591 ZTEST_DIROBJ,
592 ZTEST_OBJECTS
593 };
594
595 static __attribute__((noreturn)) void usage(boolean_t requested);
596 static int ztest_scrub_impl(spa_t *spa);
597
598 /*
599 * These libumem hooks provide a reasonable set of defaults for the allocator's
600 * debugging facilities.
601 */
602 const char *
_umem_debug_init(void)603 _umem_debug_init(void)
604 {
605 return ("default,verbose"); /* $UMEM_DEBUG setting */
606 }
607
608 const char *
_umem_logging_init(void)609 _umem_logging_init(void)
610 {
611 return ("fail,contents"); /* $UMEM_LOGGING setting */
612 }
613
614 static void
dump_debug_buffer(void)615 dump_debug_buffer(void)
616 {
617 ssize_t ret __attribute__((unused));
618
619 if (!ztest_opts.zo_dump_dbgmsg)
620 return;
621
622 /*
623 * We use write() instead of printf() so that this function
624 * is safe to call from a signal handler.
625 */
626 ret = write(STDERR_FILENO, "\n", 1);
627 zfs_dbgmsg_print(STDERR_FILENO, "ztest");
628 }
629
sig_handler(int signo)630 static void sig_handler(int signo)
631 {
632 struct sigaction action;
633
634 libspl_backtrace(STDERR_FILENO);
635 dump_debug_buffer();
636
637 /*
638 * Restore default action and re-raise signal so SIGSEGV and
639 * SIGABRT can trigger a core dump.
640 */
641 action.sa_handler = SIG_DFL;
642 sigemptyset(&action.sa_mask);
643 action.sa_flags = 0;
644 (void) sigaction(signo, &action, NULL);
645 raise(signo);
646 }
647
648 #define FATAL_MSG_SZ 1024
649
650 static const char *fatal_msg;
651
652 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
fatal(int do_perror,const char * message,...)653 fatal(int do_perror, const char *message, ...)
654 {
655 va_list args;
656 int save_errno = errno;
657 char *buf;
658
659 (void) fflush(stdout);
660 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
661 if (buf == NULL)
662 goto out;
663
664 va_start(args, message);
665 (void) sprintf(buf, "ztest: ");
666 /* LINTED */
667 (void) vsprintf(buf + strlen(buf), message, args);
668 va_end(args);
669 if (do_perror) {
670 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
671 ": %s", strerror(save_errno));
672 }
673 (void) fprintf(stderr, "%s\n", buf);
674 fatal_msg = buf; /* to ease debugging */
675
676 out:
677 if (ztest_dump_core)
678 abort();
679 else
680 dump_debug_buffer();
681
682 exit(3);
683 }
684
685 static int
str2shift(const char * buf)686 str2shift(const char *buf)
687 {
688 const char *ends = "BKMGTPEZ";
689 int i, len;
690
691 if (buf[0] == '\0')
692 return (0);
693
694 len = strlen(ends);
695 for (i = 0; i < len; i++) {
696 if (toupper(buf[0]) == ends[i])
697 break;
698 }
699 if (i == len) {
700 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
701 buf);
702 usage(B_FALSE);
703 }
704 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
705 return (10*i);
706 }
707 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
708 usage(B_FALSE);
709 }
710
711 static uint64_t
nicenumtoull(const char * buf)712 nicenumtoull(const char *buf)
713 {
714 char *end;
715 uint64_t val;
716
717 val = strtoull(buf, &end, 0);
718 if (end == buf) {
719 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
720 usage(B_FALSE);
721 } else if (end[0] == '.') {
722 double fval = strtod(buf, &end);
723 fval *= pow(2, str2shift(end));
724 /*
725 * UINT64_MAX is not exactly representable as a double.
726 * The closest representation is UINT64_MAX + 1, so we
727 * use a >= comparison instead of > for the bounds check.
728 */
729 if (fval >= (double)UINT64_MAX) {
730 (void) fprintf(stderr, "ztest: value too large: %s\n",
731 buf);
732 usage(B_FALSE);
733 }
734 val = (uint64_t)fval;
735 } else {
736 int shift = str2shift(end);
737 if (shift >= 64 || (val << shift) >> shift != val) {
738 (void) fprintf(stderr, "ztest: value too large: %s\n",
739 buf);
740 usage(B_FALSE);
741 }
742 val <<= shift;
743 }
744 return (val);
745 }
746
747 typedef struct ztest_option {
748 const char short_opt;
749 const char *long_opt;
750 const char *long_opt_param;
751 const char *comment;
752 unsigned int default_int;
753 const char *default_str;
754 } ztest_option_t;
755
756 /*
757 * The following option_table is used for generating the usage info as well as
758 * the long and short option information for calling getopt_long().
759 */
760 static ztest_option_t option_table[] = {
761 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
762 NULL},
763 { 's', "vdev-size", "INTEGER", "Size of each vdev",
764 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
765 { 'a', "alignment-shift", "INTEGER",
766 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
767 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
768 DEFAULT_MIRRORS, NULL},
769 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
770 DEFAULT_RAID_CHILDREN, NULL},
771 { 'R', "raid-parity", "INTEGER", "Raid parity",
772 DEFAULT_RAID_PARITY, NULL},
773 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
774 NO_DEFAULT, "random"},
775 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
776 DEFAULT_DRAID_DATA, NULL},
777 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
778 DEFAULT_DRAID_SPARES, NULL},
779 { 'd', "datasets", "INTEGER", "Number of datasets",
780 DEFAULT_DATASETS_COUNT, NULL},
781 { 't', "threads", "INTEGER", "Number of ztest threads",
782 DEFAULT_THREADS, NULL},
783 { 'g', "gang-block-threshold", "INTEGER",
784 "Metaslab gang block threshold",
785 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
786 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
787 DEFAULT_INITS, NULL},
788 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
789 NO_DEFAULT, DEFAULT_KILLRATE_STR},
790 { 'p', "pool-name", "STRING", "Pool name",
791 NO_DEFAULT, DEFAULT_POOL},
792 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
793 NO_DEFAULT, DEFAULT_VDEV_DIR},
794 { 'M', "multi-host", NULL,
795 "Multi-host; simulate pool imported on remote host",
796 NO_DEFAULT, NULL},
797 { 'E', "use-existing-pool", NULL,
798 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
799 { 'T', "run-time", "INTEGER", "Total run time",
800 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
801 { 'P', "pass-time", "INTEGER", "Time per pass",
802 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
803 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
804 DEFAULT_MAX_LOOPS, NULL},
805 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
806 NO_DEFAULT, NULL},
807 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
808 NO_DEFAULT, "random"},
809 { 'X', "raidz-expansion", NULL,
810 "Perform a dedicated raidz expansion test",
811 NO_DEFAULT, NULL},
812 { 'o', "option", "\"OPTION=INTEGER\"",
813 "Set global variable to an unsigned 32-bit integer value",
814 NO_DEFAULT, NULL},
815 { 'G', "dump-debug-msg", NULL,
816 "Dump zfs_dbgmsg buffer before exiting due to an error",
817 NO_DEFAULT, NULL},
818 { 'V', "verbose", NULL,
819 "Verbose (use multiple times for ever more verbosity)",
820 NO_DEFAULT, NULL},
821 { 'h', "help", NULL, "Show this help",
822 NO_DEFAULT, NULL},
823 {0, 0, 0, 0, 0, 0}
824 };
825
826 static struct option *long_opts = NULL;
827 static char *short_opts = NULL;
828
829 static void
init_options(void)830 init_options(void)
831 {
832 ASSERT3P(long_opts, ==, NULL);
833 ASSERT3P(short_opts, ==, NULL);
834
835 int count = sizeof (option_table) / sizeof (option_table[0]);
836 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837
838 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
839 int short_opt_index = 0;
840
841 for (int i = 0; i < count; i++) {
842 long_opts[i].val = option_table[i].short_opt;
843 long_opts[i].name = option_table[i].long_opt;
844 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
845 ? required_argument : no_argument;
846 long_opts[i].flag = NULL;
847 short_opts[short_opt_index++] = option_table[i].short_opt;
848 if (option_table[i].long_opt_param != NULL) {
849 short_opts[short_opt_index++] = ':';
850 }
851 }
852 }
853
854 static void
fini_options(void)855 fini_options(void)
856 {
857 int count = sizeof (option_table) / sizeof (option_table[0]);
858
859 umem_free(long_opts, sizeof (struct option) * count);
860 umem_free(short_opts, sizeof (char) * 2 * count);
861
862 long_opts = NULL;
863 short_opts = NULL;
864 }
865
866 static __attribute__((noreturn)) void
usage(boolean_t requested)867 usage(boolean_t requested)
868 {
869 char option[80];
870 FILE *fp = requested ? stdout : stderr;
871
872 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
873 for (int i = 0; option_table[i].short_opt != 0; i++) {
874 if (option_table[i].long_opt_param != NULL) {
875 (void) sprintf(option, " -%c --%s=%s",
876 option_table[i].short_opt,
877 option_table[i].long_opt,
878 option_table[i].long_opt_param);
879 } else {
880 (void) sprintf(option, " -%c --%s",
881 option_table[i].short_opt,
882 option_table[i].long_opt);
883 }
884 (void) fprintf(fp, " %-43s%s", option,
885 option_table[i].comment);
886
887 if (option_table[i].long_opt_param != NULL) {
888 if (option_table[i].default_str != NULL) {
889 (void) fprintf(fp, " (default: %s)",
890 option_table[i].default_str);
891 } else if (option_table[i].default_int != NO_DEFAULT) {
892 (void) fprintf(fp, " (default: %u)",
893 option_table[i].default_int);
894 }
895 }
896 (void) fprintf(fp, "\n");
897 }
898 exit(requested ? 0 : 1);
899 }
900
901 static uint64_t
ztest_random(uint64_t range)902 ztest_random(uint64_t range)
903 {
904 uint64_t r;
905
906 ASSERT3S(ztest_fd_rand, >=, 0);
907
908 if (range == 0)
909 return (0);
910
911 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
912 fatal(B_TRUE, "short read from /dev/urandom");
913
914 return (r % range);
915 }
916
917 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)918 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
919 {
920 char name[32];
921 char *value;
922 int state = ZTEST_VDEV_CLASS_RND;
923
924 (void) strlcpy(name, input, sizeof (name));
925
926 value = strchr(name, '=');
927 if (value == NULL) {
928 (void) fprintf(stderr, "missing value in property=value "
929 "'-C' argument (%s)\n", input);
930 usage(B_FALSE);
931 }
932 *(value) = '\0';
933 value++;
934
935 if (strcmp(value, "on") == 0) {
936 state = ZTEST_VDEV_CLASS_ON;
937 } else if (strcmp(value, "off") == 0) {
938 state = ZTEST_VDEV_CLASS_OFF;
939 } else if (strcmp(value, "random") == 0) {
940 state = ZTEST_VDEV_CLASS_RND;
941 } else {
942 (void) fprintf(stderr, "invalid property value '%s'\n", value);
943 usage(B_FALSE);
944 }
945
946 if (strcmp(name, "special") == 0) {
947 zo->zo_special_vdevs = state;
948 } else {
949 (void) fprintf(stderr, "invalid property name '%s'\n", name);
950 usage(B_FALSE);
951 }
952 if (zo->zo_verbose >= 3)
953 (void) printf("%s vdev state is '%s'\n", name, value);
954 }
955
956 static void
process_options(int argc,char ** argv)957 process_options(int argc, char **argv)
958 {
959 char *path;
960 ztest_shared_opts_t *zo = &ztest_opts;
961
962 int opt;
963 uint64_t value;
964 const char *raid_kind = "random";
965
966 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
967
968 init_options();
969
970 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
971 NULL)) != EOF) {
972 value = 0;
973 switch (opt) {
974 case 'v':
975 case 's':
976 case 'a':
977 case 'm':
978 case 'r':
979 case 'R':
980 case 'D':
981 case 'S':
982 case 'd':
983 case 't':
984 case 'g':
985 case 'i':
986 case 'k':
987 case 'T':
988 case 'P':
989 case 'F':
990 value = nicenumtoull(optarg);
991 }
992 switch (opt) {
993 case 'v':
994 zo->zo_vdevs = value;
995 break;
996 case 's':
997 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
998 break;
999 case 'a':
1000 zo->zo_ashift = value;
1001 break;
1002 case 'm':
1003 zo->zo_mirrors = value;
1004 break;
1005 case 'r':
1006 zo->zo_raid_children = MAX(1, value);
1007 break;
1008 case 'R':
1009 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1010 break;
1011 case 'K':
1012 raid_kind = optarg;
1013 break;
1014 case 'D':
1015 zo->zo_draid_data = MAX(1, value);
1016 break;
1017 case 'S':
1018 zo->zo_draid_spares = MAX(1, value);
1019 break;
1020 case 'd':
1021 zo->zo_datasets = MAX(1, value);
1022 break;
1023 case 't':
1024 zo->zo_threads = MAX(1, value);
1025 break;
1026 case 'g':
1027 zo->zo_metaslab_force_ganging =
1028 MAX(SPA_MINBLOCKSIZE << 1, value);
1029 break;
1030 case 'i':
1031 zo->zo_init = value;
1032 break;
1033 case 'k':
1034 zo->zo_killrate = value;
1035 break;
1036 case 'p':
1037 (void) strlcpy(zo->zo_pool, optarg,
1038 sizeof (zo->zo_pool));
1039 break;
1040 case 'f':
1041 path = realpath(optarg, NULL);
1042 if (path == NULL) {
1043 (void) fprintf(stderr, "error: %s: %s\n",
1044 optarg, strerror(errno));
1045 usage(B_FALSE);
1046 } else {
1047 (void) strlcpy(zo->zo_dir, path,
1048 sizeof (zo->zo_dir));
1049 free(path);
1050 }
1051 break;
1052 case 'M':
1053 zo->zo_mmp_test = 1;
1054 break;
1055 case 'V':
1056 zo->zo_verbose++;
1057 break;
1058 case 'X':
1059 zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1060 break;
1061 case 'E':
1062 zo->zo_init = 0;
1063 break;
1064 case 'T':
1065 zo->zo_time = value;
1066 break;
1067 case 'P':
1068 zo->zo_passtime = MAX(1, value);
1069 break;
1070 case 'F':
1071 zo->zo_maxloops = MAX(1, value);
1072 break;
1073 case 'B':
1074 (void) strlcpy(zo->zo_alt_ztest, optarg,
1075 sizeof (zo->zo_alt_ztest));
1076 break;
1077 case 'C':
1078 ztest_parse_name_value(optarg, zo);
1079 break;
1080 case 'o':
1081 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1082 (void) fprintf(stderr,
1083 "max global var count (%zu) exceeded\n",
1084 ZO_GVARS_MAX_COUNT);
1085 usage(B_FALSE);
1086 }
1087 char *v = zo->zo_gvars[zo->zo_gvars_count];
1088 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1089 ZO_GVARS_MAX_ARGLEN) {
1090 (void) fprintf(stderr,
1091 "global var option '%s' is too long\n",
1092 optarg);
1093 usage(B_FALSE);
1094 }
1095 zo->zo_gvars_count++;
1096 break;
1097 case 'G':
1098 zo->zo_dump_dbgmsg = 1;
1099 break;
1100 case 'h':
1101 usage(B_TRUE);
1102 break;
1103 case '?':
1104 default:
1105 usage(B_FALSE);
1106 break;
1107 }
1108 }
1109
1110 fini_options();
1111
1112 /* Force compatible options for raidz expansion run */
1113 if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1114 zo->zo_mmp_test = 0;
1115 zo->zo_mirrors = 0;
1116 zo->zo_vdevs = 1;
1117 zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1118 zo->zo_raid_do_expand = B_FALSE;
1119 raid_kind = "raidz";
1120 }
1121
1122 if (strcmp(raid_kind, "random") == 0) {
1123 switch (ztest_random(3)) {
1124 case 0:
1125 raid_kind = "raidz";
1126 break;
1127 case 1:
1128 raid_kind = "eraidz";
1129 break;
1130 case 2:
1131 raid_kind = "draid";
1132 break;
1133 }
1134
1135 if (ztest_opts.zo_verbose >= 3)
1136 (void) printf("choosing RAID type '%s'\n", raid_kind);
1137 }
1138
1139 if (strcmp(raid_kind, "draid") == 0) {
1140 uint64_t min_devsize;
1141
1142 /* With fewer disk use 256M, otherwise 128M is OK */
1143 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1144 (256ULL << 20) : (128ULL << 20);
1145
1146 /* No top-level mirrors with dRAID for now */
1147 zo->zo_mirrors = 0;
1148
1149 /* Use more appropriate defaults for dRAID */
1150 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1151 zo->zo_vdevs = 1;
1152 if (zo->zo_raid_children ==
1153 ztest_opts_defaults.zo_raid_children)
1154 zo->zo_raid_children = 16;
1155 if (zo->zo_ashift < 12)
1156 zo->zo_ashift = 12;
1157 if (zo->zo_vdev_size < min_devsize)
1158 zo->zo_vdev_size = min_devsize;
1159
1160 if (zo->zo_draid_data + zo->zo_raid_parity >
1161 zo->zo_raid_children - zo->zo_draid_spares) {
1162 (void) fprintf(stderr, "error: too few draid "
1163 "children (%d) for stripe width (%d)\n",
1164 zo->zo_raid_children,
1165 zo->zo_draid_data + zo->zo_raid_parity);
1166 usage(B_FALSE);
1167 }
1168
1169 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1170 sizeof (zo->zo_raid_type));
1171
1172 } else if (strcmp(raid_kind, "eraidz") == 0) {
1173 /* using eraidz (expandable raidz) */
1174 zo->zo_raid_do_expand = B_TRUE;
1175
1176 /* tests expect top-level to be raidz */
1177 zo->zo_mirrors = 0;
1178 zo->zo_vdevs = 1;
1179
1180 /* Make sure parity is less than data columns */
1181 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1182 zo->zo_raid_children - 1);
1183
1184 } else /* using raidz */ {
1185 ASSERT0(strcmp(raid_kind, "raidz"));
1186
1187 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1188 zo->zo_raid_children - 1);
1189 }
1190
1191 zo->zo_vdevtime =
1192 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1193 UINT64_MAX >> 2);
1194
1195 if (*zo->zo_alt_ztest) {
1196 const char *invalid_what = "ztest";
1197 char *val = zo->zo_alt_ztest;
1198 if (0 != access(val, X_OK) ||
1199 (strrchr(val, '/') == NULL && (errno == EINVAL)))
1200 goto invalid;
1201
1202 int dirlen = strrchr(val, '/') - val;
1203 strlcpy(zo->zo_alt_libpath, val,
1204 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1205 invalid_what = "library path", val = zo->zo_alt_libpath;
1206 if (strrchr(val, '/') == NULL && (errno == EINVAL))
1207 goto invalid;
1208 *strrchr(val, '/') = '\0';
1209 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1210
1211 if (0 != access(zo->zo_alt_libpath, X_OK))
1212 goto invalid;
1213 return;
1214
1215 invalid:
1216 ztest_dump_core = B_FALSE;
1217 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1218 }
1219 }
1220
1221 static void
ztest_kill(ztest_shared_t * zs)1222 ztest_kill(ztest_shared_t *zs)
1223 {
1224 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1225 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1226
1227 /*
1228 * Before we kill ourselves, make sure that the config is updated.
1229 * See comment above spa_write_cachefile().
1230 */
1231 if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1232 if (mutex_tryenter(&spa_namespace_lock)) {
1233 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1234 B_FALSE);
1235 mutex_exit(&spa_namespace_lock);
1236
1237 ztest_scratch_state->zs_raidz_scratch_verify_pause =
1238 raidz_expand_pause_point;
1239 } else {
1240 /*
1241 * Do not verify scratch object in case if
1242 * spa_namespace_lock cannot be acquired,
1243 * it can cause deadlock in spa_config_update().
1244 */
1245 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1246
1247 return;
1248 }
1249 } else {
1250 mutex_enter(&spa_namespace_lock);
1251 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1252 mutex_exit(&spa_namespace_lock);
1253 }
1254
1255 (void) raise(SIGKILL);
1256 }
1257
1258 static void
ztest_record_enospc(const char * s)1259 ztest_record_enospc(const char *s)
1260 {
1261 (void) s;
1262 ztest_shared->zs_enospc_count++;
1263 }
1264
1265 static uint64_t
ztest_get_ashift(void)1266 ztest_get_ashift(void)
1267 {
1268 if (ztest_opts.zo_ashift == 0)
1269 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1270 return (ztest_opts.zo_ashift);
1271 }
1272
1273 static boolean_t
ztest_is_draid_spare(const char * name)1274 ztest_is_draid_spare(const char *name)
1275 {
1276 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1277
1278 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1279 &parity, &vdev_id, &spare_id) == 3) {
1280 return (B_TRUE);
1281 }
1282
1283 return (B_FALSE);
1284 }
1285
1286 static nvlist_t *
make_vdev_file(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift)1287 make_vdev_file(const char *path, const char *aux, const char *pool,
1288 size_t size, uint64_t ashift)
1289 {
1290 char *pathbuf = NULL;
1291 uint64_t vdev;
1292 nvlist_t *file;
1293 boolean_t draid_spare = B_FALSE;
1294
1295
1296 if (ashift == 0)
1297 ashift = ztest_get_ashift();
1298
1299 if (path == NULL) {
1300 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1301 path = pathbuf;
1302
1303 if (aux != NULL) {
1304 vdev = ztest_shared->zs_vdev_aux;
1305 (void) snprintf(pathbuf, MAXPATHLEN,
1306 ztest_aux_template, ztest_opts.zo_dir,
1307 pool == NULL ? ztest_opts.zo_pool : pool,
1308 aux, vdev);
1309 } else {
1310 vdev = ztest_shared->zs_vdev_next_leaf++;
1311 (void) snprintf(pathbuf, MAXPATHLEN,
1312 ztest_dev_template, ztest_opts.zo_dir,
1313 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1314 }
1315 } else {
1316 draid_spare = ztest_is_draid_spare(path);
1317 }
1318
1319 if (size != 0 && !draid_spare) {
1320 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1321 if (fd == -1)
1322 fatal(B_TRUE, "can't open %s", path);
1323 if (ftruncate(fd, size) != 0)
1324 fatal(B_TRUE, "can't ftruncate %s", path);
1325 (void) close(fd);
1326 }
1327
1328 file = fnvlist_alloc();
1329 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1330 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1331 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1332 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1333 umem_free(pathbuf, MAXPATHLEN);
1334
1335 return (file);
1336 }
1337
1338 static nvlist_t *
make_vdev_raid(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r)1339 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1340 uint64_t ashift, int r)
1341 {
1342 nvlist_t *raid, **child;
1343 int c;
1344
1345 if (r < 2)
1346 return (make_vdev_file(path, aux, pool, size, ashift));
1347 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1348
1349 for (c = 0; c < r; c++)
1350 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1351
1352 raid = fnvlist_alloc();
1353 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1354 ztest_opts.zo_raid_type);
1355 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1356 ztest_opts.zo_raid_parity);
1357 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1358 (const nvlist_t **)child, r);
1359
1360 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1361 uint64_t ndata = ztest_opts.zo_draid_data;
1362 uint64_t nparity = ztest_opts.zo_raid_parity;
1363 uint64_t nspares = ztest_opts.zo_draid_spares;
1364 uint64_t children = ztest_opts.zo_raid_children;
1365 uint64_t ngroups = 1;
1366
1367 /*
1368 * Calculate the minimum number of groups required to fill a
1369 * slice. This is the LCM of the stripe width (data + parity)
1370 * and the number of data drives (children - spares).
1371 */
1372 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1373 ngroups++;
1374
1375 /* Store the basic dRAID configuration. */
1376 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1377 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1378 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1379 }
1380
1381 for (c = 0; c < r; c++)
1382 fnvlist_free(child[c]);
1383
1384 umem_free(child, r * sizeof (nvlist_t *));
1385
1386 return (raid);
1387 }
1388
1389 static nvlist_t *
make_vdev_mirror(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r,int m)1390 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1391 size_t size, uint64_t ashift, int r, int m)
1392 {
1393 nvlist_t *mirror, **child;
1394 int c;
1395
1396 if (m < 1)
1397 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1398
1399 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1400
1401 for (c = 0; c < m; c++)
1402 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1403
1404 mirror = fnvlist_alloc();
1405 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1406 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1407 (const nvlist_t **)child, m);
1408
1409 for (c = 0; c < m; c++)
1410 fnvlist_free(child[c]);
1411
1412 umem_free(child, m * sizeof (nvlist_t *));
1413
1414 return (mirror);
1415 }
1416
1417 static nvlist_t *
make_vdev_root(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1418 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1419 uint64_t ashift, const char *class, int r, int m, int t)
1420 {
1421 nvlist_t *root, **child;
1422 int c;
1423 boolean_t log;
1424
1425 ASSERT3S(t, >, 0);
1426
1427 log = (class != NULL && strcmp(class, "log") == 0);
1428
1429 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1430
1431 for (c = 0; c < t; c++) {
1432 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1433 r, m);
1434 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1435
1436 if (class != NULL && class[0] != '\0') {
1437 ASSERT(m > 1 || log); /* expecting a mirror */
1438 fnvlist_add_string(child[c],
1439 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1440 }
1441 }
1442
1443 root = fnvlist_alloc();
1444 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1445 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1446 (const nvlist_t **)child, t);
1447
1448 for (c = 0; c < t; c++)
1449 fnvlist_free(child[c]);
1450
1451 umem_free(child, t * sizeof (nvlist_t *));
1452
1453 return (root);
1454 }
1455
1456 /*
1457 * Find a random spa version. Returns back a random spa version in the
1458 * range [initial_version, SPA_VERSION_FEATURES].
1459 */
1460 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1461 ztest_random_spa_version(uint64_t initial_version)
1462 {
1463 uint64_t version = initial_version;
1464
1465 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1466 version = version +
1467 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1468 }
1469
1470 if (version > SPA_VERSION_BEFORE_FEATURES)
1471 version = SPA_VERSION_FEATURES;
1472
1473 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1474 return (version);
1475 }
1476
1477 static int
ztest_random_blocksize(void)1478 ztest_random_blocksize(void)
1479 {
1480 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1481
1482 /*
1483 * Choose a block size >= the ashift.
1484 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1485 */
1486 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1487 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1488 maxbs = 20;
1489 uint64_t block_shift =
1490 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1491 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1492 }
1493
1494 static int
ztest_random_dnodesize(void)1495 ztest_random_dnodesize(void)
1496 {
1497 int slots;
1498 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1499
1500 if (max_slots == DNODE_MIN_SLOTS)
1501 return (DNODE_MIN_SIZE);
1502
1503 /*
1504 * Weight the random distribution more heavily toward smaller
1505 * dnode sizes since that is more likely to reflect real-world
1506 * usage.
1507 */
1508 ASSERT3U(max_slots, >, 4);
1509 switch (ztest_random(10)) {
1510 case 0:
1511 slots = 5 + ztest_random(max_slots - 4);
1512 break;
1513 case 1 ... 4:
1514 slots = 2 + ztest_random(3);
1515 break;
1516 default:
1517 slots = 1;
1518 break;
1519 }
1520
1521 return (slots << DNODE_SHIFT);
1522 }
1523
1524 static int
ztest_random_ibshift(void)1525 ztest_random_ibshift(void)
1526 {
1527 return (DN_MIN_INDBLKSHIFT +
1528 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1529 }
1530
1531 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1532 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1533 {
1534 uint64_t top;
1535 vdev_t *rvd = spa->spa_root_vdev;
1536 vdev_t *tvd;
1537
1538 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1539
1540 do {
1541 top = ztest_random(rvd->vdev_children);
1542 tvd = rvd->vdev_child[top];
1543 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1544 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1545
1546 return (top);
1547 }
1548
1549 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1550 ztest_random_dsl_prop(zfs_prop_t prop)
1551 {
1552 uint64_t value;
1553
1554 do {
1555 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1556 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1557
1558 return (value);
1559 }
1560
1561 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1562 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1563 boolean_t inherit)
1564 {
1565 const char *propname = zfs_prop_to_name(prop);
1566 const char *valname;
1567 char *setpoint;
1568 uint64_t curval;
1569 int error;
1570
1571 error = dsl_prop_set_int(osname, propname,
1572 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1573
1574 if (error == ENOSPC) {
1575 ztest_record_enospc(FTAG);
1576 return (error);
1577 }
1578 ASSERT0(error);
1579
1580 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1581 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1582
1583 if (ztest_opts.zo_verbose >= 6) {
1584 int err;
1585
1586 err = zfs_prop_index_to_string(prop, curval, &valname);
1587 if (err)
1588 (void) printf("%s %s = %llu at '%s'\n", osname,
1589 propname, (unsigned long long)curval, setpoint);
1590 else
1591 (void) printf("%s %s = %s at '%s'\n",
1592 osname, propname, valname, setpoint);
1593 }
1594 umem_free(setpoint, MAXPATHLEN);
1595
1596 return (error);
1597 }
1598
1599 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1600 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1601 {
1602 spa_t *spa = ztest_spa;
1603 nvlist_t *props = NULL;
1604 int error;
1605
1606 props = fnvlist_alloc();
1607 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1608
1609 error = spa_prop_set(spa, props);
1610
1611 fnvlist_free(props);
1612
1613 if (error == ENOSPC) {
1614 ztest_record_enospc(FTAG);
1615 return (error);
1616 }
1617 ASSERT0(error);
1618
1619 return (error);
1620 }
1621
1622 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,const void * tag,objset_t ** osp)1623 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1624 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1625 {
1626 int err;
1627 char *cp = NULL;
1628 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1629
1630 strlcpy(ddname, name, sizeof (ddname));
1631 cp = strchr(ddname, '@');
1632 if (cp != NULL)
1633 *cp = '\0';
1634
1635 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1636 while (decrypt && err == EACCES) {
1637 dsl_crypto_params_t *dcp;
1638 nvlist_t *crypto_args = fnvlist_alloc();
1639
1640 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1641 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1642 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1643 crypto_args, &dcp));
1644 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1645 /*
1646 * Note: if there was an error loading, the wkey was not
1647 * consumed, and needs to be freed.
1648 */
1649 dsl_crypto_params_free(dcp, (err != 0));
1650 fnvlist_free(crypto_args);
1651
1652 if (err == EINVAL) {
1653 /*
1654 * We couldn't load a key for this dataset so try
1655 * the parent. This loop will eventually hit the
1656 * encryption root since ztest only makes clones
1657 * as children of their origin datasets.
1658 */
1659 cp = strrchr(ddname, '/');
1660 if (cp == NULL)
1661 return (err);
1662
1663 *cp = '\0';
1664 err = EACCES;
1665 continue;
1666 } else if (err != 0) {
1667 break;
1668 }
1669
1670 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1671 break;
1672 }
1673
1674 return (err);
1675 }
1676
1677 static void
ztest_rll_init(rll_t * rll)1678 ztest_rll_init(rll_t *rll)
1679 {
1680 rll->rll_writer = NULL;
1681 rll->rll_readers = 0;
1682 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1683 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1684 }
1685
1686 static void
ztest_rll_destroy(rll_t * rll)1687 ztest_rll_destroy(rll_t *rll)
1688 {
1689 ASSERT3P(rll->rll_writer, ==, NULL);
1690 ASSERT0(rll->rll_readers);
1691 mutex_destroy(&rll->rll_lock);
1692 cv_destroy(&rll->rll_cv);
1693 }
1694
1695 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1696 ztest_rll_lock(rll_t *rll, rl_type_t type)
1697 {
1698 mutex_enter(&rll->rll_lock);
1699
1700 if (type == ZTRL_READER) {
1701 while (rll->rll_writer != NULL)
1702 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1703 rll->rll_readers++;
1704 } else {
1705 while (rll->rll_writer != NULL || rll->rll_readers)
1706 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1707 rll->rll_writer = curthread;
1708 }
1709
1710 mutex_exit(&rll->rll_lock);
1711 }
1712
1713 static void
ztest_rll_unlock(rll_t * rll)1714 ztest_rll_unlock(rll_t *rll)
1715 {
1716 mutex_enter(&rll->rll_lock);
1717
1718 if (rll->rll_writer) {
1719 ASSERT0(rll->rll_readers);
1720 rll->rll_writer = NULL;
1721 } else {
1722 ASSERT3S(rll->rll_readers, >, 0);
1723 ASSERT3P(rll->rll_writer, ==, NULL);
1724 rll->rll_readers--;
1725 }
1726
1727 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1728 cv_broadcast(&rll->rll_cv);
1729
1730 mutex_exit(&rll->rll_lock);
1731 }
1732
1733 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1734 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1735 {
1736 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1737
1738 ztest_rll_lock(rll, type);
1739 }
1740
1741 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1742 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1743 {
1744 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1745
1746 ztest_rll_unlock(rll);
1747 }
1748
1749 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1750 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1751 uint64_t size, rl_type_t type)
1752 {
1753 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1754 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1755 rl_t *rl;
1756
1757 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1758 rl->rl_object = object;
1759 rl->rl_offset = offset;
1760 rl->rl_size = size;
1761 rl->rl_lock = rll;
1762
1763 ztest_rll_lock(rll, type);
1764
1765 return (rl);
1766 }
1767
1768 static void
ztest_range_unlock(rl_t * rl)1769 ztest_range_unlock(rl_t *rl)
1770 {
1771 rll_t *rll = rl->rl_lock;
1772
1773 ztest_rll_unlock(rll);
1774
1775 umem_free(rl, sizeof (*rl));
1776 }
1777
1778 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1779 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1780 {
1781 zd->zd_os = os;
1782 zd->zd_zilog = dmu_objset_zil(os);
1783 zd->zd_shared = szd;
1784 dmu_objset_name(os, zd->zd_name);
1785 int l;
1786
1787 if (zd->zd_shared != NULL)
1788 zd->zd_shared->zd_seq = 0;
1789
1790 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1791 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1792
1793 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1794 ztest_rll_init(&zd->zd_object_lock[l]);
1795
1796 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1797 ztest_rll_init(&zd->zd_range_lock[l]);
1798 }
1799
1800 static void
ztest_zd_fini(ztest_ds_t * zd)1801 ztest_zd_fini(ztest_ds_t *zd)
1802 {
1803 int l;
1804
1805 mutex_destroy(&zd->zd_dirobj_lock);
1806 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1807
1808 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1809 ztest_rll_destroy(&zd->zd_object_lock[l]);
1810
1811 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1812 ztest_rll_destroy(&zd->zd_range_lock[l]);
1813 }
1814
1815 #define DMU_TX_MIGHTWAIT \
1816 (ztest_random(10) == 0 ? DMU_TX_NOWAIT : DMU_TX_WAIT)
1817
1818 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1819 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1820 {
1821 uint64_t txg;
1822 int error;
1823
1824 /*
1825 * Attempt to assign tx to some transaction group.
1826 */
1827 error = dmu_tx_assign(tx, txg_how);
1828 if (error) {
1829 if (error == ERESTART) {
1830 ASSERT3U(txg_how, ==, DMU_TX_NOWAIT);
1831 dmu_tx_wait(tx);
1832 } else {
1833 ASSERT3U(error, ==, ENOSPC);
1834 ztest_record_enospc(tag);
1835 }
1836 dmu_tx_abort(tx);
1837 return (0);
1838 }
1839 txg = dmu_tx_get_txg(tx);
1840 ASSERT3U(txg, !=, 0);
1841 return (txg);
1842 }
1843
1844 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1845 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1846 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1847 uint64_t crtxg)
1848 {
1849 bt->bt_magic = BT_MAGIC;
1850 bt->bt_objset = dmu_objset_id(os);
1851 bt->bt_object = object;
1852 bt->bt_dnodesize = dnodesize;
1853 bt->bt_offset = offset;
1854 bt->bt_gen = gen;
1855 bt->bt_txg = txg;
1856 bt->bt_crtxg = crtxg;
1857 }
1858
1859 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1860 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1861 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1862 uint64_t crtxg)
1863 {
1864 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1865 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1866 ASSERT3U(bt->bt_object, ==, object);
1867 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1868 ASSERT3U(bt->bt_offset, ==, offset);
1869 ASSERT3U(bt->bt_gen, <=, gen);
1870 ASSERT3U(bt->bt_txg, <=, txg);
1871 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1872 }
1873
1874 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1875 ztest_bt_bonus(dmu_buf_t *db)
1876 {
1877 dmu_object_info_t doi;
1878 ztest_block_tag_t *bt;
1879
1880 dmu_object_info_from_db(db, &doi);
1881 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1882 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1883 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1884
1885 return (bt);
1886 }
1887
1888 /*
1889 * Generate a token to fill up unused bonus buffer space. Try to make
1890 * it unique to the object, generation, and offset to verify that data
1891 * is not getting overwritten by data from other dnodes.
1892 */
1893 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1894 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1895
1896 /*
1897 * Fill up the unused bonus buffer region before the block tag with a
1898 * verifiable pattern. Filling the whole bonus area with non-zero data
1899 * helps ensure that all dnode traversal code properly skips the
1900 * interior regions of large dnodes.
1901 */
1902 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1903 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1904 objset_t *os, uint64_t gen)
1905 {
1906 uint64_t *bonusp;
1907
1908 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1909
1910 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1911 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1912 gen, bonusp - (uint64_t *)db->db_data);
1913 *bonusp = token;
1914 }
1915 }
1916
1917 /*
1918 * Verify that the unused area of a bonus buffer is filled with the
1919 * expected tokens.
1920 */
1921 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1922 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1923 objset_t *os, uint64_t gen)
1924 {
1925 uint64_t *bonusp;
1926
1927 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1928 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1929 gen, bonusp - (uint64_t *)db->db_data);
1930 VERIFY3U(*bonusp, ==, token);
1931 }
1932 }
1933
1934 /*
1935 * ZIL logging ops
1936 */
1937
1938 #define lrz_type lr_mode
1939 #define lrz_blocksize lr_uid
1940 #define lrz_ibshift lr_gid
1941 #define lrz_bonustype lr_rdev
1942 #define lrz_dnodesize lr_crtime[1]
1943
1944 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1945 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1946 {
1947 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1948 size_t namesize = strlen(name) + 1;
1949 itx_t *itx;
1950
1951 if (zil_replaying(zd->zd_zilog, tx))
1952 return;
1953
1954 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1955 memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1956 sizeof (*lr) + namesize - sizeof (lr_t));
1957
1958 zil_itx_assign(zd->zd_zilog, itx, tx);
1959 }
1960
1961 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1962 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1963 {
1964 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1965 size_t namesize = strlen(name) + 1;
1966 itx_t *itx;
1967
1968 if (zil_replaying(zd->zd_zilog, tx))
1969 return;
1970
1971 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1972 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1973 sizeof (*lr) + namesize - sizeof (lr_t));
1974
1975 itx->itx_oid = object;
1976 zil_itx_assign(zd->zd_zilog, itx, tx);
1977 }
1978
1979 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1980 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1981 {
1982 itx_t *itx;
1983 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1984
1985 if (zil_replaying(zd->zd_zilog, tx))
1986 return;
1987
1988 if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1989 write_state = WR_INDIRECT;
1990
1991 itx = zil_itx_create(TX_WRITE,
1992 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1993
1994 if (write_state == WR_COPIED &&
1995 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1996 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1997 zil_itx_destroy(itx);
1998 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1999 write_state = WR_NEED_COPY;
2000 }
2001 itx->itx_private = zd;
2002 itx->itx_wr_state = write_state;
2003 itx->itx_sync = (ztest_random(8) == 0);
2004
2005 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2006 sizeof (*lr) - sizeof (lr_t));
2007
2008 zil_itx_assign(zd->zd_zilog, itx, tx);
2009 }
2010
2011 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)2012 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2013 {
2014 itx_t *itx;
2015
2016 if (zil_replaying(zd->zd_zilog, tx))
2017 return;
2018
2019 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2020 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2021 sizeof (*lr) - sizeof (lr_t));
2022
2023 itx->itx_sync = B_FALSE;
2024 zil_itx_assign(zd->zd_zilog, itx, tx);
2025 }
2026
2027 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)2028 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2029 {
2030 itx_t *itx;
2031
2032 if (zil_replaying(zd->zd_zilog, tx))
2033 return;
2034
2035 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2036 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2037 sizeof (*lr) - sizeof (lr_t));
2038
2039 itx->itx_sync = B_FALSE;
2040 zil_itx_assign(zd->zd_zilog, itx, tx);
2041 }
2042
2043 /*
2044 * ZIL replay ops
2045 */
2046 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)2047 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2048 {
2049 ztest_ds_t *zd = arg1;
2050 lr_create_t *lrc = arg2;
2051 _lr_create_t *lr = &lrc->lr_create;
2052 char *name = (char *)&lrc->lr_data[0]; /* name follows lr */
2053 objset_t *os = zd->zd_os;
2054 ztest_block_tag_t *bbt;
2055 dmu_buf_t *db;
2056 dmu_tx_t *tx;
2057 uint64_t txg;
2058 int error = 0;
2059 int bonuslen;
2060
2061 if (byteswap)
2062 byteswap_uint64_array(lr, sizeof (*lr));
2063
2064 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2065 ASSERT3S(name[0], !=, '\0');
2066
2067 tx = dmu_tx_create(os);
2068
2069 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2070
2071 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2072 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2073 } else {
2074 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2075 }
2076
2077 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2078 if (txg == 0)
2079 return (ENOSPC);
2080
2081 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2082 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2083
2084 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2085 if (lr->lr_foid == 0) {
2086 lr->lr_foid = zap_create_dnsize(os,
2087 lr->lrz_type, lr->lrz_bonustype,
2088 bonuslen, lr->lrz_dnodesize, tx);
2089 } else {
2090 error = zap_create_claim_dnsize(os, lr->lr_foid,
2091 lr->lrz_type, lr->lrz_bonustype,
2092 bonuslen, lr->lrz_dnodesize, tx);
2093 }
2094 } else {
2095 if (lr->lr_foid == 0) {
2096 lr->lr_foid = dmu_object_alloc_dnsize(os,
2097 lr->lrz_type, 0, lr->lrz_bonustype,
2098 bonuslen, lr->lrz_dnodesize, tx);
2099 } else {
2100 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2101 lr->lrz_type, 0, lr->lrz_bonustype,
2102 bonuslen, lr->lrz_dnodesize, tx);
2103 }
2104 }
2105
2106 if (error) {
2107 ASSERT3U(error, ==, EEXIST);
2108 ASSERT(zd->zd_zilog->zl_replay);
2109 dmu_tx_commit(tx);
2110 return (error);
2111 }
2112
2113 ASSERT3U(lr->lr_foid, !=, 0);
2114
2115 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2116 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2117 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2118
2119 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2120 bbt = ztest_bt_bonus(db);
2121 dmu_buf_will_dirty(db, tx);
2122 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2123 lr->lr_gen, txg, txg);
2124 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2125 dmu_buf_rele(db, FTAG);
2126
2127 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2128 &lr->lr_foid, tx));
2129
2130 (void) ztest_log_create(zd, tx, lrc);
2131
2132 dmu_tx_commit(tx);
2133
2134 return (0);
2135 }
2136
2137 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2138 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2139 {
2140 ztest_ds_t *zd = arg1;
2141 lr_remove_t *lr = arg2;
2142 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
2143 objset_t *os = zd->zd_os;
2144 dmu_object_info_t doi;
2145 dmu_tx_t *tx;
2146 uint64_t object, txg;
2147
2148 if (byteswap)
2149 byteswap_uint64_array(lr, sizeof (*lr));
2150
2151 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2152 ASSERT3S(name[0], !=, '\0');
2153
2154 VERIFY0(
2155 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2156 ASSERT3U(object, !=, 0);
2157
2158 ztest_object_lock(zd, object, ZTRL_WRITER);
2159
2160 VERIFY0(dmu_object_info(os, object, &doi));
2161
2162 tx = dmu_tx_create(os);
2163
2164 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2165 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2166
2167 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2168 if (txg == 0) {
2169 ztest_object_unlock(zd, object);
2170 return (ENOSPC);
2171 }
2172
2173 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2174 VERIFY0(zap_destroy(os, object, tx));
2175 } else {
2176 VERIFY0(dmu_object_free(os, object, tx));
2177 }
2178
2179 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2180
2181 (void) ztest_log_remove(zd, tx, lr, object);
2182
2183 dmu_tx_commit(tx);
2184
2185 ztest_object_unlock(zd, object);
2186
2187 return (0);
2188 }
2189
2190 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2191 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2192 {
2193 ztest_ds_t *zd = arg1;
2194 lr_write_t *lr = arg2;
2195 objset_t *os = zd->zd_os;
2196 uint8_t *data = &lr->lr_data[0]; /* data follows lr */
2197 uint64_t offset, length;
2198 ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2199 ztest_block_tag_t *bbt;
2200 uint64_t gen, txg, lrtxg, crtxg;
2201 dmu_object_info_t doi;
2202 dmu_tx_t *tx;
2203 dmu_buf_t *db;
2204 arc_buf_t *abuf = NULL;
2205 rl_t *rl;
2206
2207 if (byteswap)
2208 byteswap_uint64_array(lr, sizeof (*lr));
2209
2210 offset = lr->lr_offset;
2211 length = lr->lr_length;
2212
2213 /* If it's a dmu_sync() block, write the whole block */
2214 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2215 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2216 if (length < blocksize) {
2217 offset -= offset % blocksize;
2218 length = blocksize;
2219 }
2220 }
2221
2222 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2223 byteswap_uint64_array(bt, sizeof (*bt));
2224
2225 if (bt->bt_magic != BT_MAGIC)
2226 bt = NULL;
2227
2228 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2229 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2230
2231 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2232
2233 dmu_object_info_from_db(db, &doi);
2234
2235 bbt = ztest_bt_bonus(db);
2236 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2237 gen = bbt->bt_gen;
2238 crtxg = bbt->bt_crtxg;
2239 lrtxg = lr->lr_common.lrc_txg;
2240
2241 tx = dmu_tx_create(os);
2242
2243 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2244
2245 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2246 P2PHASE(offset, length) == 0)
2247 abuf = dmu_request_arcbuf(db, length);
2248
2249 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2250 if (txg == 0) {
2251 if (abuf != NULL)
2252 dmu_return_arcbuf(abuf);
2253 dmu_buf_rele(db, FTAG);
2254 ztest_range_unlock(rl);
2255 ztest_object_unlock(zd, lr->lr_foid);
2256 return (ENOSPC);
2257 }
2258
2259 if (bt != NULL) {
2260 /*
2261 * Usually, verify the old data before writing new data --
2262 * but not always, because we also want to verify correct
2263 * behavior when the data was not recently read into cache.
2264 */
2265 ASSERT(doi.doi_data_block_size);
2266 ASSERT0(offset % doi.doi_data_block_size);
2267 if (ztest_random(4) != 0) {
2268 int prefetch = ztest_random(2) ?
2269 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2270
2271 /*
2272 * We will randomly set when to do O_DIRECT on a read.
2273 */
2274 if (ztest_random(4) == 0)
2275 prefetch |= DMU_DIRECTIO;
2276
2277 ztest_block_tag_t rbt;
2278
2279 VERIFY(dmu_read(os, lr->lr_foid, offset,
2280 sizeof (rbt), &rbt, prefetch) == 0);
2281 if (rbt.bt_magic == BT_MAGIC) {
2282 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2283 offset, gen, txg, crtxg);
2284 }
2285 }
2286
2287 /*
2288 * Writes can appear to be newer than the bonus buffer because
2289 * the ztest_get_data() callback does a dmu_read() of the
2290 * open-context data, which may be different than the data
2291 * as it was when the write was generated.
2292 */
2293 if (zd->zd_zilog->zl_replay) {
2294 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2295 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2296 bt->bt_crtxg);
2297 }
2298
2299 /*
2300 * Set the bt's gen/txg to the bonus buffer's gen/txg
2301 * so that all of the usual ASSERTs will work.
2302 */
2303 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2304 crtxg);
2305 }
2306
2307 if (abuf == NULL) {
2308 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2309 } else {
2310 memcpy(abuf->b_data, data, length);
2311 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2312 }
2313
2314 (void) ztest_log_write(zd, tx, lr);
2315
2316 dmu_buf_rele(db, FTAG);
2317
2318 dmu_tx_commit(tx);
2319
2320 ztest_range_unlock(rl);
2321 ztest_object_unlock(zd, lr->lr_foid);
2322
2323 return (0);
2324 }
2325
2326 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2327 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2328 {
2329 ztest_ds_t *zd = arg1;
2330 lr_truncate_t *lr = arg2;
2331 objset_t *os = zd->zd_os;
2332 dmu_tx_t *tx;
2333 uint64_t txg;
2334 rl_t *rl;
2335
2336 if (byteswap)
2337 byteswap_uint64_array(lr, sizeof (*lr));
2338
2339 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2340 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2341 ZTRL_WRITER);
2342
2343 tx = dmu_tx_create(os);
2344
2345 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2346
2347 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2348 if (txg == 0) {
2349 ztest_range_unlock(rl);
2350 ztest_object_unlock(zd, lr->lr_foid);
2351 return (ENOSPC);
2352 }
2353
2354 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2355 lr->lr_length, tx));
2356
2357 (void) ztest_log_truncate(zd, tx, lr);
2358
2359 dmu_tx_commit(tx);
2360
2361 ztest_range_unlock(rl);
2362 ztest_object_unlock(zd, lr->lr_foid);
2363
2364 return (0);
2365 }
2366
2367 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2368 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2369 {
2370 ztest_ds_t *zd = arg1;
2371 lr_setattr_t *lr = arg2;
2372 objset_t *os = zd->zd_os;
2373 dmu_tx_t *tx;
2374 dmu_buf_t *db;
2375 ztest_block_tag_t *bbt;
2376 uint64_t txg, lrtxg, crtxg, dnodesize;
2377
2378 if (byteswap)
2379 byteswap_uint64_array(lr, sizeof (*lr));
2380
2381 ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2382
2383 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2384
2385 tx = dmu_tx_create(os);
2386 dmu_tx_hold_bonus(tx, lr->lr_foid);
2387
2388 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2389 if (txg == 0) {
2390 dmu_buf_rele(db, FTAG);
2391 ztest_object_unlock(zd, lr->lr_foid);
2392 return (ENOSPC);
2393 }
2394
2395 bbt = ztest_bt_bonus(db);
2396 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2397 crtxg = bbt->bt_crtxg;
2398 lrtxg = lr->lr_common.lrc_txg;
2399 dnodesize = bbt->bt_dnodesize;
2400
2401 if (zd->zd_zilog->zl_replay) {
2402 ASSERT3U(lr->lr_size, !=, 0);
2403 ASSERT3U(lr->lr_mode, !=, 0);
2404 ASSERT3U(lrtxg, !=, 0);
2405 } else {
2406 /*
2407 * Randomly change the size and increment the generation.
2408 */
2409 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2410 sizeof (*bbt);
2411 lr->lr_mode = bbt->bt_gen + 1;
2412 ASSERT0(lrtxg);
2413 }
2414
2415 /*
2416 * Verify that the current bonus buffer is not newer than our txg.
2417 */
2418 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2419 MAX(txg, lrtxg), crtxg);
2420
2421 dmu_buf_will_dirty(db, tx);
2422
2423 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2424 ASSERT3U(lr->lr_size, <=, db->db_size);
2425 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2426 bbt = ztest_bt_bonus(db);
2427
2428 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2429 txg, crtxg);
2430 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2431 dmu_buf_rele(db, FTAG);
2432
2433 (void) ztest_log_setattr(zd, tx, lr);
2434
2435 dmu_tx_commit(tx);
2436
2437 ztest_object_unlock(zd, lr->lr_foid);
2438
2439 return (0);
2440 }
2441
2442 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2443 NULL, /* 0 no such transaction type */
2444 ztest_replay_create, /* TX_CREATE */
2445 NULL, /* TX_MKDIR */
2446 NULL, /* TX_MKXATTR */
2447 NULL, /* TX_SYMLINK */
2448 ztest_replay_remove, /* TX_REMOVE */
2449 NULL, /* TX_RMDIR */
2450 NULL, /* TX_LINK */
2451 NULL, /* TX_RENAME */
2452 ztest_replay_write, /* TX_WRITE */
2453 ztest_replay_truncate, /* TX_TRUNCATE */
2454 ztest_replay_setattr, /* TX_SETATTR */
2455 NULL, /* TX_ACL */
2456 NULL, /* TX_CREATE_ACL */
2457 NULL, /* TX_CREATE_ATTR */
2458 NULL, /* TX_CREATE_ACL_ATTR */
2459 NULL, /* TX_MKDIR_ACL */
2460 NULL, /* TX_MKDIR_ATTR */
2461 NULL, /* TX_MKDIR_ACL_ATTR */
2462 NULL, /* TX_WRITE2 */
2463 NULL, /* TX_SETSAXATTR */
2464 NULL, /* TX_RENAME_EXCHANGE */
2465 NULL, /* TX_RENAME_WHITEOUT */
2466 };
2467
2468 /*
2469 * ZIL get_data callbacks
2470 */
2471
2472 static void
ztest_get_done(zgd_t * zgd,int error)2473 ztest_get_done(zgd_t *zgd, int error)
2474 {
2475 (void) error;
2476 ztest_ds_t *zd = zgd->zgd_private;
2477 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2478
2479 if (zgd->zgd_db)
2480 dmu_buf_rele(zgd->zgd_db, zgd);
2481
2482 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2483 ztest_object_unlock(zd, object);
2484
2485 umem_free(zgd, sizeof (*zgd));
2486 }
2487
2488 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2489 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2490 struct lwb *lwb, zio_t *zio)
2491 {
2492 (void) arg2;
2493 ztest_ds_t *zd = arg;
2494 objset_t *os = zd->zd_os;
2495 uint64_t object = lr->lr_foid;
2496 uint64_t offset = lr->lr_offset;
2497 uint64_t size = lr->lr_length;
2498 uint64_t txg = lr->lr_common.lrc_txg;
2499 uint64_t crtxg;
2500 dmu_object_info_t doi;
2501 dmu_buf_t *db;
2502 zgd_t *zgd;
2503 int error;
2504
2505 ASSERT3P(lwb, !=, NULL);
2506 ASSERT3U(size, !=, 0);
2507
2508 ztest_object_lock(zd, object, ZTRL_READER);
2509 error = dmu_bonus_hold(os, object, FTAG, &db);
2510 if (error) {
2511 ztest_object_unlock(zd, object);
2512 return (error);
2513 }
2514
2515 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2516
2517 if (crtxg == 0 || crtxg > txg) {
2518 dmu_buf_rele(db, FTAG);
2519 ztest_object_unlock(zd, object);
2520 return (ENOENT);
2521 }
2522
2523 dmu_object_info_from_db(db, &doi);
2524 dmu_buf_rele(db, FTAG);
2525 db = NULL;
2526
2527 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2528 zgd->zgd_lwb = lwb;
2529 zgd->zgd_private = zd;
2530
2531 if (buf != NULL) { /* immediate write */
2532 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2533 object, offset, size, ZTRL_READER);
2534
2535 error = dmu_read(os, object, offset, size, buf,
2536 DMU_READ_NO_PREFETCH);
2537 ASSERT0(error);
2538 } else {
2539 ASSERT3P(zio, !=, NULL);
2540 size = doi.doi_data_block_size;
2541 if (ISP2(size)) {
2542 offset = P2ALIGN_TYPED(offset, size, uint64_t);
2543 } else {
2544 ASSERT3U(offset, <, size);
2545 offset = 0;
2546 }
2547
2548 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2549 object, offset, size, ZTRL_READER);
2550
2551 error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2552
2553 if (error == 0) {
2554 blkptr_t *bp = &lr->lr_blkptr;
2555
2556 zgd->zgd_db = db;
2557 zgd->zgd_bp = bp;
2558
2559 ASSERT3U(db->db_offset, ==, offset);
2560 ASSERT3U(db->db_size, ==, size);
2561
2562 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2563 ztest_get_done, zgd);
2564
2565 if (error == 0)
2566 return (0);
2567 }
2568 }
2569
2570 ztest_get_done(zgd, error);
2571
2572 return (error);
2573 }
2574
2575 static void *
ztest_lr_alloc(size_t lrsize,char * name)2576 ztest_lr_alloc(size_t lrsize, char *name)
2577 {
2578 char *lr;
2579 size_t namesize = name ? strlen(name) + 1 : 0;
2580
2581 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2582
2583 if (name)
2584 memcpy(lr + lrsize, name, namesize);
2585
2586 return (lr);
2587 }
2588
2589 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2590 ztest_lr_free(void *lr, size_t lrsize, char *name)
2591 {
2592 size_t namesize = name ? strlen(name) + 1 : 0;
2593
2594 umem_free(lr, lrsize + namesize);
2595 }
2596
2597 /*
2598 * Lookup a bunch of objects. Returns the number of objects not found.
2599 */
2600 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2601 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2602 {
2603 int missing = 0;
2604 int error;
2605 int i;
2606
2607 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2608
2609 for (i = 0; i < count; i++, od++) {
2610 od->od_object = 0;
2611 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2612 sizeof (uint64_t), 1, &od->od_object);
2613 if (error) {
2614 ASSERT3S(error, ==, ENOENT);
2615 ASSERT0(od->od_object);
2616 missing++;
2617 } else {
2618 dmu_buf_t *db;
2619 ztest_block_tag_t *bbt;
2620 dmu_object_info_t doi;
2621
2622 ASSERT3U(od->od_object, !=, 0);
2623 ASSERT0(missing); /* there should be no gaps */
2624
2625 ztest_object_lock(zd, od->od_object, ZTRL_READER);
2626 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2627 FTAG, &db));
2628 dmu_object_info_from_db(db, &doi);
2629 bbt = ztest_bt_bonus(db);
2630 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2631 od->od_type = doi.doi_type;
2632 od->od_blocksize = doi.doi_data_block_size;
2633 od->od_gen = bbt->bt_gen;
2634 dmu_buf_rele(db, FTAG);
2635 ztest_object_unlock(zd, od->od_object);
2636 }
2637 }
2638
2639 return (missing);
2640 }
2641
2642 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2643 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2644 {
2645 int missing = 0;
2646 int i;
2647
2648 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2649
2650 for (i = 0; i < count; i++, od++) {
2651 if (missing) {
2652 od->od_object = 0;
2653 missing++;
2654 continue;
2655 }
2656
2657 lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2658 _lr_create_t *lr = &lrc->lr_create;
2659
2660 lr->lr_doid = od->od_dir;
2661 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2662 lr->lrz_type = od->od_crtype;
2663 lr->lrz_blocksize = od->od_crblocksize;
2664 lr->lrz_ibshift = ztest_random_ibshift();
2665 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2666 lr->lrz_dnodesize = od->od_crdnodesize;
2667 lr->lr_gen = od->od_crgen;
2668 lr->lr_crtime[0] = time(NULL);
2669
2670 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2671 ASSERT0(missing);
2672 od->od_object = 0;
2673 missing++;
2674 } else {
2675 od->od_object = lr->lr_foid;
2676 od->od_type = od->od_crtype;
2677 od->od_blocksize = od->od_crblocksize;
2678 od->od_gen = od->od_crgen;
2679 ASSERT3U(od->od_object, !=, 0);
2680 }
2681
2682 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2683 }
2684
2685 return (missing);
2686 }
2687
2688 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2689 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2690 {
2691 int missing = 0;
2692 int error;
2693 int i;
2694
2695 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2696
2697 od += count - 1;
2698
2699 for (i = count - 1; i >= 0; i--, od--) {
2700 if (missing) {
2701 missing++;
2702 continue;
2703 }
2704
2705 /*
2706 * No object was found.
2707 */
2708 if (od->od_object == 0)
2709 continue;
2710
2711 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2712
2713 lr->lr_doid = od->od_dir;
2714
2715 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2716 ASSERT3U(error, ==, ENOSPC);
2717 missing++;
2718 } else {
2719 od->od_object = 0;
2720 }
2721 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2722 }
2723
2724 return (missing);
2725 }
2726
2727 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,const void * data)2728 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2729 const void *data)
2730 {
2731 lr_write_t *lr;
2732 int error;
2733
2734 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2735
2736 lr->lr_foid = object;
2737 lr->lr_offset = offset;
2738 lr->lr_length = size;
2739 lr->lr_blkoff = 0;
2740 BP_ZERO(&lr->lr_blkptr);
2741
2742 memcpy(&lr->lr_data[0], data, size);
2743
2744 error = ztest_replay_write(zd, lr, B_FALSE);
2745
2746 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2747
2748 return (error);
2749 }
2750
2751 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2752 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2753 {
2754 lr_truncate_t *lr;
2755 int error;
2756
2757 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2758
2759 lr->lr_foid = object;
2760 lr->lr_offset = offset;
2761 lr->lr_length = size;
2762
2763 error = ztest_replay_truncate(zd, lr, B_FALSE);
2764
2765 ztest_lr_free(lr, sizeof (*lr), NULL);
2766
2767 return (error);
2768 }
2769
2770 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2771 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2772 {
2773 lr_setattr_t *lr;
2774 int error;
2775
2776 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2777
2778 lr->lr_foid = object;
2779 lr->lr_size = 0;
2780 lr->lr_mode = 0;
2781
2782 error = ztest_replay_setattr(zd, lr, B_FALSE);
2783
2784 ztest_lr_free(lr, sizeof (*lr), NULL);
2785
2786 return (error);
2787 }
2788
2789 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2790 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2791 {
2792 objset_t *os = zd->zd_os;
2793 dmu_tx_t *tx;
2794 uint64_t txg;
2795 rl_t *rl;
2796
2797 txg_wait_synced(dmu_objset_pool(os), 0);
2798
2799 ztest_object_lock(zd, object, ZTRL_READER);
2800 rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2801
2802 tx = dmu_tx_create(os);
2803
2804 dmu_tx_hold_write(tx, object, offset, size);
2805
2806 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2807
2808 if (txg != 0) {
2809 dmu_prealloc(os, object, offset, size, tx);
2810 dmu_tx_commit(tx);
2811 txg_wait_synced(dmu_objset_pool(os), txg);
2812 } else {
2813 (void) dmu_free_long_range(os, object, offset, size);
2814 }
2815
2816 ztest_range_unlock(rl);
2817 ztest_object_unlock(zd, object);
2818 }
2819
2820 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2821 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2822 {
2823 int err;
2824 ztest_block_tag_t wbt;
2825 dmu_object_info_t doi;
2826 enum ztest_io_type io_type;
2827 uint64_t blocksize;
2828 void *data;
2829 uint32_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2830
2831 /*
2832 * We will randomly set when to do O_DIRECT on a read.
2833 */
2834 if (ztest_random(4) == 0)
2835 dmu_read_flags |= DMU_DIRECTIO;
2836
2837 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2838 blocksize = doi.doi_data_block_size;
2839 data = umem_alloc(blocksize, UMEM_NOFAIL);
2840
2841 /*
2842 * Pick an i/o type at random, biased toward writing block tags.
2843 */
2844 io_type = ztest_random(ZTEST_IO_TYPES);
2845 if (ztest_random(2) == 0)
2846 io_type = ZTEST_IO_WRITE_TAG;
2847
2848 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2849
2850 switch (io_type) {
2851
2852 case ZTEST_IO_WRITE_TAG:
2853 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2854 offset, 0, 0, 0);
2855 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2856 break;
2857
2858 case ZTEST_IO_WRITE_PATTERN:
2859 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2860 if (ztest_random(2) == 0) {
2861 /*
2862 * Induce fletcher2 collisions to ensure that
2863 * zio_ddt_collision() detects and resolves them
2864 * when using fletcher2-verify for deduplication.
2865 */
2866 ((uint64_t *)data)[0] ^= 1ULL << 63;
2867 ((uint64_t *)data)[4] ^= 1ULL << 63;
2868 }
2869 (void) ztest_write(zd, object, offset, blocksize, data);
2870 break;
2871
2872 case ZTEST_IO_WRITE_ZEROES:
2873 memset(data, 0, blocksize);
2874 (void) ztest_write(zd, object, offset, blocksize, data);
2875 break;
2876
2877 case ZTEST_IO_TRUNCATE:
2878 (void) ztest_truncate(zd, object, offset, blocksize);
2879 break;
2880
2881 case ZTEST_IO_SETATTR:
2882 (void) ztest_setattr(zd, object);
2883 break;
2884 default:
2885 break;
2886
2887 case ZTEST_IO_REWRITE:
2888 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2889 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2890 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2891 B_FALSE);
2892 ASSERT(err == 0 || err == ENOSPC);
2893 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2894 ZFS_PROP_COMPRESSION,
2895 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2896 B_FALSE);
2897 ASSERT(err == 0 || err == ENOSPC);
2898 (void) pthread_rwlock_unlock(&ztest_name_lock);
2899
2900 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2901 dmu_read_flags));
2902
2903 (void) ztest_write(zd, object, offset, blocksize, data);
2904 break;
2905 }
2906
2907 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2908
2909 umem_free(data, blocksize);
2910 }
2911
2912 /*
2913 * Initialize an object description template.
2914 */
2915 static void
ztest_od_init(ztest_od_t * od,uint64_t id,const char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2916 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2917 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2918 uint64_t gen)
2919 {
2920 od->od_dir = ZTEST_DIROBJ;
2921 od->od_object = 0;
2922
2923 od->od_crtype = type;
2924 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2925 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2926 od->od_crgen = gen;
2927
2928 od->od_type = DMU_OT_NONE;
2929 od->od_blocksize = 0;
2930 od->od_gen = 0;
2931
2932 (void) snprintf(od->od_name, sizeof (od->od_name),
2933 "%s(%"PRId64")[%"PRIu64"]",
2934 tag, id, index);
2935 }
2936
2937 /*
2938 * Lookup or create the objects for a test using the od template.
2939 * If the objects do not all exist, or if 'remove' is specified,
2940 * remove any existing objects and create new ones. Otherwise,
2941 * use the existing objects.
2942 */
2943 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2944 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2945 {
2946 int count = size / sizeof (*od);
2947 int rv = 0;
2948
2949 mutex_enter(&zd->zd_dirobj_lock);
2950 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2951 (ztest_remove(zd, od, count) != 0 ||
2952 ztest_create(zd, od, count) != 0))
2953 rv = -1;
2954 zd->zd_od = od;
2955 mutex_exit(&zd->zd_dirobj_lock);
2956
2957 return (rv);
2958 }
2959
2960 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2961 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2962 {
2963 (void) id;
2964 zilog_t *zilog = zd->zd_zilog;
2965
2966 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2967
2968 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2969
2970 /*
2971 * Remember the committed values in zd, which is in parent/child
2972 * shared memory. If we die, the next iteration of ztest_run()
2973 * will verify that the log really does contain this record.
2974 */
2975 mutex_enter(&zilog->zl_lock);
2976 ASSERT3P(zd->zd_shared, !=, NULL);
2977 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2978 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2979 mutex_exit(&zilog->zl_lock);
2980
2981 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2982 }
2983
2984 /*
2985 * This function is designed to simulate the operations that occur during a
2986 * mount/unmount operation. We hold the dataset across these operations in an
2987 * attempt to expose any implicit assumptions about ZIL management.
2988 */
2989 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2990 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2991 {
2992 (void) id;
2993 objset_t *os = zd->zd_os;
2994
2995 /*
2996 * We hold the ztest_vdev_lock so we don't cause problems with
2997 * other threads that wish to remove a log device, such as
2998 * ztest_device_removal().
2999 */
3000 mutex_enter(&ztest_vdev_lock);
3001
3002 /*
3003 * We grab the zd_dirobj_lock to ensure that no other thread is
3004 * updating the zil (i.e. adding in-memory log records) and the
3005 * zd_zilog_lock to block any I/O.
3006 */
3007 mutex_enter(&zd->zd_dirobj_lock);
3008 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3009
3010 /* zfsvfs_teardown() */
3011 zil_close(zd->zd_zilog);
3012
3013 /* zfsvfs_setup() */
3014 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3015 zil_replay(os, zd, ztest_replay_vector);
3016
3017 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3018 mutex_exit(&zd->zd_dirobj_lock);
3019 mutex_exit(&ztest_vdev_lock);
3020 }
3021
3022 /*
3023 * Verify that we can't destroy an active pool, create an existing pool,
3024 * or create a pool with a bad vdev spec.
3025 */
3026 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)3027 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3028 {
3029 (void) zd, (void) id;
3030 ztest_shared_opts_t *zo = &ztest_opts;
3031 spa_t *spa;
3032 nvlist_t *nvroot;
3033
3034 if (zo->zo_mmp_test)
3035 return;
3036
3037 /*
3038 * Attempt to create using a bad file.
3039 */
3040 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3041 VERIFY3U(ENOENT, ==,
3042 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3043 fnvlist_free(nvroot);
3044
3045 /*
3046 * Attempt to create using a bad mirror.
3047 */
3048 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3049 VERIFY3U(ENOENT, ==,
3050 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3051 fnvlist_free(nvroot);
3052
3053 /*
3054 * Attempt to create an existing pool. It shouldn't matter
3055 * what's in the nvroot; we should fail with EEXIST.
3056 */
3057 (void) pthread_rwlock_rdlock(&ztest_name_lock);
3058 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3059 VERIFY3U(EEXIST, ==,
3060 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3061 fnvlist_free(nvroot);
3062
3063 /*
3064 * We open a reference to the spa and then we try to export it
3065 * expecting one of the following errors:
3066 *
3067 * EBUSY
3068 * Because of the reference we just opened.
3069 *
3070 * ZFS_ERR_EXPORT_IN_PROGRESS
3071 * For the case that there is another ztest thread doing
3072 * an export concurrently.
3073 */
3074 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3075 int error = spa_destroy(zo->zo_pool);
3076 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3077 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3078 spa->spa_name, error);
3079 }
3080 spa_close(spa, FTAG);
3081
3082 (void) pthread_rwlock_unlock(&ztest_name_lock);
3083 }
3084
3085 /*
3086 * Start and then stop the MMP threads to ensure the startup and shutdown code
3087 * works properly. Actual protection and property-related code tested via ZTS.
3088 */
3089 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3090 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3091 {
3092 (void) zd, (void) id;
3093 ztest_shared_opts_t *zo = &ztest_opts;
3094 spa_t *spa = ztest_spa;
3095
3096 if (zo->zo_mmp_test)
3097 return;
3098
3099 /*
3100 * Since enabling MMP involves setting a property, it could not be done
3101 * while the pool is suspended.
3102 */
3103 if (spa_suspended(spa))
3104 return;
3105
3106 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3107 mutex_enter(&spa->spa_props_lock);
3108
3109 zfs_multihost_fail_intervals = 0;
3110
3111 if (!spa_multihost(spa)) {
3112 spa->spa_multihost = B_TRUE;
3113 mmp_thread_start(spa);
3114 }
3115
3116 mutex_exit(&spa->spa_props_lock);
3117 spa_config_exit(spa, SCL_CONFIG, FTAG);
3118
3119 txg_wait_synced(spa_get_dsl(spa), 0);
3120 mmp_signal_all_threads();
3121 txg_wait_synced(spa_get_dsl(spa), 0);
3122
3123 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3124 mutex_enter(&spa->spa_props_lock);
3125
3126 if (spa_multihost(spa)) {
3127 mmp_thread_stop(spa);
3128 spa->spa_multihost = B_FALSE;
3129 }
3130
3131 mutex_exit(&spa->spa_props_lock);
3132 spa_config_exit(spa, SCL_CONFIG, FTAG);
3133 }
3134
3135 static int
ztest_get_raidz_children(spa_t * spa)3136 ztest_get_raidz_children(spa_t *spa)
3137 {
3138 (void) spa;
3139 vdev_t *raidvd;
3140
3141 ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3142
3143 if (ztest_opts.zo_raid_do_expand) {
3144 raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3145
3146 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3147
3148 return (raidvd->vdev_children);
3149 }
3150
3151 return (ztest_opts.zo_raid_children);
3152 }
3153
3154 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3155 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3156 {
3157 (void) zd, (void) id;
3158 spa_t *spa;
3159 uint64_t initial_version = SPA_VERSION_INITIAL;
3160 uint64_t raidz_children, version, newversion;
3161 nvlist_t *nvroot, *props;
3162 char *name;
3163
3164 if (ztest_opts.zo_mmp_test)
3165 return;
3166
3167 /* dRAID added after feature flags, skip upgrade test. */
3168 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3169 return;
3170
3171 mutex_enter(&ztest_vdev_lock);
3172 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3173
3174 /*
3175 * Clean up from previous runs.
3176 */
3177 (void) spa_destroy(name);
3178
3179 raidz_children = ztest_get_raidz_children(ztest_spa);
3180
3181 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3182 NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3183
3184 /*
3185 * If we're configuring a RAIDZ device then make sure that the
3186 * initial version is capable of supporting that feature.
3187 */
3188 switch (ztest_opts.zo_raid_parity) {
3189 case 0:
3190 case 1:
3191 initial_version = SPA_VERSION_INITIAL;
3192 break;
3193 case 2:
3194 initial_version = SPA_VERSION_RAIDZ2;
3195 break;
3196 case 3:
3197 initial_version = SPA_VERSION_RAIDZ3;
3198 break;
3199 }
3200
3201 /*
3202 * Create a pool with a spa version that can be upgraded. Pick
3203 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3204 */
3205 do {
3206 version = ztest_random_spa_version(initial_version);
3207 } while (version > SPA_VERSION_BEFORE_FEATURES);
3208
3209 props = fnvlist_alloc();
3210 fnvlist_add_uint64(props,
3211 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3212 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3213 fnvlist_free(nvroot);
3214 fnvlist_free(props);
3215
3216 VERIFY0(spa_open(name, &spa, FTAG));
3217 VERIFY3U(spa_version(spa), ==, version);
3218 newversion = ztest_random_spa_version(version + 1);
3219
3220 if (ztest_opts.zo_verbose >= 4) {
3221 (void) printf("upgrading spa version from "
3222 "%"PRIu64" to %"PRIu64"\n",
3223 version, newversion);
3224 }
3225
3226 spa_upgrade(spa, newversion);
3227 VERIFY3U(spa_version(spa), >, version);
3228 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3229 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3230 spa_close(spa, FTAG);
3231
3232 kmem_strfree(name);
3233 mutex_exit(&ztest_vdev_lock);
3234 }
3235
3236 static void
ztest_spa_checkpoint(spa_t * spa)3237 ztest_spa_checkpoint(spa_t *spa)
3238 {
3239 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3240
3241 int error = spa_checkpoint(spa->spa_name);
3242
3243 switch (error) {
3244 case 0:
3245 case ZFS_ERR_DEVRM_IN_PROGRESS:
3246 case ZFS_ERR_DISCARDING_CHECKPOINT:
3247 case ZFS_ERR_CHECKPOINT_EXISTS:
3248 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3249 break;
3250 case ENOSPC:
3251 ztest_record_enospc(FTAG);
3252 break;
3253 default:
3254 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3255 }
3256 }
3257
3258 static void
ztest_spa_discard_checkpoint(spa_t * spa)3259 ztest_spa_discard_checkpoint(spa_t *spa)
3260 {
3261 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3262
3263 int error = spa_checkpoint_discard(spa->spa_name);
3264
3265 switch (error) {
3266 case 0:
3267 case ZFS_ERR_DISCARDING_CHECKPOINT:
3268 case ZFS_ERR_NO_CHECKPOINT:
3269 break;
3270 default:
3271 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3272 spa->spa_name, error);
3273 }
3274
3275 }
3276
3277 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3278 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3279 {
3280 (void) zd, (void) id;
3281 spa_t *spa = ztest_spa;
3282
3283 mutex_enter(&ztest_checkpoint_lock);
3284 if (ztest_random(2) == 0) {
3285 ztest_spa_checkpoint(spa);
3286 } else {
3287 ztest_spa_discard_checkpoint(spa);
3288 }
3289 mutex_exit(&ztest_checkpoint_lock);
3290 }
3291
3292
3293 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3294 vdev_lookup_by_path(vdev_t *vd, const char *path)
3295 {
3296 vdev_t *mvd;
3297 int c;
3298
3299 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3300 return (vd);
3301
3302 for (c = 0; c < vd->vdev_children; c++)
3303 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3304 NULL)
3305 return (mvd);
3306
3307 return (NULL);
3308 }
3309
3310 static int
spa_num_top_vdevs(spa_t * spa)3311 spa_num_top_vdevs(spa_t *spa)
3312 {
3313 vdev_t *rvd = spa->spa_root_vdev;
3314 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3315 return (rvd->vdev_children);
3316 }
3317
3318 /*
3319 * Verify that vdev_add() works as expected.
3320 */
3321 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3322 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3323 {
3324 (void) zd, (void) id;
3325 ztest_shared_t *zs = ztest_shared;
3326 spa_t *spa = ztest_spa;
3327 uint64_t leaves;
3328 uint64_t guid;
3329 uint64_t raidz_children;
3330
3331 nvlist_t *nvroot;
3332 int error;
3333
3334 if (ztest_opts.zo_mmp_test)
3335 return;
3336
3337 mutex_enter(&ztest_vdev_lock);
3338 raidz_children = ztest_get_raidz_children(spa);
3339 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3340
3341 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3342
3343 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3344
3345 /*
3346 * If we have slogs then remove them 1/4 of the time.
3347 */
3348 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3349 metaslab_group_t *mg;
3350
3351 /*
3352 * find the first real slog in log allocation class
3353 */
3354 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3355 while (!mg->mg_vd->vdev_islog)
3356 mg = mg->mg_next;
3357
3358 guid = mg->mg_vd->vdev_guid;
3359
3360 spa_config_exit(spa, SCL_VDEV, FTAG);
3361
3362 /*
3363 * We have to grab the zs_name_lock as writer to
3364 * prevent a race between removing a slog (dmu_objset_find)
3365 * and destroying a dataset. Removing the slog will
3366 * grab a reference on the dataset which may cause
3367 * dsl_destroy_head() to fail with EBUSY thus
3368 * leaving the dataset in an inconsistent state.
3369 */
3370 pthread_rwlock_wrlock(&ztest_name_lock);
3371 error = spa_vdev_remove(spa, guid, B_FALSE);
3372 pthread_rwlock_unlock(&ztest_name_lock);
3373
3374 switch (error) {
3375 case 0:
3376 case EEXIST: /* Generic zil_reset() error */
3377 case EBUSY: /* Replay required */
3378 case EACCES: /* Crypto key not loaded */
3379 case ZFS_ERR_CHECKPOINT_EXISTS:
3380 case ZFS_ERR_DISCARDING_CHECKPOINT:
3381 break;
3382 default:
3383 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3384 }
3385 } else {
3386 spa_config_exit(spa, SCL_VDEV, FTAG);
3387
3388 /*
3389 * Make 1/4 of the devices be log devices
3390 */
3391 nvroot = make_vdev_root(NULL, NULL, NULL,
3392 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3393 "log" : NULL, raidz_children, zs->zs_mirrors,
3394 1);
3395
3396 error = spa_vdev_add(spa, nvroot, B_FALSE);
3397 fnvlist_free(nvroot);
3398
3399 switch (error) {
3400 case 0:
3401 break;
3402 case ENOSPC:
3403 ztest_record_enospc("spa_vdev_add");
3404 break;
3405 default:
3406 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3407 }
3408 }
3409
3410 mutex_exit(&ztest_vdev_lock);
3411 }
3412
3413 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3414 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3415 {
3416 (void) zd, (void) id;
3417 ztest_shared_t *zs = ztest_shared;
3418 spa_t *spa = ztest_spa;
3419 uint64_t leaves;
3420 nvlist_t *nvroot;
3421 uint64_t raidz_children;
3422 const char *class = (ztest_random(2) == 0) ?
3423 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3424 int error;
3425
3426 /*
3427 * By default add a special vdev 50% of the time
3428 */
3429 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3430 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3431 ztest_random(2) == 0)) {
3432 return;
3433 }
3434
3435 mutex_enter(&ztest_vdev_lock);
3436
3437 /* Only test with mirrors */
3438 if (zs->zs_mirrors < 2) {
3439 mutex_exit(&ztest_vdev_lock);
3440 return;
3441 }
3442
3443 /* requires feature@allocation_classes */
3444 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3445 mutex_exit(&ztest_vdev_lock);
3446 return;
3447 }
3448
3449 raidz_children = ztest_get_raidz_children(spa);
3450 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3451
3452 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3453 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3454 spa_config_exit(spa, SCL_VDEV, FTAG);
3455
3456 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3457 class, raidz_children, zs->zs_mirrors, 1);
3458
3459 error = spa_vdev_add(spa, nvroot, B_FALSE);
3460 fnvlist_free(nvroot);
3461
3462 if (error == ENOSPC)
3463 ztest_record_enospc("spa_vdev_add");
3464 else if (error != 0)
3465 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3466
3467 /*
3468 * 50% of the time allow small blocks in the special class
3469 */
3470 if (error == 0 &&
3471 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3472 if (ztest_opts.zo_verbose >= 3)
3473 (void) printf("Enabling special VDEV small blocks\n");
3474 error = ztest_dsl_prop_set_uint64(zd->zd_name,
3475 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3476 ASSERT(error == 0 || error == ENOSPC);
3477 }
3478
3479 mutex_exit(&ztest_vdev_lock);
3480
3481 if (ztest_opts.zo_verbose >= 3) {
3482 metaslab_class_t *mc;
3483
3484 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3485 mc = spa_special_class(spa);
3486 else
3487 mc = spa_dedup_class(spa);
3488 (void) printf("Added a %s mirrored vdev (of %d)\n",
3489 class, (int)mc->mc_groups);
3490 }
3491 }
3492
3493 /*
3494 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3495 */
3496 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3497 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3498 {
3499 (void) zd, (void) id;
3500 ztest_shared_t *zs = ztest_shared;
3501 spa_t *spa = ztest_spa;
3502 vdev_t *rvd = spa->spa_root_vdev;
3503 spa_aux_vdev_t *sav;
3504 const char *aux;
3505 char *path;
3506 uint64_t guid = 0;
3507 int error, ignore_err = 0;
3508
3509 if (ztest_opts.zo_mmp_test)
3510 return;
3511
3512 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3513
3514 if (ztest_random(2) == 0) {
3515 sav = &spa->spa_spares;
3516 aux = ZPOOL_CONFIG_SPARES;
3517 } else {
3518 sav = &spa->spa_l2cache;
3519 aux = ZPOOL_CONFIG_L2CACHE;
3520 }
3521
3522 mutex_enter(&ztest_vdev_lock);
3523
3524 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3525
3526 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3527 /*
3528 * Pick a random device to remove.
3529 */
3530 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3531
3532 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3533 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3534 ignore_err = ENOTSUP;
3535
3536 guid = svd->vdev_guid;
3537 } else {
3538 /*
3539 * Find an unused device we can add.
3540 */
3541 zs->zs_vdev_aux = 0;
3542 for (;;) {
3543 int c;
3544 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3545 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3546 zs->zs_vdev_aux);
3547 for (c = 0; c < sav->sav_count; c++)
3548 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3549 path) == 0)
3550 break;
3551 if (c == sav->sav_count &&
3552 vdev_lookup_by_path(rvd, path) == NULL)
3553 break;
3554 zs->zs_vdev_aux++;
3555 }
3556 }
3557
3558 spa_config_exit(spa, SCL_VDEV, FTAG);
3559
3560 if (guid == 0) {
3561 /*
3562 * Add a new device.
3563 */
3564 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3565 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3566 error = spa_vdev_add(spa, nvroot, B_FALSE);
3567
3568 switch (error) {
3569 case 0:
3570 break;
3571 default:
3572 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3573 }
3574 fnvlist_free(nvroot);
3575 } else {
3576 /*
3577 * Remove an existing device. Sometimes, dirty its
3578 * vdev state first to make sure we handle removal
3579 * of devices that have pending state changes.
3580 */
3581 if (ztest_random(2) == 0)
3582 (void) vdev_online(spa, guid, 0, NULL);
3583
3584 error = spa_vdev_remove(spa, guid, B_FALSE);
3585
3586 switch (error) {
3587 case 0:
3588 case EBUSY:
3589 case ZFS_ERR_CHECKPOINT_EXISTS:
3590 case ZFS_ERR_DISCARDING_CHECKPOINT:
3591 break;
3592 default:
3593 if (error != ignore_err)
3594 fatal(B_FALSE,
3595 "spa_vdev_remove(%"PRIu64") = %d",
3596 guid, error);
3597 }
3598 }
3599
3600 mutex_exit(&ztest_vdev_lock);
3601
3602 umem_free(path, MAXPATHLEN);
3603 }
3604
3605 /*
3606 * split a pool if it has mirror tlvdevs
3607 */
3608 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3609 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3610 {
3611 (void) zd, (void) id;
3612 ztest_shared_t *zs = ztest_shared;
3613 spa_t *spa = ztest_spa;
3614 vdev_t *rvd = spa->spa_root_vdev;
3615 nvlist_t *tree, **child, *config, *split, **schild;
3616 uint_t c, children, schildren = 0, lastlogid = 0;
3617 int error = 0;
3618
3619 if (ztest_opts.zo_mmp_test)
3620 return;
3621
3622 mutex_enter(&ztest_vdev_lock);
3623
3624 /* ensure we have a usable config; mirrors of raidz aren't supported */
3625 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3626 mutex_exit(&ztest_vdev_lock);
3627 return;
3628 }
3629
3630 /* clean up the old pool, if any */
3631 (void) spa_destroy("splitp");
3632
3633 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3634
3635 /* generate a config from the existing config */
3636 mutex_enter(&spa->spa_props_lock);
3637 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3638 mutex_exit(&spa->spa_props_lock);
3639
3640 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3641 &child, &children));
3642
3643 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3644 UMEM_NOFAIL);
3645 for (c = 0; c < children; c++) {
3646 vdev_t *tvd = rvd->vdev_child[c];
3647 nvlist_t **mchild;
3648 uint_t mchildren;
3649
3650 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3651 schild[schildren] = fnvlist_alloc();
3652 fnvlist_add_string(schild[schildren],
3653 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3654 fnvlist_add_uint64(schild[schildren],
3655 ZPOOL_CONFIG_IS_HOLE, 1);
3656 if (lastlogid == 0)
3657 lastlogid = schildren;
3658 ++schildren;
3659 continue;
3660 }
3661 lastlogid = 0;
3662 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3663 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3664 schild[schildren++] = fnvlist_dup(mchild[0]);
3665 }
3666
3667 /* OK, create a config that can be used to split */
3668 split = fnvlist_alloc();
3669 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3670 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3671 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3672
3673 config = fnvlist_alloc();
3674 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3675
3676 for (c = 0; c < schildren; c++)
3677 fnvlist_free(schild[c]);
3678 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3679 fnvlist_free(split);
3680
3681 spa_config_exit(spa, SCL_VDEV, FTAG);
3682
3683 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3684 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3685 (void) pthread_rwlock_unlock(&ztest_name_lock);
3686
3687 fnvlist_free(config);
3688
3689 if (error == 0) {
3690 (void) printf("successful split - results:\n");
3691 mutex_enter(&spa_namespace_lock);
3692 show_pool_stats(spa);
3693 show_pool_stats(spa_lookup("splitp"));
3694 mutex_exit(&spa_namespace_lock);
3695 ++zs->zs_splits;
3696 --zs->zs_mirrors;
3697 }
3698 mutex_exit(&ztest_vdev_lock);
3699 }
3700
3701 /*
3702 * Verify that we can attach and detach devices.
3703 */
3704 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3705 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3706 {
3707 (void) zd, (void) id;
3708 ztest_shared_t *zs = ztest_shared;
3709 spa_t *spa = ztest_spa;
3710 spa_aux_vdev_t *sav = &spa->spa_spares;
3711 vdev_t *rvd = spa->spa_root_vdev;
3712 vdev_t *oldvd, *newvd, *pvd;
3713 nvlist_t *root;
3714 uint64_t leaves;
3715 uint64_t leaf, top;
3716 uint64_t ashift = ztest_get_ashift();
3717 uint64_t oldguid, pguid;
3718 uint64_t oldsize, newsize;
3719 uint64_t raidz_children;
3720 char *oldpath, *newpath;
3721 int replacing;
3722 int oldvd_has_siblings = B_FALSE;
3723 int newvd_is_spare = B_FALSE;
3724 int newvd_is_dspare = B_FALSE;
3725 int oldvd_is_log;
3726 int oldvd_is_special;
3727 int error, expected_error;
3728
3729 if (ztest_opts.zo_mmp_test)
3730 return;
3731
3732 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3733 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3734
3735 mutex_enter(&ztest_vdev_lock);
3736 raidz_children = ztest_get_raidz_children(spa);
3737 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3738
3739 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3740
3741 /*
3742 * If a vdev is in the process of being removed, its removal may
3743 * finish while we are in progress, leading to an unexpected error
3744 * value. Don't bother trying to attach while we are in the middle
3745 * of removal.
3746 */
3747 if (ztest_device_removal_active) {
3748 spa_config_exit(spa, SCL_ALL, FTAG);
3749 goto out;
3750 }
3751
3752 /*
3753 * RAIDZ leaf VDEV mirrors are not currently supported while a
3754 * RAIDZ expansion is in progress.
3755 */
3756 if (ztest_opts.zo_raid_do_expand) {
3757 spa_config_exit(spa, SCL_ALL, FTAG);
3758 goto out;
3759 }
3760
3761 /*
3762 * Decide whether to do an attach or a replace.
3763 */
3764 replacing = ztest_random(2);
3765
3766 /*
3767 * Pick a random top-level vdev.
3768 */
3769 top = ztest_random_vdev_top(spa, B_TRUE);
3770
3771 /*
3772 * Pick a random leaf within it.
3773 */
3774 leaf = ztest_random(leaves);
3775
3776 /*
3777 * Locate this vdev.
3778 */
3779 oldvd = rvd->vdev_child[top];
3780
3781 /* pick a child from the mirror */
3782 if (zs->zs_mirrors >= 1) {
3783 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3784 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3785 oldvd = oldvd->vdev_child[leaf / raidz_children];
3786 }
3787
3788 /* pick a child out of the raidz group */
3789 if (ztest_opts.zo_raid_children > 1) {
3790 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3791 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3792 else
3793 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3794 oldvd = oldvd->vdev_child[leaf % raidz_children];
3795 }
3796
3797 /*
3798 * If we're already doing an attach or replace, oldvd may be a
3799 * mirror vdev -- in which case, pick a random child.
3800 */
3801 while (oldvd->vdev_children != 0) {
3802 oldvd_has_siblings = B_TRUE;
3803 ASSERT3U(oldvd->vdev_children, >=, 2);
3804 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3805 }
3806
3807 oldguid = oldvd->vdev_guid;
3808 oldsize = vdev_get_min_asize(oldvd);
3809 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3810 oldvd_is_special =
3811 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3812 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3813 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3814 pvd = oldvd->vdev_parent;
3815 pguid = pvd->vdev_guid;
3816
3817 /*
3818 * If oldvd has siblings, then half of the time, detach it. Prior
3819 * to the detach the pool is scrubbed in order to prevent creating
3820 * unrepairable blocks as a result of the data corruption injection.
3821 */
3822 if (oldvd_has_siblings && ztest_random(2) == 0) {
3823 spa_config_exit(spa, SCL_ALL, FTAG);
3824
3825 error = ztest_scrub_impl(spa);
3826 if (error)
3827 goto out;
3828
3829 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3830 if (error != 0 && error != ENODEV && error != EBUSY &&
3831 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3832 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3833 fatal(B_FALSE, "detach (%s) returned %d",
3834 oldpath, error);
3835 goto out;
3836 }
3837
3838 /*
3839 * For the new vdev, choose with equal probability between the two
3840 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3841 */
3842 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3843 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3844 newvd_is_spare = B_TRUE;
3845
3846 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3847 newvd_is_dspare = B_TRUE;
3848
3849 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3850 } else {
3851 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3852 ztest_opts.zo_dir, ztest_opts.zo_pool,
3853 top * leaves + leaf);
3854 if (ztest_random(2) == 0)
3855 newpath[strlen(newpath) - 1] = 'b';
3856 newvd = vdev_lookup_by_path(rvd, newpath);
3857 }
3858
3859 if (newvd) {
3860 /*
3861 * Reopen to ensure the vdev's asize field isn't stale.
3862 */
3863 vdev_reopen(newvd);
3864 newsize = vdev_get_min_asize(newvd);
3865 } else {
3866 /*
3867 * Make newsize a little bigger or smaller than oldsize.
3868 * If it's smaller, the attach should fail.
3869 * If it's larger, and we're doing a replace,
3870 * we should get dynamic LUN growth when we're done.
3871 */
3872 newsize = 10 * oldsize / (9 + ztest_random(3));
3873 }
3874
3875 /*
3876 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3877 * unless it's a replace; in that case any non-replacing parent is OK.
3878 *
3879 * If newvd is already part of the pool, it should fail with EBUSY.
3880 *
3881 * If newvd is too small, it should fail with EOVERFLOW.
3882 *
3883 * If newvd is a distributed spare and it's being attached to a
3884 * dRAID which is not its parent it should fail with EINVAL.
3885 */
3886 if (pvd->vdev_ops != &vdev_mirror_ops &&
3887 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3888 pvd->vdev_ops == &vdev_replacing_ops ||
3889 pvd->vdev_ops == &vdev_spare_ops))
3890 expected_error = ENOTSUP;
3891 else if (newvd_is_spare &&
3892 (!replacing || oldvd_is_log || oldvd_is_special))
3893 expected_error = ENOTSUP;
3894 else if (newvd == oldvd)
3895 expected_error = replacing ? 0 : EBUSY;
3896 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3897 expected_error = EBUSY;
3898 else if (!newvd_is_dspare && newsize < oldsize)
3899 expected_error = EOVERFLOW;
3900 else if (ashift > oldvd->vdev_top->vdev_ashift)
3901 expected_error = EDOM;
3902 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3903 expected_error = EINVAL;
3904 else
3905 expected_error = 0;
3906
3907 spa_config_exit(spa, SCL_ALL, FTAG);
3908
3909 /*
3910 * Build the nvlist describing newpath.
3911 */
3912 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3913 ashift, NULL, 0, 0, 1);
3914
3915 /*
3916 * When supported select either a healing or sequential resilver.
3917 */
3918 boolean_t rebuilding = B_FALSE;
3919 if (pvd->vdev_ops == &vdev_mirror_ops ||
3920 pvd->vdev_ops == &vdev_root_ops) {
3921 rebuilding = !!ztest_random(2);
3922 }
3923
3924 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3925
3926 fnvlist_free(root);
3927
3928 /*
3929 * If our parent was the replacing vdev, but the replace completed,
3930 * then instead of failing with ENOTSUP we may either succeed,
3931 * fail with ENODEV, or fail with EOVERFLOW.
3932 */
3933 if (expected_error == ENOTSUP &&
3934 (error == 0 || error == ENODEV || error == EOVERFLOW))
3935 expected_error = error;
3936
3937 /*
3938 * If someone grew the LUN, the replacement may be too small.
3939 */
3940 if (error == EOVERFLOW || error == EBUSY)
3941 expected_error = error;
3942
3943 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3944 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3945 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3946 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3947 expected_error = error;
3948
3949 if (error != expected_error && expected_error != EBUSY) {
3950 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3951 "returned %d, expected %d",
3952 oldpath, oldsize, newpath,
3953 newsize, replacing, error, expected_error);
3954 }
3955 out:
3956 mutex_exit(&ztest_vdev_lock);
3957
3958 umem_free(oldpath, MAXPATHLEN);
3959 umem_free(newpath, MAXPATHLEN);
3960 }
3961
3962 static void
raidz_scratch_verify(void)3963 raidz_scratch_verify(void)
3964 {
3965 spa_t *spa;
3966 uint64_t write_size, logical_size, offset;
3967 raidz_reflow_scratch_state_t state;
3968 vdev_raidz_expand_t *vre;
3969 vdev_t *raidvd;
3970
3971 ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3972
3973 if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3974 return;
3975
3976 kernel_init(SPA_MODE_READ);
3977
3978 mutex_enter(&spa_namespace_lock);
3979 spa = spa_lookup(ztest_opts.zo_pool);
3980 ASSERT(spa);
3981 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3982 mutex_exit(&spa_namespace_lock);
3983
3984 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3985
3986 ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3987
3988 mutex_enter(&ztest_vdev_lock);
3989
3990 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3991
3992 vre = spa->spa_raidz_expand;
3993 if (vre == NULL)
3994 goto out;
3995
3996 raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3997 offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3998 state = RRSS_GET_STATE(&spa->spa_uberblock);
3999 write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
4000 uint64_t);
4001 logical_size = write_size * raidvd->vdev_children;
4002
4003 switch (state) {
4004 /*
4005 * Initial state of reflow process. RAIDZ expansion was
4006 * requested by user, but scratch object was not created.
4007 */
4008 case RRSS_SCRATCH_NOT_IN_USE:
4009 ASSERT3U(offset, ==, 0);
4010 break;
4011
4012 /*
4013 * Scratch object was synced and stored in boot area.
4014 */
4015 case RRSS_SCRATCH_VALID:
4016
4017 /*
4018 * Scratch object was synced back to raidz start offset,
4019 * raidz is ready for sector by sector reflow process.
4020 */
4021 case RRSS_SCRATCH_INVALID_SYNCED:
4022
4023 /*
4024 * Scratch object was synced back to raidz start offset
4025 * on zpool importing, raidz is ready for sector by sector
4026 * reflow process.
4027 */
4028 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4029 ASSERT3U(offset, ==, logical_size);
4030 break;
4031
4032 /*
4033 * Sector by sector reflow process started.
4034 */
4035 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4036 ASSERT3U(offset, >=, logical_size);
4037 break;
4038 }
4039
4040 out:
4041 spa_config_exit(spa, SCL_ALL, FTAG);
4042
4043 mutex_exit(&ztest_vdev_lock);
4044
4045 ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4046
4047 spa_close(spa, FTAG);
4048 kernel_fini();
4049 }
4050
4051 static void
ztest_scratch_thread(void * arg)4052 ztest_scratch_thread(void *arg)
4053 {
4054 (void) arg;
4055
4056 /* wait up to 10 seconds */
4057 for (int t = 100; t > 0; t -= 1) {
4058 if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4059 thread_exit();
4060
4061 (void) poll(NULL, 0, 100);
4062 }
4063
4064 /* killed when the scratch area progress reached a certain point */
4065 ztest_kill(ztest_shared);
4066 }
4067
4068 /*
4069 * Verify that we can attach raidz device.
4070 */
4071 void
ztest_vdev_raidz_attach(ztest_ds_t * zd,uint64_t id)4072 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4073 {
4074 (void) zd, (void) id;
4075 ztest_shared_t *zs = ztest_shared;
4076 spa_t *spa = ztest_spa;
4077 uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4078 kthread_t *scratch_thread = NULL;
4079 vdev_t *newvd, *pvd;
4080 nvlist_t *root;
4081 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4082 int error, expected_error = 0;
4083
4084 mutex_enter(&ztest_vdev_lock);
4085
4086 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4087
4088 /* Only allow attach when raid-kind = 'eraidz' */
4089 if (!ztest_opts.zo_raid_do_expand) {
4090 spa_config_exit(spa, SCL_ALL, FTAG);
4091 goto out;
4092 }
4093
4094 if (ztest_opts.zo_mmp_test) {
4095 spa_config_exit(spa, SCL_ALL, FTAG);
4096 goto out;
4097 }
4098
4099 if (ztest_device_removal_active) {
4100 spa_config_exit(spa, SCL_ALL, FTAG);
4101 goto out;
4102 }
4103
4104 pvd = vdev_lookup_top(spa, 0);
4105
4106 ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4107
4108 /*
4109 * Get size of a child of the raidz group,
4110 * make sure device is a bit bigger
4111 */
4112 newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4113 newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4114
4115 /*
4116 * Get next attached leaf id
4117 */
4118 raidz_children = ztest_get_raidz_children(spa);
4119 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4120 zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4121
4122 if (spa->spa_raidz_expand)
4123 expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4124
4125 spa_config_exit(spa, SCL_ALL, FTAG);
4126
4127 /*
4128 * Path to vdev to be attached
4129 */
4130 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4131 ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4132
4133 /*
4134 * Build the nvlist describing newpath.
4135 */
4136 root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4137 0, 0, 1);
4138
4139 /*
4140 * 50% of the time, set raidz_expand_pause_point to cause
4141 * raidz_reflow_scratch_sync() to pause at a certain point and
4142 * then kill the test after 10 seconds so raidz_scratch_verify()
4143 * can confirm consistency when the pool is imported.
4144 */
4145 if (ztest_random(2) == 0 && expected_error == 0) {
4146 raidz_expand_pause_point =
4147 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4148 scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4149 ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4150 }
4151
4152 error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4153
4154 nvlist_free(root);
4155
4156 if (error == EOVERFLOW || error == ENXIO ||
4157 error == ZFS_ERR_CHECKPOINT_EXISTS ||
4158 error == ZFS_ERR_DISCARDING_CHECKPOINT)
4159 expected_error = error;
4160
4161 if (error != 0 && error != expected_error) {
4162 fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4163 newpath, newsize, error, expected_error);
4164 }
4165
4166 if (raidz_expand_pause_point) {
4167 if (error != 0) {
4168 /*
4169 * Do not verify scratch object in case of error
4170 * returned by vdev attaching.
4171 */
4172 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4173 }
4174
4175 VERIFY0(thread_join(scratch_thread));
4176 }
4177 out:
4178 mutex_exit(&ztest_vdev_lock);
4179
4180 umem_free(newpath, MAXPATHLEN);
4181 }
4182
4183 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)4184 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4185 {
4186 (void) zd, (void) id;
4187 spa_t *spa = ztest_spa;
4188 vdev_t *vd;
4189 uint64_t guid;
4190 int error;
4191
4192 mutex_enter(&ztest_vdev_lock);
4193
4194 if (ztest_device_removal_active) {
4195 mutex_exit(&ztest_vdev_lock);
4196 return;
4197 }
4198
4199 /*
4200 * Remove a random top-level vdev and wait for removal to finish.
4201 */
4202 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4203 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4204 guid = vd->vdev_guid;
4205 spa_config_exit(spa, SCL_VDEV, FTAG);
4206
4207 error = spa_vdev_remove(spa, guid, B_FALSE);
4208 if (error == 0) {
4209 ztest_device_removal_active = B_TRUE;
4210 mutex_exit(&ztest_vdev_lock);
4211
4212 /*
4213 * spa->spa_vdev_removal is created in a sync task that
4214 * is initiated via dsl_sync_task_nowait(). Since the
4215 * task may not run before spa_vdev_remove() returns, we
4216 * must wait at least 1 txg to ensure that the removal
4217 * struct has been created.
4218 */
4219 txg_wait_synced(spa_get_dsl(spa), 0);
4220
4221 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4222 txg_wait_synced(spa_get_dsl(spa), 0);
4223 } else {
4224 mutex_exit(&ztest_vdev_lock);
4225 return;
4226 }
4227
4228 /*
4229 * The pool needs to be scrubbed after completing device removal.
4230 * Failure to do so may result in checksum errors due to the
4231 * strategy employed by ztest_fault_inject() when selecting which
4232 * offset are redundant and can be damaged.
4233 */
4234 error = spa_scan(spa, POOL_SCAN_SCRUB);
4235 if (error == 0) {
4236 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4237 txg_wait_synced(spa_get_dsl(spa), 0);
4238 }
4239
4240 mutex_enter(&ztest_vdev_lock);
4241 ztest_device_removal_active = B_FALSE;
4242 mutex_exit(&ztest_vdev_lock);
4243 }
4244
4245 /*
4246 * Callback function which expands the physical size of the vdev.
4247 */
4248 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)4249 grow_vdev(vdev_t *vd, void *arg)
4250 {
4251 spa_t *spa __maybe_unused = vd->vdev_spa;
4252 size_t *newsize = arg;
4253 size_t fsize;
4254 int fd;
4255
4256 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4257 ASSERT(vd->vdev_ops->vdev_op_leaf);
4258
4259 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4260 return (vd);
4261
4262 fsize = lseek(fd, 0, SEEK_END);
4263 VERIFY0(ftruncate(fd, *newsize));
4264
4265 if (ztest_opts.zo_verbose >= 6) {
4266 (void) printf("%s grew from %lu to %lu bytes\n",
4267 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4268 }
4269 (void) close(fd);
4270 return (NULL);
4271 }
4272
4273 /*
4274 * Callback function which expands a given vdev by calling vdev_online().
4275 */
4276 static vdev_t *
online_vdev(vdev_t * vd,void * arg)4277 online_vdev(vdev_t *vd, void *arg)
4278 {
4279 (void) arg;
4280 spa_t *spa = vd->vdev_spa;
4281 vdev_t *tvd = vd->vdev_top;
4282 uint64_t guid = vd->vdev_guid;
4283 uint64_t generation = spa->spa_config_generation + 1;
4284 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4285 int error;
4286
4287 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4288 ASSERT(vd->vdev_ops->vdev_op_leaf);
4289
4290 /* Calling vdev_online will initialize the new metaslabs */
4291 spa_config_exit(spa, SCL_STATE, spa);
4292 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4293 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4294
4295 /*
4296 * If vdev_online returned an error or the underlying vdev_open
4297 * failed then we abort the expand. The only way to know that
4298 * vdev_open fails is by checking the returned newstate.
4299 */
4300 if (error || newstate != VDEV_STATE_HEALTHY) {
4301 if (ztest_opts.zo_verbose >= 5) {
4302 (void) printf("Unable to expand vdev, state %u, "
4303 "error %d\n", newstate, error);
4304 }
4305 return (vd);
4306 }
4307 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4308
4309 /*
4310 * Since we dropped the lock we need to ensure that we're
4311 * still talking to the original vdev. It's possible this
4312 * vdev may have been detached/replaced while we were
4313 * trying to online it.
4314 */
4315 if (generation != spa->spa_config_generation) {
4316 if (ztest_opts.zo_verbose >= 5) {
4317 (void) printf("vdev configuration has changed, "
4318 "guid %"PRIu64", state %"PRIu64", "
4319 "expected gen %"PRIu64", got gen %"PRIu64"\n",
4320 guid,
4321 tvd->vdev_state,
4322 generation,
4323 spa->spa_config_generation);
4324 }
4325 return (vd);
4326 }
4327 return (NULL);
4328 }
4329
4330 /*
4331 * Traverse the vdev tree calling the supplied function.
4332 * We continue to walk the tree until we either have walked all
4333 * children or we receive a non-NULL return from the callback.
4334 * If a NULL callback is passed, then we just return back the first
4335 * leaf vdev we encounter.
4336 */
4337 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)4338 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4339 {
4340 uint_t c;
4341
4342 if (vd->vdev_ops->vdev_op_leaf) {
4343 if (func == NULL)
4344 return (vd);
4345 else
4346 return (func(vd, arg));
4347 }
4348
4349 for (c = 0; c < vd->vdev_children; c++) {
4350 vdev_t *cvd = vd->vdev_child[c];
4351 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4352 return (cvd);
4353 }
4354 return (NULL);
4355 }
4356
4357 /*
4358 * Verify that dynamic LUN growth works as expected.
4359 */
4360 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4361 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4362 {
4363 (void) zd, (void) id;
4364 spa_t *spa = ztest_spa;
4365 vdev_t *vd, *tvd;
4366 metaslab_class_t *mc;
4367 metaslab_group_t *mg;
4368 size_t psize, newsize;
4369 uint64_t top;
4370 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4371
4372 mutex_enter(&ztest_checkpoint_lock);
4373 mutex_enter(&ztest_vdev_lock);
4374 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4375
4376 /*
4377 * If there is a vdev removal in progress, it could complete while
4378 * we are running, in which case we would not be able to verify
4379 * that the metaslab_class space increased (because it decreases
4380 * when the device removal completes).
4381 */
4382 if (ztest_device_removal_active) {
4383 spa_config_exit(spa, SCL_STATE, spa);
4384 mutex_exit(&ztest_vdev_lock);
4385 mutex_exit(&ztest_checkpoint_lock);
4386 return;
4387 }
4388
4389 /*
4390 * If we are under raidz expansion, the test can failed because the
4391 * metaslabs count will not increase immediately after the vdev is
4392 * expanded. It will happen only after raidz expansion completion.
4393 */
4394 if (spa->spa_raidz_expand) {
4395 spa_config_exit(spa, SCL_STATE, spa);
4396 mutex_exit(&ztest_vdev_lock);
4397 mutex_exit(&ztest_checkpoint_lock);
4398 return;
4399 }
4400
4401 top = ztest_random_vdev_top(spa, B_TRUE);
4402
4403 tvd = spa->spa_root_vdev->vdev_child[top];
4404 mg = tvd->vdev_mg;
4405 mc = mg->mg_class;
4406 old_ms_count = tvd->vdev_ms_count;
4407 old_class_space = metaslab_class_get_space(mc);
4408
4409 /*
4410 * Determine the size of the first leaf vdev associated with
4411 * our top-level device.
4412 */
4413 vd = vdev_walk_tree(tvd, NULL, NULL);
4414 ASSERT3P(vd, !=, NULL);
4415 ASSERT(vd->vdev_ops->vdev_op_leaf);
4416
4417 psize = vd->vdev_psize;
4418
4419 /*
4420 * We only try to expand the vdev if it's healthy, less than 4x its
4421 * original size, and it has a valid psize.
4422 */
4423 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4424 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4425 spa_config_exit(spa, SCL_STATE, spa);
4426 mutex_exit(&ztest_vdev_lock);
4427 mutex_exit(&ztest_checkpoint_lock);
4428 return;
4429 }
4430 ASSERT3U(psize, >, 0);
4431 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4432 ASSERT3U(newsize, >, psize);
4433
4434 if (ztest_opts.zo_verbose >= 6) {
4435 (void) printf("Expanding LUN %s from %lu to %lu\n",
4436 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4437 }
4438
4439 /*
4440 * Growing the vdev is a two step process:
4441 * 1). expand the physical size (i.e. relabel)
4442 * 2). online the vdev to create the new metaslabs
4443 */
4444 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4445 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4446 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4447 if (ztest_opts.zo_verbose >= 5) {
4448 (void) printf("Could not expand LUN because "
4449 "the vdev configuration changed.\n");
4450 }
4451 spa_config_exit(spa, SCL_STATE, spa);
4452 mutex_exit(&ztest_vdev_lock);
4453 mutex_exit(&ztest_checkpoint_lock);
4454 return;
4455 }
4456
4457 spa_config_exit(spa, SCL_STATE, spa);
4458
4459 /*
4460 * Expanding the LUN will update the config asynchronously,
4461 * thus we must wait for the async thread to complete any
4462 * pending tasks before proceeding.
4463 */
4464 for (;;) {
4465 boolean_t done;
4466 mutex_enter(&spa->spa_async_lock);
4467 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4468 mutex_exit(&spa->spa_async_lock);
4469 if (done)
4470 break;
4471 txg_wait_synced(spa_get_dsl(spa), 0);
4472 (void) poll(NULL, 0, 100);
4473 }
4474
4475 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4476
4477 tvd = spa->spa_root_vdev->vdev_child[top];
4478 new_ms_count = tvd->vdev_ms_count;
4479 new_class_space = metaslab_class_get_space(mc);
4480
4481 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4482 if (ztest_opts.zo_verbose >= 5) {
4483 (void) printf("Could not verify LUN expansion due to "
4484 "intervening vdev offline or remove.\n");
4485 }
4486 spa_config_exit(spa, SCL_STATE, spa);
4487 mutex_exit(&ztest_vdev_lock);
4488 mutex_exit(&ztest_checkpoint_lock);
4489 return;
4490 }
4491
4492 /*
4493 * Make sure we were able to grow the vdev.
4494 */
4495 if (new_ms_count <= old_ms_count) {
4496 fatal(B_FALSE,
4497 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4498 old_ms_count, new_ms_count);
4499 }
4500
4501 /*
4502 * Make sure we were able to grow the pool.
4503 */
4504 if (new_class_space <= old_class_space) {
4505 fatal(B_FALSE,
4506 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4507 old_class_space, new_class_space);
4508 }
4509
4510 if (ztest_opts.zo_verbose >= 5) {
4511 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4512
4513 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4514 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4515 (void) printf("%s grew from %s to %s\n",
4516 spa->spa_name, oldnumbuf, newnumbuf);
4517 }
4518
4519 spa_config_exit(spa, SCL_STATE, spa);
4520 mutex_exit(&ztest_vdev_lock);
4521 mutex_exit(&ztest_checkpoint_lock);
4522 }
4523
4524 /*
4525 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4526 */
4527 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4528 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4529 {
4530 (void) arg, (void) cr;
4531
4532 /*
4533 * Create the objects common to all ztest datasets.
4534 */
4535 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4536 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4537 }
4538
4539 static int
ztest_dataset_create(char * dsname)4540 ztest_dataset_create(char *dsname)
4541 {
4542 int err;
4543 uint64_t rand;
4544 dsl_crypto_params_t *dcp = NULL;
4545
4546 /*
4547 * 50% of the time, we create encrypted datasets
4548 * using a random cipher suite and a hard-coded
4549 * wrapping key.
4550 */
4551 rand = ztest_random(2);
4552 if (rand != 0) {
4553 nvlist_t *crypto_args = fnvlist_alloc();
4554 nvlist_t *props = fnvlist_alloc();
4555
4556 /* slight bias towards the default cipher suite */
4557 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4558 if (rand < ZIO_CRYPT_AES_128_CCM)
4559 rand = ZIO_CRYPT_ON;
4560
4561 fnvlist_add_uint64(props,
4562 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4563 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4564 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4565
4566 /*
4567 * These parameters aren't really used by the kernel. They
4568 * are simply stored so that userspace knows how to load
4569 * the wrapping key.
4570 */
4571 fnvlist_add_uint64(props,
4572 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4573 fnvlist_add_string(props,
4574 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4575 fnvlist_add_uint64(props,
4576 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4577 fnvlist_add_uint64(props,
4578 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4579
4580 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4581 crypto_args, &dcp));
4582
4583 /*
4584 * Cycle through all available encryption implementations
4585 * to verify interoperability.
4586 */
4587 VERIFY0(gcm_impl_set("cycle"));
4588 VERIFY0(aes_impl_set("cycle"));
4589
4590 fnvlist_free(crypto_args);
4591 fnvlist_free(props);
4592 }
4593
4594 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4595 ztest_objset_create_cb, NULL);
4596 dsl_crypto_params_free(dcp, !!err);
4597
4598 rand = ztest_random(100);
4599 if (err || rand < 80)
4600 return (err);
4601
4602 if (ztest_opts.zo_verbose >= 5)
4603 (void) printf("Setting dataset %s to sync always\n", dsname);
4604 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4605 ZFS_SYNC_ALWAYS, B_FALSE));
4606 }
4607
4608 static int
ztest_objset_destroy_cb(const char * name,void * arg)4609 ztest_objset_destroy_cb(const char *name, void *arg)
4610 {
4611 (void) arg;
4612 objset_t *os;
4613 dmu_object_info_t doi;
4614 int error;
4615
4616 /*
4617 * Verify that the dataset contains a directory object.
4618 */
4619 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4620 B_TRUE, FTAG, &os));
4621 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4622 if (error != ENOENT) {
4623 /* We could have crashed in the middle of destroying it */
4624 ASSERT0(error);
4625 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4626 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4627 }
4628 dmu_objset_disown(os, B_TRUE, FTAG);
4629
4630 /*
4631 * Destroy the dataset.
4632 */
4633 if (strchr(name, '@') != NULL) {
4634 error = dsl_destroy_snapshot(name, B_TRUE);
4635 if (error != ECHRNG) {
4636 /*
4637 * The program was executed, but encountered a runtime
4638 * error, such as insufficient slop, or a hold on the
4639 * dataset.
4640 */
4641 ASSERT0(error);
4642 }
4643 } else {
4644 error = dsl_destroy_head(name);
4645 if (error == ENOSPC) {
4646 /* There could be checkpoint or insufficient slop */
4647 ztest_record_enospc(FTAG);
4648 } else if (error != EBUSY) {
4649 /* There could be a hold on this dataset */
4650 ASSERT0(error);
4651 }
4652 }
4653 return (0);
4654 }
4655
4656 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4657 ztest_snapshot_create(char *osname, uint64_t id)
4658 {
4659 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4660 int error;
4661
4662 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4663
4664 error = dmu_objset_snapshot_one(osname, snapname);
4665 if (error == ENOSPC) {
4666 ztest_record_enospc(FTAG);
4667 return (B_FALSE);
4668 }
4669 if (error != 0 && error != EEXIST && error != ECHRNG) {
4670 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4671 snapname, error);
4672 }
4673 return (B_TRUE);
4674 }
4675
4676 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4677 ztest_snapshot_destroy(char *osname, uint64_t id)
4678 {
4679 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4680 int error;
4681
4682 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4683 osname, id);
4684
4685 error = dsl_destroy_snapshot(snapname, B_FALSE);
4686 if (error != 0 && error != ENOENT && error != ECHRNG)
4687 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4688 snapname, error);
4689 return (B_TRUE);
4690 }
4691
4692 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4693 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4694 {
4695 (void) zd;
4696 ztest_ds_t *zdtmp;
4697 int iters;
4698 int error;
4699 objset_t *os, *os2;
4700 char name[ZFS_MAX_DATASET_NAME_LEN];
4701 zilog_t *zilog;
4702 int i;
4703
4704 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4705
4706 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4707
4708 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4709 ztest_opts.zo_pool, id);
4710
4711 /*
4712 * If this dataset exists from a previous run, process its replay log
4713 * half of the time. If we don't replay it, then dsl_destroy_head()
4714 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4715 */
4716 if (ztest_random(2) == 0 &&
4717 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4718 B_TRUE, FTAG, &os) == 0) {
4719 ztest_zd_init(zdtmp, NULL, os);
4720 zil_replay(os, zdtmp, ztest_replay_vector);
4721 ztest_zd_fini(zdtmp);
4722 dmu_objset_disown(os, B_TRUE, FTAG);
4723 }
4724
4725 /*
4726 * There may be an old instance of the dataset we're about to
4727 * create lying around from a previous run. If so, destroy it
4728 * and all of its snapshots.
4729 */
4730 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4731 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4732
4733 /*
4734 * Verify that the destroyed dataset is no longer in the namespace.
4735 * It may still be present if the destroy above fails with ENOSPC.
4736 */
4737 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4738 FTAG, &os);
4739 if (error == 0) {
4740 dmu_objset_disown(os, B_TRUE, FTAG);
4741 ztest_record_enospc(FTAG);
4742 goto out;
4743 }
4744 VERIFY3U(ENOENT, ==, error);
4745
4746 /*
4747 * Verify that we can create a new dataset.
4748 */
4749 error = ztest_dataset_create(name);
4750 if (error) {
4751 if (error == ENOSPC) {
4752 ztest_record_enospc(FTAG);
4753 goto out;
4754 }
4755 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4756 }
4757
4758 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4759 FTAG, &os));
4760
4761 ztest_zd_init(zdtmp, NULL, os);
4762
4763 /*
4764 * Open the intent log for it.
4765 */
4766 zilog = zil_open(os, ztest_get_data, NULL);
4767
4768 /*
4769 * Put some objects in there, do a little I/O to them,
4770 * and randomly take a couple of snapshots along the way.
4771 */
4772 iters = ztest_random(5);
4773 for (i = 0; i < iters; i++) {
4774 ztest_dmu_object_alloc_free(zdtmp, id);
4775 if (ztest_random(iters) == 0)
4776 (void) ztest_snapshot_create(name, i);
4777 }
4778
4779 /*
4780 * Verify that we cannot create an existing dataset.
4781 */
4782 VERIFY3U(EEXIST, ==,
4783 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4784
4785 /*
4786 * Verify that we can hold an objset that is also owned.
4787 */
4788 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4789 dmu_objset_rele(os2, FTAG);
4790
4791 /*
4792 * Verify that we cannot own an objset that is already owned.
4793 */
4794 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4795 B_FALSE, B_TRUE, FTAG, &os2));
4796
4797 zil_close(zilog);
4798 dmu_objset_disown(os, B_TRUE, FTAG);
4799 ztest_zd_fini(zdtmp);
4800 out:
4801 (void) pthread_rwlock_unlock(&ztest_name_lock);
4802
4803 umem_free(zdtmp, sizeof (ztest_ds_t));
4804 }
4805
4806 /*
4807 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4808 */
4809 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4810 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4811 {
4812 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4813 (void) ztest_snapshot_destroy(zd->zd_name, id);
4814 (void) ztest_snapshot_create(zd->zd_name, id);
4815 (void) pthread_rwlock_unlock(&ztest_name_lock);
4816 }
4817
4818 /*
4819 * Cleanup non-standard snapshots and clones.
4820 */
4821 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4822 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4823 {
4824 char *snap1name;
4825 char *clone1name;
4826 char *snap2name;
4827 char *clone2name;
4828 char *snap3name;
4829 int error;
4830
4831 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4836
4837 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4838 osname, id);
4839 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4840 osname, id);
4841 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4842 clone1name, id);
4843 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4844 osname, id);
4845 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4846 clone1name, id);
4847
4848 error = dsl_destroy_head(clone2name);
4849 if (error && error != ENOENT)
4850 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4851 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4852 if (error && error != ENOENT)
4853 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4854 snap3name, error);
4855 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4856 if (error && error != ENOENT)
4857 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4858 snap2name, error);
4859 error = dsl_destroy_head(clone1name);
4860 if (error && error != ENOENT)
4861 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4862 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4863 if (error && error != ENOENT)
4864 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4865 snap1name, error);
4866
4867 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4868 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4869 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4870 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4871 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4872 }
4873
4874 /*
4875 * Verify dsl_dataset_promote handles EBUSY
4876 */
4877 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4878 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4879 {
4880 objset_t *os;
4881 char *snap1name;
4882 char *clone1name;
4883 char *snap2name;
4884 char *clone2name;
4885 char *snap3name;
4886 char *osname = zd->zd_name;
4887 int error;
4888
4889 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4894
4895 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4896
4897 ztest_dsl_dataset_cleanup(osname, id);
4898
4899 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4900 osname, id);
4901 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4902 osname, id);
4903 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4904 clone1name, id);
4905 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4906 osname, id);
4907 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4908 clone1name, id);
4909
4910 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4911 if (error && error != EEXIST) {
4912 if (error == ENOSPC) {
4913 ztest_record_enospc(FTAG);
4914 goto out;
4915 }
4916 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4917 }
4918
4919 error = dmu_objset_clone(clone1name, snap1name);
4920 if (error) {
4921 if (error == ENOSPC) {
4922 ztest_record_enospc(FTAG);
4923 goto out;
4924 }
4925 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4926 }
4927
4928 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4929 if (error && error != EEXIST) {
4930 if (error == ENOSPC) {
4931 ztest_record_enospc(FTAG);
4932 goto out;
4933 }
4934 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4935 }
4936
4937 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4938 if (error && error != EEXIST) {
4939 if (error == ENOSPC) {
4940 ztest_record_enospc(FTAG);
4941 goto out;
4942 }
4943 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4944 }
4945
4946 error = dmu_objset_clone(clone2name, snap3name);
4947 if (error) {
4948 if (error == ENOSPC) {
4949 ztest_record_enospc(FTAG);
4950 goto out;
4951 }
4952 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4953 }
4954
4955 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4956 FTAG, &os);
4957 if (error)
4958 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4959 error = dsl_dataset_promote(clone2name, NULL);
4960 if (error == ENOSPC) {
4961 dmu_objset_disown(os, B_TRUE, FTAG);
4962 ztest_record_enospc(FTAG);
4963 goto out;
4964 }
4965 if (error != EBUSY)
4966 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4967 clone2name, error);
4968 dmu_objset_disown(os, B_TRUE, FTAG);
4969
4970 out:
4971 ztest_dsl_dataset_cleanup(osname, id);
4972
4973 (void) pthread_rwlock_unlock(&ztest_name_lock);
4974
4975 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4976 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4977 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4978 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4979 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4980 }
4981
4982 #undef OD_ARRAY_SIZE
4983 #define OD_ARRAY_SIZE 4
4984
4985 /*
4986 * Verify that dmu_object_{alloc,free} work as expected.
4987 */
4988 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4989 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4990 {
4991 ztest_od_t *od;
4992 int batchsize;
4993 int size;
4994 int b;
4995
4996 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4997 od = umem_alloc(size, UMEM_NOFAIL);
4998 batchsize = OD_ARRAY_SIZE;
4999
5000 for (b = 0; b < batchsize; b++)
5001 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5002 0, 0, 0);
5003
5004 /*
5005 * Destroy the previous batch of objects, create a new batch,
5006 * and do some I/O on the new objects.
5007 */
5008 if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5009 zd->zd_od = NULL;
5010 umem_free(od, size);
5011 return;
5012 }
5013
5014 while (ztest_random(4 * batchsize) != 0)
5015 ztest_io(zd, od[ztest_random(batchsize)].od_object,
5016 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5017
5018 umem_free(od, size);
5019 }
5020
5021 /*
5022 * Rewind the global allocator to verify object allocation backfilling.
5023 */
5024 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)5025 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5026 {
5027 (void) id;
5028 objset_t *os = zd->zd_os;
5029 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5030 uint64_t object;
5031
5032 /*
5033 * Rewind the global allocator randomly back to a lower object number
5034 * to force backfilling and reclamation of recently freed dnodes.
5035 */
5036 mutex_enter(&os->os_obj_lock);
5037 object = ztest_random(os->os_obj_next_chunk);
5038 os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5039 uint64_t);
5040 mutex_exit(&os->os_obj_lock);
5041 }
5042
5043 #undef OD_ARRAY_SIZE
5044 #define OD_ARRAY_SIZE 2
5045
5046 /*
5047 * Verify that dmu_{read,write} work as expected.
5048 */
5049 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)5050 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5051 {
5052 int size;
5053 ztest_od_t *od;
5054
5055 objset_t *os = zd->zd_os;
5056 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5057 od = umem_alloc(size, UMEM_NOFAIL);
5058 dmu_tx_t *tx;
5059 int freeit, error;
5060 uint64_t i, n, s, txg;
5061 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5062 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5063 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5064 uint64_t regions = 997;
5065 uint64_t stride = 123456789ULL;
5066 uint64_t width = 40;
5067 int free_percent = 5;
5068 uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5069
5070 /*
5071 * We will randomly set when to do O_DIRECT on a read.
5072 */
5073 if (ztest_random(4) == 0)
5074 dmu_read_flags |= DMU_DIRECTIO;
5075
5076 /*
5077 * This test uses two objects, packobj and bigobj, that are always
5078 * updated together (i.e. in the same tx) so that their contents are
5079 * in sync and can be compared. Their contents relate to each other
5080 * in a simple way: packobj is a dense array of 'bufwad' structures,
5081 * while bigobj is a sparse array of the same bufwads. Specifically,
5082 * for any index n, there are three bufwads that should be identical:
5083 *
5084 * packobj, at offset n * sizeof (bufwad_t)
5085 * bigobj, at the head of the nth chunk
5086 * bigobj, at the tail of the nth chunk
5087 *
5088 * The chunk size is arbitrary. It doesn't have to be a power of two,
5089 * and it doesn't have any relation to the object blocksize.
5090 * The only requirement is that it can hold at least two bufwads.
5091 *
5092 * Normally, we write the bufwad to each of these locations.
5093 * However, free_percent of the time we instead write zeroes to
5094 * packobj and perform a dmu_free_range() on bigobj. By comparing
5095 * bigobj to packobj, we can verify that the DMU is correctly
5096 * tracking which parts of an object are allocated and free,
5097 * and that the contents of the allocated blocks are correct.
5098 */
5099
5100 /*
5101 * Read the directory info. If it's the first time, set things up.
5102 */
5103 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5104 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5105 chunksize);
5106
5107 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5108 umem_free(od, size);
5109 return;
5110 }
5111
5112 bigobj = od[0].od_object;
5113 packobj = od[1].od_object;
5114 chunksize = od[0].od_gen;
5115 ASSERT3U(chunksize, ==, od[1].od_gen);
5116
5117 /*
5118 * Prefetch a random chunk of the big object.
5119 * Our aim here is to get some async reads in flight
5120 * for blocks that we may free below; the DMU should
5121 * handle this race correctly.
5122 */
5123 n = ztest_random(regions) * stride + ztest_random(width);
5124 s = 1 + ztest_random(2 * width - 1);
5125 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5126 ZIO_PRIORITY_SYNC_READ);
5127
5128 /*
5129 * Pick a random index and compute the offsets into packobj and bigobj.
5130 */
5131 n = ztest_random(regions) * stride + ztest_random(width);
5132 s = 1 + ztest_random(width - 1);
5133
5134 packoff = n * sizeof (bufwad_t);
5135 packsize = s * sizeof (bufwad_t);
5136
5137 bigoff = n * chunksize;
5138 bigsize = s * chunksize;
5139
5140 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5141 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5142
5143 /*
5144 * free_percent of the time, free a range of bigobj rather than
5145 * overwriting it.
5146 */
5147 freeit = (ztest_random(100) < free_percent);
5148
5149 /*
5150 * Read the current contents of our objects.
5151 */
5152 error = dmu_read(os, packobj, packoff, packsize, packbuf,
5153 dmu_read_flags);
5154 ASSERT0(error);
5155 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5156 dmu_read_flags);
5157 ASSERT0(error);
5158
5159 /*
5160 * Get a tx for the mods to both packobj and bigobj.
5161 */
5162 tx = dmu_tx_create(os);
5163
5164 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5165
5166 if (freeit)
5167 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5168 else
5169 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5170
5171 /* This accounts for setting the checksum/compression. */
5172 dmu_tx_hold_bonus(tx, bigobj);
5173
5174 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5175 if (txg == 0) {
5176 umem_free(packbuf, packsize);
5177 umem_free(bigbuf, bigsize);
5178 umem_free(od, size);
5179 return;
5180 }
5181
5182 enum zio_checksum cksum;
5183 do {
5184 cksum = (enum zio_checksum)
5185 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5186 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5187 dmu_object_set_checksum(os, bigobj, cksum, tx);
5188
5189 enum zio_compress comp;
5190 do {
5191 comp = (enum zio_compress)
5192 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5193 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5194 dmu_object_set_compress(os, bigobj, comp, tx);
5195
5196 /*
5197 * For each index from n to n + s, verify that the existing bufwad
5198 * in packobj matches the bufwads at the head and tail of the
5199 * corresponding chunk in bigobj. Then update all three bufwads
5200 * with the new values we want to write out.
5201 */
5202 for (i = 0; i < s; i++) {
5203 /* LINTED */
5204 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5205 /* LINTED */
5206 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5207 /* LINTED */
5208 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5209
5210 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5211 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5212
5213 if (pack->bw_txg > txg)
5214 fatal(B_FALSE,
5215 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5216 pack->bw_txg, txg);
5217
5218 if (pack->bw_data != 0 && pack->bw_index != n + i)
5219 fatal(B_FALSE, "wrong index: "
5220 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5221 pack->bw_index, n, i);
5222
5223 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5224 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5225 pack, bigH);
5226
5227 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5228 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5229 pack, bigT);
5230
5231 if (freeit) {
5232 memset(pack, 0, sizeof (bufwad_t));
5233 } else {
5234 pack->bw_index = n + i;
5235 pack->bw_txg = txg;
5236 pack->bw_data = 1 + ztest_random(-2ULL);
5237 }
5238 *bigH = *pack;
5239 *bigT = *pack;
5240 }
5241
5242 /*
5243 * We've verified all the old bufwads, and made new ones.
5244 * Now write them out.
5245 */
5246 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5247
5248 if (freeit) {
5249 if (ztest_opts.zo_verbose >= 7) {
5250 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
5251 " txg %"PRIx64"\n",
5252 bigoff, bigsize, txg);
5253 }
5254 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5255 } else {
5256 if (ztest_opts.zo_verbose >= 7) {
5257 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5258 " txg %"PRIx64"\n",
5259 bigoff, bigsize, txg);
5260 }
5261 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5262 }
5263
5264 dmu_tx_commit(tx);
5265
5266 /*
5267 * Sanity check the stuff we just wrote.
5268 */
5269 {
5270 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5271 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5272
5273 VERIFY0(dmu_read(os, packobj, packoff,
5274 packsize, packcheck, dmu_read_flags));
5275 VERIFY0(dmu_read(os, bigobj, bigoff,
5276 bigsize, bigcheck, dmu_read_flags));
5277
5278 ASSERT0(memcmp(packbuf, packcheck, packsize));
5279 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5280
5281 umem_free(packcheck, packsize);
5282 umem_free(bigcheck, bigsize);
5283 }
5284
5285 umem_free(packbuf, packsize);
5286 umem_free(bigbuf, bigsize);
5287 umem_free(od, size);
5288 }
5289
5290 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)5291 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5292 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5293 {
5294 uint64_t i;
5295 bufwad_t *pack;
5296 bufwad_t *bigH;
5297 bufwad_t *bigT;
5298
5299 /*
5300 * For each index from n to n + s, verify that the existing bufwad
5301 * in packobj matches the bufwads at the head and tail of the
5302 * corresponding chunk in bigobj. Then update all three bufwads
5303 * with the new values we want to write out.
5304 */
5305 for (i = 0; i < s; i++) {
5306 /* LINTED */
5307 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5308 /* LINTED */
5309 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5310 /* LINTED */
5311 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5312
5313 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5314 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5315
5316 if (pack->bw_txg > txg)
5317 fatal(B_FALSE,
5318 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5319 pack->bw_txg, txg);
5320
5321 if (pack->bw_data != 0 && pack->bw_index != n + i)
5322 fatal(B_FALSE, "wrong index: "
5323 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5324 pack->bw_index, n, i);
5325
5326 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5327 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5328 pack, bigH);
5329
5330 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5331 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5332 pack, bigT);
5333
5334 pack->bw_index = n + i;
5335 pack->bw_txg = txg;
5336 pack->bw_data = 1 + ztest_random(-2ULL);
5337
5338 *bigH = *pack;
5339 *bigT = *pack;
5340 }
5341 }
5342
5343 #undef OD_ARRAY_SIZE
5344 #define OD_ARRAY_SIZE 2
5345
5346 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)5347 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5348 {
5349 objset_t *os = zd->zd_os;
5350 ztest_od_t *od;
5351 dmu_tx_t *tx;
5352 uint64_t i;
5353 int error;
5354 int size;
5355 uint64_t n, s, txg;
5356 bufwad_t *packbuf, *bigbuf;
5357 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5358 uint64_t blocksize = ztest_random_blocksize();
5359 uint64_t chunksize = blocksize;
5360 uint64_t regions = 997;
5361 uint64_t stride = 123456789ULL;
5362 uint64_t width = 9;
5363 dmu_buf_t *bonus_db;
5364 arc_buf_t **bigbuf_arcbufs;
5365 dmu_object_info_t doi;
5366 uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5367
5368 /*
5369 * We will randomly set when to do O_DIRECT on a read.
5370 */
5371 if (ztest_random(4) == 0)
5372 dmu_read_flags |= DMU_DIRECTIO;
5373
5374 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5375 od = umem_alloc(size, UMEM_NOFAIL);
5376
5377 /*
5378 * This test uses two objects, packobj and bigobj, that are always
5379 * updated together (i.e. in the same tx) so that their contents are
5380 * in sync and can be compared. Their contents relate to each other
5381 * in a simple way: packobj is a dense array of 'bufwad' structures,
5382 * while bigobj is a sparse array of the same bufwads. Specifically,
5383 * for any index n, there are three bufwads that should be identical:
5384 *
5385 * packobj, at offset n * sizeof (bufwad_t)
5386 * bigobj, at the head of the nth chunk
5387 * bigobj, at the tail of the nth chunk
5388 *
5389 * The chunk size is set equal to bigobj block size so that
5390 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5391 */
5392
5393 /*
5394 * Read the directory info. If it's the first time, set things up.
5395 */
5396 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5397 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5398 chunksize);
5399
5400
5401 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5402 umem_free(od, size);
5403 return;
5404 }
5405
5406 bigobj = od[0].od_object;
5407 packobj = od[1].od_object;
5408 blocksize = od[0].od_blocksize;
5409 chunksize = blocksize;
5410 ASSERT3U(chunksize, ==, od[1].od_gen);
5411
5412 VERIFY0(dmu_object_info(os, bigobj, &doi));
5413 VERIFY(ISP2(doi.doi_data_block_size));
5414 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5415 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5416
5417 /*
5418 * Pick a random index and compute the offsets into packobj and bigobj.
5419 */
5420 n = ztest_random(regions) * stride + ztest_random(width);
5421 s = 1 + ztest_random(width - 1);
5422
5423 packoff = n * sizeof (bufwad_t);
5424 packsize = s * sizeof (bufwad_t);
5425
5426 bigoff = n * chunksize;
5427 bigsize = s * chunksize;
5428
5429 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5430 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5431
5432 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5433
5434 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5435
5436 /*
5437 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5438 * Iteration 1 test zcopy to already referenced dbufs.
5439 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5440 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5441 * Iteration 4 test zcopy when dbuf is no longer dirty.
5442 * Iteration 5 test zcopy when it can't be done.
5443 * Iteration 6 one more zcopy write.
5444 */
5445 for (i = 0; i < 7; i++) {
5446 uint64_t j;
5447 uint64_t off;
5448
5449 /*
5450 * In iteration 5 (i == 5) use arcbufs
5451 * that don't match bigobj blksz to test
5452 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5453 * assign an arcbuf to a dbuf.
5454 */
5455 for (j = 0; j < s; j++) {
5456 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5457 bigbuf_arcbufs[j] =
5458 dmu_request_arcbuf(bonus_db, chunksize);
5459 } else {
5460 bigbuf_arcbufs[2 * j] =
5461 dmu_request_arcbuf(bonus_db, chunksize / 2);
5462 bigbuf_arcbufs[2 * j + 1] =
5463 dmu_request_arcbuf(bonus_db, chunksize / 2);
5464 }
5465 }
5466
5467 /*
5468 * Get a tx for the mods to both packobj and bigobj.
5469 */
5470 tx = dmu_tx_create(os);
5471
5472 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5473 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5474
5475 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5476 if (txg == 0) {
5477 umem_free(packbuf, packsize);
5478 umem_free(bigbuf, bigsize);
5479 for (j = 0; j < s; j++) {
5480 if (i != 5 ||
5481 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5482 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5483 } else {
5484 dmu_return_arcbuf(
5485 bigbuf_arcbufs[2 * j]);
5486 dmu_return_arcbuf(
5487 bigbuf_arcbufs[2 * j + 1]);
5488 }
5489 }
5490 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5491 umem_free(od, size);
5492 dmu_buf_rele(bonus_db, FTAG);
5493 return;
5494 }
5495
5496 /*
5497 * 50% of the time don't read objects in the 1st iteration to
5498 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5499 * no existing dbufs for the specified offsets.
5500 */
5501 if (i != 0 || ztest_random(2) != 0) {
5502 error = dmu_read(os, packobj, packoff,
5503 packsize, packbuf, dmu_read_flags);
5504 ASSERT0(error);
5505 error = dmu_read(os, bigobj, bigoff, bigsize,
5506 bigbuf, dmu_read_flags);
5507 ASSERT0(error);
5508 }
5509 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5510 n, chunksize, txg);
5511
5512 /*
5513 * We've verified all the old bufwads, and made new ones.
5514 * Now write them out.
5515 */
5516 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5517 if (ztest_opts.zo_verbose >= 7) {
5518 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5519 " txg %"PRIx64"\n",
5520 bigoff, bigsize, txg);
5521 }
5522 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5523 dmu_buf_t *dbt;
5524 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5525 memcpy(bigbuf_arcbufs[j]->b_data,
5526 (caddr_t)bigbuf + (off - bigoff),
5527 chunksize);
5528 } else {
5529 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5530 (caddr_t)bigbuf + (off - bigoff),
5531 chunksize / 2);
5532 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5533 (caddr_t)bigbuf + (off - bigoff) +
5534 chunksize / 2,
5535 chunksize / 2);
5536 }
5537
5538 if (i == 1) {
5539 VERIFY(dmu_buf_hold(os, bigobj, off,
5540 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5541 }
5542 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5543 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5544 off, bigbuf_arcbufs[j], tx));
5545 } else {
5546 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5547 off, bigbuf_arcbufs[2 * j], tx));
5548 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5549 off + chunksize / 2,
5550 bigbuf_arcbufs[2 * j + 1], tx));
5551 }
5552 if (i == 1) {
5553 dmu_buf_rele(dbt, FTAG);
5554 }
5555 }
5556 dmu_tx_commit(tx);
5557
5558 /*
5559 * Sanity check the stuff we just wrote.
5560 */
5561 {
5562 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5563 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5564
5565 VERIFY0(dmu_read(os, packobj, packoff,
5566 packsize, packcheck, dmu_read_flags));
5567 VERIFY0(dmu_read(os, bigobj, bigoff,
5568 bigsize, bigcheck, dmu_read_flags));
5569
5570 ASSERT0(memcmp(packbuf, packcheck, packsize));
5571 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5572
5573 umem_free(packcheck, packsize);
5574 umem_free(bigcheck, bigsize);
5575 }
5576 if (i == 2) {
5577 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5578 } else if (i == 3) {
5579 txg_wait_synced(dmu_objset_pool(os), 0);
5580 }
5581 }
5582
5583 dmu_buf_rele(bonus_db, FTAG);
5584 umem_free(packbuf, packsize);
5585 umem_free(bigbuf, bigsize);
5586 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5587 umem_free(od, size);
5588 }
5589
5590 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5591 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5592 {
5593 (void) id;
5594 ztest_od_t *od;
5595
5596 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5597 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5598 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5599
5600 /*
5601 * Have multiple threads write to large offsets in an object
5602 * to verify that parallel writes to an object -- even to the
5603 * same blocks within the object -- doesn't cause any trouble.
5604 */
5605 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5606
5607 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5608 return;
5609
5610 while (ztest_random(10) != 0)
5611 ztest_io(zd, od->od_object, offset);
5612
5613 umem_free(od, sizeof (ztest_od_t));
5614 }
5615
5616 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5617 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5618 {
5619 ztest_od_t *od;
5620 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5621 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5622 uint64_t count = ztest_random(20) + 1;
5623 uint64_t blocksize = ztest_random_blocksize();
5624 void *data;
5625
5626 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5627
5628 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5629
5630 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5631 !ztest_random(2)) != 0) {
5632 umem_free(od, sizeof (ztest_od_t));
5633 return;
5634 }
5635
5636 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5637 umem_free(od, sizeof (ztest_od_t));
5638 return;
5639 }
5640
5641 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5642
5643 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5644
5645 while (ztest_random(count) != 0) {
5646 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5647 if (ztest_write(zd, od->od_object, randoff, blocksize,
5648 data) != 0)
5649 break;
5650 while (ztest_random(4) != 0)
5651 ztest_io(zd, od->od_object, randoff);
5652 }
5653
5654 umem_free(data, blocksize);
5655 umem_free(od, sizeof (ztest_od_t));
5656 }
5657
5658 /*
5659 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5660 */
5661 #define ZTEST_ZAP_MIN_INTS 1
5662 #define ZTEST_ZAP_MAX_INTS 4
5663 #define ZTEST_ZAP_MAX_PROPS 1000
5664
5665 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5666 ztest_zap(ztest_ds_t *zd, uint64_t id)
5667 {
5668 objset_t *os = zd->zd_os;
5669 ztest_od_t *od;
5670 uint64_t object;
5671 uint64_t txg, last_txg;
5672 uint64_t value[ZTEST_ZAP_MAX_INTS];
5673 uint64_t zl_ints, zl_intsize, prop;
5674 int i, ints;
5675 dmu_tx_t *tx;
5676 char propname[100], txgname[100];
5677 int error;
5678 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5679
5680 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5681 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5682
5683 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5684 !ztest_random(2)) != 0)
5685 goto out;
5686
5687 object = od->od_object;
5688
5689 /*
5690 * Generate a known hash collision, and verify that
5691 * we can lookup and remove both entries.
5692 */
5693 tx = dmu_tx_create(os);
5694 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5695 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5696 if (txg == 0)
5697 goto out;
5698 for (i = 0; i < 2; i++) {
5699 value[i] = i;
5700 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5701 1, &value[i], tx));
5702 }
5703 for (i = 0; i < 2; i++) {
5704 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5705 sizeof (uint64_t), 1, &value[i], tx));
5706 VERIFY0(
5707 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5708 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5709 ASSERT3U(zl_ints, ==, 1);
5710 }
5711 for (i = 0; i < 2; i++) {
5712 VERIFY0(zap_remove(os, object, hc[i], tx));
5713 }
5714 dmu_tx_commit(tx);
5715
5716 /*
5717 * Generate a bunch of random entries.
5718 */
5719 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5720
5721 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5722 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5723 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5724 memset(value, 0, sizeof (value));
5725 last_txg = 0;
5726
5727 /*
5728 * If these zap entries already exist, validate their contents.
5729 */
5730 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5731 if (error == 0) {
5732 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5733 ASSERT3U(zl_ints, ==, 1);
5734
5735 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5736 zl_ints, &last_txg));
5737
5738 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5739 &zl_ints));
5740
5741 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5742 ASSERT3U(zl_ints, ==, ints);
5743
5744 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5745 zl_ints, value));
5746
5747 for (i = 0; i < ints; i++) {
5748 ASSERT3U(value[i], ==, last_txg + object + i);
5749 }
5750 } else {
5751 ASSERT3U(error, ==, ENOENT);
5752 }
5753
5754 /*
5755 * Atomically update two entries in our zap object.
5756 * The first is named txg_%llu, and contains the txg
5757 * in which the property was last updated. The second
5758 * is named prop_%llu, and the nth element of its value
5759 * should be txg + object + n.
5760 */
5761 tx = dmu_tx_create(os);
5762 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5763 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5764 if (txg == 0)
5765 goto out;
5766
5767 if (last_txg > txg)
5768 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5769 last_txg, txg);
5770
5771 for (i = 0; i < ints; i++)
5772 value[i] = txg + object + i;
5773
5774 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5775 1, &txg, tx));
5776 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5777 ints, value, tx));
5778
5779 dmu_tx_commit(tx);
5780
5781 /*
5782 * Remove a random pair of entries.
5783 */
5784 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5785 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5786 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5787
5788 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5789
5790 if (error == ENOENT)
5791 goto out;
5792
5793 ASSERT0(error);
5794
5795 tx = dmu_tx_create(os);
5796 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5797 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5798 if (txg == 0)
5799 goto out;
5800 VERIFY0(zap_remove(os, object, txgname, tx));
5801 VERIFY0(zap_remove(os, object, propname, tx));
5802 dmu_tx_commit(tx);
5803 out:
5804 umem_free(od, sizeof (ztest_od_t));
5805 }
5806
5807 /*
5808 * Test case to test the upgrading of a microzap to fatzap.
5809 */
5810 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5811 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5812 {
5813 objset_t *os = zd->zd_os;
5814 ztest_od_t *od;
5815 uint64_t object, txg, value;
5816
5817 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5818 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5819
5820 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5821 !ztest_random(2)) != 0)
5822 goto out;
5823 object = od->od_object;
5824
5825 /*
5826 * Add entries to this ZAP and make sure it spills over
5827 * and gets upgraded to a fatzap. Also, since we are adding
5828 * 2050 entries we should see ptrtbl growth and leaf-block split.
5829 */
5830 for (value = 0; value < 2050; value++) {
5831 char name[ZFS_MAX_DATASET_NAME_LEN];
5832 dmu_tx_t *tx;
5833 int error;
5834
5835 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5836 id, value);
5837
5838 tx = dmu_tx_create(os);
5839 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5840 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5841 if (txg == 0)
5842 goto out;
5843 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5844 &value, tx);
5845 ASSERT(error == 0 || error == EEXIST);
5846 dmu_tx_commit(tx);
5847 }
5848 out:
5849 umem_free(od, sizeof (ztest_od_t));
5850 }
5851
5852 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5853 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5854 {
5855 (void) id;
5856 objset_t *os = zd->zd_os;
5857 ztest_od_t *od;
5858 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5859 dmu_tx_t *tx;
5860 int i, namelen, error;
5861 int micro = ztest_random(2);
5862 char name[20], string_value[20];
5863 void *data;
5864
5865 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5866 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5867
5868 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5869 umem_free(od, sizeof (ztest_od_t));
5870 return;
5871 }
5872
5873 object = od->od_object;
5874
5875 /*
5876 * Generate a random name of the form 'xxx.....' where each
5877 * x is a random printable character and the dots are dots.
5878 * There are 94 such characters, and the name length goes from
5879 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5880 */
5881 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5882
5883 for (i = 0; i < 3; i++)
5884 name[i] = '!' + ztest_random('~' - '!' + 1);
5885 for (; i < namelen - 1; i++)
5886 name[i] = '.';
5887 name[i] = '\0';
5888
5889 if ((namelen & 1) || micro) {
5890 wsize = sizeof (txg);
5891 wc = 1;
5892 data = &txg;
5893 } else {
5894 wsize = 1;
5895 wc = namelen;
5896 data = string_value;
5897 }
5898
5899 count = -1ULL;
5900 VERIFY0(zap_count(os, object, &count));
5901 ASSERT3S(count, !=, -1ULL);
5902
5903 /*
5904 * Select an operation: length, lookup, add, update, remove.
5905 */
5906 i = ztest_random(5);
5907
5908 if (i >= 2) {
5909 tx = dmu_tx_create(os);
5910 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5911 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5912 if (txg == 0) {
5913 umem_free(od, sizeof (ztest_od_t));
5914 return;
5915 }
5916 memcpy(string_value, name, namelen);
5917 } else {
5918 tx = NULL;
5919 txg = 0;
5920 memset(string_value, 0, namelen);
5921 }
5922
5923 switch (i) {
5924
5925 case 0:
5926 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5927 if (error == 0) {
5928 ASSERT3U(wsize, ==, zl_wsize);
5929 ASSERT3U(wc, ==, zl_wc);
5930 } else {
5931 ASSERT3U(error, ==, ENOENT);
5932 }
5933 break;
5934
5935 case 1:
5936 error = zap_lookup(os, object, name, wsize, wc, data);
5937 if (error == 0) {
5938 if (data == string_value &&
5939 memcmp(name, data, namelen) != 0)
5940 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5941 name, (char *)data, namelen);
5942 } else {
5943 ASSERT3U(error, ==, ENOENT);
5944 }
5945 break;
5946
5947 case 2:
5948 error = zap_add(os, object, name, wsize, wc, data, tx);
5949 ASSERT(error == 0 || error == EEXIST);
5950 break;
5951
5952 case 3:
5953 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5954 break;
5955
5956 case 4:
5957 error = zap_remove(os, object, name, tx);
5958 ASSERT(error == 0 || error == ENOENT);
5959 break;
5960 }
5961
5962 if (tx != NULL)
5963 dmu_tx_commit(tx);
5964
5965 umem_free(od, sizeof (ztest_od_t));
5966 }
5967
5968 /*
5969 * Commit callback data.
5970 */
5971 typedef struct ztest_cb_data {
5972 list_node_t zcd_node;
5973 uint64_t zcd_txg;
5974 int zcd_expected_err;
5975 boolean_t zcd_added;
5976 boolean_t zcd_called;
5977 spa_t *zcd_spa;
5978 } ztest_cb_data_t;
5979
5980 /* This is the actual commit callback function */
5981 static void
ztest_commit_callback(void * arg,int error)5982 ztest_commit_callback(void *arg, int error)
5983 {
5984 ztest_cb_data_t *data = arg;
5985 uint64_t synced_txg;
5986
5987 VERIFY3P(data, !=, NULL);
5988 VERIFY3S(data->zcd_expected_err, ==, error);
5989 VERIFY(!data->zcd_called);
5990
5991 synced_txg = spa_last_synced_txg(data->zcd_spa);
5992 if (data->zcd_txg > synced_txg)
5993 fatal(B_FALSE,
5994 "commit callback of txg %"PRIu64" called prematurely, "
5995 "last synced txg = %"PRIu64"\n",
5996 data->zcd_txg, synced_txg);
5997
5998 data->zcd_called = B_TRUE;
5999
6000 if (error == ECANCELED) {
6001 ASSERT0(data->zcd_txg);
6002 ASSERT(!data->zcd_added);
6003
6004 /*
6005 * The private callback data should be destroyed here, but
6006 * since we are going to check the zcd_called field after
6007 * dmu_tx_abort(), we will destroy it there.
6008 */
6009 return;
6010 }
6011
6012 ASSERT(data->zcd_added);
6013 ASSERT3U(data->zcd_txg, !=, 0);
6014
6015 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6016
6017 /* See if this cb was called more quickly */
6018 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6019 zc_min_txg_delay = synced_txg - data->zcd_txg;
6020
6021 /* Remove our callback from the list */
6022 list_remove(&zcl.zcl_callbacks, data);
6023
6024 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6025
6026 umem_free(data, sizeof (ztest_cb_data_t));
6027 }
6028
6029 /* Allocate and initialize callback data structure */
6030 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)6031 ztest_create_cb_data(objset_t *os, uint64_t txg)
6032 {
6033 ztest_cb_data_t *cb_data;
6034
6035 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6036
6037 cb_data->zcd_txg = txg;
6038 cb_data->zcd_spa = dmu_objset_spa(os);
6039 list_link_init(&cb_data->zcd_node);
6040
6041 return (cb_data);
6042 }
6043
6044 /*
6045 * Commit callback test.
6046 */
6047 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)6048 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6049 {
6050 objset_t *os = zd->zd_os;
6051 ztest_od_t *od;
6052 dmu_tx_t *tx;
6053 ztest_cb_data_t *cb_data[3], *tmp_cb;
6054 uint64_t old_txg, txg;
6055 int i, error = 0;
6056
6057 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6058 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6059
6060 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6061 umem_free(od, sizeof (ztest_od_t));
6062 return;
6063 }
6064
6065 tx = dmu_tx_create(os);
6066
6067 cb_data[0] = ztest_create_cb_data(os, 0);
6068 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6069
6070 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6071
6072 /* Every once in a while, abort the transaction on purpose */
6073 if (ztest_random(100) == 0)
6074 error = -1;
6075
6076 if (!error)
6077 error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
6078
6079 txg = error ? 0 : dmu_tx_get_txg(tx);
6080
6081 cb_data[0]->zcd_txg = txg;
6082 cb_data[1] = ztest_create_cb_data(os, txg);
6083 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6084
6085 if (error) {
6086 /*
6087 * It's not a strict requirement to call the registered
6088 * callbacks from inside dmu_tx_abort(), but that's what
6089 * it's supposed to happen in the current implementation
6090 * so we will check for that.
6091 */
6092 for (i = 0; i < 2; i++) {
6093 cb_data[i]->zcd_expected_err = ECANCELED;
6094 VERIFY(!cb_data[i]->zcd_called);
6095 }
6096
6097 dmu_tx_abort(tx);
6098
6099 for (i = 0; i < 2; i++) {
6100 VERIFY(cb_data[i]->zcd_called);
6101 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6102 }
6103
6104 umem_free(od, sizeof (ztest_od_t));
6105 return;
6106 }
6107
6108 cb_data[2] = ztest_create_cb_data(os, txg);
6109 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6110
6111 /*
6112 * Read existing data to make sure there isn't a future leak.
6113 */
6114 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6115 &old_txg, DMU_READ_PREFETCH));
6116
6117 if (old_txg > txg)
6118 fatal(B_FALSE,
6119 "future leak: got %"PRIu64", open txg is %"PRIu64"",
6120 old_txg, txg);
6121
6122 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6123
6124 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6125
6126 /*
6127 * Since commit callbacks don't have any ordering requirement and since
6128 * it is theoretically possible for a commit callback to be called
6129 * after an arbitrary amount of time has elapsed since its txg has been
6130 * synced, it is difficult to reliably determine whether a commit
6131 * callback hasn't been called due to high load or due to a flawed
6132 * implementation.
6133 *
6134 * In practice, we will assume that if after a certain number of txgs a
6135 * commit callback hasn't been called, then most likely there's an
6136 * implementation bug..
6137 */
6138 tmp_cb = list_head(&zcl.zcl_callbacks);
6139 if (tmp_cb != NULL &&
6140 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6141 fatal(B_FALSE,
6142 "Commit callback threshold exceeded, "
6143 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6144 tmp_cb->zcd_txg, txg);
6145 }
6146
6147 /*
6148 * Let's find the place to insert our callbacks.
6149 *
6150 * Even though the list is ordered by txg, it is possible for the
6151 * insertion point to not be the end because our txg may already be
6152 * quiescing at this point and other callbacks in the open txg
6153 * (from other objsets) may have sneaked in.
6154 */
6155 tmp_cb = list_tail(&zcl.zcl_callbacks);
6156 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6157 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6158
6159 /* Add the 3 callbacks to the list */
6160 for (i = 0; i < 3; i++) {
6161 if (tmp_cb == NULL)
6162 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6163 else
6164 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6165 cb_data[i]);
6166
6167 cb_data[i]->zcd_added = B_TRUE;
6168 VERIFY(!cb_data[i]->zcd_called);
6169
6170 tmp_cb = cb_data[i];
6171 }
6172
6173 zc_cb_counter += 3;
6174
6175 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6176
6177 dmu_tx_commit(tx);
6178
6179 umem_free(od, sizeof (ztest_od_t));
6180 }
6181
6182 /*
6183 * Visit each object in the dataset. Verify that its properties
6184 * are consistent what was stored in the block tag when it was created,
6185 * and that its unused bonus buffer space has not been overwritten.
6186 */
6187 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)6188 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6189 {
6190 (void) id;
6191 objset_t *os = zd->zd_os;
6192 uint64_t obj;
6193 int err = 0;
6194
6195 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6196 ztest_block_tag_t *bt = NULL;
6197 dmu_object_info_t doi;
6198 dmu_buf_t *db;
6199
6200 ztest_object_lock(zd, obj, ZTRL_READER);
6201 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6202 ztest_object_unlock(zd, obj);
6203 continue;
6204 }
6205
6206 dmu_object_info_from_db(db, &doi);
6207 if (doi.doi_bonus_size >= sizeof (*bt))
6208 bt = ztest_bt_bonus(db);
6209
6210 if (bt && bt->bt_magic == BT_MAGIC) {
6211 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6212 bt->bt_offset, bt->bt_gen, bt->bt_txg,
6213 bt->bt_crtxg);
6214 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6215 }
6216
6217 dmu_buf_rele(db, FTAG);
6218 ztest_object_unlock(zd, obj);
6219 }
6220 }
6221
6222 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)6223 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6224 {
6225 (void) id;
6226 zfs_prop_t proplist[] = {
6227 ZFS_PROP_CHECKSUM,
6228 ZFS_PROP_COMPRESSION,
6229 ZFS_PROP_COPIES,
6230 ZFS_PROP_DEDUP
6231 };
6232
6233 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6234
6235 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6236 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6237 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6238 ASSERT(error == 0 || error == ENOSPC);
6239 }
6240
6241 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6242 ztest_random_blocksize(), (int)ztest_random(2));
6243 ASSERT(error == 0 || error == ENOSPC);
6244
6245 (void) pthread_rwlock_unlock(&ztest_name_lock);
6246 }
6247
6248 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)6249 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6250 {
6251 (void) zd, (void) id;
6252
6253 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6254
6255 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6256
6257 nvlist_t *props = fnvlist_alloc();
6258
6259 VERIFY0(spa_prop_get(ztest_spa, props));
6260
6261 if (ztest_opts.zo_verbose >= 6)
6262 dump_nvlist(props, 4);
6263
6264 fnvlist_free(props);
6265
6266 (void) pthread_rwlock_unlock(&ztest_name_lock);
6267 }
6268
6269 static int
user_release_one(const char * snapname,const char * holdname)6270 user_release_one(const char *snapname, const char *holdname)
6271 {
6272 nvlist_t *snaps, *holds;
6273 int error;
6274
6275 snaps = fnvlist_alloc();
6276 holds = fnvlist_alloc();
6277 fnvlist_add_boolean(holds, holdname);
6278 fnvlist_add_nvlist(snaps, snapname, holds);
6279 fnvlist_free(holds);
6280 error = dsl_dataset_user_release(snaps, NULL);
6281 fnvlist_free(snaps);
6282 return (error);
6283 }
6284
6285 /*
6286 * Test snapshot hold/release and deferred destroy.
6287 */
6288 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)6289 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6290 {
6291 int error;
6292 objset_t *os = zd->zd_os;
6293 objset_t *origin;
6294 char snapname[100];
6295 char fullname[100];
6296 char clonename[100];
6297 char tag[100];
6298 char osname[ZFS_MAX_DATASET_NAME_LEN];
6299 nvlist_t *holds;
6300
6301 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6302
6303 dmu_objset_name(os, osname);
6304
6305 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6306 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6307 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6308 osname, id);
6309 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6310
6311 /*
6312 * Clean up from any previous run.
6313 */
6314 error = dsl_destroy_head(clonename);
6315 if (error != ENOENT)
6316 ASSERT0(error);
6317 error = user_release_one(fullname, tag);
6318 if (error != ESRCH && error != ENOENT)
6319 ASSERT0(error);
6320 error = dsl_destroy_snapshot(fullname, B_FALSE);
6321 if (error != ENOENT)
6322 ASSERT0(error);
6323
6324 /*
6325 * Create snapshot, clone it, mark snap for deferred destroy,
6326 * destroy clone, verify snap was also destroyed.
6327 */
6328 error = dmu_objset_snapshot_one(osname, snapname);
6329 if (error) {
6330 if (error == ENOSPC) {
6331 ztest_record_enospc("dmu_objset_snapshot");
6332 goto out;
6333 }
6334 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6335 }
6336
6337 error = dmu_objset_clone(clonename, fullname);
6338 if (error) {
6339 if (error == ENOSPC) {
6340 ztest_record_enospc("dmu_objset_clone");
6341 goto out;
6342 }
6343 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6344 }
6345
6346 error = dsl_destroy_snapshot(fullname, B_TRUE);
6347 if (error) {
6348 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6349 fullname, error);
6350 }
6351
6352 error = dsl_destroy_head(clonename);
6353 if (error)
6354 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6355
6356 error = dmu_objset_hold(fullname, FTAG, &origin);
6357 if (error != ENOENT)
6358 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6359
6360 /*
6361 * Create snapshot, add temporary hold, verify that we can't
6362 * destroy a held snapshot, mark for deferred destroy,
6363 * release hold, verify snapshot was destroyed.
6364 */
6365 error = dmu_objset_snapshot_one(osname, snapname);
6366 if (error) {
6367 if (error == ENOSPC) {
6368 ztest_record_enospc("dmu_objset_snapshot");
6369 goto out;
6370 }
6371 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6372 }
6373
6374 holds = fnvlist_alloc();
6375 fnvlist_add_string(holds, fullname, tag);
6376 error = dsl_dataset_user_hold(holds, 0, NULL);
6377 fnvlist_free(holds);
6378
6379 if (error == ENOSPC) {
6380 ztest_record_enospc("dsl_dataset_user_hold");
6381 goto out;
6382 } else if (error) {
6383 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6384 fullname, tag, error);
6385 }
6386
6387 error = dsl_destroy_snapshot(fullname, B_FALSE);
6388 if (error != EBUSY) {
6389 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6390 fullname, error);
6391 }
6392
6393 error = dsl_destroy_snapshot(fullname, B_TRUE);
6394 if (error) {
6395 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6396 fullname, error);
6397 }
6398
6399 error = user_release_one(fullname, tag);
6400 if (error)
6401 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6402 fullname, tag, error);
6403
6404 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6405
6406 out:
6407 (void) pthread_rwlock_unlock(&ztest_name_lock);
6408 }
6409
6410 /*
6411 * Inject random faults into the on-disk data.
6412 */
6413 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)6414 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6415 {
6416 (void) zd, (void) id;
6417 ztest_shared_t *zs = ztest_shared;
6418 spa_t *spa = ztest_spa;
6419 int fd;
6420 uint64_t offset;
6421 uint64_t leaves;
6422 uint64_t bad = 0x1990c0ffeedecadeull;
6423 uint64_t top, leaf;
6424 uint64_t raidz_children;
6425 char *path0;
6426 char *pathrand;
6427 size_t fsize;
6428 int bshift = SPA_MAXBLOCKSHIFT + 2;
6429 int iters = 1000;
6430 int maxfaults;
6431 int mirror_save;
6432 vdev_t *vd0 = NULL;
6433 uint64_t guid0 = 0;
6434 boolean_t islog = B_FALSE;
6435 boolean_t injected = B_FALSE;
6436
6437 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6438 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6439
6440 mutex_enter(&ztest_vdev_lock);
6441
6442 /*
6443 * Device removal is in progress, fault injection must be disabled
6444 * until it completes and the pool is scrubbed. The fault injection
6445 * strategy for damaging blocks does not take in to account evacuated
6446 * blocks which may have already been damaged.
6447 */
6448 if (ztest_device_removal_active)
6449 goto out;
6450
6451 /*
6452 * The fault injection strategy for damaging blocks cannot be used
6453 * if raidz expansion is in progress. The leaves value
6454 * (attached raidz children) is variable and strategy for damaging
6455 * blocks will corrupt same data blocks on different child vdevs
6456 * because of the reflow process.
6457 */
6458 if (spa->spa_raidz_expand != NULL)
6459 goto out;
6460
6461 maxfaults = MAXFAULTS(zs);
6462 raidz_children = ztest_get_raidz_children(spa);
6463 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6464 mirror_save = zs->zs_mirrors;
6465
6466 ASSERT3U(leaves, >=, 1);
6467
6468 /*
6469 * While ztest is running the number of leaves will not change. This
6470 * is critical for the fault injection logic as it determines where
6471 * errors can be safely injected such that they are always repairable.
6472 *
6473 * When restarting ztest a different number of leaves may be requested
6474 * which will shift the regions to be damaged. This is fine as long
6475 * as the pool has been scrubbed prior to using the new mapping.
6476 * Failure to do can result in non-repairable damage being injected.
6477 */
6478 if (ztest_pool_scrubbed == B_FALSE)
6479 goto out;
6480
6481 /*
6482 * Grab the name lock as reader. There are some operations
6483 * which don't like to have their vdevs changed while
6484 * they are in progress (i.e. spa_change_guid). Those
6485 * operations will have grabbed the name lock as writer.
6486 */
6487 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6488
6489 /*
6490 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6491 */
6492 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6493
6494 if (ztest_random(2) == 0) {
6495 /*
6496 * Inject errors on a normal data device or slog device.
6497 */
6498 top = ztest_random_vdev_top(spa, B_TRUE);
6499 leaf = ztest_random(leaves) + zs->zs_splits;
6500
6501 /*
6502 * Generate paths to the first leaf in this top-level vdev,
6503 * and to the random leaf we selected. We'll induce transient
6504 * write failures and random online/offline activity on leaf 0,
6505 * and we'll write random garbage to the randomly chosen leaf.
6506 */
6507 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6508 ztest_opts.zo_dir, ztest_opts.zo_pool,
6509 top * leaves + zs->zs_splits);
6510 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6511 ztest_opts.zo_dir, ztest_opts.zo_pool,
6512 top * leaves + leaf);
6513
6514 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6515 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6516 islog = B_TRUE;
6517
6518 /*
6519 * If the top-level vdev needs to be resilvered
6520 * then we only allow faults on the device that is
6521 * resilvering.
6522 */
6523 if (vd0 != NULL && maxfaults != 1 &&
6524 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6525 vd0->vdev_resilver_txg != 0)) {
6526 /*
6527 * Make vd0 explicitly claim to be unreadable,
6528 * or unwritable, or reach behind its back
6529 * and close the underlying fd. We can do this if
6530 * maxfaults == 0 because we'll fail and reexecute,
6531 * and we can do it if maxfaults >= 2 because we'll
6532 * have enough redundancy. If maxfaults == 1, the
6533 * combination of this with injection of random data
6534 * corruption below exceeds the pool's fault tolerance.
6535 */
6536 vdev_file_t *vf = vd0->vdev_tsd;
6537
6538 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6539 (long long)vd0->vdev_id, (int)maxfaults);
6540
6541 if (vf != NULL && ztest_random(3) == 0) {
6542 (void) close(vf->vf_file->f_fd);
6543 vf->vf_file->f_fd = -1;
6544 } else if (ztest_random(2) == 0) {
6545 vd0->vdev_cant_read = B_TRUE;
6546 } else {
6547 vd0->vdev_cant_write = B_TRUE;
6548 }
6549 guid0 = vd0->vdev_guid;
6550 }
6551 } else {
6552 /*
6553 * Inject errors on an l2cache device.
6554 */
6555 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6556
6557 if (sav->sav_count == 0) {
6558 spa_config_exit(spa, SCL_STATE, FTAG);
6559 (void) pthread_rwlock_unlock(&ztest_name_lock);
6560 goto out;
6561 }
6562 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6563 guid0 = vd0->vdev_guid;
6564 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6565 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6566
6567 leaf = 0;
6568 leaves = 1;
6569 maxfaults = INT_MAX; /* no limit on cache devices */
6570 }
6571
6572 spa_config_exit(spa, SCL_STATE, FTAG);
6573 (void) pthread_rwlock_unlock(&ztest_name_lock);
6574
6575 /*
6576 * If we can tolerate two or more faults, or we're dealing
6577 * with a slog, randomly online/offline vd0.
6578 */
6579 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6580 if (ztest_random(10) < 6) {
6581 int flags = (ztest_random(2) == 0 ?
6582 ZFS_OFFLINE_TEMPORARY : 0);
6583
6584 /*
6585 * We have to grab the zs_name_lock as writer to
6586 * prevent a race between offlining a slog and
6587 * destroying a dataset. Offlining the slog will
6588 * grab a reference on the dataset which may cause
6589 * dsl_destroy_head() to fail with EBUSY thus
6590 * leaving the dataset in an inconsistent state.
6591 */
6592 if (islog)
6593 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6594
6595 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6596
6597 if (islog)
6598 (void) pthread_rwlock_unlock(&ztest_name_lock);
6599 } else {
6600 /*
6601 * Ideally we would like to be able to randomly
6602 * call vdev_[on|off]line without holding locks
6603 * to force unpredictable failures but the side
6604 * effects of vdev_[on|off]line prevent us from
6605 * doing so.
6606 */
6607 (void) vdev_online(spa, guid0, 0, NULL);
6608 }
6609 }
6610
6611 if (maxfaults == 0)
6612 goto out;
6613
6614 /*
6615 * We have at least single-fault tolerance, so inject data corruption.
6616 */
6617 fd = open(pathrand, O_RDWR);
6618
6619 if (fd == -1) /* we hit a gap in the device namespace */
6620 goto out;
6621
6622 fsize = lseek(fd, 0, SEEK_END);
6623
6624 while (--iters != 0) {
6625 /*
6626 * The offset must be chosen carefully to ensure that
6627 * we do not inject a given logical block with errors
6628 * on two different leaf devices, because ZFS can not
6629 * tolerate that (if maxfaults==1).
6630 *
6631 * To achieve this we divide each leaf device into
6632 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6633 * Each chunk is further divided into error-injection
6634 * ranges (can accept errors) and clear ranges (we do
6635 * not inject errors in those). Each error-injection
6636 * range can accept errors only for a single leaf vdev.
6637 * Error-injection ranges are separated by clear ranges.
6638 *
6639 * For example, with 3 leaves, each chunk looks like:
6640 * 0 to 32M: injection range for leaf 0
6641 * 32M to 64M: clear range - no injection allowed
6642 * 64M to 96M: injection range for leaf 1
6643 * 96M to 128M: clear range - no injection allowed
6644 * 128M to 160M: injection range for leaf 2
6645 * 160M to 192M: clear range - no injection allowed
6646 *
6647 * Each clear range must be large enough such that a
6648 * single block cannot straddle it. This way a block
6649 * can't be a target in two different injection ranges
6650 * (on different leaf vdevs).
6651 */
6652 offset = ztest_random(fsize / (leaves << bshift)) *
6653 (leaves << bshift) + (leaf << bshift) +
6654 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6655
6656 /*
6657 * Only allow damage to the labels at one end of the vdev.
6658 *
6659 * If all labels are damaged, the device will be totally
6660 * inaccessible, which will result in loss of data,
6661 * because we also damage (parts of) the other side of
6662 * the mirror/raidz.
6663 *
6664 * Additionally, we will always have both an even and an
6665 * odd label, so that we can handle crashes in the
6666 * middle of vdev_config_sync().
6667 */
6668 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6669 continue;
6670
6671 /*
6672 * The two end labels are stored at the "end" of the disk, but
6673 * the end of the disk (vdev_psize) is aligned to
6674 * sizeof (vdev_label_t).
6675 */
6676 uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6677 uint64_t);
6678 if ((leaf & 1) == 1 &&
6679 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6680 continue;
6681
6682 if (mirror_save != zs->zs_mirrors) {
6683 (void) close(fd);
6684 goto out;
6685 }
6686
6687 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6688 fatal(B_TRUE,
6689 "can't inject bad word at 0x%"PRIx64" in %s",
6690 offset, pathrand);
6691
6692 if (ztest_opts.zo_verbose >= 7)
6693 (void) printf("injected bad word into %s,"
6694 " offset 0x%"PRIx64"\n", pathrand, offset);
6695
6696 injected = B_TRUE;
6697 }
6698
6699 (void) close(fd);
6700 out:
6701 mutex_exit(&ztest_vdev_lock);
6702
6703 if (injected && ztest_opts.zo_raid_do_expand) {
6704 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6705 if (error == 0) {
6706 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6707 txg_wait_synced(spa_get_dsl(spa), 0);
6708 }
6709 }
6710
6711 umem_free(path0, MAXPATHLEN);
6712 umem_free(pathrand, MAXPATHLEN);
6713 }
6714
6715 /*
6716 * By design ztest will never inject uncorrectable damage in to the pool.
6717 * Issue a scrub, wait for it to complete, and verify there is never any
6718 * persistent damage.
6719 *
6720 * Only after a full scrub has been completed is it safe to start injecting
6721 * data corruption. See the comment in zfs_fault_inject().
6722 *
6723 * EBUSY may be returned for the following six cases. It's the callers
6724 * responsibility to handle them accordingly.
6725 *
6726 * Current state Requested
6727 * 1. Normal Scrub Running Normal Scrub or Error Scrub
6728 * 2. Normal Scrub Paused Error Scrub
6729 * 3. Normal Scrub Paused Pause Normal Scrub
6730 * 4. Error Scrub Running Normal Scrub or Error Scrub
6731 * 5. Error Scrub Paused Pause Error Scrub
6732 * 6. Resilvering Anything else
6733 */
6734 static int
ztest_scrub_impl(spa_t * spa)6735 ztest_scrub_impl(spa_t *spa)
6736 {
6737 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6738 if (error)
6739 return (error);
6740
6741 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6742 txg_wait_synced(spa_get_dsl(spa), 0);
6743
6744 if (spa_approx_errlog_size(spa) > 0)
6745 return (ECKSUM);
6746
6747 ztest_pool_scrubbed = B_TRUE;
6748
6749 return (0);
6750 }
6751
6752 /*
6753 * Scrub the pool.
6754 */
6755 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6756 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6757 {
6758 (void) zd, (void) id;
6759 spa_t *spa = ztest_spa;
6760 int error;
6761
6762 /*
6763 * Scrub in progress by device removal.
6764 */
6765 if (ztest_device_removal_active)
6766 return;
6767
6768 /*
6769 * Start a scrub, wait a moment, then force a restart.
6770 */
6771 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6772 (void) poll(NULL, 0, 100);
6773
6774 error = ztest_scrub_impl(spa);
6775 if (error == EBUSY)
6776 error = 0;
6777 ASSERT0(error);
6778 }
6779
6780 /*
6781 * Change the guid for the pool.
6782 */
6783 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6784 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6785 {
6786 (void) zd, (void) id;
6787 spa_t *spa = ztest_spa;
6788 uint64_t orig, load;
6789 int error;
6790 ztest_shared_t *zs = ztest_shared;
6791
6792 if (ztest_opts.zo_mmp_test)
6793 return;
6794
6795 orig = spa_guid(spa);
6796 load = spa_load_guid(spa);
6797
6798 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6799 error = spa_change_guid(spa, NULL);
6800 zs->zs_guid = spa_guid(spa);
6801 (void) pthread_rwlock_unlock(&ztest_name_lock);
6802
6803 if (error != 0)
6804 return;
6805
6806 if (ztest_opts.zo_verbose >= 4) {
6807 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6808 orig, spa_guid(spa));
6809 }
6810
6811 VERIFY3U(orig, !=, spa_guid(spa));
6812 VERIFY3U(load, ==, spa_load_guid(spa));
6813 }
6814
6815 void
ztest_blake3(ztest_ds_t * zd,uint64_t id)6816 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6817 {
6818 (void) zd, (void) id;
6819 hrtime_t end = gethrtime() + NANOSEC;
6820 zio_cksum_salt_t salt;
6821 void *salt_ptr = &salt.zcs_bytes;
6822 struct abd *abd_data, *abd_meta;
6823 void *buf, *templ;
6824 int i, *ptr;
6825 uint32_t size;
6826 BLAKE3_CTX ctx;
6827 const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6828
6829 size = ztest_random_blocksize();
6830 buf = umem_alloc(size, UMEM_NOFAIL);
6831 abd_data = abd_alloc(size, B_FALSE);
6832 abd_meta = abd_alloc(size, B_TRUE);
6833
6834 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6835 *ptr = ztest_random(UINT_MAX);
6836 memset(salt_ptr, 'A', 32);
6837
6838 abd_copy_from_buf_off(abd_data, buf, 0, size);
6839 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6840
6841 while (gethrtime() <= end) {
6842 int run_count = 100;
6843 zio_cksum_t zc_ref1, zc_ref2;
6844 zio_cksum_t zc_res1, zc_res2;
6845
6846 void *ref1 = &zc_ref1;
6847 void *ref2 = &zc_ref2;
6848 void *res1 = &zc_res1;
6849 void *res2 = &zc_res2;
6850
6851 /* BLAKE3_KEY_LEN = 32 */
6852 VERIFY0(blake3->setname("generic"));
6853 templ = abd_checksum_blake3_tmpl_init(&salt);
6854 Blake3_InitKeyed(&ctx, salt_ptr);
6855 Blake3_Update(&ctx, buf, size);
6856 Blake3_Final(&ctx, ref1);
6857 zc_ref2 = zc_ref1;
6858 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6859 abd_checksum_blake3_tmpl_free(templ);
6860
6861 VERIFY0(blake3->setname("cycle"));
6862 while (run_count-- > 0) {
6863
6864 /* Test current implementation */
6865 Blake3_InitKeyed(&ctx, salt_ptr);
6866 Blake3_Update(&ctx, buf, size);
6867 Blake3_Final(&ctx, res1);
6868 zc_res2 = zc_res1;
6869 ZIO_CHECKSUM_BSWAP(&zc_res2);
6870
6871 VERIFY0(memcmp(ref1, res1, 32));
6872 VERIFY0(memcmp(ref2, res2, 32));
6873
6874 /* Test ABD - data */
6875 templ = abd_checksum_blake3_tmpl_init(&salt);
6876 abd_checksum_blake3_native(abd_data, size,
6877 templ, &zc_res1);
6878 abd_checksum_blake3_byteswap(abd_data, size,
6879 templ, &zc_res2);
6880
6881 VERIFY0(memcmp(ref1, res1, 32));
6882 VERIFY0(memcmp(ref2, res2, 32));
6883
6884 /* Test ABD - metadata */
6885 abd_checksum_blake3_native(abd_meta, size,
6886 templ, &zc_res1);
6887 abd_checksum_blake3_byteswap(abd_meta, size,
6888 templ, &zc_res2);
6889 abd_checksum_blake3_tmpl_free(templ);
6890
6891 VERIFY0(memcmp(ref1, res1, 32));
6892 VERIFY0(memcmp(ref2, res2, 32));
6893
6894 }
6895 }
6896
6897 abd_free(abd_data);
6898 abd_free(abd_meta);
6899 umem_free(buf, size);
6900 }
6901
6902 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6903 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6904 {
6905 (void) zd, (void) id;
6906 hrtime_t end = gethrtime() + NANOSEC;
6907
6908 while (gethrtime() <= end) {
6909 int run_count = 100;
6910 void *buf;
6911 struct abd *abd_data, *abd_meta;
6912 uint32_t size;
6913 int *ptr;
6914 int i;
6915 zio_cksum_t zc_ref;
6916 zio_cksum_t zc_ref_byteswap;
6917
6918 size = ztest_random_blocksize();
6919
6920 buf = umem_alloc(size, UMEM_NOFAIL);
6921 abd_data = abd_alloc(size, B_FALSE);
6922 abd_meta = abd_alloc(size, B_TRUE);
6923
6924 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6925 *ptr = ztest_random(UINT_MAX);
6926
6927 abd_copy_from_buf_off(abd_data, buf, 0, size);
6928 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6929
6930 VERIFY0(fletcher_4_impl_set("scalar"));
6931 fletcher_4_native(buf, size, NULL, &zc_ref);
6932 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6933
6934 VERIFY0(fletcher_4_impl_set("cycle"));
6935 while (run_count-- > 0) {
6936 zio_cksum_t zc;
6937 zio_cksum_t zc_byteswap;
6938
6939 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6940 fletcher_4_native(buf, size, NULL, &zc);
6941
6942 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6943 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6944 sizeof (zc_byteswap)));
6945
6946 /* Test ABD - data */
6947 abd_fletcher_4_byteswap(abd_data, size, NULL,
6948 &zc_byteswap);
6949 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6950
6951 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6952 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6953 sizeof (zc_byteswap)));
6954
6955 /* Test ABD - metadata */
6956 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6957 &zc_byteswap);
6958 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6959
6960 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6961 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6962 sizeof (zc_byteswap)));
6963
6964 }
6965
6966 umem_free(buf, size);
6967 abd_free(abd_data);
6968 abd_free(abd_meta);
6969 }
6970 }
6971
6972 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6973 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6974 {
6975 (void) zd, (void) id;
6976 void *buf;
6977 size_t size;
6978 int *ptr;
6979 int i;
6980 zio_cksum_t zc_ref;
6981 zio_cksum_t zc_ref_bswap;
6982
6983 hrtime_t end = gethrtime() + NANOSEC;
6984
6985 while (gethrtime() <= end) {
6986 int run_count = 100;
6987
6988 size = ztest_random_blocksize();
6989 buf = umem_alloc(size, UMEM_NOFAIL);
6990
6991 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6992 *ptr = ztest_random(UINT_MAX);
6993
6994 VERIFY0(fletcher_4_impl_set("scalar"));
6995 fletcher_4_native(buf, size, NULL, &zc_ref);
6996 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6997
6998 VERIFY0(fletcher_4_impl_set("cycle"));
6999
7000 while (run_count-- > 0) {
7001 zio_cksum_t zc;
7002 zio_cksum_t zc_bswap;
7003 size_t pos = 0;
7004
7005 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7006 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7007
7008 while (pos < size) {
7009 size_t inc = 64 * ztest_random(size / 67);
7010 /* sometimes add few bytes to test non-simd */
7011 if (ztest_random(100) < 10)
7012 inc += P2ALIGN_TYPED(ztest_random(64),
7013 sizeof (uint32_t), uint64_t);
7014
7015 if (inc > (size - pos))
7016 inc = size - pos;
7017
7018 fletcher_4_incremental_native(buf + pos, inc,
7019 &zc);
7020 fletcher_4_incremental_byteswap(buf + pos, inc,
7021 &zc_bswap);
7022
7023 pos += inc;
7024 }
7025
7026 VERIFY3U(pos, ==, size);
7027
7028 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7029 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7030
7031 /*
7032 * verify if incremental on the whole buffer is
7033 * equivalent to non-incremental version
7034 */
7035 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7036 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7037
7038 fletcher_4_incremental_native(buf, size, &zc);
7039 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7040
7041 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7042 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7043 }
7044
7045 umem_free(buf, size);
7046 }
7047 }
7048
7049 void
ztest_pool_prefetch_ddt(ztest_ds_t * zd,uint64_t id)7050 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7051 {
7052 (void) zd, (void) id;
7053 spa_t *spa;
7054
7055 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7056 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7057
7058 ddt_prefetch_all(spa);
7059
7060 spa_close(spa, FTAG);
7061 (void) pthread_rwlock_unlock(&ztest_name_lock);
7062 }
7063
7064 static int
ztest_set_global_vars(void)7065 ztest_set_global_vars(void)
7066 {
7067 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7068 char *kv = ztest_opts.zo_gvars[i];
7069 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7070 VERIFY3U(strlen(kv), >, 0);
7071 int err = set_global_var(kv);
7072 if (ztest_opts.zo_verbose > 0) {
7073 (void) printf("setting global var %s ... %s\n", kv,
7074 err ? "failed" : "ok");
7075 }
7076 if (err != 0) {
7077 (void) fprintf(stderr,
7078 "failed to set global var '%s'\n", kv);
7079 return (err);
7080 }
7081 }
7082 return (0);
7083 }
7084
7085 static char **
ztest_global_vars_to_zdb_args(void)7086 ztest_global_vars_to_zdb_args(void)
7087 {
7088 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7089 char **cur = args;
7090 if (args == NULL)
7091 return (NULL);
7092 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7093 *cur++ = (char *)"-o";
7094 *cur++ = ztest_opts.zo_gvars[i];
7095 }
7096 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7097 *cur = NULL;
7098 return (args);
7099 }
7100
7101 /* The end of strings is indicated by a NULL element */
7102 static char *
join_strings(char ** strings,const char * sep)7103 join_strings(char **strings, const char *sep)
7104 {
7105 size_t totallen = 0;
7106 for (char **sp = strings; *sp != NULL; sp++) {
7107 totallen += strlen(*sp);
7108 totallen += strlen(sep);
7109 }
7110 if (totallen > 0) {
7111 ASSERT(totallen >= strlen(sep));
7112 totallen -= strlen(sep);
7113 }
7114
7115 size_t buflen = totallen + 1;
7116 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7117 o[0] = '\0';
7118 for (char **sp = strings; *sp != NULL; sp++) {
7119 size_t would;
7120 would = strlcat(o, *sp, buflen);
7121 VERIFY3U(would, <, buflen);
7122 if (*(sp+1) == NULL) {
7123 break;
7124 }
7125 would = strlcat(o, sep, buflen);
7126 VERIFY3U(would, <, buflen);
7127 }
7128 ASSERT3S(strlen(o), ==, totallen);
7129 return (o);
7130 }
7131
7132 static int
ztest_check_path(char * path)7133 ztest_check_path(char *path)
7134 {
7135 struct stat s;
7136 /* return true on success */
7137 return (!stat(path, &s));
7138 }
7139
7140 static void
ztest_get_zdb_bin(char * bin,int len)7141 ztest_get_zdb_bin(char *bin, int len)
7142 {
7143 char *zdb_path;
7144 /*
7145 * Try to use $ZDB and in-tree zdb path. If not successful, just
7146 * let popen to search through PATH.
7147 */
7148 if ((zdb_path = getenv("ZDB"))) {
7149 strlcpy(bin, zdb_path, len); /* In env */
7150 if (!ztest_check_path(bin)) {
7151 ztest_dump_core = 0;
7152 fatal(B_TRUE, "invalid ZDB '%s'", bin);
7153 }
7154 return;
7155 }
7156
7157 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7158 if (strstr(bin, ".libs/ztest")) {
7159 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7160 strcat(bin, "zdb");
7161 if (ztest_check_path(bin))
7162 return;
7163 }
7164 strcpy(bin, "zdb");
7165 }
7166
7167 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)7168 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7169 {
7170 if (vd == NULL)
7171 return (NULL);
7172
7173 if (vd->vdev_children == 0)
7174 return (vd);
7175
7176 vdev_t *eligible[vd->vdev_children];
7177 int eligible_idx = 0, i;
7178 for (i = 0; i < vd->vdev_children; i++) {
7179 vdev_t *cvd = vd->vdev_child[i];
7180 if (cvd->vdev_top->vdev_removing)
7181 continue;
7182 if (cvd->vdev_children > 0 ||
7183 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7184 eligible[eligible_idx++] = cvd;
7185 }
7186 }
7187 VERIFY3S(eligible_idx, >, 0);
7188
7189 uint64_t child_no = ztest_random(eligible_idx);
7190 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7191 }
7192
7193 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)7194 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7195 {
7196 (void) zd, (void) id;
7197 spa_t *spa = ztest_spa;
7198 int error = 0;
7199
7200 mutex_enter(&ztest_vdev_lock);
7201
7202 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7203
7204 /* Random leaf vdev */
7205 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7206 if (rand_vd == NULL) {
7207 spa_config_exit(spa, SCL_VDEV, FTAG);
7208 mutex_exit(&ztest_vdev_lock);
7209 return;
7210 }
7211
7212 /*
7213 * The random vdev we've selected may change as soon as we
7214 * drop the spa_config_lock. We create local copies of things
7215 * we're interested in.
7216 */
7217 uint64_t guid = rand_vd->vdev_guid;
7218 char *path = strdup(rand_vd->vdev_path);
7219 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7220
7221 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7222 spa_config_exit(spa, SCL_VDEV, FTAG);
7223
7224 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7225
7226 nvlist_t *vdev_guids = fnvlist_alloc();
7227 nvlist_t *vdev_errlist = fnvlist_alloc();
7228 fnvlist_add_uint64(vdev_guids, path, guid);
7229 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7230 fnvlist_free(vdev_guids);
7231 fnvlist_free(vdev_errlist);
7232
7233 switch (cmd) {
7234 case POOL_INITIALIZE_CANCEL:
7235 if (ztest_opts.zo_verbose >= 4) {
7236 (void) printf("Cancel initialize %s", path);
7237 if (!active)
7238 (void) printf(" failed (no initialize active)");
7239 (void) printf("\n");
7240 }
7241 break;
7242 case POOL_INITIALIZE_START:
7243 if (ztest_opts.zo_verbose >= 4) {
7244 (void) printf("Start initialize %s", path);
7245 if (active && error == 0)
7246 (void) printf(" failed (already active)");
7247 else if (error != 0)
7248 (void) printf(" failed (error %d)", error);
7249 (void) printf("\n");
7250 }
7251 break;
7252 case POOL_INITIALIZE_SUSPEND:
7253 if (ztest_opts.zo_verbose >= 4) {
7254 (void) printf("Suspend initialize %s", path);
7255 if (!active)
7256 (void) printf(" failed (no initialize active)");
7257 (void) printf("\n");
7258 }
7259 break;
7260 }
7261 free(path);
7262 mutex_exit(&ztest_vdev_lock);
7263 }
7264
7265 void
ztest_trim(ztest_ds_t * zd,uint64_t id)7266 ztest_trim(ztest_ds_t *zd, uint64_t id)
7267 {
7268 (void) zd, (void) id;
7269 spa_t *spa = ztest_spa;
7270 int error = 0;
7271
7272 mutex_enter(&ztest_vdev_lock);
7273
7274 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7275
7276 /* Random leaf vdev */
7277 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7278 if (rand_vd == NULL) {
7279 spa_config_exit(spa, SCL_VDEV, FTAG);
7280 mutex_exit(&ztest_vdev_lock);
7281 return;
7282 }
7283
7284 /*
7285 * The random vdev we've selected may change as soon as we
7286 * drop the spa_config_lock. We create local copies of things
7287 * we're interested in.
7288 */
7289 uint64_t guid = rand_vd->vdev_guid;
7290 char *path = strdup(rand_vd->vdev_path);
7291 boolean_t active = rand_vd->vdev_trim_thread != NULL;
7292
7293 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7294 spa_config_exit(spa, SCL_VDEV, FTAG);
7295
7296 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7297 uint64_t rate = 1 << ztest_random(30);
7298 boolean_t partial = (ztest_random(5) > 0);
7299 boolean_t secure = (ztest_random(5) > 0);
7300
7301 nvlist_t *vdev_guids = fnvlist_alloc();
7302 nvlist_t *vdev_errlist = fnvlist_alloc();
7303 fnvlist_add_uint64(vdev_guids, path, guid);
7304 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7305 secure, vdev_errlist);
7306 fnvlist_free(vdev_guids);
7307 fnvlist_free(vdev_errlist);
7308
7309 switch (cmd) {
7310 case POOL_TRIM_CANCEL:
7311 if (ztest_opts.zo_verbose >= 4) {
7312 (void) printf("Cancel TRIM %s", path);
7313 if (!active)
7314 (void) printf(" failed (no TRIM active)");
7315 (void) printf("\n");
7316 }
7317 break;
7318 case POOL_TRIM_START:
7319 if (ztest_opts.zo_verbose >= 4) {
7320 (void) printf("Start TRIM %s", path);
7321 if (active && error == 0)
7322 (void) printf(" failed (already active)");
7323 else if (error != 0)
7324 (void) printf(" failed (error %d)", error);
7325 (void) printf("\n");
7326 }
7327 break;
7328 case POOL_TRIM_SUSPEND:
7329 if (ztest_opts.zo_verbose >= 4) {
7330 (void) printf("Suspend TRIM %s", path);
7331 if (!active)
7332 (void) printf(" failed (no TRIM active)");
7333 (void) printf("\n");
7334 }
7335 break;
7336 }
7337 free(path);
7338 mutex_exit(&ztest_vdev_lock);
7339 }
7340
7341 void
ztest_ddt_prune(ztest_ds_t * zd,uint64_t id)7342 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7343 {
7344 (void) zd, (void) id;
7345
7346 spa_t *spa = ztest_spa;
7347 uint64_t pct = ztest_random(15) + 1;
7348
7349 (void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7350 }
7351
7352 /*
7353 * Verify pool integrity by running zdb.
7354 */
7355 static void
ztest_run_zdb(uint64_t guid)7356 ztest_run_zdb(uint64_t guid)
7357 {
7358 int status;
7359 char *bin;
7360 char *zdb;
7361 char *zbuf;
7362 const int len = MAXPATHLEN + MAXNAMELEN + 20;
7363 FILE *fp;
7364
7365 bin = umem_alloc(len, UMEM_NOFAIL);
7366 zdb = umem_alloc(len, UMEM_NOFAIL);
7367 zbuf = umem_alloc(1024, UMEM_NOFAIL);
7368
7369 ztest_get_zdb_bin(bin, len);
7370
7371 char **set_gvars_args = ztest_global_vars_to_zdb_args();
7372 if (set_gvars_args == NULL) {
7373 fatal(B_FALSE, "Failed to allocate memory in "
7374 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7375 }
7376 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7377 free(set_gvars_args);
7378
7379 size_t would = snprintf(zdb, len,
7380 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7381 bin,
7382 ztest_opts.zo_verbose >= 3 ? "s" : "",
7383 ztest_opts.zo_verbose >= 4 ? "v" : "",
7384 set_gvars_args_joined,
7385 ztest_opts.zo_dir,
7386 guid);
7387 ASSERT3U(would, <, len);
7388
7389 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7390
7391 if (ztest_opts.zo_verbose >= 5)
7392 (void) printf("Executing %s\n", zdb);
7393
7394 fp = popen(zdb, "r");
7395
7396 while (fgets(zbuf, 1024, fp) != NULL)
7397 if (ztest_opts.zo_verbose >= 3)
7398 (void) printf("%s", zbuf);
7399
7400 status = pclose(fp);
7401
7402 if (status == 0)
7403 goto out;
7404
7405 ztest_dump_core = 0;
7406 if (WIFEXITED(status))
7407 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7408 else
7409 fatal(B_FALSE, "'%s' died with signal %d",
7410 zdb, WTERMSIG(status));
7411 out:
7412 umem_free(bin, len);
7413 umem_free(zdb, len);
7414 umem_free(zbuf, 1024);
7415 }
7416
7417 static void
ztest_walk_pool_directory(const char * header)7418 ztest_walk_pool_directory(const char *header)
7419 {
7420 spa_t *spa = NULL;
7421
7422 if (ztest_opts.zo_verbose >= 6)
7423 (void) puts(header);
7424
7425 mutex_enter(&spa_namespace_lock);
7426 while ((spa = spa_next(spa)) != NULL)
7427 if (ztest_opts.zo_verbose >= 6)
7428 (void) printf("\t%s\n", spa_name(spa));
7429 mutex_exit(&spa_namespace_lock);
7430 }
7431
7432 static void
ztest_spa_import_export(char * oldname,char * newname)7433 ztest_spa_import_export(char *oldname, char *newname)
7434 {
7435 nvlist_t *config, *newconfig;
7436 uint64_t pool_guid;
7437 spa_t *spa;
7438 int error;
7439
7440 if (ztest_opts.zo_verbose >= 4) {
7441 (void) printf("import/export: old = %s, new = %s\n",
7442 oldname, newname);
7443 }
7444
7445 /*
7446 * Clean up from previous runs.
7447 */
7448 (void) spa_destroy(newname);
7449
7450 /*
7451 * Get the pool's configuration and guid.
7452 */
7453 VERIFY0(spa_open(oldname, &spa, FTAG));
7454
7455 /*
7456 * Kick off a scrub to tickle scrub/export races.
7457 */
7458 if (ztest_random(2) == 0)
7459 (void) spa_scan(spa, POOL_SCAN_SCRUB);
7460
7461 pool_guid = spa_guid(spa);
7462 spa_close(spa, FTAG);
7463
7464 ztest_walk_pool_directory("pools before export");
7465
7466 /*
7467 * Export it.
7468 */
7469 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7470
7471 ztest_walk_pool_directory("pools after export");
7472
7473 /*
7474 * Try to import it.
7475 */
7476 newconfig = spa_tryimport(config);
7477 ASSERT3P(newconfig, !=, NULL);
7478 fnvlist_free(newconfig);
7479
7480 /*
7481 * Import it under the new name.
7482 */
7483 error = spa_import(newname, config, NULL, 0);
7484 if (error != 0) {
7485 dump_nvlist(config, 0);
7486 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7487 oldname, newname, error);
7488 }
7489
7490 ztest_walk_pool_directory("pools after import");
7491
7492 /*
7493 * Try to import it again -- should fail with EEXIST.
7494 */
7495 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7496
7497 /*
7498 * Try to import it under a different name -- should fail with EEXIST.
7499 */
7500 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7501
7502 /*
7503 * Verify that the pool is no longer visible under the old name.
7504 */
7505 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7506
7507 /*
7508 * Verify that we can open and close the pool using the new name.
7509 */
7510 VERIFY0(spa_open(newname, &spa, FTAG));
7511 ASSERT3U(pool_guid, ==, spa_guid(spa));
7512 spa_close(spa, FTAG);
7513
7514 fnvlist_free(config);
7515 }
7516
7517 static void
ztest_resume(spa_t * spa)7518 ztest_resume(spa_t *spa)
7519 {
7520 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7521 (void) printf("resuming from suspended state\n");
7522 spa_vdev_state_enter(spa, SCL_NONE);
7523 vdev_clear(spa, NULL);
7524 (void) spa_vdev_state_exit(spa, NULL, 0);
7525 (void) zio_resume(spa);
7526 }
7527
7528 static __attribute__((noreturn)) void
ztest_resume_thread(void * arg)7529 ztest_resume_thread(void *arg)
7530 {
7531 spa_t *spa = arg;
7532
7533 /*
7534 * Synthesize aged DDT entries for ddt prune testing
7535 */
7536 ddt_prune_artificial_age = B_TRUE;
7537 if (ztest_opts.zo_verbose >= 3)
7538 ddt_dump_prune_histogram = B_TRUE;
7539
7540 while (!ztest_exiting) {
7541 if (spa_suspended(spa))
7542 ztest_resume(spa);
7543 (void) poll(NULL, 0, 100);
7544
7545 /*
7546 * Periodically change the zfs_compressed_arc_enabled setting.
7547 */
7548 if (ztest_random(10) == 0)
7549 zfs_compressed_arc_enabled = ztest_random(2);
7550
7551 /*
7552 * Periodically change the zfs_abd_scatter_enabled setting.
7553 */
7554 if (ztest_random(10) == 0)
7555 zfs_abd_scatter_enabled = ztest_random(2);
7556 }
7557
7558 thread_exit();
7559 }
7560
7561 static __attribute__((noreturn)) void
ztest_deadman_thread(void * arg)7562 ztest_deadman_thread(void *arg)
7563 {
7564 ztest_shared_t *zs = arg;
7565 spa_t *spa = ztest_spa;
7566 hrtime_t delay, overdue, last_run = gethrtime();
7567
7568 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7569 MSEC2NSEC(zfs_deadman_synctime_ms);
7570
7571 while (!ztest_exiting) {
7572 /*
7573 * Wait for the delay timer while checking occasionally
7574 * if we should stop.
7575 */
7576 if (gethrtime() < last_run + delay) {
7577 (void) poll(NULL, 0, 1000);
7578 continue;
7579 }
7580
7581 /*
7582 * If the pool is suspended then fail immediately. Otherwise,
7583 * check to see if the pool is making any progress. If
7584 * vdev_deadman() discovers that there hasn't been any recent
7585 * I/Os then it will end up aborting the tests.
7586 */
7587 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7588 fatal(B_FALSE,
7589 "aborting test after %llu seconds because "
7590 "pool has transitioned to a suspended state.",
7591 (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7592 }
7593 vdev_deadman(spa->spa_root_vdev, FTAG);
7594
7595 /*
7596 * If the process doesn't complete within a grace period of
7597 * zfs_deadman_synctime_ms over the expected finish time,
7598 * then it may be hung and is terminated.
7599 */
7600 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7601 if (gethrtime() > overdue) {
7602 fatal(B_FALSE,
7603 "aborting test after %llu seconds because "
7604 "the process is overdue for termination.",
7605 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7606 }
7607
7608 (void) printf("ztest has been running for %lld seconds\n",
7609 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7610
7611 last_run = gethrtime();
7612 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7613 }
7614
7615 thread_exit();
7616 }
7617
7618 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7619 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7620 {
7621 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7622 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7623 hrtime_t functime = gethrtime();
7624 int i;
7625
7626 for (i = 0; i < zi->zi_iters; i++)
7627 zi->zi_func(zd, id);
7628
7629 functime = gethrtime() - functime;
7630
7631 atomic_add_64(&zc->zc_count, 1);
7632 atomic_add_64(&zc->zc_time, functime);
7633
7634 if (ztest_opts.zo_verbose >= 4)
7635 (void) printf("%6.2f sec in %s\n",
7636 (double)functime / NANOSEC, zi->zi_funcname);
7637 }
7638
7639 typedef struct ztest_raidz_expand_io {
7640 uint64_t rzx_id;
7641 uint64_t rzx_amount;
7642 uint64_t rzx_bufsize;
7643 const void *rzx_buffer;
7644 uint64_t rzx_alloc_max;
7645 spa_t *rzx_spa;
7646 } ztest_expand_io_t;
7647
7648 #undef OD_ARRAY_SIZE
7649 #define OD_ARRAY_SIZE 10
7650
7651 /*
7652 * Write a request amount of data to some dataset objects.
7653 * There will be ztest_opts.zo_threads count of these running in parallel.
7654 */
7655 static __attribute__((noreturn)) void
ztest_rzx_thread(void * arg)7656 ztest_rzx_thread(void *arg)
7657 {
7658 ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7659 ztest_od_t *od;
7660 int batchsize;
7661 int od_size;
7662 ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7663 spa_t *spa = info->rzx_spa;
7664
7665 od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7666 od = umem_alloc(od_size, UMEM_NOFAIL);
7667 batchsize = OD_ARRAY_SIZE;
7668
7669 /* Create objects to write to */
7670 for (int b = 0; b < batchsize; b++) {
7671 ztest_od_init(od + b, info->rzx_id, FTAG, b,
7672 DMU_OT_UINT64_OTHER, 0, 0, 0);
7673 }
7674 if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7675 umem_free(od, od_size);
7676 thread_exit();
7677 }
7678
7679 for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7680 offset += info->rzx_bufsize) {
7681 /* write to 10 objects */
7682 for (int i = 0; i < batchsize && written < info->rzx_amount;
7683 i++) {
7684 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7685 ztest_write(zd, od[i].od_object, offset,
7686 info->rzx_bufsize, info->rzx_buffer);
7687 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7688 written += info->rzx_bufsize;
7689 }
7690 txg_wait_synced(spa_get_dsl(spa), 0);
7691 /* due to inflation, we'll typically bail here */
7692 if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7693 info->rzx_alloc_max) {
7694 break;
7695 }
7696 }
7697
7698 /* Remove a few objects to leave some holes in allocation space */
7699 mutex_enter(&zd->zd_dirobj_lock);
7700 (void) ztest_remove(zd, od, 2);
7701 mutex_exit(&zd->zd_dirobj_lock);
7702
7703 umem_free(od, od_size);
7704
7705 thread_exit();
7706 }
7707
7708 static __attribute__((noreturn)) void
ztest_thread(void * arg)7709 ztest_thread(void *arg)
7710 {
7711 int rand;
7712 uint64_t id = (uintptr_t)arg;
7713 ztest_shared_t *zs = ztest_shared;
7714 uint64_t call_next;
7715 hrtime_t now;
7716 ztest_info_t *zi;
7717 ztest_shared_callstate_t *zc;
7718
7719 while ((now = gethrtime()) < zs->zs_thread_stop) {
7720 /*
7721 * See if it's time to force a crash.
7722 */
7723 if (now > zs->zs_thread_kill &&
7724 raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7725 ztest_kill(zs);
7726 }
7727
7728 /*
7729 * If we're getting ENOSPC with some regularity, stop.
7730 */
7731 if (zs->zs_enospc_count > 10)
7732 break;
7733
7734 /*
7735 * Pick a random function to execute.
7736 */
7737 rand = ztest_random(ZTEST_FUNCS);
7738 zi = &ztest_info[rand];
7739 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7740 call_next = zc->zc_next;
7741
7742 if (now >= call_next &&
7743 atomic_cas_64(&zc->zc_next, call_next, call_next +
7744 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7745 ztest_execute(rand, zi, id);
7746 }
7747 }
7748
7749 thread_exit();
7750 }
7751
7752 static void
ztest_dataset_name(char * dsname,const char * pool,int d)7753 ztest_dataset_name(char *dsname, const char *pool, int d)
7754 {
7755 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7756 }
7757
7758 static void
ztest_dataset_destroy(int d)7759 ztest_dataset_destroy(int d)
7760 {
7761 char name[ZFS_MAX_DATASET_NAME_LEN];
7762 int t;
7763
7764 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7765
7766 if (ztest_opts.zo_verbose >= 3)
7767 (void) printf("Destroying %s to free up space\n", name);
7768
7769 /*
7770 * Cleanup any non-standard clones and snapshots. In general,
7771 * ztest thread t operates on dataset (t % zopt_datasets),
7772 * so there may be more than one thing to clean up.
7773 */
7774 for (t = d; t < ztest_opts.zo_threads;
7775 t += ztest_opts.zo_datasets)
7776 ztest_dsl_dataset_cleanup(name, t);
7777
7778 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7779 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7780 }
7781
7782 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7783 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7784 {
7785 uint64_t usedobjs, dirobjs, scratch;
7786
7787 /*
7788 * ZTEST_DIROBJ is the object directory for the entire dataset.
7789 * Therefore, the number of objects in use should equal the
7790 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7791 * If not, we have an object leak.
7792 *
7793 * Note that we can only check this in ztest_dataset_open(),
7794 * when the open-context and syncing-context values agree.
7795 * That's because zap_count() returns the open-context value,
7796 * while dmu_objset_space() returns the rootbp fill count.
7797 */
7798 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7799 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7800 ASSERT3U(dirobjs + 1, ==, usedobjs);
7801 }
7802
7803 static int
ztest_dataset_open(int d)7804 ztest_dataset_open(int d)
7805 {
7806 ztest_ds_t *zd = &ztest_ds[d];
7807 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7808 objset_t *os;
7809 zilog_t *zilog;
7810 char name[ZFS_MAX_DATASET_NAME_LEN];
7811 int error;
7812
7813 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7814
7815 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7816
7817 error = ztest_dataset_create(name);
7818 if (error == ENOSPC) {
7819 (void) pthread_rwlock_unlock(&ztest_name_lock);
7820 ztest_record_enospc(FTAG);
7821 return (error);
7822 }
7823 ASSERT(error == 0 || error == EEXIST);
7824
7825 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7826 B_TRUE, zd, &os));
7827 (void) pthread_rwlock_unlock(&ztest_name_lock);
7828
7829 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7830
7831 zilog = zd->zd_zilog;
7832
7833 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7834 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7835 fatal(B_FALSE, "missing log records: "
7836 "claimed %"PRIu64" < committed %"PRIu64"",
7837 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7838
7839 ztest_dataset_dirobj_verify(zd);
7840
7841 zil_replay(os, zd, ztest_replay_vector);
7842
7843 ztest_dataset_dirobj_verify(zd);
7844
7845 if (ztest_opts.zo_verbose >= 6)
7846 (void) printf("%s replay %"PRIu64" blocks, "
7847 "%"PRIu64" records, seq %"PRIu64"\n",
7848 zd->zd_name,
7849 zilog->zl_parse_blk_count,
7850 zilog->zl_parse_lr_count,
7851 zilog->zl_replaying_seq);
7852
7853 zilog = zil_open(os, ztest_get_data, NULL);
7854
7855 if (zilog->zl_replaying_seq != 0 &&
7856 zilog->zl_replaying_seq < committed_seq)
7857 fatal(B_FALSE, "missing log records: "
7858 "replayed %"PRIu64" < committed %"PRIu64"",
7859 zilog->zl_replaying_seq, committed_seq);
7860
7861 return (0);
7862 }
7863
7864 static void
ztest_dataset_close(int d)7865 ztest_dataset_close(int d)
7866 {
7867 ztest_ds_t *zd = &ztest_ds[d];
7868
7869 zil_close(zd->zd_zilog);
7870 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7871
7872 ztest_zd_fini(zd);
7873 }
7874
7875 static int
ztest_replay_zil_cb(const char * name,void * arg)7876 ztest_replay_zil_cb(const char *name, void *arg)
7877 {
7878 (void) arg;
7879 objset_t *os;
7880 ztest_ds_t *zdtmp;
7881
7882 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7883 B_TRUE, FTAG, &os));
7884
7885 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7886
7887 ztest_zd_init(zdtmp, NULL, os);
7888 zil_replay(os, zdtmp, ztest_replay_vector);
7889 ztest_zd_fini(zdtmp);
7890
7891 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7892 ztest_opts.zo_verbose >= 6) {
7893 zilog_t *zilog = dmu_objset_zil(os);
7894
7895 (void) printf("%s replay %"PRIu64" blocks, "
7896 "%"PRIu64" records, seq %"PRIu64"\n",
7897 name,
7898 zilog->zl_parse_blk_count,
7899 zilog->zl_parse_lr_count,
7900 zilog->zl_replaying_seq);
7901 }
7902
7903 umem_free(zdtmp, sizeof (ztest_ds_t));
7904
7905 dmu_objset_disown(os, B_TRUE, FTAG);
7906 return (0);
7907 }
7908
7909 static void
ztest_freeze(void)7910 ztest_freeze(void)
7911 {
7912 ztest_ds_t *zd = &ztest_ds[0];
7913 spa_t *spa;
7914 int numloops = 0;
7915
7916 /* freeze not supported during RAIDZ expansion */
7917 if (ztest_opts.zo_raid_do_expand)
7918 return;
7919
7920 if (ztest_opts.zo_verbose >= 3)
7921 (void) printf("testing spa_freeze()...\n");
7922
7923 raidz_scratch_verify();
7924 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7925 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7926 VERIFY0(ztest_dataset_open(0));
7927 ztest_spa = spa;
7928
7929 /*
7930 * Force the first log block to be transactionally allocated.
7931 * We have to do this before we freeze the pool -- otherwise
7932 * the log chain won't be anchored.
7933 */
7934 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7935 ztest_dmu_object_alloc_free(zd, 0);
7936 zil_commit(zd->zd_zilog, 0);
7937 }
7938
7939 txg_wait_synced(spa_get_dsl(spa), 0);
7940
7941 /*
7942 * Freeze the pool. This stops spa_sync() from doing anything,
7943 * so that the only way to record changes from now on is the ZIL.
7944 */
7945 spa_freeze(spa);
7946
7947 /*
7948 * Because it is hard to predict how much space a write will actually
7949 * require beforehand, we leave ourselves some fudge space to write over
7950 * capacity.
7951 */
7952 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7953
7954 /*
7955 * Run tests that generate log records but don't alter the pool config
7956 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7957 * We do a txg_wait_synced() after each iteration to force the txg
7958 * to increase well beyond the last synced value in the uberblock.
7959 * The ZIL should be OK with that.
7960 *
7961 * Run a random number of times less than zo_maxloops and ensure we do
7962 * not run out of space on the pool.
7963 */
7964 while (ztest_random(10) != 0 &&
7965 numloops++ < ztest_opts.zo_maxloops &&
7966 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7967 ztest_od_t od;
7968 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7969 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7970 ztest_io(zd, od.od_object,
7971 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7972 txg_wait_synced(spa_get_dsl(spa), 0);
7973 }
7974
7975 /*
7976 * Commit all of the changes we just generated.
7977 */
7978 zil_commit(zd->zd_zilog, 0);
7979 txg_wait_synced(spa_get_dsl(spa), 0);
7980
7981 /*
7982 * Close our dataset and close the pool.
7983 */
7984 ztest_dataset_close(0);
7985 spa_close(spa, FTAG);
7986 kernel_fini();
7987
7988 /*
7989 * Open and close the pool and dataset to induce log replay.
7990 */
7991 raidz_scratch_verify();
7992 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7993 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7994 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7995 VERIFY0(ztest_dataset_open(0));
7996 ztest_spa = spa;
7997 txg_wait_synced(spa_get_dsl(spa), 0);
7998 ztest_dataset_close(0);
7999 ztest_reguid(NULL, 0);
8000
8001 spa_close(spa, FTAG);
8002 kernel_fini();
8003 }
8004
8005 static void
ztest_import_impl(void)8006 ztest_import_impl(void)
8007 {
8008 importargs_t args = { 0 };
8009 nvlist_t *cfg = NULL;
8010 int nsearch = 1;
8011 char *searchdirs[nsearch];
8012 int flags = ZFS_IMPORT_MISSING_LOG;
8013
8014 searchdirs[0] = ztest_opts.zo_dir;
8015 args.paths = nsearch;
8016 args.path = searchdirs;
8017 args.can_be_active = B_FALSE;
8018
8019 libpc_handle_t lpch = {
8020 .lpc_lib_handle = NULL,
8021 .lpc_ops = &libzpool_config_ops,
8022 .lpc_printerr = B_TRUE
8023 };
8024 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8025 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8026 fnvlist_free(cfg);
8027 }
8028
8029 /*
8030 * Import a storage pool with the given name.
8031 */
8032 static void
ztest_import(ztest_shared_t * zs)8033 ztest_import(ztest_shared_t *zs)
8034 {
8035 spa_t *spa;
8036
8037 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8038 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8039 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8040
8041 raidz_scratch_verify();
8042 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8043
8044 ztest_import_impl();
8045
8046 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8047 zs->zs_metaslab_sz =
8048 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8049 zs->zs_guid = spa_guid(spa);
8050 spa_close(spa, FTAG);
8051
8052 kernel_fini();
8053
8054 if (!ztest_opts.zo_mmp_test) {
8055 ztest_run_zdb(zs->zs_guid);
8056 ztest_freeze();
8057 ztest_run_zdb(zs->zs_guid);
8058 }
8059
8060 (void) pthread_rwlock_destroy(&ztest_name_lock);
8061 mutex_destroy(&ztest_vdev_lock);
8062 mutex_destroy(&ztest_checkpoint_lock);
8063 }
8064
8065 /*
8066 * After the expansion was killed, check that the pool is healthy
8067 */
8068 static void
ztest_raidz_expand_check(spa_t * spa)8069 ztest_raidz_expand_check(spa_t *spa)
8070 {
8071 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8072 /*
8073 * Set pool check done flag, main program will run a zdb check
8074 * of the pool when we exit.
8075 */
8076 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8077
8078 /* Wait for reflow to finish */
8079 if (ztest_opts.zo_verbose >= 1) {
8080 (void) printf("\nwaiting for reflow to finish ...\n");
8081 }
8082 pool_raidz_expand_stat_t rzx_stats;
8083 pool_raidz_expand_stat_t *pres = &rzx_stats;
8084 do {
8085 txg_wait_synced(spa_get_dsl(spa), 0);
8086 (void) poll(NULL, 0, 500); /* wait 1/2 second */
8087
8088 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8089 (void) spa_raidz_expand_get_stats(spa, pres);
8090 spa_config_exit(spa, SCL_CONFIG, FTAG);
8091 } while (pres->pres_state != DSS_FINISHED &&
8092 pres->pres_reflowed < pres->pres_to_reflow);
8093
8094 if (ztest_opts.zo_verbose >= 1) {
8095 (void) printf("verifying an interrupted raidz "
8096 "expansion using a pool scrub ...\n");
8097 }
8098
8099 /* Will fail here if there is non-recoverable corruption detected */
8100 int error = ztest_scrub_impl(spa);
8101 if (error == EBUSY)
8102 error = 0;
8103
8104 VERIFY0(error);
8105
8106 if (ztest_opts.zo_verbose >= 1) {
8107 (void) printf("raidz expansion scrub check complete\n");
8108 }
8109 }
8110
8111 /*
8112 * Start a raidz expansion test. We run some I/O on the pool for a while
8113 * to get some data in the pool. Then we grow the raidz and
8114 * kill the test at the requested offset into the reflow, verifying that
8115 * doing such does not lead to pool corruption.
8116 */
8117 static void
ztest_raidz_expand_run(ztest_shared_t * zs,spa_t * spa)8118 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8119 {
8120 nvlist_t *root;
8121 pool_raidz_expand_stat_t rzx_stats;
8122 pool_raidz_expand_stat_t *pres = &rzx_stats;
8123 kthread_t **run_threads;
8124 vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8125 int total_disks = rzvd->vdev_children;
8126 int data_disks = total_disks - vdev_get_nparity(rzvd);
8127 uint64_t alloc_goal;
8128 uint64_t csize;
8129 int error, t;
8130 int threads = ztest_opts.zo_threads;
8131 ztest_expand_io_t *thread_args;
8132
8133 ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8134 ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8135 ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8136
8137 /* Setup a 1 MiB buffer of random data */
8138 uint64_t bufsize = 1024 * 1024;
8139 void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8140
8141 if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8142 fatal(B_TRUE, "short read from /dev/urandom");
8143 }
8144 /*
8145 * Put some data in the pool and then attach a vdev to initiate
8146 * reflow.
8147 */
8148 run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8149 thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8150 UMEM_NOFAIL);
8151 /* Aim for roughly 25% of allocatable space up to 1GB */
8152 alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8153 alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8154 if (ztest_opts.zo_verbose >= 1) {
8155 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8156 ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8157 }
8158
8159 /*
8160 * Kick off all the I/O generators that run in parallel.
8161 */
8162 for (t = 0; t < threads; t++) {
8163 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8164 umem_free(run_threads, threads * sizeof (kthread_t *));
8165 umem_free(buffer, bufsize);
8166 return;
8167 }
8168 thread_args[t].rzx_id = t;
8169 thread_args[t].rzx_amount = alloc_goal / threads;
8170 thread_args[t].rzx_bufsize = bufsize;
8171 thread_args[t].rzx_buffer = buffer;
8172 thread_args[t].rzx_alloc_max = alloc_goal;
8173 thread_args[t].rzx_spa = spa;
8174 run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8175 &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8176 defclsyspri);
8177 }
8178
8179 /*
8180 * Wait for all of the writers to complete.
8181 */
8182 for (t = 0; t < threads; t++)
8183 VERIFY0(thread_join(run_threads[t]));
8184
8185 /*
8186 * Close all datasets. This must be done after all the threads
8187 * are joined so we can be sure none of the datasets are in-use
8188 * by any of the threads.
8189 */
8190 for (t = 0; t < ztest_opts.zo_threads; t++) {
8191 if (t < ztest_opts.zo_datasets)
8192 ztest_dataset_close(t);
8193 }
8194
8195 txg_wait_synced(spa_get_dsl(spa), 0);
8196
8197 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8198 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8199
8200 umem_free(buffer, bufsize);
8201 umem_free(run_threads, threads * sizeof (kthread_t *));
8202 umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8203
8204 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8205 uint_t multiple = ztest_random(3) + 1;
8206 uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8207 raidz_expand_max_reflow_bytes = reflow_max;
8208
8209 if (ztest_opts.zo_verbose >= 1) {
8210 (void) printf("running raidz expansion test, killing when "
8211 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8212 (u_longlong_t)reflow_max, multiple);
8213 }
8214
8215 /* XXX - do we want some I/O load during the reflow? */
8216
8217 /*
8218 * Use a disk size that is larger than existing ones
8219 */
8220 cvd = rzvd->vdev_child[0];
8221 csize = vdev_get_min_asize(cvd);
8222 csize += csize / 10;
8223 /*
8224 * Path to vdev to be attached
8225 */
8226 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8227 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8228 ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8229 /*
8230 * Build the nvlist describing newpath.
8231 */
8232 root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8233 NULL, 0, 0, 1);
8234 /*
8235 * Expand the raidz vdev by attaching the new disk
8236 */
8237 if (ztest_opts.zo_verbose >= 1) {
8238 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8239 (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8240 newpath);
8241 }
8242 error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8243 nvlist_free(root);
8244 if (error != 0) {
8245 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8246 newpath, (long long)csize, error);
8247 }
8248
8249 /*
8250 * Wait for reflow to begin
8251 */
8252 while (spa->spa_raidz_expand == NULL) {
8253 txg_wait_synced(spa_get_dsl(spa), 0);
8254 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8255 }
8256 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8257 (void) spa_raidz_expand_get_stats(spa, pres);
8258 spa_config_exit(spa, SCL_CONFIG, FTAG);
8259 while (pres->pres_state != DSS_SCANNING) {
8260 txg_wait_synced(spa_get_dsl(spa), 0);
8261 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8262 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8263 (void) spa_raidz_expand_get_stats(spa, pres);
8264 spa_config_exit(spa, SCL_CONFIG, FTAG);
8265 }
8266
8267 ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8268 ASSERT3U(pres->pres_to_reflow, !=, 0);
8269 /*
8270 * Set so when we are killed we go to raidz checking rather than
8271 * restarting test.
8272 */
8273 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8274 if (ztest_opts.zo_verbose >= 1) {
8275 (void) printf("raidz expansion reflow started, waiting for "
8276 "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8277 }
8278
8279 /*
8280 * Wait for reflow maximum to be reached and then kill the test
8281 */
8282 while (pres->pres_reflowed < reflow_max) {
8283 txg_wait_synced(spa_get_dsl(spa), 0);
8284 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8285 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8286 (void) spa_raidz_expand_get_stats(spa, pres);
8287 spa_config_exit(spa, SCL_CONFIG, FTAG);
8288 }
8289
8290 /* Reset the reflow pause before killing */
8291 raidz_expand_max_reflow_bytes = 0;
8292
8293 if (ztest_opts.zo_verbose >= 1) {
8294 (void) printf("killing raidz expansion test after reflow "
8295 "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8296 }
8297
8298 /*
8299 * Kill ourself to simulate a panic during a reflow. Our parent will
8300 * restart the test and the changed flag value will drive the test
8301 * through the scrub/check code to verify the pool is not corrupted.
8302 */
8303 ztest_kill(zs);
8304 }
8305
8306 static void
ztest_generic_run(ztest_shared_t * zs,spa_t * spa)8307 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8308 {
8309 kthread_t **run_threads;
8310 int t;
8311
8312 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8313 UMEM_NOFAIL);
8314
8315 /*
8316 * Kick off all the tests that run in parallel.
8317 */
8318 for (t = 0; t < ztest_opts.zo_threads; t++) {
8319 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8320 umem_free(run_threads, ztest_opts.zo_threads *
8321 sizeof (kthread_t *));
8322 return;
8323 }
8324
8325 run_threads[t] = thread_create(NULL, 0, ztest_thread,
8326 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8327 defclsyspri);
8328 }
8329
8330 /*
8331 * Wait for all of the tests to complete.
8332 */
8333 for (t = 0; t < ztest_opts.zo_threads; t++)
8334 VERIFY0(thread_join(run_threads[t]));
8335
8336 /*
8337 * Close all datasets. This must be done after all the threads
8338 * are joined so we can be sure none of the datasets are in-use
8339 * by any of the threads.
8340 */
8341 for (t = 0; t < ztest_opts.zo_threads; t++) {
8342 if (t < ztest_opts.zo_datasets)
8343 ztest_dataset_close(t);
8344 }
8345
8346 txg_wait_synced(spa_get_dsl(spa), 0);
8347
8348 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8349 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8350
8351 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8352 }
8353
8354 /*
8355 * Setup our test context and kick off threads to run tests on all datasets
8356 * in parallel.
8357 */
8358 static void
ztest_run(ztest_shared_t * zs)8359 ztest_run(ztest_shared_t *zs)
8360 {
8361 spa_t *spa;
8362 objset_t *os;
8363 kthread_t *resume_thread, *deadman_thread;
8364 uint64_t object;
8365 int error;
8366 int t, d;
8367
8368 ztest_exiting = B_FALSE;
8369
8370 /*
8371 * Initialize parent/child shared state.
8372 */
8373 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8374 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8375 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8376
8377 zs->zs_thread_start = gethrtime();
8378 zs->zs_thread_stop =
8379 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8380 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8381 zs->zs_thread_kill = zs->zs_thread_stop;
8382 if (ztest_random(100) < ztest_opts.zo_killrate) {
8383 zs->zs_thread_kill -=
8384 ztest_random(ztest_opts.zo_passtime * NANOSEC);
8385 }
8386
8387 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8388
8389 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8390 offsetof(ztest_cb_data_t, zcd_node));
8391
8392 /*
8393 * Open our pool. It may need to be imported first depending on
8394 * what tests were running when the previous pass was terminated.
8395 */
8396 raidz_scratch_verify();
8397 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8398 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8399 if (error) {
8400 VERIFY3S(error, ==, ENOENT);
8401 ztest_import_impl();
8402 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8403 zs->zs_metaslab_sz =
8404 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8405 }
8406
8407 metaslab_preload_limit = ztest_random(20) + 1;
8408 ztest_spa = spa;
8409
8410 /*
8411 * XXX - BUGBUG raidz expansion do not run this for generic for now
8412 */
8413 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8414 VERIFY0(vdev_raidz_impl_set("cycle"));
8415
8416 dmu_objset_stats_t dds;
8417 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8418 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8419 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8420 dmu_objset_fast_stat(os, &dds);
8421 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8422 dmu_objset_disown(os, B_TRUE, FTAG);
8423
8424 /* Give the dedicated raidz expansion test more grace time */
8425 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8426 zfs_deadman_synctime_ms *= 2;
8427
8428 /*
8429 * Create a thread to periodically resume suspended I/O.
8430 */
8431 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8432 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8433
8434 /*
8435 * Create a deadman thread and set to panic if we hang.
8436 */
8437 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8438 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8439
8440 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8441
8442 /*
8443 * Verify that we can safely inquire about any object,
8444 * whether it's allocated or not. To make it interesting,
8445 * we probe a 5-wide window around each power of two.
8446 * This hits all edge cases, including zero and the max.
8447 */
8448 for (t = 0; t < 64; t++) {
8449 for (d = -5; d <= 5; d++) {
8450 error = dmu_object_info(spa->spa_meta_objset,
8451 (1ULL << t) + d, NULL);
8452 ASSERT(error == 0 || error == ENOENT ||
8453 error == EINVAL);
8454 }
8455 }
8456
8457 /*
8458 * If we got any ENOSPC errors on the previous run, destroy something.
8459 */
8460 if (zs->zs_enospc_count != 0) {
8461 /* Not expecting ENOSPC errors during raidz expansion tests */
8462 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8463 RAIDZ_EXPAND_NONE);
8464
8465 int d = ztest_random(ztest_opts.zo_datasets);
8466 ztest_dataset_destroy(d);
8467 }
8468 zs->zs_enospc_count = 0;
8469
8470 /*
8471 * If we were in the middle of ztest_device_removal() and were killed
8472 * we need to ensure the removal and scrub complete before running
8473 * any tests that check ztest_device_removal_active. The removal will
8474 * be restarted automatically when the spa is opened, but we need to
8475 * initiate the scrub manually if it is not already in progress. Note
8476 * that we always run the scrub whenever an indirect vdev exists
8477 * because we have no way of knowing for sure if ztest_device_removal()
8478 * fully completed its scrub before the pool was reimported.
8479 *
8480 * Does not apply for the RAIDZ expansion specific test runs
8481 */
8482 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8483 (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8484 spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8485 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8486 txg_wait_synced(spa_get_dsl(spa), 0);
8487
8488 error = ztest_scrub_impl(spa);
8489 if (error == EBUSY)
8490 error = 0;
8491 ASSERT0(error);
8492 }
8493
8494 if (ztest_opts.zo_verbose >= 4)
8495 (void) printf("starting main threads...\n");
8496
8497 /*
8498 * Replay all logs of all datasets in the pool. This is primarily for
8499 * temporary datasets which wouldn't otherwise get replayed, which
8500 * can trigger failures when attempting to offline a SLOG in
8501 * ztest_fault_inject().
8502 */
8503 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8504 NULL, DS_FIND_CHILDREN);
8505
8506 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8507 ztest_raidz_expand_run(zs, spa);
8508 else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8509 ztest_raidz_expand_check(spa);
8510 else
8511 ztest_generic_run(zs, spa);
8512
8513 /* Kill the resume and deadman threads */
8514 ztest_exiting = B_TRUE;
8515 VERIFY0(thread_join(resume_thread));
8516 VERIFY0(thread_join(deadman_thread));
8517 ztest_resume(spa);
8518
8519 /*
8520 * Right before closing the pool, kick off a bunch of async I/O;
8521 * spa_close() should wait for it to complete.
8522 */
8523 for (object = 1; object < 50; object++) {
8524 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8525 ZIO_PRIORITY_SYNC_READ);
8526 }
8527
8528 /* Verify that at least one commit cb was called in a timely fashion */
8529 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8530 VERIFY0(zc_min_txg_delay);
8531
8532 spa_close(spa, FTAG);
8533
8534 /*
8535 * Verify that we can loop over all pools.
8536 */
8537 mutex_enter(&spa_namespace_lock);
8538 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8539 if (ztest_opts.zo_verbose > 3)
8540 (void) printf("spa_next: found %s\n", spa_name(spa));
8541 mutex_exit(&spa_namespace_lock);
8542
8543 /*
8544 * Verify that we can export the pool and reimport it under a
8545 * different name.
8546 */
8547 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8548 char name[ZFS_MAX_DATASET_NAME_LEN];
8549 (void) snprintf(name, sizeof (name), "%s_import",
8550 ztest_opts.zo_pool);
8551 ztest_spa_import_export(ztest_opts.zo_pool, name);
8552 ztest_spa_import_export(name, ztest_opts.zo_pool);
8553 }
8554
8555 kernel_fini();
8556
8557 list_destroy(&zcl.zcl_callbacks);
8558 mutex_destroy(&zcl.zcl_callbacks_lock);
8559 (void) pthread_rwlock_destroy(&ztest_name_lock);
8560 mutex_destroy(&ztest_vdev_lock);
8561 mutex_destroy(&ztest_checkpoint_lock);
8562 }
8563
8564 static void
print_time(hrtime_t t,char * timebuf)8565 print_time(hrtime_t t, char *timebuf)
8566 {
8567 hrtime_t s = t / NANOSEC;
8568 hrtime_t m = s / 60;
8569 hrtime_t h = m / 60;
8570 hrtime_t d = h / 24;
8571
8572 s -= m * 60;
8573 m -= h * 60;
8574 h -= d * 24;
8575
8576 timebuf[0] = '\0';
8577
8578 if (d)
8579 (void) sprintf(timebuf,
8580 "%llud%02lluh%02llum%02llus", d, h, m, s);
8581 else if (h)
8582 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8583 else if (m)
8584 (void) sprintf(timebuf, "%llum%02llus", m, s);
8585 else
8586 (void) sprintf(timebuf, "%llus", s);
8587 }
8588
8589 static nvlist_t *
make_random_pool_props(void)8590 make_random_pool_props(void)
8591 {
8592 nvlist_t *props;
8593
8594 props = fnvlist_alloc();
8595
8596 /* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8597 if (ztest_random(5) == 0) {
8598 fnvlist_add_uint64(props,
8599 zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8600 2 * 1024 * 1024);
8601 }
8602
8603 /* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8604 if (ztest_random(2) == 0) {
8605 fnvlist_add_uint64(props,
8606 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8607 }
8608
8609 return (props);
8610 }
8611
8612 /*
8613 * Create a storage pool with the given name and initial vdev size.
8614 * Then test spa_freeze() functionality.
8615 */
8616 static void
ztest_init(ztest_shared_t * zs)8617 ztest_init(ztest_shared_t *zs)
8618 {
8619 spa_t *spa;
8620 nvlist_t *nvroot, *props;
8621 int i;
8622
8623 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8624 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8625 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8626
8627 raidz_scratch_verify();
8628 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8629
8630 /*
8631 * Create the storage pool.
8632 */
8633 (void) spa_destroy(ztest_opts.zo_pool);
8634 ztest_shared->zs_vdev_next_leaf = 0;
8635 zs->zs_splits = 0;
8636 zs->zs_mirrors = ztest_opts.zo_mirrors;
8637 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8638 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8639 props = make_random_pool_props();
8640
8641 /*
8642 * We don't expect the pool to suspend unless maxfaults == 0,
8643 * in which case ztest_fault_inject() temporarily takes away
8644 * the only valid replica.
8645 */
8646 fnvlist_add_uint64(props,
8647 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8648 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8649
8650 for (i = 0; i < SPA_FEATURES; i++) {
8651 char *buf;
8652
8653 if (!spa_feature_table[i].fi_zfs_mod_supported)
8654 continue;
8655
8656 /*
8657 * 75% chance of using the log space map feature. We want ztest
8658 * to exercise both the code paths that use the log space map
8659 * feature and the ones that don't.
8660 */
8661 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8662 continue;
8663
8664 /*
8665 * split 50/50 between legacy and fast dedup
8666 */
8667 if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8668 continue;
8669
8670 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8671 spa_feature_table[i].fi_uname));
8672 fnvlist_add_uint64(props, buf, 0);
8673 free(buf);
8674 }
8675
8676 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8677 fnvlist_free(nvroot);
8678 fnvlist_free(props);
8679
8680 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8681 zs->zs_metaslab_sz =
8682 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8683 zs->zs_guid = spa_guid(spa);
8684 spa_close(spa, FTAG);
8685
8686 kernel_fini();
8687
8688 if (!ztest_opts.zo_mmp_test) {
8689 ztest_run_zdb(zs->zs_guid);
8690 ztest_freeze();
8691 ztest_run_zdb(zs->zs_guid);
8692 }
8693
8694 (void) pthread_rwlock_destroy(&ztest_name_lock);
8695 mutex_destroy(&ztest_vdev_lock);
8696 mutex_destroy(&ztest_checkpoint_lock);
8697 }
8698
8699 static void
setup_data_fd(void)8700 setup_data_fd(void)
8701 {
8702 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8703
8704 ztest_fd_data = mkstemp(ztest_name_data);
8705 ASSERT3S(ztest_fd_data, >=, 0);
8706 (void) unlink(ztest_name_data);
8707 }
8708
8709 static int
shared_data_size(ztest_shared_hdr_t * hdr)8710 shared_data_size(ztest_shared_hdr_t *hdr)
8711 {
8712 int size;
8713
8714 size = hdr->zh_hdr_size;
8715 size += hdr->zh_opts_size;
8716 size += hdr->zh_size;
8717 size += hdr->zh_stats_size * hdr->zh_stats_count;
8718 size += hdr->zh_ds_size * hdr->zh_ds_count;
8719 size += hdr->zh_scratch_state_size;
8720
8721 return (size);
8722 }
8723
8724 static void
setup_hdr(void)8725 setup_hdr(void)
8726 {
8727 int size;
8728 ztest_shared_hdr_t *hdr;
8729
8730 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8731 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8732 ASSERT3P(hdr, !=, MAP_FAILED);
8733
8734 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8735
8736 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8737 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8738 hdr->zh_size = sizeof (ztest_shared_t);
8739 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8740 hdr->zh_stats_count = ZTEST_FUNCS;
8741 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8742 hdr->zh_ds_count = ztest_opts.zo_datasets;
8743 hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8744
8745 size = shared_data_size(hdr);
8746 VERIFY0(ftruncate(ztest_fd_data, size));
8747
8748 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8749 }
8750
8751 static void
setup_data(void)8752 setup_data(void)
8753 {
8754 int size, offset;
8755 ztest_shared_hdr_t *hdr;
8756 uint8_t *buf;
8757
8758 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8759 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8760 ASSERT3P(hdr, !=, MAP_FAILED);
8761
8762 size = shared_data_size(hdr);
8763
8764 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8765 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8766 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8767 ASSERT3P(hdr, !=, MAP_FAILED);
8768 buf = (uint8_t *)hdr;
8769
8770 offset = hdr->zh_hdr_size;
8771 ztest_shared_opts = (void *)&buf[offset];
8772 offset += hdr->zh_opts_size;
8773 ztest_shared = (void *)&buf[offset];
8774 offset += hdr->zh_size;
8775 ztest_shared_callstate = (void *)&buf[offset];
8776 offset += hdr->zh_stats_size * hdr->zh_stats_count;
8777 ztest_shared_ds = (void *)&buf[offset];
8778 offset += hdr->zh_ds_size * hdr->zh_ds_count;
8779 ztest_scratch_state = (void *)&buf[offset];
8780 }
8781
8782 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)8783 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8784 {
8785 pid_t pid;
8786 int status;
8787 char *cmdbuf = NULL;
8788
8789 pid = fork();
8790
8791 if (cmd == NULL) {
8792 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8793 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8794 cmd = cmdbuf;
8795 }
8796
8797 if (pid == -1)
8798 fatal(B_TRUE, "fork failed");
8799
8800 if (pid == 0) { /* child */
8801 char fd_data_str[12];
8802
8803 VERIFY3S(11, >=,
8804 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8805 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8806
8807 if (libpath != NULL) {
8808 const char *curlp = getenv("LD_LIBRARY_PATH");
8809 if (curlp == NULL)
8810 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8811 else {
8812 char *newlp = NULL;
8813 VERIFY3S(-1, !=,
8814 asprintf(&newlp, "%s:%s", libpath, curlp));
8815 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8816 free(newlp);
8817 }
8818 }
8819 (void) execl(cmd, cmd, (char *)NULL);
8820 ztest_dump_core = B_FALSE;
8821 fatal(B_TRUE, "exec failed: %s", cmd);
8822 }
8823
8824 if (cmdbuf != NULL) {
8825 umem_free(cmdbuf, MAXPATHLEN);
8826 cmd = NULL;
8827 }
8828
8829 while (waitpid(pid, &status, 0) != pid)
8830 continue;
8831 if (statusp != NULL)
8832 *statusp = status;
8833
8834 if (WIFEXITED(status)) {
8835 if (WEXITSTATUS(status) != 0) {
8836 (void) fprintf(stderr, "child exited with code %d\n",
8837 WEXITSTATUS(status));
8838 exit(2);
8839 }
8840 return (B_FALSE);
8841 } else if (WIFSIGNALED(status)) {
8842 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8843 (void) fprintf(stderr, "child died with signal %d\n",
8844 WTERMSIG(status));
8845 exit(3);
8846 }
8847 return (B_TRUE);
8848 } else {
8849 (void) fprintf(stderr, "something strange happened to child\n");
8850 exit(4);
8851 }
8852 }
8853
8854 static void
ztest_run_init(void)8855 ztest_run_init(void)
8856 {
8857 int i;
8858
8859 ztest_shared_t *zs = ztest_shared;
8860
8861 /*
8862 * Blow away any existing copy of zpool.cache
8863 */
8864 (void) remove(spa_config_path);
8865
8866 if (ztest_opts.zo_init == 0) {
8867 if (ztest_opts.zo_verbose >= 1)
8868 (void) printf("Importing pool %s\n",
8869 ztest_opts.zo_pool);
8870 ztest_import(zs);
8871 return;
8872 }
8873
8874 /*
8875 * Create and initialize our storage pool.
8876 */
8877 for (i = 1; i <= ztest_opts.zo_init; i++) {
8878 memset(zs, 0, sizeof (*zs));
8879 if (ztest_opts.zo_verbose >= 3 &&
8880 ztest_opts.zo_init != 1) {
8881 (void) printf("ztest_init(), pass %d\n", i);
8882 }
8883 ztest_init(zs);
8884 }
8885 }
8886
8887 int
main(int argc,char ** argv)8888 main(int argc, char **argv)
8889 {
8890 int kills = 0;
8891 int iters = 0;
8892 int older = 0;
8893 int newer = 0;
8894 ztest_shared_t *zs;
8895 ztest_info_t *zi;
8896 ztest_shared_callstate_t *zc;
8897 char timebuf[100];
8898 char numbuf[NN_NUMBUF_SZ];
8899 char *cmd;
8900 boolean_t hasalt;
8901 int f, err;
8902 char *fd_data_str = getenv("ZTEST_FD_DATA");
8903 struct sigaction action;
8904
8905 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8906
8907 dprintf_setup(&argc, argv);
8908 zfs_deadman_synctime_ms = 300000;
8909 zfs_deadman_checktime_ms = 30000;
8910 /*
8911 * As two-word space map entries may not come up often (especially
8912 * if pool and vdev sizes are small) we want to force at least some
8913 * of them so the feature get tested.
8914 */
8915 zfs_force_some_double_word_sm_entries = B_TRUE;
8916
8917 /*
8918 * Verify that even extensively damaged split blocks with many
8919 * segments can be reconstructed in a reasonable amount of time
8920 * when reconstruction is known to be possible.
8921 *
8922 * Note: the lower this value is, the more damage we inflict, and
8923 * the more time ztest spends in recovering that damage. We chose
8924 * to induce damage 1/100th of the time so recovery is tested but
8925 * not so frequently that ztest doesn't get to test other code paths.
8926 */
8927 zfs_reconstruct_indirect_damage_fraction = 100;
8928
8929 action.sa_handler = sig_handler;
8930 sigemptyset(&action.sa_mask);
8931 action.sa_flags = 0;
8932
8933 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8934 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8935 strerror(errno));
8936 exit(EXIT_FAILURE);
8937 }
8938
8939 if (sigaction(SIGABRT, &action, NULL) < 0) {
8940 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8941 strerror(errno));
8942 exit(EXIT_FAILURE);
8943 }
8944
8945 /*
8946 * Force random_get_bytes() to use /dev/urandom in order to prevent
8947 * ztest from needlessly depleting the system entropy pool.
8948 */
8949 random_path = "/dev/urandom";
8950 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8951 ASSERT3S(ztest_fd_rand, >=, 0);
8952
8953 if (!fd_data_str) {
8954 process_options(argc, argv);
8955
8956 setup_data_fd();
8957 setup_hdr();
8958 setup_data();
8959 memcpy(ztest_shared_opts, &ztest_opts,
8960 sizeof (*ztest_shared_opts));
8961 } else {
8962 ztest_fd_data = atoi(fd_data_str);
8963 setup_data();
8964 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8965 }
8966 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8967
8968 err = ztest_set_global_vars();
8969 if (err != 0 && !fd_data_str) {
8970 /* error message done by ztest_set_global_vars */
8971 exit(EXIT_FAILURE);
8972 } else {
8973 /* children should not be spawned if setting gvars fails */
8974 VERIFY3S(err, ==, 0);
8975 }
8976
8977 /* Override location of zpool.cache */
8978 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8979 ztest_opts.zo_dir), !=, -1);
8980
8981 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8982 UMEM_NOFAIL);
8983 zs = ztest_shared;
8984
8985 if (fd_data_str) {
8986 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8987 metaslab_df_alloc_threshold =
8988 zs->zs_metaslab_df_alloc_threshold;
8989
8990 if (zs->zs_do_init)
8991 ztest_run_init();
8992 else
8993 ztest_run(zs);
8994 exit(0);
8995 }
8996
8997 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8998
8999 if (ztest_opts.zo_verbose >= 1) {
9000 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
9001 "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9002 ztest_opts.zo_vdevs,
9003 ztest_opts.zo_datasets,
9004 ztest_opts.zo_threads,
9005 ztest_opts.zo_raid_children,
9006 ztest_opts.zo_raid_type,
9007 ztest_opts.zo_raid_parity,
9008 ztest_opts.zo_time);
9009 }
9010
9011 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9012 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9013
9014 zs->zs_do_init = B_TRUE;
9015 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9016 if (ztest_opts.zo_verbose >= 1) {
9017 (void) printf("Executing older ztest for "
9018 "initialization: %s\n", ztest_opts.zo_alt_ztest);
9019 }
9020 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9021 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9022 } else {
9023 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9024 }
9025 zs->zs_do_init = B_FALSE;
9026
9027 zs->zs_proc_start = gethrtime();
9028 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9029
9030 for (f = 0; f < ZTEST_FUNCS; f++) {
9031 zi = &ztest_info[f];
9032 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9033 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9034 zc->zc_next = UINT64_MAX;
9035 else
9036 zc->zc_next = zs->zs_proc_start +
9037 ztest_random(2 * zi->zi_interval[0] + 1);
9038 }
9039
9040 /*
9041 * Run the tests in a loop. These tests include fault injection
9042 * to verify that self-healing data works, and forced crashes
9043 * to verify that we never lose on-disk consistency.
9044 */
9045 while (gethrtime() < zs->zs_proc_stop) {
9046 int status;
9047 boolean_t killed;
9048
9049 /*
9050 * Initialize the workload counters for each function.
9051 */
9052 for (f = 0; f < ZTEST_FUNCS; f++) {
9053 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9054 zc->zc_count = 0;
9055 zc->zc_time = 0;
9056 }
9057
9058 /* Set the allocation switch size */
9059 zs->zs_metaslab_df_alloc_threshold =
9060 ztest_random(zs->zs_metaslab_sz / 4) + 1;
9061
9062 if (!hasalt || ztest_random(2) == 0) {
9063 if (hasalt && ztest_opts.zo_verbose >= 1) {
9064 (void) printf("Executing newer ztest: %s\n",
9065 cmd);
9066 }
9067 newer++;
9068 killed = exec_child(cmd, NULL, B_TRUE, &status);
9069 } else {
9070 if (hasalt && ztest_opts.zo_verbose >= 1) {
9071 (void) printf("Executing older ztest: %s\n",
9072 ztest_opts.zo_alt_ztest);
9073 }
9074 older++;
9075 killed = exec_child(ztest_opts.zo_alt_ztest,
9076 ztest_opts.zo_alt_libpath, B_TRUE, &status);
9077 }
9078
9079 if (killed)
9080 kills++;
9081 iters++;
9082
9083 if (ztest_opts.zo_verbose >= 1) {
9084 hrtime_t now = gethrtime();
9085
9086 now = MIN(now, zs->zs_proc_stop);
9087 print_time(zs->zs_proc_stop - now, timebuf);
9088 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9089
9090 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9091 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9092 iters,
9093 WIFEXITED(status) ? "Complete" : "SIGKILL",
9094 zs->zs_enospc_count,
9095 100.0 * zs->zs_alloc / zs->zs_space,
9096 numbuf,
9097 100.0 * (now - zs->zs_proc_start) /
9098 (ztest_opts.zo_time * NANOSEC), timebuf);
9099 }
9100
9101 if (ztest_opts.zo_verbose >= 2) {
9102 (void) printf("\nWorkload summary:\n\n");
9103 (void) printf("%7s %9s %s\n",
9104 "Calls", "Time", "Function");
9105 (void) printf("%7s %9s %s\n",
9106 "-----", "----", "--------");
9107 for (f = 0; f < ZTEST_FUNCS; f++) {
9108 zi = &ztest_info[f];
9109 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9110 print_time(zc->zc_time, timebuf);
9111 (void) printf("%7"PRIu64" %9s %s\n",
9112 zc->zc_count, timebuf,
9113 zi->zi_funcname);
9114 }
9115 (void) printf("\n");
9116 }
9117
9118 if (!ztest_opts.zo_mmp_test)
9119 ztest_run_zdb(zs->zs_guid);
9120 if (ztest_shared_opts->zo_raidz_expand_test ==
9121 RAIDZ_EXPAND_CHECKED)
9122 break; /* raidz expand test complete */
9123 }
9124
9125 if (ztest_opts.zo_verbose >= 1) {
9126 if (hasalt) {
9127 (void) printf("%d runs of older ztest: %s\n", older,
9128 ztest_opts.zo_alt_ztest);
9129 (void) printf("%d runs of newer ztest: %s\n", newer,
9130 cmd);
9131 }
9132 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9133 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9134 }
9135
9136 umem_free(cmd, MAXNAMELEN);
9137
9138 return (0);
9139 }
9140