1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 //
31 // Tests for Google Test itself. This verifies that the basic constructs of
32 // Google Test work.
33
34 #include "gtest/gtest.h"
35
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40 bool dummy =
41 GTEST_FLAG_GET(also_run_disabled_tests) ||
42 GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43 GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44 GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45 GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46 GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47 GTEST_FLAG_GET(repeat) > 0 ||
48 GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49 GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50 GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51 GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52 GTEST_FLAG_GET(throw_on_failure);
53 EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
54 }
55
56 #include <limits.h> // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <ostream>
65 #include <set>
66 #include <stdexcept>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <utility>
71 #include <vector>
72
73 #include "gtest/gtest-spi.h"
74 #include "src/gtest-internal-inl.h"
75
76 struct ConvertibleGlobalType {
77 // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78 // The outer enable_if is to ensure the overload resolution doesn't encounter
79 // an ambiguity.
80 template <
81 class T,
82 std::enable_if_t<
83 false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84 operator T() const; // NOLINT(google-explicit-constructor)
85 };
86 void operator<<(ConvertibleGlobalType&, int);
87 static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88 << 1)(*)()) > 0,
89 "error in operator<< overload resolution");
90
91 namespace testing {
92 namespace internal {
93
94 #if GTEST_CAN_STREAM_RESULTS_
95
96 class StreamingListenerTest : public Test {
97 public:
98 class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99 public:
100 // Sends a string to the socket.
Send(const std::string & message)101 void Send(const std::string& message) override { output_ += message; }
102
103 std::string output_;
104 };
105
StreamingListenerTest()106 StreamingListenerTest()
107 : fake_sock_writer_(new FakeSocketWriter),
108 streamer_(fake_sock_writer_),
109 test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110 CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111
112 protected:
output()113 std::string* output() { return &(fake_sock_writer_->output_); }
114
115 FakeSocketWriter* const fake_sock_writer_;
116 StreamingListener streamer_;
117 UnitTest unit_test_;
118 TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
119 };
120
TEST_F(StreamingListenerTest,OnTestProgramEnd)121 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122 *output() = "";
123 streamer_.OnTestProgramEnd(unit_test_);
124 EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125 }
126
TEST_F(StreamingListenerTest,OnTestIterationEnd)127 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128 *output() = "";
129 streamer_.OnTestIterationEnd(unit_test_, 42);
130 EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132
TEST_F(StreamingListenerTest,OnTestSuiteStart)133 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134 *output() = "";
135 streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136 EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137 }
138
TEST_F(StreamingListenerTest,OnTestSuiteEnd)139 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140 *output() = "";
141 streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142 EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144
TEST_F(StreamingListenerTest,OnTestStart)145 TEST_F(StreamingListenerTest, OnTestStart) {
146 *output() = "";
147 streamer_.OnTestStart(test_info_obj_);
148 EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149 }
150
TEST_F(StreamingListenerTest,OnTestEnd)151 TEST_F(StreamingListenerTest, OnTestEnd) {
152 *output() = "";
153 streamer_.OnTestEnd(test_info_obj_);
154 EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155 }
156
TEST_F(StreamingListenerTest,OnTestPartResult)157 TEST_F(StreamingListenerTest, OnTestPartResult) {
158 *output() = "";
159 streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160 "foo.cc", 42, "failed=\n&%"));
161
162 // Meta characters in the failure message should be properly escaped.
163 EXPECT_EQ(
164 "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165 *output());
166 }
167
168 #endif // GTEST_CAN_STREAM_RESULTS_
169
170 // Provides access to otherwise private parts of the TestEventListeners class
171 // that are needed to test it.
172 class TestEventListenersAccessor {
173 public:
GetRepeater(TestEventListeners * listeners)174 static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175 return listeners->repeater();
176 }
177
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)178 static void SetDefaultResultPrinter(TestEventListeners* listeners,
179 TestEventListener* listener) {
180 listeners->SetDefaultResultPrinter(listener);
181 }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)182 static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183 TestEventListener* listener) {
184 listeners->SetDefaultXmlGenerator(listener);
185 }
186
EventForwardingEnabled(const TestEventListeners & listeners)187 static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188 return listeners.EventForwardingEnabled();
189 }
190
SuppressEventForwarding(TestEventListeners * listeners)191 static void SuppressEventForwarding(TestEventListeners* listeners) {
192 listeners->SuppressEventForwarding(true);
193 }
194 };
195
196 class UnitTestRecordPropertyTestHelper : public Test {
197 protected:
UnitTestRecordPropertyTestHelper()198 UnitTestRecordPropertyTestHelper() {}
199
200 // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)201 void UnitTestRecordProperty(const char* key, const std::string& value) {
202 unit_test_.RecordProperty(key, value);
203 }
204
205 UnitTest unit_test_;
206 };
207
208 } // namespace internal
209 } // namespace testing
210
211 using testing::AssertionFailure;
212 using testing::AssertionResult;
213 using testing::AssertionSuccess;
214 using testing::DoubleLE;
215 using testing::EmptyTestEventListener;
216 using testing::Environment;
217 using testing::FloatLE;
218 using testing::IsNotSubstring;
219 using testing::IsSubstring;
220 using testing::kMaxStackTraceDepth;
221 using testing::Message;
222 using testing::ScopedFakeTestPartResultReporter;
223 using testing::StaticAssertTypeEq;
224 using testing::Test;
225 using testing::TestEventListeners;
226 using testing::TestInfo;
227 using testing::TestPartResult;
228 using testing::TestPartResultArray;
229 using testing::TestProperty;
230 using testing::TestResult;
231 using testing::TimeInMillis;
232 using testing::UnitTest;
233 using testing::internal::AlwaysFalse;
234 using testing::internal::AlwaysTrue;
235 using testing::internal::AppendUserMessage;
236 using testing::internal::ArrayAwareFind;
237 using testing::internal::ArrayEq;
238 using testing::internal::CodePointToUtf8;
239 using testing::internal::CopyArray;
240 using testing::internal::CountIf;
241 using testing::internal::EqFailure;
242 using testing::internal::FloatingPoint;
243 using testing::internal::ForEach;
244 using testing::internal::FormatEpochTimeInMillisAsIso8601;
245 using testing::internal::FormatTimeInMillisAsSeconds;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::GTestFlagSaver;
254 using testing::internal::HasDebugStringAndShortDebugString;
255 using testing::internal::Int32FromEnvOrDie;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::kMaxRandomSeed;
260 using testing::internal::kTestTypeIdInGoogleTest;
261 using testing::internal::NativeArray;
262 using testing::internal::ParseFlag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::ShouldRunTestOnShard;
266 using testing::internal::ShouldShard;
267 using testing::internal::ShouldUseColor;
268 using testing::internal::Shuffle;
269 using testing::internal::ShuffleRange;
270 using testing::internal::SkipPrefix;
271 using testing::internal::StreamableToString;
272 using testing::internal::String;
273 using testing::internal::TestEventListenersAccessor;
274 using testing::internal::TestResultAccessor;
275 using testing::internal::WideStringToUtf8;
276 using testing::internal::edit_distance::CalculateOptimalEdits;
277 using testing::internal::edit_distance::CreateUnifiedDiff;
278 using testing::internal::edit_distance::EditType;
279
280 #if GTEST_HAS_STREAM_REDIRECTION
281 using testing::internal::CaptureStdout;
282 using testing::internal::GetCapturedStdout;
283 #endif
284
285 #ifdef GTEST_IS_THREADSAFE
286 using testing::internal::ThreadWithParam;
287 #endif
288
289 class TestingVector : public std::vector<int> {};
290
operator <<(::std::ostream & os,const TestingVector & vector)291 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292 os << "{ ";
293 for (size_t i = 0; i < vector.size(); i++) {
294 os << vector[i] << " ";
295 }
296 os << "}";
297 return os;
298 }
299
300 // This line tests that we can define tests in an unnamed namespace.
301 namespace {
302
TEST(GetRandomSeedFromFlagTest,HandlesZero)303 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304 const int seed = GetRandomSeedFromFlag(0);
305 EXPECT_LE(1, seed);
306 EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307 }
308
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)309 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310 EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311 EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312 EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314 GetRandomSeedFromFlag(kMaxRandomSeed));
315 }
316
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)317 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318 const int seed1 = GetRandomSeedFromFlag(-1);
319 EXPECT_LE(1, seed1);
320 EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321
322 const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323 EXPECT_LE(1, seed2);
324 EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325 }
326
TEST(GetNextRandomSeedTest,WorksForValidInput)327 TEST(GetNextRandomSeedTest, WorksForValidInput) {
328 EXPECT_EQ(2, GetNextRandomSeed(1));
329 EXPECT_EQ(3, GetNextRandomSeed(2));
330 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331 GetNextRandomSeed(kMaxRandomSeed - 1));
332 EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333
334 // We deliberately don't test GetNextRandomSeed() with invalid
335 // inputs, as that requires death tests, which are expensive. This
336 // is fine as GetNextRandomSeed() is internal and has a
337 // straightforward definition.
338 }
339
ClearCurrentTestPartResults()340 static void ClearCurrentTestPartResults() {
341 TestResultAccessor::ClearTestPartResults(
342 GetUnitTestImpl()->current_test_result());
343 }
344
345 // Tests GetTypeId.
346
TEST(GetTypeIdTest,ReturnsSameValueForSameType)347 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348 EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349 EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350 }
351
352 class SubClassOfTest : public Test {};
353 class AnotherSubClassOfTest : public Test {};
354
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)355 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356 EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357 EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358 EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359 EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362 }
363
364 // Verifies that GetTestTypeId() returns the same value, no matter it
365 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)366 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367 EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368 }
369
370 // Tests CanonicalizeForStdLibVersioning.
371
372 using ::testing::internal::CanonicalizeForStdLibVersioning;
373
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)374 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377 EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378 EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379 EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380 EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381 }
382
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)383 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386
387 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389
390 EXPECT_EQ("std::bind",
391 CanonicalizeForStdLibVersioning("std::__google::bind"));
392 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393 }
394
395 // Tests FormatTimeInMillisAsSeconds().
396
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398 EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399 }
400
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)401 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402 EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403 EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404 EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405 EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406 EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407 EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408 EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409 EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410 EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411 }
412
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)413 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414 EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415 EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416 EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417 EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418 EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419 EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420 EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421 EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422 EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423 }
424
425 // TODO: b/287046337 - In emscripten, local time zone modification is not
426 // supported.
427 #if !defined(__EMSCRIPTEN__)
428 // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
429 // for particular dates below was verified in Python using
430 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
431
432 // FormatEpochTimeInMillisAsIso8601 depends on the local timezone, so we
433 // have to set up a particular timezone to obtain predictable results.
434 class FormatEpochTimeInMillisAsIso8601Test : public Test {
435 public:
436 // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
437 // 32 bits, even when 64-bit integer types are available. We have to
438 // force the constants to have a 64-bit type here.
439 static const TimeInMillis kMillisPerSec = 1000;
440
441 private:
SetUp()442 void SetUp() override {
443 saved_tz_.reset();
444
445 GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
446 if (const char* tz = getenv("TZ")) {
447 saved_tz_ = std::make_unique<std::string>(tz);
448 }
449 GTEST_DISABLE_MSC_DEPRECATED_POP_()
450
451 // Set the local time zone for FormatEpochTimeInMillisAsIso8601 to be
452 // a fixed time zone for reproducibility purposes.
453 SetTimeZone("UTC+00");
454 }
455
TearDown()456 void TearDown() override {
457 SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
458 saved_tz_.reset();
459 }
460
SetTimeZone(const char * time_zone)461 static void SetTimeZone(const char* time_zone) {
462 // tzset() distinguishes between the TZ variable being present and empty
463 // and not being present, so we have to consider the case of time_zone
464 // being NULL.
465 #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
466 // ...Unless it's MSVC, whose standard library's _putenv doesn't
467 // distinguish between an empty and a missing variable.
468 const std::string env_var =
469 std::string("TZ=") + (time_zone ? time_zone : "");
470 _putenv(env_var.c_str());
471 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
472 tzset();
473 GTEST_DISABLE_MSC_WARNINGS_POP_()
474 #else
475 #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
476 // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
477 // See https://github.com/android/ndk/issues/1604.
478 setenv("TZ", "UTC", 1);
479 tzset();
480 #endif
481 if (time_zone) {
482 setenv(("TZ"), time_zone, 1);
483 } else {
484 unsetenv("TZ");
485 }
486 tzset();
487 #endif
488 }
489
490 std::unique_ptr<std::string> saved_tz_; // Empty and null are different here
491 };
492
493 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
494
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)495 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
496 EXPECT_EQ("2011-10-31T18:52:42.000",
497 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
498 }
499
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)500 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
501 EXPECT_EQ("2011-10-31T18:52:42.234",
502 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
503 }
504
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)505 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
506 EXPECT_EQ("2011-09-03T05:07:02.000",
507 FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
508 }
509
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)510 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
511 EXPECT_EQ("2011-09-28T17:08:22.000",
512 FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
513 }
514
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)515 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
516 EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
517 }
518
519 #endif // __EMSCRIPTEN__
520
521 #ifdef __BORLANDC__
522 // Silences warnings: "Condition is always true", "Unreachable code"
523 #pragma option push -w-ccc -w-rch
524 #endif
525
526 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
527 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)528 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
529 EXPECT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
530 ASSERT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
531 EXPECT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
532 ASSERT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
533 EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
534 ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
535
536 const int* const p = nullptr;
537 EXPECT_EQ(0, p); // NOLINT
538 ASSERT_EQ(0, p); // NOLINT
539 EXPECT_EQ(NULL, p); // NOLINT
540 ASSERT_EQ(NULL, p); // NOLINT
541 EXPECT_EQ(nullptr, p);
542 ASSERT_EQ(nullptr, p);
543 }
544
545 struct ConvertToAll {
546 template <typename T>
operator T__anon19f4cde20111::ConvertToAll547 operator T() const { // NOLINT
548 return T();
549 }
550 };
551
552 struct ConvertToPointer {
553 template <class T>
operator T*__anon19f4cde20111::ConvertToPointer554 operator T*() const { // NOLINT
555 return nullptr;
556 }
557 };
558
559 struct ConvertToAllButNoPointers {
560 template <typename T,
561 typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon19f4cde20111::ConvertToAllButNoPointers562 operator T() const { // NOLINT
563 return T();
564 }
565 };
566
567 struct MyType {};
operator ==(MyType const &,MyType const &)568 inline bool operator==(MyType const&, MyType const&) { return true; }
569
TEST(NullLiteralTest,ImplicitConversion)570 TEST(NullLiteralTest, ImplicitConversion) {
571 EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
572 #if !defined(__GNUC__) || defined(__clang__)
573 // Disabled due to GCC bug gcc.gnu.org/PR89580
574 EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
575 #endif
576 EXPECT_EQ(ConvertToAll{}, MyType{});
577 EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
578 }
579
580 #ifdef __clang__
581 #pragma clang diagnostic push
582 #if __has_warning("-Wzero-as-null-pointer-constant")
583 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
584 #endif
585 #endif
586
TEST(NullLiteralTest,NoConversionNoWarning)587 TEST(NullLiteralTest, NoConversionNoWarning) {
588 // Test that gtests detection and handling of null pointer constants
589 // doesn't trigger a warning when '0' isn't actually used as null.
590 EXPECT_EQ(0, 0);
591 ASSERT_EQ(0, 0);
592 }
593
594 #ifdef __clang__
595 #pragma clang diagnostic pop
596 #endif
597
598 #ifdef __BORLANDC__
599 // Restores warnings after previous "#pragma option push" suppressed them.
600 #pragma option pop
601 #endif
602
603 //
604 // Tests CodePointToUtf8().
605
606 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)607 TEST(CodePointToUtf8Test, CanEncodeNul) {
608 EXPECT_EQ("", CodePointToUtf8(L'\0'));
609 }
610
611 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)612 TEST(CodePointToUtf8Test, CanEncodeAscii) {
613 EXPECT_EQ("a", CodePointToUtf8(L'a'));
614 EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
615 EXPECT_EQ("&", CodePointToUtf8(L'&'));
616 EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
617 }
618
619 // Tests that Unicode code-points that have 8 to 11 bits are encoded
620 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)621 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
622 // 000 1101 0011 => 110-00011 10-010011
623 EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
624
625 // 101 0111 0110 => 110-10101 10-110110
626 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
627 // in wide strings and wide chars. In order to accommodate them, we have to
628 // introduce such character constants as integers.
629 EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
630 }
631
632 // Tests that Unicode code-points that have 12 to 16 bits are encoded
633 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)634 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
635 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
636 EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
637
638 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
639 EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
640 }
641
642 #if !GTEST_WIDE_STRING_USES_UTF16_
643 // Tests in this group require a wchar_t to hold > 16 bits, and thus
644 // are skipped on Windows, and Cygwin, where a wchar_t is
645 // 16-bit wide. This code may not compile on those systems.
646
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)649 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
650 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
651 EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
652
653 // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
654 EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
655
656 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
657 EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
658 }
659
660 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)661 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
662 EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
663 }
664
665 #endif // !GTEST_WIDE_STRING_USES_UTF16_
666
667 // Tests WideStringToUtf8().
668
669 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)670 TEST(WideStringToUtf8Test, CanEncodeNul) {
671 EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
672 EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
673 }
674
675 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)676 TEST(WideStringToUtf8Test, CanEncodeAscii) {
677 EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
678 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
679 EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
680 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
681 }
682
683 // Tests that Unicode code-points that have 8 to 11 bits are encoded
684 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)685 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
686 // 000 1101 0011 => 110-00011 10-010011
687 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
688 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
689
690 // 101 0111 0110 => 110-10101 10-110110
691 const wchar_t s[] = {0x576, '\0'};
692 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
693 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
694 }
695
696 // Tests that Unicode code-points that have 12 to 16 bits are encoded
697 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)698 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
699 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
700 const wchar_t s1[] = {0x8D3, '\0'};
701 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
702 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
703
704 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
705 const wchar_t s2[] = {0xC74D, '\0'};
706 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
707 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
708 }
709
710 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)711 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
712 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
713 }
714
715 // Tests that the conversion stops when the function reaches the limit
716 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)717 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
718 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
719 }
720
721 #if !GTEST_WIDE_STRING_USES_UTF16_
722 // Tests that Unicode code-points that have 17 to 21 bits are encoded
723 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
724 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)725 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
726 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
727 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
728 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
729
730 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
731 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
732 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
733 }
734
735 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)736 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
737 EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
738 WideStringToUtf8(L"\xABCDFF", -1).c_str());
739 }
740 #else // !GTEST_WIDE_STRING_USES_UTF16_
741 // Tests that surrogate pairs are encoded correctly on the systems using
742 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)743 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
744 const wchar_t s[] = {0xD801, 0xDC00, '\0'};
745 EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
746 }
747
748 // Tests that encoding an invalid UTF-16 surrogate pair
749 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)750 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
751 // Leading surrogate is at the end of the string.
752 const wchar_t s1[] = {0xD800, '\0'};
753 EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
754 // Leading surrogate is not followed by the trailing surrogate.
755 const wchar_t s2[] = {0xD800, 'M', '\0'};
756 EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
757 // Trailing surrogate appearas without a leading surrogate.
758 const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
759 EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
760 }
761 #endif // !GTEST_WIDE_STRING_USES_UTF16_
762
763 // Tests that codepoint concatenation works correctly.
764 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)765 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
766 const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
767 EXPECT_STREQ(
768 "\xF4\x88\x98\xB4"
769 "\xEC\x9D\x8D"
770 "\n"
771 "\xD5\xB6"
772 "\xE0\xA3\x93"
773 "\xF4\x88\x98\xB4",
774 WideStringToUtf8(s, -1).c_str());
775 }
776 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)777 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
778 const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
779 EXPECT_STREQ(
780 "\xEC\x9D\x8D"
781 "\n"
782 "\xD5\xB6"
783 "\xE0\xA3\x93",
784 WideStringToUtf8(s, -1).c_str());
785 }
786 #endif // !GTEST_WIDE_STRING_USES_UTF16_
787
788 // Tests the Random class.
789
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)790 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
791 testing::internal::Random random(42);
792 EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
793 "Cannot generate a number in the range \\[0, 0\\)");
794 EXPECT_DEATH_IF_SUPPORTED(
795 random.Generate(testing::internal::Random::kMaxRange + 1),
796 "Generation of a number in \\[0, 2147483649\\) was requested, "
797 "but this can only generate numbers in \\[0, 2147483648\\)");
798 }
799
TEST(RandomTest,GeneratesNumbersWithinRange)800 TEST(RandomTest, GeneratesNumbersWithinRange) {
801 constexpr uint32_t kRange = 10000;
802 testing::internal::Random random(12345);
803 for (int i = 0; i < 10; i++) {
804 EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
805 }
806
807 testing::internal::Random random2(testing::internal::Random::kMaxRange);
808 for (int i = 0; i < 10; i++) {
809 EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
810 }
811 }
812
TEST(RandomTest,RepeatsWhenReseeded)813 TEST(RandomTest, RepeatsWhenReseeded) {
814 constexpr int kSeed = 123;
815 constexpr int kArraySize = 10;
816 constexpr uint32_t kRange = 10000;
817 uint32_t values[kArraySize];
818
819 testing::internal::Random random(kSeed);
820 for (int i = 0; i < kArraySize; i++) {
821 values[i] = random.Generate(kRange);
822 }
823
824 random.Reseed(kSeed);
825 for (int i = 0; i < kArraySize; i++) {
826 EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
827 }
828 }
829
830 // Tests STL container utilities.
831
832 // Tests CountIf().
833
IsPositive(int n)834 static bool IsPositive(int n) { return n > 0; }
835
TEST(ContainerUtilityTest,CountIf)836 TEST(ContainerUtilityTest, CountIf) {
837 std::vector<int> v;
838 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
839
840 v.push_back(-1);
841 v.push_back(0);
842 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
843
844 v.push_back(2);
845 v.push_back(-10);
846 v.push_back(10);
847 EXPECT_EQ(2, CountIf(v, IsPositive));
848 }
849
850 // Tests ForEach().
851
852 static int g_sum = 0;
Accumulate(int n)853 static void Accumulate(int n) { g_sum += n; }
854
TEST(ContainerUtilityTest,ForEach)855 TEST(ContainerUtilityTest, ForEach) {
856 std::vector<int> v;
857 g_sum = 0;
858 ForEach(v, Accumulate);
859 EXPECT_EQ(0, g_sum); // Works for an empty container;
860
861 g_sum = 0;
862 v.push_back(1);
863 ForEach(v, Accumulate);
864 EXPECT_EQ(1, g_sum); // Works for a container with one element.
865
866 g_sum = 0;
867 v.push_back(20);
868 v.push_back(300);
869 ForEach(v, Accumulate);
870 EXPECT_EQ(321, g_sum);
871 }
872
873 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)874 TEST(ContainerUtilityTest, GetElementOr) {
875 std::vector<char> a;
876 EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
877
878 a.push_back('a');
879 a.push_back('b');
880 EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
881 EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
882 EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
883 EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
884 }
885
TEST(ContainerUtilityDeathTest,ShuffleRange)886 TEST(ContainerUtilityDeathTest, ShuffleRange) {
887 std::vector<int> a;
888 a.push_back(0);
889 a.push_back(1);
890 a.push_back(2);
891 testing::internal::Random random(1);
892
893 EXPECT_DEATH_IF_SUPPORTED(
894 ShuffleRange(&random, -1, 1, &a),
895 "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
896 EXPECT_DEATH_IF_SUPPORTED(
897 ShuffleRange(&random, 4, 4, &a),
898 "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
899 EXPECT_DEATH_IF_SUPPORTED(
900 ShuffleRange(&random, 3, 2, &a),
901 "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
902 EXPECT_DEATH_IF_SUPPORTED(
903 ShuffleRange(&random, 3, 4, &a),
904 "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
905 }
906
907 class VectorShuffleTest : public Test {
908 protected:
909 static const size_t kVectorSize = 20;
910
VectorShuffleTest()911 VectorShuffleTest() : random_(1) {
912 for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
913 vector_.push_back(i);
914 }
915 }
916
VectorIsCorrupt(const TestingVector & vector)917 static bool VectorIsCorrupt(const TestingVector& vector) {
918 if (kVectorSize != vector.size()) {
919 return true;
920 }
921
922 bool found_in_vector[kVectorSize] = {false};
923 for (size_t i = 0; i < vector.size(); i++) {
924 const int e = vector[i];
925 if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
926 return true;
927 }
928 found_in_vector[e] = true;
929 }
930
931 // Vector size is correct, elements' range is correct, no
932 // duplicate elements. Therefore no corruption has occurred.
933 return false;
934 }
935
VectorIsNotCorrupt(const TestingVector & vector)936 static bool VectorIsNotCorrupt(const TestingVector& vector) {
937 return !VectorIsCorrupt(vector);
938 }
939
RangeIsShuffled(const TestingVector & vector,int begin,int end)940 static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
941 for (int i = begin; i < end; i++) {
942 if (i != vector[static_cast<size_t>(i)]) {
943 return true;
944 }
945 }
946 return false;
947 }
948
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)949 static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
950 int end) {
951 return !RangeIsShuffled(vector, begin, end);
952 }
953
VectorIsShuffled(const TestingVector & vector)954 static bool VectorIsShuffled(const TestingVector& vector) {
955 return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
956 }
957
VectorIsUnshuffled(const TestingVector & vector)958 static bool VectorIsUnshuffled(const TestingVector& vector) {
959 return !VectorIsShuffled(vector);
960 }
961
962 testing::internal::Random random_;
963 TestingVector vector_;
964 }; // class VectorShuffleTest
965
966 const size_t VectorShuffleTest::kVectorSize;
967
TEST_F(VectorShuffleTest,HandlesEmptyRange)968 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
969 // Tests an empty range at the beginning...
970 ShuffleRange(&random_, 0, 0, &vector_);
971 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972 ASSERT_PRED1(VectorIsUnshuffled, vector_);
973
974 // ...in the middle...
975 ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
976 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977 ASSERT_PRED1(VectorIsUnshuffled, vector_);
978
979 // ...at the end...
980 ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
981 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
982 ASSERT_PRED1(VectorIsUnshuffled, vector_);
983
984 // ...and past the end.
985 ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
986 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987 ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 }
989
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)990 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
991 // Tests a size one range at the beginning...
992 ShuffleRange(&random_, 0, 1, &vector_);
993 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
994 ASSERT_PRED1(VectorIsUnshuffled, vector_);
995
996 // ...in the middle...
997 ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
998 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
999 ASSERT_PRED1(VectorIsUnshuffled, vector_);
1000
1001 // ...and at the end.
1002 ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
1003 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1004 ASSERT_PRED1(VectorIsUnshuffled, vector_);
1005 }
1006
1007 // Because we use our own random number generator and a fixed seed,
1008 // we can guarantee that the following "random" tests will succeed.
1009
TEST_F(VectorShuffleTest,ShufflesEntireVector)1010 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1011 Shuffle(&random_, &vector_);
1012 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1013 EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1014
1015 // Tests the first and last elements in particular to ensure that
1016 // there are no off-by-one problems in our shuffle algorithm.
1017 EXPECT_NE(0, vector_[0]);
1018 EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1019 }
1020
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1021 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1022 const int kRangeSize = kVectorSize / 2;
1023
1024 ShuffleRange(&random_, 0, kRangeSize, &vector_);
1025
1026 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1027 EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1028 EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1029 static_cast<int>(kVectorSize));
1030 }
1031
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1032 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1033 const int kRangeSize = kVectorSize / 2;
1034 ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1035
1036 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1037 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1038 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1039 static_cast<int>(kVectorSize));
1040 }
1041
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1042 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1043 const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1044 ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1045
1046 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1047 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1048 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1049 EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1050 static_cast<int>(kVectorSize));
1051 }
1052
TEST_F(VectorShuffleTest,ShufflesRepeatably)1053 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1054 TestingVector vector2;
1055 for (size_t i = 0; i < kVectorSize; i++) {
1056 vector2.push_back(static_cast<int>(i));
1057 }
1058
1059 random_.Reseed(1234);
1060 Shuffle(&random_, &vector_);
1061 random_.Reseed(1234);
1062 Shuffle(&random_, &vector2);
1063
1064 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1065 ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1066
1067 for (size_t i = 0; i < kVectorSize; i++) {
1068 EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1069 }
1070 }
1071
1072 // Tests the size of the AssertHelper class.
1073
TEST(AssertHelperTest,AssertHelperIsSmall)1074 TEST(AssertHelperTest, AssertHelperIsSmall) {
1075 // To avoid breaking clients that use lots of assertions in one
1076 // function, we cannot grow the size of AssertHelper.
1077 EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1078 }
1079
1080 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1081 TEST(StringTest, EndsWithCaseInsensitive) {
1082 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1083 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1084 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1085 EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1086
1087 EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1088 EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1089 EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1090 }
1091
1092 // C++Builder's preprocessor is buggy; it fails to expand macros that
1093 // appear in macro parameters after wide char literals. Provide an alias
1094 // for NULL as a workaround.
1095 static const wchar_t* const kNull = nullptr;
1096
1097 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1098 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1099 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1100 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1101 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1102 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1103 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1104 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1105 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1106 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1107 }
1108
1109 #ifdef GTEST_OS_WINDOWS
1110
1111 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1112 TEST(StringTest, ShowWideCString) {
1113 EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1114 EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1115 EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1116 }
1117
1118 #ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1119 TEST(StringTest, AnsiAndUtf16Null) {
1120 EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1121 EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1122 }
1123
TEST(StringTest,AnsiAndUtf16ConvertBasic)1124 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1125 const char* ansi = String::Utf16ToAnsi(L"str");
1126 EXPECT_STREQ("str", ansi);
1127 delete[] ansi;
1128 const WCHAR* utf16 = String::AnsiToUtf16("str");
1129 EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1130 delete[] utf16;
1131 }
1132
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1133 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1134 const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1135 EXPECT_STREQ(".:\\ \"*?", ansi);
1136 delete[] ansi;
1137 const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1138 EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1139 delete[] utf16;
1140 }
1141 #endif // GTEST_OS_WINDOWS_MOBILE
1142
1143 #endif // GTEST_OS_WINDOWS
1144
1145 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1146 TEST(TestPropertyTest, StringValue) {
1147 TestProperty property("key", "1");
1148 EXPECT_STREQ("key", property.key());
1149 EXPECT_STREQ("1", property.value());
1150 }
1151
1152 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1153 TEST(TestPropertyTest, ReplaceStringValue) {
1154 TestProperty property("key", "1");
1155 EXPECT_STREQ("1", property.value());
1156 property.SetValue("2");
1157 EXPECT_STREQ("2", property.value());
1158 }
1159
1160 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1161 // functions (i.e. their definitions cannot be inlined at the call
1162 // sites), or C++Builder won't compile the code.
AddFatalFailure()1163 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1164
AddNonfatalFailure()1165 static void AddNonfatalFailure() {
1166 ADD_FAILURE() << "Expected non-fatal failure.";
1167 }
1168
1169 class ScopedFakeTestPartResultReporterTest : public Test {
1170 public: // Must be public and not protected due to a bug in g++ 3.4.2.
1171 enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
AddFailure(FailureMode failure)1172 static void AddFailure(FailureMode failure) {
1173 if (failure == FATAL_FAILURE) {
1174 AddFatalFailure();
1175 } else {
1176 AddNonfatalFailure();
1177 }
1178 }
1179 };
1180
1181 // Tests that ScopedFakeTestPartResultReporter intercepts test
1182 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1183 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1184 TestPartResultArray results;
1185 {
1186 ScopedFakeTestPartResultReporter reporter(
1187 ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1188 &results);
1189 AddFailure(NONFATAL_FAILURE);
1190 AddFailure(FATAL_FAILURE);
1191 }
1192
1193 EXPECT_EQ(2, results.size());
1194 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1195 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1196 }
1197
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1198 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1199 TestPartResultArray results;
1200 {
1201 // Tests, that the deprecated constructor still works.
1202 ScopedFakeTestPartResultReporter reporter(&results);
1203 AddFailure(NONFATAL_FAILURE);
1204 }
1205 EXPECT_EQ(1, results.size());
1206 }
1207
1208 #ifdef GTEST_IS_THREADSAFE
1209
1210 class ScopedFakeTestPartResultReporterWithThreadsTest
1211 : public ScopedFakeTestPartResultReporterTest {
1212 protected:
AddFailureInOtherThread(FailureMode failure)1213 static void AddFailureInOtherThread(FailureMode failure) {
1214 ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1215 thread.Join();
1216 }
1217 };
1218
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1219 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1220 InterceptsTestFailuresInAllThreads) {
1221 TestPartResultArray results;
1222 {
1223 ScopedFakeTestPartResultReporter reporter(
1224 ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1225 AddFailure(NONFATAL_FAILURE);
1226 AddFailure(FATAL_FAILURE);
1227 AddFailureInOtherThread(NONFATAL_FAILURE);
1228 AddFailureInOtherThread(FATAL_FAILURE);
1229 }
1230
1231 EXPECT_EQ(4, results.size());
1232 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1233 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1234 EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1235 EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1236 }
1237
1238 #endif // GTEST_IS_THREADSAFE
1239
1240 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1241 // work even if the failure is generated in a called function rather than
1242 // the current context.
1243
1244 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1245
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1246 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1247 EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1248 }
1249
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1250 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1251 EXPECT_FATAL_FAILURE(AddFatalFailure(),
1252 ::std::string("Expected fatal failure."));
1253 }
1254
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1255 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1256 // We have another test below to verify that the macro catches fatal
1257 // failures generated on another thread.
1258 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1259 "Expected fatal failure.");
1260 }
1261
1262 #ifdef __BORLANDC__
1263 // Silences warnings: "Condition is always true"
1264 #pragma option push -w-ccc
1265 #endif
1266
1267 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1268 // function even when the statement in it contains ASSERT_*.
1269
NonVoidFunction()1270 int NonVoidFunction() {
1271 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1272 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1273 return 0;
1274 }
1275
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1276 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1277 NonVoidFunction();
1278 }
1279
1280 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1281 // current function even though 'statement' generates a fatal failure.
1282
DoesNotAbortHelper(bool * aborted)1283 void DoesNotAbortHelper(bool* aborted) {
1284 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1285 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1286
1287 *aborted = false;
1288 }
1289
1290 #ifdef __BORLANDC__
1291 // Restores warnings after previous "#pragma option push" suppressed them.
1292 #pragma option pop
1293 #endif
1294
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1295 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1296 bool aborted = true;
1297 DoesNotAbortHelper(&aborted);
1298 EXPECT_FALSE(aborted);
1299 }
1300
1301 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1302 // statement that contains a macro which expands to code containing an
1303 // unprotected comma.
1304
1305 static int global_var = 0;
1306 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1307
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1308 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1309 #ifndef __BORLANDC__
1310 // ICE's in C++Builder.
1311 EXPECT_FATAL_FAILURE(
1312 {
1313 GTEST_USE_UNPROTECTED_COMMA_;
1314 AddFatalFailure();
1315 },
1316 "");
1317 #endif
1318
1319 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1320 {
1321 GTEST_USE_UNPROTECTED_COMMA_;
1322 AddFatalFailure();
1323 },
1324 "");
1325 }
1326
1327 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1328
1329 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1330
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1331 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1332 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1333 }
1334
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1335 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1336 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1337 ::std::string("Expected non-fatal failure."));
1338 }
1339
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1340 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1341 // We have another test below to verify that the macro catches
1342 // non-fatal failures generated on another thread.
1343 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1344 "Expected non-fatal failure.");
1345 }
1346
1347 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1348 // statement that contains a macro which expands to code containing an
1349 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1350 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1351 EXPECT_NONFATAL_FAILURE(
1352 {
1353 GTEST_USE_UNPROTECTED_COMMA_;
1354 AddNonfatalFailure();
1355 },
1356 "");
1357
1358 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1359 {
1360 GTEST_USE_UNPROTECTED_COMMA_;
1361 AddNonfatalFailure();
1362 },
1363 "");
1364 }
1365
1366 #ifdef GTEST_IS_THREADSAFE
1367
1368 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1369 ExpectFailureWithThreadsTest;
1370
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1371 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1372 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1373 "Expected fatal failure.");
1374 }
1375
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1376 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1377 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1378 AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1379 }
1380
1381 #endif // GTEST_IS_THREADSAFE
1382
1383 // Tests the TestProperty class.
1384
TEST(TestPropertyTest,ConstructorWorks)1385 TEST(TestPropertyTest, ConstructorWorks) {
1386 const TestProperty property("key", "value");
1387 EXPECT_STREQ("key", property.key());
1388 EXPECT_STREQ("value", property.value());
1389 }
1390
TEST(TestPropertyTest,SetValue)1391 TEST(TestPropertyTest, SetValue) {
1392 TestProperty property("key", "value_1");
1393 EXPECT_STREQ("key", property.key());
1394 property.SetValue("value_2");
1395 EXPECT_STREQ("key", property.key());
1396 EXPECT_STREQ("value_2", property.value());
1397 }
1398
1399 // Tests the TestResult class
1400
1401 // The test fixture for testing TestResult.
1402 class TestResultTest : public Test {
1403 protected:
1404 typedef std::vector<TestPartResult> TPRVector;
1405
1406 // We make use of 2 TestPartResult objects,
1407 TestPartResult *pr1, *pr2;
1408
1409 // ... and 3 TestResult objects.
1410 TestResult *r0, *r1, *r2;
1411
SetUp()1412 void SetUp() override {
1413 // pr1 is for success.
1414 pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1415 "Success!");
1416
1417 // pr2 is for fatal failure.
1418 pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1419 -1, // This line number means "unknown"
1420 "Failure!");
1421
1422 // Creates the TestResult objects.
1423 r0 = new TestResult();
1424 r1 = new TestResult();
1425 r2 = new TestResult();
1426
1427 // In order to test TestResult, we need to modify its internal
1428 // state, in particular the TestPartResult vector it holds.
1429 // test_part_results() returns a const reference to this vector.
1430 // We cast it to a non-const object s.t. it can be modified
1431 TPRVector* results1 =
1432 const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1433 TPRVector* results2 =
1434 const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1435
1436 // r0 is an empty TestResult.
1437
1438 // r1 contains a single SUCCESS TestPartResult.
1439 results1->push_back(*pr1);
1440
1441 // r2 contains a SUCCESS, and a FAILURE.
1442 results2->push_back(*pr1);
1443 results2->push_back(*pr2);
1444 }
1445
TearDown()1446 void TearDown() override {
1447 delete pr1;
1448 delete pr2;
1449
1450 delete r0;
1451 delete r1;
1452 delete r2;
1453 }
1454
1455 // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1456 static void CompareTestPartResult(const TestPartResult& expected,
1457 const TestPartResult& actual) {
1458 EXPECT_EQ(expected.type(), actual.type());
1459 EXPECT_STREQ(expected.file_name(), actual.file_name());
1460 EXPECT_EQ(expected.line_number(), actual.line_number());
1461 EXPECT_STREQ(expected.summary(), actual.summary());
1462 EXPECT_STREQ(expected.message(), actual.message());
1463 EXPECT_EQ(expected.passed(), actual.passed());
1464 EXPECT_EQ(expected.failed(), actual.failed());
1465 EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1466 EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1467 }
1468 };
1469
1470 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1471 TEST_F(TestResultTest, total_part_count) {
1472 ASSERT_EQ(0, r0->total_part_count());
1473 ASSERT_EQ(1, r1->total_part_count());
1474 ASSERT_EQ(2, r2->total_part_count());
1475 }
1476
1477 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1478 TEST_F(TestResultTest, Passed) {
1479 ASSERT_TRUE(r0->Passed());
1480 ASSERT_TRUE(r1->Passed());
1481 ASSERT_FALSE(r2->Passed());
1482 }
1483
1484 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1485 TEST_F(TestResultTest, Failed) {
1486 ASSERT_FALSE(r0->Failed());
1487 ASSERT_FALSE(r1->Failed());
1488 ASSERT_TRUE(r2->Failed());
1489 }
1490
1491 // Tests TestResult::GetTestPartResult().
1492
1493 typedef TestResultTest TestResultDeathTest;
1494
TEST_F(TestResultDeathTest,GetTestPartResult)1495 TEST_F(TestResultDeathTest, GetTestPartResult) {
1496 CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1497 CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1498 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1499 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1500 }
1501
1502 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1503 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1504 TestResult test_result;
1505 ASSERT_EQ(0, test_result.test_property_count());
1506 }
1507
1508 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1509 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1510 TestResult test_result;
1511 TestProperty property("key_1", "1");
1512 TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1513 ASSERT_EQ(1, test_result.test_property_count());
1514 const TestProperty& actual_property = test_result.GetTestProperty(0);
1515 EXPECT_STREQ("key_1", actual_property.key());
1516 EXPECT_STREQ("1", actual_property.value());
1517 }
1518
1519 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1520 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1521 TestResult test_result;
1522 TestProperty property_1("key_1", "1");
1523 TestProperty property_2("key_2", "2");
1524 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1525 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1526 ASSERT_EQ(2, test_result.test_property_count());
1527 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1528 EXPECT_STREQ("key_1", actual_property_1.key());
1529 EXPECT_STREQ("1", actual_property_1.value());
1530
1531 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1532 EXPECT_STREQ("key_2", actual_property_2.key());
1533 EXPECT_STREQ("2", actual_property_2.value());
1534 }
1535
1536 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1537 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1538 TestResult test_result;
1539 TestProperty property_1_1("key_1", "1");
1540 TestProperty property_2_1("key_2", "2");
1541 TestProperty property_1_2("key_1", "12");
1542 TestProperty property_2_2("key_2", "22");
1543 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1544 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1545 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1546 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1547
1548 ASSERT_EQ(2, test_result.test_property_count());
1549 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1550 EXPECT_STREQ("key_1", actual_property_1.key());
1551 EXPECT_STREQ("12", actual_property_1.value());
1552
1553 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1554 EXPECT_STREQ("key_2", actual_property_2.key());
1555 EXPECT_STREQ("22", actual_property_2.value());
1556 }
1557
1558 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1559 TEST(TestResultPropertyTest, GetTestProperty) {
1560 TestResult test_result;
1561 TestProperty property_1("key_1", "1");
1562 TestProperty property_2("key_2", "2");
1563 TestProperty property_3("key_3", "3");
1564 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1565 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1566 TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1567
1568 const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1569 const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1570 const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1571
1572 EXPECT_STREQ("key_1", fetched_property_1.key());
1573 EXPECT_STREQ("1", fetched_property_1.value());
1574
1575 EXPECT_STREQ("key_2", fetched_property_2.key());
1576 EXPECT_STREQ("2", fetched_property_2.value());
1577
1578 EXPECT_STREQ("key_3", fetched_property_3.key());
1579 EXPECT_STREQ("3", fetched_property_3.value());
1580
1581 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1582 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1583 }
1584
1585 // Tests the Test class.
1586 //
1587 // It's difficult to test every public method of this class (we are
1588 // already stretching the limit of Google Test by using it to test itself!).
1589 // Fortunately, we don't have to do that, as we are already testing
1590 // the functionalities of the Test class extensively by using Google Test
1591 // alone.
1592 //
1593 // Therefore, this section only contains one test.
1594
1595 // Tests that GTestFlagSaver works on Windows and Mac.
1596
1597 class GTestFlagSaverTest : public Test {
1598 protected:
1599 // Saves the Google Test flags such that we can restore them later, and
1600 // then sets them to their default values. This will be called
1601 // before the first test in this test case is run.
SetUpTestSuite()1602 static void SetUpTestSuite() {
1603 saver_ = new GTestFlagSaver;
1604
1605 GTEST_FLAG_SET(also_run_disabled_tests, false);
1606 GTEST_FLAG_SET(break_on_failure, false);
1607 GTEST_FLAG_SET(catch_exceptions, false);
1608 GTEST_FLAG_SET(death_test_use_fork, false);
1609 GTEST_FLAG_SET(color, "auto");
1610 GTEST_FLAG_SET(fail_fast, false);
1611 GTEST_FLAG_SET(filter, "");
1612 GTEST_FLAG_SET(list_tests, false);
1613 GTEST_FLAG_SET(output, "");
1614 GTEST_FLAG_SET(brief, false);
1615 GTEST_FLAG_SET(print_time, true);
1616 GTEST_FLAG_SET(random_seed, 0);
1617 GTEST_FLAG_SET(repeat, 1);
1618 GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1619 GTEST_FLAG_SET(shuffle, false);
1620 GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1621 GTEST_FLAG_SET(stream_result_to, "");
1622 GTEST_FLAG_SET(throw_on_failure, false);
1623 }
1624
1625 // Restores the Google Test flags that the tests have modified. This will
1626 // be called after the last test in this test case is run.
TearDownTestSuite()1627 static void TearDownTestSuite() {
1628 delete saver_;
1629 saver_ = nullptr;
1630 }
1631
1632 // Verifies that the Google Test flags have their default values, and then
1633 // modifies each of them.
VerifyAndModifyFlags()1634 void VerifyAndModifyFlags() {
1635 EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1636 EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1637 EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1638 EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1639 EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1640 EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1641 EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1642 EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1643 EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1644 EXPECT_FALSE(GTEST_FLAG_GET(brief));
1645 EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1646 EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1647 EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1648 EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1649 EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1650 EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1651 EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1652 EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1653
1654 GTEST_FLAG_SET(also_run_disabled_tests, true);
1655 GTEST_FLAG_SET(break_on_failure, true);
1656 GTEST_FLAG_SET(catch_exceptions, true);
1657 GTEST_FLAG_SET(color, "no");
1658 GTEST_FLAG_SET(death_test_use_fork, true);
1659 GTEST_FLAG_SET(fail_fast, true);
1660 GTEST_FLAG_SET(filter, "abc");
1661 GTEST_FLAG_SET(list_tests, true);
1662 GTEST_FLAG_SET(output, "xml:foo.xml");
1663 GTEST_FLAG_SET(brief, true);
1664 GTEST_FLAG_SET(print_time, false);
1665 GTEST_FLAG_SET(random_seed, 1);
1666 GTEST_FLAG_SET(repeat, 100);
1667 GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1668 GTEST_FLAG_SET(shuffle, true);
1669 GTEST_FLAG_SET(stack_trace_depth, 1);
1670 GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1671 GTEST_FLAG_SET(throw_on_failure, true);
1672 }
1673
1674 private:
1675 // For saving Google Test flags during this test case.
1676 static GTestFlagSaver* saver_;
1677 };
1678
1679 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1680
1681 // Google Test doesn't guarantee the order of tests. The following two
1682 // tests are designed to work regardless of their order.
1683
1684 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1685 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1686
1687 // Verifies that the Google Test flags in the body of the previous test were
1688 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1689 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1690
1691 // Sets an environment variable with the given name to the given
1692 // value. If the value argument is "", unsets the environment
1693 // variable. The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1694 static void SetEnv(const char* name, const char* value) {
1695 #ifdef GTEST_OS_WINDOWS_MOBILE
1696 // Environment variables are not supported on Windows CE.
1697 return;
1698 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1699 // C++Builder's putenv only stores a pointer to its parameter; we have to
1700 // ensure that the string remains valid as long as it might be needed.
1701 // We use an std::map to do so.
1702 static std::map<std::string, std::string*> added_env;
1703
1704 // Because putenv stores a pointer to the string buffer, we can't delete the
1705 // previous string (if present) until after it's replaced.
1706 std::string* prev_env = NULL;
1707 if (added_env.find(name) != added_env.end()) {
1708 prev_env = added_env[name];
1709 }
1710 added_env[name] =
1711 new std::string((Message() << name << "=" << value).GetString());
1712
1713 // The standard signature of putenv accepts a 'char*' argument. Other
1714 // implementations, like C++Builder's, accept a 'const char*'.
1715 // We cast away the 'const' since that would work for both variants.
1716 putenv(const_cast<char*>(added_env[name]->c_str()));
1717 delete prev_env;
1718 #elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper.
1719 _putenv((Message() << name << "=" << value).GetString().c_str());
1720 #else
1721 if (*value == '\0') {
1722 unsetenv(name);
1723 } else {
1724 setenv(name, value, 1);
1725 }
1726 #endif // GTEST_OS_WINDOWS_MOBILE
1727 }
1728
1729 #ifndef GTEST_OS_WINDOWS_MOBILE
1730 // Environment variables are not supported on Windows CE.
1731
1732 using testing::internal::Int32FromGTestEnv;
1733
1734 // Tests Int32FromGTestEnv().
1735
1736 // Tests that Int32FromGTestEnv() returns the default value when the
1737 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1738 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1739 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1740 EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1741 }
1742
1743 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1744
1745 // Tests that Int32FromGTestEnv() returns the default value when the
1746 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1747 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1748 printf("(expecting 2 warnings)\n");
1749
1750 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1751 EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1752
1753 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1754 EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1755 }
1756
1757 // Tests that Int32FromGTestEnv() returns the default value when the
1758 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1759 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1760 printf("(expecting 2 warnings)\n");
1761
1762 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1763 EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1764
1765 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1766 EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1767 }
1768
1769 #endif // !defined(GTEST_GET_INT32_FROM_ENV_)
1770
1771 // Tests that Int32FromGTestEnv() parses and returns the value of the
1772 // environment variable when it represents a valid decimal integer in
1773 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1774 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1775 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1776 EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1777
1778 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1779 EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1780 }
1781 #endif // !GTEST_OS_WINDOWS_MOBILE
1782
1783 // Tests ParseFlag().
1784
1785 // Tests that ParseInt32Flag() returns false and doesn't change the
1786 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1787 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1788 int32_t value = 123;
1789 EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1790 EXPECT_EQ(123, value);
1791
1792 EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1793 EXPECT_EQ(123, value);
1794 }
1795
1796 // Tests that ParseFlag() returns false and doesn't change the
1797 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1798 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1799 printf("(expecting 2 warnings)\n");
1800
1801 int32_t value = 123;
1802 EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1803 EXPECT_EQ(123, value);
1804
1805 EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1806 EXPECT_EQ(123, value);
1807 }
1808
1809 // Tests that ParseInt32Flag() returns false and doesn't change the
1810 // output value when the flag does not represent a valid decimal
1811 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1812 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1813 printf("(expecting 2 warnings)\n");
1814
1815 int32_t value = 123;
1816 EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1817 EXPECT_EQ(123, value);
1818
1819 EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1820 EXPECT_EQ(123, value);
1821 }
1822
1823 // Tests that ParseInt32Flag() parses the value of the flag and
1824 // returns true when the flag represents a valid decimal integer in
1825 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1826 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1827 int32_t value = 123;
1828 EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1829 EXPECT_EQ(456, value);
1830
1831 EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1832 EXPECT_EQ(-789, value);
1833 }
1834
1835 // Tests that Int32FromEnvOrDie() parses the value of the var or
1836 // returns the correct default.
1837 // Environment variables are not supported on Windows CE.
1838 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1839 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1840 EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1842 EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1843 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1844 EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1845 }
1846 #endif // !GTEST_OS_WINDOWS_MOBILE
1847
1848 // Tests that Int32FromEnvOrDie() aborts with an error message
1849 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1850 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1851 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1852 EXPECT_DEATH_IF_SUPPORTED(
1853 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1854 }
1855
1856 // Tests that Int32FromEnvOrDie() aborts with an error message
1857 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1858 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1859 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1860 EXPECT_DEATH_IF_SUPPORTED(
1861 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1862 }
1863
1864 // Tests that ShouldRunTestOnShard() selects all tests
1865 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1866 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1867 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1868 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1869 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1870 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1871 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1872 }
1873
1874 class ShouldShardTest : public testing::Test {
1875 protected:
SetUp()1876 void SetUp() override {
1877 index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1878 total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1879 }
1880
TearDown()1881 void TearDown() override {
1882 SetEnv(index_var_, "");
1883 SetEnv(total_var_, "");
1884 }
1885
1886 const char* index_var_;
1887 const char* total_var_;
1888 };
1889
1890 // Tests that sharding is disabled if neither of the environment variables
1891 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1892 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1893 SetEnv(index_var_, "");
1894 SetEnv(total_var_, "");
1895
1896 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1897 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1898 }
1899
1900 // Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1901 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1902 SetEnv(index_var_, "0");
1903 SetEnv(total_var_, "1");
1904 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1905 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1906 }
1907
1908 // Tests that sharding is enabled if total_shards > 1 and
1909 // we are not in a death test subprocess.
1910 // Environment variables are not supported on Windows CE.
1911 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1912 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1913 SetEnv(index_var_, "4");
1914 SetEnv(total_var_, "22");
1915 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1916 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1917
1918 SetEnv(index_var_, "8");
1919 SetEnv(total_var_, "9");
1920 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1921 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1922
1923 SetEnv(index_var_, "0");
1924 SetEnv(total_var_, "9");
1925 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1926 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1927 }
1928 #endif // !GTEST_OS_WINDOWS_MOBILE
1929
1930 // Tests that we exit in error if the sharding values are not valid.
1931
1932 typedef ShouldShardTest ShouldShardDeathTest;
1933
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1934 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1935 SetEnv(index_var_, "4");
1936 SetEnv(total_var_, "4");
1937 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938
1939 SetEnv(index_var_, "4");
1940 SetEnv(total_var_, "-2");
1941 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942
1943 SetEnv(index_var_, "5");
1944 SetEnv(total_var_, "");
1945 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946
1947 SetEnv(index_var_, "");
1948 SetEnv(total_var_, "5");
1949 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1950 }
1951
1952 // Tests that ShouldRunTestOnShard is a partition when 5
1953 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1954 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1955 // Choose an arbitrary number of tests and shards.
1956 const int num_tests = 17;
1957 const int num_shards = 5;
1958
1959 // Check partitioning: each test should be on exactly 1 shard.
1960 for (int test_id = 0; test_id < num_tests; test_id++) {
1961 int prev_selected_shard_index = -1;
1962 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1963 if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1964 if (prev_selected_shard_index < 0) {
1965 prev_selected_shard_index = shard_index;
1966 } else {
1967 ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1968 << shard_index << " are both selected to run test "
1969 << test_id;
1970 }
1971 }
1972 }
1973 }
1974
1975 // Check balance: This is not required by the sharding protocol, but is a
1976 // desirable property for performance.
1977 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1978 int num_tests_on_shard = 0;
1979 for (int test_id = 0; test_id < num_tests; test_id++) {
1980 num_tests_on_shard +=
1981 ShouldRunTestOnShard(num_shards, shard_index, test_id);
1982 }
1983 EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1984 }
1985 }
1986
1987 // For the same reason we are not explicitly testing everything in the
1988 // Test class, there are no separate tests for the following classes
1989 // (except for some trivial cases):
1990 //
1991 // TestSuite, UnitTest, UnitTestResultPrinter.
1992 //
1993 // Similarly, there are no separate tests for the following macros:
1994 //
1995 // TEST, TEST_F, RUN_ALL_TESTS
1996
TEST(UnitTestTest,CanGetOriginalWorkingDir)1997 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1998 ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1999 EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2000 }
2001
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2002 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2003 EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2004 EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2005 }
2006
2007 // When a property using a reserved key is supplied to this function, it
2008 // tests that a non-fatal failure is added, a fatal failure is not added,
2009 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2010 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2011 const TestResult& test_result, const char* key) {
2012 EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2013 ASSERT_EQ(0, test_result.test_property_count())
2014 << "Property for key '" << key << "' recorded unexpectedly.";
2015 }
2016
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2017 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2018 const char* key) {
2019 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2020 ASSERT_TRUE(test_info != nullptr);
2021 ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2022 key);
2023 }
2024
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2025 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2026 const char* key) {
2027 const testing::TestSuite* test_suite =
2028 UnitTest::GetInstance()->current_test_suite();
2029 ASSERT_TRUE(test_suite != nullptr);
2030 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2031 test_suite->ad_hoc_test_result(), key);
2032 }
2033
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2034 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2035 const char* key) {
2036 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2037 UnitTest::GetInstance()->ad_hoc_test_result(), key);
2038 }
2039
2040 // Tests that property recording functions in UnitTest outside of tests
2041 // functions correctly. Creating a separate instance of UnitTest ensures it
2042 // is in a state similar to the UnitTest's singleton's between tests.
2043 class UnitTestRecordPropertyTest
2044 : public testing::internal::UnitTestRecordPropertyTestHelper {
2045 public:
SetUpTestSuite()2046 static void SetUpTestSuite() {
2047 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048 "disabled");
2049 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050 "errors");
2051 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052 "failures");
2053 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054 "name");
2055 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2056 "tests");
2057 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2058 "time");
2059
2060 Test::RecordProperty("test_case_key_1", "1");
2061
2062 const testing::TestSuite* test_suite =
2063 UnitTest::GetInstance()->current_test_suite();
2064
2065 ASSERT_TRUE(test_suite != nullptr);
2066
2067 ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2068 EXPECT_STREQ("test_case_key_1",
2069 test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2070 EXPECT_STREQ("1",
2071 test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2072 }
2073 };
2074
2075 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2076 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2077 UnitTestRecordProperty("key_1", "1");
2078
2079 ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2080
2081 EXPECT_STREQ("key_1",
2082 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2083 EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2084 }
2085
2086 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2087 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2088 UnitTestRecordProperty("key_1", "1");
2089 UnitTestRecordProperty("key_2", "2");
2090
2091 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2092
2093 EXPECT_STREQ("key_1",
2094 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2095 EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2096
2097 EXPECT_STREQ("key_2",
2098 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2099 EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2100 }
2101
2102 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2103 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2104 UnitTestRecordProperty("key_1", "1");
2105 UnitTestRecordProperty("key_2", "2");
2106 UnitTestRecordProperty("key_1", "12");
2107 UnitTestRecordProperty("key_2", "22");
2108
2109 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2110
2111 EXPECT_STREQ("key_1",
2112 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2113 EXPECT_STREQ("12",
2114 unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2115
2116 EXPECT_STREQ("key_2",
2117 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2118 EXPECT_STREQ("22",
2119 unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2120 }
2121
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2122 TEST_F(UnitTestRecordPropertyTest,
2123 AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2124 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2125 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2126 "value_param");
2127 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128 "type_param");
2129 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2130 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2131 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2132 "classname");
2133 }
2134
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2135 TEST_F(UnitTestRecordPropertyTest,
2136 AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2137 EXPECT_NONFATAL_FAILURE(
2138 Test::RecordProperty("name", "1"),
2139 "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2140 " 'file', and 'line' are reserved");
2141 }
2142
2143 class UnitTestRecordPropertyTestEnvironment : public Environment {
2144 public:
TearDown()2145 void TearDown() override {
2146 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147 "tests");
2148 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149 "failures");
2150 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151 "disabled");
2152 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153 "errors");
2154 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155 "name");
2156 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157 "timestamp");
2158 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2159 "time");
2160 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2161 "random_seed");
2162 }
2163 };
2164
2165 // This will test property recording outside of any test or test case.
2166 [[maybe_unused]] static Environment* record_property_env =
2167 AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2168
2169 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2170 // of various arities. They do not attempt to be exhaustive. Rather,
2171 // view them as smoke tests that can be easily reviewed and verified.
2172 // A more complete set of tests for predicate assertions can be found
2173 // in gtest_pred_impl_unittest.cc.
2174
2175 // First, some predicates and predicate-formatters needed by the tests.
2176
2177 // Returns true if and only if the argument is an even number.
IsEven(int n)2178 bool IsEven(int n) { return (n % 2) == 0; }
2179
2180 // A functor that returns true if and only if the argument is an even number.
2181 struct IsEvenFunctor {
operator ()__anon19f4cde20111::IsEvenFunctor2182 bool operator()(int n) { return IsEven(n); }
2183 };
2184
2185 // A predicate-formatter function that asserts the argument is an even
2186 // number.
AssertIsEven(const char * expr,int n)2187 AssertionResult AssertIsEven(const char* expr, int n) {
2188 if (IsEven(n)) {
2189 return AssertionSuccess();
2190 }
2191
2192 Message msg;
2193 msg << expr << " evaluates to " << n << ", which is not even.";
2194 return AssertionFailure(msg);
2195 }
2196
2197 // A predicate function that returns AssertionResult for use in
2198 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2199 AssertionResult ResultIsEven(int n) {
2200 if (IsEven(n))
2201 return AssertionSuccess() << n << " is even";
2202 else
2203 return AssertionFailure() << n << " is odd";
2204 }
2205
2206 // A predicate function that returns AssertionResult but gives no
2207 // explanation why it succeeds. Needed for testing that
2208 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2209 AssertionResult ResultIsEvenNoExplanation(int n) {
2210 if (IsEven(n))
2211 return AssertionSuccess();
2212 else
2213 return AssertionFailure() << n << " is odd";
2214 }
2215
2216 // A predicate-formatter functor that asserts the argument is an even
2217 // number.
2218 struct AssertIsEvenFunctor {
operator ()__anon19f4cde20111::AssertIsEvenFunctor2219 AssertionResult operator()(const char* expr, int n) {
2220 return AssertIsEven(expr, n);
2221 }
2222 };
2223
2224 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2225 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2226
2227 // A functor that returns true if and only if the sum of the arguments is an
2228 // even number.
2229 struct SumIsEven3Functor {
operator ()__anon19f4cde20111::SumIsEven3Functor2230 bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2231 };
2232
2233 // A predicate-formatter function that asserts the sum of the
2234 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2235 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2236 const char* e4, int n1, int n2, int n3,
2237 int n4) {
2238 const int sum = n1 + n2 + n3 + n4;
2239 if (IsEven(sum)) {
2240 return AssertionSuccess();
2241 }
2242
2243 Message msg;
2244 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2245 << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2246 << ", which is not even.";
2247 return AssertionFailure(msg);
2248 }
2249
2250 // A predicate-formatter functor that asserts the sum of the arguments
2251 // is an even number.
2252 struct AssertSumIsEven5Functor {
operator ()__anon19f4cde20111::AssertSumIsEven5Functor2253 AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2254 const char* e4, const char* e5, int n1, int n2,
2255 int n3, int n4, int n5) {
2256 const int sum = n1 + n2 + n3 + n4 + n5;
2257 if (IsEven(sum)) {
2258 return AssertionSuccess();
2259 }
2260
2261 Message msg;
2262 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2263 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2264 << n5 << ") evaluates to " << sum << ", which is not even.";
2265 return AssertionFailure(msg);
2266 }
2267 };
2268
2269 // Tests unary predicate assertions.
2270
2271 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2272 TEST(Pred1Test, WithoutFormat) {
2273 // Success cases.
2274 EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2275 ASSERT_PRED1(IsEven, 4);
2276
2277 // Failure cases.
2278 EXPECT_NONFATAL_FAILURE(
2279 { // NOLINT
2280 EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2281 },
2282 "This failure is expected.");
2283 EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2284 }
2285
2286 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2287 TEST(Pred1Test, WithFormat) {
2288 // Success cases.
2289 EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2290 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2291 << "This failure is UNEXPECTED!";
2292
2293 // Failure cases.
2294 const int n = 5;
2295 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2296 "n evaluates to 5, which is not even.");
2297 EXPECT_FATAL_FAILURE(
2298 { // NOLINT
2299 ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2300 },
2301 "This failure is expected.");
2302 }
2303
2304 // Tests that unary predicate assertions evaluates their arguments
2305 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2306 TEST(Pred1Test, SingleEvaluationOnFailure) {
2307 // A success case.
2308 static int n = 0;
2309 EXPECT_PRED1(IsEven, n++);
2310 EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2311
2312 // A failure case.
2313 EXPECT_FATAL_FAILURE(
2314 { // NOLINT
2315 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2316 << "This failure is expected.";
2317 },
2318 "This failure is expected.");
2319 EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2320 }
2321
2322 // Tests predicate assertions whose arity is >= 2.
2323
2324 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2325 TEST(PredTest, WithoutFormat) {
2326 // Success cases.
2327 ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2328 EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2329
2330 // Failure cases.
2331 const int n1 = 1;
2332 const int n2 = 2;
2333 EXPECT_NONFATAL_FAILURE(
2334 { // NOLINT
2335 EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2336 },
2337 "This failure is expected.");
2338 EXPECT_FATAL_FAILURE(
2339 { // NOLINT
2340 ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2341 },
2342 "evaluates to false");
2343 }
2344
2345 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2346 TEST(PredTest, WithFormat) {
2347 // Success cases.
2348 ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2349 << "This failure is UNEXPECTED!";
2350 EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2351
2352 // Failure cases.
2353 const int n1 = 1;
2354 const int n2 = 2;
2355 const int n3 = 4;
2356 const int n4 = 6;
2357 EXPECT_NONFATAL_FAILURE(
2358 { // NOLINT
2359 EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2360 },
2361 "evaluates to 13, which is not even.");
2362 EXPECT_FATAL_FAILURE(
2363 { // NOLINT
2364 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2365 << "This failure is expected.";
2366 },
2367 "This failure is expected.");
2368 }
2369
2370 // Tests that predicate assertions evaluates their arguments
2371 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2372 TEST(PredTest, SingleEvaluationOnFailure) {
2373 // A success case.
2374 int n1 = 0;
2375 int n2 = 0;
2376 EXPECT_PRED2(SumIsEven2, n1++, n2++);
2377 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2378 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2379
2380 // Another success case.
2381 n1 = n2 = 0;
2382 int n3 = 0;
2383 int n4 = 0;
2384 int n5 = 0;
2385 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2386 << "This failure is UNEXPECTED!";
2387 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2388 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2389 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2390 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2391 EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2392
2393 // A failure case.
2394 n1 = n2 = n3 = 0;
2395 EXPECT_NONFATAL_FAILURE(
2396 { // NOLINT
2397 EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2398 << "This failure is expected.";
2399 },
2400 "This failure is expected.");
2401 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2402 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2403 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2404
2405 // Another failure case.
2406 n1 = n2 = n3 = n4 = 0;
2407 EXPECT_NONFATAL_FAILURE(
2408 { // NOLINT
2409 EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2410 },
2411 "evaluates to 1, which is not even.");
2412 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2413 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2414 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2415 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2416 }
2417
2418 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2419 TEST(PredTest, ExpectPredEvalFailure) {
2420 std::set<int> set_a = {2, 1, 3, 4, 5};
2421 std::set<int> set_b = {0, 4, 8};
2422 const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2423 EXPECT_NONFATAL_FAILURE(
2424 EXPECT_PRED2(compare_sets, set_a, set_b),
2425 "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2426 "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2427 }
2428
2429 // Some helper functions for testing using overloaded/template
2430 // functions with ASSERT_PREDn and EXPECT_PREDn.
2431
IsPositive(double x)2432 bool IsPositive(double x) { return x > 0; }
2433
2434 template <typename T>
IsNegative(T x)2435 bool IsNegative(T x) {
2436 return x < 0;
2437 }
2438
2439 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2440 bool GreaterThan(T1 x1, T2 x2) {
2441 return x1 > x2;
2442 }
2443
2444 // Tests that overloaded functions can be used in *_PRED* as long as
2445 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2446 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2447 // C++Builder requires C-style casts rather than static_cast.
2448 EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2449 ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2450 }
2451
2452 // Tests that template functions can be used in *_PRED* as long as
2453 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2454 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2455 EXPECT_PRED1(IsNegative<int>, -5);
2456 // Makes sure that we can handle templates with more than one
2457 // parameter.
2458 ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2459 }
2460
2461 // Some helper functions for testing using overloaded/template
2462 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2463
IsPositiveFormat(const char *,int n)2464 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2465 return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466 }
2467
IsPositiveFormat(const char *,double x)2468 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2469 return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2470 }
2471
2472 template <typename T>
IsNegativeFormat(const char *,T x)2473 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2474 return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2475 }
2476
2477 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2478 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2479 const T1& x1, const T2& x2) {
2480 return x1 == x2 ? AssertionSuccess()
2481 : AssertionFailure(Message() << "Failure");
2482 }
2483
2484 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2485 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2486 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2487 EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2488 ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2489 }
2490
2491 // Tests that template functions can be used in *_PRED_FORMAT* without
2492 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2493 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2494 EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2495 ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2496 }
2497
2498 // Tests string assertions.
2499
2500 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2501 TEST(StringAssertionTest, ASSERT_STREQ) {
2502 const char* const p1 = "good";
2503 ASSERT_STREQ(p1, p1);
2504
2505 // Let p2 have the same content as p1, but be at a different address.
2506 const char p2[] = "good";
2507 ASSERT_STREQ(p1, p2);
2508
2509 EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), " \"bad\"\n \"good\"");
2510 }
2511
2512 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2513 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2514 ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2515 EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2516 }
2517
2518 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2519 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2520 EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2521 }
2522
2523 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2524 TEST(StringAssertionTest, ASSERT_STRNE) {
2525 ASSERT_STRNE("hi", "Hi");
2526 ASSERT_STRNE("Hi", nullptr);
2527 ASSERT_STRNE(nullptr, "Hi");
2528 ASSERT_STRNE("", nullptr);
2529 ASSERT_STRNE(nullptr, "");
2530 ASSERT_STRNE("", "Hi");
2531 ASSERT_STRNE("Hi", "");
2532 EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2533 }
2534
2535 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2536 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2537 ASSERT_STRCASEEQ("hi", "Hi");
2538 ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2539
2540 ASSERT_STRCASEEQ("", "");
2541 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2542 }
2543
2544 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2545 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2546 ASSERT_STRCASENE("hi1", "Hi2");
2547 ASSERT_STRCASENE("Hi", nullptr);
2548 ASSERT_STRCASENE(nullptr, "Hi");
2549 ASSERT_STRCASENE("", nullptr);
2550 ASSERT_STRCASENE(nullptr, "");
2551 ASSERT_STRCASENE("", "Hi");
2552 ASSERT_STRCASENE("Hi", "");
2553 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2554 }
2555
2556 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2557 TEST(StringAssertionTest, STREQ_Wide) {
2558 // NULL strings.
2559 ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2560
2561 // Empty strings.
2562 ASSERT_STREQ(L"", L"");
2563
2564 // Non-null vs NULL.
2565 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2566
2567 // Equal strings.
2568 EXPECT_STREQ(L"Hi", L"Hi");
2569
2570 // Unequal strings.
2571 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2572
2573 // Strings containing wide characters.
2574 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2575
2576 // The streaming variation.
2577 EXPECT_NONFATAL_FAILURE(
2578 { // NOLINT
2579 EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2580 },
2581 "Expected failure");
2582 }
2583
2584 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2585 TEST(StringAssertionTest, STRNE_Wide) {
2586 // NULL strings.
2587 EXPECT_NONFATAL_FAILURE(
2588 { // NOLINT
2589 EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2590 },
2591 "");
2592
2593 // Empty strings.
2594 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2595
2596 // Non-null vs NULL.
2597 ASSERT_STRNE(L"non-null", nullptr);
2598
2599 // Equal strings.
2600 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2601
2602 // Unequal strings.
2603 EXPECT_STRNE(L"abc", L"Abc");
2604
2605 // Strings containing wide characters.
2606 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2607
2608 // The streaming variation.
2609 ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2610 }
2611
2612 // Tests for ::testing::IsSubstring().
2613
2614 // Tests that IsSubstring() returns the correct result when the input
2615 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2616 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2617 EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2618 EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2619 EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2620
2621 EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2622 EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2623 }
2624
2625 // Tests that IsSubstring() returns the correct result when the input
2626 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2627 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2628 EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2629 EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2630 EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2631
2632 EXPECT_TRUE(
2633 IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2634 EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2635 }
2636
2637 // Tests that IsSubstring() generates the correct message when the input
2638 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2639 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2640 EXPECT_STREQ(
2641 "Value of: needle_expr\n"
2642 " Actual: \"needle\"\n"
2643 "Expected: a substring of haystack_expr\n"
2644 "Which is: \"haystack\"",
2645 IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2646 .failure_message());
2647 }
2648
2649 // Tests that IsSubstring returns the correct result when the input
2650 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2651 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2652 EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2653 EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2654 }
2655
2656 #if GTEST_HAS_STD_WSTRING
2657 // Tests that IsSubstring returns the correct result when the input
2658 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2659 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2660 EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661 EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662 }
2663
2664 // Tests that IsSubstring() generates the correct message when the input
2665 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2666 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2667 EXPECT_STREQ(
2668 "Value of: needle_expr\n"
2669 " Actual: L\"needle\"\n"
2670 "Expected: a substring of haystack_expr\n"
2671 "Which is: L\"haystack\"",
2672 IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2673 L"haystack")
2674 .failure_message());
2675 }
2676
2677 #endif // GTEST_HAS_STD_WSTRING
2678
2679 // Tests for ::testing::IsNotSubstring().
2680
2681 // Tests that IsNotSubstring() returns the correct result when the input
2682 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2683 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2684 EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2685 EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2686 }
2687
2688 // Tests that IsNotSubstring() returns the correct result when the input
2689 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2690 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2691 EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2692 EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2693 }
2694
2695 // Tests that IsNotSubstring() generates the correct message when the input
2696 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2697 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2698 EXPECT_STREQ(
2699 "Value of: needle_expr\n"
2700 " Actual: L\"needle\"\n"
2701 "Expected: not a substring of haystack_expr\n"
2702 "Which is: L\"two needles\"",
2703 IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2704 .failure_message());
2705 }
2706
2707 // Tests that IsNotSubstring returns the correct result when the input
2708 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2709 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2710 EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2711 EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2712 }
2713
2714 // Tests that IsNotSubstring() generates the correct message when the input
2715 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2716 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2717 EXPECT_STREQ(
2718 "Value of: needle_expr\n"
2719 " Actual: \"needle\"\n"
2720 "Expected: not a substring of haystack_expr\n"
2721 "Which is: \"two needles\"",
2722 IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2723 "two needles")
2724 .failure_message());
2725 }
2726
2727 #if GTEST_HAS_STD_WSTRING
2728
2729 // Tests that IsNotSubstring returns the correct result when the input
2730 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2731 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2732 EXPECT_FALSE(
2733 IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2734 EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2735 }
2736
2737 #endif // GTEST_HAS_STD_WSTRING
2738
2739 // Tests floating-point assertions.
2740
2741 template <typename RawType>
2742 class FloatingPointTest : public Test {
2743 protected:
2744 // Pre-calculated numbers to be used by the tests.
2745 struct TestValues {
2746 RawType close_to_positive_zero;
2747 RawType close_to_negative_zero;
2748 RawType further_from_negative_zero;
2749
2750 RawType close_to_one;
2751 RawType further_from_one;
2752
2753 RawType infinity;
2754 RawType close_to_infinity;
2755 RawType further_from_infinity;
2756
2757 RawType nan1;
2758 RawType nan2;
2759 };
2760
2761 typedef typename testing::internal::FloatingPoint<RawType> Floating;
2762 typedef typename Floating::Bits Bits;
2763
SetUp()2764 void SetUp() override {
2765 const uint32_t max_ulps = Floating::kMaxUlps;
2766
2767 // The bits that represent 0.0.
2768 const Bits zero_bits = Floating(0).bits();
2769
2770 // Makes some numbers close to 0.0.
2771 values_.close_to_positive_zero =
2772 Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2773 values_.close_to_negative_zero =
2774 -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2775 values_.further_from_negative_zero =
2776 -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2777
2778 // The bits that represent 1.0.
2779 const Bits one_bits = Floating(1).bits();
2780
2781 // Makes some numbers close to 1.0.
2782 values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2783 values_.further_from_one =
2784 Floating::ReinterpretBits(one_bits + max_ulps + 1);
2785
2786 // +infinity.
2787 values_.infinity = Floating::Infinity();
2788
2789 // The bits that represent +infinity.
2790 const Bits infinity_bits = Floating(values_.infinity).bits();
2791
2792 // Makes some numbers close to infinity.
2793 values_.close_to_infinity =
2794 Floating::ReinterpretBits(infinity_bits - max_ulps);
2795 values_.further_from_infinity =
2796 Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2797
2798 // Makes some NAN's. Sets the most significant bit of the fraction so that
2799 // our NaN's are quiet; trying to process a signaling NaN would raise an
2800 // exception if our environment enables floating point exceptions.
2801 values_.nan1 = Floating::ReinterpretBits(
2802 Floating::kExponentBitMask |
2803 (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2804 values_.nan2 = Floating::ReinterpretBits(
2805 Floating::kExponentBitMask |
2806 (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2807 }
2808
TestSize()2809 void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2810
2811 static TestValues values_;
2812 };
2813
2814 template <typename RawType>
2815 typename FloatingPointTest<RawType>::TestValues
2816 FloatingPointTest<RawType>::values_;
2817
2818 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2819 typedef FloatingPointTest<float> FloatTest;
2820
2821 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2822 TEST_F(FloatTest, Size) { TestSize(); }
2823
2824 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2825 TEST_F(FloatTest, Zeros) {
2826 EXPECT_FLOAT_EQ(0.0, -0.0);
2827 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2828 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2829 }
2830
2831 // Tests comparing numbers close to 0.
2832 //
2833 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2834 // overflow occurs when comparing numbers whose absolute value is very
2835 // small.
TEST_F(FloatTest,AlmostZeros)2836 TEST_F(FloatTest, AlmostZeros) {
2837 // In C++Builder, names within local classes (such as used by
2838 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2839 // scoping class. Use a static local alias as a workaround.
2840 // We use the assignment syntax since some compilers, like Sun Studio,
2841 // don't allow initializing references using construction syntax
2842 // (parentheses).
2843 static const FloatTest::TestValues& v = this->values_;
2844
2845 EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2846 EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2847 EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2848
2849 EXPECT_FATAL_FAILURE(
2850 { // NOLINT
2851 ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2852 },
2853 "v.further_from_negative_zero");
2854 }
2855
2856 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2857 TEST_F(FloatTest, SmallDiff) {
2858 EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2859 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2860 "values_.further_from_one");
2861 }
2862
2863 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2864 TEST_F(FloatTest, LargeDiff) {
2865 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2866 }
2867
2868 // Tests comparing with infinity.
2869 //
2870 // This ensures that no overflow occurs when comparing numbers whose
2871 // absolute value is very large.
TEST_F(FloatTest,Infinity)2872 TEST_F(FloatTest, Infinity) {
2873 EXPECT_FLOAT_EQ(values_.infinity, values_.infinity);
2874 EXPECT_FLOAT_EQ(-values_.infinity, -values_.infinity);
2875 EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2876 EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2877 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2878 "-values_.infinity");
2879
2880 // This is interesting as the representations of infinity and nan1
2881 // are only 1 DLP apart.
2882 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2883 "values_.nan1");
2884 }
2885
2886 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2887 TEST_F(FloatTest, NaN) {
2888 // In C++Builder, names within local classes (such as used by
2889 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2890 // scoping class. Use a static local alias as a workaround.
2891 // We use the assignment syntax since some compilers, like Sun Studio,
2892 // don't allow initializing references using construction syntax
2893 // (parentheses).
2894 static const FloatTest::TestValues& v = this->values_;
2895
2896 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2897 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2898 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2899 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, 1.0f), "v.nan1");
2900 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, v.infinity), "v.nan1");
2901 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0f), "v.nan1");
2902 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
2903 "v.nan1");
2904
2905 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2906 }
2907
2908 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2909 TEST_F(FloatTest, Reflexive) {
2910 EXPECT_FLOAT_EQ(0.0, 0.0);
2911 EXPECT_FLOAT_EQ(1.0, 1.0);
2912 ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2913 }
2914
2915 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2916 TEST_F(FloatTest, Commutative) {
2917 // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2918 EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2919
2920 // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2921 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2922 "1.0");
2923 }
2924
2925 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2926 TEST_F(FloatTest, EXPECT_NEAR) {
2927 static const FloatTest::TestValues& v = this->values_;
2928
2929 EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2930 EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2931 EXPECT_NEAR(v.infinity, v.infinity, 0.0f);
2932 EXPECT_NEAR(-v.infinity, -v.infinity, 0.0f);
2933 EXPECT_NEAR(0.0f, 1.0f, v.infinity);
2934 EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
2935 EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
2936 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
2937 "The difference between 1.0f and 1.5f is 0.5, "
2938 "which exceeds 0.25f");
2939 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0f), // NOLINT
2940 "The difference between v.infinity and -v.infinity "
2941 "is inf, which exceeds 0.0f");
2942 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0f), // NOLINT
2943 "The difference between -v.infinity and v.infinity "
2944 "is inf, which exceeds 0.0f");
2945 EXPECT_NONFATAL_FAILURE(
2946 EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
2947 "The difference between v.infinity and v.close_to_infinity is inf, which "
2948 "exceeds v.further_from_infinity");
2949 }
2950
2951 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2952 TEST_F(FloatTest, ASSERT_NEAR) {
2953 ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2954 ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2955 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
2956 "The difference between 1.0f and 1.5f is 0.5, "
2957 "which exceeds 0.25f");
2958 }
2959
2960 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2961 TEST_F(FloatTest, FloatLESucceeds) {
2962 EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2963 ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2964
2965 // or when val1 is greater than, but almost equals to, val2.
2966 EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2967 }
2968
2969 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2970 TEST_F(FloatTest, FloatLEFails) {
2971 // When val1 is greater than val2 by a large margin,
2972 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2973 "(2.0f) <= (1.0f)");
2974
2975 // or by a small yet non-negligible margin,
2976 EXPECT_NONFATAL_FAILURE(
2977 { // NOLINT
2978 EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2979 },
2980 "(values_.further_from_one) <= (1.0f)");
2981
2982 EXPECT_NONFATAL_FAILURE(
2983 { // NOLINT
2984 EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2985 },
2986 "(values_.nan1) <= (values_.infinity)");
2987 EXPECT_NONFATAL_FAILURE(
2988 { // NOLINT
2989 EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2990 },
2991 "(-values_.infinity) <= (values_.nan1)");
2992 EXPECT_FATAL_FAILURE(
2993 { // NOLINT
2994 ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2995 },
2996 "(values_.nan1) <= (values_.nan1)");
2997 }
2998
2999 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
3000 typedef FloatingPointTest<double> DoubleTest;
3001
3002 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)3003 TEST_F(DoubleTest, Size) { TestSize(); }
3004
3005 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)3006 TEST_F(DoubleTest, Zeros) {
3007 EXPECT_DOUBLE_EQ(0.0, -0.0);
3008 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
3009 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
3010 }
3011
3012 // Tests comparing numbers close to 0.
3013 //
3014 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
3015 // overflow occurs when comparing numbers whose absolute value is very
3016 // small.
TEST_F(DoubleTest,AlmostZeros)3017 TEST_F(DoubleTest, AlmostZeros) {
3018 // In C++Builder, names within local classes (such as used by
3019 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3020 // scoping class. Use a static local alias as a workaround.
3021 // We use the assignment syntax since some compilers, like Sun Studio,
3022 // don't allow initializing references using construction syntax
3023 // (parentheses).
3024 static const DoubleTest::TestValues& v = this->values_;
3025
3026 EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3027 EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3028 EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3029
3030 EXPECT_FATAL_FAILURE(
3031 { // NOLINT
3032 ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3033 v.further_from_negative_zero);
3034 },
3035 "v.further_from_negative_zero");
3036 }
3037
3038 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3039 TEST_F(DoubleTest, SmallDiff) {
3040 EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3041 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3042 "values_.further_from_one");
3043 }
3044
3045 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3046 TEST_F(DoubleTest, LargeDiff) {
3047 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3048 }
3049
3050 // Tests comparing with infinity.
3051 //
3052 // This ensures that no overflow occurs when comparing numbers whose
3053 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3054 TEST_F(DoubleTest, Infinity) {
3055 EXPECT_DOUBLE_EQ(values_.infinity, values_.infinity);
3056 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.infinity);
3057 EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3058 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3059 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3060 "-values_.infinity");
3061
3062 // This is interesting as the representations of infinity_ and nan1_
3063 // are only 1 DLP apart.
3064 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3065 "values_.nan1");
3066 }
3067
3068 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3069 TEST_F(DoubleTest, NaN) {
3070 static const DoubleTest::TestValues& v = this->values_;
3071
3072 // Nokia's STLport crashes if we try to output infinity or NaN.
3073 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3074 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3075 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3076 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, 1.0), "v.nan1");
3077 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, v.infinity), "v.nan1");
3078 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0), "v.nan1");
3079 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
3080 "v.nan1");
3081
3082 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3083 }
3084
3085 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3086 TEST_F(DoubleTest, Reflexive) {
3087 EXPECT_DOUBLE_EQ(0.0, 0.0);
3088 EXPECT_DOUBLE_EQ(1.0, 1.0);
3089 ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3090 }
3091
3092 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3093 TEST_F(DoubleTest, Commutative) {
3094 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3095 EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3096
3097 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3098 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3099 "1.0");
3100 }
3101
3102 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3103 TEST_F(DoubleTest, EXPECT_NEAR) {
3104 static const DoubleTest::TestValues& v = this->values_;
3105
3106 EXPECT_NEAR(-1.0, -1.1, 0.2);
3107 EXPECT_NEAR(2.0, 3.0, 1.0);
3108 EXPECT_NEAR(v.infinity, v.infinity, 0.0);
3109 EXPECT_NEAR(-v.infinity, -v.infinity, 0.0);
3110 EXPECT_NEAR(0.0, 1.0, v.infinity);
3111 EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
3112 EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
3113 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3114 "The difference between 1.0 and 1.5 is 0.5, "
3115 "which exceeds 0.25");
3116 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0),
3117 "The difference between v.infinity and -v.infinity "
3118 "is inf, which exceeds 0.0");
3119 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0),
3120 "The difference between -v.infinity and v.infinity "
3121 "is inf, which exceeds 0.0");
3122 EXPECT_NONFATAL_FAILURE(
3123 EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
3124 "The difference between v.infinity and v.close_to_infinity is inf, which "
3125 "exceeds v.further_from_infinity");
3126 // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3127 // slightly different failure reporting path.
3128 EXPECT_NONFATAL_FAILURE(
3129 EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3130 "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3131 "minimum distance between doubles for numbers of this magnitude which is "
3132 "512");
3133 }
3134
3135 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3136 TEST_F(DoubleTest, ASSERT_NEAR) {
3137 ASSERT_NEAR(-1.0, -1.1, 0.2);
3138 ASSERT_NEAR(2.0, 3.0, 1.0);
3139 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3140 "The difference between 1.0 and 1.5 is 0.5, "
3141 "which exceeds 0.25");
3142 }
3143
3144 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3145 TEST_F(DoubleTest, DoubleLESucceeds) {
3146 EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3147 ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3148
3149 // or when val1 is greater than, but almost equals to, val2.
3150 EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3151 }
3152
3153 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3154 TEST_F(DoubleTest, DoubleLEFails) {
3155 // When val1 is greater than val2 by a large margin,
3156 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3157 "(2.0) <= (1.0)");
3158
3159 // or by a small yet non-negligible margin,
3160 EXPECT_NONFATAL_FAILURE(
3161 { // NOLINT
3162 EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3163 },
3164 "(values_.further_from_one) <= (1.0)");
3165
3166 EXPECT_NONFATAL_FAILURE(
3167 { // NOLINT
3168 EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3169 },
3170 "(values_.nan1) <= (values_.infinity)");
3171 EXPECT_NONFATAL_FAILURE(
3172 { // NOLINT
3173 EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3174 },
3175 " (-values_.infinity) <= (values_.nan1)");
3176 EXPECT_FATAL_FAILURE(
3177 { // NOLINT
3178 ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3179 },
3180 "(values_.nan1) <= (values_.nan1)");
3181 }
3182
3183 // Verifies that a test or test case whose name starts with DISABLED_ is
3184 // not run.
3185
3186 // A test whose name starts with DISABLED_.
3187 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3188 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3189 FAIL() << "Unexpected failure: Disabled test should not be run.";
3190 }
3191
3192 // A test whose name does not start with DISABLED_.
3193 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3194 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3195
3196 // A test case whose name starts with DISABLED_.
3197 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3198 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3199 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3200 }
3201
3202 // A test case and test whose names start with DISABLED_.
3203 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3204 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3205 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3206 }
3207
3208 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3209 // TearDownTestSuite() are not called.
3210 class DisabledTestsTest : public Test {
3211 protected:
SetUpTestSuite()3212 static void SetUpTestSuite() {
3213 FAIL() << "Unexpected failure: All tests disabled in test case. "
3214 "SetUpTestSuite() should not be called.";
3215 }
3216
TearDownTestSuite()3217 static void TearDownTestSuite() {
3218 FAIL() << "Unexpected failure: All tests disabled in test case. "
3219 "TearDownTestSuite() should not be called.";
3220 }
3221 };
3222
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3223 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3224 FAIL() << "Unexpected failure: Disabled test should not be run.";
3225 }
3226
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3227 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3228 FAIL() << "Unexpected failure: Disabled test should not be run.";
3229 }
3230
3231 // Tests that disabled typed tests aren't run.
3232
3233 template <typename T>
3234 class TypedTest : public Test {};
3235
3236 typedef testing::Types<int, double> NumericTypes;
3237 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3238
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3239 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3240 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3241 }
3242
3243 template <typename T>
3244 class DISABLED_TypedTest : public Test {};
3245
3246 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3247
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3248 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3249 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3250 }
3251
3252 // Tests that disabled type-parameterized tests aren't run.
3253
3254 template <typename T>
3255 class TypedTestP : public Test {};
3256
3257 TYPED_TEST_SUITE_P(TypedTestP);
3258
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3259 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3260 FAIL() << "Unexpected failure: "
3261 << "Disabled type-parameterized test should not run.";
3262 }
3263
3264 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3265
3266 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3267
3268 template <typename T>
3269 class DISABLED_TypedTestP : public Test {};
3270
3271 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3272
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3273 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3274 FAIL() << "Unexpected failure: "
3275 << "Disabled type-parameterized test should not run.";
3276 }
3277
3278 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3279
3280 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3281
3282 // Tests that assertion macros evaluate their arguments exactly once.
3283
3284 class SingleEvaluationTest : public Test {
3285 public: // Must be public and not protected due to a bug in g++ 3.4.2.
3286 // This helper function is needed by the FailedASSERT_STREQ test
3287 // below. It's public to work around C++Builder's bug with scoping local
3288 // classes.
CompareAndIncrementCharPtrs()3289 static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3290
3291 // This helper function is needed by the FailedASSERT_NE test below. It's
3292 // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3293 static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3294
3295 protected:
SingleEvaluationTest()3296 SingleEvaluationTest() {
3297 p1_ = s1_;
3298 p2_ = s2_;
3299 a_ = 0;
3300 b_ = 0;
3301 }
3302
3303 static const char* const s1_;
3304 static const char* const s2_;
3305 static const char* p1_;
3306 static const char* p2_;
3307
3308 static int a_;
3309 static int b_;
3310 };
3311
3312 const char* const SingleEvaluationTest::s1_ = "01234";
3313 const char* const SingleEvaluationTest::s2_ = "abcde";
3314 const char* SingleEvaluationTest::p1_;
3315 const char* SingleEvaluationTest::p2_;
3316 int SingleEvaluationTest::a_;
3317 int SingleEvaluationTest::b_;
3318
3319 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3320 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3321 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3322 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3323 "p2_++");
3324 EXPECT_EQ(s1_ + 1, p1_);
3325 EXPECT_EQ(s2_ + 1, p2_);
3326 }
3327
3328 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3329 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3330 // successful EXPECT_STRNE
3331 EXPECT_STRNE(p1_++, p2_++);
3332 EXPECT_EQ(s1_ + 1, p1_);
3333 EXPECT_EQ(s2_ + 1, p2_);
3334
3335 // failed EXPECT_STRCASEEQ
3336 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3337 EXPECT_EQ(s1_ + 2, p1_);
3338 EXPECT_EQ(s2_ + 2, p2_);
3339 }
3340
3341 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3342 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3343 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3344 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3345 "(a_++) != (b_++)");
3346 EXPECT_EQ(1, a_);
3347 EXPECT_EQ(1, b_);
3348 }
3349
3350 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3351 TEST_F(SingleEvaluationTest, OtherCases) {
3352 // successful EXPECT_TRUE
3353 EXPECT_TRUE(0 == a_++); // NOLINT
3354 EXPECT_EQ(1, a_);
3355
3356 // failed EXPECT_TRUE
3357 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3358 EXPECT_EQ(2, a_);
3359
3360 // successful EXPECT_GT
3361 EXPECT_GT(a_++, b_++);
3362 EXPECT_EQ(3, a_);
3363 EXPECT_EQ(1, b_);
3364
3365 // failed EXPECT_LT
3366 EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3367 EXPECT_EQ(4, a_);
3368 EXPECT_EQ(2, b_);
3369
3370 // successful ASSERT_TRUE
3371 ASSERT_TRUE(0 < a_++); // NOLINT
3372 EXPECT_EQ(5, a_);
3373
3374 // successful ASSERT_GT
3375 ASSERT_GT(a_++, b_++);
3376 EXPECT_EQ(6, a_);
3377 EXPECT_EQ(3, b_);
3378 }
3379
3380 #if GTEST_HAS_EXCEPTIONS
3381
3382 #if GTEST_HAS_RTTI
3383
3384 #define ERROR_DESC "std::runtime_error"
3385
3386 #else // GTEST_HAS_RTTI
3387
3388 #define ERROR_DESC "an std::exception-derived error"
3389
3390 #endif // GTEST_HAS_RTTI
3391
ThrowAnInteger()3392 void ThrowAnInteger() { throw 1; }
ThrowRuntimeError(const char * what)3393 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3394
3395 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3396 TEST_F(SingleEvaluationTest, ExceptionTests) {
3397 // successful EXPECT_THROW
3398 EXPECT_THROW(
3399 { // NOLINT
3400 a_++;
3401 ThrowAnInteger();
3402 },
3403 int);
3404 EXPECT_EQ(1, a_);
3405
3406 // failed EXPECT_THROW, throws different
3407 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3408 { // NOLINT
3409 a_++;
3410 ThrowAnInteger();
3411 },
3412 bool),
3413 "throws a different type");
3414 EXPECT_EQ(2, a_);
3415
3416 // failed EXPECT_THROW, throws runtime error
3417 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3418 { // NOLINT
3419 a_++;
3420 ThrowRuntimeError("A description");
3421 },
3422 bool),
3423 "throws " ERROR_DESC
3424 " with description \"A description\"");
3425 EXPECT_EQ(3, a_);
3426
3427 // failed EXPECT_THROW, throws nothing
3428 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3429 EXPECT_EQ(4, a_);
3430
3431 // successful EXPECT_NO_THROW
3432 EXPECT_NO_THROW(a_++);
3433 EXPECT_EQ(5, a_);
3434
3435 // failed EXPECT_NO_THROW
3436 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
3437 a_++;
3438 ThrowAnInteger();
3439 }),
3440 "it throws");
3441 EXPECT_EQ(6, a_);
3442
3443 // successful EXPECT_ANY_THROW
3444 EXPECT_ANY_THROW({ // NOLINT
3445 a_++;
3446 ThrowAnInteger();
3447 });
3448 EXPECT_EQ(7, a_);
3449
3450 // failed EXPECT_ANY_THROW
3451 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3452 EXPECT_EQ(8, a_);
3453 }
3454
3455 #endif // GTEST_HAS_EXCEPTIONS
3456
3457 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3458 class NoFatalFailureTest : public Test {
3459 protected:
Succeeds()3460 void Succeeds() {}
FailsNonFatal()3461 void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
Fails()3462 void Fails() { FAIL() << "some fatal failure"; }
3463
DoAssertNoFatalFailureOnFails()3464 void DoAssertNoFatalFailureOnFails() {
3465 ASSERT_NO_FATAL_FAILURE(Fails());
3466 ADD_FAILURE() << "should not reach here.";
3467 }
3468
DoExpectNoFatalFailureOnFails()3469 void DoExpectNoFatalFailureOnFails() {
3470 EXPECT_NO_FATAL_FAILURE(Fails());
3471 ADD_FAILURE() << "other failure";
3472 }
3473 };
3474
TEST_F(NoFatalFailureTest,NoFailure)3475 TEST_F(NoFatalFailureTest, NoFailure) {
3476 EXPECT_NO_FATAL_FAILURE(Succeeds());
3477 ASSERT_NO_FATAL_FAILURE(Succeeds());
3478 }
3479
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3480 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3481 EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3482 "some non-fatal failure");
3483 EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3484 "some non-fatal failure");
3485 }
3486
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3487 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3488 TestPartResultArray gtest_failures;
3489 {
3490 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3491 DoAssertNoFatalFailureOnFails();
3492 }
3493 ASSERT_EQ(2, gtest_failures.size());
3494 EXPECT_EQ(TestPartResult::kFatalFailure,
3495 gtest_failures.GetTestPartResult(0).type());
3496 EXPECT_EQ(TestPartResult::kFatalFailure,
3497 gtest_failures.GetTestPartResult(1).type());
3498 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3499 gtest_failures.GetTestPartResult(0).message());
3500 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3501 gtest_failures.GetTestPartResult(1).message());
3502 }
3503
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3504 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3505 TestPartResultArray gtest_failures;
3506 {
3507 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3508 DoExpectNoFatalFailureOnFails();
3509 }
3510 ASSERT_EQ(3, gtest_failures.size());
3511 EXPECT_EQ(TestPartResult::kFatalFailure,
3512 gtest_failures.GetTestPartResult(0).type());
3513 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3514 gtest_failures.GetTestPartResult(1).type());
3515 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3516 gtest_failures.GetTestPartResult(2).type());
3517 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3518 gtest_failures.GetTestPartResult(0).message());
3519 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3520 gtest_failures.GetTestPartResult(1).message());
3521 EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3522 gtest_failures.GetTestPartResult(2).message());
3523 }
3524
TEST_F(NoFatalFailureTest,MessageIsStreamable)3525 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3526 TestPartResultArray gtest_failures;
3527 {
3528 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3529 EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3530 }
3531 ASSERT_EQ(2, gtest_failures.size());
3532 EXPECT_EQ(TestPartResult::kFatalFailure,
3533 gtest_failures.GetTestPartResult(0).type());
3534 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3535 gtest_failures.GetTestPartResult(1).type());
3536 EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3537 gtest_failures.GetTestPartResult(0).message());
3538 EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3539 gtest_failures.GetTestPartResult(1).message());
3540 }
3541
3542 // Tests non-string assertions.
3543
EditsToString(const std::vector<EditType> & edits)3544 std::string EditsToString(const std::vector<EditType>& edits) {
3545 std::string out;
3546 for (size_t i = 0; i < edits.size(); ++i) {
3547 static const char kEdits[] = " +-/";
3548 out.append(1, kEdits[edits[i]]);
3549 }
3550 return out;
3551 }
3552
CharsToIndices(const std::string & str)3553 std::vector<size_t> CharsToIndices(const std::string& str) {
3554 std::vector<size_t> out;
3555 for (size_t i = 0; i < str.size(); ++i) {
3556 out.push_back(static_cast<size_t>(str[i]));
3557 }
3558 return out;
3559 }
3560
CharsToLines(const std::string & str)3561 std::vector<std::string> CharsToLines(const std::string& str) {
3562 std::vector<std::string> out;
3563 for (size_t i = 0; i < str.size(); ++i) {
3564 out.push_back(str.substr(i, 1));
3565 }
3566 return out;
3567 }
3568
TEST(EditDistance,TestSuites)3569 TEST(EditDistance, TestSuites) {
3570 struct Case {
3571 int line;
3572 const char* left;
3573 const char* right;
3574 const char* expected_edits;
3575 const char* expected_diff;
3576 };
3577 static const Case kCases[] = {
3578 // No change.
3579 {__LINE__, "A", "A", " ", ""},
3580 {__LINE__, "ABCDE", "ABCDE", " ", ""},
3581 // Simple adds.
3582 {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3583 {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3584 // Simple removes.
3585 {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3586 {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3587 // Simple replaces.
3588 {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3589 {__LINE__, "ABCD", "abcd", "////",
3590 "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3591 // Path finding.
3592 {__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +",
3593 "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3594 {__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ",
3595 "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3596 {__LINE__, "ABCDE", "BCDCD", "- +/",
3597 "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3598 {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++",
3599 "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3600 "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3601 {}};
3602 for (const Case* c = kCases; c->left; ++c) {
3603 EXPECT_TRUE(c->expected_edits ==
3604 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3605 CharsToIndices(c->right))))
3606 << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3607 << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3608 CharsToIndices(c->right)))
3609 << ">";
3610 EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3611 CharsToLines(c->right)))
3612 << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3613 << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3614 << ">";
3615 }
3616 }
3617
3618 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3619 TEST(AssertionTest, EqFailure) {
3620 const std::string foo_val("5"), bar_val("6");
3621 const std::string msg1(
3622 EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3623 EXPECT_STREQ(
3624 "Expected equality of these values:\n"
3625 " foo\n"
3626 " Which is: 5\n"
3627 " bar\n"
3628 " Which is: 6",
3629 msg1.c_str());
3630
3631 const std::string msg2(
3632 EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3633 EXPECT_STREQ(
3634 "Expected equality of these values:\n"
3635 " foo\n"
3636 " Which is: 5\n"
3637 " 6",
3638 msg2.c_str());
3639
3640 const std::string msg3(
3641 EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3642 EXPECT_STREQ(
3643 "Expected equality of these values:\n"
3644 " 5\n"
3645 " bar\n"
3646 " Which is: 6",
3647 msg3.c_str());
3648
3649 const std::string msg4(
3650 EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3651 EXPECT_STREQ(
3652 "Expected equality of these values:\n"
3653 " 5\n"
3654 " 6",
3655 msg4.c_str());
3656
3657 const std::string msg5(
3658 EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3659 .failure_message());
3660 EXPECT_STREQ(
3661 "Expected equality of these values:\n"
3662 " foo\n"
3663 " Which is: \"x\"\n"
3664 " bar\n"
3665 " Which is: \"y\"\n"
3666 "Ignoring case",
3667 msg5.c_str());
3668 }
3669
TEST(AssertionTest,EqFailureWithDiff)3670 TEST(AssertionTest, EqFailureWithDiff) {
3671 const std::string left(
3672 "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3673 const std::string right(
3674 "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3675 const std::string msg1(
3676 EqFailure("left", "right", left, right, false).failure_message());
3677 EXPECT_STREQ(
3678 "Expected equality of these values:\n"
3679 " left\n"
3680 " Which is: "
3681 "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3682 " right\n"
3683 " Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3684 "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3685 "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3686 msg1.c_str());
3687 }
3688
3689 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3690 TEST(AssertionTest, AppendUserMessage) {
3691 const std::string foo("foo");
3692
3693 Message msg;
3694 EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3695
3696 msg << "bar";
3697 EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3698 }
3699
3700 #ifdef __BORLANDC__
3701 // Silences warnings: "Condition is always true", "Unreachable code"
3702 #pragma option push -w-ccc -w-rch
3703 #endif
3704
3705 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3706 TEST(AssertionTest, ASSERT_TRUE) {
3707 ASSERT_TRUE(2 > 1); // NOLINT
3708 EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3709 }
3710
3711 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3712 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3713 ASSERT_TRUE(ResultIsEven(2));
3714 #ifndef __BORLANDC__
3715 // ICE's in C++Builder.
3716 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3717 "Value of: ResultIsEven(3)\n"
3718 " Actual: false (3 is odd)\n"
3719 "Expected: true");
3720 #endif
3721 ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3722 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3723 "Value of: ResultIsEvenNoExplanation(3)\n"
3724 " Actual: false (3 is odd)\n"
3725 "Expected: true");
3726 }
3727
3728 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3729 TEST(AssertionTest, ASSERT_FALSE) {
3730 ASSERT_FALSE(2 < 1); // NOLINT
3731 EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3732 "Value of: 2 > 1\n"
3733 " Actual: true\n"
3734 "Expected: false");
3735 }
3736
3737 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3738 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3739 ASSERT_FALSE(ResultIsEven(3));
3740 #ifndef __BORLANDC__
3741 // ICE's in C++Builder.
3742 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3743 "Value of: ResultIsEven(2)\n"
3744 " Actual: true (2 is even)\n"
3745 "Expected: false");
3746 #endif
3747 ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3748 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3749 "Value of: ResultIsEvenNoExplanation(2)\n"
3750 " Actual: true\n"
3751 "Expected: false");
3752 }
3753
3754 #ifdef __BORLANDC__
3755 // Restores warnings after previous "#pragma option push" suppressed them
3756 #pragma option pop
3757 #endif
3758
3759 // Tests using ASSERT_EQ on double values. The purpose is to make
3760 // sure that the specialization we did for integer and anonymous enums
3761 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3762 TEST(ExpectTest, ASSERT_EQ_Double) {
3763 // A success.
3764 ASSERT_EQ(5.6, 5.6);
3765
3766 // A failure.
3767 EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3768 }
3769
3770 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3771 TEST(AssertionTest, ASSERT_EQ) {
3772 ASSERT_EQ(5, 2 + 3);
3773 // clang-format off
3774 EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3775 "Expected equality of these values:\n"
3776 " 5\n"
3777 " 2*3\n"
3778 " Which is: 6");
3779 // clang-format on
3780 }
3781
3782 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3783 TEST(AssertionTest, ASSERT_EQ_NULL) {
3784 // A success.
3785 const char* p = nullptr;
3786 ASSERT_EQ(nullptr, p);
3787
3788 // A failure.
3789 static int n = 0;
3790 EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), " &n\n Which is:");
3791 }
3792
3793 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3794 // treated as a null pointer by the compiler, we need to make sure
3795 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3796 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3797 TEST(ExpectTest, ASSERT_EQ_0) {
3798 int n = 0;
3799
3800 // A success.
3801 ASSERT_EQ(0, n);
3802
3803 // A failure.
3804 EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), " 0\n 5.6");
3805 }
3806
3807 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3808 TEST(AssertionTest, ASSERT_NE) {
3809 ASSERT_NE(6, 7);
3810 EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3811 "Expected: ('a') != ('a'), "
3812 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3813 }
3814
3815 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3816 TEST(AssertionTest, ASSERT_LE) {
3817 ASSERT_LE(2, 3);
3818 ASSERT_LE(2, 2);
3819 EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3820 }
3821
3822 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3823 TEST(AssertionTest, ASSERT_LT) {
3824 ASSERT_LT(2, 3);
3825 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3826 }
3827
3828 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3829 TEST(AssertionTest, ASSERT_GE) {
3830 ASSERT_GE(2, 1);
3831 ASSERT_GE(2, 2);
3832 EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3833 }
3834
3835 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3836 TEST(AssertionTest, ASSERT_GT) {
3837 ASSERT_GT(2, 1);
3838 EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3839 }
3840
3841 #if GTEST_HAS_EXCEPTIONS
3842
ThrowNothing()3843 void ThrowNothing() {}
3844
3845 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3846 TEST(AssertionTest, ASSERT_THROW) {
3847 ASSERT_THROW(ThrowAnInteger(), int);
3848
3849 #ifndef __BORLANDC__
3850
3851 // ICE's in C++Builder 2007 and 2009.
3852 EXPECT_FATAL_FAILURE(
3853 ASSERT_THROW(ThrowAnInteger(), bool),
3854 "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3855 " Actual: it throws a different type.");
3856 EXPECT_FATAL_FAILURE(
3857 ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3858 "Expected: ThrowRuntimeError(\"A description\") "
3859 "throws an exception of type std::logic_error.\n "
3860 "Actual: it throws " ERROR_DESC
3861 " "
3862 "with description \"A description\".");
3863 #endif
3864
3865 EXPECT_FATAL_FAILURE(
3866 ASSERT_THROW(ThrowNothing(), bool),
3867 "Expected: ThrowNothing() throws an exception of type bool.\n"
3868 " Actual: it throws nothing.");
3869 }
3870
3871 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3872 TEST(AssertionTest, ASSERT_NO_THROW) {
3873 ASSERT_NO_THROW(ThrowNothing());
3874 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3875 "Expected: ThrowAnInteger() doesn't throw an exception."
3876 "\n Actual: it throws.");
3877 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3878 "Expected: ThrowRuntimeError(\"A description\") "
3879 "doesn't throw an exception.\n "
3880 "Actual: it throws " ERROR_DESC
3881 " "
3882 "with description \"A description\".");
3883 }
3884
3885 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3886 TEST(AssertionTest, ASSERT_ANY_THROW) {
3887 ASSERT_ANY_THROW(ThrowAnInteger());
3888 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3889 "Expected: ThrowNothing() throws an exception.\n"
3890 " Actual: it doesn't.");
3891 }
3892
3893 #endif // GTEST_HAS_EXCEPTIONS
3894
3895 // Makes sure we deal with the precedence of <<. This test should
3896 // compile.
TEST(AssertionTest,AssertPrecedence)3897 TEST(AssertionTest, AssertPrecedence) {
3898 ASSERT_EQ(1 < 2, true);
3899 bool false_value = false;
3900 ASSERT_EQ(true && false_value, false);
3901 }
3902
3903 // A subroutine used by the following test.
TestEq1(int x)3904 void TestEq1(int x) { ASSERT_EQ(1, x); }
3905
3906 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3907 TEST(AssertionTest, NonFixtureSubroutine) {
3908 EXPECT_FATAL_FAILURE(TestEq1(2), " x\n Which is: 2");
3909 }
3910
3911 // An uncopyable class.
3912 class Uncopyable {
3913 public:
Uncopyable(int a_value)3914 explicit Uncopyable(int a_value) : value_(a_value) {}
3915
value() const3916 int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3917 bool operator==(const Uncopyable& rhs) const {
3918 return value() == rhs.value();
3919 }
3920
3921 private:
3922 // This constructor deliberately has no implementation, as we don't
3923 // want this class to be copyable.
3924 Uncopyable(const Uncopyable&); // NOLINT
3925
3926 int value_;
3927 };
3928
operator <<(::std::ostream & os,const Uncopyable & value)3929 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3930 return os << value.value();
3931 }
3932
IsPositiveUncopyable(const Uncopyable & x)3933 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3934
3935 // A subroutine used by the following test.
TestAssertNonPositive()3936 void TestAssertNonPositive() {
3937 Uncopyable y(-1);
3938 ASSERT_PRED1(IsPositiveUncopyable, y);
3939 }
3940 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3941 void TestAssertEqualsUncopyable() {
3942 Uncopyable x(5);
3943 Uncopyable y(-1);
3944 ASSERT_EQ(x, y);
3945 }
3946
3947 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3948 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3949 Uncopyable x(5);
3950 ASSERT_PRED1(IsPositiveUncopyable, x);
3951 ASSERT_EQ(x, x);
3952 EXPECT_FATAL_FAILURE(
3953 TestAssertNonPositive(),
3954 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3955 EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3956 "Expected equality of these values:\n"
3957 " x\n Which is: 5\n y\n Which is: -1");
3958 }
3959
3960 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3961 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3962 Uncopyable x(5);
3963 EXPECT_PRED1(IsPositiveUncopyable, x);
3964 Uncopyable y(-1);
3965 EXPECT_NONFATAL_FAILURE(
3966 EXPECT_PRED1(IsPositiveUncopyable, y),
3967 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3968 EXPECT_EQ(x, x);
3969 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3970 "Expected equality of these values:\n"
3971 " x\n Which is: 5\n y\n Which is: -1");
3972 }
3973
3974 enum NamedEnum { kE1 = 0, kE2 = 1 };
3975
TEST(AssertionTest,NamedEnum)3976 TEST(AssertionTest, NamedEnum) {
3977 EXPECT_EQ(kE1, kE1);
3978 EXPECT_LT(kE1, kE2);
3979 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3980 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3981 }
3982
3983 // Sun Studio and HP aCC2reject this code.
3984 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3985
3986 // Tests using assertions with anonymous enums.
3987 enum {
3988 kCaseA = -1,
3989
3990 #ifdef GTEST_OS_LINUX
3991
3992 // We want to test the case where the size of the anonymous enum is
3993 // larger than sizeof(int), to make sure our implementation of the
3994 // assertions doesn't truncate the enums. However, MSVC
3995 // (incorrectly) doesn't allow an enum value to exceed the range of
3996 // an int, so this has to be conditionally compiled.
3997 //
3998 // On Linux, kCaseB and kCaseA have the same value when truncated to
3999 // int size. We want to test whether this will confuse the
4000 // assertions.
4001 kCaseB = testing::internal::kMaxBiggestInt,
4002
4003 #else
4004
4005 kCaseB = INT_MAX,
4006
4007 #endif // GTEST_OS_LINUX
4008
4009 kCaseC = 42
4010 };
4011
TEST(AssertionTest,AnonymousEnum)4012 TEST(AssertionTest, AnonymousEnum) {
4013 #ifdef GTEST_OS_LINUX
4014
4015 EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
4016
4017 #endif // GTEST_OS_LINUX
4018
4019 EXPECT_EQ(kCaseA, kCaseA);
4020 EXPECT_NE(kCaseA, kCaseB);
4021 EXPECT_LT(kCaseA, kCaseB);
4022 EXPECT_LE(kCaseA, kCaseB);
4023 EXPECT_GT(kCaseB, kCaseA);
4024 EXPECT_GE(kCaseA, kCaseA);
4025 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
4026 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
4027
4028 ASSERT_EQ(kCaseA, kCaseA);
4029 ASSERT_NE(kCaseA, kCaseB);
4030 ASSERT_LT(kCaseA, kCaseB);
4031 ASSERT_LE(kCaseA, kCaseB);
4032 ASSERT_GT(kCaseB, kCaseA);
4033 ASSERT_GE(kCaseA, kCaseA);
4034
4035 #ifndef __BORLANDC__
4036
4037 // ICE's in C++Builder.
4038 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), " kCaseB\n Which is: ");
4039 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: 42");
4040 #endif
4041
4042 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: -1");
4043 }
4044
4045 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4046
4047 #ifdef GTEST_OS_WINDOWS
4048
UnexpectedHRESULTFailure()4049 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
4050
OkHRESULTSuccess()4051 static HRESULT OkHRESULTSuccess() { return S_OK; }
4052
FalseHRESULTSuccess()4053 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4054
4055 // HRESULT assertion tests test both zero and non-zero
4056 // success codes as well as failure message for each.
4057 //
4058 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4059 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4060 EXPECT_HRESULT_SUCCEEDED(S_OK);
4061 EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4062
4063 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4064 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4065 " Actual: 0x8000FFFF");
4066 }
4067
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4068 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4069 ASSERT_HRESULT_SUCCEEDED(S_OK);
4070 ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4071
4072 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4073 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4074 " Actual: 0x8000FFFF");
4075 }
4076
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4077 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4078 EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4079
4080 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4081 "Expected: (OkHRESULTSuccess()) fails.\n"
4082 " Actual: 0x0");
4083 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4084 "Expected: (FalseHRESULTSuccess()) fails.\n"
4085 " Actual: 0x1");
4086 }
4087
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4088 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4089 ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4090
4091 #ifndef __BORLANDC__
4092
4093 // ICE's in C++Builder 2007 and 2009.
4094 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4095 "Expected: (OkHRESULTSuccess()) fails.\n"
4096 " Actual: 0x0");
4097 #endif
4098
4099 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4100 "Expected: (FalseHRESULTSuccess()) fails.\n"
4101 " Actual: 0x1");
4102 }
4103
4104 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4105 TEST(HRESULTAssertionTest, Streaming) {
4106 EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4107 ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4108 EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4109 ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4110
4111 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4112 << "expected failure",
4113 "expected failure");
4114
4115 #ifndef __BORLANDC__
4116
4117 // ICE's in C++Builder 2007 and 2009.
4118 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4119 << "expected failure",
4120 "expected failure");
4121 #endif
4122
4123 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4124 "expected failure");
4125
4126 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4127 "expected failure");
4128 }
4129
4130 #endif // GTEST_OS_WINDOWS
4131
4132 // The following code intentionally tests a suboptimal syntax.
4133 #ifdef __GNUC__
4134 #pragma GCC diagnostic push
4135 #pragma GCC diagnostic ignored "-Wdangling-else"
4136 #pragma GCC diagnostic ignored "-Wempty-body"
4137 #pragma GCC diagnostic ignored "-Wpragmas"
4138 #endif
4139 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4140 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4141 if (AlwaysFalse())
4142 ASSERT_TRUE(false) << "This should never be executed; "
4143 "It's a compilation test only.";
4144
4145 if (AlwaysTrue())
4146 EXPECT_FALSE(false);
4147 else
4148 ; // NOLINT
4149
4150 if (AlwaysFalse()) ASSERT_LT(1, 3);
4151
4152 if (AlwaysFalse())
4153 ; // NOLINT
4154 else
4155 EXPECT_GT(3, 2) << "";
4156 }
4157 #ifdef __GNUC__
4158 #pragma GCC diagnostic pop
4159 #endif
4160
4161 #if GTEST_HAS_EXCEPTIONS
4162 // Tests that the compiler will not complain about unreachable code in the
4163 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4164 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4165 int n = 0;
4166
4167 EXPECT_THROW(throw 1, int);
4168 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4169 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw n, const char*), "");
4170 EXPECT_NO_THROW(n++);
4171 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4172 EXPECT_ANY_THROW(throw 1);
4173 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4174 }
4175
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4176 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4177 EXPECT_THROW(throw std::exception(), std::exception);
4178 }
4179
4180 // The following code intentionally tests a suboptimal syntax.
4181 #ifdef __GNUC__
4182 #pragma GCC diagnostic push
4183 #pragma GCC diagnostic ignored "-Wdangling-else"
4184 #pragma GCC diagnostic ignored "-Wempty-body"
4185 #pragma GCC diagnostic ignored "-Wpragmas"
4186 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4187 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4188 if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4189
4190 if (AlwaysTrue())
4191 EXPECT_THROW(ThrowAnInteger(), int);
4192 else
4193 ; // NOLINT
4194
4195 if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4196
4197 if (AlwaysTrue())
4198 EXPECT_NO_THROW(ThrowNothing());
4199 else
4200 ; // NOLINT
4201
4202 if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4203
4204 if (AlwaysTrue())
4205 EXPECT_ANY_THROW(ThrowAnInteger());
4206 else
4207 ; // NOLINT
4208 }
4209 #ifdef __GNUC__
4210 #pragma GCC diagnostic pop
4211 #endif
4212
4213 #endif // GTEST_HAS_EXCEPTIONS
4214
4215 // The following code intentionally tests a suboptimal syntax.
4216 #ifdef __GNUC__
4217 #pragma GCC diagnostic push
4218 #pragma GCC diagnostic ignored "-Wdangling-else"
4219 #pragma GCC diagnostic ignored "-Wempty-body"
4220 #pragma GCC diagnostic ignored "-Wpragmas"
4221 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4222 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4223 if (AlwaysFalse())
4224 EXPECT_NO_FATAL_FAILURE(FAIL())
4225 << "This should never be executed. " << "It's a compilation test only.";
4226 else
4227 ; // NOLINT
4228
4229 if (AlwaysFalse())
4230 ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4231 else
4232 ; // NOLINT
4233
4234 if (AlwaysTrue())
4235 EXPECT_NO_FATAL_FAILURE(SUCCEED());
4236 else
4237 ; // NOLINT
4238
4239 if (AlwaysFalse())
4240 ; // NOLINT
4241 else
4242 ASSERT_NO_FATAL_FAILURE(SUCCEED());
4243 }
4244 #ifdef __GNUC__
4245 #pragma GCC diagnostic pop
4246 #endif
4247
4248 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4249 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4250 switch (0) {
4251 case 1:
4252 break;
4253 default:
4254 ASSERT_TRUE(true);
4255 }
4256
4257 switch (0)
4258 case 0:
4259 EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4260
4261 // Binary assertions are implemented using a different code path
4262 // than the Boolean assertions. Hence we test them separately.
4263 switch (0) {
4264 case 1:
4265 default:
4266 ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4267 }
4268
4269 switch (0)
4270 case 0:
4271 EXPECT_NE(1, 2);
4272 }
4273
4274 #if GTEST_HAS_EXCEPTIONS
4275
ThrowAString()4276 void ThrowAString() { throw "std::string"; }
4277
4278 // Test that the exception assertion macros compile and work with const
4279 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4280 TEST(AssertionSyntaxTest, WorksWithConst) {
4281 ASSERT_THROW(ThrowAString(), const char*);
4282
4283 EXPECT_THROW(ThrowAString(), const char*);
4284 }
4285
4286 #endif // GTEST_HAS_EXCEPTIONS
4287
4288 } // namespace
4289
4290 namespace testing {
4291
4292 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4293 TEST(SuccessfulAssertionTest, SUCCEED) {
4294 SUCCEED();
4295 SUCCEED() << "OK";
4296 EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4297 }
4298
4299 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4300 TEST(SuccessfulAssertionTest, EXPECT) {
4301 EXPECT_TRUE(true);
4302 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4303 }
4304
4305 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4306 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4307 EXPECT_STREQ("", "");
4308 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4309 }
4310
4311 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4312 TEST(SuccessfulAssertionTest, ASSERT) {
4313 ASSERT_TRUE(true);
4314 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4315 }
4316
4317 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4318 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4319 ASSERT_STREQ("", "");
4320 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4321 }
4322
4323 } // namespace testing
4324
4325 namespace {
4326
4327 // Tests the message streaming variation of assertions.
4328
TEST(AssertionWithMessageTest,EXPECT)4329 TEST(AssertionWithMessageTest, EXPECT) {
4330 EXPECT_EQ(1, 1) << "This should succeed.";
4331 EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4332 "Expected failure #1");
4333 EXPECT_LE(1, 2) << "This should succeed.";
4334 EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4335 "Expected failure #2.");
4336 EXPECT_GE(1, 0) << "This should succeed.";
4337 EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4338 "Expected failure #3.");
4339
4340 EXPECT_STREQ("1", "1") << "This should succeed.";
4341 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4342 "Expected failure #4.");
4343 EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4344 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4345 "Expected failure #5.");
4346
4347 EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4348 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4349 "Expected failure #6.");
4350 EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4351 }
4352
TEST(AssertionWithMessageTest,ASSERT)4353 TEST(AssertionWithMessageTest, ASSERT) {
4354 ASSERT_EQ(1, 1) << "This should succeed.";
4355 ASSERT_NE(1, 2) << "This should succeed.";
4356 ASSERT_LE(1, 2) << "This should succeed.";
4357 ASSERT_LT(1, 2) << "This should succeed.";
4358 ASSERT_GE(1, 0) << "This should succeed.";
4359 EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4360 "Expected failure.");
4361 }
4362
TEST(AssertionWithMessageTest,ASSERT_STR)4363 TEST(AssertionWithMessageTest, ASSERT_STR) {
4364 ASSERT_STREQ("1", "1") << "This should succeed.";
4365 ASSERT_STRNE("1", "2") << "This should succeed.";
4366 ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4367 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4368 "Expected failure.");
4369 }
4370
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4371 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4372 ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4373 ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4374 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.", // NOLINT
4375 "Expect failure.");
4376 }
4377
4378 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4379 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4380 ASSERT_FALSE(false) << "This shouldn't fail.";
4381 EXPECT_FATAL_FAILURE(
4382 { // NOLINT
4383 ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4384 << " evaluates to " << true;
4385 },
4386 "Expected failure");
4387 }
4388
4389 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4390 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4391
4392 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4393 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4394
4395 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4396 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4397 ASSERT_TRUE(true) << "This should succeed.";
4398 ASSERT_TRUE(true) << true;
4399 EXPECT_FATAL_FAILURE(
4400 { // NOLINT
4401 ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4402 << static_cast<char*>(nullptr);
4403 },
4404 "(null)(null)");
4405 }
4406
4407 #ifdef GTEST_OS_WINDOWS
4408 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4409 TEST(AssertionWithMessageTest, WideStringMessage) {
4410 EXPECT_NONFATAL_FAILURE(
4411 { // NOLINT
4412 EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4413 },
4414 "This failure is expected.");
4415 EXPECT_FATAL_FAILURE(
4416 { // NOLINT
4417 ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4418 },
4419 "This failure is expected too.");
4420 }
4421 #endif // GTEST_OS_WINDOWS
4422
4423 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4424 TEST(ExpectTest, EXPECT_TRUE) {
4425 EXPECT_TRUE(true) << "Intentional success";
4426 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4427 "Intentional failure #1.");
4428 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4429 "Intentional failure #2.");
4430 EXPECT_TRUE(2 > 1); // NOLINT
4431 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4432 "Value of: 2 < 1\n"
4433 " Actual: false\n"
4434 "Expected: true");
4435 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4436 }
4437
4438 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4439 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4440 EXPECT_TRUE(ResultIsEven(2));
4441 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4442 "Value of: ResultIsEven(3)\n"
4443 " Actual: false (3 is odd)\n"
4444 "Expected: true");
4445 EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4446 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4447 "Value of: ResultIsEvenNoExplanation(3)\n"
4448 " Actual: false (3 is odd)\n"
4449 "Expected: true");
4450 }
4451
4452 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4453 TEST(ExpectTest, EXPECT_FALSE) {
4454 EXPECT_FALSE(2 < 1); // NOLINT
4455 EXPECT_FALSE(false) << "Intentional success";
4456 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4457 "Intentional failure #1.");
4458 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4459 "Intentional failure #2.");
4460 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4461 "Value of: 2 > 1\n"
4462 " Actual: true\n"
4463 "Expected: false");
4464 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4465 }
4466
4467 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4468 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4469 EXPECT_FALSE(ResultIsEven(3));
4470 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4471 "Value of: ResultIsEven(2)\n"
4472 " Actual: true (2 is even)\n"
4473 "Expected: false");
4474 EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4475 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4476 "Value of: ResultIsEvenNoExplanation(2)\n"
4477 " Actual: true\n"
4478 "Expected: false");
4479 }
4480
4481 #ifdef __BORLANDC__
4482 // Restores warnings after previous "#pragma option push" suppressed them
4483 #pragma option pop
4484 #endif
4485
4486 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4487 TEST(ExpectTest, EXPECT_EQ) {
4488 EXPECT_EQ(5, 2 + 3);
4489 // clang-format off
4490 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4491 "Expected equality of these values:\n"
4492 " 5\n"
4493 " 2*3\n"
4494 " Which is: 6");
4495 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4496 // clang-format on
4497 }
4498
4499 // Tests using EXPECT_EQ on double values. The purpose is to make
4500 // sure that the specialization we did for integer and anonymous enums
4501 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4502 TEST(ExpectTest, EXPECT_EQ_Double) {
4503 // A success.
4504 EXPECT_EQ(5.6, 5.6);
4505
4506 // A failure.
4507 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4508 }
4509
4510 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4511 TEST(ExpectTest, EXPECT_EQ_NULL) {
4512 // A success.
4513 const char* p = nullptr;
4514 EXPECT_EQ(nullptr, p);
4515
4516 // A failure.
4517 int n = 0;
4518 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), " &n\n Which is:");
4519 }
4520
4521 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4522 // treated as a null pointer by the compiler, we need to make sure
4523 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4524 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4525 TEST(ExpectTest, EXPECT_EQ_0) {
4526 int n = 0;
4527
4528 // A success.
4529 EXPECT_EQ(0, n);
4530
4531 // A failure.
4532 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), " 0\n 5.6");
4533 }
4534
4535 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4536 TEST(ExpectTest, EXPECT_NE) {
4537 EXPECT_NE(6, 7);
4538
4539 EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4540 "Expected: ('a') != ('a'), "
4541 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4542 EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4543 char* const p0 = nullptr;
4544 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4545 // Only way to get the Nokia compiler to compile the cast
4546 // is to have a separate void* variable first. Putting
4547 // the two casts on the same line doesn't work, neither does
4548 // a direct C-style to char*.
4549 void* pv1 = (void*)0x1234; // NOLINT
4550 char* const p1 = reinterpret_cast<char*>(pv1);
4551 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4552 }
4553
4554 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4555 TEST(ExpectTest, EXPECT_LE) {
4556 EXPECT_LE(2, 3);
4557 EXPECT_LE(2, 2);
4558 EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4559 "Expected: (2) <= (0), actual: 2 vs 0");
4560 EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4561 }
4562
4563 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4564 TEST(ExpectTest, EXPECT_LT) {
4565 EXPECT_LT(2, 3);
4566 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4567 "Expected: (2) < (2), actual: 2 vs 2");
4568 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4569 }
4570
4571 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4572 TEST(ExpectTest, EXPECT_GE) {
4573 EXPECT_GE(2, 1);
4574 EXPECT_GE(2, 2);
4575 EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4576 "Expected: (2) >= (3), actual: 2 vs 3");
4577 EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4578 }
4579
4580 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4581 TEST(ExpectTest, EXPECT_GT) {
4582 EXPECT_GT(2, 1);
4583 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4584 "Expected: (2) > (2), actual: 2 vs 2");
4585 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4586 }
4587
4588 #if GTEST_HAS_EXCEPTIONS
4589
4590 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4591 TEST(ExpectTest, EXPECT_THROW) {
4592 EXPECT_THROW(ThrowAnInteger(), int);
4593 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4594 "Expected: ThrowAnInteger() throws an exception of "
4595 "type bool.\n Actual: it throws a different type.");
4596 EXPECT_NONFATAL_FAILURE(
4597 EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4598 "Expected: ThrowRuntimeError(\"A description\") "
4599 "throws an exception of type std::logic_error.\n "
4600 "Actual: it throws " ERROR_DESC
4601 " "
4602 "with description \"A description\".");
4603 EXPECT_NONFATAL_FAILURE(
4604 EXPECT_THROW(ThrowNothing(), bool),
4605 "Expected: ThrowNothing() throws an exception of type bool.\n"
4606 " Actual: it throws nothing.");
4607 }
4608
4609 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4610 TEST(ExpectTest, EXPECT_NO_THROW) {
4611 EXPECT_NO_THROW(ThrowNothing());
4612 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4613 "Expected: ThrowAnInteger() doesn't throw an "
4614 "exception.\n Actual: it throws.");
4615 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4616 "Expected: ThrowRuntimeError(\"A description\") "
4617 "doesn't throw an exception.\n "
4618 "Actual: it throws " ERROR_DESC
4619 " "
4620 "with description \"A description\".");
4621 }
4622
4623 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4624 TEST(ExpectTest, EXPECT_ANY_THROW) {
4625 EXPECT_ANY_THROW(ThrowAnInteger());
4626 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4627 "Expected: ThrowNothing() throws an exception.\n"
4628 " Actual: it doesn't.");
4629 }
4630
4631 #endif // GTEST_HAS_EXCEPTIONS
4632
4633 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4634 TEST(ExpectTest, ExpectPrecedence) {
4635 EXPECT_EQ(1 < 2, true);
4636 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4637 " true && false\n Which is: false");
4638 }
4639
4640 // Tests the StreamableToString() function.
4641
4642 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4643 TEST(StreamableToStringTest, Scalar) {
4644 EXPECT_STREQ("5", StreamableToString(5).c_str());
4645 }
4646
4647 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4648 TEST(StreamableToStringTest, Pointer) {
4649 int n = 0;
4650 int* p = &n;
4651 EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4652 }
4653
4654 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4655 TEST(StreamableToStringTest, NullPointer) {
4656 int* p = nullptr;
4657 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4658 }
4659
4660 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4661 TEST(StreamableToStringTest, CString) {
4662 EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4663 }
4664
4665 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4666 TEST(StreamableToStringTest, NullCString) {
4667 char* p = nullptr;
4668 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4669 }
4670
4671 // Tests using streamable values as assertion messages.
4672
4673 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4674 TEST(StreamableTest, string) {
4675 static const std::string str(
4676 "This failure message is a std::string, and is expected.");
4677 EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4678 }
4679
4680 // Tests that we can output strings containing embedded NULs.
4681 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4682 TEST(StreamableTest, stringWithEmbeddedNUL) {
4683 static const char char_array_with_nul[] =
4684 "Here's a NUL\0 and some more string";
4685 static const std::string string_with_nul(
4686 char_array_with_nul,
4687 sizeof(char_array_with_nul) - 1); // drops the trailing NUL
4688 EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4689 "Here's a NUL\\0 and some more string");
4690 }
4691
4692 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4693 TEST(StreamableTest, NULChar) {
4694 EXPECT_FATAL_FAILURE(
4695 { // NOLINT
4696 FAIL() << "A NUL" << '\0' << " and some more string";
4697 },
4698 "A NUL\\0 and some more string");
4699 }
4700
4701 // Tests using int as an assertion message.
TEST(StreamableTest,int)4702 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4703
4704 // Tests using NULL char pointer as an assertion message.
4705 //
4706 // In MSVC, streaming a NULL char * causes access violation. Google Test
4707 // implemented a workaround (substituting "(null)" for NULL). This
4708 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4709 TEST(StreamableTest, NullCharPtr) {
4710 EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4711 }
4712
4713 // Tests that basic IO manipulators (endl, ends, and flush) can be
4714 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4715 TEST(StreamableTest, BasicIoManip) {
4716 EXPECT_FATAL_FAILURE(
4717 { // NOLINT
4718 FAIL() << "Line 1." << std::endl
4719 << "A NUL char " << std::ends << std::flush << " in line 2.";
4720 },
4721 "Line 1.\nA NUL char \\0 in line 2.");
4722 }
4723
4724 // Tests the macros that haven't been covered so far.
4725
AddFailureHelper(bool * aborted)4726 void AddFailureHelper(bool* aborted) {
4727 *aborted = true;
4728 ADD_FAILURE() << "Intentional failure.";
4729 *aborted = false;
4730 }
4731
4732 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4733 TEST(MacroTest, ADD_FAILURE) {
4734 bool aborted = true;
4735 EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4736 EXPECT_FALSE(aborted);
4737 }
4738
4739 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4740 TEST(MacroTest, ADD_FAILURE_AT) {
4741 // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4742 // the failure message contains the user-streamed part.
4743 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4744
4745 // Verifies that the user-streamed part is optional.
4746 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4747
4748 // Unfortunately, we cannot verify that the failure message contains
4749 // the right file path and line number the same way, as
4750 // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4751 // line number. Instead, we do that in googletest-output-test_.cc.
4752 }
4753
4754 // Tests FAIL.
TEST(MacroTest,FAIL)4755 TEST(MacroTest, FAIL) {
4756 EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4757 EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4758 "Intentional failure.");
4759 }
4760
4761 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4762 TEST(MacroTest, GTEST_FAIL_AT) {
4763 // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4764 // the failure message contains the user-streamed part.
4765 EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4766
4767 // Verifies that the user-streamed part is optional.
4768 EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4769
4770 // See the ADD_FAIL_AT test above to see how we test that the failure message
4771 // contains the right filename and line number -- the same applies here.
4772 }
4773
4774 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4775 TEST(MacroTest, SUCCEED) {
4776 SUCCEED();
4777 SUCCEED() << "Explicit success.";
4778 }
4779
4780 // Tests for EXPECT_EQ() and ASSERT_EQ().
4781 //
4782 // These tests fail *intentionally*, s.t. the failure messages can be
4783 // generated and tested.
4784 //
4785 // We have different tests for different argument types.
4786
4787 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4788 TEST(EqAssertionTest, Bool) {
4789 EXPECT_EQ(true, true);
4790 EXPECT_FATAL_FAILURE(
4791 {
4792 bool false_value = false;
4793 ASSERT_EQ(false_value, true);
4794 },
4795 " false_value\n Which is: false\n true");
4796 }
4797
4798 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4799 TEST(EqAssertionTest, Int) {
4800 ASSERT_EQ(32, 32);
4801 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), " 32\n 33");
4802 }
4803
4804 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4805 TEST(EqAssertionTest, Time_T) {
4806 EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4807 EXPECT_FATAL_FAILURE(
4808 ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4809 }
4810
4811 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4812 TEST(EqAssertionTest, Char) {
4813 ASSERT_EQ('z', 'z');
4814 const char ch = 'b';
4815 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), " ch\n Which is: 'b'");
4816 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), " ch\n Which is: 'b'");
4817 }
4818
4819 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4820 TEST(EqAssertionTest, WideChar) {
4821 EXPECT_EQ(L'b', L'b');
4822
4823 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4824 "Expected equality of these values:\n"
4825 " L'\0'\n"
4826 " Which is: L'\0' (0, 0x0)\n"
4827 " L'x'\n"
4828 " Which is: L'x' (120, 0x78)");
4829
4830 static wchar_t wchar;
4831 wchar = L'b';
4832 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4833 wchar = 0x8119;
4834 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4835 " wchar\n Which is: L'");
4836 }
4837
4838 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4839 TEST(EqAssertionTest, StdString) {
4840 // Compares a const char* to an std::string that has identical
4841 // content.
4842 ASSERT_EQ("Test", ::std::string("Test"));
4843
4844 // Compares two identical std::strings.
4845 static const ::std::string str1("A * in the middle");
4846 static const ::std::string str2(str1);
4847 EXPECT_EQ(str1, str2);
4848
4849 // Compares a const char* to an std::string that has different
4850 // content
4851 EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4852
4853 // Compares an std::string to a char* that has different content.
4854 char* const p1 = const_cast<char*>("foo");
4855 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4856
4857 // Compares two std::strings that have different contents, one of
4858 // which having a NUL character in the middle. This should fail.
4859 static ::std::string str3(str1);
4860 str3.at(2) = '\0';
4861 EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4862 " str3\n Which is: \"A \\0 in the middle\"");
4863 }
4864
4865 #if GTEST_HAS_STD_WSTRING
4866
4867 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4868 TEST(EqAssertionTest, StdWideString) {
4869 // Compares two identical std::wstrings.
4870 const ::std::wstring wstr1(L"A * in the middle");
4871 const ::std::wstring wstr2(wstr1);
4872 ASSERT_EQ(wstr1, wstr2);
4873
4874 // Compares an std::wstring to a const wchar_t* that has identical
4875 // content.
4876 const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4877 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4878
4879 // Compares an std::wstring to a const wchar_t* that has different
4880 // content.
4881 const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4882 EXPECT_NONFATAL_FAILURE(
4883 { // NOLINT
4884 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4885 },
4886 "kTestX8120");
4887
4888 // Compares two std::wstrings that have different contents, one of
4889 // which having a NUL character in the middle.
4890 ::std::wstring wstr3(wstr1);
4891 wstr3.at(2) = L'\0';
4892 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4893
4894 // Compares a wchar_t* to an std::wstring that has different
4895 // content.
4896 EXPECT_FATAL_FAILURE(
4897 { // NOLINT
4898 ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4899 },
4900 "");
4901 }
4902
4903 #endif // GTEST_HAS_STD_WSTRING
4904
4905 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4906 TEST(EqAssertionTest, CharPointer) {
4907 char* const p0 = nullptr;
4908 // Only way to get the Nokia compiler to compile the cast
4909 // is to have a separate void* variable first. Putting
4910 // the two casts on the same line doesn't work, neither does
4911 // a direct C-style to char*.
4912 void* pv1 = (void*)0x1234; // NOLINT
4913 void* pv2 = (void*)0xABC0; // NOLINT
4914 char* const p1 = reinterpret_cast<char*>(pv1);
4915 char* const p2 = reinterpret_cast<char*>(pv2);
4916 ASSERT_EQ(p1, p1);
4917
4918 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
4919 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
4920 EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4921 reinterpret_cast<char*>(0xABC0)),
4922 "ABC0");
4923 }
4924
4925 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4926 TEST(EqAssertionTest, WideCharPointer) {
4927 wchar_t* const p0 = nullptr;
4928 // Only way to get the Nokia compiler to compile the cast
4929 // is to have a separate void* variable first. Putting
4930 // the two casts on the same line doesn't work, neither does
4931 // a direct C-style to char*.
4932 void* pv1 = (void*)0x1234; // NOLINT
4933 void* pv2 = (void*)0xABC0; // NOLINT
4934 wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4935 wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4936 EXPECT_EQ(p0, p0);
4937
4938 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
4939 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
4940 void* pv3 = (void*)0x1234; // NOLINT
4941 void* pv4 = (void*)0xABC0; // NOLINT
4942 const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4943 const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4944 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4945 }
4946
4947 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4948 TEST(EqAssertionTest, OtherPointer) {
4949 ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4950 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4951 reinterpret_cast<const int*>(0x1234)),
4952 "0x1234");
4953 }
4954
4955 // A class that supports binary comparison operators but not streaming.
4956 class UnprintableChar {
4957 public:
UnprintableChar(char ch)4958 explicit UnprintableChar(char ch) : char_(ch) {}
4959
operator ==(const UnprintableChar & rhs) const4960 bool operator==(const UnprintableChar& rhs) const {
4961 return char_ == rhs.char_;
4962 }
operator !=(const UnprintableChar & rhs) const4963 bool operator!=(const UnprintableChar& rhs) const {
4964 return char_ != rhs.char_;
4965 }
operator <(const UnprintableChar & rhs) const4966 bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
operator <=(const UnprintableChar & rhs) const4967 bool operator<=(const UnprintableChar& rhs) const {
4968 return char_ <= rhs.char_;
4969 }
operator >(const UnprintableChar & rhs) const4970 bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
operator >=(const UnprintableChar & rhs) const4971 bool operator>=(const UnprintableChar& rhs) const {
4972 return char_ >= rhs.char_;
4973 }
4974
4975 private:
4976 char char_;
4977 };
4978
4979 // Tests that ASSERT_EQ() and friends don't require the arguments to
4980 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4981 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4982 const UnprintableChar x('x'), y('y');
4983 ASSERT_EQ(x, x);
4984 EXPECT_NE(x, y);
4985 ASSERT_LT(x, y);
4986 EXPECT_LE(x, y);
4987 ASSERT_GT(y, x);
4988 EXPECT_GE(x, x);
4989
4990 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4991 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4992 EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4993 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4994 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4995
4996 // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4997 // variables, so we have to write UnprintableChar('x') instead of x.
4998 #ifndef __BORLANDC__
4999 // ICE's in C++Builder.
5000 EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5001 "1-byte object <78>");
5002 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5003 "1-byte object <78>");
5004 #endif
5005 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5006 "1-byte object <79>");
5007 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5008 "1-byte object <78>");
5009 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5010 "1-byte object <79>");
5011 }
5012
5013 // Tests the FRIEND_TEST macro.
5014
5015 // This class has a private member we want to test. We will test it
5016 // both in a TEST and in a TEST_F.
5017 class Foo {
5018 public:
5019 Foo() = default;
5020
5021 private:
Bar() const5022 int Bar() const { return 1; }
5023
5024 // Declares the friend tests that can access the private member
5025 // Bar().
5026 FRIEND_TEST(FRIEND_TEST_Test, TEST);
5027 FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5028 };
5029
5030 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5031 // class's private members. This should compile.
TEST(FRIEND_TEST_Test,TEST)5032 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
5033
5034 // The fixture needed to test using FRIEND_TEST with TEST_F.
5035 class FRIEND_TEST_Test2 : public Test {
5036 protected:
5037 Foo foo;
5038 };
5039
5040 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5041 // class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5042 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
5043
5044 // Tests the life cycle of Test objects.
5045
5046 // The test fixture for testing the life cycle of Test objects.
5047 //
5048 // This class counts the number of live test objects that uses this
5049 // fixture.
5050 class TestLifeCycleTest : public Test {
5051 protected:
5052 // Constructor. Increments the number of test objects that uses
5053 // this fixture.
TestLifeCycleTest()5054 TestLifeCycleTest() { count_++; }
5055
5056 // Destructor. Decrements the number of test objects that uses this
5057 // fixture.
~TestLifeCycleTest()5058 ~TestLifeCycleTest() override { count_--; }
5059
5060 // Returns the number of live test objects that uses this fixture.
count() const5061 int count() const { return count_; }
5062
5063 private:
5064 static int count_;
5065 };
5066
5067 int TestLifeCycleTest::count_ = 0;
5068
5069 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5070 TEST_F(TestLifeCycleTest, Test1) {
5071 // There should be only one test object in this test case that's
5072 // currently alive.
5073 ASSERT_EQ(1, count());
5074 }
5075
5076 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5077 TEST_F(TestLifeCycleTest, Test2) {
5078 // After Test1 is done and Test2 is started, there should still be
5079 // only one live test object, as the object for Test1 should've been
5080 // deleted.
5081 ASSERT_EQ(1, count());
5082 }
5083
5084 } // namespace
5085
5086 // Tests that the copy constructor works when it is NOT optimized away by
5087 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5088 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5089 // Checks that the copy constructor doesn't try to dereference NULL pointers
5090 // in the source object.
5091 AssertionResult r1 = AssertionSuccess();
5092 AssertionResult r2 = r1;
5093 // The following line is added to prevent the compiler from optimizing
5094 // away the constructor call.
5095 r1 << "abc";
5096
5097 AssertionResult r3 = r1;
5098 EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5099 EXPECT_STREQ("abc", r1.message());
5100 }
5101
5102 // Tests that AssertionSuccess and AssertionFailure construct
5103 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5104 TEST(AssertionResultTest, ConstructionWorks) {
5105 AssertionResult r1 = AssertionSuccess();
5106 EXPECT_TRUE(r1);
5107 EXPECT_STREQ("", r1.message());
5108
5109 AssertionResult r2 = AssertionSuccess() << "abc";
5110 EXPECT_TRUE(r2);
5111 EXPECT_STREQ("abc", r2.message());
5112
5113 AssertionResult r3 = AssertionFailure();
5114 EXPECT_FALSE(r3);
5115 EXPECT_STREQ("", r3.message());
5116
5117 AssertionResult r4 = AssertionFailure() << "def";
5118 EXPECT_FALSE(r4);
5119 EXPECT_STREQ("def", r4.message());
5120
5121 AssertionResult r5 = AssertionFailure(Message() << "ghi");
5122 EXPECT_FALSE(r5);
5123 EXPECT_STREQ("ghi", r5.message());
5124 }
5125
5126 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5127 TEST(AssertionResultTest, NegationWorks) {
5128 AssertionResult r1 = AssertionSuccess() << "abc";
5129 EXPECT_FALSE(!r1);
5130 EXPECT_STREQ("abc", (!r1).message());
5131
5132 AssertionResult r2 = AssertionFailure() << "def";
5133 EXPECT_TRUE(!r2);
5134 EXPECT_STREQ("def", (!r2).message());
5135 }
5136
TEST(AssertionResultTest,StreamingWorks)5137 TEST(AssertionResultTest, StreamingWorks) {
5138 AssertionResult r = AssertionSuccess();
5139 r << "abc" << 'd' << 0 << true;
5140 EXPECT_STREQ("abcd0true", r.message());
5141 }
5142
TEST(AssertionResultTest,CanStreamOstreamManipulators)5143 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5144 AssertionResult r = AssertionSuccess();
5145 r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5146 EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5147 }
5148
5149 // The next test uses explicit conversion operators
5150
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5151 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5152 struct ExplicitlyConvertibleToBool {
5153 explicit operator bool() const { return value; }
5154 bool value;
5155 };
5156 ExplicitlyConvertibleToBool v1 = {false};
5157 ExplicitlyConvertibleToBool v2 = {true};
5158 EXPECT_FALSE(v1);
5159 EXPECT_TRUE(v2);
5160 }
5161
5162 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5163 operator AssertionResult() const { return AssertionResult(true); }
5164 };
5165
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5166 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5167 ConvertibleToAssertionResult obj;
5168 EXPECT_TRUE(obj);
5169 }
5170
5171 // Tests streaming a user type whose definition and operator << are
5172 // both in the global namespace.
5173 class Base {
5174 public:
Base(int an_x)5175 explicit Base(int an_x) : x_(an_x) {}
x() const5176 int x() const { return x_; }
5177
5178 private:
5179 int x_;
5180 };
operator <<(std::ostream & os,const Base & val)5181 std::ostream& operator<<(std::ostream& os, const Base& val) {
5182 return os << val.x();
5183 }
operator <<(std::ostream & os,const Base * pointer)5184 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5185 return os << "(" << pointer->x() << ")";
5186 }
5187
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5188 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5189 Message msg;
5190 Base a(1);
5191
5192 msg << a << &a; // Uses ::operator<<.
5193 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5194 }
5195
5196 // Tests streaming a user type whose definition and operator<< are
5197 // both in an unnamed namespace.
5198 namespace {
5199 class MyTypeInUnnamedNameSpace : public Base {
5200 public:
MyTypeInUnnamedNameSpace(int an_x)5201 explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5202 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5203 std::ostream& operator<<(std::ostream& os,
5204 const MyTypeInUnnamedNameSpace& val) {
5205 return os << val.x();
5206 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5207 std::ostream& operator<<(std::ostream& os,
5208 const MyTypeInUnnamedNameSpace* pointer) {
5209 return os << "(" << pointer->x() << ")";
5210 }
5211 } // namespace
5212
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5213 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5214 Message msg;
5215 MyTypeInUnnamedNameSpace a(1);
5216
5217 msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5218 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5219 }
5220
5221 // Tests streaming a user type whose definition and operator<< are
5222 // both in a user namespace.
5223 namespace namespace1 {
5224 class MyTypeInNameSpace1 : public Base {
5225 public:
MyTypeInNameSpace1(int an_x)5226 explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5227 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5228 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5229 return os << val.x();
5230 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5231 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5232 return os << "(" << pointer->x() << ")";
5233 }
5234 } // namespace namespace1
5235
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5236 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5237 Message msg;
5238 namespace1::MyTypeInNameSpace1 a(1);
5239
5240 msg << a << &a; // Uses namespace1::operator<<.
5241 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5242 }
5243
5244 // Tests streaming a user type whose definition is in a user namespace
5245 // but whose operator<< is in the global namespace.
5246 namespace namespace2 {
5247 class MyTypeInNameSpace2 : public ::Base {
5248 public:
MyTypeInNameSpace2(int an_x)5249 explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5250 };
5251 } // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5252 std::ostream& operator<<(std::ostream& os,
5253 const namespace2::MyTypeInNameSpace2& val) {
5254 return os << val.x();
5255 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5256 std::ostream& operator<<(std::ostream& os,
5257 const namespace2::MyTypeInNameSpace2* pointer) {
5258 return os << "(" << pointer->x() << ")";
5259 }
5260
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5261 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5262 Message msg;
5263 namespace2::MyTypeInNameSpace2 a(1);
5264
5265 msg << a << &a; // Uses ::operator<<.
5266 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5267 }
5268
5269 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5270 TEST(MessageTest, NullPointers) {
5271 Message msg;
5272 char* const p1 = nullptr;
5273 unsigned char* const p2 = nullptr;
5274 int* p3 = nullptr;
5275 double* p4 = nullptr;
5276 bool* p5 = nullptr;
5277 Message* p6 = nullptr;
5278
5279 msg << p1 << p2 << p3 << p4 << p5 << p6;
5280 ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5281 }
5282
5283 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5284 TEST(MessageTest, WideStrings) {
5285 // Streams a NULL of type const wchar_t*.
5286 const wchar_t* const_wstr = nullptr;
5287 EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5288
5289 // Streams a NULL of type wchar_t*.
5290 wchar_t* wstr = nullptr;
5291 EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5292
5293 // Streams a non-NULL of type const wchar_t*.
5294 const_wstr = L"abc\x8119";
5295 EXPECT_STREQ("abc\xe8\x84\x99",
5296 (Message() << const_wstr).GetString().c_str());
5297
5298 // Streams a non-NULL of type wchar_t*.
5299 wstr = const_cast<wchar_t*>(const_wstr);
5300 EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5301 }
5302
5303 // This line tests that we can define tests in the testing namespace.
5304 namespace testing {
5305
5306 // Tests the TestInfo class.
5307
5308 class TestInfoTest : public Test {
5309 protected:
GetTestInfo(const char * test_name)5310 static const TestInfo* GetTestInfo(const char* test_name) {
5311 const TestSuite* const test_suite =
5312 GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5313
5314 for (int i = 0; i < test_suite->total_test_count(); ++i) {
5315 const TestInfo* const test_info = test_suite->GetTestInfo(i);
5316 if (strcmp(test_name, test_info->name()) == 0) return test_info;
5317 }
5318 return nullptr;
5319 }
5320
GetTestResult(const TestInfo * test_info)5321 static const TestResult* GetTestResult(const TestInfo* test_info) {
5322 return test_info->result();
5323 }
5324 };
5325
5326 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5327 TEST_F(TestInfoTest, Names) {
5328 const TestInfo* const test_info = GetTestInfo("Names");
5329
5330 ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5331 ASSERT_STREQ("Names", test_info->name());
5332 }
5333
5334 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5335 TEST_F(TestInfoTest, result) {
5336 const TestInfo* const test_info = GetTestInfo("result");
5337
5338 // Initially, there is no TestPartResult for this test.
5339 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5340
5341 // After the previous assertion, there is still none.
5342 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5343 }
5344
5345 #define VERIFY_CODE_LOCATION \
5346 const int expected_line = __LINE__ - 1; \
5347 const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5348 ASSERT_TRUE(test_info); \
5349 EXPECT_STREQ(__FILE__, test_info->file()); \
5350 EXPECT_EQ(expected_line, test_info->line())
5351
5352 // clang-format off
TEST(CodeLocationForTEST,Verify)5353 TEST(CodeLocationForTEST, Verify) {
5354 VERIFY_CODE_LOCATION;
5355 }
5356
5357 class CodeLocationForTESTF : public Test {};
5358
TEST_F(CodeLocationForTESTF,Verify)5359 TEST_F(CodeLocationForTESTF, Verify) {
5360 VERIFY_CODE_LOCATION;
5361 }
5362
5363 class CodeLocationForTESTP : public TestWithParam<int> {};
5364
TEST_P(CodeLocationForTESTP,Verify)5365 TEST_P(CodeLocationForTESTP, Verify) {
5366 VERIFY_CODE_LOCATION;
5367 }
5368
5369 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5370
5371 template <typename T>
5372 class CodeLocationForTYPEDTEST : public Test {};
5373
5374 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5375
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5376 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5377 VERIFY_CODE_LOCATION;
5378 }
5379
5380 template <typename T>
5381 class CodeLocationForTYPEDTESTP : public Test {};
5382
5383 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5384
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5385 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5386 VERIFY_CODE_LOCATION;
5387 }
5388
5389 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5390
5391 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5392
5393 #undef VERIFY_CODE_LOCATION
5394 // clang-format on
5395
5396 // Tests setting up and tearing down a test case.
5397 // Legacy API is deprecated but still available
5398 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5399 class SetUpTestCaseTest : public Test {
5400 protected:
5401 // This will be called once before the first test in this test case
5402 // is run.
SetUpTestCase()5403 static void SetUpTestCase() {
5404 printf("Setting up the test case . . .\n");
5405
5406 // Initializes some shared resource. In this simple example, we
5407 // just create a C string. More complex stuff can be done if
5408 // desired.
5409 shared_resource_ = "123";
5410
5411 // Increments the number of test cases that have been set up.
5412 counter_++;
5413
5414 // SetUpTestCase() should be called only once.
5415 EXPECT_EQ(1, counter_);
5416 }
5417
5418 // This will be called once after the last test in this test case is
5419 // run.
TearDownTestCase()5420 static void TearDownTestCase() {
5421 printf("Tearing down the test case . . .\n");
5422
5423 // Decrements the number of test cases that have been set up.
5424 counter_--;
5425
5426 // TearDownTestCase() should be called only once.
5427 EXPECT_EQ(0, counter_);
5428
5429 // Cleans up the shared resource.
5430 shared_resource_ = nullptr;
5431 }
5432
5433 // This will be called before each test in this test case.
SetUp()5434 void SetUp() override {
5435 // SetUpTestCase() should be called only once, so counter_ should
5436 // always be 1.
5437 EXPECT_EQ(1, counter_);
5438 }
5439
5440 // Number of test cases that have been set up.
5441 static int counter_;
5442
5443 // Some resource to be shared by all tests in this test case.
5444 static const char* shared_resource_;
5445 };
5446
5447 int SetUpTestCaseTest::counter_ = 0;
5448 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5449
5450 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5451 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5452
5453 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5454 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5455 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5456
5457 // Tests SetupTestSuite/TearDown TestSuite
5458 class SetUpTestSuiteTest : public Test {
5459 protected:
5460 // This will be called once before the first test in this test case
5461 // is run.
SetUpTestSuite()5462 static void SetUpTestSuite() {
5463 printf("Setting up the test suite . . .\n");
5464
5465 // Initializes some shared resource. In this simple example, we
5466 // just create a C string. More complex stuff can be done if
5467 // desired.
5468 shared_resource_ = "123";
5469
5470 // Increments the number of test cases that have been set up.
5471 counter_++;
5472
5473 // SetUpTestSuite() should be called only once.
5474 EXPECT_EQ(1, counter_);
5475 }
5476
5477 // This will be called once after the last test in this test case is
5478 // run.
TearDownTestSuite()5479 static void TearDownTestSuite() {
5480 printf("Tearing down the test suite . . .\n");
5481
5482 // Decrements the number of test suites that have been set up.
5483 counter_--;
5484
5485 // TearDownTestSuite() should be called only once.
5486 EXPECT_EQ(0, counter_);
5487
5488 // Cleans up the shared resource.
5489 shared_resource_ = nullptr;
5490 }
5491
5492 // This will be called before each test in this test case.
SetUp()5493 void SetUp() override {
5494 // SetUpTestSuite() should be called only once, so counter_ should
5495 // always be 1.
5496 EXPECT_EQ(1, counter_);
5497 }
5498
5499 // Number of test suites that have been set up.
5500 static int counter_;
5501
5502 // Some resource to be shared by all tests in this test case.
5503 static const char* shared_resource_;
5504 };
5505
5506 int SetUpTestSuiteTest::counter_ = 0;
5507 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5508
5509 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5510 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5511 EXPECT_STRNE(nullptr, shared_resource_);
5512 }
5513
5514 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5515 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5516 EXPECT_STREQ("123", shared_resource_);
5517 }
5518
5519 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5520
5521 // The Flags struct stores a copy of all Google Test flags.
5522 struct Flags {
5523 // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5524 Flags()
5525 : also_run_disabled_tests(false),
5526 break_on_failure(false),
5527 catch_exceptions(false),
5528 death_test_use_fork(false),
5529 fail_fast(false),
5530 filter(""),
5531 list_tests(false),
5532 output(""),
5533 brief(false),
5534 print_time(true),
5535 random_seed(0),
5536 repeat(1),
5537 recreate_environments_when_repeating(true),
5538 shuffle(false),
5539 stack_trace_depth(kMaxStackTraceDepth),
5540 stream_result_to(""),
5541 throw_on_failure(false) {}
5542
5543 // Factory methods.
5544
5545 // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5546 // the given value.
AlsoRunDisabledTeststesting::Flags5547 static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5548 Flags flags;
5549 flags.also_run_disabled_tests = also_run_disabled_tests;
5550 return flags;
5551 }
5552
5553 // Creates a Flags struct where the gtest_break_on_failure flag has
5554 // the given value.
BreakOnFailuretesting::Flags5555 static Flags BreakOnFailure(bool break_on_failure) {
5556 Flags flags;
5557 flags.break_on_failure = break_on_failure;
5558 return flags;
5559 }
5560
5561 // Creates a Flags struct where the gtest_catch_exceptions flag has
5562 // the given value.
CatchExceptionstesting::Flags5563 static Flags CatchExceptions(bool catch_exceptions) {
5564 Flags flags;
5565 flags.catch_exceptions = catch_exceptions;
5566 return flags;
5567 }
5568
5569 // Creates a Flags struct where the gtest_death_test_use_fork flag has
5570 // the given value.
DeathTestUseForktesting::Flags5571 static Flags DeathTestUseFork(bool death_test_use_fork) {
5572 Flags flags;
5573 flags.death_test_use_fork = death_test_use_fork;
5574 return flags;
5575 }
5576
5577 // Creates a Flags struct where the gtest_fail_fast flag has
5578 // the given value.
FailFasttesting::Flags5579 static Flags FailFast(bool fail_fast) {
5580 Flags flags;
5581 flags.fail_fast = fail_fast;
5582 return flags;
5583 }
5584
5585 // Creates a Flags struct where the gtest_filter flag has the given
5586 // value.
Filtertesting::Flags5587 static Flags Filter(const char* filter) {
5588 Flags flags;
5589 flags.filter = filter;
5590 return flags;
5591 }
5592
5593 // Creates a Flags struct where the gtest_list_tests flag has the
5594 // given value.
ListTeststesting::Flags5595 static Flags ListTests(bool list_tests) {
5596 Flags flags;
5597 flags.list_tests = list_tests;
5598 return flags;
5599 }
5600
5601 // Creates a Flags struct where the gtest_output flag has the given
5602 // value.
Outputtesting::Flags5603 static Flags Output(const char* output) {
5604 Flags flags;
5605 flags.output = output;
5606 return flags;
5607 }
5608
5609 // Creates a Flags struct where the gtest_brief flag has the given
5610 // value.
Brieftesting::Flags5611 static Flags Brief(bool brief) {
5612 Flags flags;
5613 flags.brief = brief;
5614 return flags;
5615 }
5616
5617 // Creates a Flags struct where the gtest_print_time flag has the given
5618 // value.
PrintTimetesting::Flags5619 static Flags PrintTime(bool print_time) {
5620 Flags flags;
5621 flags.print_time = print_time;
5622 return flags;
5623 }
5624
5625 // Creates a Flags struct where the gtest_random_seed flag has the given
5626 // value.
RandomSeedtesting::Flags5627 static Flags RandomSeed(int32_t random_seed) {
5628 Flags flags;
5629 flags.random_seed = random_seed;
5630 return flags;
5631 }
5632
5633 // Creates a Flags struct where the gtest_repeat flag has the given
5634 // value.
Repeattesting::Flags5635 static Flags Repeat(int32_t repeat) {
5636 Flags flags;
5637 flags.repeat = repeat;
5638 return flags;
5639 }
5640
5641 // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5642 // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5643 static Flags RecreateEnvironmentsWhenRepeating(
5644 bool recreate_environments_when_repeating) {
5645 Flags flags;
5646 flags.recreate_environments_when_repeating =
5647 recreate_environments_when_repeating;
5648 return flags;
5649 }
5650
5651 // Creates a Flags struct where the gtest_shuffle flag has the given
5652 // value.
Shuffletesting::Flags5653 static Flags Shuffle(bool shuffle) {
5654 Flags flags;
5655 flags.shuffle = shuffle;
5656 return flags;
5657 }
5658
5659 // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5660 // the given value.
StackTraceDepthtesting::Flags5661 static Flags StackTraceDepth(int32_t stack_trace_depth) {
5662 Flags flags;
5663 flags.stack_trace_depth = stack_trace_depth;
5664 return flags;
5665 }
5666
5667 // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5668 // the given value.
StreamResultTotesting::Flags5669 static Flags StreamResultTo(const char* stream_result_to) {
5670 Flags flags;
5671 flags.stream_result_to = stream_result_to;
5672 return flags;
5673 }
5674
5675 // Creates a Flags struct where the gtest_throw_on_failure flag has
5676 // the given value.
ThrowOnFailuretesting::Flags5677 static Flags ThrowOnFailure(bool throw_on_failure) {
5678 Flags flags;
5679 flags.throw_on_failure = throw_on_failure;
5680 return flags;
5681 }
5682
5683 // These fields store the flag values.
5684 bool also_run_disabled_tests;
5685 bool break_on_failure;
5686 bool catch_exceptions;
5687 bool death_test_use_fork;
5688 bool fail_fast;
5689 const char* filter;
5690 bool list_tests;
5691 const char* output;
5692 bool brief;
5693 bool print_time;
5694 int32_t random_seed;
5695 int32_t repeat;
5696 bool recreate_environments_when_repeating;
5697 bool shuffle;
5698 int32_t stack_trace_depth;
5699 const char* stream_result_to;
5700 bool throw_on_failure;
5701 };
5702
5703 // Fixture for testing ParseGoogleTestFlagsOnly().
5704 class ParseFlagsTest : public Test {
5705 protected:
5706 // Clears the flags before each test.
SetUp()5707 void SetUp() override {
5708 GTEST_FLAG_SET(also_run_disabled_tests, false);
5709 GTEST_FLAG_SET(break_on_failure, false);
5710 GTEST_FLAG_SET(catch_exceptions, false);
5711 GTEST_FLAG_SET(death_test_use_fork, false);
5712 GTEST_FLAG_SET(fail_fast, false);
5713 GTEST_FLAG_SET(filter, "");
5714 GTEST_FLAG_SET(list_tests, false);
5715 GTEST_FLAG_SET(output, "");
5716 GTEST_FLAG_SET(brief, false);
5717 GTEST_FLAG_SET(print_time, true);
5718 GTEST_FLAG_SET(random_seed, 0);
5719 GTEST_FLAG_SET(repeat, 1);
5720 GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5721 GTEST_FLAG_SET(shuffle, false);
5722 GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5723 GTEST_FLAG_SET(stream_result_to, "");
5724 GTEST_FLAG_SET(throw_on_failure, false);
5725 }
5726
5727 // Asserts that two narrow or wide string arrays are equal.
5728 template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5729 static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5730 CharType** array2) {
5731 ASSERT_EQ(size1, size2) << " Array sizes different.";
5732
5733 for (int i = 0; i != size1; i++) {
5734 ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5735 }
5736 }
5737
5738 // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5739 static void CheckFlags(const Flags& expected) {
5740 EXPECT_EQ(expected.also_run_disabled_tests,
5741 GTEST_FLAG_GET(also_run_disabled_tests));
5742 EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5743 EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5744 EXPECT_EQ(expected.death_test_use_fork,
5745 GTEST_FLAG_GET(death_test_use_fork));
5746 EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5747 EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5748 EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5749 EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5750 EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5751 EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5752 EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5753 EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5754 EXPECT_EQ(expected.recreate_environments_when_repeating,
5755 GTEST_FLAG_GET(recreate_environments_when_repeating));
5756 EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5757 EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5758 EXPECT_STREQ(expected.stream_result_to,
5759 GTEST_FLAG_GET(stream_result_to).c_str());
5760 EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5761 }
5762
5763 // Parses a command line (specified by argc1 and argv1), then
5764 // verifies that the flag values are expected and that the
5765 // recognized flags are removed from the command line.
5766 template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5767 static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5768 const CharType** argv2, const Flags& expected,
5769 bool should_print_help) {
5770 const bool saved_help_flag = ::testing::internal::g_help_flag;
5771 ::testing::internal::g_help_flag = false;
5772
5773 #if GTEST_HAS_STREAM_REDIRECTION
5774 CaptureStdout();
5775 #endif
5776
5777 // Parses the command line.
5778 internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5779
5780 #if GTEST_HAS_STREAM_REDIRECTION
5781 const std::string captured_stdout = GetCapturedStdout();
5782 #endif
5783
5784 // Verifies the flag values.
5785 CheckFlags(expected);
5786
5787 // Verifies that the recognized flags are removed from the command
5788 // line.
5789 AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5790
5791 // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5792 // help message for the flags it recognizes.
5793 EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5794
5795 #if GTEST_HAS_STREAM_REDIRECTION
5796 const char* const expected_help_fragment =
5797 "This program contains tests written using";
5798 if (should_print_help) {
5799 EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5800 } else {
5801 EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5802 captured_stdout);
5803 }
5804 #endif // GTEST_HAS_STREAM_REDIRECTION
5805
5806 ::testing::internal::g_help_flag = saved_help_flag;
5807 }
5808
5809 // This macro wraps TestParsingFlags s.t. the user doesn't need
5810 // to specify the array sizes.
5811
5812 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5813 TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1, \
5814 sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected, \
5815 should_print_help)
5816 };
5817
5818 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5819 TEST_F(ParseFlagsTest, Empty) {
5820 const char* argv[] = {nullptr};
5821
5822 const char* argv2[] = {nullptr};
5823
5824 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5825 }
5826
5827 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5828 TEST_F(ParseFlagsTest, NoFlag) {
5829 const char* argv[] = {"foo.exe", nullptr};
5830
5831 const char* argv2[] = {"foo.exe", nullptr};
5832
5833 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5834 }
5835
5836 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5837 TEST_F(ParseFlagsTest, FailFast) {
5838 const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5839
5840 const char* argv2[] = {"foo.exe", nullptr};
5841
5842 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5843 }
5844
5845 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5846 TEST_F(ParseFlagsTest, FilterEmpty) {
5847 const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5848
5849 const char* argv2[] = {"foo.exe", nullptr};
5850
5851 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5852 }
5853
5854 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5855 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5856 const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5857
5858 const char* argv2[] = {"foo.exe", nullptr};
5859
5860 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5861 }
5862
5863 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5864 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5865 const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5866
5867 const char* argv2[] = {"foo.exe", nullptr};
5868
5869 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5870 }
5871
5872 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5873 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5874 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5875
5876 const char* argv2[] = {"foo.exe", nullptr};
5877
5878 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5879 }
5880
5881 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5882 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5883 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5884
5885 const char* argv2[] = {"foo.exe", nullptr};
5886
5887 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5888 }
5889
5890 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5891 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5892 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5893
5894 const char* argv2[] = {"foo.exe", nullptr};
5895
5896 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5897 }
5898
5899 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5900 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5901 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5902 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5903
5904 const char* argv2[] = {"foo.exe", nullptr};
5905
5906 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5907 }
5908
5909 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5910 TEST_F(ParseFlagsTest, CatchExceptions) {
5911 const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5912
5913 const char* argv2[] = {"foo.exe", nullptr};
5914
5915 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5916 }
5917
5918 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5919 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5920 const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5921
5922 const char* argv2[] = {"foo.exe", nullptr};
5923
5924 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5925 }
5926
5927 // Tests having the same flag twice with different values. The
5928 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5929 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5930 const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5931 nullptr};
5932
5933 const char* argv2[] = {"foo.exe", nullptr};
5934
5935 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5936 }
5937
5938 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5939 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5940 const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5941 "bar", // Unrecognized by Google Test.
5942 "--gtest_filter=b", nullptr};
5943
5944 const char* argv2[] = {"foo.exe", "bar", nullptr};
5945
5946 Flags flags;
5947 flags.break_on_failure = true;
5948 flags.filter = "b";
5949 GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5950 }
5951
5952 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5953 TEST_F(ParseFlagsTest, ListTestsFlag) {
5954 const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5955
5956 const char* argv2[] = {"foo.exe", nullptr};
5957
5958 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5959 }
5960
5961 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5962 TEST_F(ParseFlagsTest, ListTestsTrue) {
5963 const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5964
5965 const char* argv2[] = {"foo.exe", nullptr};
5966
5967 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5968 }
5969
5970 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5971 TEST_F(ParseFlagsTest, ListTestsFalse) {
5972 const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5973
5974 const char* argv2[] = {"foo.exe", nullptr};
5975
5976 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5977 }
5978
5979 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5980 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5981 const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5982
5983 const char* argv2[] = {"foo.exe", nullptr};
5984
5985 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5986 }
5987
5988 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5989 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5990 const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5991
5992 const char* argv2[] = {"foo.exe", nullptr};
5993
5994 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5995 }
5996
5997 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)5998 TEST_F(ParseFlagsTest, OutputXml) {
5999 const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
6000
6001 const char* argv2[] = {"foo.exe", nullptr};
6002
6003 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6004 }
6005
6006 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)6007 TEST_F(ParseFlagsTest, OutputXmlFile) {
6008 const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
6009
6010 const char* argv2[] = {"foo.exe", nullptr};
6011
6012 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6013 }
6014
6015 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)6016 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
6017 const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
6018 nullptr};
6019
6020 const char* argv2[] = {"foo.exe", nullptr};
6021
6022 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
6023 false);
6024 }
6025
6026 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)6027 TEST_F(ParseFlagsTest, BriefFlag) {
6028 const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
6029
6030 const char* argv2[] = {"foo.exe", nullptr};
6031
6032 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6033 }
6034
6035 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)6036 TEST_F(ParseFlagsTest, BriefFlagTrue) {
6037 const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
6038
6039 const char* argv2[] = {"foo.exe", nullptr};
6040
6041 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6042 }
6043
6044 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)6045 TEST_F(ParseFlagsTest, BriefFlagFalse) {
6046 const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
6047
6048 const char* argv2[] = {"foo.exe", nullptr};
6049
6050 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6051 }
6052
6053 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6054 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6055 const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6056
6057 const char* argv2[] = {"foo.exe", nullptr};
6058
6059 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6060 }
6061
6062 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6063 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6064 const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6065
6066 const char* argv2[] = {"foo.exe", nullptr};
6067
6068 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6069 }
6070
6071 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6072 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6073 const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6074
6075 const char* argv2[] = {"foo.exe", nullptr};
6076
6077 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6078 }
6079
6080 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6081 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6082 const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6083
6084 const char* argv2[] = {"foo.exe", nullptr};
6085
6086 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6087 }
6088
6089 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6090 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6091 const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6092
6093 const char* argv2[] = {"foo.exe", nullptr};
6094
6095 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6096 }
6097
6098 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6099 TEST_F(ParseFlagsTest, RandomSeed) {
6100 const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6101
6102 const char* argv2[] = {"foo.exe", nullptr};
6103
6104 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6105 }
6106
6107 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6108 TEST_F(ParseFlagsTest, Repeat) {
6109 const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6110
6111 const char* argv2[] = {"foo.exe", nullptr};
6112
6113 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6114 }
6115
6116 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6117 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6118 const char* argv[] = {
6119 "foo.exe",
6120 "--gtest_recreate_environments_when_repeating=0",
6121 nullptr,
6122 };
6123
6124 const char* argv2[] = {"foo.exe", nullptr};
6125
6126 GTEST_TEST_PARSING_FLAGS_(
6127 argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6128 }
6129
6130 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6131 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6132 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6133
6134 const char* argv2[] = {"foo.exe", nullptr};
6135
6136 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6137 false);
6138 }
6139
6140 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6141 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6142 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6143 nullptr};
6144
6145 const char* argv2[] = {"foo.exe", nullptr};
6146
6147 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6148 false);
6149 }
6150
6151 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6152 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6153 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6154 nullptr};
6155
6156 const char* argv2[] = {"foo.exe", nullptr};
6157
6158 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6159 false);
6160 }
6161
6162 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6163 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6164 const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6165
6166 const char* argv2[] = {"foo.exe", nullptr};
6167
6168 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6169 }
6170
6171 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6172 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6173 const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6174
6175 const char* argv2[] = {"foo.exe", nullptr};
6176
6177 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6178 }
6179
6180 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6181 TEST_F(ParseFlagsTest, ShuffleTrue) {
6182 const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6183
6184 const char* argv2[] = {"foo.exe", nullptr};
6185
6186 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6187 }
6188
6189 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6190 TEST_F(ParseFlagsTest, StackTraceDepth) {
6191 const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6192
6193 const char* argv2[] = {"foo.exe", nullptr};
6194
6195 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6196 }
6197
TEST_F(ParseFlagsTest,StreamResultTo)6198 TEST_F(ParseFlagsTest, StreamResultTo) {
6199 const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6200 nullptr};
6201
6202 const char* argv2[] = {"foo.exe", nullptr};
6203
6204 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6205 Flags::StreamResultTo("localhost:1234"), false);
6206 }
6207
6208 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6209 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6210 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6211
6212 const char* argv2[] = {"foo.exe", nullptr};
6213
6214 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6215 }
6216
6217 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6218 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6219 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6220
6221 const char* argv2[] = {"foo.exe", nullptr};
6222
6223 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6224 }
6225
6226 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6227 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6228 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6229 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6230
6231 const char* argv2[] = {"foo.exe", nullptr};
6232
6233 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6234 }
6235
6236 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)6237 TEST_F(ParseFlagsTest, FilterBad) {
6238 const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6239
6240 const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6241
6242 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6243 // Invalid flag arguments are a fatal error when using the Abseil Flags.
6244 EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6245 testing::ExitedWithCode(1),
6246 "ERROR: Missing the value for the flag 'gtest_filter'");
6247 #elif !defined(GTEST_HAS_ABSL)
6248 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6249 #else
6250 static_cast<void>(argv);
6251 static_cast<void>(argv2);
6252 #endif
6253 }
6254
6255 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6256 TEST_F(ParseFlagsTest, OutputEmpty) {
6257 const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6258
6259 const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6260
6261 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6262 // Invalid flag arguments are a fatal error when using the Abseil Flags.
6263 EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6264 testing::ExitedWithCode(1),
6265 "ERROR: Missing the value for the flag 'gtest_output'");
6266 #elif !defined(GTEST_HAS_ABSL)
6267 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6268 #else
6269 static_cast<void>(argv);
6270 static_cast<void>(argv2);
6271 #endif
6272 }
6273
6274 #ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest,AbseilPositionalFlags)6275 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6276 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6277 "--other_flag", nullptr};
6278
6279 // When using Abseil flags, it should be possible to pass flags not recognized
6280 // using "--" to delimit positional arguments. These flags should be returned
6281 // though argv.
6282 const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6283
6284 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6285 }
6286 #endif
6287
TEST_F(ParseFlagsTest,UnrecognizedFlags)6288 TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6289 const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6290 nullptr};
6291
6292 const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6293
6294 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6295 }
6296
6297 #ifdef GTEST_OS_WINDOWS
6298 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6299 TEST_F(ParseFlagsTest, WideStrings) {
6300 const wchar_t* argv[] = {L"foo.exe",
6301 L"--gtest_filter=Foo*",
6302 L"--gtest_list_tests=1",
6303 L"--gtest_break_on_failure",
6304 L"--non_gtest_flag",
6305 NULL};
6306
6307 const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6308
6309 Flags expected_flags;
6310 expected_flags.break_on_failure = true;
6311 expected_flags.filter = "Foo*";
6312 expected_flags.list_tests = true;
6313
6314 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6315 }
6316 #endif // GTEST_OS_WINDOWS
6317
6318 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6319 class FlagfileTest : public ParseFlagsTest {
6320 public:
SetUp()6321 void SetUp() override {
6322 ParseFlagsTest::SetUp();
6323
6324 testdata_path_.Set(internal::FilePath(
6325 testing::TempDir() + internal::GetCurrentExecutableName().string() +
6326 "_flagfile_test"));
6327 testing::internal::posix::RmDir(testdata_path_.c_str());
6328 EXPECT_TRUE(testdata_path_.CreateFolder());
6329 }
6330
TearDown()6331 void TearDown() override {
6332 testing::internal::posix::RmDir(testdata_path_.c_str());
6333 ParseFlagsTest::TearDown();
6334 }
6335
CreateFlagfile(const char * contents)6336 internal::FilePath CreateFlagfile(const char* contents) {
6337 internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6338 testdata_path_, internal::FilePath("unique"), "txt"));
6339 FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6340 fprintf(f, "%s", contents);
6341 fclose(f);
6342 return file_path;
6343 }
6344
6345 private:
6346 internal::FilePath testdata_path_;
6347 };
6348
6349 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6350 TEST_F(FlagfileTest, Empty) {
6351 internal::FilePath flagfile_path(CreateFlagfile(""));
6352 std::string flagfile_flag =
6353 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6354
6355 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6356
6357 const char* argv2[] = {"foo.exe", nullptr};
6358
6359 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6360 }
6361
6362 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6363 TEST_F(FlagfileTest, FilterNonEmpty) {
6364 internal::FilePath flagfile_path(
6365 CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6366 std::string flagfile_flag =
6367 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6368
6369 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6370
6371 const char* argv2[] = {"foo.exe", nullptr};
6372
6373 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6374 }
6375
6376 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6377 TEST_F(FlagfileTest, SeveralFlags) {
6378 internal::FilePath flagfile_path(
6379 CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6380 "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6381 "--" GTEST_FLAG_PREFIX_ "list_tests"));
6382 std::string flagfile_flag =
6383 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6384
6385 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6386
6387 const char* argv2[] = {"foo.exe", nullptr};
6388
6389 Flags expected_flags;
6390 expected_flags.break_on_failure = true;
6391 expected_flags.filter = "abc";
6392 expected_flags.list_tests = true;
6393
6394 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6395 }
6396 #endif // GTEST_USE_OWN_FLAGFILE_FLAG_
6397
6398 // Tests current_test_info() in UnitTest.
6399 class CurrentTestInfoTest : public Test {
6400 protected:
6401 // Tests that current_test_info() returns NULL before the first test in
6402 // the test case is run.
SetUpTestSuite()6403 static void SetUpTestSuite() {
6404 // There should be no tests running at this point.
6405 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6406 EXPECT_TRUE(test_info == nullptr)
6407 << "There should be no tests running at this point.";
6408 }
6409
6410 // Tests that current_test_info() returns NULL after the last test in
6411 // the test case has run.
TearDownTestSuite()6412 static void TearDownTestSuite() {
6413 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6414 EXPECT_TRUE(test_info == nullptr)
6415 << "There should be no tests running at this point.";
6416 }
6417 };
6418
6419 // Tests that current_test_info() returns TestInfo for currently running
6420 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6421 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6422 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6423 ASSERT_TRUE(nullptr != test_info)
6424 << "There is a test running so we should have a valid TestInfo.";
6425 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6426 << "Expected the name of the currently running test suite.";
6427 EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6428 << "Expected the name of the currently running test.";
6429 }
6430
6431 // Tests that current_test_info() returns TestInfo for currently running
6432 // test by checking the expected test name against the actual one. We
6433 // use this test to see that the TestInfo object actually changed from
6434 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6435 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6436 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6437 ASSERT_TRUE(nullptr != test_info)
6438 << "There is a test running so we should have a valid TestInfo.";
6439 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6440 << "Expected the name of the currently running test suite.";
6441 EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6442 << "Expected the name of the currently running test.";
6443 }
6444
6445 } // namespace testing
6446
6447 // These two lines test that we can define tests in a namespace that
6448 // has the name "testing" and is nested in another namespace.
6449 namespace my_namespace {
6450 namespace testing {
6451
6452 // Makes sure that TEST knows to use ::testing::Test instead of
6453 // ::my_namespace::testing::Test.
6454 class Test {};
6455
6456 // Makes sure that an assertion knows to use ::testing::Message instead of
6457 // ::my_namespace::testing::Message.
6458 class Message {};
6459
6460 // Makes sure that an assertion knows to use
6461 // ::testing::AssertionResult instead of
6462 // ::my_namespace::testing::AssertionResult.
6463 class AssertionResult {};
6464
6465 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6466 TEST(NestedTestingNamespaceTest, Success) {
6467 EXPECT_EQ(1, 1) << "This shouldn't fail.";
6468 }
6469
6470 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6471 TEST(NestedTestingNamespaceTest, Failure) {
6472 EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6473 "This failure is expected.");
6474 }
6475
6476 } // namespace testing
6477 } // namespace my_namespace
6478
6479 // Tests that one can call superclass SetUp and TearDown methods--
6480 // that is, that they are not private.
6481 // No tests are based on this fixture; the test "passes" if it compiles
6482 // successfully.
6483 class ProtectedFixtureMethodsTest : public Test {
6484 protected:
SetUp()6485 void SetUp() override { Test::SetUp(); }
TearDown()6486 void TearDown() override { Test::TearDown(); }
6487 };
6488
6489 // StreamingAssertionsTest tests the streaming versions of a representative
6490 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6491 TEST(StreamingAssertionsTest, Unconditional) {
6492 SUCCEED() << "expected success";
6493 EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6494 "expected failure");
6495 EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6496 }
6497
6498 #ifdef __BORLANDC__
6499 // Silences warnings: "Condition is always true", "Unreachable code"
6500 #pragma option push -w-ccc -w-rch
6501 #endif
6502
TEST(StreamingAssertionsTest,Truth)6503 TEST(StreamingAssertionsTest, Truth) {
6504 EXPECT_TRUE(true) << "unexpected failure";
6505 ASSERT_TRUE(true) << "unexpected failure";
6506 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6507 "expected failure");
6508 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6509 "expected failure");
6510 }
6511
TEST(StreamingAssertionsTest,Truth2)6512 TEST(StreamingAssertionsTest, Truth2) {
6513 EXPECT_FALSE(false) << "unexpected failure";
6514 ASSERT_FALSE(false) << "unexpected failure";
6515 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6516 "expected failure");
6517 EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6518 "expected failure");
6519 }
6520
6521 #ifdef __BORLANDC__
6522 // Restores warnings after previous "#pragma option push" suppressed them
6523 #pragma option pop
6524 #endif
6525
TEST(StreamingAssertionsTest,IntegerEquals)6526 TEST(StreamingAssertionsTest, IntegerEquals) {
6527 EXPECT_EQ(1, 1) << "unexpected failure";
6528 ASSERT_EQ(1, 1) << "unexpected failure";
6529 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6530 "expected failure");
6531 EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6532 "expected failure");
6533 }
6534
TEST(StreamingAssertionsTest,IntegerLessThan)6535 TEST(StreamingAssertionsTest, IntegerLessThan) {
6536 EXPECT_LT(1, 2) << "unexpected failure";
6537 ASSERT_LT(1, 2) << "unexpected failure";
6538 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6539 "expected failure");
6540 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6541 "expected failure");
6542 }
6543
TEST(StreamingAssertionsTest,StringsEqual)6544 TEST(StreamingAssertionsTest, StringsEqual) {
6545 EXPECT_STREQ("foo", "foo") << "unexpected failure";
6546 ASSERT_STREQ("foo", "foo") << "unexpected failure";
6547 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6548 "expected failure");
6549 EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6550 "expected failure");
6551 }
6552
TEST(StreamingAssertionsTest,StringsNotEqual)6553 TEST(StreamingAssertionsTest, StringsNotEqual) {
6554 EXPECT_STRNE("foo", "bar") << "unexpected failure";
6555 ASSERT_STRNE("foo", "bar") << "unexpected failure";
6556 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6557 "expected failure");
6558 EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6559 "expected failure");
6560 }
6561
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6562 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6563 EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6564 ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6565 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6566 "expected failure");
6567 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6568 "expected failure");
6569 }
6570
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6571 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6572 EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6573 ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6574 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6575 "expected failure");
6576 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6577 "expected failure");
6578 }
6579
TEST(StreamingAssertionsTest,FloatingPointEquals)6580 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6581 EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6582 ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6583 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6584 "expected failure");
6585 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6586 "expected failure");
6587 }
6588
6589 #if GTEST_HAS_EXCEPTIONS
6590
TEST(StreamingAssertionsTest,Throw)6591 TEST(StreamingAssertionsTest, Throw) {
6592 EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6593 ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6594 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6595 << "expected failure",
6596 "expected failure");
6597 EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6598 << "expected failure",
6599 "expected failure");
6600 }
6601
TEST(StreamingAssertionsTest,NoThrow)6602 TEST(StreamingAssertionsTest, NoThrow) {
6603 EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6604 ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6605 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6606 << "expected failure",
6607 "expected failure");
6608 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6609 "expected failure");
6610 }
6611
TEST(StreamingAssertionsTest,AnyThrow)6612 TEST(StreamingAssertionsTest, AnyThrow) {
6613 EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6614 ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6615 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6616 << "expected failure",
6617 "expected failure");
6618 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6619 "expected failure");
6620 }
6621
6622 #endif // GTEST_HAS_EXCEPTIONS
6623
6624 // Tests that Google Test correctly decides whether to use colors in the output.
6625
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6626 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6627 GTEST_FLAG_SET(color, "yes");
6628
6629 SetEnv("TERM", "xterm"); // TERM supports colors.
6630 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6631 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6632
6633 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6634 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6635 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6636 }
6637
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6638 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6639 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6640
6641 GTEST_FLAG_SET(color, "True");
6642 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6643
6644 GTEST_FLAG_SET(color, "t");
6645 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6646
6647 GTEST_FLAG_SET(color, "1");
6648 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6649 }
6650
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6651 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6652 GTEST_FLAG_SET(color, "no");
6653
6654 SetEnv("TERM", "xterm"); // TERM supports colors.
6655 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6656 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6657
6658 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6659 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6660 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6661 }
6662
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6663 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6664 SetEnv("TERM", "xterm"); // TERM supports colors.
6665
6666 GTEST_FLAG_SET(color, "F");
6667 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6668
6669 GTEST_FLAG_SET(color, "0");
6670 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6671
6672 GTEST_FLAG_SET(color, "unknown");
6673 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6674 }
6675
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6676 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6677 GTEST_FLAG_SET(color, "auto");
6678
6679 SetEnv("TERM", "xterm"); // TERM supports colors.
6680 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6681 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6682 }
6683
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6684 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6685 GTEST_FLAG_SET(color, "auto");
6686
6687 #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6688 // On Windows, we ignore the TERM variable as it's usually not set.
6689
6690 SetEnv("TERM", "dumb");
6691 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6692
6693 SetEnv("TERM", "");
6694 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6695
6696 SetEnv("TERM", "xterm");
6697 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6698 #else
6699 // On non-Windows platforms, we rely on TERM to determine if the
6700 // terminal supports colors.
6701
6702 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6703 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6704
6705 SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6706 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6707
6708 SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6709 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6710
6711 SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6712 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6713
6714 SetEnv("TERM", "xterm"); // TERM supports colors.
6715 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6716
6717 SetEnv("TERM", "xterm-color"); // TERM supports colors.
6718 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6719
6720 SetEnv("TERM", "xterm-kitty"); // TERM supports colors.
6721 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6722
6723 SetEnv("TERM", "alacritty"); // TERM supports colors.
6724 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6725
6726 SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6727 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6728
6729 SetEnv("TERM", "screen"); // TERM supports colors.
6730 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6731
6732 SetEnv("TERM", "screen-256color"); // TERM supports colors.
6733 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6734
6735 SetEnv("TERM", "tmux"); // TERM supports colors.
6736 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6737
6738 SetEnv("TERM", "tmux-256color"); // TERM supports colors.
6739 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6740
6741 SetEnv("TERM", "rxvt-unicode"); // TERM supports colors.
6742 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6743
6744 SetEnv("TERM", "rxvt-unicode-256color"); // TERM supports colors.
6745 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6746
6747 SetEnv("TERM", "linux"); // TERM supports colors.
6748 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6749
6750 SetEnv("TERM", "cygwin"); // TERM supports colors.
6751 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6752 #endif // GTEST_OS_WINDOWS
6753 }
6754
6755 // Verifies that StaticAssertTypeEq works in a namespace scope.
6756
6757 [[maybe_unused]] static bool dummy1 = StaticAssertTypeEq<bool, bool>();
6758 [[maybe_unused]] static bool dummy2 =
6759 StaticAssertTypeEq<const int, const int>();
6760
6761 // Verifies that StaticAssertTypeEq works in a class.
6762
6763 template <typename T>
6764 class StaticAssertTypeEqTestHelper {
6765 public:
StaticAssertTypeEqTestHelper()6766 StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6767 };
6768
TEST(StaticAssertTypeEqTest,WorksInClass)6769 TEST(StaticAssertTypeEqTest, WorksInClass) {
6770 StaticAssertTypeEqTestHelper<bool>();
6771 }
6772
6773 // Verifies that StaticAssertTypeEq works inside a function.
6774
6775 typedef int IntAlias;
6776
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6777 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6778 StaticAssertTypeEq<int, IntAlias>();
6779 StaticAssertTypeEq<int*, IntAlias*>();
6780 }
6781
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6782 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6783 EXPECT_FALSE(HasNonfatalFailure());
6784 }
6785
FailFatally()6786 static void FailFatally() { FAIL(); }
6787
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6788 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6789 FailFatally();
6790 const bool has_nonfatal_failure = HasNonfatalFailure();
6791 ClearCurrentTestPartResults();
6792 EXPECT_FALSE(has_nonfatal_failure);
6793 }
6794
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6795 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6796 ADD_FAILURE();
6797 const bool has_nonfatal_failure = HasNonfatalFailure();
6798 ClearCurrentTestPartResults();
6799 EXPECT_TRUE(has_nonfatal_failure);
6800 }
6801
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6802 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6803 FailFatally();
6804 ADD_FAILURE();
6805 const bool has_nonfatal_failure = HasNonfatalFailure();
6806 ClearCurrentTestPartResults();
6807 EXPECT_TRUE(has_nonfatal_failure);
6808 }
6809
6810 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6811 static bool HasNonfatalFailureHelper() {
6812 return testing::Test::HasNonfatalFailure();
6813 }
6814
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6815 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6816 EXPECT_FALSE(HasNonfatalFailureHelper());
6817 }
6818
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6819 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6820 ADD_FAILURE();
6821 const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6822 ClearCurrentTestPartResults();
6823 EXPECT_TRUE(has_nonfatal_failure);
6824 }
6825
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6826 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6827 EXPECT_FALSE(HasFailure());
6828 }
6829
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6830 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6831 FailFatally();
6832 const bool has_failure = HasFailure();
6833 ClearCurrentTestPartResults();
6834 EXPECT_TRUE(has_failure);
6835 }
6836
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6837 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6838 ADD_FAILURE();
6839 const bool has_failure = HasFailure();
6840 ClearCurrentTestPartResults();
6841 EXPECT_TRUE(has_failure);
6842 }
6843
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6844 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6845 FailFatally();
6846 ADD_FAILURE();
6847 const bool has_failure = HasFailure();
6848 ClearCurrentTestPartResults();
6849 EXPECT_TRUE(has_failure);
6850 }
6851
6852 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6853 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6854
TEST(HasFailureTest,WorksOutsideOfTestBody)6855 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6856 EXPECT_FALSE(HasFailureHelper());
6857 }
6858
TEST(HasFailureTest,WorksOutsideOfTestBody2)6859 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6860 ADD_FAILURE();
6861 const bool has_failure = HasFailureHelper();
6862 ClearCurrentTestPartResults();
6863 EXPECT_TRUE(has_failure);
6864 }
6865
6866 class TestListener : public EmptyTestEventListener {
6867 public:
TestListener()6868 TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6869 TestListener(int* on_start_counter, bool* is_destroyed)
6870 : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6871
~TestListener()6872 ~TestListener() override {
6873 if (is_destroyed_) *is_destroyed_ = true;
6874 }
6875
6876 protected:
OnTestProgramStart(const UnitTest &)6877 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6878 if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6879 }
6880
6881 private:
6882 int* on_start_counter_;
6883 bool* is_destroyed_;
6884 };
6885
6886 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6887 TEST(TestEventListenersTest, ConstructionWorks) {
6888 TestEventListeners listeners;
6889
6890 EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6891 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6892 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6893 }
6894
6895 // Tests that the TestEventListeners destructor deletes all the listeners it
6896 // owns.
TEST(TestEventListenersTest,DestructionWorks)6897 TEST(TestEventListenersTest, DestructionWorks) {
6898 bool default_result_printer_is_destroyed = false;
6899 bool default_xml_printer_is_destroyed = false;
6900 bool extra_listener_is_destroyed = false;
6901 TestListener* default_result_printer =
6902 new TestListener(nullptr, &default_result_printer_is_destroyed);
6903 TestListener* default_xml_printer =
6904 new TestListener(nullptr, &default_xml_printer_is_destroyed);
6905 TestListener* extra_listener =
6906 new TestListener(nullptr, &extra_listener_is_destroyed);
6907
6908 {
6909 TestEventListeners listeners;
6910 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6911 default_result_printer);
6912 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6913 default_xml_printer);
6914 listeners.Append(extra_listener);
6915 }
6916 EXPECT_TRUE(default_result_printer_is_destroyed);
6917 EXPECT_TRUE(default_xml_printer_is_destroyed);
6918 EXPECT_TRUE(extra_listener_is_destroyed);
6919 }
6920
6921 // Tests that a listener Append'ed to a TestEventListeners list starts
6922 // receiving events.
TEST(TestEventListenersTest,Append)6923 TEST(TestEventListenersTest, Append) {
6924 int on_start_counter = 0;
6925 bool is_destroyed = false;
6926 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6927 {
6928 TestEventListeners listeners;
6929 listeners.Append(listener);
6930 TestEventListenersAccessor::GetRepeater(&listeners)
6931 ->OnTestProgramStart(*UnitTest::GetInstance());
6932 EXPECT_EQ(1, on_start_counter);
6933 }
6934 EXPECT_TRUE(is_destroyed);
6935 }
6936
6937 // Tests that listeners receive events in the order they were appended to
6938 // the list, except for *End requests, which must be received in the reverse
6939 // order.
6940 class SequenceTestingListener : public EmptyTestEventListener {
6941 public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6942 SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6943 : vector_(vector), id_(id) {}
6944
6945 protected:
OnTestProgramStart(const UnitTest &)6946 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6947 vector_->push_back(GetEventDescription("OnTestProgramStart"));
6948 }
6949
OnTestProgramEnd(const UnitTest &)6950 void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6951 vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6952 }
6953
OnTestIterationStart(const UnitTest &,int)6954 void OnTestIterationStart(const UnitTest& /*unit_test*/,
6955 int /*iteration*/) override {
6956 vector_->push_back(GetEventDescription("OnTestIterationStart"));
6957 }
6958
OnTestIterationEnd(const UnitTest &,int)6959 void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6960 int /*iteration*/) override {
6961 vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6962 }
6963
6964 private:
GetEventDescription(const char * method)6965 std::string GetEventDescription(const char* method) {
6966 Message message;
6967 message << id_ << "." << method;
6968 return message.GetString();
6969 }
6970
6971 std::vector<std::string>* vector_;
6972 const char* const id_;
6973
6974 SequenceTestingListener(const SequenceTestingListener&) = delete;
6975 SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6976 };
6977
TEST(EventListenerTest,AppendKeepsOrder)6978 TEST(EventListenerTest, AppendKeepsOrder) {
6979 std::vector<std::string> vec;
6980 TestEventListeners listeners;
6981 listeners.Append(new SequenceTestingListener(&vec, "1st"));
6982 listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6983 listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6984
6985 TestEventListenersAccessor::GetRepeater(&listeners)
6986 ->OnTestProgramStart(*UnitTest::GetInstance());
6987 ASSERT_EQ(3U, vec.size());
6988 EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6989 EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6990 EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6991
6992 vec.clear();
6993 TestEventListenersAccessor::GetRepeater(&listeners)
6994 ->OnTestProgramEnd(*UnitTest::GetInstance());
6995 ASSERT_EQ(3U, vec.size());
6996 EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6997 EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6998 EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6999
7000 vec.clear();
7001 TestEventListenersAccessor::GetRepeater(&listeners)
7002 ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
7003 ASSERT_EQ(3U, vec.size());
7004 EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
7005 EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
7006 EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
7007
7008 vec.clear();
7009 TestEventListenersAccessor::GetRepeater(&listeners)
7010 ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
7011 ASSERT_EQ(3U, vec.size());
7012 EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
7013 EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
7014 EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
7015 }
7016
7017 // Tests that a listener removed from a TestEventListeners list stops receiving
7018 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)7019 TEST(TestEventListenersTest, Release) {
7020 int on_start_counter = 0;
7021 bool is_destroyed = false;
7022 // Although Append passes the ownership of this object to the list,
7023 // the following calls release it, and we need to delete it before the
7024 // test ends.
7025 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7026 {
7027 TestEventListeners listeners;
7028 listeners.Append(listener);
7029 EXPECT_EQ(listener, listeners.Release(listener));
7030 TestEventListenersAccessor::GetRepeater(&listeners)
7031 ->OnTestProgramStart(*UnitTest::GetInstance());
7032 EXPECT_TRUE(listeners.Release(listener) == nullptr);
7033 }
7034 EXPECT_EQ(0, on_start_counter);
7035 EXPECT_FALSE(is_destroyed);
7036 delete listener;
7037 }
7038
7039 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7040 TEST(EventListenerTest, SuppressEventForwarding) {
7041 int on_start_counter = 0;
7042 TestListener* listener = new TestListener(&on_start_counter, nullptr);
7043
7044 TestEventListeners listeners;
7045 listeners.Append(listener);
7046 ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7047 TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7048 ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7049 TestEventListenersAccessor::GetRepeater(&listeners)
7050 ->OnTestProgramStart(*UnitTest::GetInstance());
7051 EXPECT_EQ(0, on_start_counter);
7052 }
7053
7054 // Tests that events generated by Google Test are not forwarded in
7055 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprocesses)7056 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7057 EXPECT_DEATH_IF_SUPPORTED(
7058 {
7059 GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7060 *GetUnitTestImpl()->listeners()))
7061 << "expected failure";
7062 },
7063 "expected failure");
7064 }
7065
7066 // Tests that a listener installed via SetDefaultResultPrinter() starts
7067 // receiving events and is returned via default_result_printer() and that
7068 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7069 TEST(EventListenerTest, default_result_printer) {
7070 int on_start_counter = 0;
7071 bool is_destroyed = false;
7072 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7073
7074 TestEventListeners listeners;
7075 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7076
7077 EXPECT_EQ(listener, listeners.default_result_printer());
7078
7079 TestEventListenersAccessor::GetRepeater(&listeners)
7080 ->OnTestProgramStart(*UnitTest::GetInstance());
7081
7082 EXPECT_EQ(1, on_start_counter);
7083
7084 // Replacing default_result_printer with something else should remove it
7085 // from the list and destroy it.
7086 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7087
7088 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7089 EXPECT_TRUE(is_destroyed);
7090
7091 // After broadcasting an event the counter is still the same, indicating
7092 // the listener is not in the list anymore.
7093 TestEventListenersAccessor::GetRepeater(&listeners)
7094 ->OnTestProgramStart(*UnitTest::GetInstance());
7095 EXPECT_EQ(1, on_start_counter);
7096 }
7097
7098 // Tests that the default_result_printer listener stops receiving events
7099 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7100 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7101 int on_start_counter = 0;
7102 bool is_destroyed = false;
7103 // Although Append passes the ownership of this object to the list,
7104 // the following calls release it, and we need to delete it before the
7105 // test ends.
7106 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7107 {
7108 TestEventListeners listeners;
7109 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7110
7111 EXPECT_EQ(listener, listeners.Release(listener));
7112 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7113 EXPECT_FALSE(is_destroyed);
7114
7115 // Broadcasting events now should not affect default_result_printer.
7116 TestEventListenersAccessor::GetRepeater(&listeners)
7117 ->OnTestProgramStart(*UnitTest::GetInstance());
7118 EXPECT_EQ(0, on_start_counter);
7119 }
7120 // Destroying the list should not affect the listener now, too.
7121 EXPECT_FALSE(is_destroyed);
7122 delete listener;
7123 }
7124
7125 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7126 // receiving events and is returned via default_xml_generator() and that
7127 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7128 TEST(EventListenerTest, default_xml_generator) {
7129 int on_start_counter = 0;
7130 bool is_destroyed = false;
7131 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7132
7133 TestEventListeners listeners;
7134 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7135
7136 EXPECT_EQ(listener, listeners.default_xml_generator());
7137
7138 TestEventListenersAccessor::GetRepeater(&listeners)
7139 ->OnTestProgramStart(*UnitTest::GetInstance());
7140
7141 EXPECT_EQ(1, on_start_counter);
7142
7143 // Replacing default_xml_generator with something else should remove it
7144 // from the list and destroy it.
7145 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7146
7147 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7148 EXPECT_TRUE(is_destroyed);
7149
7150 // After broadcasting an event the counter is still the same, indicating
7151 // the listener is not in the list anymore.
7152 TestEventListenersAccessor::GetRepeater(&listeners)
7153 ->OnTestProgramStart(*UnitTest::GetInstance());
7154 EXPECT_EQ(1, on_start_counter);
7155 }
7156
7157 // Tests that the default_xml_generator listener stops receiving events
7158 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7159 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7160 int on_start_counter = 0;
7161 bool is_destroyed = false;
7162 // Although Append passes the ownership of this object to the list,
7163 // the following calls release it, and we need to delete it before the
7164 // test ends.
7165 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7166 {
7167 TestEventListeners listeners;
7168 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7169
7170 EXPECT_EQ(listener, listeners.Release(listener));
7171 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7172 EXPECT_FALSE(is_destroyed);
7173
7174 // Broadcasting events now should not affect default_xml_generator.
7175 TestEventListenersAccessor::GetRepeater(&listeners)
7176 ->OnTestProgramStart(*UnitTest::GetInstance());
7177 EXPECT_EQ(0, on_start_counter);
7178 }
7179 // Destroying the list should not affect the listener now, too.
7180 EXPECT_FALSE(is_destroyed);
7181 delete listener;
7182 }
7183
7184 // Tests to ensure that the alternative, verbose spellings of
7185 // some of the macros work. We don't test them thoroughly as that
7186 // would be quite involved. Since their implementations are
7187 // straightforward, and they are rarely used, we'll just rely on the
7188 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7189 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
7190 GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
7191
7192 // GTEST_FAIL is the same as FAIL.
7193 EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7194 "An expected failure");
7195
7196 // GTEST_ASSERT_XY is the same as ASSERT_XY.
7197
7198 GTEST_ASSERT_EQ(0, 0);
7199 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7200 "An expected failure");
7201 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7202 "An expected failure");
7203
7204 GTEST_ASSERT_NE(0, 1);
7205 GTEST_ASSERT_NE(1, 0);
7206 EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7207 "An expected failure");
7208
7209 GTEST_ASSERT_LE(0, 0);
7210 GTEST_ASSERT_LE(0, 1);
7211 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7212 "An expected failure");
7213
7214 GTEST_ASSERT_LT(0, 1);
7215 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7216 "An expected failure");
7217 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7218 "An expected failure");
7219
7220 GTEST_ASSERT_GE(0, 0);
7221 GTEST_ASSERT_GE(1, 0);
7222 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7223 "An expected failure");
7224
7225 GTEST_ASSERT_GT(1, 0);
7226 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7227 "An expected failure");
7228 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7229 "An expected failure");
7230 }
7231
7232 // Tests for internal utilities necessary for implementation of the universal
7233 // printing.
7234
7235 class ConversionHelperBase {};
7236 class ConversionHelperDerived : public ConversionHelperBase {};
7237
7238 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7239 std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7240 std::string ShortDebugString() const { return ""; }
7241 };
7242
7243 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7244
7245 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7246 std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7247 int ShortDebugString() const { return 1; }
7248 };
7249
7250 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7251 std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7252 std::string ShortDebugString() const { return ""; }
7253 };
7254
7255 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7256 std::string DebugString() { return ""; }
7257 };
7258
7259 struct IncompleteType;
7260
7261 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7262 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7263 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7264 static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7265 "const_true");
7266 static_assert(
7267 HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7268 "const_true");
7269 static_assert(HasDebugStringAndShortDebugString<
7270 const InheritsDebugStringMethods>::value,
7271 "const_true");
7272 static_assert(
7273 !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7274 "const_false");
7275 static_assert(
7276 !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7277 "const_false");
7278 static_assert(
7279 !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7280 "const_false");
7281 static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7282 "const_false");
7283 static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7284 }
7285
7286 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7287 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7288 TEST(HasDebugStringAndShortDebugStringTest,
7289 ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7290 EXPECT_TRUE(
7291 HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7292 }
7293
7294 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7295 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7296 TEST(HasDebugStringAndShortDebugStringTest,
7297 ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7298 EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7299 EXPECT_FALSE(
7300 HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7301 }
7302
7303 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7304
7305 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7306 void TestGTestRemoveReferenceAndConst() {
7307 static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7308 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7309 }
7310
TEST(RemoveReferenceToConstTest,Works)7311 TEST(RemoveReferenceToConstTest, Works) {
7312 TestGTestRemoveReferenceAndConst<int, int>();
7313 TestGTestRemoveReferenceAndConst<double, double&>();
7314 TestGTestRemoveReferenceAndConst<char, const char>();
7315 TestGTestRemoveReferenceAndConst<char, const char&>();
7316 TestGTestRemoveReferenceAndConst<const char*, const char*>();
7317 }
7318
7319 // Tests GTEST_REFERENCE_TO_CONST_.
7320
7321 template <typename T1, typename T2>
TestGTestReferenceToConst()7322 void TestGTestReferenceToConst() {
7323 static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7324 "GTEST_REFERENCE_TO_CONST_ failed.");
7325 }
7326
TEST(GTestReferenceToConstTest,Works)7327 TEST(GTestReferenceToConstTest, Works) {
7328 TestGTestReferenceToConst<const char&, char>();
7329 TestGTestReferenceToConst<const int&, const int>();
7330 TestGTestReferenceToConst<const double&, double>();
7331 TestGTestReferenceToConst<const std::string&, const std::string&>();
7332 }
7333
7334 // Tests IsContainerTest.
7335
7336 class NonContainer {};
7337
TEST(IsContainerTestTest,WorksForNonContainer)7338 TEST(IsContainerTestTest, WorksForNonContainer) {
7339 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7340 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7341 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7342 }
7343
TEST(IsContainerTestTest,WorksForContainer)7344 TEST(IsContainerTestTest, WorksForContainer) {
7345 EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7346 EXPECT_EQ(sizeof(IsContainer),
7347 sizeof(IsContainerTest<std::map<int, double>>(0)));
7348 }
7349
7350 struct ConstOnlyContainerWithPointerIterator {
7351 using const_iterator = int*;
7352 const_iterator begin() const;
7353 const_iterator end() const;
7354 };
7355
7356 struct ConstOnlyContainerWithClassIterator {
7357 struct const_iterator {
7358 const int& operator*() const;
7359 const_iterator& operator++(/* pre-increment */);
7360 };
7361 const_iterator begin() const;
7362 const_iterator end() const;
7363 };
7364
TEST(IsContainerTestTest,ConstOnlyContainer)7365 TEST(IsContainerTestTest, ConstOnlyContainer) {
7366 EXPECT_EQ(sizeof(IsContainer),
7367 sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7368 EXPECT_EQ(sizeof(IsContainer),
7369 sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7370 }
7371
7372 // Tests IsHashTable.
7373 struct AHashTable {
7374 typedef void hasher;
7375 };
7376 struct NotReallyAHashTable {
7377 typedef void hasher;
7378 typedef void reverse_iterator;
7379 };
TEST(IsHashTable,Basic)7380 TEST(IsHashTable, Basic) {
7381 EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7382 EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7383 EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7384 EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7385 }
7386
7387 // Tests ArrayEq().
7388
TEST(ArrayEqTest,WorksForDegeneratedArrays)7389 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7390 EXPECT_TRUE(ArrayEq(5, 5L));
7391 EXPECT_FALSE(ArrayEq('a', 0));
7392 }
7393
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7394 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7395 // Note that a and b are distinct but compatible types.
7396 const int a[] = {0, 1};
7397 long b[] = {0, 1};
7398 EXPECT_TRUE(ArrayEq(a, b));
7399 EXPECT_TRUE(ArrayEq(a, 2, b));
7400
7401 b[0] = 2;
7402 EXPECT_FALSE(ArrayEq(a, b));
7403 EXPECT_FALSE(ArrayEq(a, 1, b));
7404 }
7405
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7406 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7407 const char a[][3] = {"hi", "lo"};
7408 const char b[][3] = {"hi", "lo"};
7409 const char c[][3] = {"hi", "li"};
7410
7411 EXPECT_TRUE(ArrayEq(a, b));
7412 EXPECT_TRUE(ArrayEq(a, 2, b));
7413
7414 EXPECT_FALSE(ArrayEq(a, c));
7415 EXPECT_FALSE(ArrayEq(a, 2, c));
7416 }
7417
7418 // Tests ArrayAwareFind().
7419
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7420 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7421 const char a[] = "hello";
7422 EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7423 EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7424 }
7425
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7426 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7427 int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7428 const int b[2] = {2, 3};
7429 EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7430
7431 const int c[2] = {6, 7};
7432 EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7433 }
7434
7435 // Tests CopyArray().
7436
TEST(CopyArrayTest,WorksForDegeneratedArrays)7437 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7438 int n = 0;
7439 CopyArray('a', &n);
7440 EXPECT_EQ('a', n);
7441 }
7442
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7443 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7444 const char a[3] = "hi";
7445 int b[3];
7446 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7447 CopyArray(a, &b);
7448 EXPECT_TRUE(ArrayEq(a, b));
7449 #endif
7450
7451 int c[3];
7452 CopyArray(a, 3, c);
7453 EXPECT_TRUE(ArrayEq(a, c));
7454 }
7455
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7456 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7457 const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7458 int b[2][3];
7459 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7460 CopyArray(a, &b);
7461 EXPECT_TRUE(ArrayEq(a, b));
7462 #endif
7463
7464 int c[2][3];
7465 CopyArray(a, 2, c);
7466 EXPECT_TRUE(ArrayEq(a, c));
7467 }
7468
7469 // Tests NativeArray.
7470
TEST(NativeArrayTest,ConstructorFromArrayWorks)7471 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7472 const int a[3] = {0, 1, 2};
7473 NativeArray<int> na(a, 3, RelationToSourceReference());
7474 EXPECT_EQ(3U, na.size());
7475 EXPECT_EQ(a, na.begin());
7476 }
7477
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7478 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7479 typedef int Array[2];
7480 Array* a = new Array[1];
7481 (*a)[0] = 0;
7482 (*a)[1] = 1;
7483 NativeArray<int> na(*a, 2, RelationToSourceCopy());
7484 EXPECT_NE(*a, na.begin());
7485 delete[] a;
7486 EXPECT_EQ(0, na.begin()[0]);
7487 EXPECT_EQ(1, na.begin()[1]);
7488
7489 // We rely on the heap checker to verify that na deletes the copy of
7490 // array.
7491 }
7492
TEST(NativeArrayTest,TypeMembersAreCorrect)7493 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7494 StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7495 StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7496
7497 StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7498 StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7499 }
7500
TEST(NativeArrayTest,MethodsWork)7501 TEST(NativeArrayTest, MethodsWork) {
7502 const int a[3] = {0, 1, 2};
7503 NativeArray<int> na(a, 3, RelationToSourceCopy());
7504 ASSERT_EQ(3U, na.size());
7505 EXPECT_EQ(3, na.end() - na.begin());
7506
7507 NativeArray<int>::const_iterator it = na.begin();
7508 EXPECT_EQ(0, *it);
7509 ++it;
7510 EXPECT_EQ(1, *it);
7511 it++;
7512 EXPECT_EQ(2, *it);
7513 ++it;
7514 EXPECT_EQ(na.end(), it);
7515
7516 EXPECT_TRUE(na == na);
7517
7518 NativeArray<int> na2(a, 3, RelationToSourceReference());
7519 EXPECT_TRUE(na == na2);
7520
7521 const int b1[3] = {0, 1, 1};
7522 const int b2[4] = {0, 1, 2, 3};
7523 EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7524 EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7525 }
7526
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7527 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7528 const char a[2][3] = {"hi", "lo"};
7529 NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7530 ASSERT_EQ(2U, na.size());
7531 EXPECT_EQ(a, na.begin());
7532 }
7533
7534 // ElemFromList
TEST(ElemFromList,Basic)7535 TEST(ElemFromList, Basic) {
7536 using testing::internal::ElemFromList;
7537 EXPECT_TRUE(
7538 (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7539 EXPECT_TRUE(
7540 (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7541 EXPECT_TRUE(
7542 (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7543 EXPECT_TRUE((
7544 std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7545 char, int, int, int, int>::type>::value));
7546 }
7547
7548 // FlatTuple
TEST(FlatTuple,Basic)7549 TEST(FlatTuple, Basic) {
7550 using testing::internal::FlatTuple;
7551
7552 FlatTuple<int, double, const char*> tuple = {};
7553 EXPECT_EQ(0, tuple.Get<0>());
7554 EXPECT_EQ(0.0, tuple.Get<1>());
7555 EXPECT_EQ(nullptr, tuple.Get<2>());
7556
7557 tuple = FlatTuple<int, double, const char*>(
7558 testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7559 EXPECT_EQ(7, tuple.Get<0>());
7560 EXPECT_EQ(3.2, tuple.Get<1>());
7561 EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7562
7563 tuple.Get<1>() = 5.1;
7564 EXPECT_EQ(5.1, tuple.Get<1>());
7565 }
7566
7567 namespace {
AddIntToString(int i,const std::string & s)7568 std::string AddIntToString(int i, const std::string& s) {
7569 return s + std::to_string(i);
7570 }
7571 } // namespace
7572
TEST(FlatTuple,Apply)7573 TEST(FlatTuple, Apply) {
7574 using testing::internal::FlatTuple;
7575
7576 FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7577 5, "Hello"};
7578
7579 // Lambda.
7580 EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7581 return i == static_cast<int>(s.size());
7582 }));
7583
7584 // Function.
7585 EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7586
7587 // Mutating operations.
7588 tuple.Apply([](int& i, std::string& s) {
7589 ++i;
7590 s += s;
7591 });
7592 EXPECT_EQ(tuple.Get<0>(), 6);
7593 EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7594 }
7595
7596 struct ConstructionCounting {
ConstructionCountingConstructionCounting7597 ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7598 ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7599 ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7600 ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7601 ConstructionCounting& operator=(const ConstructionCounting&) {
7602 ++copy_assignment_calls;
7603 return *this;
7604 }
operator =ConstructionCounting7605 ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7606 ++move_assignment_calls;
7607 return *this;
7608 }
7609
ResetConstructionCounting7610 static void Reset() {
7611 default_ctor_calls = 0;
7612 dtor_calls = 0;
7613 copy_ctor_calls = 0;
7614 move_ctor_calls = 0;
7615 copy_assignment_calls = 0;
7616 move_assignment_calls = 0;
7617 }
7618
7619 static int default_ctor_calls;
7620 static int dtor_calls;
7621 static int copy_ctor_calls;
7622 static int move_ctor_calls;
7623 static int copy_assignment_calls;
7624 static int move_assignment_calls;
7625 };
7626
7627 int ConstructionCounting::default_ctor_calls = 0;
7628 int ConstructionCounting::dtor_calls = 0;
7629 int ConstructionCounting::copy_ctor_calls = 0;
7630 int ConstructionCounting::move_ctor_calls = 0;
7631 int ConstructionCounting::copy_assignment_calls = 0;
7632 int ConstructionCounting::move_assignment_calls = 0;
7633
TEST(FlatTuple,ConstructorCalls)7634 TEST(FlatTuple, ConstructorCalls) {
7635 using testing::internal::FlatTuple;
7636
7637 // Default construction.
7638 ConstructionCounting::Reset();
7639 { FlatTuple<ConstructionCounting> tuple; }
7640 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7641 EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7642 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7643 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7644 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7645 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7646
7647 // Copy construction.
7648 ConstructionCounting::Reset();
7649 {
7650 ConstructionCounting elem;
7651 FlatTuple<ConstructionCounting> tuple{
7652 testing::internal::FlatTupleConstructTag{}, elem};
7653 }
7654 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7655 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7656 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7657 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7658 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7659 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7660
7661 // Move construction.
7662 ConstructionCounting::Reset();
7663 {
7664 FlatTuple<ConstructionCounting> tuple{
7665 testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7666 }
7667 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7668 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7669 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7670 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7671 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7672 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7673
7674 // Copy assignment.
7675 // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7676 // elements
7677 ConstructionCounting::Reset();
7678 {
7679 FlatTuple<ConstructionCounting> tuple;
7680 ConstructionCounting elem;
7681 tuple.Get<0>() = elem;
7682 }
7683 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7684 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7685 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7686 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7687 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7688 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7689
7690 // Move assignment.
7691 // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7692 // elements
7693 ConstructionCounting::Reset();
7694 {
7695 FlatTuple<ConstructionCounting> tuple;
7696 tuple.Get<0>() = ConstructionCounting{};
7697 }
7698 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7699 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7700 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7701 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7702 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7703 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7704
7705 ConstructionCounting::Reset();
7706 }
7707
TEST(FlatTuple,ManyTypes)7708 TEST(FlatTuple, ManyTypes) {
7709 using testing::internal::FlatTuple;
7710
7711 // Instantiate FlatTuple with 257 ints.
7712 // Tests show that we can do it with thousands of elements, but very long
7713 // compile times makes it unusuitable for this test.
7714 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7715 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7716 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7717 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7718 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7719 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7720
7721 // Let's make sure that we can have a very long list of types without blowing
7722 // up the template instantiation depth.
7723 FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7724
7725 tuple.Get<0>() = 7;
7726 tuple.Get<99>() = 17;
7727 tuple.Get<256>() = 1000;
7728 EXPECT_EQ(7, tuple.Get<0>());
7729 EXPECT_EQ(17, tuple.Get<99>());
7730 EXPECT_EQ(1000, tuple.Get<256>());
7731 }
7732
7733 // Tests SkipPrefix().
7734
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7735 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7736 const char* const str = "hello";
7737
7738 const char* p = str;
7739 EXPECT_TRUE(SkipPrefix("", &p));
7740 EXPECT_EQ(str, p);
7741
7742 p = str;
7743 EXPECT_TRUE(SkipPrefix("hell", &p));
7744 EXPECT_EQ(str + 4, p);
7745 }
7746
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7747 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7748 const char* const str = "world";
7749
7750 const char* p = str;
7751 EXPECT_FALSE(SkipPrefix("W", &p));
7752 EXPECT_EQ(str, p);
7753
7754 p = str;
7755 EXPECT_FALSE(SkipPrefix("world!", &p));
7756 EXPECT_EQ(str, p);
7757 }
7758
7759 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7760 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7761 const testing::TestResult& test_result =
7762 testing::UnitTest::GetInstance()->ad_hoc_test_result();
7763 EXPECT_FALSE(test_result.Failed());
7764 }
7765
7766 class DynamicUnitTestFixture : public testing::Test {};
7767
7768 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7769 void TestBody() override { EXPECT_TRUE(true); }
7770 };
7771
7772 auto* dynamic_test = testing::RegisterTest(
7773 "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon19f4cde20a02() 7774 __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7775
TEST(RegisterTest,WasRegistered)7776 TEST(RegisterTest, WasRegistered) {
7777 const auto& unittest = testing::UnitTest::GetInstance();
7778 for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7779 auto* tests = unittest->GetTestSuite(i);
7780 if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7781 for (int j = 0; j < tests->total_test_count(); ++j) {
7782 if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7783 // Found it.
7784 EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7785 EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7786 return;
7787 }
7788 }
7789
7790 FAIL() << "Didn't find the test!";
7791 }
7792
7793 // Test that the pattern globbing algorithm is linear. If not, this test should
7794 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7795 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7796 std::string name(100, 'a'); // Construct the string (a^100)b
7797 name.push_back('b');
7798
7799 std::string pattern; // Construct the string ((a*)^100)b
7800 for (int i = 0; i < 100; ++i) {
7801 pattern.append("a*");
7802 }
7803 pattern.push_back('b');
7804
7805 EXPECT_TRUE(
7806 testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7807 }
7808
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7809 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7810 const std::string name = "aaaa";
7811 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7812 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7813 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7814 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7815 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7816 }
7817
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7818 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7819 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7820 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7821 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7822 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7823 }
7824