xref: /freebsd/contrib/googletest/googletest/test/gtest_unittest.cc (revision 46333229c6a0187ebf231805682ee0bceed704d1)
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy =
41       GTEST_FLAG_GET(also_run_disabled_tests) ||
42       GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43       GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44       GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45       GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46       GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47       GTEST_FLAG_GET(repeat) > 0 ||
48       GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49       GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50       GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51       GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52       GTEST_FLAG_GET(throw_on_failure);
53   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54 }
55 
56 #include <limits.h>  // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60 
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <ostream>
65 #include <set>
66 #include <stdexcept>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <utility>
71 #include <vector>
72 
73 #include "gtest/gtest-spi.h"
74 #include "src/gtest-internal-inl.h"
75 
76 struct ConvertibleGlobalType {
77   // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78   // The outer enable_if is to ensure the overload resolution doesn't encounter
79   // an ambiguity.
80   template <
81       class T,
82       std::enable_if_t<
83           false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84   operator T() const;  // NOLINT(google-explicit-constructor)
85 };
86 void operator<<(ConvertibleGlobalType&, int);
87 static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88                               << 1)(*)()) > 0,
89               "error in operator<< overload resolution");
90 
91 namespace testing {
92 namespace internal {
93 
94 #if GTEST_CAN_STREAM_RESULTS_
95 
96 class StreamingListenerTest : public Test {
97  public:
98   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99    public:
100     // Sends a string to the socket.
Send(const std::string & message)101     void Send(const std::string& message) override { output_ += message; }
102 
103     std::string output_;
104   };
105 
StreamingListenerTest()106   StreamingListenerTest()
107       : fake_sock_writer_(new FakeSocketWriter),
108         streamer_(fake_sock_writer_),
109         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111 
112  protected:
output()113   std::string* output() { return &(fake_sock_writer_->output_); }
114 
115   FakeSocketWriter* const fake_sock_writer_;
116   StreamingListener streamer_;
117   UnitTest unit_test_;
118   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
119 };
120 
TEST_F(StreamingListenerTest,OnTestProgramEnd)121 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122   *output() = "";
123   streamer_.OnTestProgramEnd(unit_test_);
124   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125 }
126 
TEST_F(StreamingListenerTest,OnTestIterationEnd)127 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128   *output() = "";
129   streamer_.OnTestIterationEnd(unit_test_, 42);
130   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132 
TEST_F(StreamingListenerTest,OnTestSuiteStart)133 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134   *output() = "";
135   streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137 }
138 
TEST_F(StreamingListenerTest,OnTestSuiteEnd)139 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140   *output() = "";
141   streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144 
TEST_F(StreamingListenerTest,OnTestStart)145 TEST_F(StreamingListenerTest, OnTestStart) {
146   *output() = "";
147   streamer_.OnTestStart(test_info_obj_);
148   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149 }
150 
TEST_F(StreamingListenerTest,OnTestEnd)151 TEST_F(StreamingListenerTest, OnTestEnd) {
152   *output() = "";
153   streamer_.OnTestEnd(test_info_obj_);
154   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155 }
156 
TEST_F(StreamingListenerTest,OnTestPartResult)157 TEST_F(StreamingListenerTest, OnTestPartResult) {
158   *output() = "";
159   streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160                                             "foo.cc", 42, "failed=\n&%"));
161 
162   // Meta characters in the failure message should be properly escaped.
163   EXPECT_EQ(
164       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165       *output());
166 }
167 
168 #endif  // GTEST_CAN_STREAM_RESULTS_
169 
170 // Provides access to otherwise private parts of the TestEventListeners class
171 // that are needed to test it.
172 class TestEventListenersAccessor {
173  public:
GetRepeater(TestEventListeners * listeners)174   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175     return listeners->repeater();
176   }
177 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)178   static void SetDefaultResultPrinter(TestEventListeners* listeners,
179                                       TestEventListener* listener) {
180     listeners->SetDefaultResultPrinter(listener);
181   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)182   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183                                      TestEventListener* listener) {
184     listeners->SetDefaultXmlGenerator(listener);
185   }
186 
EventForwardingEnabled(const TestEventListeners & listeners)187   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188     return listeners.EventForwardingEnabled();
189   }
190 
SuppressEventForwarding(TestEventListeners * listeners)191   static void SuppressEventForwarding(TestEventListeners* listeners) {
192     listeners->SuppressEventForwarding(true);
193   }
194 };
195 
196 class UnitTestRecordPropertyTestHelper : public Test {
197  protected:
UnitTestRecordPropertyTestHelper()198   UnitTestRecordPropertyTestHelper() {}
199 
200   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)201   void UnitTestRecordProperty(const char* key, const std::string& value) {
202     unit_test_.RecordProperty(key, value);
203   }
204 
205   UnitTest unit_test_;
206 };
207 
208 }  // namespace internal
209 }  // namespace testing
210 
211 using testing::AssertionFailure;
212 using testing::AssertionResult;
213 using testing::AssertionSuccess;
214 using testing::DoubleLE;
215 using testing::EmptyTestEventListener;
216 using testing::Environment;
217 using testing::FloatLE;
218 using testing::IsNotSubstring;
219 using testing::IsSubstring;
220 using testing::kMaxStackTraceDepth;
221 using testing::Message;
222 using testing::ScopedFakeTestPartResultReporter;
223 using testing::StaticAssertTypeEq;
224 using testing::Test;
225 using testing::TestEventListeners;
226 using testing::TestInfo;
227 using testing::TestPartResult;
228 using testing::TestPartResultArray;
229 using testing::TestProperty;
230 using testing::TestResult;
231 using testing::TimeInMillis;
232 using testing::UnitTest;
233 using testing::internal::AlwaysFalse;
234 using testing::internal::AlwaysTrue;
235 using testing::internal::AppendUserMessage;
236 using testing::internal::ArrayAwareFind;
237 using testing::internal::ArrayEq;
238 using testing::internal::CodePointToUtf8;
239 using testing::internal::CopyArray;
240 using testing::internal::CountIf;
241 using testing::internal::EqFailure;
242 using testing::internal::FloatingPoint;
243 using testing::internal::ForEach;
244 using testing::internal::FormatEpochTimeInMillisAsIso8601;
245 using testing::internal::FormatTimeInMillisAsSeconds;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::GTestFlagSaver;
254 using testing::internal::HasDebugStringAndShortDebugString;
255 using testing::internal::Int32FromEnvOrDie;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::kMaxRandomSeed;
260 using testing::internal::kTestTypeIdInGoogleTest;
261 using testing::internal::NativeArray;
262 using testing::internal::ParseFlag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::ShouldRunTestOnShard;
266 using testing::internal::ShouldShard;
267 using testing::internal::ShouldUseColor;
268 using testing::internal::Shuffle;
269 using testing::internal::ShuffleRange;
270 using testing::internal::SkipPrefix;
271 using testing::internal::StreamableToString;
272 using testing::internal::String;
273 using testing::internal::TestEventListenersAccessor;
274 using testing::internal::TestResultAccessor;
275 using testing::internal::WideStringToUtf8;
276 using testing::internal::edit_distance::CalculateOptimalEdits;
277 using testing::internal::edit_distance::CreateUnifiedDiff;
278 using testing::internal::edit_distance::EditType;
279 
280 #if GTEST_HAS_STREAM_REDIRECTION
281 using testing::internal::CaptureStdout;
282 using testing::internal::GetCapturedStdout;
283 #endif
284 
285 #ifdef GTEST_IS_THREADSAFE
286 using testing::internal::ThreadWithParam;
287 #endif
288 
289 class TestingVector : public std::vector<int> {};
290 
operator <<(::std::ostream & os,const TestingVector & vector)291 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292   os << "{ ";
293   for (size_t i = 0; i < vector.size(); i++) {
294     os << vector[i] << " ";
295   }
296   os << "}";
297   return os;
298 }
299 
300 // This line tests that we can define tests in an unnamed namespace.
301 namespace {
302 
TEST(GetRandomSeedFromFlagTest,HandlesZero)303 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304   const int seed = GetRandomSeedFromFlag(0);
305   EXPECT_LE(1, seed);
306   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307 }
308 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)309 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314             GetRandomSeedFromFlag(kMaxRandomSeed));
315 }
316 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)317 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318   const int seed1 = GetRandomSeedFromFlag(-1);
319   EXPECT_LE(1, seed1);
320   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321 
322   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323   EXPECT_LE(1, seed2);
324   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325 }
326 
TEST(GetNextRandomSeedTest,WorksForValidInput)327 TEST(GetNextRandomSeedTest, WorksForValidInput) {
328   EXPECT_EQ(2, GetNextRandomSeed(1));
329   EXPECT_EQ(3, GetNextRandomSeed(2));
330   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331             GetNextRandomSeed(kMaxRandomSeed - 1));
332   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333 
334   // We deliberately don't test GetNextRandomSeed() with invalid
335   // inputs, as that requires death tests, which are expensive.  This
336   // is fine as GetNextRandomSeed() is internal and has a
337   // straightforward definition.
338 }
339 
ClearCurrentTestPartResults()340 static void ClearCurrentTestPartResults() {
341   TestResultAccessor::ClearTestPartResults(
342       GetUnitTestImpl()->current_test_result());
343 }
344 
345 // Tests GetTypeId.
346 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)347 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350 }
351 
352 class SubClassOfTest : public Test {};
353 class AnotherSubClassOfTest : public Test {};
354 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)355 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362 }
363 
364 // Verifies that GetTestTypeId() returns the same value, no matter it
365 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)366 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368 }
369 
370 // Tests CanonicalizeForStdLibVersioning.
371 
372 using ::testing::internal::CanonicalizeForStdLibVersioning;
373 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)374 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381 }
382 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)383 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386 
387   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389 
390   EXPECT_EQ("std::bind",
391             CanonicalizeForStdLibVersioning("std::__google::bind"));
392   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393 }
394 
395 // Tests FormatTimeInMillisAsSeconds().
396 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398   EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399 }
400 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)401 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406   EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407   EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408   EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409   EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410   EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411 }
412 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)413 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418   EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419   EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420   EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421   EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422   EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423 }
424 
425 // TODO: b/287046337 - In emscripten, local time zone modification is not
426 // supported.
427 #if !defined(__EMSCRIPTEN__)
428 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
429 // for particular dates below was verified in Python using
430 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
431 
432 // FormatEpochTimeInMillisAsIso8601 depends on the local timezone, so we
433 // have to set up a particular timezone to obtain predictable results.
434 class FormatEpochTimeInMillisAsIso8601Test : public Test {
435  public:
436   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
437   // 32 bits, even when 64-bit integer types are available.  We have to
438   // force the constants to have a 64-bit type here.
439   static const TimeInMillis kMillisPerSec = 1000;
440 
441  private:
SetUp()442   void SetUp() override {
443     saved_tz_.reset();
444 
445     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
446     if (const char* tz = getenv("TZ")) {
447       saved_tz_ = std::make_unique<std::string>(tz);
448     }
449     GTEST_DISABLE_MSC_DEPRECATED_POP_()
450 
451     // Set the local time zone for FormatEpochTimeInMillisAsIso8601 to be
452     // a fixed time zone for reproducibility purposes.
453     SetTimeZone("UTC+00");
454   }
455 
TearDown()456   void TearDown() override {
457     SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
458     saved_tz_.reset();
459   }
460 
SetTimeZone(const char * time_zone)461   static void SetTimeZone(const char* time_zone) {
462     // tzset() distinguishes between the TZ variable being present and empty
463     // and not being present, so we have to consider the case of time_zone
464     // being NULL.
465 #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
466     // ...Unless it's MSVC, whose standard library's _putenv doesn't
467     // distinguish between an empty and a missing variable.
468     const std::string env_var =
469         std::string("TZ=") + (time_zone ? time_zone : "");
470     _putenv(env_var.c_str());
471     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
472     tzset();
473     GTEST_DISABLE_MSC_WARNINGS_POP_()
474 #else
475 #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
476     // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
477     // See https://github.com/android/ndk/issues/1604.
478     setenv("TZ", "UTC", 1);
479     tzset();
480 #endif
481     if (time_zone) {
482       setenv(("TZ"), time_zone, 1);
483     } else {
484       unsetenv("TZ");
485     }
486     tzset();
487 #endif
488   }
489 
490   std::unique_ptr<std::string> saved_tz_;  // Empty and null are different here
491 };
492 
493 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
494 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)495 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
496   EXPECT_EQ("2011-10-31T18:52:42.000",
497             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
498 }
499 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)500 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
501   EXPECT_EQ("2011-10-31T18:52:42.234",
502             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
503 }
504 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)505 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
506   EXPECT_EQ("2011-09-03T05:07:02.000",
507             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
508 }
509 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)510 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
511   EXPECT_EQ("2011-09-28T17:08:22.000",
512             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
513 }
514 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)515 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
516   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
517 }
518 
519 #endif  // __EMSCRIPTEN__
520 
521 #ifdef __BORLANDC__
522 // Silences warnings: "Condition is always true", "Unreachable code"
523 #pragma option push -w-ccc -w-rch
524 #endif
525 
526 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
527 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)528 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
529   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
530   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
531   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
532   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
533   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
534   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
535 
536   const int* const p = nullptr;
537   EXPECT_EQ(0, p);     // NOLINT
538   ASSERT_EQ(0, p);     // NOLINT
539   EXPECT_EQ(NULL, p);  // NOLINT
540   ASSERT_EQ(NULL, p);  // NOLINT
541   EXPECT_EQ(nullptr, p);
542   ASSERT_EQ(nullptr, p);
543 }
544 
545 struct ConvertToAll {
546   template <typename T>
operator T__anon19f4cde20111::ConvertToAll547   operator T() const {  // NOLINT
548     return T();
549   }
550 };
551 
552 struct ConvertToPointer {
553   template <class T>
operator T*__anon19f4cde20111::ConvertToPointer554   operator T*() const {  // NOLINT
555     return nullptr;
556   }
557 };
558 
559 struct ConvertToAllButNoPointers {
560   template <typename T,
561             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon19f4cde20111::ConvertToAllButNoPointers562   operator T() const {  // NOLINT
563     return T();
564   }
565 };
566 
567 struct MyType {};
operator ==(MyType const &,MyType const &)568 inline bool operator==(MyType const&, MyType const&) { return true; }
569 
TEST(NullLiteralTest,ImplicitConversion)570 TEST(NullLiteralTest, ImplicitConversion) {
571   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
572 #if !defined(__GNUC__) || defined(__clang__)
573   // Disabled due to GCC bug gcc.gnu.org/PR89580
574   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
575 #endif
576   EXPECT_EQ(ConvertToAll{}, MyType{});
577   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
578 }
579 
580 #ifdef __clang__
581 #pragma clang diagnostic push
582 #if __has_warning("-Wzero-as-null-pointer-constant")
583 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
584 #endif
585 #endif
586 
TEST(NullLiteralTest,NoConversionNoWarning)587 TEST(NullLiteralTest, NoConversionNoWarning) {
588   // Test that gtests detection and handling of null pointer constants
589   // doesn't trigger a warning when '0' isn't actually used as null.
590   EXPECT_EQ(0, 0);
591   ASSERT_EQ(0, 0);
592 }
593 
594 #ifdef __clang__
595 #pragma clang diagnostic pop
596 #endif
597 
598 #ifdef __BORLANDC__
599 // Restores warnings after previous "#pragma option push" suppressed them.
600 #pragma option pop
601 #endif
602 
603 //
604 // Tests CodePointToUtf8().
605 
606 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)607 TEST(CodePointToUtf8Test, CanEncodeNul) {
608   EXPECT_EQ("", CodePointToUtf8(L'\0'));
609 }
610 
611 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)612 TEST(CodePointToUtf8Test, CanEncodeAscii) {
613   EXPECT_EQ("a", CodePointToUtf8(L'a'));
614   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
615   EXPECT_EQ("&", CodePointToUtf8(L'&'));
616   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
617 }
618 
619 // Tests that Unicode code-points that have 8 to 11 bits are encoded
620 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)621 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
622   // 000 1101 0011 => 110-00011 10-010011
623   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
624 
625   // 101 0111 0110 => 110-10101 10-110110
626   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
627   // in wide strings and wide chars. In order to accommodate them, we have to
628   // introduce such character constants as integers.
629   EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
630 }
631 
632 // Tests that Unicode code-points that have 12 to 16 bits are encoded
633 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)634 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
635   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
636   EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
637 
638   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
639   EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
640 }
641 
642 #if !GTEST_WIDE_STRING_USES_UTF16_
643 // Tests in this group require a wchar_t to hold > 16 bits, and thus
644 // are skipped on Windows, and Cygwin, where a wchar_t is
645 // 16-bit wide. This code may not compile on those systems.
646 
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)649 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
650   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
651   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
652 
653   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
654   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
655 
656   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
657   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
658 }
659 
660 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)661 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
662   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
663 }
664 
665 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
666 
667 // Tests WideStringToUtf8().
668 
669 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)670 TEST(WideStringToUtf8Test, CanEncodeNul) {
671   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
672   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
673 }
674 
675 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)676 TEST(WideStringToUtf8Test, CanEncodeAscii) {
677   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
678   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
679   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
680   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
681 }
682 
683 // Tests that Unicode code-points that have 8 to 11 bits are encoded
684 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)685 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
686   // 000 1101 0011 => 110-00011 10-010011
687   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
688   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
689 
690   // 101 0111 0110 => 110-10101 10-110110
691   const wchar_t s[] = {0x576, '\0'};
692   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
693   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
694 }
695 
696 // Tests that Unicode code-points that have 12 to 16 bits are encoded
697 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)698 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
699   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
700   const wchar_t s1[] = {0x8D3, '\0'};
701   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
702   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
703 
704   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
705   const wchar_t s2[] = {0xC74D, '\0'};
706   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
707   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
708 }
709 
710 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)711 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
712   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
713 }
714 
715 // Tests that the conversion stops when the function reaches the limit
716 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)717 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
718   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
719 }
720 
721 #if !GTEST_WIDE_STRING_USES_UTF16_
722 // Tests that Unicode code-points that have 17 to 21 bits are encoded
723 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
724 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)725 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
726   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
727   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
728   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
729 
730   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
731   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
732   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
733 }
734 
735 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)736 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
737   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
738                WideStringToUtf8(L"\xABCDFF", -1).c_str());
739 }
740 #else   // !GTEST_WIDE_STRING_USES_UTF16_
741 // Tests that surrogate pairs are encoded correctly on the systems using
742 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)743 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
744   const wchar_t s[] = {0xD801, 0xDC00, '\0'};
745   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
746 }
747 
748 // Tests that encoding an invalid UTF-16 surrogate pair
749 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)750 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
751   // Leading surrogate is at the end of the string.
752   const wchar_t s1[] = {0xD800, '\0'};
753   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
754   // Leading surrogate is not followed by the trailing surrogate.
755   const wchar_t s2[] = {0xD800, 'M', '\0'};
756   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
757   // Trailing surrogate appearas without a leading surrogate.
758   const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
759   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
760 }
761 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
762 
763 // Tests that codepoint concatenation works correctly.
764 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)765 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
766   const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
767   EXPECT_STREQ(
768       "\xF4\x88\x98\xB4"
769       "\xEC\x9D\x8D"
770       "\n"
771       "\xD5\xB6"
772       "\xE0\xA3\x93"
773       "\xF4\x88\x98\xB4",
774       WideStringToUtf8(s, -1).c_str());
775 }
776 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)777 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
778   const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
779   EXPECT_STREQ(
780       "\xEC\x9D\x8D"
781       "\n"
782       "\xD5\xB6"
783       "\xE0\xA3\x93",
784       WideStringToUtf8(s, -1).c_str());
785 }
786 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
787 
788 // Tests the Random class.
789 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)790 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
791   testing::internal::Random random(42);
792   EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
793                             "Cannot generate a number in the range \\[0, 0\\)");
794   EXPECT_DEATH_IF_SUPPORTED(
795       random.Generate(testing::internal::Random::kMaxRange + 1),
796       "Generation of a number in \\[0, 2147483649\\) was requested, "
797       "but this can only generate numbers in \\[0, 2147483648\\)");
798 }
799 
TEST(RandomTest,GeneratesNumbersWithinRange)800 TEST(RandomTest, GeneratesNumbersWithinRange) {
801   constexpr uint32_t kRange = 10000;
802   testing::internal::Random random(12345);
803   for (int i = 0; i < 10; i++) {
804     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
805   }
806 
807   testing::internal::Random random2(testing::internal::Random::kMaxRange);
808   for (int i = 0; i < 10; i++) {
809     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
810   }
811 }
812 
TEST(RandomTest,RepeatsWhenReseeded)813 TEST(RandomTest, RepeatsWhenReseeded) {
814   constexpr int kSeed = 123;
815   constexpr int kArraySize = 10;
816   constexpr uint32_t kRange = 10000;
817   uint32_t values[kArraySize];
818 
819   testing::internal::Random random(kSeed);
820   for (int i = 0; i < kArraySize; i++) {
821     values[i] = random.Generate(kRange);
822   }
823 
824   random.Reseed(kSeed);
825   for (int i = 0; i < kArraySize; i++) {
826     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
827   }
828 }
829 
830 // Tests STL container utilities.
831 
832 // Tests CountIf().
833 
IsPositive(int n)834 static bool IsPositive(int n) { return n > 0; }
835 
TEST(ContainerUtilityTest,CountIf)836 TEST(ContainerUtilityTest, CountIf) {
837   std::vector<int> v;
838   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
839 
840   v.push_back(-1);
841   v.push_back(0);
842   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
843 
844   v.push_back(2);
845   v.push_back(-10);
846   v.push_back(10);
847   EXPECT_EQ(2, CountIf(v, IsPositive));
848 }
849 
850 // Tests ForEach().
851 
852 static int g_sum = 0;
Accumulate(int n)853 static void Accumulate(int n) { g_sum += n; }
854 
TEST(ContainerUtilityTest,ForEach)855 TEST(ContainerUtilityTest, ForEach) {
856   std::vector<int> v;
857   g_sum = 0;
858   ForEach(v, Accumulate);
859   EXPECT_EQ(0, g_sum);  // Works for an empty container;
860 
861   g_sum = 0;
862   v.push_back(1);
863   ForEach(v, Accumulate);
864   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
865 
866   g_sum = 0;
867   v.push_back(20);
868   v.push_back(300);
869   ForEach(v, Accumulate);
870   EXPECT_EQ(321, g_sum);
871 }
872 
873 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)874 TEST(ContainerUtilityTest, GetElementOr) {
875   std::vector<char> a;
876   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
877 
878   a.push_back('a');
879   a.push_back('b');
880   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
881   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
882   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
883   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
884 }
885 
TEST(ContainerUtilityDeathTest,ShuffleRange)886 TEST(ContainerUtilityDeathTest, ShuffleRange) {
887   std::vector<int> a;
888   a.push_back(0);
889   a.push_back(1);
890   a.push_back(2);
891   testing::internal::Random random(1);
892 
893   EXPECT_DEATH_IF_SUPPORTED(
894       ShuffleRange(&random, -1, 1, &a),
895       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
896   EXPECT_DEATH_IF_SUPPORTED(
897       ShuffleRange(&random, 4, 4, &a),
898       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
899   EXPECT_DEATH_IF_SUPPORTED(
900       ShuffleRange(&random, 3, 2, &a),
901       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
902   EXPECT_DEATH_IF_SUPPORTED(
903       ShuffleRange(&random, 3, 4, &a),
904       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
905 }
906 
907 class VectorShuffleTest : public Test {
908  protected:
909   static const size_t kVectorSize = 20;
910 
VectorShuffleTest()911   VectorShuffleTest() : random_(1) {
912     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
913       vector_.push_back(i);
914     }
915   }
916 
VectorIsCorrupt(const TestingVector & vector)917   static bool VectorIsCorrupt(const TestingVector& vector) {
918     if (kVectorSize != vector.size()) {
919       return true;
920     }
921 
922     bool found_in_vector[kVectorSize] = {false};
923     for (size_t i = 0; i < vector.size(); i++) {
924       const int e = vector[i];
925       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
926         return true;
927       }
928       found_in_vector[e] = true;
929     }
930 
931     // Vector size is correct, elements' range is correct, no
932     // duplicate elements.  Therefore no corruption has occurred.
933     return false;
934   }
935 
VectorIsNotCorrupt(const TestingVector & vector)936   static bool VectorIsNotCorrupt(const TestingVector& vector) {
937     return !VectorIsCorrupt(vector);
938   }
939 
RangeIsShuffled(const TestingVector & vector,int begin,int end)940   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
941     for (int i = begin; i < end; i++) {
942       if (i != vector[static_cast<size_t>(i)]) {
943         return true;
944       }
945     }
946     return false;
947   }
948 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)949   static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
950                                 int end) {
951     return !RangeIsShuffled(vector, begin, end);
952   }
953 
VectorIsShuffled(const TestingVector & vector)954   static bool VectorIsShuffled(const TestingVector& vector) {
955     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
956   }
957 
VectorIsUnshuffled(const TestingVector & vector)958   static bool VectorIsUnshuffled(const TestingVector& vector) {
959     return !VectorIsShuffled(vector);
960   }
961 
962   testing::internal::Random random_;
963   TestingVector vector_;
964 };  // class VectorShuffleTest
965 
966 const size_t VectorShuffleTest::kVectorSize;
967 
TEST_F(VectorShuffleTest,HandlesEmptyRange)968 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
969   // Tests an empty range at the beginning...
970   ShuffleRange(&random_, 0, 0, &vector_);
971   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972   ASSERT_PRED1(VectorIsUnshuffled, vector_);
973 
974   // ...in the middle...
975   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
976   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977   ASSERT_PRED1(VectorIsUnshuffled, vector_);
978 
979   // ...at the end...
980   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
981   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
982   ASSERT_PRED1(VectorIsUnshuffled, vector_);
983 
984   // ...and past the end.
985   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
986   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987   ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 }
989 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)990 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
991   // Tests a size one range at the beginning...
992   ShuffleRange(&random_, 0, 1, &vector_);
993   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
994   ASSERT_PRED1(VectorIsUnshuffled, vector_);
995 
996   // ...in the middle...
997   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
998   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
999   ASSERT_PRED1(VectorIsUnshuffled, vector_);
1000 
1001   // ...and at the end.
1002   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
1003   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1004   ASSERT_PRED1(VectorIsUnshuffled, vector_);
1005 }
1006 
1007 // Because we use our own random number generator and a fixed seed,
1008 // we can guarantee that the following "random" tests will succeed.
1009 
TEST_F(VectorShuffleTest,ShufflesEntireVector)1010 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1011   Shuffle(&random_, &vector_);
1012   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1013   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1014 
1015   // Tests the first and last elements in particular to ensure that
1016   // there are no off-by-one problems in our shuffle algorithm.
1017   EXPECT_NE(0, vector_[0]);
1018   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1019 }
1020 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1021 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1022   const int kRangeSize = kVectorSize / 2;
1023 
1024   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1025 
1026   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1027   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1028   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1029                static_cast<int>(kVectorSize));
1030 }
1031 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1032 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1033   const int kRangeSize = kVectorSize / 2;
1034   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1035 
1036   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1037   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1038   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1039                static_cast<int>(kVectorSize));
1040 }
1041 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1042 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1043   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1044   ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1045 
1046   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1047   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1048   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1049   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1050                static_cast<int>(kVectorSize));
1051 }
1052 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1053 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1054   TestingVector vector2;
1055   for (size_t i = 0; i < kVectorSize; i++) {
1056     vector2.push_back(static_cast<int>(i));
1057   }
1058 
1059   random_.Reseed(1234);
1060   Shuffle(&random_, &vector_);
1061   random_.Reseed(1234);
1062   Shuffle(&random_, &vector2);
1063 
1064   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1065   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1066 
1067   for (size_t i = 0; i < kVectorSize; i++) {
1068     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1069   }
1070 }
1071 
1072 // Tests the size of the AssertHelper class.
1073 
TEST(AssertHelperTest,AssertHelperIsSmall)1074 TEST(AssertHelperTest, AssertHelperIsSmall) {
1075   // To avoid breaking clients that use lots of assertions in one
1076   // function, we cannot grow the size of AssertHelper.
1077   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1078 }
1079 
1080 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1081 TEST(StringTest, EndsWithCaseInsensitive) {
1082   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1083   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1084   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1085   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1086 
1087   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1088   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1089   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1090 }
1091 
1092 // C++Builder's preprocessor is buggy; it fails to expand macros that
1093 // appear in macro parameters after wide char literals.  Provide an alias
1094 // for NULL as a workaround.
1095 static const wchar_t* const kNull = nullptr;
1096 
1097 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1098 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1099   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1100   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1101   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1102   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1103   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1104   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1105   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1106   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1107 }
1108 
1109 #ifdef GTEST_OS_WINDOWS
1110 
1111 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1112 TEST(StringTest, ShowWideCString) {
1113   EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1114   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1115   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1116 }
1117 
1118 #ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1119 TEST(StringTest, AnsiAndUtf16Null) {
1120   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1121   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1122 }
1123 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1124 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1125   const char* ansi = String::Utf16ToAnsi(L"str");
1126   EXPECT_STREQ("str", ansi);
1127   delete[] ansi;
1128   const WCHAR* utf16 = String::AnsiToUtf16("str");
1129   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1130   delete[] utf16;
1131 }
1132 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1133 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1134   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1135   EXPECT_STREQ(".:\\ \"*?", ansi);
1136   delete[] ansi;
1137   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1138   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1139   delete[] utf16;
1140 }
1141 #endif  // GTEST_OS_WINDOWS_MOBILE
1142 
1143 #endif  // GTEST_OS_WINDOWS
1144 
1145 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1146 TEST(TestPropertyTest, StringValue) {
1147   TestProperty property("key", "1");
1148   EXPECT_STREQ("key", property.key());
1149   EXPECT_STREQ("1", property.value());
1150 }
1151 
1152 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1153 TEST(TestPropertyTest, ReplaceStringValue) {
1154   TestProperty property("key", "1");
1155   EXPECT_STREQ("1", property.value());
1156   property.SetValue("2");
1157   EXPECT_STREQ("2", property.value());
1158 }
1159 
1160 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1161 // functions (i.e. their definitions cannot be inlined at the call
1162 // sites), or C++Builder won't compile the code.
AddFatalFailure()1163 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1164 
AddNonfatalFailure()1165 static void AddNonfatalFailure() {
1166   ADD_FAILURE() << "Expected non-fatal failure.";
1167 }
1168 
1169 class ScopedFakeTestPartResultReporterTest : public Test {
1170  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1171   enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
AddFailure(FailureMode failure)1172   static void AddFailure(FailureMode failure) {
1173     if (failure == FATAL_FAILURE) {
1174       AddFatalFailure();
1175     } else {
1176       AddNonfatalFailure();
1177     }
1178   }
1179 };
1180 
1181 // Tests that ScopedFakeTestPartResultReporter intercepts test
1182 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1183 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1184   TestPartResultArray results;
1185   {
1186     ScopedFakeTestPartResultReporter reporter(
1187         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1188         &results);
1189     AddFailure(NONFATAL_FAILURE);
1190     AddFailure(FATAL_FAILURE);
1191   }
1192 
1193   EXPECT_EQ(2, results.size());
1194   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1195   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1196 }
1197 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1198 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1199   TestPartResultArray results;
1200   {
1201     // Tests, that the deprecated constructor still works.
1202     ScopedFakeTestPartResultReporter reporter(&results);
1203     AddFailure(NONFATAL_FAILURE);
1204   }
1205   EXPECT_EQ(1, results.size());
1206 }
1207 
1208 #ifdef GTEST_IS_THREADSAFE
1209 
1210 class ScopedFakeTestPartResultReporterWithThreadsTest
1211     : public ScopedFakeTestPartResultReporterTest {
1212  protected:
AddFailureInOtherThread(FailureMode failure)1213   static void AddFailureInOtherThread(FailureMode failure) {
1214     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1215     thread.Join();
1216   }
1217 };
1218 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1219 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1220        InterceptsTestFailuresInAllThreads) {
1221   TestPartResultArray results;
1222   {
1223     ScopedFakeTestPartResultReporter reporter(
1224         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1225     AddFailure(NONFATAL_FAILURE);
1226     AddFailure(FATAL_FAILURE);
1227     AddFailureInOtherThread(NONFATAL_FAILURE);
1228     AddFailureInOtherThread(FATAL_FAILURE);
1229   }
1230 
1231   EXPECT_EQ(4, results.size());
1232   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1233   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1234   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1235   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1236 }
1237 
1238 #endif  // GTEST_IS_THREADSAFE
1239 
1240 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1241 // work even if the failure is generated in a called function rather than
1242 // the current context.
1243 
1244 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1245 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1246 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1247   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1248 }
1249 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1250 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1251   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1252                        ::std::string("Expected fatal failure."));
1253 }
1254 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1255 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1256   // We have another test below to verify that the macro catches fatal
1257   // failures generated on another thread.
1258   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1259                                       "Expected fatal failure.");
1260 }
1261 
1262 #ifdef __BORLANDC__
1263 // Silences warnings: "Condition is always true"
1264 #pragma option push -w-ccc
1265 #endif
1266 
1267 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1268 // function even when the statement in it contains ASSERT_*.
1269 
NonVoidFunction()1270 int NonVoidFunction() {
1271   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1272   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1273   return 0;
1274 }
1275 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1276 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1277   NonVoidFunction();
1278 }
1279 
1280 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1281 // current function even though 'statement' generates a fatal failure.
1282 
DoesNotAbortHelper(bool * aborted)1283 void DoesNotAbortHelper(bool* aborted) {
1284   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1285   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1286 
1287   *aborted = false;
1288 }
1289 
1290 #ifdef __BORLANDC__
1291 // Restores warnings after previous "#pragma option push" suppressed them.
1292 #pragma option pop
1293 #endif
1294 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1295 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1296   bool aborted = true;
1297   DoesNotAbortHelper(&aborted);
1298   EXPECT_FALSE(aborted);
1299 }
1300 
1301 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1302 // statement that contains a macro which expands to code containing an
1303 // unprotected comma.
1304 
1305 static int global_var = 0;
1306 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1307 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1308 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1309 #ifndef __BORLANDC__
1310   // ICE's in C++Builder.
1311   EXPECT_FATAL_FAILURE(
1312       {
1313         GTEST_USE_UNPROTECTED_COMMA_;
1314         AddFatalFailure();
1315       },
1316       "");
1317 #endif
1318 
1319   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1320       {
1321         GTEST_USE_UNPROTECTED_COMMA_;
1322         AddFatalFailure();
1323       },
1324       "");
1325 }
1326 
1327 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1328 
1329 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1330 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1331 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1332   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1333 }
1334 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1335 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1336   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1337                           ::std::string("Expected non-fatal failure."));
1338 }
1339 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1340 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1341   // We have another test below to verify that the macro catches
1342   // non-fatal failures generated on another thread.
1343   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1344                                          "Expected non-fatal failure.");
1345 }
1346 
1347 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1348 // statement that contains a macro which expands to code containing an
1349 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1350 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1351   EXPECT_NONFATAL_FAILURE(
1352       {
1353         GTEST_USE_UNPROTECTED_COMMA_;
1354         AddNonfatalFailure();
1355       },
1356       "");
1357 
1358   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1359       {
1360         GTEST_USE_UNPROTECTED_COMMA_;
1361         AddNonfatalFailure();
1362       },
1363       "");
1364 }
1365 
1366 #ifdef GTEST_IS_THREADSAFE
1367 
1368 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1369     ExpectFailureWithThreadsTest;
1370 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1371 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1372   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1373                                       "Expected fatal failure.");
1374 }
1375 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1376 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1377   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1378       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1379 }
1380 
1381 #endif  // GTEST_IS_THREADSAFE
1382 
1383 // Tests the TestProperty class.
1384 
TEST(TestPropertyTest,ConstructorWorks)1385 TEST(TestPropertyTest, ConstructorWorks) {
1386   const TestProperty property("key", "value");
1387   EXPECT_STREQ("key", property.key());
1388   EXPECT_STREQ("value", property.value());
1389 }
1390 
TEST(TestPropertyTest,SetValue)1391 TEST(TestPropertyTest, SetValue) {
1392   TestProperty property("key", "value_1");
1393   EXPECT_STREQ("key", property.key());
1394   property.SetValue("value_2");
1395   EXPECT_STREQ("key", property.key());
1396   EXPECT_STREQ("value_2", property.value());
1397 }
1398 
1399 // Tests the TestResult class
1400 
1401 // The test fixture for testing TestResult.
1402 class TestResultTest : public Test {
1403  protected:
1404   typedef std::vector<TestPartResult> TPRVector;
1405 
1406   // We make use of 2 TestPartResult objects,
1407   TestPartResult *pr1, *pr2;
1408 
1409   // ... and 3 TestResult objects.
1410   TestResult *r0, *r1, *r2;
1411 
SetUp()1412   void SetUp() override {
1413     // pr1 is for success.
1414     pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1415                              "Success!");
1416 
1417     // pr2 is for fatal failure.
1418     pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1419                              -1,  // This line number means "unknown"
1420                              "Failure!");
1421 
1422     // Creates the TestResult objects.
1423     r0 = new TestResult();
1424     r1 = new TestResult();
1425     r2 = new TestResult();
1426 
1427     // In order to test TestResult, we need to modify its internal
1428     // state, in particular the TestPartResult vector it holds.
1429     // test_part_results() returns a const reference to this vector.
1430     // We cast it to a non-const object s.t. it can be modified
1431     TPRVector* results1 =
1432         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1433     TPRVector* results2 =
1434         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1435 
1436     // r0 is an empty TestResult.
1437 
1438     // r1 contains a single SUCCESS TestPartResult.
1439     results1->push_back(*pr1);
1440 
1441     // r2 contains a SUCCESS, and a FAILURE.
1442     results2->push_back(*pr1);
1443     results2->push_back(*pr2);
1444   }
1445 
TearDown()1446   void TearDown() override {
1447     delete pr1;
1448     delete pr2;
1449 
1450     delete r0;
1451     delete r1;
1452     delete r2;
1453   }
1454 
1455   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1456   static void CompareTestPartResult(const TestPartResult& expected,
1457                                     const TestPartResult& actual) {
1458     EXPECT_EQ(expected.type(), actual.type());
1459     EXPECT_STREQ(expected.file_name(), actual.file_name());
1460     EXPECT_EQ(expected.line_number(), actual.line_number());
1461     EXPECT_STREQ(expected.summary(), actual.summary());
1462     EXPECT_STREQ(expected.message(), actual.message());
1463     EXPECT_EQ(expected.passed(), actual.passed());
1464     EXPECT_EQ(expected.failed(), actual.failed());
1465     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1466     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1467   }
1468 };
1469 
1470 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1471 TEST_F(TestResultTest, total_part_count) {
1472   ASSERT_EQ(0, r0->total_part_count());
1473   ASSERT_EQ(1, r1->total_part_count());
1474   ASSERT_EQ(2, r2->total_part_count());
1475 }
1476 
1477 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1478 TEST_F(TestResultTest, Passed) {
1479   ASSERT_TRUE(r0->Passed());
1480   ASSERT_TRUE(r1->Passed());
1481   ASSERT_FALSE(r2->Passed());
1482 }
1483 
1484 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1485 TEST_F(TestResultTest, Failed) {
1486   ASSERT_FALSE(r0->Failed());
1487   ASSERT_FALSE(r1->Failed());
1488   ASSERT_TRUE(r2->Failed());
1489 }
1490 
1491 // Tests TestResult::GetTestPartResult().
1492 
1493 typedef TestResultTest TestResultDeathTest;
1494 
TEST_F(TestResultDeathTest,GetTestPartResult)1495 TEST_F(TestResultDeathTest, GetTestPartResult) {
1496   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1497   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1498   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1499   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1500 }
1501 
1502 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1503 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1504   TestResult test_result;
1505   ASSERT_EQ(0, test_result.test_property_count());
1506 }
1507 
1508 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1509 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1510   TestResult test_result;
1511   TestProperty property("key_1", "1");
1512   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1513   ASSERT_EQ(1, test_result.test_property_count());
1514   const TestProperty& actual_property = test_result.GetTestProperty(0);
1515   EXPECT_STREQ("key_1", actual_property.key());
1516   EXPECT_STREQ("1", actual_property.value());
1517 }
1518 
1519 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1520 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1521   TestResult test_result;
1522   TestProperty property_1("key_1", "1");
1523   TestProperty property_2("key_2", "2");
1524   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1525   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1526   ASSERT_EQ(2, test_result.test_property_count());
1527   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1528   EXPECT_STREQ("key_1", actual_property_1.key());
1529   EXPECT_STREQ("1", actual_property_1.value());
1530 
1531   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1532   EXPECT_STREQ("key_2", actual_property_2.key());
1533   EXPECT_STREQ("2", actual_property_2.value());
1534 }
1535 
1536 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1537 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1538   TestResult test_result;
1539   TestProperty property_1_1("key_1", "1");
1540   TestProperty property_2_1("key_2", "2");
1541   TestProperty property_1_2("key_1", "12");
1542   TestProperty property_2_2("key_2", "22");
1543   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1544   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1545   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1546   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1547 
1548   ASSERT_EQ(2, test_result.test_property_count());
1549   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1550   EXPECT_STREQ("key_1", actual_property_1.key());
1551   EXPECT_STREQ("12", actual_property_1.value());
1552 
1553   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1554   EXPECT_STREQ("key_2", actual_property_2.key());
1555   EXPECT_STREQ("22", actual_property_2.value());
1556 }
1557 
1558 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1559 TEST(TestResultPropertyTest, GetTestProperty) {
1560   TestResult test_result;
1561   TestProperty property_1("key_1", "1");
1562   TestProperty property_2("key_2", "2");
1563   TestProperty property_3("key_3", "3");
1564   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1565   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1566   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1567 
1568   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1569   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1570   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1571 
1572   EXPECT_STREQ("key_1", fetched_property_1.key());
1573   EXPECT_STREQ("1", fetched_property_1.value());
1574 
1575   EXPECT_STREQ("key_2", fetched_property_2.key());
1576   EXPECT_STREQ("2", fetched_property_2.value());
1577 
1578   EXPECT_STREQ("key_3", fetched_property_3.key());
1579   EXPECT_STREQ("3", fetched_property_3.value());
1580 
1581   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1582   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1583 }
1584 
1585 // Tests the Test class.
1586 //
1587 // It's difficult to test every public method of this class (we are
1588 // already stretching the limit of Google Test by using it to test itself!).
1589 // Fortunately, we don't have to do that, as we are already testing
1590 // the functionalities of the Test class extensively by using Google Test
1591 // alone.
1592 //
1593 // Therefore, this section only contains one test.
1594 
1595 // Tests that GTestFlagSaver works on Windows and Mac.
1596 
1597 class GTestFlagSaverTest : public Test {
1598  protected:
1599   // Saves the Google Test flags such that we can restore them later, and
1600   // then sets them to their default values.  This will be called
1601   // before the first test in this test case is run.
SetUpTestSuite()1602   static void SetUpTestSuite() {
1603     saver_ = new GTestFlagSaver;
1604 
1605     GTEST_FLAG_SET(also_run_disabled_tests, false);
1606     GTEST_FLAG_SET(break_on_failure, false);
1607     GTEST_FLAG_SET(catch_exceptions, false);
1608     GTEST_FLAG_SET(death_test_use_fork, false);
1609     GTEST_FLAG_SET(color, "auto");
1610     GTEST_FLAG_SET(fail_fast, false);
1611     GTEST_FLAG_SET(filter, "");
1612     GTEST_FLAG_SET(list_tests, false);
1613     GTEST_FLAG_SET(output, "");
1614     GTEST_FLAG_SET(brief, false);
1615     GTEST_FLAG_SET(print_time, true);
1616     GTEST_FLAG_SET(random_seed, 0);
1617     GTEST_FLAG_SET(repeat, 1);
1618     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1619     GTEST_FLAG_SET(shuffle, false);
1620     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1621     GTEST_FLAG_SET(stream_result_to, "");
1622     GTEST_FLAG_SET(throw_on_failure, false);
1623   }
1624 
1625   // Restores the Google Test flags that the tests have modified.  This will
1626   // be called after the last test in this test case is run.
TearDownTestSuite()1627   static void TearDownTestSuite() {
1628     delete saver_;
1629     saver_ = nullptr;
1630   }
1631 
1632   // Verifies that the Google Test flags have their default values, and then
1633   // modifies each of them.
VerifyAndModifyFlags()1634   void VerifyAndModifyFlags() {
1635     EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1636     EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1637     EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1638     EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1639     EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1640     EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1641     EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1642     EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1643     EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1644     EXPECT_FALSE(GTEST_FLAG_GET(brief));
1645     EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1646     EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1647     EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1648     EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1649     EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1650     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1651     EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1652     EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1653 
1654     GTEST_FLAG_SET(also_run_disabled_tests, true);
1655     GTEST_FLAG_SET(break_on_failure, true);
1656     GTEST_FLAG_SET(catch_exceptions, true);
1657     GTEST_FLAG_SET(color, "no");
1658     GTEST_FLAG_SET(death_test_use_fork, true);
1659     GTEST_FLAG_SET(fail_fast, true);
1660     GTEST_FLAG_SET(filter, "abc");
1661     GTEST_FLAG_SET(list_tests, true);
1662     GTEST_FLAG_SET(output, "xml:foo.xml");
1663     GTEST_FLAG_SET(brief, true);
1664     GTEST_FLAG_SET(print_time, false);
1665     GTEST_FLAG_SET(random_seed, 1);
1666     GTEST_FLAG_SET(repeat, 100);
1667     GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1668     GTEST_FLAG_SET(shuffle, true);
1669     GTEST_FLAG_SET(stack_trace_depth, 1);
1670     GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1671     GTEST_FLAG_SET(throw_on_failure, true);
1672   }
1673 
1674  private:
1675   // For saving Google Test flags during this test case.
1676   static GTestFlagSaver* saver_;
1677 };
1678 
1679 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1680 
1681 // Google Test doesn't guarantee the order of tests.  The following two
1682 // tests are designed to work regardless of their order.
1683 
1684 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1685 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1686 
1687 // Verifies that the Google Test flags in the body of the previous test were
1688 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1689 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1690 
1691 // Sets an environment variable with the given name to the given
1692 // value.  If the value argument is "", unsets the environment
1693 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1694 static void SetEnv(const char* name, const char* value) {
1695 #ifdef GTEST_OS_WINDOWS_MOBILE
1696   // Environment variables are not supported on Windows CE.
1697   return;
1698 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1699   // C++Builder's putenv only stores a pointer to its parameter; we have to
1700   // ensure that the string remains valid as long as it might be needed.
1701   // We use an std::map to do so.
1702   static std::map<std::string, std::string*> added_env;
1703 
1704   // Because putenv stores a pointer to the string buffer, we can't delete the
1705   // previous string (if present) until after it's replaced.
1706   std::string* prev_env = NULL;
1707   if (added_env.find(name) != added_env.end()) {
1708     prev_env = added_env[name];
1709   }
1710   added_env[name] =
1711       new std::string((Message() << name << "=" << value).GetString());
1712 
1713   // The standard signature of putenv accepts a 'char*' argument. Other
1714   // implementations, like C++Builder's, accept a 'const char*'.
1715   // We cast away the 'const' since that would work for both variants.
1716   putenv(const_cast<char*>(added_env[name]->c_str()));
1717   delete prev_env;
1718 #elif defined(GTEST_OS_WINDOWS)  // If we are on Windows proper.
1719   _putenv((Message() << name << "=" << value).GetString().c_str());
1720 #else
1721   if (*value == '\0') {
1722     unsetenv(name);
1723   } else {
1724     setenv(name, value, 1);
1725   }
1726 #endif  // GTEST_OS_WINDOWS_MOBILE
1727 }
1728 
1729 #ifndef GTEST_OS_WINDOWS_MOBILE
1730 // Environment variables are not supported on Windows CE.
1731 
1732 using testing::internal::Int32FromGTestEnv;
1733 
1734 // Tests Int32FromGTestEnv().
1735 
1736 // Tests that Int32FromGTestEnv() returns the default value when the
1737 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1738 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1739   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1740   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1741 }
1742 
1743 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1744 
1745 // Tests that Int32FromGTestEnv() returns the default value when the
1746 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1747 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1748   printf("(expecting 2 warnings)\n");
1749 
1750   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1751   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1752 
1753   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1754   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1755 }
1756 
1757 // Tests that Int32FromGTestEnv() returns the default value when the
1758 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1759 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1760   printf("(expecting 2 warnings)\n");
1761 
1762   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1763   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1764 
1765   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1766   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1767 }
1768 
1769 #endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1770 
1771 // Tests that Int32FromGTestEnv() parses and returns the value of the
1772 // environment variable when it represents a valid decimal integer in
1773 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1774 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1776   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1777 
1778   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1779   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1780 }
1781 #endif  // !GTEST_OS_WINDOWS_MOBILE
1782 
1783 // Tests ParseFlag().
1784 
1785 // Tests that ParseInt32Flag() returns false and doesn't change the
1786 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1787 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1788   int32_t value = 123;
1789   EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1790   EXPECT_EQ(123, value);
1791 
1792   EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1793   EXPECT_EQ(123, value);
1794 }
1795 
1796 // Tests that ParseFlag() returns false and doesn't change the
1797 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1798 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1799   printf("(expecting 2 warnings)\n");
1800 
1801   int32_t value = 123;
1802   EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1803   EXPECT_EQ(123, value);
1804 
1805   EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1806   EXPECT_EQ(123, value);
1807 }
1808 
1809 // Tests that ParseInt32Flag() returns false and doesn't change the
1810 // output value when the flag does not represent a valid decimal
1811 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1812 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1813   printf("(expecting 2 warnings)\n");
1814 
1815   int32_t value = 123;
1816   EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1817   EXPECT_EQ(123, value);
1818 
1819   EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1820   EXPECT_EQ(123, value);
1821 }
1822 
1823 // Tests that ParseInt32Flag() parses the value of the flag and
1824 // returns true when the flag represents a valid decimal integer in
1825 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1826 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1827   int32_t value = 123;
1828   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1829   EXPECT_EQ(456, value);
1830 
1831   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1832   EXPECT_EQ(-789, value);
1833 }
1834 
1835 // Tests that Int32FromEnvOrDie() parses the value of the var or
1836 // returns the correct default.
1837 // Environment variables are not supported on Windows CE.
1838 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1839 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1840   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1842   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1843   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1844   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1845 }
1846 #endif  // !GTEST_OS_WINDOWS_MOBILE
1847 
1848 // Tests that Int32FromEnvOrDie() aborts with an error message
1849 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1850 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1851   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1852   EXPECT_DEATH_IF_SUPPORTED(
1853       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1854 }
1855 
1856 // Tests that Int32FromEnvOrDie() aborts with an error message
1857 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1858 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1859   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1860   EXPECT_DEATH_IF_SUPPORTED(
1861       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1862 }
1863 
1864 // Tests that ShouldRunTestOnShard() selects all tests
1865 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1866 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1867   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1868   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1869   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1870   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1871   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1872 }
1873 
1874 class ShouldShardTest : public testing::Test {
1875  protected:
SetUp()1876   void SetUp() override {
1877     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1878     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1879   }
1880 
TearDown()1881   void TearDown() override {
1882     SetEnv(index_var_, "");
1883     SetEnv(total_var_, "");
1884   }
1885 
1886   const char* index_var_;
1887   const char* total_var_;
1888 };
1889 
1890 // Tests that sharding is disabled if neither of the environment variables
1891 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1892 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1893   SetEnv(index_var_, "");
1894   SetEnv(total_var_, "");
1895 
1896   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1897   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1898 }
1899 
1900 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1901 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1902   SetEnv(index_var_, "0");
1903   SetEnv(total_var_, "1");
1904   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1905   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1906 }
1907 
1908 // Tests that sharding is enabled if total_shards > 1 and
1909 // we are not in a death test subprocess.
1910 // Environment variables are not supported on Windows CE.
1911 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1912 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1913   SetEnv(index_var_, "4");
1914   SetEnv(total_var_, "22");
1915   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1916   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1917 
1918   SetEnv(index_var_, "8");
1919   SetEnv(total_var_, "9");
1920   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1921   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1922 
1923   SetEnv(index_var_, "0");
1924   SetEnv(total_var_, "9");
1925   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1926   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1927 }
1928 #endif  // !GTEST_OS_WINDOWS_MOBILE
1929 
1930 // Tests that we exit in error if the sharding values are not valid.
1931 
1932 typedef ShouldShardTest ShouldShardDeathTest;
1933 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1934 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1935   SetEnv(index_var_, "4");
1936   SetEnv(total_var_, "4");
1937   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938 
1939   SetEnv(index_var_, "4");
1940   SetEnv(total_var_, "-2");
1941   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942 
1943   SetEnv(index_var_, "5");
1944   SetEnv(total_var_, "");
1945   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946 
1947   SetEnv(index_var_, "");
1948   SetEnv(total_var_, "5");
1949   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1950 }
1951 
1952 // Tests that ShouldRunTestOnShard is a partition when 5
1953 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1954 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1955   // Choose an arbitrary number of tests and shards.
1956   const int num_tests = 17;
1957   const int num_shards = 5;
1958 
1959   // Check partitioning: each test should be on exactly 1 shard.
1960   for (int test_id = 0; test_id < num_tests; test_id++) {
1961     int prev_selected_shard_index = -1;
1962     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1963       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1964         if (prev_selected_shard_index < 0) {
1965           prev_selected_shard_index = shard_index;
1966         } else {
1967           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1968                         << shard_index << " are both selected to run test "
1969                         << test_id;
1970         }
1971       }
1972     }
1973   }
1974 
1975   // Check balance: This is not required by the sharding protocol, but is a
1976   // desirable property for performance.
1977   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1978     int num_tests_on_shard = 0;
1979     for (int test_id = 0; test_id < num_tests; test_id++) {
1980       num_tests_on_shard +=
1981           ShouldRunTestOnShard(num_shards, shard_index, test_id);
1982     }
1983     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1984   }
1985 }
1986 
1987 // For the same reason we are not explicitly testing everything in the
1988 // Test class, there are no separate tests for the following classes
1989 // (except for some trivial cases):
1990 //
1991 //   TestSuite, UnitTest, UnitTestResultPrinter.
1992 //
1993 // Similarly, there are no separate tests for the following macros:
1994 //
1995 //   TEST, TEST_F, RUN_ALL_TESTS
1996 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1997 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1998   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1999   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2000 }
2001 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2002 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2003   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2004   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2005 }
2006 
2007 // When a property using a reserved key is supplied to this function, it
2008 // tests that a non-fatal failure is added, a fatal failure is not added,
2009 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2010 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2011     const TestResult& test_result, const char* key) {
2012   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2013   ASSERT_EQ(0, test_result.test_property_count())
2014       << "Property for key '" << key << "' recorded unexpectedly.";
2015 }
2016 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2017 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2018     const char* key) {
2019   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2020   ASSERT_TRUE(test_info != nullptr);
2021   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2022                                                         key);
2023 }
2024 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2025 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2026     const char* key) {
2027   const testing::TestSuite* test_suite =
2028       UnitTest::GetInstance()->current_test_suite();
2029   ASSERT_TRUE(test_suite != nullptr);
2030   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2031       test_suite->ad_hoc_test_result(), key);
2032 }
2033 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2034 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2035     const char* key) {
2036   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2037       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2038 }
2039 
2040 // Tests that property recording functions in UnitTest outside of tests
2041 // functions correctly.  Creating a separate instance of UnitTest ensures it
2042 // is in a state similar to the UnitTest's singleton's between tests.
2043 class UnitTestRecordPropertyTest
2044     : public testing::internal::UnitTestRecordPropertyTestHelper {
2045  public:
SetUpTestSuite()2046   static void SetUpTestSuite() {
2047     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048         "disabled");
2049     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050         "errors");
2051     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052         "failures");
2053     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054         "name");
2055     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2056         "tests");
2057     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2058         "time");
2059 
2060     Test::RecordProperty("test_case_key_1", "1");
2061 
2062     const testing::TestSuite* test_suite =
2063         UnitTest::GetInstance()->current_test_suite();
2064 
2065     ASSERT_TRUE(test_suite != nullptr);
2066 
2067     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2068     EXPECT_STREQ("test_case_key_1",
2069                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2070     EXPECT_STREQ("1",
2071                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2072   }
2073 };
2074 
2075 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2076 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2077   UnitTestRecordProperty("key_1", "1");
2078 
2079   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2080 
2081   EXPECT_STREQ("key_1",
2082                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2083   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2084 }
2085 
2086 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2087 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2088   UnitTestRecordProperty("key_1", "1");
2089   UnitTestRecordProperty("key_2", "2");
2090 
2091   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2092 
2093   EXPECT_STREQ("key_1",
2094                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2095   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2096 
2097   EXPECT_STREQ("key_2",
2098                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2099   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2100 }
2101 
2102 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2103 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2104   UnitTestRecordProperty("key_1", "1");
2105   UnitTestRecordProperty("key_2", "2");
2106   UnitTestRecordProperty("key_1", "12");
2107   UnitTestRecordProperty("key_2", "22");
2108 
2109   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2110 
2111   EXPECT_STREQ("key_1",
2112                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2113   EXPECT_STREQ("12",
2114                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2115 
2116   EXPECT_STREQ("key_2",
2117                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2118   EXPECT_STREQ("22",
2119                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2120 }
2121 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2122 TEST_F(UnitTestRecordPropertyTest,
2123        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2124   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2125   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2126       "value_param");
2127   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128       "type_param");
2129   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2130   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2131   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2132       "classname");
2133 }
2134 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2135 TEST_F(UnitTestRecordPropertyTest,
2136        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2137   EXPECT_NONFATAL_FAILURE(
2138       Test::RecordProperty("name", "1"),
2139       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2140       " 'file', and 'line' are reserved");
2141 }
2142 
2143 class UnitTestRecordPropertyTestEnvironment : public Environment {
2144  public:
TearDown()2145   void TearDown() override {
2146     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147         "tests");
2148     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149         "failures");
2150     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151         "disabled");
2152     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153         "errors");
2154     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155         "name");
2156     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157         "timestamp");
2158     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2159         "time");
2160     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2161         "random_seed");
2162   }
2163 };
2164 
2165 // This will test property recording outside of any test or test case.
2166 [[maybe_unused]] static Environment* record_property_env =
2167     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2168 
2169 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2170 // of various arities.  They do not attempt to be exhaustive.  Rather,
2171 // view them as smoke tests that can be easily reviewed and verified.
2172 // A more complete set of tests for predicate assertions can be found
2173 // in gtest_pred_impl_unittest.cc.
2174 
2175 // First, some predicates and predicate-formatters needed by the tests.
2176 
2177 // Returns true if and only if the argument is an even number.
IsEven(int n)2178 bool IsEven(int n) { return (n % 2) == 0; }
2179 
2180 // A functor that returns true if and only if the argument is an even number.
2181 struct IsEvenFunctor {
operator ()__anon19f4cde20111::IsEvenFunctor2182   bool operator()(int n) { return IsEven(n); }
2183 };
2184 
2185 // A predicate-formatter function that asserts the argument is an even
2186 // number.
AssertIsEven(const char * expr,int n)2187 AssertionResult AssertIsEven(const char* expr, int n) {
2188   if (IsEven(n)) {
2189     return AssertionSuccess();
2190   }
2191 
2192   Message msg;
2193   msg << expr << " evaluates to " << n << ", which is not even.";
2194   return AssertionFailure(msg);
2195 }
2196 
2197 // A predicate function that returns AssertionResult for use in
2198 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2199 AssertionResult ResultIsEven(int n) {
2200   if (IsEven(n))
2201     return AssertionSuccess() << n << " is even";
2202   else
2203     return AssertionFailure() << n << " is odd";
2204 }
2205 
2206 // A predicate function that returns AssertionResult but gives no
2207 // explanation why it succeeds. Needed for testing that
2208 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2209 AssertionResult ResultIsEvenNoExplanation(int n) {
2210   if (IsEven(n))
2211     return AssertionSuccess();
2212   else
2213     return AssertionFailure() << n << " is odd";
2214 }
2215 
2216 // A predicate-formatter functor that asserts the argument is an even
2217 // number.
2218 struct AssertIsEvenFunctor {
operator ()__anon19f4cde20111::AssertIsEvenFunctor2219   AssertionResult operator()(const char* expr, int n) {
2220     return AssertIsEven(expr, n);
2221   }
2222 };
2223 
2224 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2225 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2226 
2227 // A functor that returns true if and only if the sum of the arguments is an
2228 // even number.
2229 struct SumIsEven3Functor {
operator ()__anon19f4cde20111::SumIsEven3Functor2230   bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2231 };
2232 
2233 // A predicate-formatter function that asserts the sum of the
2234 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2235 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2236                                  const char* e4, int n1, int n2, int n3,
2237                                  int n4) {
2238   const int sum = n1 + n2 + n3 + n4;
2239   if (IsEven(sum)) {
2240     return AssertionSuccess();
2241   }
2242 
2243   Message msg;
2244   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2245       << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2246       << ", which is not even.";
2247   return AssertionFailure(msg);
2248 }
2249 
2250 // A predicate-formatter functor that asserts the sum of the arguments
2251 // is an even number.
2252 struct AssertSumIsEven5Functor {
operator ()__anon19f4cde20111::AssertSumIsEven5Functor2253   AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2254                              const char* e4, const char* e5, int n1, int n2,
2255                              int n3, int n4, int n5) {
2256     const int sum = n1 + n2 + n3 + n4 + n5;
2257     if (IsEven(sum)) {
2258       return AssertionSuccess();
2259     }
2260 
2261     Message msg;
2262     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2263         << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2264         << n5 << ") evaluates to " << sum << ", which is not even.";
2265     return AssertionFailure(msg);
2266   }
2267 };
2268 
2269 // Tests unary predicate assertions.
2270 
2271 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2272 TEST(Pred1Test, WithoutFormat) {
2273   // Success cases.
2274   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2275   ASSERT_PRED1(IsEven, 4);
2276 
2277   // Failure cases.
2278   EXPECT_NONFATAL_FAILURE(
2279       {  // NOLINT
2280         EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2281       },
2282       "This failure is expected.");
2283   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2284 }
2285 
2286 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2287 TEST(Pred1Test, WithFormat) {
2288   // Success cases.
2289   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2290   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2291       << "This failure is UNEXPECTED!";
2292 
2293   // Failure cases.
2294   const int n = 5;
2295   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2296                           "n evaluates to 5, which is not even.");
2297   EXPECT_FATAL_FAILURE(
2298       {  // NOLINT
2299         ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2300       },
2301       "This failure is expected.");
2302 }
2303 
2304 // Tests that unary predicate assertions evaluates their arguments
2305 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2306 TEST(Pred1Test, SingleEvaluationOnFailure) {
2307   // A success case.
2308   static int n = 0;
2309   EXPECT_PRED1(IsEven, n++);
2310   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2311 
2312   // A failure case.
2313   EXPECT_FATAL_FAILURE(
2314       {  // NOLINT
2315         ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2316             << "This failure is expected.";
2317       },
2318       "This failure is expected.");
2319   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2320 }
2321 
2322 // Tests predicate assertions whose arity is >= 2.
2323 
2324 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2325 TEST(PredTest, WithoutFormat) {
2326   // Success cases.
2327   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2328   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2329 
2330   // Failure cases.
2331   const int n1 = 1;
2332   const int n2 = 2;
2333   EXPECT_NONFATAL_FAILURE(
2334       {  // NOLINT
2335         EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2336       },
2337       "This failure is expected.");
2338   EXPECT_FATAL_FAILURE(
2339       {  // NOLINT
2340         ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2341       },
2342       "evaluates to false");
2343 }
2344 
2345 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2346 TEST(PredTest, WithFormat) {
2347   // Success cases.
2348   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2349       << "This failure is UNEXPECTED!";
2350   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2351 
2352   // Failure cases.
2353   const int n1 = 1;
2354   const int n2 = 2;
2355   const int n3 = 4;
2356   const int n4 = 6;
2357   EXPECT_NONFATAL_FAILURE(
2358       {  // NOLINT
2359         EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2360       },
2361       "evaluates to 13, which is not even.");
2362   EXPECT_FATAL_FAILURE(
2363       {  // NOLINT
2364         ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2365             << "This failure is expected.";
2366       },
2367       "This failure is expected.");
2368 }
2369 
2370 // Tests that predicate assertions evaluates their arguments
2371 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2372 TEST(PredTest, SingleEvaluationOnFailure) {
2373   // A success case.
2374   int n1 = 0;
2375   int n2 = 0;
2376   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2377   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2378   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2379 
2380   // Another success case.
2381   n1 = n2 = 0;
2382   int n3 = 0;
2383   int n4 = 0;
2384   int n5 = 0;
2385   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2386       << "This failure is UNEXPECTED!";
2387   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2388   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2389   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2390   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2391   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2392 
2393   // A failure case.
2394   n1 = n2 = n3 = 0;
2395   EXPECT_NONFATAL_FAILURE(
2396       {  // NOLINT
2397         EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2398             << "This failure is expected.";
2399       },
2400       "This failure is expected.");
2401   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2402   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2403   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2404 
2405   // Another failure case.
2406   n1 = n2 = n3 = n4 = 0;
2407   EXPECT_NONFATAL_FAILURE(
2408       {  // NOLINT
2409         EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2410       },
2411       "evaluates to 1, which is not even.");
2412   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2413   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2414   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2415   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2416 }
2417 
2418 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2419 TEST(PredTest, ExpectPredEvalFailure) {
2420   std::set<int> set_a = {2, 1, 3, 4, 5};
2421   std::set<int> set_b = {0, 4, 8};
2422   const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2423   EXPECT_NONFATAL_FAILURE(
2424       EXPECT_PRED2(compare_sets, set_a, set_b),
2425       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2426       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2427 }
2428 
2429 // Some helper functions for testing using overloaded/template
2430 // functions with ASSERT_PREDn and EXPECT_PREDn.
2431 
IsPositive(double x)2432 bool IsPositive(double x) { return x > 0; }
2433 
2434 template <typename T>
IsNegative(T x)2435 bool IsNegative(T x) {
2436   return x < 0;
2437 }
2438 
2439 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2440 bool GreaterThan(T1 x1, T2 x2) {
2441   return x1 > x2;
2442 }
2443 
2444 // Tests that overloaded functions can be used in *_PRED* as long as
2445 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2446 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2447   // C++Builder requires C-style casts rather than static_cast.
2448   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);       // NOLINT
2449   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2450 }
2451 
2452 // Tests that template functions can be used in *_PRED* as long as
2453 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2454 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2455   EXPECT_PRED1(IsNegative<int>, -5);
2456   // Makes sure that we can handle templates with more than one
2457   // parameter.
2458   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2459 }
2460 
2461 // Some helper functions for testing using overloaded/template
2462 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2463 
IsPositiveFormat(const char *,int n)2464 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2465   return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466 }
2467 
IsPositiveFormat(const char *,double x)2468 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2469   return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2470 }
2471 
2472 template <typename T>
IsNegativeFormat(const char *,T x)2473 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2474   return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2475 }
2476 
2477 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2478 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2479                              const T1& x1, const T2& x2) {
2480   return x1 == x2 ? AssertionSuccess()
2481                   : AssertionFailure(Message() << "Failure");
2482 }
2483 
2484 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2485 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2486 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2487   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2488   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2489 }
2490 
2491 // Tests that template functions can be used in *_PRED_FORMAT* without
2492 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2493 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2494   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2495   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2496 }
2497 
2498 // Tests string assertions.
2499 
2500 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2501 TEST(StringAssertionTest, ASSERT_STREQ) {
2502   const char* const p1 = "good";
2503   ASSERT_STREQ(p1, p1);
2504 
2505   // Let p2 have the same content as p1, but be at a different address.
2506   const char p2[] = "good";
2507   ASSERT_STREQ(p1, p2);
2508 
2509   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "  \"bad\"\n  \"good\"");
2510 }
2511 
2512 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2513 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2514   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2515   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2516 }
2517 
2518 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2519 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2520   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2521 }
2522 
2523 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2524 TEST(StringAssertionTest, ASSERT_STRNE) {
2525   ASSERT_STRNE("hi", "Hi");
2526   ASSERT_STRNE("Hi", nullptr);
2527   ASSERT_STRNE(nullptr, "Hi");
2528   ASSERT_STRNE("", nullptr);
2529   ASSERT_STRNE(nullptr, "");
2530   ASSERT_STRNE("", "Hi");
2531   ASSERT_STRNE("Hi", "");
2532   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2533 }
2534 
2535 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2536 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2537   ASSERT_STRCASEEQ("hi", "Hi");
2538   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2539 
2540   ASSERT_STRCASEEQ("", "");
2541   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2542 }
2543 
2544 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2545 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2546   ASSERT_STRCASENE("hi1", "Hi2");
2547   ASSERT_STRCASENE("Hi", nullptr);
2548   ASSERT_STRCASENE(nullptr, "Hi");
2549   ASSERT_STRCASENE("", nullptr);
2550   ASSERT_STRCASENE(nullptr, "");
2551   ASSERT_STRCASENE("", "Hi");
2552   ASSERT_STRCASENE("Hi", "");
2553   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2554 }
2555 
2556 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2557 TEST(StringAssertionTest, STREQ_Wide) {
2558   // NULL strings.
2559   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2560 
2561   // Empty strings.
2562   ASSERT_STREQ(L"", L"");
2563 
2564   // Non-null vs NULL.
2565   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2566 
2567   // Equal strings.
2568   EXPECT_STREQ(L"Hi", L"Hi");
2569 
2570   // Unequal strings.
2571   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2572 
2573   // Strings containing wide characters.
2574   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2575 
2576   // The streaming variation.
2577   EXPECT_NONFATAL_FAILURE(
2578       {  // NOLINT
2579         EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2580       },
2581       "Expected failure");
2582 }
2583 
2584 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2585 TEST(StringAssertionTest, STRNE_Wide) {
2586   // NULL strings.
2587   EXPECT_NONFATAL_FAILURE(
2588       {  // NOLINT
2589         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2590       },
2591       "");
2592 
2593   // Empty strings.
2594   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2595 
2596   // Non-null vs NULL.
2597   ASSERT_STRNE(L"non-null", nullptr);
2598 
2599   // Equal strings.
2600   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2601 
2602   // Unequal strings.
2603   EXPECT_STRNE(L"abc", L"Abc");
2604 
2605   // Strings containing wide characters.
2606   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2607 
2608   // The streaming variation.
2609   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2610 }
2611 
2612 // Tests for ::testing::IsSubstring().
2613 
2614 // Tests that IsSubstring() returns the correct result when the input
2615 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2616 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2617   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2618   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2619   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2620 
2621   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2622   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2623 }
2624 
2625 // Tests that IsSubstring() returns the correct result when the input
2626 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2627 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2628   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2629   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2630   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2631 
2632   EXPECT_TRUE(
2633       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2634   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2635 }
2636 
2637 // Tests that IsSubstring() generates the correct message when the input
2638 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2639 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2640   EXPECT_STREQ(
2641       "Value of: needle_expr\n"
2642       "  Actual: \"needle\"\n"
2643       "Expected: a substring of haystack_expr\n"
2644       "Which is: \"haystack\"",
2645       IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2646           .failure_message());
2647 }
2648 
2649 // Tests that IsSubstring returns the correct result when the input
2650 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2651 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2652   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2653   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2654 }
2655 
2656 #if GTEST_HAS_STD_WSTRING
2657 // Tests that IsSubstring returns the correct result when the input
2658 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2659 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2660   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662 }
2663 
2664 // Tests that IsSubstring() generates the correct message when the input
2665 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2666 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2667   EXPECT_STREQ(
2668       "Value of: needle_expr\n"
2669       "  Actual: L\"needle\"\n"
2670       "Expected: a substring of haystack_expr\n"
2671       "Which is: L\"haystack\"",
2672       IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2673                   L"haystack")
2674           .failure_message());
2675 }
2676 
2677 #endif  // GTEST_HAS_STD_WSTRING
2678 
2679 // Tests for ::testing::IsNotSubstring().
2680 
2681 // Tests that IsNotSubstring() returns the correct result when the input
2682 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2683 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2684   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2685   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2686 }
2687 
2688 // Tests that IsNotSubstring() returns the correct result when the input
2689 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2690 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2691   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2692   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2693 }
2694 
2695 // Tests that IsNotSubstring() generates the correct message when the input
2696 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2697 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2698   EXPECT_STREQ(
2699       "Value of: needle_expr\n"
2700       "  Actual: L\"needle\"\n"
2701       "Expected: not a substring of haystack_expr\n"
2702       "Which is: L\"two needles\"",
2703       IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2704           .failure_message());
2705 }
2706 
2707 // Tests that IsNotSubstring returns the correct result when the input
2708 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2709 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2710   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2711   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2712 }
2713 
2714 // Tests that IsNotSubstring() generates the correct message when the input
2715 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2716 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2717   EXPECT_STREQ(
2718       "Value of: needle_expr\n"
2719       "  Actual: \"needle\"\n"
2720       "Expected: not a substring of haystack_expr\n"
2721       "Which is: \"two needles\"",
2722       IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2723                      "two needles")
2724           .failure_message());
2725 }
2726 
2727 #if GTEST_HAS_STD_WSTRING
2728 
2729 // Tests that IsNotSubstring returns the correct result when the input
2730 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2731 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2732   EXPECT_FALSE(
2733       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2734   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2735 }
2736 
2737 #endif  // GTEST_HAS_STD_WSTRING
2738 
2739 // Tests floating-point assertions.
2740 
2741 template <typename RawType>
2742 class FloatingPointTest : public Test {
2743  protected:
2744   // Pre-calculated numbers to be used by the tests.
2745   struct TestValues {
2746     RawType close_to_positive_zero;
2747     RawType close_to_negative_zero;
2748     RawType further_from_negative_zero;
2749 
2750     RawType close_to_one;
2751     RawType further_from_one;
2752 
2753     RawType infinity;
2754     RawType close_to_infinity;
2755     RawType further_from_infinity;
2756 
2757     RawType nan1;
2758     RawType nan2;
2759   };
2760 
2761   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2762   typedef typename Floating::Bits Bits;
2763 
SetUp()2764   void SetUp() override {
2765     const uint32_t max_ulps = Floating::kMaxUlps;
2766 
2767     // The bits that represent 0.0.
2768     const Bits zero_bits = Floating(0).bits();
2769 
2770     // Makes some numbers close to 0.0.
2771     values_.close_to_positive_zero =
2772         Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2773     values_.close_to_negative_zero =
2774         -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2775     values_.further_from_negative_zero =
2776         -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2777 
2778     // The bits that represent 1.0.
2779     const Bits one_bits = Floating(1).bits();
2780 
2781     // Makes some numbers close to 1.0.
2782     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2783     values_.further_from_one =
2784         Floating::ReinterpretBits(one_bits + max_ulps + 1);
2785 
2786     // +infinity.
2787     values_.infinity = Floating::Infinity();
2788 
2789     // The bits that represent +infinity.
2790     const Bits infinity_bits = Floating(values_.infinity).bits();
2791 
2792     // Makes some numbers close to infinity.
2793     values_.close_to_infinity =
2794         Floating::ReinterpretBits(infinity_bits - max_ulps);
2795     values_.further_from_infinity =
2796         Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2797 
2798     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2799     // our NaN's are quiet; trying to process a signaling NaN would raise an
2800     // exception if our environment enables floating point exceptions.
2801     values_.nan1 = Floating::ReinterpretBits(
2802         Floating::kExponentBitMask |
2803         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2804     values_.nan2 = Floating::ReinterpretBits(
2805         Floating::kExponentBitMask |
2806         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2807   }
2808 
TestSize()2809   void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2810 
2811   static TestValues values_;
2812 };
2813 
2814 template <typename RawType>
2815 typename FloatingPointTest<RawType>::TestValues
2816     FloatingPointTest<RawType>::values_;
2817 
2818 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2819 typedef FloatingPointTest<float> FloatTest;
2820 
2821 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2822 TEST_F(FloatTest, Size) { TestSize(); }
2823 
2824 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2825 TEST_F(FloatTest, Zeros) {
2826   EXPECT_FLOAT_EQ(0.0, -0.0);
2827   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2828   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2829 }
2830 
2831 // Tests comparing numbers close to 0.
2832 //
2833 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2834 // overflow occurs when comparing numbers whose absolute value is very
2835 // small.
TEST_F(FloatTest,AlmostZeros)2836 TEST_F(FloatTest, AlmostZeros) {
2837   // In C++Builder, names within local classes (such as used by
2838   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2839   // scoping class.  Use a static local alias as a workaround.
2840   // We use the assignment syntax since some compilers, like Sun Studio,
2841   // don't allow initializing references using construction syntax
2842   // (parentheses).
2843   static const FloatTest::TestValues& v = this->values_;
2844 
2845   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2846   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2847   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2848 
2849   EXPECT_FATAL_FAILURE(
2850       {  // NOLINT
2851         ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2852       },
2853       "v.further_from_negative_zero");
2854 }
2855 
2856 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2857 TEST_F(FloatTest, SmallDiff) {
2858   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2859   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2860                           "values_.further_from_one");
2861 }
2862 
2863 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2864 TEST_F(FloatTest, LargeDiff) {
2865   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2866 }
2867 
2868 // Tests comparing with infinity.
2869 //
2870 // This ensures that no overflow occurs when comparing numbers whose
2871 // absolute value is very large.
TEST_F(FloatTest,Infinity)2872 TEST_F(FloatTest, Infinity) {
2873   EXPECT_FLOAT_EQ(values_.infinity, values_.infinity);
2874   EXPECT_FLOAT_EQ(-values_.infinity, -values_.infinity);
2875   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2876   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2877   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2878                           "-values_.infinity");
2879 
2880   // This is interesting as the representations of infinity and nan1
2881   // are only 1 DLP apart.
2882   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2883                           "values_.nan1");
2884 }
2885 
2886 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2887 TEST_F(FloatTest, NaN) {
2888   // In C++Builder, names within local classes (such as used by
2889   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2890   // scoping class.  Use a static local alias as a workaround.
2891   // We use the assignment syntax since some compilers, like Sun Studio,
2892   // don't allow initializing references using construction syntax
2893   // (parentheses).
2894   static const FloatTest::TestValues& v = this->values_;
2895 
2896   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2897   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2898   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2899   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, 1.0f), "v.nan1");
2900   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, v.infinity), "v.nan1");
2901   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0f), "v.nan1");
2902   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
2903                           "v.nan1");
2904 
2905   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2906 }
2907 
2908 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2909 TEST_F(FloatTest, Reflexive) {
2910   EXPECT_FLOAT_EQ(0.0, 0.0);
2911   EXPECT_FLOAT_EQ(1.0, 1.0);
2912   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2913 }
2914 
2915 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2916 TEST_F(FloatTest, Commutative) {
2917   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2918   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2919 
2920   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2921   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2922                           "1.0");
2923 }
2924 
2925 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2926 TEST_F(FloatTest, EXPECT_NEAR) {
2927   static const FloatTest::TestValues& v = this->values_;
2928 
2929   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2930   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2931   EXPECT_NEAR(v.infinity, v.infinity, 0.0f);
2932   EXPECT_NEAR(-v.infinity, -v.infinity, 0.0f);
2933   EXPECT_NEAR(0.0f, 1.0f, v.infinity);
2934   EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
2935   EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
2936   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2937                           "The difference between 1.0f and 1.5f is 0.5, "
2938                           "which exceeds 0.25f");
2939   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0f),  // NOLINT
2940                           "The difference between v.infinity and -v.infinity "
2941                           "is inf, which exceeds 0.0f");
2942   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0f),  // NOLINT
2943                           "The difference between -v.infinity and v.infinity "
2944                           "is inf, which exceeds 0.0f");
2945   EXPECT_NONFATAL_FAILURE(
2946       EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
2947       "The difference between v.infinity and v.close_to_infinity is inf, which "
2948       "exceeds v.further_from_infinity");
2949 }
2950 
2951 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2952 TEST_F(FloatTest, ASSERT_NEAR) {
2953   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2954   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2955   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2956                        "The difference between 1.0f and 1.5f is 0.5, "
2957                        "which exceeds 0.25f");
2958 }
2959 
2960 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2961 TEST_F(FloatTest, FloatLESucceeds) {
2962   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2963   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2964 
2965   // or when val1 is greater than, but almost equals to, val2.
2966   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2967 }
2968 
2969 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2970 TEST_F(FloatTest, FloatLEFails) {
2971   // When val1 is greater than val2 by a large margin,
2972   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2973                           "(2.0f) <= (1.0f)");
2974 
2975   // or by a small yet non-negligible margin,
2976   EXPECT_NONFATAL_FAILURE(
2977       {  // NOLINT
2978         EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2979       },
2980       "(values_.further_from_one) <= (1.0f)");
2981 
2982   EXPECT_NONFATAL_FAILURE(
2983       {  // NOLINT
2984         EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2985       },
2986       "(values_.nan1) <= (values_.infinity)");
2987   EXPECT_NONFATAL_FAILURE(
2988       {  // NOLINT
2989         EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2990       },
2991       "(-values_.infinity) <= (values_.nan1)");
2992   EXPECT_FATAL_FAILURE(
2993       {  // NOLINT
2994         ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2995       },
2996       "(values_.nan1) <= (values_.nan1)");
2997 }
2998 
2999 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
3000 typedef FloatingPointTest<double> DoubleTest;
3001 
3002 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)3003 TEST_F(DoubleTest, Size) { TestSize(); }
3004 
3005 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)3006 TEST_F(DoubleTest, Zeros) {
3007   EXPECT_DOUBLE_EQ(0.0, -0.0);
3008   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
3009   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
3010 }
3011 
3012 // Tests comparing numbers close to 0.
3013 //
3014 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
3015 // overflow occurs when comparing numbers whose absolute value is very
3016 // small.
TEST_F(DoubleTest,AlmostZeros)3017 TEST_F(DoubleTest, AlmostZeros) {
3018   // In C++Builder, names within local classes (such as used by
3019   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3020   // scoping class.  Use a static local alias as a workaround.
3021   // We use the assignment syntax since some compilers, like Sun Studio,
3022   // don't allow initializing references using construction syntax
3023   // (parentheses).
3024   static const DoubleTest::TestValues& v = this->values_;
3025 
3026   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3027   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3028   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3029 
3030   EXPECT_FATAL_FAILURE(
3031       {  // NOLINT
3032         ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3033                          v.further_from_negative_zero);
3034       },
3035       "v.further_from_negative_zero");
3036 }
3037 
3038 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3039 TEST_F(DoubleTest, SmallDiff) {
3040   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3041   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3042                           "values_.further_from_one");
3043 }
3044 
3045 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3046 TEST_F(DoubleTest, LargeDiff) {
3047   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3048 }
3049 
3050 // Tests comparing with infinity.
3051 //
3052 // This ensures that no overflow occurs when comparing numbers whose
3053 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3054 TEST_F(DoubleTest, Infinity) {
3055   EXPECT_DOUBLE_EQ(values_.infinity, values_.infinity);
3056   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.infinity);
3057   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3058   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3059   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3060                           "-values_.infinity");
3061 
3062   // This is interesting as the representations of infinity_ and nan1_
3063   // are only 1 DLP apart.
3064   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3065                           "values_.nan1");
3066 }
3067 
3068 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3069 TEST_F(DoubleTest, NaN) {
3070   static const DoubleTest::TestValues& v = this->values_;
3071 
3072   // Nokia's STLport crashes if we try to output infinity or NaN.
3073   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3074   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3075   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3076   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, 1.0), "v.nan1");
3077   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, v.infinity), "v.nan1");
3078   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0), "v.nan1");
3079   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
3080                           "v.nan1");
3081 
3082   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3083 }
3084 
3085 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3086 TEST_F(DoubleTest, Reflexive) {
3087   EXPECT_DOUBLE_EQ(0.0, 0.0);
3088   EXPECT_DOUBLE_EQ(1.0, 1.0);
3089   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3090 }
3091 
3092 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3093 TEST_F(DoubleTest, Commutative) {
3094   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3095   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3096 
3097   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3098   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3099                           "1.0");
3100 }
3101 
3102 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3103 TEST_F(DoubleTest, EXPECT_NEAR) {
3104   static const DoubleTest::TestValues& v = this->values_;
3105 
3106   EXPECT_NEAR(-1.0, -1.1, 0.2);
3107   EXPECT_NEAR(2.0, 3.0, 1.0);
3108   EXPECT_NEAR(v.infinity, v.infinity, 0.0);
3109   EXPECT_NEAR(-v.infinity, -v.infinity, 0.0);
3110   EXPECT_NEAR(0.0, 1.0, v.infinity);
3111   EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
3112   EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
3113   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3114                           "The difference between 1.0 and 1.5 is 0.5, "
3115                           "which exceeds 0.25");
3116   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0),
3117                           "The difference between v.infinity and -v.infinity "
3118                           "is inf, which exceeds 0.0");
3119   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0),
3120                           "The difference between -v.infinity and v.infinity "
3121                           "is inf, which exceeds 0.0");
3122   EXPECT_NONFATAL_FAILURE(
3123       EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
3124       "The difference between v.infinity and v.close_to_infinity is inf, which "
3125       "exceeds v.further_from_infinity");
3126   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3127   // slightly different failure reporting path.
3128   EXPECT_NONFATAL_FAILURE(
3129       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3130       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3131       "minimum distance between doubles for numbers of this magnitude which is "
3132       "512");
3133 }
3134 
3135 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3136 TEST_F(DoubleTest, ASSERT_NEAR) {
3137   ASSERT_NEAR(-1.0, -1.1, 0.2);
3138   ASSERT_NEAR(2.0, 3.0, 1.0);
3139   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3140                        "The difference between 1.0 and 1.5 is 0.5, "
3141                        "which exceeds 0.25");
3142 }
3143 
3144 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3145 TEST_F(DoubleTest, DoubleLESucceeds) {
3146   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3147   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3148 
3149   // or when val1 is greater than, but almost equals to, val2.
3150   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3151 }
3152 
3153 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3154 TEST_F(DoubleTest, DoubleLEFails) {
3155   // When val1 is greater than val2 by a large margin,
3156   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3157                           "(2.0) <= (1.0)");
3158 
3159   // or by a small yet non-negligible margin,
3160   EXPECT_NONFATAL_FAILURE(
3161       {  // NOLINT
3162         EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3163       },
3164       "(values_.further_from_one) <= (1.0)");
3165 
3166   EXPECT_NONFATAL_FAILURE(
3167       {  // NOLINT
3168         EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3169       },
3170       "(values_.nan1) <= (values_.infinity)");
3171   EXPECT_NONFATAL_FAILURE(
3172       {  // NOLINT
3173         EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3174       },
3175       " (-values_.infinity) <= (values_.nan1)");
3176   EXPECT_FATAL_FAILURE(
3177       {  // NOLINT
3178         ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3179       },
3180       "(values_.nan1) <= (values_.nan1)");
3181 }
3182 
3183 // Verifies that a test or test case whose name starts with DISABLED_ is
3184 // not run.
3185 
3186 // A test whose name starts with DISABLED_.
3187 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3188 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3189   FAIL() << "Unexpected failure: Disabled test should not be run.";
3190 }
3191 
3192 // A test whose name does not start with DISABLED_.
3193 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3194 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3195 
3196 // A test case whose name starts with DISABLED_.
3197 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3198 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3199   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3200 }
3201 
3202 // A test case and test whose names start with DISABLED_.
3203 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3204 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3205   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3206 }
3207 
3208 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3209 // TearDownTestSuite() are not called.
3210 class DisabledTestsTest : public Test {
3211  protected:
SetUpTestSuite()3212   static void SetUpTestSuite() {
3213     FAIL() << "Unexpected failure: All tests disabled in test case. "
3214               "SetUpTestSuite() should not be called.";
3215   }
3216 
TearDownTestSuite()3217   static void TearDownTestSuite() {
3218     FAIL() << "Unexpected failure: All tests disabled in test case. "
3219               "TearDownTestSuite() should not be called.";
3220   }
3221 };
3222 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3223 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3224   FAIL() << "Unexpected failure: Disabled test should not be run.";
3225 }
3226 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3227 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3228   FAIL() << "Unexpected failure: Disabled test should not be run.";
3229 }
3230 
3231 // Tests that disabled typed tests aren't run.
3232 
3233 template <typename T>
3234 class TypedTest : public Test {};
3235 
3236 typedef testing::Types<int, double> NumericTypes;
3237 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3238 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3239 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3240   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3241 }
3242 
3243 template <typename T>
3244 class DISABLED_TypedTest : public Test {};
3245 
3246 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3247 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3248 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3249   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3250 }
3251 
3252 // Tests that disabled type-parameterized tests aren't run.
3253 
3254 template <typename T>
3255 class TypedTestP : public Test {};
3256 
3257 TYPED_TEST_SUITE_P(TypedTestP);
3258 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3259 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3260   FAIL() << "Unexpected failure: "
3261          << "Disabled type-parameterized test should not run.";
3262 }
3263 
3264 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3265 
3266 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3267 
3268 template <typename T>
3269 class DISABLED_TypedTestP : public Test {};
3270 
3271 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3272 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3273 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3274   FAIL() << "Unexpected failure: "
3275          << "Disabled type-parameterized test should not run.";
3276 }
3277 
3278 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3279 
3280 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3281 
3282 // Tests that assertion macros evaluate their arguments exactly once.
3283 
3284 class SingleEvaluationTest : public Test {
3285  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3286   // This helper function is needed by the FailedASSERT_STREQ test
3287   // below.  It's public to work around C++Builder's bug with scoping local
3288   // classes.
CompareAndIncrementCharPtrs()3289   static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3290 
3291   // This helper function is needed by the FailedASSERT_NE test below.  It's
3292   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3293   static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3294 
3295  protected:
SingleEvaluationTest()3296   SingleEvaluationTest() {
3297     p1_ = s1_;
3298     p2_ = s2_;
3299     a_ = 0;
3300     b_ = 0;
3301   }
3302 
3303   static const char* const s1_;
3304   static const char* const s2_;
3305   static const char* p1_;
3306   static const char* p2_;
3307 
3308   static int a_;
3309   static int b_;
3310 };
3311 
3312 const char* const SingleEvaluationTest::s1_ = "01234";
3313 const char* const SingleEvaluationTest::s2_ = "abcde";
3314 const char* SingleEvaluationTest::p1_;
3315 const char* SingleEvaluationTest::p2_;
3316 int SingleEvaluationTest::a_;
3317 int SingleEvaluationTest::b_;
3318 
3319 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3320 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3321 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3322   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3323                        "p2_++");
3324   EXPECT_EQ(s1_ + 1, p1_);
3325   EXPECT_EQ(s2_ + 1, p2_);
3326 }
3327 
3328 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3329 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3330   // successful EXPECT_STRNE
3331   EXPECT_STRNE(p1_++, p2_++);
3332   EXPECT_EQ(s1_ + 1, p1_);
3333   EXPECT_EQ(s2_ + 1, p2_);
3334 
3335   // failed EXPECT_STRCASEEQ
3336   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3337   EXPECT_EQ(s1_ + 2, p1_);
3338   EXPECT_EQ(s2_ + 2, p2_);
3339 }
3340 
3341 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3342 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3343 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3344   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3345                        "(a_++) != (b_++)");
3346   EXPECT_EQ(1, a_);
3347   EXPECT_EQ(1, b_);
3348 }
3349 
3350 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3351 TEST_F(SingleEvaluationTest, OtherCases) {
3352   // successful EXPECT_TRUE
3353   EXPECT_TRUE(0 == a_++);  // NOLINT
3354   EXPECT_EQ(1, a_);
3355 
3356   // failed EXPECT_TRUE
3357   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3358   EXPECT_EQ(2, a_);
3359 
3360   // successful EXPECT_GT
3361   EXPECT_GT(a_++, b_++);
3362   EXPECT_EQ(3, a_);
3363   EXPECT_EQ(1, b_);
3364 
3365   // failed EXPECT_LT
3366   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3367   EXPECT_EQ(4, a_);
3368   EXPECT_EQ(2, b_);
3369 
3370   // successful ASSERT_TRUE
3371   ASSERT_TRUE(0 < a_++);  // NOLINT
3372   EXPECT_EQ(5, a_);
3373 
3374   // successful ASSERT_GT
3375   ASSERT_GT(a_++, b_++);
3376   EXPECT_EQ(6, a_);
3377   EXPECT_EQ(3, b_);
3378 }
3379 
3380 #if GTEST_HAS_EXCEPTIONS
3381 
3382 #if GTEST_HAS_RTTI
3383 
3384 #define ERROR_DESC "std::runtime_error"
3385 
3386 #else  // GTEST_HAS_RTTI
3387 
3388 #define ERROR_DESC "an std::exception-derived error"
3389 
3390 #endif  // GTEST_HAS_RTTI
3391 
ThrowAnInteger()3392 void ThrowAnInteger() { throw 1; }
ThrowRuntimeError(const char * what)3393 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3394 
3395 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3396 TEST_F(SingleEvaluationTest, ExceptionTests) {
3397   // successful EXPECT_THROW
3398   EXPECT_THROW(
3399       {  // NOLINT
3400         a_++;
3401         ThrowAnInteger();
3402       },
3403       int);
3404   EXPECT_EQ(1, a_);
3405 
3406   // failed EXPECT_THROW, throws different
3407   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3408                               {  // NOLINT
3409                                 a_++;
3410                                 ThrowAnInteger();
3411                               },
3412                               bool),
3413                           "throws a different type");
3414   EXPECT_EQ(2, a_);
3415 
3416   // failed EXPECT_THROW, throws runtime error
3417   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3418                               {  // NOLINT
3419                                 a_++;
3420                                 ThrowRuntimeError("A description");
3421                               },
3422                               bool),
3423                           "throws " ERROR_DESC
3424                           " with description \"A description\"");
3425   EXPECT_EQ(3, a_);
3426 
3427   // failed EXPECT_THROW, throws nothing
3428   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3429   EXPECT_EQ(4, a_);
3430 
3431   // successful EXPECT_NO_THROW
3432   EXPECT_NO_THROW(a_++);
3433   EXPECT_EQ(5, a_);
3434 
3435   // failed EXPECT_NO_THROW
3436   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3437                             a_++;
3438                             ThrowAnInteger();
3439                           }),
3440                           "it throws");
3441   EXPECT_EQ(6, a_);
3442 
3443   // successful EXPECT_ANY_THROW
3444   EXPECT_ANY_THROW({  // NOLINT
3445     a_++;
3446     ThrowAnInteger();
3447   });
3448   EXPECT_EQ(7, a_);
3449 
3450   // failed EXPECT_ANY_THROW
3451   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3452   EXPECT_EQ(8, a_);
3453 }
3454 
3455 #endif  // GTEST_HAS_EXCEPTIONS
3456 
3457 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3458 class NoFatalFailureTest : public Test {
3459  protected:
Succeeds()3460   void Succeeds() {}
FailsNonFatal()3461   void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
Fails()3462   void Fails() { FAIL() << "some fatal failure"; }
3463 
DoAssertNoFatalFailureOnFails()3464   void DoAssertNoFatalFailureOnFails() {
3465     ASSERT_NO_FATAL_FAILURE(Fails());
3466     ADD_FAILURE() << "should not reach here.";
3467   }
3468 
DoExpectNoFatalFailureOnFails()3469   void DoExpectNoFatalFailureOnFails() {
3470     EXPECT_NO_FATAL_FAILURE(Fails());
3471     ADD_FAILURE() << "other failure";
3472   }
3473 };
3474 
TEST_F(NoFatalFailureTest,NoFailure)3475 TEST_F(NoFatalFailureTest, NoFailure) {
3476   EXPECT_NO_FATAL_FAILURE(Succeeds());
3477   ASSERT_NO_FATAL_FAILURE(Succeeds());
3478 }
3479 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3480 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3481   EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3482                           "some non-fatal failure");
3483   EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3484                           "some non-fatal failure");
3485 }
3486 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3487 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3488   TestPartResultArray gtest_failures;
3489   {
3490     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3491     DoAssertNoFatalFailureOnFails();
3492   }
3493   ASSERT_EQ(2, gtest_failures.size());
3494   EXPECT_EQ(TestPartResult::kFatalFailure,
3495             gtest_failures.GetTestPartResult(0).type());
3496   EXPECT_EQ(TestPartResult::kFatalFailure,
3497             gtest_failures.GetTestPartResult(1).type());
3498   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3499                       gtest_failures.GetTestPartResult(0).message());
3500   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3501                       gtest_failures.GetTestPartResult(1).message());
3502 }
3503 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3504 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3505   TestPartResultArray gtest_failures;
3506   {
3507     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3508     DoExpectNoFatalFailureOnFails();
3509   }
3510   ASSERT_EQ(3, gtest_failures.size());
3511   EXPECT_EQ(TestPartResult::kFatalFailure,
3512             gtest_failures.GetTestPartResult(0).type());
3513   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3514             gtest_failures.GetTestPartResult(1).type());
3515   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3516             gtest_failures.GetTestPartResult(2).type());
3517   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3518                       gtest_failures.GetTestPartResult(0).message());
3519   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3520                       gtest_failures.GetTestPartResult(1).message());
3521   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3522                       gtest_failures.GetTestPartResult(2).message());
3523 }
3524 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3525 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3526   TestPartResultArray gtest_failures;
3527   {
3528     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3529     EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3530   }
3531   ASSERT_EQ(2, gtest_failures.size());
3532   EXPECT_EQ(TestPartResult::kFatalFailure,
3533             gtest_failures.GetTestPartResult(0).type());
3534   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3535             gtest_failures.GetTestPartResult(1).type());
3536   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3537                       gtest_failures.GetTestPartResult(0).message());
3538   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3539                       gtest_failures.GetTestPartResult(1).message());
3540 }
3541 
3542 // Tests non-string assertions.
3543 
EditsToString(const std::vector<EditType> & edits)3544 std::string EditsToString(const std::vector<EditType>& edits) {
3545   std::string out;
3546   for (size_t i = 0; i < edits.size(); ++i) {
3547     static const char kEdits[] = " +-/";
3548     out.append(1, kEdits[edits[i]]);
3549   }
3550   return out;
3551 }
3552 
CharsToIndices(const std::string & str)3553 std::vector<size_t> CharsToIndices(const std::string& str) {
3554   std::vector<size_t> out;
3555   for (size_t i = 0; i < str.size(); ++i) {
3556     out.push_back(static_cast<size_t>(str[i]));
3557   }
3558   return out;
3559 }
3560 
CharsToLines(const std::string & str)3561 std::vector<std::string> CharsToLines(const std::string& str) {
3562   std::vector<std::string> out;
3563   for (size_t i = 0; i < str.size(); ++i) {
3564     out.push_back(str.substr(i, 1));
3565   }
3566   return out;
3567 }
3568 
TEST(EditDistance,TestSuites)3569 TEST(EditDistance, TestSuites) {
3570   struct Case {
3571     int line;
3572     const char* left;
3573     const char* right;
3574     const char* expected_edits;
3575     const char* expected_diff;
3576   };
3577   static const Case kCases[] = {
3578       // No change.
3579       {__LINE__, "A", "A", " ", ""},
3580       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3581       // Simple adds.
3582       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3583       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3584       // Simple removes.
3585       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3586       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3587       // Simple replaces.
3588       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3589       {__LINE__, "ABCD", "abcd", "////",
3590        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3591       // Path finding.
3592       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3593        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3594       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3595        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3596       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3597        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3598       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3599        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3600        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3601       {}};
3602   for (const Case* c = kCases; c->left; ++c) {
3603     EXPECT_TRUE(c->expected_edits ==
3604                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3605                                                     CharsToIndices(c->right))))
3606         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3607         << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3608                                                CharsToIndices(c->right)))
3609         << ">";
3610     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3611                                                       CharsToLines(c->right)))
3612         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3613         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3614         << ">";
3615   }
3616 }
3617 
3618 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3619 TEST(AssertionTest, EqFailure) {
3620   const std::string foo_val("5"), bar_val("6");
3621   const std::string msg1(
3622       EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3623   EXPECT_STREQ(
3624       "Expected equality of these values:\n"
3625       "  foo\n"
3626       "    Which is: 5\n"
3627       "  bar\n"
3628       "    Which is: 6",
3629       msg1.c_str());
3630 
3631   const std::string msg2(
3632       EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3633   EXPECT_STREQ(
3634       "Expected equality of these values:\n"
3635       "  foo\n"
3636       "    Which is: 5\n"
3637       "  6",
3638       msg2.c_str());
3639 
3640   const std::string msg3(
3641       EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3642   EXPECT_STREQ(
3643       "Expected equality of these values:\n"
3644       "  5\n"
3645       "  bar\n"
3646       "    Which is: 6",
3647       msg3.c_str());
3648 
3649   const std::string msg4(
3650       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3651   EXPECT_STREQ(
3652       "Expected equality of these values:\n"
3653       "  5\n"
3654       "  6",
3655       msg4.c_str());
3656 
3657   const std::string msg5(
3658       EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3659           .failure_message());
3660   EXPECT_STREQ(
3661       "Expected equality of these values:\n"
3662       "  foo\n"
3663       "    Which is: \"x\"\n"
3664       "  bar\n"
3665       "    Which is: \"y\"\n"
3666       "Ignoring case",
3667       msg5.c_str());
3668 }
3669 
TEST(AssertionTest,EqFailureWithDiff)3670 TEST(AssertionTest, EqFailureWithDiff) {
3671   const std::string left(
3672       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3673   const std::string right(
3674       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3675   const std::string msg1(
3676       EqFailure("left", "right", left, right, false).failure_message());
3677   EXPECT_STREQ(
3678       "Expected equality of these values:\n"
3679       "  left\n"
3680       "    Which is: "
3681       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3682       "  right\n"
3683       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3684       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3685       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3686       msg1.c_str());
3687 }
3688 
3689 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3690 TEST(AssertionTest, AppendUserMessage) {
3691   const std::string foo("foo");
3692 
3693   Message msg;
3694   EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3695 
3696   msg << "bar";
3697   EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3698 }
3699 
3700 #ifdef __BORLANDC__
3701 // Silences warnings: "Condition is always true", "Unreachable code"
3702 #pragma option push -w-ccc -w-rch
3703 #endif
3704 
3705 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3706 TEST(AssertionTest, ASSERT_TRUE) {
3707   ASSERT_TRUE(2 > 1);  // NOLINT
3708   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3709 }
3710 
3711 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3712 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3713   ASSERT_TRUE(ResultIsEven(2));
3714 #ifndef __BORLANDC__
3715   // ICE's in C++Builder.
3716   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3717                        "Value of: ResultIsEven(3)\n"
3718                        "  Actual: false (3 is odd)\n"
3719                        "Expected: true");
3720 #endif
3721   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3722   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3723                        "Value of: ResultIsEvenNoExplanation(3)\n"
3724                        "  Actual: false (3 is odd)\n"
3725                        "Expected: true");
3726 }
3727 
3728 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3729 TEST(AssertionTest, ASSERT_FALSE) {
3730   ASSERT_FALSE(2 < 1);  // NOLINT
3731   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3732                        "Value of: 2 > 1\n"
3733                        "  Actual: true\n"
3734                        "Expected: false");
3735 }
3736 
3737 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3738 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3739   ASSERT_FALSE(ResultIsEven(3));
3740 #ifndef __BORLANDC__
3741   // ICE's in C++Builder.
3742   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3743                        "Value of: ResultIsEven(2)\n"
3744                        "  Actual: true (2 is even)\n"
3745                        "Expected: false");
3746 #endif
3747   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3748   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3749                        "Value of: ResultIsEvenNoExplanation(2)\n"
3750                        "  Actual: true\n"
3751                        "Expected: false");
3752 }
3753 
3754 #ifdef __BORLANDC__
3755 // Restores warnings after previous "#pragma option push" suppressed them
3756 #pragma option pop
3757 #endif
3758 
3759 // Tests using ASSERT_EQ on double values.  The purpose is to make
3760 // sure that the specialization we did for integer and anonymous enums
3761 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3762 TEST(ExpectTest, ASSERT_EQ_Double) {
3763   // A success.
3764   ASSERT_EQ(5.6, 5.6);
3765 
3766   // A failure.
3767   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3768 }
3769 
3770 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3771 TEST(AssertionTest, ASSERT_EQ) {
3772   ASSERT_EQ(5, 2 + 3);
3773   // clang-format off
3774   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3775                        "Expected equality of these values:\n"
3776                        "  5\n"
3777                        "  2*3\n"
3778                        "    Which is: 6");
3779   // clang-format on
3780 }
3781 
3782 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3783 TEST(AssertionTest, ASSERT_EQ_NULL) {
3784   // A success.
3785   const char* p = nullptr;
3786   ASSERT_EQ(nullptr, p);
3787 
3788   // A failure.
3789   static int n = 0;
3790   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3791 }
3792 
3793 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3794 // treated as a null pointer by the compiler, we need to make sure
3795 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3796 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3797 TEST(ExpectTest, ASSERT_EQ_0) {
3798   int n = 0;
3799 
3800   // A success.
3801   ASSERT_EQ(0, n);
3802 
3803   // A failure.
3804   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "  0\n  5.6");
3805 }
3806 
3807 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3808 TEST(AssertionTest, ASSERT_NE) {
3809   ASSERT_NE(6, 7);
3810   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3811                        "Expected: ('a') != ('a'), "
3812                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3813 }
3814 
3815 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3816 TEST(AssertionTest, ASSERT_LE) {
3817   ASSERT_LE(2, 3);
3818   ASSERT_LE(2, 2);
3819   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3820 }
3821 
3822 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3823 TEST(AssertionTest, ASSERT_LT) {
3824   ASSERT_LT(2, 3);
3825   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3826 }
3827 
3828 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3829 TEST(AssertionTest, ASSERT_GE) {
3830   ASSERT_GE(2, 1);
3831   ASSERT_GE(2, 2);
3832   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3833 }
3834 
3835 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3836 TEST(AssertionTest, ASSERT_GT) {
3837   ASSERT_GT(2, 1);
3838   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3839 }
3840 
3841 #if GTEST_HAS_EXCEPTIONS
3842 
ThrowNothing()3843 void ThrowNothing() {}
3844 
3845 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3846 TEST(AssertionTest, ASSERT_THROW) {
3847   ASSERT_THROW(ThrowAnInteger(), int);
3848 
3849 #ifndef __BORLANDC__
3850 
3851   // ICE's in C++Builder 2007 and 2009.
3852   EXPECT_FATAL_FAILURE(
3853       ASSERT_THROW(ThrowAnInteger(), bool),
3854       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3855       "  Actual: it throws a different type.");
3856   EXPECT_FATAL_FAILURE(
3857       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3858       "Expected: ThrowRuntimeError(\"A description\") "
3859       "throws an exception of type std::logic_error.\n  "
3860       "Actual: it throws " ERROR_DESC
3861       " "
3862       "with description \"A description\".");
3863 #endif
3864 
3865   EXPECT_FATAL_FAILURE(
3866       ASSERT_THROW(ThrowNothing(), bool),
3867       "Expected: ThrowNothing() throws an exception of type bool.\n"
3868       "  Actual: it throws nothing.");
3869 }
3870 
3871 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3872 TEST(AssertionTest, ASSERT_NO_THROW) {
3873   ASSERT_NO_THROW(ThrowNothing());
3874   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3875                        "Expected: ThrowAnInteger() doesn't throw an exception."
3876                        "\n  Actual: it throws.");
3877   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3878                        "Expected: ThrowRuntimeError(\"A description\") "
3879                        "doesn't throw an exception.\n  "
3880                        "Actual: it throws " ERROR_DESC
3881                        " "
3882                        "with description \"A description\".");
3883 }
3884 
3885 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3886 TEST(AssertionTest, ASSERT_ANY_THROW) {
3887   ASSERT_ANY_THROW(ThrowAnInteger());
3888   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3889                        "Expected: ThrowNothing() throws an exception.\n"
3890                        "  Actual: it doesn't.");
3891 }
3892 
3893 #endif  // GTEST_HAS_EXCEPTIONS
3894 
3895 // Makes sure we deal with the precedence of <<.  This test should
3896 // compile.
TEST(AssertionTest,AssertPrecedence)3897 TEST(AssertionTest, AssertPrecedence) {
3898   ASSERT_EQ(1 < 2, true);
3899   bool false_value = false;
3900   ASSERT_EQ(true && false_value, false);
3901 }
3902 
3903 // A subroutine used by the following test.
TestEq1(int x)3904 void TestEq1(int x) { ASSERT_EQ(1, x); }
3905 
3906 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3907 TEST(AssertionTest, NonFixtureSubroutine) {
3908   EXPECT_FATAL_FAILURE(TestEq1(2), "  x\n    Which is: 2");
3909 }
3910 
3911 // An uncopyable class.
3912 class Uncopyable {
3913  public:
Uncopyable(int a_value)3914   explicit Uncopyable(int a_value) : value_(a_value) {}
3915 
value() const3916   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3917   bool operator==(const Uncopyable& rhs) const {
3918     return value() == rhs.value();
3919   }
3920 
3921  private:
3922   // This constructor deliberately has no implementation, as we don't
3923   // want this class to be copyable.
3924   Uncopyable(const Uncopyable&);  // NOLINT
3925 
3926   int value_;
3927 };
3928 
operator <<(::std::ostream & os,const Uncopyable & value)3929 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3930   return os << value.value();
3931 }
3932 
IsPositiveUncopyable(const Uncopyable & x)3933 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3934 
3935 // A subroutine used by the following test.
TestAssertNonPositive()3936 void TestAssertNonPositive() {
3937   Uncopyable y(-1);
3938   ASSERT_PRED1(IsPositiveUncopyable, y);
3939 }
3940 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3941 void TestAssertEqualsUncopyable() {
3942   Uncopyable x(5);
3943   Uncopyable y(-1);
3944   ASSERT_EQ(x, y);
3945 }
3946 
3947 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3948 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3949   Uncopyable x(5);
3950   ASSERT_PRED1(IsPositiveUncopyable, x);
3951   ASSERT_EQ(x, x);
3952   EXPECT_FATAL_FAILURE(
3953       TestAssertNonPositive(),
3954       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3955   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3956                        "Expected equality of these values:\n"
3957                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3958 }
3959 
3960 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3961 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3962   Uncopyable x(5);
3963   EXPECT_PRED1(IsPositiveUncopyable, x);
3964   Uncopyable y(-1);
3965   EXPECT_NONFATAL_FAILURE(
3966       EXPECT_PRED1(IsPositiveUncopyable, y),
3967       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3968   EXPECT_EQ(x, x);
3969   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3970                           "Expected equality of these values:\n"
3971                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3972 }
3973 
3974 enum NamedEnum { kE1 = 0, kE2 = 1 };
3975 
TEST(AssertionTest,NamedEnum)3976 TEST(AssertionTest, NamedEnum) {
3977   EXPECT_EQ(kE1, kE1);
3978   EXPECT_LT(kE1, kE2);
3979   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3980   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3981 }
3982 
3983 // Sun Studio and HP aCC2reject this code.
3984 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3985 
3986 // Tests using assertions with anonymous enums.
3987 enum {
3988   kCaseA = -1,
3989 
3990 #ifdef GTEST_OS_LINUX
3991 
3992   // We want to test the case where the size of the anonymous enum is
3993   // larger than sizeof(int), to make sure our implementation of the
3994   // assertions doesn't truncate the enums.  However, MSVC
3995   // (incorrectly) doesn't allow an enum value to exceed the range of
3996   // an int, so this has to be conditionally compiled.
3997   //
3998   // On Linux, kCaseB and kCaseA have the same value when truncated to
3999   // int size.  We want to test whether this will confuse the
4000   // assertions.
4001   kCaseB = testing::internal::kMaxBiggestInt,
4002 
4003 #else
4004 
4005   kCaseB = INT_MAX,
4006 
4007 #endif  // GTEST_OS_LINUX
4008 
4009   kCaseC = 42
4010 };
4011 
TEST(AssertionTest,AnonymousEnum)4012 TEST(AssertionTest, AnonymousEnum) {
4013 #ifdef GTEST_OS_LINUX
4014 
4015   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
4016 
4017 #endif  // GTEST_OS_LINUX
4018 
4019   EXPECT_EQ(kCaseA, kCaseA);
4020   EXPECT_NE(kCaseA, kCaseB);
4021   EXPECT_LT(kCaseA, kCaseB);
4022   EXPECT_LE(kCaseA, kCaseB);
4023   EXPECT_GT(kCaseB, kCaseA);
4024   EXPECT_GE(kCaseA, kCaseA);
4025   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
4026   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
4027 
4028   ASSERT_EQ(kCaseA, kCaseA);
4029   ASSERT_NE(kCaseA, kCaseB);
4030   ASSERT_LT(kCaseA, kCaseB);
4031   ASSERT_LE(kCaseA, kCaseB);
4032   ASSERT_GT(kCaseB, kCaseA);
4033   ASSERT_GE(kCaseA, kCaseA);
4034 
4035 #ifndef __BORLANDC__
4036 
4037   // ICE's in C++Builder.
4038   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "  kCaseB\n    Which is: ");
4039   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: 42");
4040 #endif
4041 
4042   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: -1");
4043 }
4044 
4045 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4046 
4047 #ifdef GTEST_OS_WINDOWS
4048 
UnexpectedHRESULTFailure()4049 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
4050 
OkHRESULTSuccess()4051 static HRESULT OkHRESULTSuccess() { return S_OK; }
4052 
FalseHRESULTSuccess()4053 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4054 
4055 // HRESULT assertion tests test both zero and non-zero
4056 // success codes as well as failure message for each.
4057 //
4058 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4059 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4060   EXPECT_HRESULT_SUCCEEDED(S_OK);
4061   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4062 
4063   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4064                           "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4065                           "  Actual: 0x8000FFFF");
4066 }
4067 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4068 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4069   ASSERT_HRESULT_SUCCEEDED(S_OK);
4070   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4071 
4072   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4073                        "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4074                        "  Actual: 0x8000FFFF");
4075 }
4076 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4077 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4078   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4079 
4080   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4081                           "Expected: (OkHRESULTSuccess()) fails.\n"
4082                           "  Actual: 0x0");
4083   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4084                           "Expected: (FalseHRESULTSuccess()) fails.\n"
4085                           "  Actual: 0x1");
4086 }
4087 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4088 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4089   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4090 
4091 #ifndef __BORLANDC__
4092 
4093   // ICE's in C++Builder 2007 and 2009.
4094   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4095                        "Expected: (OkHRESULTSuccess()) fails.\n"
4096                        "  Actual: 0x0");
4097 #endif
4098 
4099   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4100                        "Expected: (FalseHRESULTSuccess()) fails.\n"
4101                        "  Actual: 0x1");
4102 }
4103 
4104 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4105 TEST(HRESULTAssertionTest, Streaming) {
4106   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4107   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4108   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4109   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4110 
4111   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4112                               << "expected failure",
4113                           "expected failure");
4114 
4115 #ifndef __BORLANDC__
4116 
4117   // ICE's in C++Builder 2007 and 2009.
4118   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4119                            << "expected failure",
4120                        "expected failure");
4121 #endif
4122 
4123   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4124                           "expected failure");
4125 
4126   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4127                        "expected failure");
4128 }
4129 
4130 #endif  // GTEST_OS_WINDOWS
4131 
4132 // The following code intentionally tests a suboptimal syntax.
4133 #ifdef __GNUC__
4134 #pragma GCC diagnostic push
4135 #pragma GCC diagnostic ignored "-Wdangling-else"
4136 #pragma GCC diagnostic ignored "-Wempty-body"
4137 #pragma GCC diagnostic ignored "-Wpragmas"
4138 #endif
4139 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4140 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4141   if (AlwaysFalse())
4142     ASSERT_TRUE(false) << "This should never be executed; "
4143                           "It's a compilation test only.";
4144 
4145   if (AlwaysTrue())
4146     EXPECT_FALSE(false);
4147   else
4148     ;  // NOLINT
4149 
4150   if (AlwaysFalse()) ASSERT_LT(1, 3);
4151 
4152   if (AlwaysFalse())
4153     ;  // NOLINT
4154   else
4155     EXPECT_GT(3, 2) << "";
4156 }
4157 #ifdef __GNUC__
4158 #pragma GCC diagnostic pop
4159 #endif
4160 
4161 #if GTEST_HAS_EXCEPTIONS
4162 // Tests that the compiler will not complain about unreachable code in the
4163 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4164 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4165   int n = 0;
4166 
4167   EXPECT_THROW(throw 1, int);
4168   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4169   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw n, const char*), "");
4170   EXPECT_NO_THROW(n++);
4171   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4172   EXPECT_ANY_THROW(throw 1);
4173   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4174 }
4175 
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4176 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4177   EXPECT_THROW(throw std::exception(), std::exception);
4178 }
4179 
4180 // The following code intentionally tests a suboptimal syntax.
4181 #ifdef __GNUC__
4182 #pragma GCC diagnostic push
4183 #pragma GCC diagnostic ignored "-Wdangling-else"
4184 #pragma GCC diagnostic ignored "-Wempty-body"
4185 #pragma GCC diagnostic ignored "-Wpragmas"
4186 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4187 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4188   if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4189 
4190   if (AlwaysTrue())
4191     EXPECT_THROW(ThrowAnInteger(), int);
4192   else
4193     ;  // NOLINT
4194 
4195   if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4196 
4197   if (AlwaysTrue())
4198     EXPECT_NO_THROW(ThrowNothing());
4199   else
4200     ;  // NOLINT
4201 
4202   if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4203 
4204   if (AlwaysTrue())
4205     EXPECT_ANY_THROW(ThrowAnInteger());
4206   else
4207     ;  // NOLINT
4208 }
4209 #ifdef __GNUC__
4210 #pragma GCC diagnostic pop
4211 #endif
4212 
4213 #endif  // GTEST_HAS_EXCEPTIONS
4214 
4215 // The following code intentionally tests a suboptimal syntax.
4216 #ifdef __GNUC__
4217 #pragma GCC diagnostic push
4218 #pragma GCC diagnostic ignored "-Wdangling-else"
4219 #pragma GCC diagnostic ignored "-Wempty-body"
4220 #pragma GCC diagnostic ignored "-Wpragmas"
4221 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4222 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4223   if (AlwaysFalse())
4224     EXPECT_NO_FATAL_FAILURE(FAIL())
4225         << "This should never be executed. " << "It's a compilation test only.";
4226   else
4227     ;  // NOLINT
4228 
4229   if (AlwaysFalse())
4230     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4231   else
4232     ;  // NOLINT
4233 
4234   if (AlwaysTrue())
4235     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4236   else
4237     ;  // NOLINT
4238 
4239   if (AlwaysFalse())
4240     ;  // NOLINT
4241   else
4242     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4243 }
4244 #ifdef __GNUC__
4245 #pragma GCC diagnostic pop
4246 #endif
4247 
4248 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4249 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4250   switch (0) {
4251     case 1:
4252       break;
4253     default:
4254       ASSERT_TRUE(true);
4255   }
4256 
4257   switch (0)
4258   case 0:
4259     EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4260 
4261   // Binary assertions are implemented using a different code path
4262   // than the Boolean assertions.  Hence we test them separately.
4263   switch (0) {
4264     case 1:
4265     default:
4266       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4267   }
4268 
4269   switch (0)
4270   case 0:
4271     EXPECT_NE(1, 2);
4272 }
4273 
4274 #if GTEST_HAS_EXCEPTIONS
4275 
ThrowAString()4276 void ThrowAString() { throw "std::string"; }
4277 
4278 // Test that the exception assertion macros compile and work with const
4279 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4280 TEST(AssertionSyntaxTest, WorksWithConst) {
4281   ASSERT_THROW(ThrowAString(), const char*);
4282 
4283   EXPECT_THROW(ThrowAString(), const char*);
4284 }
4285 
4286 #endif  // GTEST_HAS_EXCEPTIONS
4287 
4288 }  // namespace
4289 
4290 namespace testing {
4291 
4292 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4293 TEST(SuccessfulAssertionTest, SUCCEED) {
4294   SUCCEED();
4295   SUCCEED() << "OK";
4296   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4297 }
4298 
4299 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4300 TEST(SuccessfulAssertionTest, EXPECT) {
4301   EXPECT_TRUE(true);
4302   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4303 }
4304 
4305 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4306 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4307   EXPECT_STREQ("", "");
4308   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4309 }
4310 
4311 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4312 TEST(SuccessfulAssertionTest, ASSERT) {
4313   ASSERT_TRUE(true);
4314   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4315 }
4316 
4317 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4318 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4319   ASSERT_STREQ("", "");
4320   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4321 }
4322 
4323 }  // namespace testing
4324 
4325 namespace {
4326 
4327 // Tests the message streaming variation of assertions.
4328 
TEST(AssertionWithMessageTest,EXPECT)4329 TEST(AssertionWithMessageTest, EXPECT) {
4330   EXPECT_EQ(1, 1) << "This should succeed.";
4331   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4332                           "Expected failure #1");
4333   EXPECT_LE(1, 2) << "This should succeed.";
4334   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4335                           "Expected failure #2.");
4336   EXPECT_GE(1, 0) << "This should succeed.";
4337   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4338                           "Expected failure #3.");
4339 
4340   EXPECT_STREQ("1", "1") << "This should succeed.";
4341   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4342                           "Expected failure #4.");
4343   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4344   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4345                           "Expected failure #5.");
4346 
4347   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4348   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4349                           "Expected failure #6.");
4350   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4351 }
4352 
TEST(AssertionWithMessageTest,ASSERT)4353 TEST(AssertionWithMessageTest, ASSERT) {
4354   ASSERT_EQ(1, 1) << "This should succeed.";
4355   ASSERT_NE(1, 2) << "This should succeed.";
4356   ASSERT_LE(1, 2) << "This should succeed.";
4357   ASSERT_LT(1, 2) << "This should succeed.";
4358   ASSERT_GE(1, 0) << "This should succeed.";
4359   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4360                        "Expected failure.");
4361 }
4362 
TEST(AssertionWithMessageTest,ASSERT_STR)4363 TEST(AssertionWithMessageTest, ASSERT_STR) {
4364   ASSERT_STREQ("1", "1") << "This should succeed.";
4365   ASSERT_STRNE("1", "2") << "This should succeed.";
4366   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4367   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4368                        "Expected failure.");
4369 }
4370 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4371 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4372   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4373   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4374   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4375                        "Expect failure.");
4376 }
4377 
4378 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4379 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4380   ASSERT_FALSE(false) << "This shouldn't fail.";
4381   EXPECT_FATAL_FAILURE(
4382       {  // NOLINT
4383         ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4384                            << " evaluates to " << true;
4385       },
4386       "Expected failure");
4387 }
4388 
4389 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4390 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4391 
4392 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4393 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4394 
4395 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4396 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4397   ASSERT_TRUE(true) << "This should succeed.";
4398   ASSERT_TRUE(true) << true;
4399   EXPECT_FATAL_FAILURE(
4400       {  // NOLINT
4401         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4402                            << static_cast<char*>(nullptr);
4403       },
4404       "(null)(null)");
4405 }
4406 
4407 #ifdef GTEST_OS_WINDOWS
4408 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4409 TEST(AssertionWithMessageTest, WideStringMessage) {
4410   EXPECT_NONFATAL_FAILURE(
4411       {  // NOLINT
4412         EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4413       },
4414       "This failure is expected.");
4415   EXPECT_FATAL_FAILURE(
4416       {  // NOLINT
4417         ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4418       },
4419       "This failure is expected too.");
4420 }
4421 #endif  // GTEST_OS_WINDOWS
4422 
4423 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4424 TEST(ExpectTest, EXPECT_TRUE) {
4425   EXPECT_TRUE(true) << "Intentional success";
4426   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4427                           "Intentional failure #1.");
4428   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4429                           "Intentional failure #2.");
4430   EXPECT_TRUE(2 > 1);  // NOLINT
4431   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4432                           "Value of: 2 < 1\n"
4433                           "  Actual: false\n"
4434                           "Expected: true");
4435   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4436 }
4437 
4438 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4439 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4440   EXPECT_TRUE(ResultIsEven(2));
4441   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4442                           "Value of: ResultIsEven(3)\n"
4443                           "  Actual: false (3 is odd)\n"
4444                           "Expected: true");
4445   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4446   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4447                           "Value of: ResultIsEvenNoExplanation(3)\n"
4448                           "  Actual: false (3 is odd)\n"
4449                           "Expected: true");
4450 }
4451 
4452 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4453 TEST(ExpectTest, EXPECT_FALSE) {
4454   EXPECT_FALSE(2 < 1);  // NOLINT
4455   EXPECT_FALSE(false) << "Intentional success";
4456   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4457                           "Intentional failure #1.");
4458   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4459                           "Intentional failure #2.");
4460   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4461                           "Value of: 2 > 1\n"
4462                           "  Actual: true\n"
4463                           "Expected: false");
4464   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4465 }
4466 
4467 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4468 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4469   EXPECT_FALSE(ResultIsEven(3));
4470   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4471                           "Value of: ResultIsEven(2)\n"
4472                           "  Actual: true (2 is even)\n"
4473                           "Expected: false");
4474   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4475   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4476                           "Value of: ResultIsEvenNoExplanation(2)\n"
4477                           "  Actual: true\n"
4478                           "Expected: false");
4479 }
4480 
4481 #ifdef __BORLANDC__
4482 // Restores warnings after previous "#pragma option push" suppressed them
4483 #pragma option pop
4484 #endif
4485 
4486 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4487 TEST(ExpectTest, EXPECT_EQ) {
4488   EXPECT_EQ(5, 2 + 3);
4489   // clang-format off
4490   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4491                           "Expected equality of these values:\n"
4492                           "  5\n"
4493                           "  2*3\n"
4494                           "    Which is: 6");
4495   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4496   // clang-format on
4497 }
4498 
4499 // Tests using EXPECT_EQ on double values.  The purpose is to make
4500 // sure that the specialization we did for integer and anonymous enums
4501 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4502 TEST(ExpectTest, EXPECT_EQ_Double) {
4503   // A success.
4504   EXPECT_EQ(5.6, 5.6);
4505 
4506   // A failure.
4507   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4508 }
4509 
4510 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4511 TEST(ExpectTest, EXPECT_EQ_NULL) {
4512   // A success.
4513   const char* p = nullptr;
4514   EXPECT_EQ(nullptr, p);
4515 
4516   // A failure.
4517   int n = 0;
4518   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4519 }
4520 
4521 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4522 // treated as a null pointer by the compiler, we need to make sure
4523 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4524 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4525 TEST(ExpectTest, EXPECT_EQ_0) {
4526   int n = 0;
4527 
4528   // A success.
4529   EXPECT_EQ(0, n);
4530 
4531   // A failure.
4532   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "  0\n  5.6");
4533 }
4534 
4535 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4536 TEST(ExpectTest, EXPECT_NE) {
4537   EXPECT_NE(6, 7);
4538 
4539   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4540                           "Expected: ('a') != ('a'), "
4541                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4542   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4543   char* const p0 = nullptr;
4544   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4545   // Only way to get the Nokia compiler to compile the cast
4546   // is to have a separate void* variable first. Putting
4547   // the two casts on the same line doesn't work, neither does
4548   // a direct C-style to char*.
4549   void* pv1 = (void*)0x1234;  // NOLINT
4550   char* const p1 = reinterpret_cast<char*>(pv1);
4551   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4552 }
4553 
4554 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4555 TEST(ExpectTest, EXPECT_LE) {
4556   EXPECT_LE(2, 3);
4557   EXPECT_LE(2, 2);
4558   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4559                           "Expected: (2) <= (0), actual: 2 vs 0");
4560   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4561 }
4562 
4563 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4564 TEST(ExpectTest, EXPECT_LT) {
4565   EXPECT_LT(2, 3);
4566   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4567                           "Expected: (2) < (2), actual: 2 vs 2");
4568   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4569 }
4570 
4571 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4572 TEST(ExpectTest, EXPECT_GE) {
4573   EXPECT_GE(2, 1);
4574   EXPECT_GE(2, 2);
4575   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4576                           "Expected: (2) >= (3), actual: 2 vs 3");
4577   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4578 }
4579 
4580 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4581 TEST(ExpectTest, EXPECT_GT) {
4582   EXPECT_GT(2, 1);
4583   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4584                           "Expected: (2) > (2), actual: 2 vs 2");
4585   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4586 }
4587 
4588 #if GTEST_HAS_EXCEPTIONS
4589 
4590 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4591 TEST(ExpectTest, EXPECT_THROW) {
4592   EXPECT_THROW(ThrowAnInteger(), int);
4593   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4594                           "Expected: ThrowAnInteger() throws an exception of "
4595                           "type bool.\n  Actual: it throws a different type.");
4596   EXPECT_NONFATAL_FAILURE(
4597       EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4598       "Expected: ThrowRuntimeError(\"A description\") "
4599       "throws an exception of type std::logic_error.\n  "
4600       "Actual: it throws " ERROR_DESC
4601       " "
4602       "with description \"A description\".");
4603   EXPECT_NONFATAL_FAILURE(
4604       EXPECT_THROW(ThrowNothing(), bool),
4605       "Expected: ThrowNothing() throws an exception of type bool.\n"
4606       "  Actual: it throws nothing.");
4607 }
4608 
4609 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4610 TEST(ExpectTest, EXPECT_NO_THROW) {
4611   EXPECT_NO_THROW(ThrowNothing());
4612   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4613                           "Expected: ThrowAnInteger() doesn't throw an "
4614                           "exception.\n  Actual: it throws.");
4615   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4616                           "Expected: ThrowRuntimeError(\"A description\") "
4617                           "doesn't throw an exception.\n  "
4618                           "Actual: it throws " ERROR_DESC
4619                           " "
4620                           "with description \"A description\".");
4621 }
4622 
4623 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4624 TEST(ExpectTest, EXPECT_ANY_THROW) {
4625   EXPECT_ANY_THROW(ThrowAnInteger());
4626   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4627                           "Expected: ThrowNothing() throws an exception.\n"
4628                           "  Actual: it doesn't.");
4629 }
4630 
4631 #endif  // GTEST_HAS_EXCEPTIONS
4632 
4633 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4634 TEST(ExpectTest, ExpectPrecedence) {
4635   EXPECT_EQ(1 < 2, true);
4636   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4637                           "  true && false\n    Which is: false");
4638 }
4639 
4640 // Tests the StreamableToString() function.
4641 
4642 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4643 TEST(StreamableToStringTest, Scalar) {
4644   EXPECT_STREQ("5", StreamableToString(5).c_str());
4645 }
4646 
4647 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4648 TEST(StreamableToStringTest, Pointer) {
4649   int n = 0;
4650   int* p = &n;
4651   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4652 }
4653 
4654 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4655 TEST(StreamableToStringTest, NullPointer) {
4656   int* p = nullptr;
4657   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4658 }
4659 
4660 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4661 TEST(StreamableToStringTest, CString) {
4662   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4663 }
4664 
4665 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4666 TEST(StreamableToStringTest, NullCString) {
4667   char* p = nullptr;
4668   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4669 }
4670 
4671 // Tests using streamable values as assertion messages.
4672 
4673 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4674 TEST(StreamableTest, string) {
4675   static const std::string str(
4676       "This failure message is a std::string, and is expected.");
4677   EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4678 }
4679 
4680 // Tests that we can output strings containing embedded NULs.
4681 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4682 TEST(StreamableTest, stringWithEmbeddedNUL) {
4683   static const char char_array_with_nul[] =
4684       "Here's a NUL\0 and some more string";
4685   static const std::string string_with_nul(
4686       char_array_with_nul,
4687       sizeof(char_array_with_nul) - 1);  // drops the trailing NUL
4688   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4689                        "Here's a NUL\\0 and some more string");
4690 }
4691 
4692 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4693 TEST(StreamableTest, NULChar) {
4694   EXPECT_FATAL_FAILURE(
4695       {  // NOLINT
4696         FAIL() << "A NUL" << '\0' << " and some more string";
4697       },
4698       "A NUL\\0 and some more string");
4699 }
4700 
4701 // Tests using int as an assertion message.
TEST(StreamableTest,int)4702 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4703 
4704 // Tests using NULL char pointer as an assertion message.
4705 //
4706 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4707 // implemented a workaround (substituting "(null)" for NULL).  This
4708 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4709 TEST(StreamableTest, NullCharPtr) {
4710   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4711 }
4712 
4713 // Tests that basic IO manipulators (endl, ends, and flush) can be
4714 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4715 TEST(StreamableTest, BasicIoManip) {
4716   EXPECT_FATAL_FAILURE(
4717       {  // NOLINT
4718         FAIL() << "Line 1." << std::endl
4719                << "A NUL char " << std::ends << std::flush << " in line 2.";
4720       },
4721       "Line 1.\nA NUL char \\0 in line 2.");
4722 }
4723 
4724 // Tests the macros that haven't been covered so far.
4725 
AddFailureHelper(bool * aborted)4726 void AddFailureHelper(bool* aborted) {
4727   *aborted = true;
4728   ADD_FAILURE() << "Intentional failure.";
4729   *aborted = false;
4730 }
4731 
4732 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4733 TEST(MacroTest, ADD_FAILURE) {
4734   bool aborted = true;
4735   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4736   EXPECT_FALSE(aborted);
4737 }
4738 
4739 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4740 TEST(MacroTest, ADD_FAILURE_AT) {
4741   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4742   // the failure message contains the user-streamed part.
4743   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4744 
4745   // Verifies that the user-streamed part is optional.
4746   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4747 
4748   // Unfortunately, we cannot verify that the failure message contains
4749   // the right file path and line number the same way, as
4750   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4751   // line number.  Instead, we do that in googletest-output-test_.cc.
4752 }
4753 
4754 // Tests FAIL.
TEST(MacroTest,FAIL)4755 TEST(MacroTest, FAIL) {
4756   EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4757   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4758                        "Intentional failure.");
4759 }
4760 
4761 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4762 TEST(MacroTest, GTEST_FAIL_AT) {
4763   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4764   // the failure message contains the user-streamed part.
4765   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4766 
4767   // Verifies that the user-streamed part is optional.
4768   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4769 
4770   // See the ADD_FAIL_AT test above to see how we test that the failure message
4771   // contains the right filename and line number -- the same applies here.
4772 }
4773 
4774 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4775 TEST(MacroTest, SUCCEED) {
4776   SUCCEED();
4777   SUCCEED() << "Explicit success.";
4778 }
4779 
4780 // Tests for EXPECT_EQ() and ASSERT_EQ().
4781 //
4782 // These tests fail *intentionally*, s.t. the failure messages can be
4783 // generated and tested.
4784 //
4785 // We have different tests for different argument types.
4786 
4787 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4788 TEST(EqAssertionTest, Bool) {
4789   EXPECT_EQ(true, true);
4790   EXPECT_FATAL_FAILURE(
4791       {
4792         bool false_value = false;
4793         ASSERT_EQ(false_value, true);
4794       },
4795       "  false_value\n    Which is: false\n  true");
4796 }
4797 
4798 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4799 TEST(EqAssertionTest, Int) {
4800   ASSERT_EQ(32, 32);
4801   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "  32\n  33");
4802 }
4803 
4804 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4805 TEST(EqAssertionTest, Time_T) {
4806   EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4807   EXPECT_FATAL_FAILURE(
4808       ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4809 }
4810 
4811 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4812 TEST(EqAssertionTest, Char) {
4813   ASSERT_EQ('z', 'z');
4814   const char ch = 'b';
4815   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "  ch\n    Which is: 'b'");
4816   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "  ch\n    Which is: 'b'");
4817 }
4818 
4819 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4820 TEST(EqAssertionTest, WideChar) {
4821   EXPECT_EQ(L'b', L'b');
4822 
4823   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4824                           "Expected equality of these values:\n"
4825                           "  L'\0'\n"
4826                           "    Which is: L'\0' (0, 0x0)\n"
4827                           "  L'x'\n"
4828                           "    Which is: L'x' (120, 0x78)");
4829 
4830   static wchar_t wchar;
4831   wchar = L'b';
4832   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4833   wchar = 0x8119;
4834   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4835                        "  wchar\n    Which is: L'");
4836 }
4837 
4838 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4839 TEST(EqAssertionTest, StdString) {
4840   // Compares a const char* to an std::string that has identical
4841   // content.
4842   ASSERT_EQ("Test", ::std::string("Test"));
4843 
4844   // Compares two identical std::strings.
4845   static const ::std::string str1("A * in the middle");
4846   static const ::std::string str2(str1);
4847   EXPECT_EQ(str1, str2);
4848 
4849   // Compares a const char* to an std::string that has different
4850   // content
4851   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4852 
4853   // Compares an std::string to a char* that has different content.
4854   char* const p1 = const_cast<char*>("foo");
4855   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4856 
4857   // Compares two std::strings that have different contents, one of
4858   // which having a NUL character in the middle.  This should fail.
4859   static ::std::string str3(str1);
4860   str3.at(2) = '\0';
4861   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4862                        "  str3\n    Which is: \"A \\0 in the middle\"");
4863 }
4864 
4865 #if GTEST_HAS_STD_WSTRING
4866 
4867 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4868 TEST(EqAssertionTest, StdWideString) {
4869   // Compares two identical std::wstrings.
4870   const ::std::wstring wstr1(L"A * in the middle");
4871   const ::std::wstring wstr2(wstr1);
4872   ASSERT_EQ(wstr1, wstr2);
4873 
4874   // Compares an std::wstring to a const wchar_t* that has identical
4875   // content.
4876   const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4877   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4878 
4879   // Compares an std::wstring to a const wchar_t* that has different
4880   // content.
4881   const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4882   EXPECT_NONFATAL_FAILURE(
4883       {  // NOLINT
4884         EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4885       },
4886       "kTestX8120");
4887 
4888   // Compares two std::wstrings that have different contents, one of
4889   // which having a NUL character in the middle.
4890   ::std::wstring wstr3(wstr1);
4891   wstr3.at(2) = L'\0';
4892   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4893 
4894   // Compares a wchar_t* to an std::wstring that has different
4895   // content.
4896   EXPECT_FATAL_FAILURE(
4897       {  // NOLINT
4898         ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4899       },
4900       "");
4901 }
4902 
4903 #endif  // GTEST_HAS_STD_WSTRING
4904 
4905 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4906 TEST(EqAssertionTest, CharPointer) {
4907   char* const p0 = nullptr;
4908   // Only way to get the Nokia compiler to compile the cast
4909   // is to have a separate void* variable first. Putting
4910   // the two casts on the same line doesn't work, neither does
4911   // a direct C-style to char*.
4912   void* pv1 = (void*)0x1234;  // NOLINT
4913   void* pv2 = (void*)0xABC0;  // NOLINT
4914   char* const p1 = reinterpret_cast<char*>(pv1);
4915   char* const p2 = reinterpret_cast<char*>(pv2);
4916   ASSERT_EQ(p1, p1);
4917 
4918   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4919   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4920   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4921                                  reinterpret_cast<char*>(0xABC0)),
4922                        "ABC0");
4923 }
4924 
4925 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4926 TEST(EqAssertionTest, WideCharPointer) {
4927   wchar_t* const p0 = nullptr;
4928   // Only way to get the Nokia compiler to compile the cast
4929   // is to have a separate void* variable first. Putting
4930   // the two casts on the same line doesn't work, neither does
4931   // a direct C-style to char*.
4932   void* pv1 = (void*)0x1234;  // NOLINT
4933   void* pv2 = (void*)0xABC0;  // NOLINT
4934   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4935   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4936   EXPECT_EQ(p0, p0);
4937 
4938   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4939   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4940   void* pv3 = (void*)0x1234;  // NOLINT
4941   void* pv4 = (void*)0xABC0;  // NOLINT
4942   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4943   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4944   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4945 }
4946 
4947 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4948 TEST(EqAssertionTest, OtherPointer) {
4949   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4950   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4951                                  reinterpret_cast<const int*>(0x1234)),
4952                        "0x1234");
4953 }
4954 
4955 // A class that supports binary comparison operators but not streaming.
4956 class UnprintableChar {
4957  public:
UnprintableChar(char ch)4958   explicit UnprintableChar(char ch) : char_(ch) {}
4959 
operator ==(const UnprintableChar & rhs) const4960   bool operator==(const UnprintableChar& rhs) const {
4961     return char_ == rhs.char_;
4962   }
operator !=(const UnprintableChar & rhs) const4963   bool operator!=(const UnprintableChar& rhs) const {
4964     return char_ != rhs.char_;
4965   }
operator <(const UnprintableChar & rhs) const4966   bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
operator <=(const UnprintableChar & rhs) const4967   bool operator<=(const UnprintableChar& rhs) const {
4968     return char_ <= rhs.char_;
4969   }
operator >(const UnprintableChar & rhs) const4970   bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
operator >=(const UnprintableChar & rhs) const4971   bool operator>=(const UnprintableChar& rhs) const {
4972     return char_ >= rhs.char_;
4973   }
4974 
4975  private:
4976   char char_;
4977 };
4978 
4979 // Tests that ASSERT_EQ() and friends don't require the arguments to
4980 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4981 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4982   const UnprintableChar x('x'), y('y');
4983   ASSERT_EQ(x, x);
4984   EXPECT_NE(x, y);
4985   ASSERT_LT(x, y);
4986   EXPECT_LE(x, y);
4987   ASSERT_GT(y, x);
4988   EXPECT_GE(x, x);
4989 
4990   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4991   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4992   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4993   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4994   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4995 
4996   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4997   // variables, so we have to write UnprintableChar('x') instead of x.
4998 #ifndef __BORLANDC__
4999   // ICE's in C++Builder.
5000   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5001                        "1-byte object <78>");
5002   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5003                        "1-byte object <78>");
5004 #endif
5005   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5006                        "1-byte object <79>");
5007   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5008                        "1-byte object <78>");
5009   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5010                        "1-byte object <79>");
5011 }
5012 
5013 // Tests the FRIEND_TEST macro.
5014 
5015 // This class has a private member we want to test.  We will test it
5016 // both in a TEST and in a TEST_F.
5017 class Foo {
5018  public:
5019   Foo() = default;
5020 
5021  private:
Bar() const5022   int Bar() const { return 1; }
5023 
5024   // Declares the friend tests that can access the private member
5025   // Bar().
5026   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5027   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5028 };
5029 
5030 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5031 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5032 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
5033 
5034 // The fixture needed to test using FRIEND_TEST with TEST_F.
5035 class FRIEND_TEST_Test2 : public Test {
5036  protected:
5037   Foo foo;
5038 };
5039 
5040 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5041 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5042 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
5043 
5044 // Tests the life cycle of Test objects.
5045 
5046 // The test fixture for testing the life cycle of Test objects.
5047 //
5048 // This class counts the number of live test objects that uses this
5049 // fixture.
5050 class TestLifeCycleTest : public Test {
5051  protected:
5052   // Constructor.  Increments the number of test objects that uses
5053   // this fixture.
TestLifeCycleTest()5054   TestLifeCycleTest() { count_++; }
5055 
5056   // Destructor.  Decrements the number of test objects that uses this
5057   // fixture.
~TestLifeCycleTest()5058   ~TestLifeCycleTest() override { count_--; }
5059 
5060   // Returns the number of live test objects that uses this fixture.
count() const5061   int count() const { return count_; }
5062 
5063  private:
5064   static int count_;
5065 };
5066 
5067 int TestLifeCycleTest::count_ = 0;
5068 
5069 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5070 TEST_F(TestLifeCycleTest, Test1) {
5071   // There should be only one test object in this test case that's
5072   // currently alive.
5073   ASSERT_EQ(1, count());
5074 }
5075 
5076 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5077 TEST_F(TestLifeCycleTest, Test2) {
5078   // After Test1 is done and Test2 is started, there should still be
5079   // only one live test object, as the object for Test1 should've been
5080   // deleted.
5081   ASSERT_EQ(1, count());
5082 }
5083 
5084 }  // namespace
5085 
5086 // Tests that the copy constructor works when it is NOT optimized away by
5087 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5088 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5089   // Checks that the copy constructor doesn't try to dereference NULL pointers
5090   // in the source object.
5091   AssertionResult r1 = AssertionSuccess();
5092   AssertionResult r2 = r1;
5093   // The following line is added to prevent the compiler from optimizing
5094   // away the constructor call.
5095   r1 << "abc";
5096 
5097   AssertionResult r3 = r1;
5098   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5099   EXPECT_STREQ("abc", r1.message());
5100 }
5101 
5102 // Tests that AssertionSuccess and AssertionFailure construct
5103 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5104 TEST(AssertionResultTest, ConstructionWorks) {
5105   AssertionResult r1 = AssertionSuccess();
5106   EXPECT_TRUE(r1);
5107   EXPECT_STREQ("", r1.message());
5108 
5109   AssertionResult r2 = AssertionSuccess() << "abc";
5110   EXPECT_TRUE(r2);
5111   EXPECT_STREQ("abc", r2.message());
5112 
5113   AssertionResult r3 = AssertionFailure();
5114   EXPECT_FALSE(r3);
5115   EXPECT_STREQ("", r3.message());
5116 
5117   AssertionResult r4 = AssertionFailure() << "def";
5118   EXPECT_FALSE(r4);
5119   EXPECT_STREQ("def", r4.message());
5120 
5121   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5122   EXPECT_FALSE(r5);
5123   EXPECT_STREQ("ghi", r5.message());
5124 }
5125 
5126 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5127 TEST(AssertionResultTest, NegationWorks) {
5128   AssertionResult r1 = AssertionSuccess() << "abc";
5129   EXPECT_FALSE(!r1);
5130   EXPECT_STREQ("abc", (!r1).message());
5131 
5132   AssertionResult r2 = AssertionFailure() << "def";
5133   EXPECT_TRUE(!r2);
5134   EXPECT_STREQ("def", (!r2).message());
5135 }
5136 
TEST(AssertionResultTest,StreamingWorks)5137 TEST(AssertionResultTest, StreamingWorks) {
5138   AssertionResult r = AssertionSuccess();
5139   r << "abc" << 'd' << 0 << true;
5140   EXPECT_STREQ("abcd0true", r.message());
5141 }
5142 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5143 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5144   AssertionResult r = AssertionSuccess();
5145   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5146   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5147 }
5148 
5149 // The next test uses explicit conversion operators
5150 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5151 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5152   struct ExplicitlyConvertibleToBool {
5153     explicit operator bool() const { return value; }
5154     bool value;
5155   };
5156   ExplicitlyConvertibleToBool v1 = {false};
5157   ExplicitlyConvertibleToBool v2 = {true};
5158   EXPECT_FALSE(v1);
5159   EXPECT_TRUE(v2);
5160 }
5161 
5162 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5163   operator AssertionResult() const { return AssertionResult(true); }
5164 };
5165 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5166 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5167   ConvertibleToAssertionResult obj;
5168   EXPECT_TRUE(obj);
5169 }
5170 
5171 // Tests streaming a user type whose definition and operator << are
5172 // both in the global namespace.
5173 class Base {
5174  public:
Base(int an_x)5175   explicit Base(int an_x) : x_(an_x) {}
x() const5176   int x() const { return x_; }
5177 
5178  private:
5179   int x_;
5180 };
operator <<(std::ostream & os,const Base & val)5181 std::ostream& operator<<(std::ostream& os, const Base& val) {
5182   return os << val.x();
5183 }
operator <<(std::ostream & os,const Base * pointer)5184 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5185   return os << "(" << pointer->x() << ")";
5186 }
5187 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5188 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5189   Message msg;
5190   Base a(1);
5191 
5192   msg << a << &a;  // Uses ::operator<<.
5193   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5194 }
5195 
5196 // Tests streaming a user type whose definition and operator<< are
5197 // both in an unnamed namespace.
5198 namespace {
5199 class MyTypeInUnnamedNameSpace : public Base {
5200  public:
MyTypeInUnnamedNameSpace(int an_x)5201   explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5202 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5203 std::ostream& operator<<(std::ostream& os,
5204                          const MyTypeInUnnamedNameSpace& val) {
5205   return os << val.x();
5206 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5207 std::ostream& operator<<(std::ostream& os,
5208                          const MyTypeInUnnamedNameSpace* pointer) {
5209   return os << "(" << pointer->x() << ")";
5210 }
5211 }  // namespace
5212 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5213 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5214   Message msg;
5215   MyTypeInUnnamedNameSpace a(1);
5216 
5217   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5218   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5219 }
5220 
5221 // Tests streaming a user type whose definition and operator<< are
5222 // both in a user namespace.
5223 namespace namespace1 {
5224 class MyTypeInNameSpace1 : public Base {
5225  public:
MyTypeInNameSpace1(int an_x)5226   explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5227 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5228 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5229   return os << val.x();
5230 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5231 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5232   return os << "(" << pointer->x() << ")";
5233 }
5234 }  // namespace namespace1
5235 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5236 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5237   Message msg;
5238   namespace1::MyTypeInNameSpace1 a(1);
5239 
5240   msg << a << &a;  // Uses namespace1::operator<<.
5241   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5242 }
5243 
5244 // Tests streaming a user type whose definition is in a user namespace
5245 // but whose operator<< is in the global namespace.
5246 namespace namespace2 {
5247 class MyTypeInNameSpace2 : public ::Base {
5248  public:
MyTypeInNameSpace2(int an_x)5249   explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5250 };
5251 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5252 std::ostream& operator<<(std::ostream& os,
5253                          const namespace2::MyTypeInNameSpace2& val) {
5254   return os << val.x();
5255 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5256 std::ostream& operator<<(std::ostream& os,
5257                          const namespace2::MyTypeInNameSpace2* pointer) {
5258   return os << "(" << pointer->x() << ")";
5259 }
5260 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5261 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5262   Message msg;
5263   namespace2::MyTypeInNameSpace2 a(1);
5264 
5265   msg << a << &a;  // Uses ::operator<<.
5266   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5267 }
5268 
5269 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5270 TEST(MessageTest, NullPointers) {
5271   Message msg;
5272   char* const p1 = nullptr;
5273   unsigned char* const p2 = nullptr;
5274   int* p3 = nullptr;
5275   double* p4 = nullptr;
5276   bool* p5 = nullptr;
5277   Message* p6 = nullptr;
5278 
5279   msg << p1 << p2 << p3 << p4 << p5 << p6;
5280   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5281 }
5282 
5283 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5284 TEST(MessageTest, WideStrings) {
5285   // Streams a NULL of type const wchar_t*.
5286   const wchar_t* const_wstr = nullptr;
5287   EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5288 
5289   // Streams a NULL of type wchar_t*.
5290   wchar_t* wstr = nullptr;
5291   EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5292 
5293   // Streams a non-NULL of type const wchar_t*.
5294   const_wstr = L"abc\x8119";
5295   EXPECT_STREQ("abc\xe8\x84\x99",
5296                (Message() << const_wstr).GetString().c_str());
5297 
5298   // Streams a non-NULL of type wchar_t*.
5299   wstr = const_cast<wchar_t*>(const_wstr);
5300   EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5301 }
5302 
5303 // This line tests that we can define tests in the testing namespace.
5304 namespace testing {
5305 
5306 // Tests the TestInfo class.
5307 
5308 class TestInfoTest : public Test {
5309  protected:
GetTestInfo(const char * test_name)5310   static const TestInfo* GetTestInfo(const char* test_name) {
5311     const TestSuite* const test_suite =
5312         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5313 
5314     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5315       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5316       if (strcmp(test_name, test_info->name()) == 0) return test_info;
5317     }
5318     return nullptr;
5319   }
5320 
GetTestResult(const TestInfo * test_info)5321   static const TestResult* GetTestResult(const TestInfo* test_info) {
5322     return test_info->result();
5323   }
5324 };
5325 
5326 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5327 TEST_F(TestInfoTest, Names) {
5328   const TestInfo* const test_info = GetTestInfo("Names");
5329 
5330   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5331   ASSERT_STREQ("Names", test_info->name());
5332 }
5333 
5334 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5335 TEST_F(TestInfoTest, result) {
5336   const TestInfo* const test_info = GetTestInfo("result");
5337 
5338   // Initially, there is no TestPartResult for this test.
5339   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5340 
5341   // After the previous assertion, there is still none.
5342   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5343 }
5344 
5345 #define VERIFY_CODE_LOCATION                                                \
5346   const int expected_line = __LINE__ - 1;                                   \
5347   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5348   ASSERT_TRUE(test_info);                                                   \
5349   EXPECT_STREQ(__FILE__, test_info->file());                                \
5350   EXPECT_EQ(expected_line, test_info->line())
5351 
5352 // clang-format off
TEST(CodeLocationForTEST,Verify)5353 TEST(CodeLocationForTEST, Verify) {
5354   VERIFY_CODE_LOCATION;
5355 }
5356 
5357 class CodeLocationForTESTF : public Test {};
5358 
TEST_F(CodeLocationForTESTF,Verify)5359 TEST_F(CodeLocationForTESTF, Verify) {
5360   VERIFY_CODE_LOCATION;
5361 }
5362 
5363 class CodeLocationForTESTP : public TestWithParam<int> {};
5364 
TEST_P(CodeLocationForTESTP,Verify)5365 TEST_P(CodeLocationForTESTP, Verify) {
5366   VERIFY_CODE_LOCATION;
5367 }
5368 
5369 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5370 
5371 template <typename T>
5372 class CodeLocationForTYPEDTEST : public Test {};
5373 
5374 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5375 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5376 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5377   VERIFY_CODE_LOCATION;
5378 }
5379 
5380 template <typename T>
5381 class CodeLocationForTYPEDTESTP : public Test {};
5382 
5383 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5384 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5385 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5386   VERIFY_CODE_LOCATION;
5387 }
5388 
5389 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5390 
5391 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5392 
5393 #undef VERIFY_CODE_LOCATION
5394 // clang-format on
5395 
5396 // Tests setting up and tearing down a test case.
5397 // Legacy API is deprecated but still available
5398 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5399 class SetUpTestCaseTest : public Test {
5400  protected:
5401   // This will be called once before the first test in this test case
5402   // is run.
SetUpTestCase()5403   static void SetUpTestCase() {
5404     printf("Setting up the test case . . .\n");
5405 
5406     // Initializes some shared resource.  In this simple example, we
5407     // just create a C string.  More complex stuff can be done if
5408     // desired.
5409     shared_resource_ = "123";
5410 
5411     // Increments the number of test cases that have been set up.
5412     counter_++;
5413 
5414     // SetUpTestCase() should be called only once.
5415     EXPECT_EQ(1, counter_);
5416   }
5417 
5418   // This will be called once after the last test in this test case is
5419   // run.
TearDownTestCase()5420   static void TearDownTestCase() {
5421     printf("Tearing down the test case . . .\n");
5422 
5423     // Decrements the number of test cases that have been set up.
5424     counter_--;
5425 
5426     // TearDownTestCase() should be called only once.
5427     EXPECT_EQ(0, counter_);
5428 
5429     // Cleans up the shared resource.
5430     shared_resource_ = nullptr;
5431   }
5432 
5433   // This will be called before each test in this test case.
SetUp()5434   void SetUp() override {
5435     // SetUpTestCase() should be called only once, so counter_ should
5436     // always be 1.
5437     EXPECT_EQ(1, counter_);
5438   }
5439 
5440   // Number of test cases that have been set up.
5441   static int counter_;
5442 
5443   // Some resource to be shared by all tests in this test case.
5444   static const char* shared_resource_;
5445 };
5446 
5447 int SetUpTestCaseTest::counter_ = 0;
5448 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5449 
5450 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5451 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5452 
5453 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5454 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5455 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5456 
5457 // Tests SetupTestSuite/TearDown TestSuite
5458 class SetUpTestSuiteTest : public Test {
5459  protected:
5460   // This will be called once before the first test in this test case
5461   // is run.
SetUpTestSuite()5462   static void SetUpTestSuite() {
5463     printf("Setting up the test suite . . .\n");
5464 
5465     // Initializes some shared resource.  In this simple example, we
5466     // just create a C string.  More complex stuff can be done if
5467     // desired.
5468     shared_resource_ = "123";
5469 
5470     // Increments the number of test cases that have been set up.
5471     counter_++;
5472 
5473     // SetUpTestSuite() should be called only once.
5474     EXPECT_EQ(1, counter_);
5475   }
5476 
5477   // This will be called once after the last test in this test case is
5478   // run.
TearDownTestSuite()5479   static void TearDownTestSuite() {
5480     printf("Tearing down the test suite . . .\n");
5481 
5482     // Decrements the number of test suites that have been set up.
5483     counter_--;
5484 
5485     // TearDownTestSuite() should be called only once.
5486     EXPECT_EQ(0, counter_);
5487 
5488     // Cleans up the shared resource.
5489     shared_resource_ = nullptr;
5490   }
5491 
5492   // This will be called before each test in this test case.
SetUp()5493   void SetUp() override {
5494     // SetUpTestSuite() should be called only once, so counter_ should
5495     // always be 1.
5496     EXPECT_EQ(1, counter_);
5497   }
5498 
5499   // Number of test suites that have been set up.
5500   static int counter_;
5501 
5502   // Some resource to be shared by all tests in this test case.
5503   static const char* shared_resource_;
5504 };
5505 
5506 int SetUpTestSuiteTest::counter_ = 0;
5507 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5508 
5509 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5510 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5511   EXPECT_STRNE(nullptr, shared_resource_);
5512 }
5513 
5514 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5515 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5516   EXPECT_STREQ("123", shared_resource_);
5517 }
5518 
5519 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5520 
5521 // The Flags struct stores a copy of all Google Test flags.
5522 struct Flags {
5523   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5524   Flags()
5525       : also_run_disabled_tests(false),
5526         break_on_failure(false),
5527         catch_exceptions(false),
5528         death_test_use_fork(false),
5529         fail_fast(false),
5530         filter(""),
5531         list_tests(false),
5532         output(""),
5533         brief(false),
5534         print_time(true),
5535         random_seed(0),
5536         repeat(1),
5537         recreate_environments_when_repeating(true),
5538         shuffle(false),
5539         stack_trace_depth(kMaxStackTraceDepth),
5540         stream_result_to(""),
5541         throw_on_failure(false) {}
5542 
5543   // Factory methods.
5544 
5545   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5546   // the given value.
AlsoRunDisabledTeststesting::Flags5547   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5548     Flags flags;
5549     flags.also_run_disabled_tests = also_run_disabled_tests;
5550     return flags;
5551   }
5552 
5553   // Creates a Flags struct where the gtest_break_on_failure flag has
5554   // the given value.
BreakOnFailuretesting::Flags5555   static Flags BreakOnFailure(bool break_on_failure) {
5556     Flags flags;
5557     flags.break_on_failure = break_on_failure;
5558     return flags;
5559   }
5560 
5561   // Creates a Flags struct where the gtest_catch_exceptions flag has
5562   // the given value.
CatchExceptionstesting::Flags5563   static Flags CatchExceptions(bool catch_exceptions) {
5564     Flags flags;
5565     flags.catch_exceptions = catch_exceptions;
5566     return flags;
5567   }
5568 
5569   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5570   // the given value.
DeathTestUseForktesting::Flags5571   static Flags DeathTestUseFork(bool death_test_use_fork) {
5572     Flags flags;
5573     flags.death_test_use_fork = death_test_use_fork;
5574     return flags;
5575   }
5576 
5577   // Creates a Flags struct where the gtest_fail_fast flag has
5578   // the given value.
FailFasttesting::Flags5579   static Flags FailFast(bool fail_fast) {
5580     Flags flags;
5581     flags.fail_fast = fail_fast;
5582     return flags;
5583   }
5584 
5585   // Creates a Flags struct where the gtest_filter flag has the given
5586   // value.
Filtertesting::Flags5587   static Flags Filter(const char* filter) {
5588     Flags flags;
5589     flags.filter = filter;
5590     return flags;
5591   }
5592 
5593   // Creates a Flags struct where the gtest_list_tests flag has the
5594   // given value.
ListTeststesting::Flags5595   static Flags ListTests(bool list_tests) {
5596     Flags flags;
5597     flags.list_tests = list_tests;
5598     return flags;
5599   }
5600 
5601   // Creates a Flags struct where the gtest_output flag has the given
5602   // value.
Outputtesting::Flags5603   static Flags Output(const char* output) {
5604     Flags flags;
5605     flags.output = output;
5606     return flags;
5607   }
5608 
5609   // Creates a Flags struct where the gtest_brief flag has the given
5610   // value.
Brieftesting::Flags5611   static Flags Brief(bool brief) {
5612     Flags flags;
5613     flags.brief = brief;
5614     return flags;
5615   }
5616 
5617   // Creates a Flags struct where the gtest_print_time flag has the given
5618   // value.
PrintTimetesting::Flags5619   static Flags PrintTime(bool print_time) {
5620     Flags flags;
5621     flags.print_time = print_time;
5622     return flags;
5623   }
5624 
5625   // Creates a Flags struct where the gtest_random_seed flag has the given
5626   // value.
RandomSeedtesting::Flags5627   static Flags RandomSeed(int32_t random_seed) {
5628     Flags flags;
5629     flags.random_seed = random_seed;
5630     return flags;
5631   }
5632 
5633   // Creates a Flags struct where the gtest_repeat flag has the given
5634   // value.
Repeattesting::Flags5635   static Flags Repeat(int32_t repeat) {
5636     Flags flags;
5637     flags.repeat = repeat;
5638     return flags;
5639   }
5640 
5641   // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5642   // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5643   static Flags RecreateEnvironmentsWhenRepeating(
5644       bool recreate_environments_when_repeating) {
5645     Flags flags;
5646     flags.recreate_environments_when_repeating =
5647         recreate_environments_when_repeating;
5648     return flags;
5649   }
5650 
5651   // Creates a Flags struct where the gtest_shuffle flag has the given
5652   // value.
Shuffletesting::Flags5653   static Flags Shuffle(bool shuffle) {
5654     Flags flags;
5655     flags.shuffle = shuffle;
5656     return flags;
5657   }
5658 
5659   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5660   // the given value.
StackTraceDepthtesting::Flags5661   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5662     Flags flags;
5663     flags.stack_trace_depth = stack_trace_depth;
5664     return flags;
5665   }
5666 
5667   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5668   // the given value.
StreamResultTotesting::Flags5669   static Flags StreamResultTo(const char* stream_result_to) {
5670     Flags flags;
5671     flags.stream_result_to = stream_result_to;
5672     return flags;
5673   }
5674 
5675   // Creates a Flags struct where the gtest_throw_on_failure flag has
5676   // the given value.
ThrowOnFailuretesting::Flags5677   static Flags ThrowOnFailure(bool throw_on_failure) {
5678     Flags flags;
5679     flags.throw_on_failure = throw_on_failure;
5680     return flags;
5681   }
5682 
5683   // These fields store the flag values.
5684   bool also_run_disabled_tests;
5685   bool break_on_failure;
5686   bool catch_exceptions;
5687   bool death_test_use_fork;
5688   bool fail_fast;
5689   const char* filter;
5690   bool list_tests;
5691   const char* output;
5692   bool brief;
5693   bool print_time;
5694   int32_t random_seed;
5695   int32_t repeat;
5696   bool recreate_environments_when_repeating;
5697   bool shuffle;
5698   int32_t stack_trace_depth;
5699   const char* stream_result_to;
5700   bool throw_on_failure;
5701 };
5702 
5703 // Fixture for testing ParseGoogleTestFlagsOnly().
5704 class ParseFlagsTest : public Test {
5705  protected:
5706   // Clears the flags before each test.
SetUp()5707   void SetUp() override {
5708     GTEST_FLAG_SET(also_run_disabled_tests, false);
5709     GTEST_FLAG_SET(break_on_failure, false);
5710     GTEST_FLAG_SET(catch_exceptions, false);
5711     GTEST_FLAG_SET(death_test_use_fork, false);
5712     GTEST_FLAG_SET(fail_fast, false);
5713     GTEST_FLAG_SET(filter, "");
5714     GTEST_FLAG_SET(list_tests, false);
5715     GTEST_FLAG_SET(output, "");
5716     GTEST_FLAG_SET(brief, false);
5717     GTEST_FLAG_SET(print_time, true);
5718     GTEST_FLAG_SET(random_seed, 0);
5719     GTEST_FLAG_SET(repeat, 1);
5720     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5721     GTEST_FLAG_SET(shuffle, false);
5722     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5723     GTEST_FLAG_SET(stream_result_to, "");
5724     GTEST_FLAG_SET(throw_on_failure, false);
5725   }
5726 
5727   // Asserts that two narrow or wide string arrays are equal.
5728   template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5729   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5730                                   CharType** array2) {
5731     ASSERT_EQ(size1, size2) << " Array sizes different.";
5732 
5733     for (int i = 0; i != size1; i++) {
5734       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5735     }
5736   }
5737 
5738   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5739   static void CheckFlags(const Flags& expected) {
5740     EXPECT_EQ(expected.also_run_disabled_tests,
5741               GTEST_FLAG_GET(also_run_disabled_tests));
5742     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5743     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5744     EXPECT_EQ(expected.death_test_use_fork,
5745               GTEST_FLAG_GET(death_test_use_fork));
5746     EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5747     EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5748     EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5749     EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5750     EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5751     EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5752     EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5753     EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5754     EXPECT_EQ(expected.recreate_environments_when_repeating,
5755               GTEST_FLAG_GET(recreate_environments_when_repeating));
5756     EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5757     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5758     EXPECT_STREQ(expected.stream_result_to,
5759                  GTEST_FLAG_GET(stream_result_to).c_str());
5760     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5761   }
5762 
5763   // Parses a command line (specified by argc1 and argv1), then
5764   // verifies that the flag values are expected and that the
5765   // recognized flags are removed from the command line.
5766   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5767   static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5768                                const CharType** argv2, const Flags& expected,
5769                                bool should_print_help) {
5770     const bool saved_help_flag = ::testing::internal::g_help_flag;
5771     ::testing::internal::g_help_flag = false;
5772 
5773 #if GTEST_HAS_STREAM_REDIRECTION
5774     CaptureStdout();
5775 #endif
5776 
5777     // Parses the command line.
5778     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5779 
5780 #if GTEST_HAS_STREAM_REDIRECTION
5781     const std::string captured_stdout = GetCapturedStdout();
5782 #endif
5783 
5784     // Verifies the flag values.
5785     CheckFlags(expected);
5786 
5787     // Verifies that the recognized flags are removed from the command
5788     // line.
5789     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5790 
5791     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5792     // help message for the flags it recognizes.
5793     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5794 
5795 #if GTEST_HAS_STREAM_REDIRECTION
5796     const char* const expected_help_fragment =
5797         "This program contains tests written using";
5798     if (should_print_help) {
5799       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5800     } else {
5801       EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5802                           captured_stdout);
5803     }
5804 #endif  // GTEST_HAS_STREAM_REDIRECTION
5805 
5806     ::testing::internal::g_help_flag = saved_help_flag;
5807   }
5808 
5809   // This macro wraps TestParsingFlags s.t. the user doesn't need
5810   // to specify the array sizes.
5811 
5812 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5813   TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1,                \
5814                    sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected,      \
5815                    should_print_help)
5816 };
5817 
5818 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5819 TEST_F(ParseFlagsTest, Empty) {
5820   const char* argv[] = {nullptr};
5821 
5822   const char* argv2[] = {nullptr};
5823 
5824   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5825 }
5826 
5827 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5828 TEST_F(ParseFlagsTest, NoFlag) {
5829   const char* argv[] = {"foo.exe", nullptr};
5830 
5831   const char* argv2[] = {"foo.exe", nullptr};
5832 
5833   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5834 }
5835 
5836 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5837 TEST_F(ParseFlagsTest, FailFast) {
5838   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5839 
5840   const char* argv2[] = {"foo.exe", nullptr};
5841 
5842   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5843 }
5844 
5845 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5846 TEST_F(ParseFlagsTest, FilterEmpty) {
5847   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5848 
5849   const char* argv2[] = {"foo.exe", nullptr};
5850 
5851   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5852 }
5853 
5854 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5855 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5856   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5857 
5858   const char* argv2[] = {"foo.exe", nullptr};
5859 
5860   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5861 }
5862 
5863 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5864 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5865   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5866 
5867   const char* argv2[] = {"foo.exe", nullptr};
5868 
5869   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5870 }
5871 
5872 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5873 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5874   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5875 
5876   const char* argv2[] = {"foo.exe", nullptr};
5877 
5878   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5879 }
5880 
5881 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5882 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5883   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5884 
5885   const char* argv2[] = {"foo.exe", nullptr};
5886 
5887   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5888 }
5889 
5890 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5891 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5892   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5893 
5894   const char* argv2[] = {"foo.exe", nullptr};
5895 
5896   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5897 }
5898 
5899 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5900 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5901 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5902   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5903 
5904   const char* argv2[] = {"foo.exe", nullptr};
5905 
5906   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5907 }
5908 
5909 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5910 TEST_F(ParseFlagsTest, CatchExceptions) {
5911   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5912 
5913   const char* argv2[] = {"foo.exe", nullptr};
5914 
5915   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5916 }
5917 
5918 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5919 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5920   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5921 
5922   const char* argv2[] = {"foo.exe", nullptr};
5923 
5924   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5925 }
5926 
5927 // Tests having the same flag twice with different values.  The
5928 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5929 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5930   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5931                         nullptr};
5932 
5933   const char* argv2[] = {"foo.exe", nullptr};
5934 
5935   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5936 }
5937 
5938 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5939 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5940   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5941                         "bar",  // Unrecognized by Google Test.
5942                         "--gtest_filter=b", nullptr};
5943 
5944   const char* argv2[] = {"foo.exe", "bar", nullptr};
5945 
5946   Flags flags;
5947   flags.break_on_failure = true;
5948   flags.filter = "b";
5949   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5950 }
5951 
5952 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5953 TEST_F(ParseFlagsTest, ListTestsFlag) {
5954   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5955 
5956   const char* argv2[] = {"foo.exe", nullptr};
5957 
5958   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5959 }
5960 
5961 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5962 TEST_F(ParseFlagsTest, ListTestsTrue) {
5963   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5964 
5965   const char* argv2[] = {"foo.exe", nullptr};
5966 
5967   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5968 }
5969 
5970 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5971 TEST_F(ParseFlagsTest, ListTestsFalse) {
5972   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5973 
5974   const char* argv2[] = {"foo.exe", nullptr};
5975 
5976   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5977 }
5978 
5979 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5980 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5981   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5982 
5983   const char* argv2[] = {"foo.exe", nullptr};
5984 
5985   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5986 }
5987 
5988 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5989 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5990   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5991 
5992   const char* argv2[] = {"foo.exe", nullptr};
5993 
5994   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5995 }
5996 
5997 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)5998 TEST_F(ParseFlagsTest, OutputXml) {
5999   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
6000 
6001   const char* argv2[] = {"foo.exe", nullptr};
6002 
6003   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6004 }
6005 
6006 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)6007 TEST_F(ParseFlagsTest, OutputXmlFile) {
6008   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
6009 
6010   const char* argv2[] = {"foo.exe", nullptr};
6011 
6012   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6013 }
6014 
6015 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)6016 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
6017   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
6018                         nullptr};
6019 
6020   const char* argv2[] = {"foo.exe", nullptr};
6021 
6022   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
6023                             false);
6024 }
6025 
6026 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)6027 TEST_F(ParseFlagsTest, BriefFlag) {
6028   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
6029 
6030   const char* argv2[] = {"foo.exe", nullptr};
6031 
6032   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6033 }
6034 
6035 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)6036 TEST_F(ParseFlagsTest, BriefFlagTrue) {
6037   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
6038 
6039   const char* argv2[] = {"foo.exe", nullptr};
6040 
6041   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6042 }
6043 
6044 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)6045 TEST_F(ParseFlagsTest, BriefFlagFalse) {
6046   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
6047 
6048   const char* argv2[] = {"foo.exe", nullptr};
6049 
6050   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6051 }
6052 
6053 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6054 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6055   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6056 
6057   const char* argv2[] = {"foo.exe", nullptr};
6058 
6059   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6060 }
6061 
6062 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6063 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6064   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6065 
6066   const char* argv2[] = {"foo.exe", nullptr};
6067 
6068   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6069 }
6070 
6071 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6072 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6073   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6074 
6075   const char* argv2[] = {"foo.exe", nullptr};
6076 
6077   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6078 }
6079 
6080 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6081 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6082   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6083 
6084   const char* argv2[] = {"foo.exe", nullptr};
6085 
6086   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6087 }
6088 
6089 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6090 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6091   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6092 
6093   const char* argv2[] = {"foo.exe", nullptr};
6094 
6095   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6096 }
6097 
6098 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6099 TEST_F(ParseFlagsTest, RandomSeed) {
6100   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6101 
6102   const char* argv2[] = {"foo.exe", nullptr};
6103 
6104   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6105 }
6106 
6107 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6108 TEST_F(ParseFlagsTest, Repeat) {
6109   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6110 
6111   const char* argv2[] = {"foo.exe", nullptr};
6112 
6113   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6114 }
6115 
6116 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6117 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6118   const char* argv[] = {
6119       "foo.exe",
6120       "--gtest_recreate_environments_when_repeating=0",
6121       nullptr,
6122   };
6123 
6124   const char* argv2[] = {"foo.exe", nullptr};
6125 
6126   GTEST_TEST_PARSING_FLAGS_(
6127       argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6128 }
6129 
6130 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6131 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6132   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6133 
6134   const char* argv2[] = {"foo.exe", nullptr};
6135 
6136   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6137                             false);
6138 }
6139 
6140 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6141 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6142   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6143                         nullptr};
6144 
6145   const char* argv2[] = {"foo.exe", nullptr};
6146 
6147   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6148                             false);
6149 }
6150 
6151 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6152 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6153   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6154                         nullptr};
6155 
6156   const char* argv2[] = {"foo.exe", nullptr};
6157 
6158   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6159                             false);
6160 }
6161 
6162 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6163 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6164   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6165 
6166   const char* argv2[] = {"foo.exe", nullptr};
6167 
6168   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6169 }
6170 
6171 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6172 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6173   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6174 
6175   const char* argv2[] = {"foo.exe", nullptr};
6176 
6177   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6178 }
6179 
6180 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6181 TEST_F(ParseFlagsTest, ShuffleTrue) {
6182   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6183 
6184   const char* argv2[] = {"foo.exe", nullptr};
6185 
6186   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6187 }
6188 
6189 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6190 TEST_F(ParseFlagsTest, StackTraceDepth) {
6191   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6192 
6193   const char* argv2[] = {"foo.exe", nullptr};
6194 
6195   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6196 }
6197 
TEST_F(ParseFlagsTest,StreamResultTo)6198 TEST_F(ParseFlagsTest, StreamResultTo) {
6199   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6200                         nullptr};
6201 
6202   const char* argv2[] = {"foo.exe", nullptr};
6203 
6204   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6205                             Flags::StreamResultTo("localhost:1234"), false);
6206 }
6207 
6208 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6209 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6210   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6211 
6212   const char* argv2[] = {"foo.exe", nullptr};
6213 
6214   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6215 }
6216 
6217 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6218 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6219   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6220 
6221   const char* argv2[] = {"foo.exe", nullptr};
6222 
6223   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6224 }
6225 
6226 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6227 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6228 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6229   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6230 
6231   const char* argv2[] = {"foo.exe", nullptr};
6232 
6233   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6234 }
6235 
6236 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)6237 TEST_F(ParseFlagsTest, FilterBad) {
6238   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6239 
6240   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6241 
6242 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6243   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6244   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6245               testing::ExitedWithCode(1),
6246               "ERROR: Missing the value for the flag 'gtest_filter'");
6247 #elif !defined(GTEST_HAS_ABSL)
6248   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6249 #else
6250   static_cast<void>(argv);
6251   static_cast<void>(argv2);
6252 #endif
6253 }
6254 
6255 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6256 TEST_F(ParseFlagsTest, OutputEmpty) {
6257   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6258 
6259   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6260 
6261 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6262   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6263   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6264               testing::ExitedWithCode(1),
6265               "ERROR: Missing the value for the flag 'gtest_output'");
6266 #elif !defined(GTEST_HAS_ABSL)
6267   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6268 #else
6269   static_cast<void>(argv);
6270   static_cast<void>(argv2);
6271 #endif
6272 }
6273 
6274 #ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest,AbseilPositionalFlags)6275 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6276   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6277                         "--other_flag", nullptr};
6278 
6279   // When using Abseil flags, it should be possible to pass flags not recognized
6280   // using "--" to delimit positional arguments. These flags should be returned
6281   // though argv.
6282   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6283 
6284   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6285 }
6286 #endif
6287 
TEST_F(ParseFlagsTest,UnrecognizedFlags)6288 TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6289   const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6290                         nullptr};
6291 
6292   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6293 
6294   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6295 }
6296 
6297 #ifdef GTEST_OS_WINDOWS
6298 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6299 TEST_F(ParseFlagsTest, WideStrings) {
6300   const wchar_t* argv[] = {L"foo.exe",
6301                            L"--gtest_filter=Foo*",
6302                            L"--gtest_list_tests=1",
6303                            L"--gtest_break_on_failure",
6304                            L"--non_gtest_flag",
6305                            NULL};
6306 
6307   const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6308 
6309   Flags expected_flags;
6310   expected_flags.break_on_failure = true;
6311   expected_flags.filter = "Foo*";
6312   expected_flags.list_tests = true;
6313 
6314   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6315 }
6316 #endif  // GTEST_OS_WINDOWS
6317 
6318 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6319 class FlagfileTest : public ParseFlagsTest {
6320  public:
SetUp()6321   void SetUp() override {
6322     ParseFlagsTest::SetUp();
6323 
6324     testdata_path_.Set(internal::FilePath(
6325         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6326         "_flagfile_test"));
6327     testing::internal::posix::RmDir(testdata_path_.c_str());
6328     EXPECT_TRUE(testdata_path_.CreateFolder());
6329   }
6330 
TearDown()6331   void TearDown() override {
6332     testing::internal::posix::RmDir(testdata_path_.c_str());
6333     ParseFlagsTest::TearDown();
6334   }
6335 
CreateFlagfile(const char * contents)6336   internal::FilePath CreateFlagfile(const char* contents) {
6337     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6338         testdata_path_, internal::FilePath("unique"), "txt"));
6339     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6340     fprintf(f, "%s", contents);
6341     fclose(f);
6342     return file_path;
6343   }
6344 
6345  private:
6346   internal::FilePath testdata_path_;
6347 };
6348 
6349 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6350 TEST_F(FlagfileTest, Empty) {
6351   internal::FilePath flagfile_path(CreateFlagfile(""));
6352   std::string flagfile_flag =
6353       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6354 
6355   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6356 
6357   const char* argv2[] = {"foo.exe", nullptr};
6358 
6359   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6360 }
6361 
6362 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6363 TEST_F(FlagfileTest, FilterNonEmpty) {
6364   internal::FilePath flagfile_path(
6365       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6366   std::string flagfile_flag =
6367       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6368 
6369   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6370 
6371   const char* argv2[] = {"foo.exe", nullptr};
6372 
6373   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6374 }
6375 
6376 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6377 TEST_F(FlagfileTest, SeveralFlags) {
6378   internal::FilePath flagfile_path(
6379       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6380                      "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6381                      "--" GTEST_FLAG_PREFIX_ "list_tests"));
6382   std::string flagfile_flag =
6383       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6384 
6385   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6386 
6387   const char* argv2[] = {"foo.exe", nullptr};
6388 
6389   Flags expected_flags;
6390   expected_flags.break_on_failure = true;
6391   expected_flags.filter = "abc";
6392   expected_flags.list_tests = true;
6393 
6394   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6395 }
6396 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6397 
6398 // Tests current_test_info() in UnitTest.
6399 class CurrentTestInfoTest : public Test {
6400  protected:
6401   // Tests that current_test_info() returns NULL before the first test in
6402   // the test case is run.
SetUpTestSuite()6403   static void SetUpTestSuite() {
6404     // There should be no tests running at this point.
6405     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6406     EXPECT_TRUE(test_info == nullptr)
6407         << "There should be no tests running at this point.";
6408   }
6409 
6410   // Tests that current_test_info() returns NULL after the last test in
6411   // the test case has run.
TearDownTestSuite()6412   static void TearDownTestSuite() {
6413     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6414     EXPECT_TRUE(test_info == nullptr)
6415         << "There should be no tests running at this point.";
6416   }
6417 };
6418 
6419 // Tests that current_test_info() returns TestInfo for currently running
6420 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6421 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6422   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6423   ASSERT_TRUE(nullptr != test_info)
6424       << "There is a test running so we should have a valid TestInfo.";
6425   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6426       << "Expected the name of the currently running test suite.";
6427   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6428       << "Expected the name of the currently running test.";
6429 }
6430 
6431 // Tests that current_test_info() returns TestInfo for currently running
6432 // test by checking the expected test name against the actual one.  We
6433 // use this test to see that the TestInfo object actually changed from
6434 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6435 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6436   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6437   ASSERT_TRUE(nullptr != test_info)
6438       << "There is a test running so we should have a valid TestInfo.";
6439   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6440       << "Expected the name of the currently running test suite.";
6441   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6442       << "Expected the name of the currently running test.";
6443 }
6444 
6445 }  // namespace testing
6446 
6447 // These two lines test that we can define tests in a namespace that
6448 // has the name "testing" and is nested in another namespace.
6449 namespace my_namespace {
6450 namespace testing {
6451 
6452 // Makes sure that TEST knows to use ::testing::Test instead of
6453 // ::my_namespace::testing::Test.
6454 class Test {};
6455 
6456 // Makes sure that an assertion knows to use ::testing::Message instead of
6457 // ::my_namespace::testing::Message.
6458 class Message {};
6459 
6460 // Makes sure that an assertion knows to use
6461 // ::testing::AssertionResult instead of
6462 // ::my_namespace::testing::AssertionResult.
6463 class AssertionResult {};
6464 
6465 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6466 TEST(NestedTestingNamespaceTest, Success) {
6467   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6468 }
6469 
6470 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6471 TEST(NestedTestingNamespaceTest, Failure) {
6472   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6473                        "This failure is expected.");
6474 }
6475 
6476 }  // namespace testing
6477 }  // namespace my_namespace
6478 
6479 // Tests that one can call superclass SetUp and TearDown methods--
6480 // that is, that they are not private.
6481 // No tests are based on this fixture; the test "passes" if it compiles
6482 // successfully.
6483 class ProtectedFixtureMethodsTest : public Test {
6484  protected:
SetUp()6485   void SetUp() override { Test::SetUp(); }
TearDown()6486   void TearDown() override { Test::TearDown(); }
6487 };
6488 
6489 // StreamingAssertionsTest tests the streaming versions of a representative
6490 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6491 TEST(StreamingAssertionsTest, Unconditional) {
6492   SUCCEED() << "expected success";
6493   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6494                           "expected failure");
6495   EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6496 }
6497 
6498 #ifdef __BORLANDC__
6499 // Silences warnings: "Condition is always true", "Unreachable code"
6500 #pragma option push -w-ccc -w-rch
6501 #endif
6502 
TEST(StreamingAssertionsTest,Truth)6503 TEST(StreamingAssertionsTest, Truth) {
6504   EXPECT_TRUE(true) << "unexpected failure";
6505   ASSERT_TRUE(true) << "unexpected failure";
6506   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6507                           "expected failure");
6508   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6509                        "expected failure");
6510 }
6511 
TEST(StreamingAssertionsTest,Truth2)6512 TEST(StreamingAssertionsTest, Truth2) {
6513   EXPECT_FALSE(false) << "unexpected failure";
6514   ASSERT_FALSE(false) << "unexpected failure";
6515   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6516                           "expected failure");
6517   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6518                        "expected failure");
6519 }
6520 
6521 #ifdef __BORLANDC__
6522 // Restores warnings after previous "#pragma option push" suppressed them
6523 #pragma option pop
6524 #endif
6525 
TEST(StreamingAssertionsTest,IntegerEquals)6526 TEST(StreamingAssertionsTest, IntegerEquals) {
6527   EXPECT_EQ(1, 1) << "unexpected failure";
6528   ASSERT_EQ(1, 1) << "unexpected failure";
6529   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6530                           "expected failure");
6531   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6532                        "expected failure");
6533 }
6534 
TEST(StreamingAssertionsTest,IntegerLessThan)6535 TEST(StreamingAssertionsTest, IntegerLessThan) {
6536   EXPECT_LT(1, 2) << "unexpected failure";
6537   ASSERT_LT(1, 2) << "unexpected failure";
6538   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6539                           "expected failure");
6540   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6541                        "expected failure");
6542 }
6543 
TEST(StreamingAssertionsTest,StringsEqual)6544 TEST(StreamingAssertionsTest, StringsEqual) {
6545   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6546   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6547   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6548                           "expected failure");
6549   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6550                        "expected failure");
6551 }
6552 
TEST(StreamingAssertionsTest,StringsNotEqual)6553 TEST(StreamingAssertionsTest, StringsNotEqual) {
6554   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6555   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6556   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6557                           "expected failure");
6558   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6559                        "expected failure");
6560 }
6561 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6562 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6563   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6564   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6565   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6566                           "expected failure");
6567   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6568                        "expected failure");
6569 }
6570 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6571 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6572   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6573   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6574   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6575                           "expected failure");
6576   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6577                        "expected failure");
6578 }
6579 
TEST(StreamingAssertionsTest,FloatingPointEquals)6580 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6581   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6582   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6583   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6584                           "expected failure");
6585   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6586                        "expected failure");
6587 }
6588 
6589 #if GTEST_HAS_EXCEPTIONS
6590 
TEST(StreamingAssertionsTest,Throw)6591 TEST(StreamingAssertionsTest, Throw) {
6592   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6593   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6594   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6595                               << "expected failure",
6596                           "expected failure");
6597   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6598                            << "expected failure",
6599                        "expected failure");
6600 }
6601 
TEST(StreamingAssertionsTest,NoThrow)6602 TEST(StreamingAssertionsTest, NoThrow) {
6603   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6604   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6605   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6606                               << "expected failure",
6607                           "expected failure");
6608   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6609                        "expected failure");
6610 }
6611 
TEST(StreamingAssertionsTest,AnyThrow)6612 TEST(StreamingAssertionsTest, AnyThrow) {
6613   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6614   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6615   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6616                               << "expected failure",
6617                           "expected failure");
6618   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6619                        "expected failure");
6620 }
6621 
6622 #endif  // GTEST_HAS_EXCEPTIONS
6623 
6624 // Tests that Google Test correctly decides whether to use colors in the output.
6625 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6626 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6627   GTEST_FLAG_SET(color, "yes");
6628 
6629   SetEnv("TERM", "xterm");             // TERM supports colors.
6630   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6631   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6632 
6633   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6634   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6635   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6636 }
6637 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6638 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6639   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6640 
6641   GTEST_FLAG_SET(color, "True");
6642   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6643 
6644   GTEST_FLAG_SET(color, "t");
6645   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6646 
6647   GTEST_FLAG_SET(color, "1");
6648   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6649 }
6650 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6651 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6652   GTEST_FLAG_SET(color, "no");
6653 
6654   SetEnv("TERM", "xterm");              // TERM supports colors.
6655   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6656   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6657 
6658   SetEnv("TERM", "dumb");               // TERM doesn't support colors.
6659   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6660   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6661 }
6662 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6663 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6664   SetEnv("TERM", "xterm");  // TERM supports colors.
6665 
6666   GTEST_FLAG_SET(color, "F");
6667   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6668 
6669   GTEST_FLAG_SET(color, "0");
6670   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6671 
6672   GTEST_FLAG_SET(color, "unknown");
6673   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6674 }
6675 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6676 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6677   GTEST_FLAG_SET(color, "auto");
6678 
6679   SetEnv("TERM", "xterm");              // TERM supports colors.
6680   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6681   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6682 }
6683 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6684 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6685   GTEST_FLAG_SET(color, "auto");
6686 
6687 #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6688   // On Windows, we ignore the TERM variable as it's usually not set.
6689 
6690   SetEnv("TERM", "dumb");
6691   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6692 
6693   SetEnv("TERM", "");
6694   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6695 
6696   SetEnv("TERM", "xterm");
6697   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6698 #else
6699   // On non-Windows platforms, we rely on TERM to determine if the
6700   // terminal supports colors.
6701 
6702   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6703   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6704 
6705   SetEnv("TERM", "emacs");             // TERM doesn't support colors.
6706   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6707 
6708   SetEnv("TERM", "vt100");             // TERM doesn't support colors.
6709   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6710 
6711   SetEnv("TERM", "xterm-mono");        // TERM doesn't support colors.
6712   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6713 
6714   SetEnv("TERM", "xterm");            // TERM supports colors.
6715   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6716 
6717   SetEnv("TERM", "xterm-color");      // TERM supports colors.
6718   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6719 
6720   SetEnv("TERM", "xterm-kitty");      // TERM supports colors.
6721   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6722 
6723   SetEnv("TERM", "alacritty");        // TERM supports colors.
6724   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6725 
6726   SetEnv("TERM", "xterm-256color");   // TERM supports colors.
6727   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6728 
6729   SetEnv("TERM", "screen");           // TERM supports colors.
6730   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6731 
6732   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6733   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6734 
6735   SetEnv("TERM", "tmux");             // TERM supports colors.
6736   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6737 
6738   SetEnv("TERM", "tmux-256color");    // TERM supports colors.
6739   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6740 
6741   SetEnv("TERM", "rxvt-unicode");     // TERM supports colors.
6742   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6743 
6744   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6745   EXPECT_TRUE(ShouldUseColor(true));        // Stdout is a TTY.
6746 
6747   SetEnv("TERM", "linux");            // TERM supports colors.
6748   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6749 
6750   SetEnv("TERM", "cygwin");           // TERM supports colors.
6751   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6752 #endif  // GTEST_OS_WINDOWS
6753 }
6754 
6755 // Verifies that StaticAssertTypeEq works in a namespace scope.
6756 
6757 [[maybe_unused]] static bool dummy1 = StaticAssertTypeEq<bool, bool>();
6758 [[maybe_unused]] static bool dummy2 =
6759     StaticAssertTypeEq<const int, const int>();
6760 
6761 // Verifies that StaticAssertTypeEq works in a class.
6762 
6763 template <typename T>
6764 class StaticAssertTypeEqTestHelper {
6765  public:
StaticAssertTypeEqTestHelper()6766   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6767 };
6768 
TEST(StaticAssertTypeEqTest,WorksInClass)6769 TEST(StaticAssertTypeEqTest, WorksInClass) {
6770   StaticAssertTypeEqTestHelper<bool>();
6771 }
6772 
6773 // Verifies that StaticAssertTypeEq works inside a function.
6774 
6775 typedef int IntAlias;
6776 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6777 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6778   StaticAssertTypeEq<int, IntAlias>();
6779   StaticAssertTypeEq<int*, IntAlias*>();
6780 }
6781 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6782 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6783   EXPECT_FALSE(HasNonfatalFailure());
6784 }
6785 
FailFatally()6786 static void FailFatally() { FAIL(); }
6787 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6788 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6789   FailFatally();
6790   const bool has_nonfatal_failure = HasNonfatalFailure();
6791   ClearCurrentTestPartResults();
6792   EXPECT_FALSE(has_nonfatal_failure);
6793 }
6794 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6795 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6796   ADD_FAILURE();
6797   const bool has_nonfatal_failure = HasNonfatalFailure();
6798   ClearCurrentTestPartResults();
6799   EXPECT_TRUE(has_nonfatal_failure);
6800 }
6801 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6802 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6803   FailFatally();
6804   ADD_FAILURE();
6805   const bool has_nonfatal_failure = HasNonfatalFailure();
6806   ClearCurrentTestPartResults();
6807   EXPECT_TRUE(has_nonfatal_failure);
6808 }
6809 
6810 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6811 static bool HasNonfatalFailureHelper() {
6812   return testing::Test::HasNonfatalFailure();
6813 }
6814 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6815 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6816   EXPECT_FALSE(HasNonfatalFailureHelper());
6817 }
6818 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6819 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6820   ADD_FAILURE();
6821   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6822   ClearCurrentTestPartResults();
6823   EXPECT_TRUE(has_nonfatal_failure);
6824 }
6825 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6826 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6827   EXPECT_FALSE(HasFailure());
6828 }
6829 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6830 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6831   FailFatally();
6832   const bool has_failure = HasFailure();
6833   ClearCurrentTestPartResults();
6834   EXPECT_TRUE(has_failure);
6835 }
6836 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6837 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6838   ADD_FAILURE();
6839   const bool has_failure = HasFailure();
6840   ClearCurrentTestPartResults();
6841   EXPECT_TRUE(has_failure);
6842 }
6843 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6844 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6845   FailFatally();
6846   ADD_FAILURE();
6847   const bool has_failure = HasFailure();
6848   ClearCurrentTestPartResults();
6849   EXPECT_TRUE(has_failure);
6850 }
6851 
6852 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6853 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6854 
TEST(HasFailureTest,WorksOutsideOfTestBody)6855 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6856   EXPECT_FALSE(HasFailureHelper());
6857 }
6858 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6859 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6860   ADD_FAILURE();
6861   const bool has_failure = HasFailureHelper();
6862   ClearCurrentTestPartResults();
6863   EXPECT_TRUE(has_failure);
6864 }
6865 
6866 class TestListener : public EmptyTestEventListener {
6867  public:
TestListener()6868   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6869   TestListener(int* on_start_counter, bool* is_destroyed)
6870       : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6871 
~TestListener()6872   ~TestListener() override {
6873     if (is_destroyed_) *is_destroyed_ = true;
6874   }
6875 
6876  protected:
OnTestProgramStart(const UnitTest &)6877   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6878     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6879   }
6880 
6881  private:
6882   int* on_start_counter_;
6883   bool* is_destroyed_;
6884 };
6885 
6886 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6887 TEST(TestEventListenersTest, ConstructionWorks) {
6888   TestEventListeners listeners;
6889 
6890   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6891   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6892   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6893 }
6894 
6895 // Tests that the TestEventListeners destructor deletes all the listeners it
6896 // owns.
TEST(TestEventListenersTest,DestructionWorks)6897 TEST(TestEventListenersTest, DestructionWorks) {
6898   bool default_result_printer_is_destroyed = false;
6899   bool default_xml_printer_is_destroyed = false;
6900   bool extra_listener_is_destroyed = false;
6901   TestListener* default_result_printer =
6902       new TestListener(nullptr, &default_result_printer_is_destroyed);
6903   TestListener* default_xml_printer =
6904       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6905   TestListener* extra_listener =
6906       new TestListener(nullptr, &extra_listener_is_destroyed);
6907 
6908   {
6909     TestEventListeners listeners;
6910     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6911                                                         default_result_printer);
6912     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6913                                                        default_xml_printer);
6914     listeners.Append(extra_listener);
6915   }
6916   EXPECT_TRUE(default_result_printer_is_destroyed);
6917   EXPECT_TRUE(default_xml_printer_is_destroyed);
6918   EXPECT_TRUE(extra_listener_is_destroyed);
6919 }
6920 
6921 // Tests that a listener Append'ed to a TestEventListeners list starts
6922 // receiving events.
TEST(TestEventListenersTest,Append)6923 TEST(TestEventListenersTest, Append) {
6924   int on_start_counter = 0;
6925   bool is_destroyed = false;
6926   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6927   {
6928     TestEventListeners listeners;
6929     listeners.Append(listener);
6930     TestEventListenersAccessor::GetRepeater(&listeners)
6931         ->OnTestProgramStart(*UnitTest::GetInstance());
6932     EXPECT_EQ(1, on_start_counter);
6933   }
6934   EXPECT_TRUE(is_destroyed);
6935 }
6936 
6937 // Tests that listeners receive events in the order they were appended to
6938 // the list, except for *End requests, which must be received in the reverse
6939 // order.
6940 class SequenceTestingListener : public EmptyTestEventListener {
6941  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6942   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6943       : vector_(vector), id_(id) {}
6944 
6945  protected:
OnTestProgramStart(const UnitTest &)6946   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6947     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6948   }
6949 
OnTestProgramEnd(const UnitTest &)6950   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6951     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6952   }
6953 
OnTestIterationStart(const UnitTest &,int)6954   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6955                             int /*iteration*/) override {
6956     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6957   }
6958 
OnTestIterationEnd(const UnitTest &,int)6959   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6960                           int /*iteration*/) override {
6961     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6962   }
6963 
6964  private:
GetEventDescription(const char * method)6965   std::string GetEventDescription(const char* method) {
6966     Message message;
6967     message << id_ << "." << method;
6968     return message.GetString();
6969   }
6970 
6971   std::vector<std::string>* vector_;
6972   const char* const id_;
6973 
6974   SequenceTestingListener(const SequenceTestingListener&) = delete;
6975   SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6976 };
6977 
TEST(EventListenerTest,AppendKeepsOrder)6978 TEST(EventListenerTest, AppendKeepsOrder) {
6979   std::vector<std::string> vec;
6980   TestEventListeners listeners;
6981   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6982   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6983   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6984 
6985   TestEventListenersAccessor::GetRepeater(&listeners)
6986       ->OnTestProgramStart(*UnitTest::GetInstance());
6987   ASSERT_EQ(3U, vec.size());
6988   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6989   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6990   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6991 
6992   vec.clear();
6993   TestEventListenersAccessor::GetRepeater(&listeners)
6994       ->OnTestProgramEnd(*UnitTest::GetInstance());
6995   ASSERT_EQ(3U, vec.size());
6996   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6997   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6998   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6999 
7000   vec.clear();
7001   TestEventListenersAccessor::GetRepeater(&listeners)
7002       ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
7003   ASSERT_EQ(3U, vec.size());
7004   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
7005   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
7006   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
7007 
7008   vec.clear();
7009   TestEventListenersAccessor::GetRepeater(&listeners)
7010       ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
7011   ASSERT_EQ(3U, vec.size());
7012   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
7013   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
7014   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
7015 }
7016 
7017 // Tests that a listener removed from a TestEventListeners list stops receiving
7018 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)7019 TEST(TestEventListenersTest, Release) {
7020   int on_start_counter = 0;
7021   bool is_destroyed = false;
7022   // Although Append passes the ownership of this object to the list,
7023   // the following calls release it, and we need to delete it before the
7024   // test ends.
7025   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7026   {
7027     TestEventListeners listeners;
7028     listeners.Append(listener);
7029     EXPECT_EQ(listener, listeners.Release(listener));
7030     TestEventListenersAccessor::GetRepeater(&listeners)
7031         ->OnTestProgramStart(*UnitTest::GetInstance());
7032     EXPECT_TRUE(listeners.Release(listener) == nullptr);
7033   }
7034   EXPECT_EQ(0, on_start_counter);
7035   EXPECT_FALSE(is_destroyed);
7036   delete listener;
7037 }
7038 
7039 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7040 TEST(EventListenerTest, SuppressEventForwarding) {
7041   int on_start_counter = 0;
7042   TestListener* listener = new TestListener(&on_start_counter, nullptr);
7043 
7044   TestEventListeners listeners;
7045   listeners.Append(listener);
7046   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7047   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7048   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7049   TestEventListenersAccessor::GetRepeater(&listeners)
7050       ->OnTestProgramStart(*UnitTest::GetInstance());
7051   EXPECT_EQ(0, on_start_counter);
7052 }
7053 
7054 // Tests that events generated by Google Test are not forwarded in
7055 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprocesses)7056 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7057   EXPECT_DEATH_IF_SUPPORTED(
7058       {
7059         GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7060             *GetUnitTestImpl()->listeners()))
7061             << "expected failure";
7062       },
7063       "expected failure");
7064 }
7065 
7066 // Tests that a listener installed via SetDefaultResultPrinter() starts
7067 // receiving events and is returned via default_result_printer() and that
7068 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7069 TEST(EventListenerTest, default_result_printer) {
7070   int on_start_counter = 0;
7071   bool is_destroyed = false;
7072   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7073 
7074   TestEventListeners listeners;
7075   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7076 
7077   EXPECT_EQ(listener, listeners.default_result_printer());
7078 
7079   TestEventListenersAccessor::GetRepeater(&listeners)
7080       ->OnTestProgramStart(*UnitTest::GetInstance());
7081 
7082   EXPECT_EQ(1, on_start_counter);
7083 
7084   // Replacing default_result_printer with something else should remove it
7085   // from the list and destroy it.
7086   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7087 
7088   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7089   EXPECT_TRUE(is_destroyed);
7090 
7091   // After broadcasting an event the counter is still the same, indicating
7092   // the listener is not in the list anymore.
7093   TestEventListenersAccessor::GetRepeater(&listeners)
7094       ->OnTestProgramStart(*UnitTest::GetInstance());
7095   EXPECT_EQ(1, on_start_counter);
7096 }
7097 
7098 // Tests that the default_result_printer listener stops receiving events
7099 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7100 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7101   int on_start_counter = 0;
7102   bool is_destroyed = false;
7103   // Although Append passes the ownership of this object to the list,
7104   // the following calls release it, and we need to delete it before the
7105   // test ends.
7106   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7107   {
7108     TestEventListeners listeners;
7109     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7110 
7111     EXPECT_EQ(listener, listeners.Release(listener));
7112     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7113     EXPECT_FALSE(is_destroyed);
7114 
7115     // Broadcasting events now should not affect default_result_printer.
7116     TestEventListenersAccessor::GetRepeater(&listeners)
7117         ->OnTestProgramStart(*UnitTest::GetInstance());
7118     EXPECT_EQ(0, on_start_counter);
7119   }
7120   // Destroying the list should not affect the listener now, too.
7121   EXPECT_FALSE(is_destroyed);
7122   delete listener;
7123 }
7124 
7125 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7126 // receiving events and is returned via default_xml_generator() and that
7127 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7128 TEST(EventListenerTest, default_xml_generator) {
7129   int on_start_counter = 0;
7130   bool is_destroyed = false;
7131   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7132 
7133   TestEventListeners listeners;
7134   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7135 
7136   EXPECT_EQ(listener, listeners.default_xml_generator());
7137 
7138   TestEventListenersAccessor::GetRepeater(&listeners)
7139       ->OnTestProgramStart(*UnitTest::GetInstance());
7140 
7141   EXPECT_EQ(1, on_start_counter);
7142 
7143   // Replacing default_xml_generator with something else should remove it
7144   // from the list and destroy it.
7145   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7146 
7147   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7148   EXPECT_TRUE(is_destroyed);
7149 
7150   // After broadcasting an event the counter is still the same, indicating
7151   // the listener is not in the list anymore.
7152   TestEventListenersAccessor::GetRepeater(&listeners)
7153       ->OnTestProgramStart(*UnitTest::GetInstance());
7154   EXPECT_EQ(1, on_start_counter);
7155 }
7156 
7157 // Tests that the default_xml_generator listener stops receiving events
7158 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7159 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7160   int on_start_counter = 0;
7161   bool is_destroyed = false;
7162   // Although Append passes the ownership of this object to the list,
7163   // the following calls release it, and we need to delete it before the
7164   // test ends.
7165   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7166   {
7167     TestEventListeners listeners;
7168     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7169 
7170     EXPECT_EQ(listener, listeners.Release(listener));
7171     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7172     EXPECT_FALSE(is_destroyed);
7173 
7174     // Broadcasting events now should not affect default_xml_generator.
7175     TestEventListenersAccessor::GetRepeater(&listeners)
7176         ->OnTestProgramStart(*UnitTest::GetInstance());
7177     EXPECT_EQ(0, on_start_counter);
7178   }
7179   // Destroying the list should not affect the listener now, too.
7180   EXPECT_FALSE(is_destroyed);
7181   delete listener;
7182 }
7183 
7184 // Tests to ensure that the alternative, verbose spellings of
7185 // some of the macros work.  We don't test them thoroughly as that
7186 // would be quite involved.  Since their implementations are
7187 // straightforward, and they are rarely used, we'll just rely on the
7188 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7189 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7190   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7191 
7192   // GTEST_FAIL is the same as FAIL.
7193   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7194                        "An expected failure");
7195 
7196   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7197 
7198   GTEST_ASSERT_EQ(0, 0);
7199   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7200                        "An expected failure");
7201   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7202                        "An expected failure");
7203 
7204   GTEST_ASSERT_NE(0, 1);
7205   GTEST_ASSERT_NE(1, 0);
7206   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7207                        "An expected failure");
7208 
7209   GTEST_ASSERT_LE(0, 0);
7210   GTEST_ASSERT_LE(0, 1);
7211   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7212                        "An expected failure");
7213 
7214   GTEST_ASSERT_LT(0, 1);
7215   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7216                        "An expected failure");
7217   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7218                        "An expected failure");
7219 
7220   GTEST_ASSERT_GE(0, 0);
7221   GTEST_ASSERT_GE(1, 0);
7222   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7223                        "An expected failure");
7224 
7225   GTEST_ASSERT_GT(1, 0);
7226   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7227                        "An expected failure");
7228   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7229                        "An expected failure");
7230 }
7231 
7232 // Tests for internal utilities necessary for implementation of the universal
7233 // printing.
7234 
7235 class ConversionHelperBase {};
7236 class ConversionHelperDerived : public ConversionHelperBase {};
7237 
7238 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7239   std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7240   std::string ShortDebugString() const { return ""; }
7241 };
7242 
7243 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7244 
7245 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7246   std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7247   int ShortDebugString() const { return 1; }
7248 };
7249 
7250 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7251   std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7252   std::string ShortDebugString() const { return ""; }
7253 };
7254 
7255 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7256   std::string DebugString() { return ""; }
7257 };
7258 
7259 struct IncompleteType;
7260 
7261 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7262 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7263 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7264   static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7265                 "const_true");
7266   static_assert(
7267       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7268       "const_true");
7269   static_assert(HasDebugStringAndShortDebugString<
7270                     const InheritsDebugStringMethods>::value,
7271                 "const_true");
7272   static_assert(
7273       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7274       "const_false");
7275   static_assert(
7276       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7277       "const_false");
7278   static_assert(
7279       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7280       "const_false");
7281   static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7282                 "const_false");
7283   static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7284 }
7285 
7286 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7287 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7288 TEST(HasDebugStringAndShortDebugStringTest,
7289      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7290   EXPECT_TRUE(
7291       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7292 }
7293 
7294 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7295 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7296 TEST(HasDebugStringAndShortDebugStringTest,
7297      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7298   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7299   EXPECT_FALSE(
7300       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7301 }
7302 
7303 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7304 
7305 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7306 void TestGTestRemoveReferenceAndConst() {
7307   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7308                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7309 }
7310 
TEST(RemoveReferenceToConstTest,Works)7311 TEST(RemoveReferenceToConstTest, Works) {
7312   TestGTestRemoveReferenceAndConst<int, int>();
7313   TestGTestRemoveReferenceAndConst<double, double&>();
7314   TestGTestRemoveReferenceAndConst<char, const char>();
7315   TestGTestRemoveReferenceAndConst<char, const char&>();
7316   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7317 }
7318 
7319 // Tests GTEST_REFERENCE_TO_CONST_.
7320 
7321 template <typename T1, typename T2>
TestGTestReferenceToConst()7322 void TestGTestReferenceToConst() {
7323   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7324                 "GTEST_REFERENCE_TO_CONST_ failed.");
7325 }
7326 
TEST(GTestReferenceToConstTest,Works)7327 TEST(GTestReferenceToConstTest, Works) {
7328   TestGTestReferenceToConst<const char&, char>();
7329   TestGTestReferenceToConst<const int&, const int>();
7330   TestGTestReferenceToConst<const double&, double>();
7331   TestGTestReferenceToConst<const std::string&, const std::string&>();
7332 }
7333 
7334 // Tests IsContainerTest.
7335 
7336 class NonContainer {};
7337 
TEST(IsContainerTestTest,WorksForNonContainer)7338 TEST(IsContainerTestTest, WorksForNonContainer) {
7339   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7340   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7341   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7342 }
7343 
TEST(IsContainerTestTest,WorksForContainer)7344 TEST(IsContainerTestTest, WorksForContainer) {
7345   EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7346   EXPECT_EQ(sizeof(IsContainer),
7347             sizeof(IsContainerTest<std::map<int, double>>(0)));
7348 }
7349 
7350 struct ConstOnlyContainerWithPointerIterator {
7351   using const_iterator = int*;
7352   const_iterator begin() const;
7353   const_iterator end() const;
7354 };
7355 
7356 struct ConstOnlyContainerWithClassIterator {
7357   struct const_iterator {
7358     const int& operator*() const;
7359     const_iterator& operator++(/* pre-increment */);
7360   };
7361   const_iterator begin() const;
7362   const_iterator end() const;
7363 };
7364 
TEST(IsContainerTestTest,ConstOnlyContainer)7365 TEST(IsContainerTestTest, ConstOnlyContainer) {
7366   EXPECT_EQ(sizeof(IsContainer),
7367             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7368   EXPECT_EQ(sizeof(IsContainer),
7369             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7370 }
7371 
7372 // Tests IsHashTable.
7373 struct AHashTable {
7374   typedef void hasher;
7375 };
7376 struct NotReallyAHashTable {
7377   typedef void hasher;
7378   typedef void reverse_iterator;
7379 };
TEST(IsHashTable,Basic)7380 TEST(IsHashTable, Basic) {
7381   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7382   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7383   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7384   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7385 }
7386 
7387 // Tests ArrayEq().
7388 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7389 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7390   EXPECT_TRUE(ArrayEq(5, 5L));
7391   EXPECT_FALSE(ArrayEq('a', 0));
7392 }
7393 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7394 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7395   // Note that a and b are distinct but compatible types.
7396   const int a[] = {0, 1};
7397   long b[] = {0, 1};
7398   EXPECT_TRUE(ArrayEq(a, b));
7399   EXPECT_TRUE(ArrayEq(a, 2, b));
7400 
7401   b[0] = 2;
7402   EXPECT_FALSE(ArrayEq(a, b));
7403   EXPECT_FALSE(ArrayEq(a, 1, b));
7404 }
7405 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7406 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7407   const char a[][3] = {"hi", "lo"};
7408   const char b[][3] = {"hi", "lo"};
7409   const char c[][3] = {"hi", "li"};
7410 
7411   EXPECT_TRUE(ArrayEq(a, b));
7412   EXPECT_TRUE(ArrayEq(a, 2, b));
7413 
7414   EXPECT_FALSE(ArrayEq(a, c));
7415   EXPECT_FALSE(ArrayEq(a, 2, c));
7416 }
7417 
7418 // Tests ArrayAwareFind().
7419 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7420 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7421   const char a[] = "hello";
7422   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7423   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7424 }
7425 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7426 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7427   int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7428   const int b[2] = {2, 3};
7429   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7430 
7431   const int c[2] = {6, 7};
7432   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7433 }
7434 
7435 // Tests CopyArray().
7436 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7437 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7438   int n = 0;
7439   CopyArray('a', &n);
7440   EXPECT_EQ('a', n);
7441 }
7442 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7443 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7444   const char a[3] = "hi";
7445   int b[3];
7446 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7447   CopyArray(a, &b);
7448   EXPECT_TRUE(ArrayEq(a, b));
7449 #endif
7450 
7451   int c[3];
7452   CopyArray(a, 3, c);
7453   EXPECT_TRUE(ArrayEq(a, c));
7454 }
7455 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7456 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7457   const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7458   int b[2][3];
7459 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7460   CopyArray(a, &b);
7461   EXPECT_TRUE(ArrayEq(a, b));
7462 #endif
7463 
7464   int c[2][3];
7465   CopyArray(a, 2, c);
7466   EXPECT_TRUE(ArrayEq(a, c));
7467 }
7468 
7469 // Tests NativeArray.
7470 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7471 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7472   const int a[3] = {0, 1, 2};
7473   NativeArray<int> na(a, 3, RelationToSourceReference());
7474   EXPECT_EQ(3U, na.size());
7475   EXPECT_EQ(a, na.begin());
7476 }
7477 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7478 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7479   typedef int Array[2];
7480   Array* a = new Array[1];
7481   (*a)[0] = 0;
7482   (*a)[1] = 1;
7483   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7484   EXPECT_NE(*a, na.begin());
7485   delete[] a;
7486   EXPECT_EQ(0, na.begin()[0]);
7487   EXPECT_EQ(1, na.begin()[1]);
7488 
7489   // We rely on the heap checker to verify that na deletes the copy of
7490   // array.
7491 }
7492 
TEST(NativeArrayTest,TypeMembersAreCorrect)7493 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7494   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7495   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7496 
7497   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7498   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7499 }
7500 
TEST(NativeArrayTest,MethodsWork)7501 TEST(NativeArrayTest, MethodsWork) {
7502   const int a[3] = {0, 1, 2};
7503   NativeArray<int> na(a, 3, RelationToSourceCopy());
7504   ASSERT_EQ(3U, na.size());
7505   EXPECT_EQ(3, na.end() - na.begin());
7506 
7507   NativeArray<int>::const_iterator it = na.begin();
7508   EXPECT_EQ(0, *it);
7509   ++it;
7510   EXPECT_EQ(1, *it);
7511   it++;
7512   EXPECT_EQ(2, *it);
7513   ++it;
7514   EXPECT_EQ(na.end(), it);
7515 
7516   EXPECT_TRUE(na == na);
7517 
7518   NativeArray<int> na2(a, 3, RelationToSourceReference());
7519   EXPECT_TRUE(na == na2);
7520 
7521   const int b1[3] = {0, 1, 1};
7522   const int b2[4] = {0, 1, 2, 3};
7523   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7524   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7525 }
7526 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7527 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7528   const char a[2][3] = {"hi", "lo"};
7529   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7530   ASSERT_EQ(2U, na.size());
7531   EXPECT_EQ(a, na.begin());
7532 }
7533 
7534 // ElemFromList
TEST(ElemFromList,Basic)7535 TEST(ElemFromList, Basic) {
7536   using testing::internal::ElemFromList;
7537   EXPECT_TRUE(
7538       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7539   EXPECT_TRUE(
7540       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7541   EXPECT_TRUE(
7542       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7543   EXPECT_TRUE((
7544       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7545                                       char, int, int, int, int>::type>::value));
7546 }
7547 
7548 // FlatTuple
TEST(FlatTuple,Basic)7549 TEST(FlatTuple, Basic) {
7550   using testing::internal::FlatTuple;
7551 
7552   FlatTuple<int, double, const char*> tuple = {};
7553   EXPECT_EQ(0, tuple.Get<0>());
7554   EXPECT_EQ(0.0, tuple.Get<1>());
7555   EXPECT_EQ(nullptr, tuple.Get<2>());
7556 
7557   tuple = FlatTuple<int, double, const char*>(
7558       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7559   EXPECT_EQ(7, tuple.Get<0>());
7560   EXPECT_EQ(3.2, tuple.Get<1>());
7561   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7562 
7563   tuple.Get<1>() = 5.1;
7564   EXPECT_EQ(5.1, tuple.Get<1>());
7565 }
7566 
7567 namespace {
AddIntToString(int i,const std::string & s)7568 std::string AddIntToString(int i, const std::string& s) {
7569   return s + std::to_string(i);
7570 }
7571 }  // namespace
7572 
TEST(FlatTuple,Apply)7573 TEST(FlatTuple, Apply) {
7574   using testing::internal::FlatTuple;
7575 
7576   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7577                                     5, "Hello"};
7578 
7579   // Lambda.
7580   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7581     return i == static_cast<int>(s.size());
7582   }));
7583 
7584   // Function.
7585   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7586 
7587   // Mutating operations.
7588   tuple.Apply([](int& i, std::string& s) {
7589     ++i;
7590     s += s;
7591   });
7592   EXPECT_EQ(tuple.Get<0>(), 6);
7593   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7594 }
7595 
7596 struct ConstructionCounting {
ConstructionCountingConstructionCounting7597   ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7598   ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7599   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7600   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7601   ConstructionCounting& operator=(const ConstructionCounting&) {
7602     ++copy_assignment_calls;
7603     return *this;
7604   }
operator =ConstructionCounting7605   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7606     ++move_assignment_calls;
7607     return *this;
7608   }
7609 
ResetConstructionCounting7610   static void Reset() {
7611     default_ctor_calls = 0;
7612     dtor_calls = 0;
7613     copy_ctor_calls = 0;
7614     move_ctor_calls = 0;
7615     copy_assignment_calls = 0;
7616     move_assignment_calls = 0;
7617   }
7618 
7619   static int default_ctor_calls;
7620   static int dtor_calls;
7621   static int copy_ctor_calls;
7622   static int move_ctor_calls;
7623   static int copy_assignment_calls;
7624   static int move_assignment_calls;
7625 };
7626 
7627 int ConstructionCounting::default_ctor_calls = 0;
7628 int ConstructionCounting::dtor_calls = 0;
7629 int ConstructionCounting::copy_ctor_calls = 0;
7630 int ConstructionCounting::move_ctor_calls = 0;
7631 int ConstructionCounting::copy_assignment_calls = 0;
7632 int ConstructionCounting::move_assignment_calls = 0;
7633 
TEST(FlatTuple,ConstructorCalls)7634 TEST(FlatTuple, ConstructorCalls) {
7635   using testing::internal::FlatTuple;
7636 
7637   // Default construction.
7638   ConstructionCounting::Reset();
7639   { FlatTuple<ConstructionCounting> tuple; }
7640   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7641   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7642   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7643   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7644   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7645   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7646 
7647   // Copy construction.
7648   ConstructionCounting::Reset();
7649   {
7650     ConstructionCounting elem;
7651     FlatTuple<ConstructionCounting> tuple{
7652         testing::internal::FlatTupleConstructTag{}, elem};
7653   }
7654   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7655   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7656   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7657   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7658   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7659   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7660 
7661   // Move construction.
7662   ConstructionCounting::Reset();
7663   {
7664     FlatTuple<ConstructionCounting> tuple{
7665         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7666   }
7667   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7668   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7669   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7670   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7671   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7672   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7673 
7674   // Copy assignment.
7675   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7676   // elements
7677   ConstructionCounting::Reset();
7678   {
7679     FlatTuple<ConstructionCounting> tuple;
7680     ConstructionCounting elem;
7681     tuple.Get<0>() = elem;
7682   }
7683   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7684   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7685   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7686   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7687   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7688   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7689 
7690   // Move assignment.
7691   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7692   // elements
7693   ConstructionCounting::Reset();
7694   {
7695     FlatTuple<ConstructionCounting> tuple;
7696     tuple.Get<0>() = ConstructionCounting{};
7697   }
7698   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7699   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7700   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7701   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7702   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7703   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7704 
7705   ConstructionCounting::Reset();
7706 }
7707 
TEST(FlatTuple,ManyTypes)7708 TEST(FlatTuple, ManyTypes) {
7709   using testing::internal::FlatTuple;
7710 
7711   // Instantiate FlatTuple with 257 ints.
7712   // Tests show that we can do it with thousands of elements, but very long
7713   // compile times makes it unusuitable for this test.
7714 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7715 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7716 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7717 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7718 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7719 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7720 
7721   // Let's make sure that we can have a very long list of types without blowing
7722   // up the template instantiation depth.
7723   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7724 
7725   tuple.Get<0>() = 7;
7726   tuple.Get<99>() = 17;
7727   tuple.Get<256>() = 1000;
7728   EXPECT_EQ(7, tuple.Get<0>());
7729   EXPECT_EQ(17, tuple.Get<99>());
7730   EXPECT_EQ(1000, tuple.Get<256>());
7731 }
7732 
7733 // Tests SkipPrefix().
7734 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7735 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7736   const char* const str = "hello";
7737 
7738   const char* p = str;
7739   EXPECT_TRUE(SkipPrefix("", &p));
7740   EXPECT_EQ(str, p);
7741 
7742   p = str;
7743   EXPECT_TRUE(SkipPrefix("hell", &p));
7744   EXPECT_EQ(str + 4, p);
7745 }
7746 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7747 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7748   const char* const str = "world";
7749 
7750   const char* p = str;
7751   EXPECT_FALSE(SkipPrefix("W", &p));
7752   EXPECT_EQ(str, p);
7753 
7754   p = str;
7755   EXPECT_FALSE(SkipPrefix("world!", &p));
7756   EXPECT_EQ(str, p);
7757 }
7758 
7759 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7760 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7761   const testing::TestResult& test_result =
7762       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7763   EXPECT_FALSE(test_result.Failed());
7764 }
7765 
7766 class DynamicUnitTestFixture : public testing::Test {};
7767 
7768 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7769   void TestBody() override { EXPECT_TRUE(true); }
7770 };
7771 
7772 auto* dynamic_test = testing::RegisterTest(
7773     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon19f4cde20a02() 7774     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7775 
TEST(RegisterTest,WasRegistered)7776 TEST(RegisterTest, WasRegistered) {
7777   const auto& unittest = testing::UnitTest::GetInstance();
7778   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7779     auto* tests = unittest->GetTestSuite(i);
7780     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7781     for (int j = 0; j < tests->total_test_count(); ++j) {
7782       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7783       // Found it.
7784       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7785       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7786       return;
7787     }
7788   }
7789 
7790   FAIL() << "Didn't find the test!";
7791 }
7792 
7793 // Test that the pattern globbing algorithm is linear. If not, this test should
7794 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7795 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7796   std::string name(100, 'a');  // Construct the string (a^100)b
7797   name.push_back('b');
7798 
7799   std::string pattern;  // Construct the string ((a*)^100)b
7800   for (int i = 0; i < 100; ++i) {
7801     pattern.append("a*");
7802   }
7803   pattern.push_back('b');
7804 
7805   EXPECT_TRUE(
7806       testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7807 }
7808 
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7809 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7810   const std::string name = "aaaa";
7811   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7812   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7813   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7814   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7815   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7816 }
7817 
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7818 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7819   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7820   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7821   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7822   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7823 }
7824