Searched refs:Polynomial (Results 1 – 11 of 11) sorted by relevance
165 class Polynomial { class187 Polynomial(Value *V) : V(V) { in Polynomial() function in __anon71941b1b0111::Polynomial196 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) in Polynomial() function in __anon71941b1b0111::Polynomial199 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) in Polynomial() function in __anon71941b1b0111::Polynomial202 Polynomial() = default;226 Polynomial &add(const APInt &C) { in add()253 Polynomial &mul(const APInt &C) { in mul()330 Polynomial &lshr(const APInt &C) { in lshr()492 Polynomial &sextOrTrunc(unsigned n) { in sextOrTrunc()515 bool isCompatibleTo(const Polynomial &o) const { in isCompatibleTo()[all …]
6 // Polynomial is used in [2^-26, 1]. However it is least accurate close to 1, so
81 * Polynomial coefficients and other constants for tgamma128.c.
55 // Polynomial multiply words
701 // -- Polynomial multiplication
663 // -- Polynomial multiplication
842 Polynomial . . . . . . . . . . . . . . . 97--991089 Roots of a Polynomial . . . . . . . . . 776--7771159 Approximating All Zeros of a Polynomial2086 L. F. Shampine Discrete Least Squares Polynomial Fits 179--180
5856 title = "{ACM} Algorithm 419: Zeros of a Complex Polynomial",7939 title = "{ACM} Algorithm 429: Localization of the Roots of a Polynomial",8457 …title = "A Highly Parallel Algorithm for Approximating All Zeros of a Polynomial with Only …15743 title = "Discrete Least Squares Polynomial Fits",
2628 // SVE2 - Polynomial arithmetic
1840 // SVE2 - Polynomial arithmetic
310 // Polynomial vector types.