xref: /freebsd/sys/amd64/include/cpufunc.h (revision 111c7fc2fe21356a637f89fa58c407958f05ad93)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1993 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Functions to provide access to special i386 instructions.
35  * This in included in sys/systm.h, and that file should be
36  * used in preference to this.
37  */
38 
39 #ifdef __i386__
40 #include <i386/cpufunc.h>
41 #else /* !__i386__ */
42 
43 #ifndef _MACHINE_CPUFUNC_H_
44 #define	_MACHINE_CPUFUNC_H_
45 
46 struct region_descriptor;
47 
48 #define readb(va)	(*(volatile uint8_t *) (va))
49 #define readw(va)	(*(volatile uint16_t *) (va))
50 #define readl(va)	(*(volatile uint32_t *) (va))
51 #define readq(va)	(*(volatile uint64_t *) (va))
52 
53 #define writeb(va, d)	(*(volatile uint8_t *) (va) = (d))
54 #define writew(va, d)	(*(volatile uint16_t *) (va) = (d))
55 #define writel(va, d)	(*(volatile uint32_t *) (va) = (d))
56 #define writeq(va, d)	(*(volatile uint64_t *) (va) = (d))
57 
58 static __inline void
breakpoint(void)59 breakpoint(void)
60 {
61 	__asm __volatile("int $3");
62 }
63 
64 #define	bsfl(mask)	__builtin_ctz(mask)
65 
66 #define	bsfq(mask)	__builtin_ctzl(mask)
67 
68 static __inline void
clflush(u_long addr)69 clflush(u_long addr)
70 {
71 
72 	__asm __volatile("clflush %0" : : "m" (*(char *)addr));
73 }
74 
75 static __inline void
clflushopt(u_long addr)76 clflushopt(u_long addr)
77 {
78 
79 	__asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr));
80 }
81 
82 static __inline void
clwb(u_long addr)83 clwb(u_long addr)
84 {
85 
86 	__asm __volatile("clwb %0" : : "m" (*(char *)addr));
87 }
88 
89 static __inline void
clts(void)90 clts(void)
91 {
92 
93 	__asm __volatile("clts");
94 }
95 
96 static __inline void
disable_intr(void)97 disable_intr(void)
98 {
99 	__asm __volatile("cli" : : : "memory");
100 }
101 
102 static __inline void
do_cpuid(u_int ax,u_int * p)103 do_cpuid(u_int ax, u_int *p)
104 {
105 	__asm __volatile("cpuid"
106 	    : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
107 	    :  "0" (ax));
108 }
109 
110 static __inline void
cpuid_count(u_int ax,u_int cx,u_int * p)111 cpuid_count(u_int ax, u_int cx, u_int *p)
112 {
113 	__asm __volatile("cpuid"
114 	    : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
115 	    :  "0" (ax), "c" (cx));
116 }
117 
118 static __inline void
enable_intr(void)119 enable_intr(void)
120 {
121 	__asm __volatile("sti");
122 }
123 
124 static __inline void
halt(void)125 halt(void)
126 {
127 	__asm __volatile("hlt");
128 }
129 
130 static __inline u_char
inb(u_int port)131 inb(u_int port)
132 {
133 	u_char	data;
134 
135 	__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
136 	return (data);
137 }
138 
139 static __inline u_int
inl(u_int port)140 inl(u_int port)
141 {
142 	u_int	data;
143 
144 	__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
145 	return (data);
146 }
147 
148 static __inline void
insb(u_int port,void * addr,size_t count)149 insb(u_int port, void *addr, size_t count)
150 {
151 	__asm __volatile("rep; insb"
152 			 : "+D" (addr), "+c" (count)
153 			 : "d" (port)
154 			 : "memory");
155 }
156 
157 static __inline void
insw(u_int port,void * addr,size_t count)158 insw(u_int port, void *addr, size_t count)
159 {
160 	__asm __volatile("rep; insw"
161 			 : "+D" (addr), "+c" (count)
162 			 : "d" (port)
163 			 : "memory");
164 }
165 
166 static __inline void
insl(u_int port,void * addr,size_t count)167 insl(u_int port, void *addr, size_t count)
168 {
169 	__asm __volatile("rep; insl"
170 			 : "+D" (addr), "+c" (count)
171 			 : "d" (port)
172 			 : "memory");
173 }
174 
175 static __inline void
invd(void)176 invd(void)
177 {
178 	__asm __volatile("invd");
179 }
180 
181 static __inline u_short
inw(u_int port)182 inw(u_int port)
183 {
184 	u_short	data;
185 
186 	__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
187 	return (data);
188 }
189 
190 static __inline void
outb(u_int port,u_char data)191 outb(u_int port, u_char data)
192 {
193 	__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
194 }
195 
196 static __inline void
outl(u_int port,u_int data)197 outl(u_int port, u_int data)
198 {
199 	__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
200 }
201 
202 static __inline void
outsb(u_int port,const void * addr,size_t count)203 outsb(u_int port, const void *addr, size_t count)
204 {
205 	__asm __volatile("rep; outsb"
206 			 : "+S" (addr), "+c" (count)
207 			 : "d" (port));
208 }
209 
210 static __inline void
outsw(u_int port,const void * addr,size_t count)211 outsw(u_int port, const void *addr, size_t count)
212 {
213 	__asm __volatile("rep; outsw"
214 			 : "+S" (addr), "+c" (count)
215 			 : "d" (port));
216 }
217 
218 static __inline void
outsl(u_int port,const void * addr,size_t count)219 outsl(u_int port, const void *addr, size_t count)
220 {
221 	__asm __volatile("rep; outsl"
222 			 : "+S" (addr), "+c" (count)
223 			 : "d" (port));
224 }
225 
226 static __inline void
outw(u_int port,u_short data)227 outw(u_int port, u_short data)
228 {
229 	__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
230 }
231 
232 static __inline u_long
popcntq(u_long mask)233 popcntq(u_long mask)
234 {
235 	u_long result;
236 
237 	__asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask));
238 	return (result);
239 }
240 
241 static __inline void
lfence(void)242 lfence(void)
243 {
244 
245 	__asm __volatile("lfence" : : : "memory");
246 }
247 
248 static __inline void
mfence(void)249 mfence(void)
250 {
251 
252 	__asm __volatile("mfence" : : : "memory");
253 }
254 
255 static __inline void
sfence(void)256 sfence(void)
257 {
258 
259 	__asm __volatile("sfence" : : : "memory");
260 }
261 
262 static __inline void
ia32_pause(void)263 ia32_pause(void)
264 {
265 	__asm __volatile("pause");
266 }
267 
268 static __inline u_long
read_rflags(void)269 read_rflags(void)
270 {
271 	u_long	rf;
272 
273 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
274 	return (rf);
275 }
276 
277 static __inline uint64_t
rdmsr(u_int msr)278 rdmsr(u_int msr)
279 {
280 	uint32_t low, high;
281 
282 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
283 	return (low | ((uint64_t)high << 32));
284 }
285 
286 static __inline uint32_t
rdmsr32(u_int msr)287 rdmsr32(u_int msr)
288 {
289 	uint32_t low;
290 
291 	__asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx");
292 	return (low);
293 }
294 
295 static __inline uint64_t
rdpmc(u_int pmc)296 rdpmc(u_int pmc)
297 {
298 	uint32_t low, high;
299 
300 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
301 	return (low | ((uint64_t)high << 32));
302 }
303 
304 static __inline uint64_t
rdtsc(void)305 rdtsc(void)
306 {
307 	uint32_t low, high;
308 
309 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
310 	return (low | ((uint64_t)high << 32));
311 }
312 
313 static __inline uint64_t
rdtsc_ordered_lfence(void)314 rdtsc_ordered_lfence(void)
315 {
316 	lfence();
317 	return (rdtsc());
318 }
319 
320 static __inline uint64_t
rdtsc_ordered_mfence(void)321 rdtsc_ordered_mfence(void)
322 {
323 	mfence();
324 	return (rdtsc());
325 }
326 
327 static __inline uint64_t
rdtscp(void)328 rdtscp(void)
329 {
330 	uint32_t low, high;
331 
332 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high) : : "ecx");
333 	return (low | ((uint64_t)high << 32));
334 }
335 
336 static __inline uint64_t
rdtscp_aux(uint32_t * aux)337 rdtscp_aux(uint32_t *aux)
338 {
339 	uint32_t low, high;
340 
341 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high), "=c" (*aux));
342 	return (low | ((uint64_t)high << 32));
343 }
344 
345 static __inline uint32_t
rdtsc32(void)346 rdtsc32(void)
347 {
348 	uint32_t rv;
349 
350 	__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
351 	return (rv);
352 }
353 
354 static __inline uint32_t
rdtscp32(void)355 rdtscp32(void)
356 {
357 	uint32_t rv;
358 
359 	__asm __volatile("rdtscp" : "=a" (rv) : : "ecx", "edx");
360 	return (rv);
361 }
362 
363 static __inline void
wbinvd(void)364 wbinvd(void)
365 {
366 	__asm __volatile("wbinvd");
367 }
368 
369 static __inline void
write_rflags(u_long rf)370 write_rflags(u_long rf)
371 {
372 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
373 }
374 
375 static __inline void
wrmsr(u_int msr,uint64_t newval)376 wrmsr(u_int msr, uint64_t newval)
377 {
378 	uint32_t low, high;
379 
380 	low = newval;
381 	high = newval >> 32;
382 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
383 }
384 
385 static __inline void
load_cr0(u_long data)386 load_cr0(u_long data)
387 {
388 
389 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
390 }
391 
392 static __inline u_long
rcr0(void)393 rcr0(void)
394 {
395 	u_long	data;
396 
397 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
398 	return (data);
399 }
400 
401 static __inline u_long
rcr2(void)402 rcr2(void)
403 {
404 	u_long	data;
405 
406 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
407 	return (data);
408 }
409 
410 static __inline void
load_cr3(u_long data)411 load_cr3(u_long data)
412 {
413 
414 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
415 }
416 
417 static __inline u_long
rcr3(void)418 rcr3(void)
419 {
420 	u_long	data;
421 
422 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
423 	return (data);
424 }
425 
426 static __inline void
load_cr4(u_long data)427 load_cr4(u_long data)
428 {
429 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
430 }
431 
432 static __inline u_long
rcr4(void)433 rcr4(void)
434 {
435 	u_long	data;
436 
437 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
438 	return (data);
439 }
440 
441 static __inline u_long
rxcr(u_int reg)442 rxcr(u_int reg)
443 {
444 	u_int low, high;
445 
446 	__asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg));
447 	return (low | ((uint64_t)high << 32));
448 }
449 
450 static __inline void
load_xcr(u_int reg,u_long val)451 load_xcr(u_int reg, u_long val)
452 {
453 	u_int low, high;
454 
455 	low = val;
456 	high = val >> 32;
457 	__asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high));
458 }
459 
460 /*
461  * Global TLB flush (except for thise for pages marked PG_G)
462  */
463 static __inline void
invltlb(void)464 invltlb(void)
465 {
466 
467 	load_cr3(rcr3());
468 }
469 
470 #ifndef CR4_PGE
471 #define	CR4_PGE	0x00000080	/* Page global enable */
472 #endif
473 
474 /*
475  * Perform the guaranteed invalidation of all TLB entries.  This
476  * includes the global entries, and entries in all PCIDs, not only the
477  * current context.  The function works both on non-PCID CPUs and CPUs
478  * with the PCID turned off or on.  See IA-32 SDM Vol. 3a 4.10.4.1
479  * Operations that Invalidate TLBs and Paging-Structure Caches.
480  */
481 static __inline void
invltlb_glob(void)482 invltlb_glob(void)
483 {
484 	uint64_t cr4;
485 
486 	cr4 = rcr4();
487 	load_cr4(cr4 & ~CR4_PGE);
488 	/*
489 	 * Although preemption at this point could be detrimental to
490 	 * performance, it would not lead to an error.  PG_G is simply
491 	 * ignored if CR4.PGE is clear.  Moreover, in case this block
492 	 * is re-entered, the load_cr4() either above or below will
493 	 * modify CR4.PGE flushing the TLB.
494 	 */
495 	load_cr4(cr4 | CR4_PGE);
496 }
497 
498 /*
499  * TLB flush for an individual page (even if it has PG_G).
500  * Only works on 486+ CPUs (i386 does not have PG_G).
501  */
502 static __inline void
invlpg(u_long addr)503 invlpg(u_long addr)
504 {
505 
506 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
507 }
508 
509 #define	INVPCID_ADDR	0
510 #define	INVPCID_CTX	1
511 #define	INVPCID_CTXGLOB	2
512 #define	INVPCID_ALLCTX	3
513 
514 struct invpcid_descr {
515 	uint64_t	pcid:12 __packed;
516 	uint64_t	pad:52 __packed;
517 	uint64_t	addr;
518 } __packed;
519 
520 static __inline void
invpcid(struct invpcid_descr * d,int type)521 invpcid(struct invpcid_descr *d, int type)
522 {
523 
524 	__asm __volatile("invpcid (%0),%1"
525 	    : : "r" (d), "r" ((u_long)type) : "memory");
526 }
527 
528 #define	INVLPGB_VA		0x0001
529 #define	INVLPGB_PCID		0x0002
530 #define	INVLPGB_ASID		0x0004
531 #define	INVLPGB_GLOB		0x0008
532 #define	INVLPGB_FIN		0x0010
533 #define	INVLPGB_NEST		0x0020
534 
535 #define	INVLPGB_DESCR(asid, pcid)	(((pcid) << 16) | (asid))
536 
537 #define	INVLPGB_2M_CNT		(1u << 31)
538 
539 static __inline void
invlpgb(uint64_t rax,uint32_t edx,uint32_t ecx)540 invlpgb(uint64_t rax, uint32_t edx, uint32_t ecx)
541 {
542 	__asm __volatile("invlpgb" : : "a" (rax), "d" (edx), "c" (ecx));
543 }
544 
545 static __inline void
tlbsync(void)546 tlbsync(void)
547 {
548 	__asm __volatile("tlbsync");
549 }
550 
551 static __inline u_short
rfs(void)552 rfs(void)
553 {
554 	u_short sel;
555 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
556 	return (sel);
557 }
558 
559 static __inline u_short
rgs(void)560 rgs(void)
561 {
562 	u_short sel;
563 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
564 	return (sel);
565 }
566 
567 static __inline u_short
rss(void)568 rss(void)
569 {
570 	u_short sel;
571 	__asm __volatile("movw %%ss,%0" : "=rm" (sel));
572 	return (sel);
573 }
574 
575 static __inline void
load_ds(u_short sel)576 load_ds(u_short sel)
577 {
578 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
579 }
580 
581 static __inline void
load_es(u_short sel)582 load_es(u_short sel)
583 {
584 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
585 }
586 
587 static __inline void
cpu_monitor(const void * addr,u_long extensions,u_int hints)588 cpu_monitor(const void *addr, u_long extensions, u_int hints)
589 {
590 
591 	__asm __volatile("monitor"
592 	    : : "a" (addr), "c" (extensions), "d" (hints));
593 }
594 
595 static __inline void
cpu_mwait(u_long extensions,u_int hints)596 cpu_mwait(u_long extensions, u_int hints)
597 {
598 
599 	__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
600 }
601 
602 static __inline uint32_t
rdpkru(void)603 rdpkru(void)
604 {
605 	uint32_t res;
606 
607 	__asm __volatile("rdpkru" :  "=a" (res) : "c" (0) : "edx");
608 	return (res);
609 }
610 
611 static __inline void
wrpkru(uint32_t mask)612 wrpkru(uint32_t mask)
613 {
614 
615 	__asm __volatile("wrpkru" :  : "a" (mask),  "c" (0), "d" (0));
616 }
617 
618 #ifdef _KERNEL
619 /* This is defined in <machine/specialreg.h> but is too painful to get to */
620 #ifndef	MSR_FSBASE
621 #define	MSR_FSBASE	0xc0000100
622 #endif
623 static __inline void
load_fs(u_short sel)624 load_fs(u_short sel)
625 {
626 	/* Preserve the fsbase value across the selector load */
627 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
628 	    : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
629 }
630 
631 #ifndef	MSR_GSBASE
632 #define	MSR_GSBASE	0xc0000101
633 #endif
634 static __inline void
load_gs(u_short sel)635 load_gs(u_short sel)
636 {
637 	/*
638 	 * Preserve the gsbase value across the selector load.
639 	 * Note that we have to disable interrupts because the gsbase
640 	 * being trashed happens to be the kernel gsbase at the time.
641 	 */
642 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
643 	    : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
644 }
645 #else
646 /* Usable by userland */
647 static __inline void
load_fs(u_short sel)648 load_fs(u_short sel)
649 {
650 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
651 }
652 
653 static __inline void
load_gs(u_short sel)654 load_gs(u_short sel)
655 {
656 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
657 }
658 #endif
659 
660 static __inline uint64_t
rdfsbase(void)661 rdfsbase(void)
662 {
663 	uint64_t x;
664 
665 	__asm __volatile("rdfsbase %0" : "=r" (x));
666 	return (x);
667 }
668 
669 static __inline void
wrfsbase(uint64_t x)670 wrfsbase(uint64_t x)
671 {
672 
673 	__asm __volatile("wrfsbase %0" : : "r" (x));
674 }
675 
676 static __inline uint64_t
rdgsbase(void)677 rdgsbase(void)
678 {
679 	uint64_t x;
680 
681 	__asm __volatile("rdgsbase %0" : "=r" (x));
682 	return (x);
683 }
684 
685 static __inline void
wrgsbase(uint64_t x)686 wrgsbase(uint64_t x)
687 {
688 
689 	__asm __volatile("wrgsbase %0" : : "r" (x));
690 }
691 
692 static __inline void
bare_lgdt(struct region_descriptor * addr)693 bare_lgdt(struct region_descriptor *addr)
694 {
695 	__asm __volatile("lgdt (%0)" : : "r" (addr));
696 }
697 
698 static __inline void
sgdt(struct region_descriptor * addr)699 sgdt(struct region_descriptor *addr)
700 {
701 	char *loc;
702 
703 	loc = (char *)addr;
704 	__asm __volatile("sgdt %0" : "=m" (*loc) : : "memory");
705 }
706 
707 static __inline void
lidt(struct region_descriptor * addr)708 lidt(struct region_descriptor *addr)
709 {
710 	__asm __volatile("lidt (%0)" : : "r" (addr));
711 }
712 
713 static __inline void
sidt(struct region_descriptor * addr)714 sidt(struct region_descriptor *addr)
715 {
716 	char *loc;
717 
718 	loc = (char *)addr;
719 	__asm __volatile("sidt %0" : "=m" (*loc) : : "memory");
720 }
721 
722 static __inline void
lldt(u_short sel)723 lldt(u_short sel)
724 {
725 	__asm __volatile("lldt %0" : : "r" (sel));
726 }
727 
728 static __inline u_short
sldt(void)729 sldt(void)
730 {
731 	u_short sel;
732 
733 	__asm __volatile("sldt %0" : "=r" (sel));
734 	return (sel);
735 }
736 
737 static __inline void
ltr(u_short sel)738 ltr(u_short sel)
739 {
740 	__asm __volatile("ltr %0" : : "r" (sel));
741 }
742 
743 static __inline uint32_t
read_tr(void)744 read_tr(void)
745 {
746 	u_short sel;
747 
748 	__asm __volatile("str %0" : "=r" (sel));
749 	return (sel);
750 }
751 
752 static __inline uint64_t
rdr0(void)753 rdr0(void)
754 {
755 	uint64_t data;
756 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
757 	return (data);
758 }
759 
760 static __inline void
load_dr0(uint64_t dr0)761 load_dr0(uint64_t dr0)
762 {
763 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
764 }
765 
766 static __inline uint64_t
rdr1(void)767 rdr1(void)
768 {
769 	uint64_t data;
770 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
771 	return (data);
772 }
773 
774 static __inline void
load_dr1(uint64_t dr1)775 load_dr1(uint64_t dr1)
776 {
777 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
778 }
779 
780 static __inline uint64_t
rdr2(void)781 rdr2(void)
782 {
783 	uint64_t data;
784 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
785 	return (data);
786 }
787 
788 static __inline void
load_dr2(uint64_t dr2)789 load_dr2(uint64_t dr2)
790 {
791 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
792 }
793 
794 static __inline uint64_t
rdr3(void)795 rdr3(void)
796 {
797 	uint64_t data;
798 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
799 	return (data);
800 }
801 
802 static __inline void
load_dr3(uint64_t dr3)803 load_dr3(uint64_t dr3)
804 {
805 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
806 }
807 
808 static __inline uint64_t
rdr6(void)809 rdr6(void)
810 {
811 	uint64_t data;
812 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
813 	return (data);
814 }
815 
816 static __inline void
load_dr6(uint64_t dr6)817 load_dr6(uint64_t dr6)
818 {
819 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
820 }
821 
822 static __inline uint64_t
rdr7(void)823 rdr7(void)
824 {
825 	uint64_t data;
826 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
827 	return (data);
828 }
829 
830 static __inline void
load_dr7(uint64_t dr7)831 load_dr7(uint64_t dr7)
832 {
833 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
834 }
835 
836 static __inline register_t
intr_disable(void)837 intr_disable(void)
838 {
839 	register_t rflags;
840 
841 	rflags = read_rflags();
842 	disable_intr();
843 	return (rflags);
844 }
845 
846 static __inline void
intr_restore(register_t rflags)847 intr_restore(register_t rflags)
848 {
849 	write_rflags(rflags);
850 }
851 
852 static __inline void
stac(void)853 stac(void)
854 {
855 
856 	__asm __volatile("stac" : : : "cc");
857 }
858 
859 static __inline void
clac(void)860 clac(void)
861 {
862 
863 	__asm __volatile("clac" : : : "cc");
864 }
865 
866 enum {
867 	SGX_ECREATE	= 0x0,
868 	SGX_EADD	= 0x1,
869 	SGX_EINIT	= 0x2,
870 	SGX_EREMOVE	= 0x3,
871 	SGX_EDGBRD	= 0x4,
872 	SGX_EDGBWR	= 0x5,
873 	SGX_EEXTEND	= 0x6,
874 	SGX_ELDU	= 0x8,
875 	SGX_EBLOCK	= 0x9,
876 	SGX_EPA		= 0xA,
877 	SGX_EWB		= 0xB,
878 	SGX_ETRACK	= 0xC,
879 };
880 
881 enum {
882 	SGX_PT_SECS = 0x00,
883 	SGX_PT_TCS  = 0x01,
884 	SGX_PT_REG  = 0x02,
885 	SGX_PT_VA   = 0x03,
886 	SGX_PT_TRIM = 0x04,
887 };
888 
889 int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx);
890 
891 static __inline int
sgx_ecreate(void * pginfo,void * secs)892 sgx_ecreate(void *pginfo, void *secs)
893 {
894 
895 	return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo,
896 	    (uint64_t)secs, 0));
897 }
898 
899 static __inline int
sgx_eadd(void * pginfo,void * epc)900 sgx_eadd(void *pginfo, void *epc)
901 {
902 
903 	return (sgx_encls(SGX_EADD, (uint64_t)pginfo,
904 	    (uint64_t)epc, 0));
905 }
906 
907 static __inline int
sgx_einit(void * sigstruct,void * secs,void * einittoken)908 sgx_einit(void *sigstruct, void *secs, void *einittoken)
909 {
910 
911 	return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct,
912 	    (uint64_t)secs, (uint64_t)einittoken));
913 }
914 
915 static __inline int
sgx_eextend(void * secs,void * epc)916 sgx_eextend(void *secs, void *epc)
917 {
918 
919 	return (sgx_encls(SGX_EEXTEND, (uint64_t)secs,
920 	    (uint64_t)epc, 0));
921 }
922 
923 static __inline int
sgx_epa(void * epc)924 sgx_epa(void *epc)
925 {
926 
927 	return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0));
928 }
929 
930 static __inline int
sgx_eldu(uint64_t rbx,uint64_t rcx,uint64_t rdx)931 sgx_eldu(uint64_t rbx, uint64_t rcx,
932     uint64_t rdx)
933 {
934 
935 	return (sgx_encls(SGX_ELDU, rbx, rcx, rdx));
936 }
937 
938 static __inline int
sgx_eremove(void * epc)939 sgx_eremove(void *epc)
940 {
941 
942 	return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0));
943 }
944 
945 void	reset_dbregs(void);
946 
947 #ifdef _KERNEL
948 int	rdmsr_safe(u_int msr, uint64_t *val);
949 int	wrmsr_safe(u_int msr, uint64_t newval);
950 #endif
951 
952 #endif /* !_MACHINE_CPUFUNC_H_ */
953 
954 #endif /* __i386__ */
955