1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/TokenBufferTokenManager.h"
31 #include "clang/Tooling/Syntax/Tokens.h"
32 #include "clang/Tooling/Syntax/Tree.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/PointerUnion.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/ScopeExit.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/FormatVariadic.h"
43 #include "llvm/Support/MemoryBuffer.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cstddef>
46 #include <map>
47
48 using namespace clang;
49
50 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
51 // generated by the compiler, as well as in implicit conversions like the one
52 // wrapping `1` in `X x = 1;`.
IgnoreImplicitConstructorSingleStep(Expr * E)53 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
54 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
55 auto NumArgs = C->getNumArgs();
56 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
57 Expr *A = C->getArg(0);
58 if (C->getParenOrBraceRange().isInvalid())
59 return A;
60 }
61 }
62 return E;
63 }
64
65 // In:
66 // struct X {
67 // X(int)
68 // };
69 // X x = X(1);
70 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
71 // `CXXConstructExpr X(1)`.
IgnoreCXXFunctionalCastExprWrappingConstructor(Expr * E)72 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
73 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
74 if (F->getCastKind() == CK_ConstructorConversion)
75 return F->getSubExpr();
76 }
77 return E;
78 }
79
IgnoreImplicit(Expr * E)80 static Expr *IgnoreImplicit(Expr *E) {
81 return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
82 IgnoreImplicitConstructorSingleStep,
83 IgnoreCXXFunctionalCastExprWrappingConstructor);
84 }
85
86 LLVM_ATTRIBUTE_UNUSED
isImplicitExpr(Expr * E)87 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
88
89 namespace {
90 /// Get start location of the Declarator from the TypeLoc.
91 /// E.g.:
92 /// loc of `(` in `int (a)`
93 /// loc of `*` in `int *(a)`
94 /// loc of the first `(` in `int (*a)(int)`
95 /// loc of the `*` in `int *(a)(int)`
96 /// loc of the first `*` in `const int *const *volatile a;`
97 ///
98 /// It is non-trivial to get the start location because TypeLocs are stored
99 /// inside out. In the example above `*volatile` is the TypeLoc returned
100 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
101 /// returns.
102 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
VisitParenTypeLoc__anon6fdbff5b0111::GetStartLoc103 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
104 auto L = Visit(T.getInnerLoc());
105 if (L.isValid())
106 return L;
107 return T.getLParenLoc();
108 }
109
110 // Types spelled in the prefix part of the declarator.
VisitPointerTypeLoc__anon6fdbff5b0111::GetStartLoc111 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
112 return HandlePointer(T);
113 }
114
VisitMemberPointerTypeLoc__anon6fdbff5b0111::GetStartLoc115 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
116 return HandlePointer(T);
117 }
118
VisitBlockPointerTypeLoc__anon6fdbff5b0111::GetStartLoc119 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
120 return HandlePointer(T);
121 }
122
VisitReferenceTypeLoc__anon6fdbff5b0111::GetStartLoc123 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
124 return HandlePointer(T);
125 }
126
VisitObjCObjectPointerTypeLoc__anon6fdbff5b0111::GetStartLoc127 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
128 return HandlePointer(T);
129 }
130
131 // All other cases are not important, as they are either part of declaration
132 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
133 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
134 // declarator themselves, but their underlying type can.
VisitTypeLoc__anon6fdbff5b0111::GetStartLoc135 SourceLocation VisitTypeLoc(TypeLoc T) {
136 auto N = T.getNextTypeLoc();
137 if (!N)
138 return SourceLocation();
139 return Visit(N);
140 }
141
VisitFunctionProtoTypeLoc__anon6fdbff5b0111::GetStartLoc142 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
143 if (T.getTypePtr()->hasTrailingReturn())
144 return SourceLocation(); // avoid recursing into the suffix of declarator.
145 return VisitTypeLoc(T);
146 }
147
148 private:
HandlePointer__anon6fdbff5b0111::GetStartLoc149 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
150 auto L = Visit(T.getPointeeLoc());
151 if (L.isValid())
152 return L;
153 return T.getLocalSourceRange().getBegin();
154 }
155 };
156 } // namespace
157
dropDefaultArgs(CallExpr::arg_range Args)158 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
159 auto FirstDefaultArg =
160 llvm::find_if(Args, [](auto It) { return isa<CXXDefaultArgExpr>(It); });
161 return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163
getOperatorNodeKind(const CXXOperatorCallExpr & E)164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165 switch (E.getOperator()) {
166 // Comparison
167 case OO_EqualEqual:
168 case OO_ExclaimEqual:
169 case OO_Greater:
170 case OO_GreaterEqual:
171 case OO_Less:
172 case OO_LessEqual:
173 case OO_Spaceship:
174 // Assignment
175 case OO_Equal:
176 case OO_SlashEqual:
177 case OO_PercentEqual:
178 case OO_CaretEqual:
179 case OO_PipeEqual:
180 case OO_LessLessEqual:
181 case OO_GreaterGreaterEqual:
182 case OO_PlusEqual:
183 case OO_MinusEqual:
184 case OO_StarEqual:
185 case OO_AmpEqual:
186 // Binary computation
187 case OO_Slash:
188 case OO_Percent:
189 case OO_Caret:
190 case OO_Pipe:
191 case OO_LessLess:
192 case OO_GreaterGreater:
193 case OO_AmpAmp:
194 case OO_PipePipe:
195 case OO_ArrowStar:
196 case OO_Comma:
197 return syntax::NodeKind::BinaryOperatorExpression;
198 case OO_Tilde:
199 case OO_Exclaim:
200 return syntax::NodeKind::PrefixUnaryOperatorExpression;
201 // Prefix/Postfix increment/decrement
202 case OO_PlusPlus:
203 case OO_MinusMinus:
204 switch (E.getNumArgs()) {
205 case 1:
206 return syntax::NodeKind::PrefixUnaryOperatorExpression;
207 case 2:
208 return syntax::NodeKind::PostfixUnaryOperatorExpression;
209 default:
210 llvm_unreachable("Invalid number of arguments for operator");
211 }
212 // Operators that can be unary or binary
213 case OO_Plus:
214 case OO_Minus:
215 case OO_Star:
216 case OO_Amp:
217 switch (E.getNumArgs()) {
218 case 1:
219 return syntax::NodeKind::PrefixUnaryOperatorExpression;
220 case 2:
221 return syntax::NodeKind::BinaryOperatorExpression;
222 default:
223 llvm_unreachable("Invalid number of arguments for operator");
224 }
225 return syntax::NodeKind::BinaryOperatorExpression;
226 // Not yet supported by SyntaxTree
227 case OO_New:
228 case OO_Delete:
229 case OO_Array_New:
230 case OO_Array_Delete:
231 case OO_Coawait:
232 case OO_Subscript:
233 case OO_Arrow:
234 return syntax::NodeKind::UnknownExpression;
235 case OO_Call:
236 return syntax::NodeKind::CallExpression;
237 case OO_Conditional: // not overloadable
238 case NUM_OVERLOADED_OPERATORS:
239 case OO_None:
240 llvm_unreachable("Not an overloadable operator");
241 }
242 llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 /// `int ^a;`
248 /// `int *^a;`
249 /// `int ^a::S::f(){}`
getQualifiedNameStart(NamedDecl * D)250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252 "only DeclaratorDecl and TypedefNameDecl are supported.");
253
254 auto DN = D->getDeclName();
255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256 if (IsAnonymous)
257 return SourceLocation();
258
259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260 if (DD->getQualifierLoc()) {
261 return DD->getQualifierLoc().getBeginLoc();
262 }
263 }
264
265 return D->getLocation();
266 }
267
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 /// `int a;` -> range of ``,
270 /// `int *a = nullptr` -> range of `= nullptr`.
271 /// `int a{}` -> range of `{}`.
272 /// `int a()` -> range of `()`.
getInitializerRange(Decl * D)273 static SourceRange getInitializerRange(Decl *D) {
274 if (auto *V = dyn_cast<VarDecl>(D)) {
275 auto *I = V->getInit();
276 // Initializers in range-based-for are not part of the declarator
277 if (I && !V->isCXXForRangeDecl())
278 return I->getSourceRange();
279 }
280
281 return SourceRange();
282 }
283
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 /// `int a;` -> range of `a`,
286 /// `int *a;` -> range of `*a`,
287 /// `int a[10];` -> range of `a[10]`,
288 /// `int a[1][2][3];` -> range of `a[1][2][3]`,
289 /// `int *a = nullptr` -> range of `*a = nullptr`.
290 /// `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
getDeclaratorRange(const SourceManager & SM,TypeLoc T,SourceLocation Name,SourceRange Initializer)292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293 SourceLocation Name,
294 SourceRange Initializer) {
295 SourceLocation Start = GetStartLoc().Visit(T);
296 SourceLocation End = T.getEndLoc();
297 if (Name.isValid()) {
298 if (Start.isInvalid())
299 Start = Name;
300 // End of TypeLoc could be invalid if the type is invalid, fallback to the
301 // NameLoc.
302 if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name))
303 End = Name;
304 }
305 if (Initializer.isValid()) {
306 auto InitializerEnd = Initializer.getEnd();
307 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
308 End == InitializerEnd);
309 End = InitializerEnd;
310 }
311 return SourceRange(Start, End);
312 }
313
314 namespace {
315 /// All AST hierarchy roots that can be represented as pointers.
316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
319 /// FIXME: expose this as public API.
320 class ASTToSyntaxMapping {
321 public:
add(ASTPtr From,syntax::Tree * To)322 void add(ASTPtr From, syntax::Tree *To) {
323 assert(To != nullptr);
324 assert(!From.isNull());
325
326 bool Added = Nodes.insert({From, To}).second;
327 (void)Added;
328 assert(Added && "mapping added twice");
329 }
330
add(NestedNameSpecifierLoc From,syntax::Tree * To)331 void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
332 assert(To != nullptr);
333 assert(From.hasQualifier());
334
335 bool Added = NNSNodes.insert({From, To}).second;
336 (void)Added;
337 assert(Added && "mapping added twice");
338 }
339
find(ASTPtr P) const340 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
341
find(NestedNameSpecifierLoc P) const342 syntax::Tree *find(NestedNameSpecifierLoc P) const {
343 return NNSNodes.lookup(P);
344 }
345
346 private:
347 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
348 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
349 };
350 } // namespace
351
352 /// A helper class for constructing the syntax tree while traversing a clang
353 /// AST.
354 ///
355 /// At each point of the traversal we maintain a list of pending nodes.
356 /// Initially all tokens are added as pending nodes. When processing a clang AST
357 /// node, the clients need to:
358 /// - create a corresponding syntax node,
359 /// - assign roles to all pending child nodes with 'markChild' and
360 /// 'markChildToken',
361 /// - replace the child nodes with the new syntax node in the pending list
362 /// with 'foldNode'.
363 ///
364 /// Note that all children are expected to be processed when building a node.
365 ///
366 /// Call finalize() to finish building the tree and consume the root node.
367 class syntax::TreeBuilder {
368 public:
TreeBuilder(syntax::Arena & Arena,TokenBufferTokenManager & TBTM)369 TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM)
370 : Arena(Arena),
371 TBTM(TBTM),
372 Pending(Arena, TBTM.tokenBuffer()) {
373 for (const auto &T : TBTM.tokenBuffer().expandedTokens())
374 LocationToToken.insert({T.location(), &T});
375 }
376
allocator()377 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
sourceManager() const378 const SourceManager &sourceManager() const {
379 return TBTM.sourceManager();
380 }
381
382 /// Populate children for \p New node, assuming it covers tokens from \p
383 /// Range.
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,ASTPtr From)384 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
385 assert(New);
386 Pending.foldChildren(TBTM.tokenBuffer(), Range, New);
387 if (From)
388 Mapping.add(From, New);
389 }
390
foldNode(ArrayRef<syntax::Token> Range,syntax::Tree * New,TypeLoc L)391 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
392 // FIXME: add mapping for TypeLocs
393 foldNode(Range, New, nullptr);
394 }
395
foldNode(llvm::ArrayRef<syntax::Token> Range,syntax::Tree * New,NestedNameSpecifierLoc From)396 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
397 NestedNameSpecifierLoc From) {
398 assert(New);
399 Pending.foldChildren(TBTM.tokenBuffer(), Range, New);
400 if (From)
401 Mapping.add(From, New);
402 }
403
404 /// Populate children for \p New list, assuming it covers tokens from a
405 /// subrange of \p SuperRange.
foldList(ArrayRef<syntax::Token> SuperRange,syntax::List * New,ASTPtr From)406 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
407 ASTPtr From) {
408 assert(New);
409 auto ListRange = Pending.shrinkToFitList(SuperRange);
410 Pending.foldChildren(TBTM.tokenBuffer(), ListRange, New);
411 if (From)
412 Mapping.add(From, New);
413 }
414
415 /// Notifies that we should not consume trailing semicolon when computing
416 /// token range of \p D.
417 void noticeDeclWithoutSemicolon(Decl *D);
418
419 /// Mark the \p Child node with a corresponding \p Role. All marked children
420 /// should be consumed by foldNode.
421 /// When called on expressions (clang::Expr is derived from clang::Stmt),
422 /// wraps expressions into expression statement.
423 void markStmtChild(Stmt *Child, NodeRole Role);
424 /// Should be called for expressions in non-statement position to avoid
425 /// wrapping into expression statement.
426 void markExprChild(Expr *Child, NodeRole Role);
427 /// Set role for a token starting at \p Loc.
428 void markChildToken(SourceLocation Loc, NodeRole R);
429 /// Set role for \p T.
430 void markChildToken(const syntax::Token *T, NodeRole R);
431
432 /// Set role for \p N.
433 void markChild(syntax::Node *N, NodeRole R);
434 /// Set role for the syntax node matching \p N.
435 void markChild(ASTPtr N, NodeRole R);
436 /// Set role for the syntax node matching \p N.
437 void markChild(NestedNameSpecifierLoc N, NodeRole R);
438
439 /// Finish building the tree and consume the root node.
finalize()440 syntax::TranslationUnit *finalize() && {
441 auto Tokens = TBTM.tokenBuffer().expandedTokens();
442 assert(!Tokens.empty());
443 assert(Tokens.back().kind() == tok::eof);
444
445 // Build the root of the tree, consuming all the children.
446 Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(),
447 new (Arena.getAllocator()) syntax::TranslationUnit);
448
449 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
450 TU->assertInvariantsRecursive();
451 return TU;
452 }
453
454 /// Finds a token starting at \p L. The token must exist if \p L is valid.
455 const syntax::Token *findToken(SourceLocation L) const;
456
457 /// Finds the syntax tokens corresponding to the \p SourceRange.
getRange(SourceRange Range) const458 ArrayRef<syntax::Token> getRange(SourceRange Range) const {
459 assert(Range.isValid());
460 return getRange(Range.getBegin(), Range.getEnd());
461 }
462
463 /// Finds the syntax tokens corresponding to the passed source locations.
464 /// \p First is the start position of the first token and \p Last is the start
465 /// position of the last token.
getRange(SourceLocation First,SourceLocation Last) const466 ArrayRef<syntax::Token> getRange(SourceLocation First,
467 SourceLocation Last) const {
468 assert(First.isValid());
469 assert(Last.isValid());
470 assert(First == Last ||
471 TBTM.sourceManager().isBeforeInTranslationUnit(First, Last));
472 return llvm::ArrayRef(findToken(First), std::next(findToken(Last)));
473 }
474
475 ArrayRef<syntax::Token>
getTemplateRange(const ClassTemplateSpecializationDecl * D) const476 getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
477 auto Tokens = getRange(D->getSourceRange());
478 return maybeAppendSemicolon(Tokens, D);
479 }
480
481 /// Returns true if \p D is the last declarator in a chain and is thus
482 /// reponsible for creating SimpleDeclaration for the whole chain.
isResponsibleForCreatingDeclaration(const Decl * D) const483 bool isResponsibleForCreatingDeclaration(const Decl *D) const {
484 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
485 "only DeclaratorDecl and TypedefNameDecl are supported.");
486
487 const Decl *Next = D->getNextDeclInContext();
488
489 // There's no next sibling, this one is responsible.
490 if (Next == nullptr) {
491 return true;
492 }
493
494 // Next sibling is not the same type, this one is responsible.
495 if (D->getKind() != Next->getKind()) {
496 return true;
497 }
498 // Next sibling doesn't begin at the same loc, it must be a different
499 // declaration, so this declarator is responsible.
500 if (Next->getBeginLoc() != D->getBeginLoc()) {
501 return true;
502 }
503
504 // NextT is a member of the same declaration, and we need the last member to
505 // create declaration. This one is not responsible.
506 return false;
507 }
508
getDeclarationRange(Decl * D)509 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
510 ArrayRef<syntax::Token> Tokens;
511 // We want to drop the template parameters for specializations.
512 if (const auto *S = dyn_cast<TagDecl>(D))
513 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
514 else
515 Tokens = getRange(D->getSourceRange());
516 return maybeAppendSemicolon(Tokens, D);
517 }
518
getExprRange(const Expr * E) const519 ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
520 return getRange(E->getSourceRange());
521 }
522
523 /// Find the adjusted range for the statement, consuming the trailing
524 /// semicolon when needed.
getStmtRange(const Stmt * S) const525 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
526 auto Tokens = getRange(S->getSourceRange());
527 if (isa<CompoundStmt>(S))
528 return Tokens;
529
530 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
531 // all statements that end with those. Consume this semicolon here.
532 if (Tokens.back().kind() == tok::semi)
533 return Tokens;
534 return withTrailingSemicolon(Tokens);
535 }
536
537 private:
maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,const Decl * D) const538 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
539 const Decl *D) const {
540 if (isa<NamespaceDecl>(D))
541 return Tokens;
542 if (DeclsWithoutSemicolons.count(D))
543 return Tokens;
544 // FIXME: do not consume trailing semicolon on function definitions.
545 // Most declarations own a semicolon in syntax trees, but not in clang AST.
546 return withTrailingSemicolon(Tokens);
547 }
548
549 ArrayRef<syntax::Token>
withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const550 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
551 assert(!Tokens.empty());
552 assert(Tokens.back().kind() != tok::eof);
553 // We never consume 'eof', so looking at the next token is ok.
554 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
555 return llvm::ArrayRef(Tokens.begin(), Tokens.end() + 1);
556 return Tokens;
557 }
558
setRole(syntax::Node * N,NodeRole R)559 void setRole(syntax::Node *N, NodeRole R) {
560 assert(N->getRole() == NodeRole::Detached);
561 N->setRole(R);
562 }
563
564 /// A collection of trees covering the input tokens.
565 /// When created, each tree corresponds to a single token in the file.
566 /// Clients call 'foldChildren' to attach one or more subtrees to a parent
567 /// node and update the list of trees accordingly.
568 ///
569 /// Ensures that added nodes properly nest and cover the whole token stream.
570 struct Forest {
Forestsyntax::TreeBuilder::Forest571 Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) {
572 assert(!TB.expandedTokens().empty());
573 assert(TB.expandedTokens().back().kind() == tok::eof);
574 // Create all leaf nodes.
575 // Note that we do not have 'eof' in the tree.
576 for (const auto &T : TB.expandedTokens().drop_back()) {
577 auto *L = new (A.getAllocator())
578 syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T));
579 L->Original = true;
580 L->CanModify = TB.spelledForExpanded(T).has_value();
581 Trees.insert(Trees.end(), {&T, L});
582 }
583 }
584
assignRolesyntax::TreeBuilder::Forest585 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
586 assert(!Range.empty());
587 auto It = Trees.lower_bound(Range.begin());
588 assert(It != Trees.end() && "no node found");
589 assert(It->first == Range.begin() && "no child with the specified range");
590 assert((std::next(It) == Trees.end() ||
591 std::next(It)->first == Range.end()) &&
592 "no child with the specified range");
593 assert(It->second->getRole() == NodeRole::Detached &&
594 "re-assigning role for a child");
595 It->second->setRole(Role);
596 }
597
598 /// Shrink \p Range to a subrange that only contains tokens of a list.
599 /// List elements and delimiters should already have correct roles.
shrinkToFitListsyntax::TreeBuilder::Forest600 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
601 auto BeginChildren = Trees.lower_bound(Range.begin());
602 assert((BeginChildren == Trees.end() ||
603 BeginChildren->first == Range.begin()) &&
604 "Range crosses boundaries of existing subtrees");
605
606 auto EndChildren = Trees.lower_bound(Range.end());
607 assert(
608 (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
609 "Range crosses boundaries of existing subtrees");
610
611 auto BelongsToList = [](decltype(Trees)::value_type KV) {
612 auto Role = KV.second->getRole();
613 return Role == syntax::NodeRole::ListElement ||
614 Role == syntax::NodeRole::ListDelimiter;
615 };
616
617 auto BeginListChildren =
618 std::find_if(BeginChildren, EndChildren, BelongsToList);
619
620 auto EndListChildren =
621 std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
622
623 return ArrayRef<syntax::Token>(BeginListChildren->first,
624 EndListChildren->first);
625 }
626
627 /// Add \p Node to the forest and attach child nodes based on \p Tokens.
foldChildrensyntax::TreeBuilder::Forest628 void foldChildren(const syntax::TokenBuffer &TB,
629 ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) {
630 // Attach children to `Node`.
631 assert(Node->getFirstChild() == nullptr && "node already has children");
632
633 auto *FirstToken = Tokens.begin();
634 auto BeginChildren = Trees.lower_bound(FirstToken);
635
636 assert((BeginChildren == Trees.end() ||
637 BeginChildren->first == FirstToken) &&
638 "fold crosses boundaries of existing subtrees");
639 auto EndChildren = Trees.lower_bound(Tokens.end());
640 assert(
641 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
642 "fold crosses boundaries of existing subtrees");
643
644 for (auto It = BeginChildren; It != EndChildren; ++It) {
645 auto *C = It->second;
646 if (C->getRole() == NodeRole::Detached)
647 C->setRole(NodeRole::Unknown);
648 Node->appendChildLowLevel(C);
649 }
650
651 // Mark that this node came from the AST and is backed by the source code.
652 Node->Original = true;
653 Node->CanModify =
654 TB.spelledForExpanded(Tokens).has_value();
655
656 Trees.erase(BeginChildren, EndChildren);
657 Trees.insert({FirstToken, Node});
658 }
659
660 // EXPECTS: all tokens were consumed and are owned by a single root node.
finalizesyntax::TreeBuilder::Forest661 syntax::Node *finalize() && {
662 assert(Trees.size() == 1);
663 auto *Root = Trees.begin()->second;
664 Trees = {};
665 return Root;
666 }
667
strsyntax::TreeBuilder::Forest668 std::string str(const syntax::TokenBufferTokenManager &STM) const {
669 std::string R;
670 for (auto It = Trees.begin(); It != Trees.end(); ++It) {
671 unsigned CoveredTokens =
672 It != Trees.end()
673 ? (std::next(It)->first - It->first)
674 : STM.tokenBuffer().expandedTokens().end() - It->first;
675
676 R += std::string(
677 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
678 It->first->text(STM.sourceManager()), CoveredTokens));
679 R += It->second->dump(STM);
680 }
681 return R;
682 }
683
684 private:
685 /// Maps from the start token to a subtree starting at that token.
686 /// Keys in the map are pointers into the array of expanded tokens, so
687 /// pointer order corresponds to the order of preprocessor tokens.
688 std::map<const syntax::Token *, syntax::Node *> Trees;
689 };
690
691 /// For debugging purposes.
str()692 std::string str() { return Pending.str(TBTM); }
693
694 syntax::Arena &Arena;
695 TokenBufferTokenManager& TBTM;
696 /// To quickly find tokens by their start location.
697 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
698 Forest Pending;
699 llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
700 ASTToSyntaxMapping Mapping;
701 };
702
703 namespace {
704 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
705 public:
BuildTreeVisitor(ASTContext & Context,syntax::TreeBuilder & Builder)706 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
707 : Builder(Builder), Context(Context) {}
708
shouldTraversePostOrder() const709 bool shouldTraversePostOrder() const { return true; }
710
WalkUpFromDeclaratorDecl(DeclaratorDecl * DD)711 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
712 return processDeclaratorAndDeclaration(DD);
713 }
714
WalkUpFromTypedefNameDecl(TypedefNameDecl * TD)715 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
716 return processDeclaratorAndDeclaration(TD);
717 }
718
VisitDecl(Decl * D)719 bool VisitDecl(Decl *D) {
720 assert(!D->isImplicit());
721 Builder.foldNode(Builder.getDeclarationRange(D),
722 new (allocator()) syntax::UnknownDeclaration(), D);
723 return true;
724 }
725
726 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
727 // override Traverse.
728 // FIXME: make RAV call WalkUpFrom* instead.
729 bool
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl * C)730 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
731 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
732 return false;
733 if (C->isExplicitSpecialization())
734 return true; // we are only interested in explicit instantiations.
735 auto *Declaration =
736 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
737 foldExplicitTemplateInstantiation(
738 Builder.getTemplateRange(C),
739 Builder.findToken(C->getExternKeywordLoc()),
740 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
741 return true;
742 }
743
WalkUpFromTemplateDecl(TemplateDecl * S)744 bool WalkUpFromTemplateDecl(TemplateDecl *S) {
745 foldTemplateDeclaration(
746 Builder.getDeclarationRange(S),
747 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
748 Builder.getDeclarationRange(S->getTemplatedDecl()), S);
749 return true;
750 }
751
WalkUpFromTagDecl(TagDecl * C)752 bool WalkUpFromTagDecl(TagDecl *C) {
753 // FIXME: build the ClassSpecifier node.
754 if (!C->isFreeStanding()) {
755 assert(C->getNumTemplateParameterLists() == 0);
756 return true;
757 }
758 handleFreeStandingTagDecl(C);
759 return true;
760 }
761
handleFreeStandingTagDecl(TagDecl * C)762 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
763 assert(C->isFreeStanding());
764 // Class is a declaration specifier and needs a spanning declaration node.
765 auto DeclarationRange = Builder.getDeclarationRange(C);
766 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
767 Builder.foldNode(DeclarationRange, Result, nullptr);
768
769 // Build TemplateDeclaration nodes if we had template parameters.
770 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
771 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
772 auto R = llvm::ArrayRef(TemplateKW, DeclarationRange.end());
773 Result =
774 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
775 DeclarationRange = R;
776 };
777 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
778 ConsumeTemplateParameters(*S->getTemplateParameters());
779 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
780 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
781 return Result;
782 }
783
WalkUpFromTranslationUnitDecl(TranslationUnitDecl * TU)784 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
785 // We do not want to call VisitDecl(), the declaration for translation
786 // unit is built by finalize().
787 return true;
788 }
789
WalkUpFromCompoundStmt(CompoundStmt * S)790 bool WalkUpFromCompoundStmt(CompoundStmt *S) {
791 using NodeRole = syntax::NodeRole;
792
793 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
794 for (auto *Child : S->body())
795 Builder.markStmtChild(Child, NodeRole::Statement);
796 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
797
798 Builder.foldNode(Builder.getStmtRange(S),
799 new (allocator()) syntax::CompoundStatement, S);
800 return true;
801 }
802
803 // Some statements are not yet handled by syntax trees.
WalkUpFromStmt(Stmt * S)804 bool WalkUpFromStmt(Stmt *S) {
805 Builder.foldNode(Builder.getStmtRange(S),
806 new (allocator()) syntax::UnknownStatement, S);
807 return true;
808 }
809
TraverseIfStmt(IfStmt * S)810 bool TraverseIfStmt(IfStmt *S) {
811 bool Result = [&, this]() {
812 if (S->getInit() && !TraverseStmt(S->getInit())) {
813 return false;
814 }
815 // In cases where the condition is an initialized declaration in a
816 // statement, we want to preserve the declaration and ignore the
817 // implicit condition expression in the syntax tree.
818 if (S->hasVarStorage()) {
819 if (!TraverseStmt(S->getConditionVariableDeclStmt()))
820 return false;
821 } else if (S->getCond() && !TraverseStmt(S->getCond()))
822 return false;
823
824 if (S->getThen() && !TraverseStmt(S->getThen()))
825 return false;
826 if (S->getElse() && !TraverseStmt(S->getElse()))
827 return false;
828 return true;
829 }();
830 WalkUpFromIfStmt(S);
831 return Result;
832 }
833
TraverseCXXForRangeStmt(CXXForRangeStmt * S)834 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
835 // We override to traverse range initializer as VarDecl.
836 // RAV traverses it as a statement, we produce invalid node kinds in that
837 // case.
838 // FIXME: should do this in RAV instead?
839 bool Result = [&, this]() {
840 if (S->getInit() && !TraverseStmt(S->getInit()))
841 return false;
842 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
843 return false;
844 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
845 return false;
846 if (S->getBody() && !TraverseStmt(S->getBody()))
847 return false;
848 return true;
849 }();
850 WalkUpFromCXXForRangeStmt(S);
851 return Result;
852 }
853
TraverseStmt(Stmt * S)854 bool TraverseStmt(Stmt *S) {
855 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
856 // We want to consume the semicolon, make sure SimpleDeclaration does not.
857 for (auto *D : DS->decls())
858 Builder.noticeDeclWithoutSemicolon(D);
859 } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
860 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
861 }
862 return RecursiveASTVisitor::TraverseStmt(S);
863 }
864
TraverseOpaqueValueExpr(OpaqueValueExpr * VE)865 bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) {
866 // OpaqueValue doesn't correspond to concrete syntax, ignore it.
867 return true;
868 }
869
870 // Some expressions are not yet handled by syntax trees.
WalkUpFromExpr(Expr * E)871 bool WalkUpFromExpr(Expr *E) {
872 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
873 Builder.foldNode(Builder.getExprRange(E),
874 new (allocator()) syntax::UnknownExpression, E);
875 return true;
876 }
877
TraverseUserDefinedLiteral(UserDefinedLiteral * S)878 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
879 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
880 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
881 // UDL suffix location does not point to the beginning of a token, so we
882 // can't represent the UDL suffix as a separate syntax tree node.
883
884 return WalkUpFromUserDefinedLiteral(S);
885 }
886
887 syntax::UserDefinedLiteralExpression *
buildUserDefinedLiteral(UserDefinedLiteral * S)888 buildUserDefinedLiteral(UserDefinedLiteral *S) {
889 switch (S->getLiteralOperatorKind()) {
890 case UserDefinedLiteral::LOK_Integer:
891 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
892 case UserDefinedLiteral::LOK_Floating:
893 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
894 case UserDefinedLiteral::LOK_Character:
895 return new (allocator()) syntax::CharUserDefinedLiteralExpression;
896 case UserDefinedLiteral::LOK_String:
897 return new (allocator()) syntax::StringUserDefinedLiteralExpression;
898 case UserDefinedLiteral::LOK_Raw:
899 case UserDefinedLiteral::LOK_Template:
900 // For raw literal operator and numeric literal operator template we
901 // cannot get the type of the operand in the semantic AST. We get this
902 // information from the token. As integer and floating point have the same
903 // token kind, we run `NumericLiteralParser` again to distinguish them.
904 auto TokLoc = S->getBeginLoc();
905 auto TokSpelling =
906 Builder.findToken(TokLoc)->text(Context.getSourceManager());
907 auto Literal =
908 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
909 Context.getLangOpts(), Context.getTargetInfo(),
910 Context.getDiagnostics());
911 if (Literal.isIntegerLiteral())
912 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
913 else {
914 assert(Literal.isFloatingLiteral());
915 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
916 }
917 }
918 llvm_unreachable("Unknown literal operator kind.");
919 }
920
WalkUpFromUserDefinedLiteral(UserDefinedLiteral * S)921 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
922 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
923 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
924 return true;
925 }
926
927 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
928 // `DependentTemplateSpecializationType` case.
929 /// Given a nested-name-specifier return the range for the last name
930 /// specifier.
931 ///
932 /// e.g. `std::T::template X<U>::` => `template X<U>::`
getLocalSourceRange(const NestedNameSpecifierLoc & NNSLoc)933 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
934 auto SR = NNSLoc.getLocalSourceRange();
935
936 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
937 // return the desired `SourceRange`, but there is a corner case. For a
938 // `DependentTemplateSpecializationType` this method returns its
939 // qualifiers as well, in other words in the example above this method
940 // returns `T::template X<U>::` instead of only `template X<U>::`
941 if (auto TL = NNSLoc.getTypeLoc()) {
942 if (auto DependentTL =
943 TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
944 // The 'template' keyword is always present in dependent template
945 // specializations. Except in the case of incorrect code
946 // TODO: Treat the case of incorrect code.
947 SR.setBegin(DependentTL.getTemplateKeywordLoc());
948 }
949 }
950
951 return SR;
952 }
953
getNameSpecifierKind(const NestedNameSpecifier & NNS)954 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
955 switch (NNS.getKind()) {
956 case NestedNameSpecifier::Global:
957 return syntax::NodeKind::GlobalNameSpecifier;
958 case NestedNameSpecifier::Namespace:
959 case NestedNameSpecifier::NamespaceAlias:
960 case NestedNameSpecifier::Identifier:
961 return syntax::NodeKind::IdentifierNameSpecifier;
962 case NestedNameSpecifier::TypeSpecWithTemplate:
963 return syntax::NodeKind::SimpleTemplateNameSpecifier;
964 case NestedNameSpecifier::TypeSpec: {
965 const auto *NNSType = NNS.getAsType();
966 assert(NNSType);
967 if (isa<DecltypeType>(NNSType))
968 return syntax::NodeKind::DecltypeNameSpecifier;
969 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
970 NNSType))
971 return syntax::NodeKind::SimpleTemplateNameSpecifier;
972 return syntax::NodeKind::IdentifierNameSpecifier;
973 }
974 default:
975 // FIXME: Support Microsoft's __super
976 llvm::report_fatal_error("We don't yet support the __super specifier",
977 true);
978 }
979 }
980
981 syntax::NameSpecifier *
buildNameSpecifier(const NestedNameSpecifierLoc & NNSLoc)982 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
983 assert(NNSLoc.hasQualifier());
984 auto NameSpecifierTokens =
985 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
986 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
987 case syntax::NodeKind::GlobalNameSpecifier:
988 return new (allocator()) syntax::GlobalNameSpecifier;
989 case syntax::NodeKind::IdentifierNameSpecifier: {
990 assert(NameSpecifierTokens.size() == 1);
991 Builder.markChildToken(NameSpecifierTokens.begin(),
992 syntax::NodeRole::Unknown);
993 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
994 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
995 return NS;
996 }
997 case syntax::NodeKind::SimpleTemplateNameSpecifier: {
998 // TODO: Build `SimpleTemplateNameSpecifier` children and implement
999 // accessors to them.
1000 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
1001 // some `TypeLoc`s have inside them the previous name specifier and
1002 // we want to treat them independently.
1003 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
1004 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1005 return NS;
1006 }
1007 case syntax::NodeKind::DecltypeNameSpecifier: {
1008 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
1009 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
1010 return nullptr;
1011 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1012 // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1013 // `DecltypeTypeLoc`.
1014 // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1015 // Builder.markChild(TypeLoc, syntax::NodeRole);
1016 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1017 return NS;
1018 }
1019 default:
1020 llvm_unreachable("getChildKind() does not return this value");
1021 }
1022 }
1023
1024 // To build syntax tree nodes for NestedNameSpecifierLoc we override
1025 // Traverse instead of WalkUpFrom because we want to traverse the children
1026 // ourselves and build a list instead of a nested tree of name specifier
1027 // prefixes.
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc)1028 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1029 if (!QualifierLoc)
1030 return true;
1031 for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1032 auto *NS = buildNameSpecifier(It);
1033 if (!NS)
1034 return false;
1035 Builder.markChild(NS, syntax::NodeRole::ListElement);
1036 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1037 }
1038 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1039 new (allocator()) syntax::NestedNameSpecifier,
1040 QualifierLoc);
1041 return true;
1042 }
1043
buildIdExpression(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKeywordLoc,SourceRange UnqualifiedIdLoc,ASTPtr From)1044 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1045 SourceLocation TemplateKeywordLoc,
1046 SourceRange UnqualifiedIdLoc,
1047 ASTPtr From) {
1048 if (QualifierLoc) {
1049 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1050 if (TemplateKeywordLoc.isValid())
1051 Builder.markChildToken(TemplateKeywordLoc,
1052 syntax::NodeRole::TemplateKeyword);
1053 }
1054
1055 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1056 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1057 nullptr);
1058 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1059
1060 auto IdExpressionBeginLoc =
1061 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1062
1063 auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1064 Builder.foldNode(
1065 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1066 TheIdExpression, From);
1067
1068 return TheIdExpression;
1069 }
1070
WalkUpFromMemberExpr(MemberExpr * S)1071 bool WalkUpFromMemberExpr(MemberExpr *S) {
1072 // For `MemberExpr` with implicit `this->` we generate a simple
1073 // `id-expression` syntax node, beacuse an implicit `member-expression` is
1074 // syntactically undistinguishable from an `id-expression`
1075 if (S->isImplicitAccess()) {
1076 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1077 SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1078 return true;
1079 }
1080
1081 auto *TheIdExpression = buildIdExpression(
1082 S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1083 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1084
1085 Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1086
1087 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1088 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1089
1090 Builder.foldNode(Builder.getExprRange(S),
1091 new (allocator()) syntax::MemberExpression, S);
1092 return true;
1093 }
1094
WalkUpFromDeclRefExpr(DeclRefExpr * S)1095 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1096 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1097 SourceRange(S->getLocation(), S->getEndLoc()), S);
1098
1099 return true;
1100 }
1101
1102 // Same logic as DeclRefExpr.
WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * S)1103 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1104 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1105 SourceRange(S->getLocation(), S->getEndLoc()), S);
1106
1107 return true;
1108 }
1109
WalkUpFromCXXThisExpr(CXXThisExpr * S)1110 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1111 if (!S->isImplicit()) {
1112 Builder.markChildToken(S->getLocation(),
1113 syntax::NodeRole::IntroducerKeyword);
1114 Builder.foldNode(Builder.getExprRange(S),
1115 new (allocator()) syntax::ThisExpression, S);
1116 }
1117 return true;
1118 }
1119
WalkUpFromParenExpr(ParenExpr * S)1120 bool WalkUpFromParenExpr(ParenExpr *S) {
1121 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1122 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1123 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1124 Builder.foldNode(Builder.getExprRange(S),
1125 new (allocator()) syntax::ParenExpression, S);
1126 return true;
1127 }
1128
WalkUpFromIntegerLiteral(IntegerLiteral * S)1129 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1130 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1131 Builder.foldNode(Builder.getExprRange(S),
1132 new (allocator()) syntax::IntegerLiteralExpression, S);
1133 return true;
1134 }
1135
WalkUpFromCharacterLiteral(CharacterLiteral * S)1136 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1137 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1138 Builder.foldNode(Builder.getExprRange(S),
1139 new (allocator()) syntax::CharacterLiteralExpression, S);
1140 return true;
1141 }
1142
WalkUpFromFloatingLiteral(FloatingLiteral * S)1143 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1144 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1145 Builder.foldNode(Builder.getExprRange(S),
1146 new (allocator()) syntax::FloatingLiteralExpression, S);
1147 return true;
1148 }
1149
WalkUpFromStringLiteral(StringLiteral * S)1150 bool WalkUpFromStringLiteral(StringLiteral *S) {
1151 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1152 Builder.foldNode(Builder.getExprRange(S),
1153 new (allocator()) syntax::StringLiteralExpression, S);
1154 return true;
1155 }
1156
WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr * S)1157 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1158 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1159 Builder.foldNode(Builder.getExprRange(S),
1160 new (allocator()) syntax::BoolLiteralExpression, S);
1161 return true;
1162 }
1163
WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * S)1164 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1165 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1166 Builder.foldNode(Builder.getExprRange(S),
1167 new (allocator()) syntax::CxxNullPtrExpression, S);
1168 return true;
1169 }
1170
WalkUpFromUnaryOperator(UnaryOperator * S)1171 bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1172 Builder.markChildToken(S->getOperatorLoc(),
1173 syntax::NodeRole::OperatorToken);
1174 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1175
1176 if (S->isPostfix())
1177 Builder.foldNode(Builder.getExprRange(S),
1178 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1179 S);
1180 else
1181 Builder.foldNode(Builder.getExprRange(S),
1182 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1183 S);
1184
1185 return true;
1186 }
1187
WalkUpFromBinaryOperator(BinaryOperator * S)1188 bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1189 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1190 Builder.markChildToken(S->getOperatorLoc(),
1191 syntax::NodeRole::OperatorToken);
1192 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1193 Builder.foldNode(Builder.getExprRange(S),
1194 new (allocator()) syntax::BinaryOperatorExpression, S);
1195 return true;
1196 }
1197
1198 /// Builds `CallArguments` syntax node from arguments that appear in source
1199 /// code, i.e. not default arguments.
1200 syntax::CallArguments *
buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs)1201 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1202 auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1203 for (auto *Arg : Args) {
1204 Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1205 const auto *DelimiterToken =
1206 std::next(Builder.findToken(Arg->getEndLoc()));
1207 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1208 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1209 }
1210
1211 auto *Arguments = new (allocator()) syntax::CallArguments;
1212 if (!Args.empty())
1213 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1214 (*(Args.end() - 1))->getEndLoc()),
1215 Arguments, nullptr);
1216
1217 return Arguments;
1218 }
1219
WalkUpFromCallExpr(CallExpr * S)1220 bool WalkUpFromCallExpr(CallExpr *S) {
1221 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1222
1223 const auto *LParenToken =
1224 std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1225 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1226 // the test on decltype desctructors.
1227 if (LParenToken->kind() == clang::tok::l_paren)
1228 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1229
1230 Builder.markChild(buildCallArguments(S->arguments()),
1231 syntax::NodeRole::Arguments);
1232
1233 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1234
1235 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1236 new (allocator()) syntax::CallExpression, S);
1237 return true;
1238 }
1239
WalkUpFromCXXConstructExpr(CXXConstructExpr * S)1240 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1241 // Ignore the implicit calls to default constructors.
1242 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1243 S->getParenOrBraceRange().isInvalid())
1244 return true;
1245 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1246 }
1247
TraverseCXXOperatorCallExpr(CXXOperatorCallExpr * S)1248 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1249 // To construct a syntax tree of the same shape for calls to built-in and
1250 // user-defined operators, ignore the `DeclRefExpr` that refers to the
1251 // operator and treat it as a simple token. Do that by traversing
1252 // arguments instead of children.
1253 for (auto *child : S->arguments()) {
1254 // A postfix unary operator is declared as taking two operands. The
1255 // second operand is used to distinguish from its prefix counterpart. In
1256 // the semantic AST this "phantom" operand is represented as a
1257 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1258 // operand because it does not correspond to anything written in source
1259 // code.
1260 if (child->getSourceRange().isInvalid()) {
1261 assert(getOperatorNodeKind(*S) ==
1262 syntax::NodeKind::PostfixUnaryOperatorExpression);
1263 continue;
1264 }
1265 if (!TraverseStmt(child))
1266 return false;
1267 }
1268 return WalkUpFromCXXOperatorCallExpr(S);
1269 }
1270
WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr * S)1271 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1272 switch (getOperatorNodeKind(*S)) {
1273 case syntax::NodeKind::BinaryOperatorExpression:
1274 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1275 Builder.markChildToken(S->getOperatorLoc(),
1276 syntax::NodeRole::OperatorToken);
1277 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1278 Builder.foldNode(Builder.getExprRange(S),
1279 new (allocator()) syntax::BinaryOperatorExpression, S);
1280 return true;
1281 case syntax::NodeKind::PrefixUnaryOperatorExpression:
1282 Builder.markChildToken(S->getOperatorLoc(),
1283 syntax::NodeRole::OperatorToken);
1284 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1285 Builder.foldNode(Builder.getExprRange(S),
1286 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1287 S);
1288 return true;
1289 case syntax::NodeKind::PostfixUnaryOperatorExpression:
1290 Builder.markChildToken(S->getOperatorLoc(),
1291 syntax::NodeRole::OperatorToken);
1292 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1293 Builder.foldNode(Builder.getExprRange(S),
1294 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1295 S);
1296 return true;
1297 case syntax::NodeKind::CallExpression: {
1298 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1299
1300 const auto *LParenToken =
1301 std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1302 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1303 // fixed the test on decltype desctructors.
1304 if (LParenToken->kind() == clang::tok::l_paren)
1305 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1306
1307 Builder.markChild(buildCallArguments(CallExpr::arg_range(
1308 S->arg_begin() + 1, S->arg_end())),
1309 syntax::NodeRole::Arguments);
1310
1311 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1312
1313 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1314 new (allocator()) syntax::CallExpression, S);
1315 return true;
1316 }
1317 case syntax::NodeKind::UnknownExpression:
1318 return WalkUpFromExpr(S);
1319 default:
1320 llvm_unreachable("getOperatorNodeKind() does not return this value");
1321 }
1322 }
1323
WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr * S)1324 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1325
WalkUpFromNamespaceDecl(NamespaceDecl * S)1326 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1327 auto Tokens = Builder.getDeclarationRange(S);
1328 if (Tokens.front().kind() == tok::coloncolon) {
1329 // Handle nested namespace definitions. Those start at '::' token, e.g.
1330 // namespace a^::b {}
1331 // FIXME: build corresponding nodes for the name of this namespace.
1332 return true;
1333 }
1334 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1335 return true;
1336 }
1337
1338 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1339 // results. Find test coverage or remove it.
TraverseParenTypeLoc(ParenTypeLoc L)1340 bool TraverseParenTypeLoc(ParenTypeLoc L) {
1341 // We reverse order of traversal to get the proper syntax structure.
1342 if (!WalkUpFromParenTypeLoc(L))
1343 return false;
1344 return TraverseTypeLoc(L.getInnerLoc());
1345 }
1346
WalkUpFromParenTypeLoc(ParenTypeLoc L)1347 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1348 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1349 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1350 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1351 new (allocator()) syntax::ParenDeclarator, L);
1352 return true;
1353 }
1354
1355 // Declarator chunks, they are produced by type locs and some clang::Decls.
WalkUpFromArrayTypeLoc(ArrayTypeLoc L)1356 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1357 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1358 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1359 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1360 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1361 new (allocator()) syntax::ArraySubscript, L);
1362 return true;
1363 }
1364
1365 syntax::ParameterDeclarationList *
buildParameterDeclarationList(ArrayRef<ParmVarDecl * > Params)1366 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1367 for (auto *P : Params) {
1368 Builder.markChild(P, syntax::NodeRole::ListElement);
1369 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1370 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1371 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1372 }
1373 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1374 if (!Params.empty())
1375 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1376 Params.back()->getEndLoc()),
1377 Parameters, nullptr);
1378 return Parameters;
1379 }
1380
WalkUpFromFunctionTypeLoc(FunctionTypeLoc L)1381 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1382 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1383
1384 Builder.markChild(buildParameterDeclarationList(L.getParams()),
1385 syntax::NodeRole::Parameters);
1386
1387 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1388 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1389 new (allocator()) syntax::ParametersAndQualifiers, L);
1390 return true;
1391 }
1392
WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L)1393 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1394 if (!L.getTypePtr()->hasTrailingReturn())
1395 return WalkUpFromFunctionTypeLoc(L);
1396
1397 auto *TrailingReturnTokens = buildTrailingReturn(L);
1398 // Finish building the node for parameters.
1399 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1400 return WalkUpFromFunctionTypeLoc(L);
1401 }
1402
TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L)1403 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1404 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1405 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1406 // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1407 // syntax structure.
1408 if (!WalkUpFromMemberPointerTypeLoc(L))
1409 return false;
1410 return TraverseTypeLoc(L.getPointeeLoc());
1411 }
1412
WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L)1413 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1414 auto SR = L.getLocalSourceRange();
1415 Builder.foldNode(Builder.getRange(SR),
1416 new (allocator()) syntax::MemberPointer, L);
1417 return true;
1418 }
1419
1420 // The code below is very regular, it could even be generated with some
1421 // preprocessor magic. We merely assign roles to the corresponding children
1422 // and fold resulting nodes.
WalkUpFromDeclStmt(DeclStmt * S)1423 bool WalkUpFromDeclStmt(DeclStmt *S) {
1424 Builder.foldNode(Builder.getStmtRange(S),
1425 new (allocator()) syntax::DeclarationStatement, S);
1426 return true;
1427 }
1428
WalkUpFromNullStmt(NullStmt * S)1429 bool WalkUpFromNullStmt(NullStmt *S) {
1430 Builder.foldNode(Builder.getStmtRange(S),
1431 new (allocator()) syntax::EmptyStatement, S);
1432 return true;
1433 }
1434
WalkUpFromSwitchStmt(SwitchStmt * S)1435 bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1436 Builder.markChildToken(S->getSwitchLoc(),
1437 syntax::NodeRole::IntroducerKeyword);
1438 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1439 Builder.foldNode(Builder.getStmtRange(S),
1440 new (allocator()) syntax::SwitchStatement, S);
1441 return true;
1442 }
1443
WalkUpFromCaseStmt(CaseStmt * S)1444 bool WalkUpFromCaseStmt(CaseStmt *S) {
1445 Builder.markChildToken(S->getKeywordLoc(),
1446 syntax::NodeRole::IntroducerKeyword);
1447 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1448 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1449 Builder.foldNode(Builder.getStmtRange(S),
1450 new (allocator()) syntax::CaseStatement, S);
1451 return true;
1452 }
1453
WalkUpFromDefaultStmt(DefaultStmt * S)1454 bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1455 Builder.markChildToken(S->getKeywordLoc(),
1456 syntax::NodeRole::IntroducerKeyword);
1457 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1458 Builder.foldNode(Builder.getStmtRange(S),
1459 new (allocator()) syntax::DefaultStatement, S);
1460 return true;
1461 }
1462
WalkUpFromIfStmt(IfStmt * S)1463 bool WalkUpFromIfStmt(IfStmt *S) {
1464 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1465 Stmt *ConditionStatement = S->getCond();
1466 if (S->hasVarStorage())
1467 ConditionStatement = S->getConditionVariableDeclStmt();
1468 Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
1469 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1470 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1471 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1472 Builder.foldNode(Builder.getStmtRange(S),
1473 new (allocator()) syntax::IfStatement, S);
1474 return true;
1475 }
1476
WalkUpFromForStmt(ForStmt * S)1477 bool WalkUpFromForStmt(ForStmt *S) {
1478 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1479 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1480 Builder.foldNode(Builder.getStmtRange(S),
1481 new (allocator()) syntax::ForStatement, S);
1482 return true;
1483 }
1484
WalkUpFromWhileStmt(WhileStmt * S)1485 bool WalkUpFromWhileStmt(WhileStmt *S) {
1486 Builder.markChildToken(S->getWhileLoc(),
1487 syntax::NodeRole::IntroducerKeyword);
1488 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1489 Builder.foldNode(Builder.getStmtRange(S),
1490 new (allocator()) syntax::WhileStatement, S);
1491 return true;
1492 }
1493
WalkUpFromContinueStmt(ContinueStmt * S)1494 bool WalkUpFromContinueStmt(ContinueStmt *S) {
1495 Builder.markChildToken(S->getContinueLoc(),
1496 syntax::NodeRole::IntroducerKeyword);
1497 Builder.foldNode(Builder.getStmtRange(S),
1498 new (allocator()) syntax::ContinueStatement, S);
1499 return true;
1500 }
1501
WalkUpFromBreakStmt(BreakStmt * S)1502 bool WalkUpFromBreakStmt(BreakStmt *S) {
1503 Builder.markChildToken(S->getBreakLoc(),
1504 syntax::NodeRole::IntroducerKeyword);
1505 Builder.foldNode(Builder.getStmtRange(S),
1506 new (allocator()) syntax::BreakStatement, S);
1507 return true;
1508 }
1509
WalkUpFromReturnStmt(ReturnStmt * S)1510 bool WalkUpFromReturnStmt(ReturnStmt *S) {
1511 Builder.markChildToken(S->getReturnLoc(),
1512 syntax::NodeRole::IntroducerKeyword);
1513 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1514 Builder.foldNode(Builder.getStmtRange(S),
1515 new (allocator()) syntax::ReturnStatement, S);
1516 return true;
1517 }
1518
WalkUpFromCXXForRangeStmt(CXXForRangeStmt * S)1519 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1520 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1521 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1522 Builder.foldNode(Builder.getStmtRange(S),
1523 new (allocator()) syntax::RangeBasedForStatement, S);
1524 return true;
1525 }
1526
WalkUpFromEmptyDecl(EmptyDecl * S)1527 bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1528 Builder.foldNode(Builder.getDeclarationRange(S),
1529 new (allocator()) syntax::EmptyDeclaration, S);
1530 return true;
1531 }
1532
WalkUpFromStaticAssertDecl(StaticAssertDecl * S)1533 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1534 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1535 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1536 Builder.foldNode(Builder.getDeclarationRange(S),
1537 new (allocator()) syntax::StaticAssertDeclaration, S);
1538 return true;
1539 }
1540
WalkUpFromLinkageSpecDecl(LinkageSpecDecl * S)1541 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1542 Builder.foldNode(Builder.getDeclarationRange(S),
1543 new (allocator()) syntax::LinkageSpecificationDeclaration,
1544 S);
1545 return true;
1546 }
1547
WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl * S)1548 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1549 Builder.foldNode(Builder.getDeclarationRange(S),
1550 new (allocator()) syntax::NamespaceAliasDefinition, S);
1551 return true;
1552 }
1553
WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl * S)1554 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1555 Builder.foldNode(Builder.getDeclarationRange(S),
1556 new (allocator()) syntax::UsingNamespaceDirective, S);
1557 return true;
1558 }
1559
WalkUpFromUsingDecl(UsingDecl * S)1560 bool WalkUpFromUsingDecl(UsingDecl *S) {
1561 Builder.foldNode(Builder.getDeclarationRange(S),
1562 new (allocator()) syntax::UsingDeclaration, S);
1563 return true;
1564 }
1565
WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl * S)1566 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1567 Builder.foldNode(Builder.getDeclarationRange(S),
1568 new (allocator()) syntax::UsingDeclaration, S);
1569 return true;
1570 }
1571
WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl * S)1572 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1573 Builder.foldNode(Builder.getDeclarationRange(S),
1574 new (allocator()) syntax::UsingDeclaration, S);
1575 return true;
1576 }
1577
WalkUpFromTypeAliasDecl(TypeAliasDecl * S)1578 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1579 Builder.foldNode(Builder.getDeclarationRange(S),
1580 new (allocator()) syntax::TypeAliasDeclaration, S);
1581 return true;
1582 }
1583
1584 private:
1585 /// Folds SimpleDeclarator node (if present) and in case this is the last
1586 /// declarator in the chain it also folds SimpleDeclaration node.
processDeclaratorAndDeclaration(T * D)1587 template <class T> bool processDeclaratorAndDeclaration(T *D) {
1588 auto Range = getDeclaratorRange(
1589 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1590 getQualifiedNameStart(D), getInitializerRange(D));
1591
1592 // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1593 // declaration, but no declarator).
1594 if (!Range.getBegin().isValid()) {
1595 Builder.markChild(new (allocator()) syntax::DeclaratorList,
1596 syntax::NodeRole::Declarators);
1597 Builder.foldNode(Builder.getDeclarationRange(D),
1598 new (allocator()) syntax::SimpleDeclaration, D);
1599 return true;
1600 }
1601
1602 auto *N = new (allocator()) syntax::SimpleDeclarator;
1603 Builder.foldNode(Builder.getRange(Range), N, nullptr);
1604 Builder.markChild(N, syntax::NodeRole::ListElement);
1605
1606 if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1607 // If this is not the last declarator in the declaration we expect a
1608 // delimiter after it.
1609 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1610 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1611 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1612 } else {
1613 auto *DL = new (allocator()) syntax::DeclaratorList;
1614 auto DeclarationRange = Builder.getDeclarationRange(D);
1615 Builder.foldList(DeclarationRange, DL, nullptr);
1616
1617 Builder.markChild(DL, syntax::NodeRole::Declarators);
1618 Builder.foldNode(DeclarationRange,
1619 new (allocator()) syntax::SimpleDeclaration, D);
1620 }
1621 return true;
1622 }
1623
1624 /// Returns the range of the built node.
buildTrailingReturn(FunctionProtoTypeLoc L)1625 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1626 assert(L.getTypePtr()->hasTrailingReturn());
1627
1628 auto ReturnedType = L.getReturnLoc();
1629 // Build node for the declarator, if any.
1630 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1631 ReturnedType.getEndLoc());
1632 syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1633 if (ReturnDeclaratorRange.isValid()) {
1634 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1635 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1636 ReturnDeclarator, nullptr);
1637 }
1638
1639 // Build node for trailing return type.
1640 auto Return = Builder.getRange(ReturnedType.getSourceRange());
1641 const auto *Arrow = Return.begin() - 1;
1642 assert(Arrow->kind() == tok::arrow);
1643 auto Tokens = llvm::ArrayRef(Arrow, Return.end());
1644 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1645 if (ReturnDeclarator)
1646 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1647 auto *R = new (allocator()) syntax::TrailingReturnType;
1648 Builder.foldNode(Tokens, R, L);
1649 return R;
1650 }
1651
foldExplicitTemplateInstantiation(ArrayRef<syntax::Token> Range,const syntax::Token * ExternKW,const syntax::Token * TemplateKW,syntax::SimpleDeclaration * InnerDeclaration,Decl * From)1652 void foldExplicitTemplateInstantiation(
1653 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1654 const syntax::Token *TemplateKW,
1655 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1656 assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1657 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1658 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1659 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1660 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1661 Builder.foldNode(
1662 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1663 }
1664
foldTemplateDeclaration(ArrayRef<syntax::Token> Range,const syntax::Token * TemplateKW,ArrayRef<syntax::Token> TemplatedDeclaration,Decl * From)1665 syntax::TemplateDeclaration *foldTemplateDeclaration(
1666 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1667 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1668 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1669 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1670
1671 auto *N = new (allocator()) syntax::TemplateDeclaration;
1672 Builder.foldNode(Range, N, From);
1673 Builder.markChild(N, syntax::NodeRole::Declaration);
1674 return N;
1675 }
1676
1677 /// A small helper to save some typing.
allocator()1678 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1679
1680 syntax::TreeBuilder &Builder;
1681 const ASTContext &Context;
1682 };
1683 } // namespace
1684
noticeDeclWithoutSemicolon(Decl * D)1685 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1686 DeclsWithoutSemicolons.insert(D);
1687 }
1688
markChildToken(SourceLocation Loc,NodeRole Role)1689 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1690 if (Loc.isInvalid())
1691 return;
1692 Pending.assignRole(*findToken(Loc), Role);
1693 }
1694
markChildToken(const syntax::Token * T,NodeRole R)1695 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1696 if (!T)
1697 return;
1698 Pending.assignRole(*T, R);
1699 }
1700
markChild(syntax::Node * N,NodeRole R)1701 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1702 assert(N);
1703 setRole(N, R);
1704 }
1705
markChild(ASTPtr N,NodeRole R)1706 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1707 auto *SN = Mapping.find(N);
1708 assert(SN != nullptr);
1709 setRole(SN, R);
1710 }
markChild(NestedNameSpecifierLoc NNSLoc,NodeRole R)1711 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1712 auto *SN = Mapping.find(NNSLoc);
1713 assert(SN != nullptr);
1714 setRole(SN, R);
1715 }
1716
markStmtChild(Stmt * Child,NodeRole Role)1717 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1718 if (!Child)
1719 return;
1720
1721 syntax::Tree *ChildNode;
1722 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1723 // This is an expression in a statement position, consume the trailing
1724 // semicolon and form an 'ExpressionStatement' node.
1725 markExprChild(ChildExpr, NodeRole::Expression);
1726 ChildNode = new (allocator()) syntax::ExpressionStatement;
1727 // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1728 Pending.foldChildren(TBTM.tokenBuffer(), getStmtRange(Child), ChildNode);
1729 } else {
1730 ChildNode = Mapping.find(Child);
1731 }
1732 assert(ChildNode != nullptr);
1733 setRole(ChildNode, Role);
1734 }
1735
markExprChild(Expr * Child,NodeRole Role)1736 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1737 if (!Child)
1738 return;
1739 Child = IgnoreImplicit(Child);
1740
1741 syntax::Tree *ChildNode = Mapping.find(Child);
1742 assert(ChildNode != nullptr);
1743 setRole(ChildNode, Role);
1744 }
1745
findToken(SourceLocation L) const1746 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1747 if (L.isInvalid())
1748 return nullptr;
1749 auto It = LocationToToken.find(L);
1750 assert(It != LocationToToken.end());
1751 return It->second;
1752 }
1753
buildSyntaxTree(Arena & A,TokenBufferTokenManager & TBTM,ASTContext & Context)1754 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1755 TokenBufferTokenManager& TBTM,
1756 ASTContext &Context) {
1757 TreeBuilder Builder(A, TBTM);
1758 BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1759 return std::move(Builder).finalize();
1760 }
1761