1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/stdarg.h>
48 #include <sys/taskqueue.h>
49
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71
72
73 /* SDT Probes */
74 SDT_PROBE_DEFINE1(cam, , xpt, action, "union ccb *");
75 SDT_PROBE_DEFINE1(cam, , xpt, done, "union ccb *");
76 SDT_PROBE_DEFINE4(cam, , xpt, async__cb, "void *", "uint32_t",
77 "struct cam_path *", "void *");
78
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN 512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN 128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87
88 /*
89 * This is the maximum number of high powered commands (e.g. start unit)
90 * that can be outstanding at a particular time.
91 */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER 4
94 #endif
95
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101
102 struct xpt_softc {
103 uint32_t xpt_generation;
104
105 /* number of high powered commands that can go through right now */
106 struct mtx xpt_highpower_lock;
107 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
108 int num_highpower;
109
110 /* queue for handling async rescan requests. */
111 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
112 int buses_to_config;
113 int buses_config_done;
114
115 /*
116 * Registered buses
117 *
118 * N.B., "busses" is an archaic spelling of "buses". In new code
119 * "buses" is preferred.
120 */
121 TAILQ_HEAD(,cam_eb) xpt_busses;
122 u_int bus_generation;
123
124 int boot_delay;
125 struct callout boot_callout;
126 struct task boot_task;
127 struct root_hold_token xpt_rootmount;
128
129 struct mtx xpt_topo_lock;
130 struct taskqueue *xpt_taskq;
131 };
132
133 typedef enum {
134 DM_RET_COPY = 0x01,
135 DM_RET_FLAG_MASK = 0x0f,
136 DM_RET_NONE = 0x00,
137 DM_RET_STOP = 0x10,
138 DM_RET_DESCEND = 0x20,
139 DM_RET_ERROR = 0x30,
140 DM_RET_ACTION_MASK = 0xf0
141 } dev_match_ret;
142
143 typedef enum {
144 XPT_DEPTH_BUS,
145 XPT_DEPTH_TARGET,
146 XPT_DEPTH_DEVICE,
147 XPT_DEPTH_PERIPH
148 } xpt_traverse_depth;
149
150 struct xpt_traverse_config {
151 xpt_traverse_depth depth;
152 void *tr_func;
153 void *tr_arg;
154 };
155
156 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
157 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
158 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
159 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
160 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
161
162 /* Transport layer configuration information */
163 static struct xpt_softc xsoftc;
164
165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
166
167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
168 &xsoftc.boot_delay, 0, "Bus registration wait time");
169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
170 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
171
172 struct cam_doneq {
173 struct mtx_padalign cam_doneq_mtx;
174 STAILQ_HEAD(, ccb_hdr) cam_doneq;
175 int cam_doneq_sleep;
176 };
177
178 static struct cam_doneq cam_doneqs[MAXCPU];
179 static u_int __read_mostly cam_num_doneqs;
180 static struct proc *cam_proc;
181 static struct cam_doneq cam_async;
182
183 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
184 &cam_num_doneqs, 0, "Number of completion queues/threads");
185
186 struct cam_periph *xpt_periph;
187
188 static periph_init_t xpt_periph_init;
189
190 static struct periph_driver xpt_driver =
191 {
192 xpt_periph_init, "xpt",
193 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
194 CAM_PERIPH_DRV_EARLY
195 };
196
197 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
198
199 static d_open_t xptopen;
200 static d_close_t xptclose;
201 static d_ioctl_t xptioctl;
202 static d_ioctl_t xptdoioctl;
203
204 static struct cdevsw xpt_cdevsw = {
205 .d_version = D_VERSION,
206 .d_flags = 0,
207 .d_open = xptopen,
208 .d_close = xptclose,
209 .d_ioctl = xptioctl,
210 .d_name = "xpt",
211 };
212
213 /* Storage for debugging datastructures */
214 struct cam_path *cam_dpath;
215 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
216 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
217 &cam_dflags, 0, "Enabled debug flags");
218 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
219 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
220 &cam_debug_delay, 0, "Delay in us after each debug message");
221
222 /* Our boot-time initialization hook */
223 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
224
225 static moduledata_t cam_moduledata = {
226 "cam",
227 cam_module_event_handler,
228 NULL
229 };
230
231 static int xpt_init(void *);
232
233 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
234 MODULE_VERSION(cam, 1);
235
236 static void xpt_async_bcast(struct async_list *async_head,
237 uint32_t async_code,
238 struct cam_path *path,
239 void *async_arg);
240 static path_id_t xptnextfreepathid(void);
241 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
242 static union ccb *xpt_get_ccb(struct cam_periph *periph);
243 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
244 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
245 static void xpt_run_allocq_task(void *context, int pending);
246 static void xpt_run_devq(struct cam_devq *devq);
247 static callout_func_t xpt_release_devq_timeout;
248 static void xpt_acquire_bus(struct cam_eb *bus);
249 static void xpt_release_bus(struct cam_eb *bus);
250 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
251 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
252 int run_queue);
253 static struct cam_et*
254 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
255 static void xpt_acquire_target(struct cam_et *target);
256 static void xpt_release_target(struct cam_et *target);
257 static struct cam_eb*
258 xpt_find_bus(path_id_t path_id);
259 static struct cam_et*
260 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
261 static struct cam_ed*
262 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
263 static void xpt_config(void *arg);
264 static void xpt_hold_boot_locked(void);
265 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
266 uint32_t new_priority);
267 static xpt_devicefunc_t xptpassannouncefunc;
268 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
269 static void xptpoll(struct cam_sim *sim);
270 static void camisr_runqueue(void);
271 static void xpt_done_process(struct ccb_hdr *ccb_h);
272 static void xpt_done_td(void *);
273 static void xpt_async_td(void *);
274 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
275 u_int num_patterns, struct cam_eb *bus);
276 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
277 u_int num_patterns,
278 struct cam_ed *device);
279 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
280 u_int num_patterns,
281 struct cam_periph *periph);
282 static xpt_busfunc_t xptedtbusfunc;
283 static xpt_targetfunc_t xptedttargetfunc;
284 static xpt_devicefunc_t xptedtdevicefunc;
285 static xpt_periphfunc_t xptedtperiphfunc;
286 static xpt_pdrvfunc_t xptplistpdrvfunc;
287 static xpt_periphfunc_t xptplistperiphfunc;
288 static int xptedtmatch(struct ccb_dev_match *cdm);
289 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
290 static int xptbustraverse(struct cam_eb *start_bus,
291 xpt_busfunc_t *tr_func, void *arg);
292 static int xpttargettraverse(struct cam_eb *bus,
293 struct cam_et *start_target,
294 xpt_targetfunc_t *tr_func, void *arg);
295 static int xptdevicetraverse(struct cam_et *target,
296 struct cam_ed *start_device,
297 xpt_devicefunc_t *tr_func, void *arg);
298 static int xptperiphtraverse(struct cam_ed *device,
299 struct cam_periph *start_periph,
300 xpt_periphfunc_t *tr_func, void *arg);
301 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
302 xpt_pdrvfunc_t *tr_func, void *arg);
303 static int xptpdperiphtraverse(struct periph_driver **pdrv,
304 struct cam_periph *start_periph,
305 xpt_periphfunc_t *tr_func,
306 void *arg);
307 static xpt_busfunc_t xptdefbusfunc;
308 static xpt_targetfunc_t xptdeftargetfunc;
309 static xpt_devicefunc_t xptdefdevicefunc;
310 static xpt_periphfunc_t xptdefperiphfunc;
311 static void xpt_finishconfig_task(void *context, int pending);
312 static void xpt_dev_async_default(uint32_t async_code,
313 struct cam_eb *bus,
314 struct cam_et *target,
315 struct cam_ed *device,
316 void *async_arg);
317 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
318 struct cam_et *target,
319 lun_id_t lun_id);
320 static xpt_devicefunc_t xptsetasyncfunc;
321 static xpt_busfunc_t xptsetasyncbusfunc;
322 static cam_status xptregister(struct cam_periph *periph,
323 void *arg);
324
325 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)326 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
327 {
328 int retval;
329
330 mtx_assert(&devq->send_mtx, MA_OWNED);
331 if ((dev->ccbq.queue.entries > 0) &&
332 (dev->ccbq.dev_openings > 0) &&
333 (dev->ccbq.queue.qfrozen_cnt == 0)) {
334 /*
335 * The priority of a device waiting for controller
336 * resources is that of the highest priority CCB
337 * enqueued.
338 */
339 retval =
340 xpt_schedule_dev(&devq->send_queue,
341 &dev->devq_entry,
342 CAMQ_GET_PRIO(&dev->ccbq.queue));
343 } else {
344 retval = 0;
345 }
346 return (retval);
347 }
348
349 static __inline int
device_is_queued(struct cam_ed * device)350 device_is_queued(struct cam_ed *device)
351 {
352 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
353 }
354
355 static void
xpt_periph_init(void)356 xpt_periph_init(void)
357 {
358 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
359 }
360
361 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)362 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
363 {
364
365 /*
366 * Only allow read-write access.
367 */
368 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
369 return(EPERM);
370
371 /*
372 * We don't allow nonblocking access.
373 */
374 if ((flags & O_NONBLOCK) != 0) {
375 printf("%s: can't do nonblocking access\n", devtoname(dev));
376 return(ENODEV);
377 }
378
379 return(0);
380 }
381
382 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)383 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
384 {
385
386 return(0);
387 }
388
389 /*
390 * Don't automatically grab the xpt softc lock here even though this is going
391 * through the xpt device. The xpt device is really just a back door for
392 * accessing other devices and SIMs, so the right thing to do is to grab
393 * the appropriate SIM lock once the bus/SIM is located.
394 */
395 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)396 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
397 {
398 int error;
399
400 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
401 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
402 }
403 return (error);
404 }
405
406 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)407 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 int error;
410
411 error = 0;
412
413 switch(cmd) {
414 /*
415 * For the transport layer CAMIOCOMMAND ioctl, we really only want
416 * to accept CCB types that don't quite make sense to send through a
417 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
418 * in the CAM spec.
419 */
420 case CAMIOCOMMAND: {
421 union ccb *ccb;
422 union ccb *inccb;
423 struct cam_eb *bus;
424
425 inccb = (union ccb *)addr;
426 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
427 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
428 inccb->csio.bio = NULL;
429 #endif
430
431 if (inccb->ccb_h.flags & CAM_UNLOCKED)
432 return (EINVAL);
433
434 bus = xpt_find_bus(inccb->ccb_h.path_id);
435 if (bus == NULL)
436 return (EINVAL);
437
438 switch (inccb->ccb_h.func_code) {
439 case XPT_SCAN_BUS:
440 case XPT_RESET_BUS:
441 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
442 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
443 xpt_release_bus(bus);
444 return (EINVAL);
445 }
446 break;
447 case XPT_SCAN_TGT:
448 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
449 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
450 xpt_release_bus(bus);
451 return (EINVAL);
452 }
453 break;
454 default:
455 break;
456 }
457
458 switch(inccb->ccb_h.func_code) {
459 case XPT_SCAN_BUS:
460 case XPT_RESET_BUS:
461 case XPT_PATH_INQ:
462 case XPT_ENG_INQ:
463 case XPT_SCAN_LUN:
464 case XPT_SCAN_TGT:
465
466 ccb = xpt_alloc_ccb();
467
468 /*
469 * Create a path using the bus, target, and lun the
470 * user passed in.
471 */
472 if (xpt_create_path(&ccb->ccb_h.path, NULL,
473 inccb->ccb_h.path_id,
474 inccb->ccb_h.target_id,
475 inccb->ccb_h.target_lun) !=
476 CAM_REQ_CMP){
477 error = EINVAL;
478 xpt_free_ccb(ccb);
479 break;
480 }
481 /* Ensure all of our fields are correct */
482 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
483 inccb->ccb_h.pinfo.priority);
484 xpt_merge_ccb(ccb, inccb);
485 xpt_path_lock(ccb->ccb_h.path);
486 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
487 xpt_path_unlock(ccb->ccb_h.path);
488 bcopy(ccb, inccb, sizeof(union ccb));
489 xpt_free_path(ccb->ccb_h.path);
490 xpt_free_ccb(ccb);
491 break;
492
493 case XPT_DEBUG: {
494 union ccb ccb;
495
496 /*
497 * This is an immediate CCB, so it's okay to
498 * allocate it on the stack.
499 */
500 memset(&ccb, 0, sizeof(ccb));
501
502 /*
503 * Create a path using the bus, target, and lun the
504 * user passed in.
505 */
506 if (xpt_create_path(&ccb.ccb_h.path, NULL,
507 inccb->ccb_h.path_id,
508 inccb->ccb_h.target_id,
509 inccb->ccb_h.target_lun) !=
510 CAM_REQ_CMP){
511 error = EINVAL;
512 break;
513 }
514 /* Ensure all of our fields are correct */
515 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
516 inccb->ccb_h.pinfo.priority);
517 xpt_merge_ccb(&ccb, inccb);
518 xpt_action(&ccb);
519 bcopy(&ccb, inccb, sizeof(union ccb));
520 xpt_free_path(ccb.ccb_h.path);
521 break;
522 }
523 case XPT_DEV_MATCH: {
524 struct cam_periph_map_info mapinfo;
525 struct cam_path *old_path;
526
527 /*
528 * We can't deal with physical addresses for this
529 * type of transaction.
530 */
531 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
532 CAM_DATA_VADDR) {
533 error = EINVAL;
534 break;
535 }
536
537 /*
538 * Save this in case the caller had it set to
539 * something in particular.
540 */
541 old_path = inccb->ccb_h.path;
542
543 /*
544 * We really don't need a path for the matching
545 * code. The path is needed because of the
546 * debugging statements in xpt_action(). They
547 * assume that the CCB has a valid path.
548 */
549 inccb->ccb_h.path = xpt_periph->path;
550
551 bzero(&mapinfo, sizeof(mapinfo));
552
553 /*
554 * Map the pattern and match buffers into kernel
555 * virtual address space.
556 */
557 error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
558
559 if (error) {
560 inccb->ccb_h.path = old_path;
561 break;
562 }
563
564 /*
565 * This is an immediate CCB, we can send it on directly.
566 */
567 xpt_action(inccb);
568
569 /*
570 * Map the buffers back into user space.
571 */
572 error = cam_periph_unmapmem(inccb, &mapinfo);
573
574 inccb->ccb_h.path = old_path;
575 break;
576 }
577 default:
578 error = ENOTSUP;
579 break;
580 }
581 xpt_release_bus(bus);
582 break;
583 }
584 /*
585 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
586 * with the periphal driver name and unit name filled in. The other
587 * fields don't really matter as input. The passthrough driver name
588 * ("pass"), and unit number are passed back in the ccb. The current
589 * device generation number, and the index into the device peripheral
590 * driver list, and the status are also passed back. Note that
591 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
592 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
593 * (or rather should be) impossible for the device peripheral driver
594 * list to change since we look at the whole thing in one pass, and
595 * we do it with lock protection.
596 *
597 */
598 case CAMGETPASSTHRU: {
599 union ccb *ccb;
600 struct cam_periph *periph;
601 struct periph_driver **p_drv;
602 char *name;
603 u_int unit;
604 bool base_periph_found;
605
606 ccb = (union ccb *)addr;
607 unit = ccb->cgdl.unit_number;
608 name = ccb->cgdl.periph_name;
609 base_periph_found = false;
610 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
611 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
612 ccb->csio.bio = NULL;
613 #endif
614
615 /*
616 * Sanity check -- make sure we don't get a null peripheral
617 * driver name.
618 */
619 if (*ccb->cgdl.periph_name == '\0') {
620 error = EINVAL;
621 break;
622 }
623
624 /* Keep the list from changing while we traverse it */
625 xpt_lock_buses();
626
627 /* first find our driver in the list of drivers */
628 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
629 if (strcmp((*p_drv)->driver_name, name) == 0)
630 break;
631
632 if (*p_drv == NULL) {
633 xpt_unlock_buses();
634 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
635 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
636 *ccb->cgdl.periph_name = '\0';
637 ccb->cgdl.unit_number = 0;
638 error = ENOENT;
639 break;
640 }
641
642 /*
643 * Run through every peripheral instance of this driver
644 * and check to see whether it matches the unit passed
645 * in by the user. If it does, get out of the loops and
646 * find the passthrough driver associated with that
647 * peripheral driver.
648 */
649 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
650 periph = TAILQ_NEXT(periph, unit_links)) {
651 if (periph->unit_number == unit)
652 break;
653 }
654 /*
655 * If we found the peripheral driver that the user passed
656 * in, go through all of the peripheral drivers for that
657 * particular device and look for a passthrough driver.
658 */
659 if (periph != NULL) {
660 struct cam_ed *device;
661 int i;
662
663 base_periph_found = true;
664 device = periph->path->device;
665 for (i = 0, periph = SLIST_FIRST(&device->periphs);
666 periph != NULL;
667 periph = SLIST_NEXT(periph, periph_links), i++) {
668 /*
669 * Check to see whether we have a
670 * passthrough device or not.
671 */
672 if (strcmp(periph->periph_name, "pass") == 0) {
673 /*
674 * Fill in the getdevlist fields.
675 */
676 strlcpy(ccb->cgdl.periph_name,
677 periph->periph_name,
678 sizeof(ccb->cgdl.periph_name));
679 ccb->cgdl.unit_number =
680 periph->unit_number;
681 if (SLIST_NEXT(periph, periph_links))
682 ccb->cgdl.status =
683 CAM_GDEVLIST_MORE_DEVS;
684 else
685 ccb->cgdl.status =
686 CAM_GDEVLIST_LAST_DEVICE;
687 ccb->cgdl.generation =
688 device->generation;
689 ccb->cgdl.index = i;
690 /*
691 * Fill in some CCB header fields
692 * that the user may want.
693 */
694 ccb->ccb_h.path_id =
695 periph->path->bus->path_id;
696 ccb->ccb_h.target_id =
697 periph->path->target->target_id;
698 ccb->ccb_h.target_lun =
699 periph->path->device->lun_id;
700 ccb->ccb_h.status = CAM_REQ_CMP;
701 break;
702 }
703 }
704 }
705
706 /*
707 * If the periph is null here, one of two things has
708 * happened. The first possibility is that we couldn't
709 * find the unit number of the particular peripheral driver
710 * that the user is asking about. e.g. the user asks for
711 * the passthrough driver for "da11". We find the list of
712 * "da" peripherals all right, but there is no unit 11.
713 * The other possibility is that we went through the list
714 * of peripheral drivers attached to the device structure,
715 * but didn't find one with the name "pass". Either way,
716 * we return ENOENT, since we couldn't find something.
717 */
718 if (periph == NULL) {
719 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
720 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
721 *ccb->cgdl.periph_name = '\0';
722 ccb->cgdl.unit_number = 0;
723 error = ENOENT;
724 /*
725 * It is unfortunate that this is even necessary,
726 * but there are many, many clueless users out there.
727 * If this is true, the user is looking for the
728 * passthrough driver, but doesn't have one in his
729 * kernel.
730 */
731 if (base_periph_found) {
732 printf(
733 "xptioctl: pass driver is not in the kernel\n"
734 "xptioctl: put \"device pass\" in your kernel config file\n");
735 }
736 }
737 xpt_unlock_buses();
738 break;
739 }
740 default:
741 error = ENOTTY;
742 break;
743 }
744
745 return(error);
746 }
747
748 static int
cam_module_event_handler(module_t mod,int what,void * arg)749 cam_module_event_handler(module_t mod, int what, void *arg)
750 {
751 int error;
752
753 switch (what) {
754 case MOD_LOAD:
755 if ((error = xpt_init(NULL)) != 0)
756 return (error);
757 break;
758 case MOD_UNLOAD:
759 return EBUSY;
760 default:
761 return EOPNOTSUPP;
762 }
763
764 return 0;
765 }
766
767 static struct xpt_proto *
xpt_proto_find(cam_proto proto)768 xpt_proto_find(cam_proto proto)
769 {
770 struct xpt_proto **pp;
771
772 SET_FOREACH(pp, cam_xpt_proto_set) {
773 if ((*pp)->proto == proto)
774 return *pp;
775 }
776
777 return NULL;
778 }
779
780 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)781 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
782 {
783
784 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
785 xpt_free_path(done_ccb->ccb_h.path);
786 xpt_free_ccb(done_ccb);
787 } else {
788 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
789 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
790 }
791 xpt_release_boot();
792 }
793
794 /* thread to handle bus rescans */
795 static void
xpt_scanner_thread(void * dummy)796 xpt_scanner_thread(void *dummy)
797 {
798 union ccb *ccb;
799 struct mtx *mtx;
800 struct cam_ed *device;
801
802 xpt_lock_buses();
803 for (;;) {
804 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
805 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
806 "-", 0);
807 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
808 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
809 xpt_unlock_buses();
810
811 /*
812 * We need to lock the device's mutex which we use as
813 * the path mutex. We can't do it directly because the
814 * cam_path in the ccb may wind up going away because
815 * the path lock may be dropped and the path retired in
816 * the completion callback. We do this directly to keep
817 * the reference counts in cam_path sane. We also have
818 * to copy the device pointer because ccb_h.path may
819 * be freed in the callback.
820 */
821 mtx = xpt_path_mtx(ccb->ccb_h.path);
822 device = ccb->ccb_h.path->device;
823 xpt_acquire_device(device);
824 mtx_lock(mtx);
825 xpt_action(ccb);
826 mtx_unlock(mtx);
827 xpt_release_device(device);
828
829 xpt_lock_buses();
830 }
831 }
832 }
833
834 void
xpt_rescan(union ccb * ccb)835 xpt_rescan(union ccb *ccb)
836 {
837 struct ccb_hdr *hdr;
838
839 /* Prepare request */
840 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
841 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
842 ccb->ccb_h.func_code = XPT_SCAN_BUS;
843 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
844 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
845 ccb->ccb_h.func_code = XPT_SCAN_TGT;
846 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
847 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
848 ccb->ccb_h.func_code = XPT_SCAN_LUN;
849 else {
850 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
851 xpt_free_path(ccb->ccb_h.path);
852 xpt_free_ccb(ccb);
853 return;
854 }
855 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
856 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
857 xpt_action_name(ccb->ccb_h.func_code)));
858
859 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
860 ccb->ccb_h.cbfcnp = xpt_rescan_done;
861 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
862 /* Don't make duplicate entries for the same paths. */
863 xpt_lock_buses();
864 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
865 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
866 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
867 wakeup(&xsoftc.ccb_scanq);
868 xpt_unlock_buses();
869 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
870 xpt_free_path(ccb->ccb_h.path);
871 xpt_free_ccb(ccb);
872 return;
873 }
874 }
875 }
876 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
877 xpt_hold_boot_locked();
878 wakeup(&xsoftc.ccb_scanq);
879 xpt_unlock_buses();
880 }
881
882 /* Functions accessed by the peripheral drivers */
883 static int
xpt_init(void * dummy)884 xpt_init(void *dummy)
885 {
886 struct cam_sim *xpt_sim;
887 struct cam_path *path;
888 struct cam_devq *devq;
889 cam_status status;
890 int error, i;
891
892 TAILQ_INIT(&xsoftc.xpt_busses);
893 TAILQ_INIT(&xsoftc.ccb_scanq);
894 STAILQ_INIT(&xsoftc.highpowerq);
895 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
896
897 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
898 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
899 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
900
901 #ifdef CAM_BOOT_DELAY
902 /*
903 * Override this value at compile time to assist our users
904 * who don't use loader to boot a kernel.
905 */
906 xsoftc.boot_delay = CAM_BOOT_DELAY;
907 #endif
908
909 /*
910 * The xpt layer is, itself, the equivalent of a SIM.
911 * Allow 16 ccbs in the ccb pool for it. This should
912 * give decent parallelism when we probe buses and
913 * perform other XPT functions.
914 */
915 devq = cam_simq_alloc(16);
916 if (devq == NULL)
917 return (ENOMEM);
918 xpt_sim = cam_sim_alloc(xptaction,
919 xptpoll,
920 "xpt",
921 /*softc*/NULL,
922 /*unit*/0,
923 /*mtx*/NULL,
924 /*max_dev_transactions*/0,
925 /*max_tagged_dev_transactions*/0,
926 devq);
927 if (xpt_sim == NULL)
928 return (ENOMEM);
929
930 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
931 printf(
932 "xpt_init: xpt_bus_register failed with errno %d, failing attach\n",
933 error);
934 return (EINVAL);
935 }
936
937 /*
938 * Looking at the XPT from the SIM layer, the XPT is
939 * the equivalent of a peripheral driver. Allocate
940 * a peripheral driver entry for us.
941 */
942 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
943 CAM_TARGET_WILDCARD,
944 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
945 printf(
946 "xpt_init: xpt_create_path failed with status %#x, failing attach\n",
947 status);
948 return (EINVAL);
949 }
950 xpt_path_lock(path);
951 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
952 path, NULL, 0, xpt_sim);
953 xpt_path_unlock(path);
954 xpt_free_path(path);
955
956 if (cam_num_doneqs < 1)
957 cam_num_doneqs = 1 + mp_ncpus / 6;
958 else if (cam_num_doneqs > MAXCPU)
959 cam_num_doneqs = MAXCPU;
960 for (i = 0; i < cam_num_doneqs; i++) {
961 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
962 MTX_DEF);
963 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
964 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
965 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
966 if (error != 0) {
967 cam_num_doneqs = i;
968 break;
969 }
970 }
971 if (cam_num_doneqs < 1) {
972 printf("xpt_init: Cannot init completion queues - failing attach\n");
973 return (ENOMEM);
974 }
975
976 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
977 STAILQ_INIT(&cam_async.cam_doneq);
978 if (kproc_kthread_add(xpt_async_td, &cam_async,
979 &cam_proc, NULL, 0, 0, "cam", "async") != 0) {
980 printf("xpt_init: Cannot init async thread - failing attach\n");
981 return (ENOMEM);
982 }
983
984 /*
985 * Register a callback for when interrupts are enabled.
986 */
987 config_intrhook_oneshot(xpt_config, NULL);
988
989 return (0);
990 }
991
992 static cam_status
xptregister(struct cam_periph * periph,void * arg)993 xptregister(struct cam_periph *periph, void *arg)
994 {
995 struct cam_sim *xpt_sim;
996
997 if (periph == NULL) {
998 printf("xptregister: periph was NULL!!\n");
999 return(CAM_REQ_CMP_ERR);
1000 }
1001
1002 xpt_sim = (struct cam_sim *)arg;
1003 xpt_sim->softc = periph;
1004 xpt_periph = periph;
1005 periph->softc = NULL;
1006
1007 return(CAM_REQ_CMP);
1008 }
1009
1010 int32_t
xpt_add_periph(struct cam_periph * periph)1011 xpt_add_periph(struct cam_periph *periph)
1012 {
1013 struct cam_ed *device;
1014 int32_t status;
1015
1016 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1017 device = periph->path->device;
1018 status = CAM_REQ_CMP;
1019 if (device != NULL) {
1020 mtx_lock(&device->target->bus->eb_mtx);
1021 device->generation++;
1022 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1023 mtx_unlock(&device->target->bus->eb_mtx);
1024 atomic_add_32(&xsoftc.xpt_generation, 1);
1025 }
1026
1027 return (status);
1028 }
1029
1030 void
xpt_remove_periph(struct cam_periph * periph)1031 xpt_remove_periph(struct cam_periph *periph)
1032 {
1033 struct cam_ed *device;
1034
1035 device = periph->path->device;
1036 if (device != NULL) {
1037 mtx_lock(&device->target->bus->eb_mtx);
1038 device->generation++;
1039 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1040 mtx_unlock(&device->target->bus->eb_mtx);
1041 atomic_add_32(&xsoftc.xpt_generation, 1);
1042 }
1043 }
1044
1045 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1046 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1047 {
1048 char buf[128];
1049 struct sbuf sb;
1050
1051 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1052 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1053 xpt_announce_periph_sbuf(periph, &sb, announce_string);
1054 (void)sbuf_finish(&sb);
1055 (void)sbuf_delete(&sb);
1056 }
1057
1058 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1059 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1060 char *announce_string)
1061 {
1062 struct cam_path *path = periph->path;
1063 struct xpt_proto *proto;
1064
1065 cam_periph_assert(periph, MA_OWNED);
1066 periph->flags |= CAM_PERIPH_ANNOUNCED;
1067
1068 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1069 periph->periph_name, periph->unit_number,
1070 path->bus->sim->sim_name,
1071 path->bus->sim->unit_number,
1072 path->bus->sim->bus_id,
1073 path->bus->path_id,
1074 path->target->target_id,
1075 (uintmax_t)path->device->lun_id);
1076 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1077 proto = xpt_proto_find(path->device->protocol);
1078 if (proto)
1079 proto->ops->announce_sbuf(path->device, sb);
1080 else
1081 sbuf_printf(sb, "Unknown protocol device %d\n",
1082 path->device->protocol);
1083 if (path->device->serial_num_len > 0) {
1084 /* Don't wrap the screen - print only the first 60 chars */
1085 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1086 periph->periph_name, periph->unit_number,
1087 path->device->serial_num);
1088 }
1089 /* Announce transport details. */
1090 path->bus->xport->ops->announce_sbuf(periph, sb);
1091 /* Announce command queueing. */
1092 if (path->device->inq_flags & SID_CmdQue
1093 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1094 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1095 periph->periph_name, periph->unit_number);
1096 }
1097 /* Announce caller's details if they've passed in. */
1098 if (announce_string != NULL)
1099 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1100 periph->unit_number, announce_string);
1101 }
1102
1103 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1104 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1105 {
1106 if (quirks != 0) {
1107 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1108 periph->unit_number, quirks, bit_string);
1109 }
1110 }
1111
1112 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1113 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1114 int quirks, char *bit_string)
1115 {
1116 if (quirks != 0) {
1117 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1118 periph->unit_number, quirks, bit_string);
1119 }
1120 }
1121
1122 void
xpt_denounce_periph(struct cam_periph * periph)1123 xpt_denounce_periph(struct cam_periph *periph)
1124 {
1125 char buf[128];
1126 struct sbuf sb;
1127
1128 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1129 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1130 xpt_denounce_periph_sbuf(periph, &sb);
1131 (void)sbuf_finish(&sb);
1132 (void)sbuf_delete(&sb);
1133 }
1134
1135 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1136 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1137 {
1138 struct cam_path *path = periph->path;
1139 struct xpt_proto *proto;
1140
1141 cam_periph_assert(periph, MA_OWNED);
1142
1143 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1144 periph->periph_name, periph->unit_number,
1145 path->bus->sim->sim_name,
1146 path->bus->sim->unit_number,
1147 path->bus->sim->bus_id,
1148 path->bus->path_id,
1149 path->target->target_id,
1150 (uintmax_t)path->device->lun_id);
1151 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1152 proto = xpt_proto_find(path->device->protocol);
1153 if (proto)
1154 proto->ops->denounce_sbuf(path->device, sb);
1155 else
1156 sbuf_printf(sb, "Unknown protocol device %d",
1157 path->device->protocol);
1158 if (path->device->serial_num_len > 0)
1159 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1160 sbuf_cat(sb, " detached\n");
1161 }
1162
1163 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1164 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1165 {
1166 int ret = -1, l, o;
1167 struct ccb_dev_advinfo cdai;
1168 struct scsi_vpd_device_id *did;
1169 struct scsi_vpd_id_descriptor *idd;
1170
1171 xpt_path_assert(path, MA_OWNED);
1172
1173 memset(&cdai, 0, sizeof(cdai));
1174 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1175 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1176 cdai.flags = CDAI_FLAG_NONE;
1177 cdai.bufsiz = len;
1178 cdai.buf = buf;
1179
1180 if (!strcmp(attr, "GEOM::ident"))
1181 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1182 else if (!strcmp(attr, "GEOM::physpath"))
1183 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1184 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1185 strcmp(attr, "GEOM::lunname") == 0) {
1186 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1187 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1188 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1189 if (cdai.buf == NULL) {
1190 ret = ENOMEM;
1191 goto out;
1192 }
1193 } else
1194 goto out;
1195
1196 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1197 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1198 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1199 if (cdai.provsiz == 0)
1200 goto out;
1201 switch(cdai.buftype) {
1202 case CDAI_TYPE_SCSI_DEVID:
1203 did = (struct scsi_vpd_device_id *)cdai.buf;
1204 if (strcmp(attr, "GEOM::lunid") == 0) {
1205 idd = scsi_get_devid(did, cdai.provsiz,
1206 scsi_devid_is_lun_naa);
1207 if (idd == NULL)
1208 idd = scsi_get_devid(did, cdai.provsiz,
1209 scsi_devid_is_lun_eui64);
1210 if (idd == NULL)
1211 idd = scsi_get_devid(did, cdai.provsiz,
1212 scsi_devid_is_lun_uuid);
1213 if (idd == NULL)
1214 idd = scsi_get_devid(did, cdai.provsiz,
1215 scsi_devid_is_lun_md5);
1216 } else
1217 idd = NULL;
1218
1219 if (idd == NULL)
1220 idd = scsi_get_devid(did, cdai.provsiz,
1221 scsi_devid_is_lun_t10);
1222 if (idd == NULL)
1223 idd = scsi_get_devid(did, cdai.provsiz,
1224 scsi_devid_is_lun_name);
1225 if (idd == NULL)
1226 break;
1227
1228 ret = 0;
1229 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1230 SVPD_ID_CODESET_ASCII) {
1231 if (idd->length < len) {
1232 for (l = 0; l < idd->length; l++)
1233 buf[l] = idd->identifier[l] ?
1234 idd->identifier[l] : ' ';
1235 buf[l] = 0;
1236 } else
1237 ret = EFAULT;
1238 break;
1239 }
1240 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1241 SVPD_ID_CODESET_UTF8) {
1242 l = strnlen(idd->identifier, idd->length);
1243 if (l < len) {
1244 bcopy(idd->identifier, buf, l);
1245 buf[l] = 0;
1246 } else
1247 ret = EFAULT;
1248 break;
1249 }
1250 if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1251 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1252 if ((idd->length - 2) * 2 + 4 >= len) {
1253 ret = EFAULT;
1254 break;
1255 }
1256 for (l = 2, o = 0; l < idd->length; l++) {
1257 if (l == 6 || l == 8 || l == 10 || l == 12)
1258 o += sprintf(buf + o, "-");
1259 o += sprintf(buf + o, "%02x",
1260 idd->identifier[l]);
1261 }
1262 break;
1263 }
1264 if (idd->length * 2 < len) {
1265 for (l = 0; l < idd->length; l++)
1266 sprintf(buf + l * 2, "%02x",
1267 idd->identifier[l]);
1268 } else
1269 ret = EFAULT;
1270 break;
1271 default:
1272 if (cdai.provsiz < len) {
1273 cdai.buf[cdai.provsiz] = 0;
1274 ret = 0;
1275 } else
1276 ret = EFAULT;
1277 break;
1278 }
1279
1280 out:
1281 if ((char *)cdai.buf != buf)
1282 free(cdai.buf, M_CAMXPT);
1283 return ret;
1284 }
1285
1286 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1287 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1288 struct cam_eb *bus)
1289 {
1290 dev_match_ret retval;
1291 u_int i;
1292
1293 retval = DM_RET_NONE;
1294
1295 /*
1296 * If we aren't given something to match against, that's an error.
1297 */
1298 if (bus == NULL)
1299 return(DM_RET_ERROR);
1300
1301 /*
1302 * If there are no match entries, then this bus matches no
1303 * matter what.
1304 */
1305 if ((patterns == NULL) || (num_patterns == 0))
1306 return(DM_RET_DESCEND | DM_RET_COPY);
1307
1308 for (i = 0; i < num_patterns; i++) {
1309 struct bus_match_pattern *cur_pattern;
1310 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1311 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1312
1313 /*
1314 * If the pattern in question isn't for a bus node, we
1315 * aren't interested. However, we do indicate to the
1316 * calling routine that we should continue descending the
1317 * tree, since the user wants to match against lower-level
1318 * EDT elements.
1319 */
1320 if (patterns[i].type == DEV_MATCH_DEVICE &&
1321 (dp->flags & DEV_MATCH_PATH) != 0 &&
1322 dp->path_id != bus->path_id)
1323 continue;
1324 if (patterns[i].type == DEV_MATCH_PERIPH &&
1325 (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1326 pp->path_id != bus->path_id)
1327 continue;
1328 if (patterns[i].type != DEV_MATCH_BUS) {
1329 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1330 retval |= DM_RET_DESCEND;
1331 continue;
1332 }
1333
1334 cur_pattern = &patterns[i].pattern.bus_pattern;
1335
1336 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1337 && (cur_pattern->path_id != bus->path_id))
1338 continue;
1339
1340 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1341 && (cur_pattern->bus_id != bus->sim->bus_id))
1342 continue;
1343
1344 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1345 && (cur_pattern->unit_number != bus->sim->unit_number))
1346 continue;
1347
1348 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1349 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1350 DEV_IDLEN) != 0))
1351 continue;
1352
1353 /*
1354 * If we get to this point, the user definitely wants
1355 * information on this bus. So tell the caller to copy the
1356 * data out.
1357 */
1358 retval |= DM_RET_COPY;
1359
1360 /*
1361 * If the return action has been set to descend, then we
1362 * know that we've already seen a non-bus matching
1363 * expression, therefore we need to further descend the tree.
1364 * This won't change by continuing around the loop, so we
1365 * go ahead and return. If we haven't seen a non-bus
1366 * matching expression, we keep going around the loop until
1367 * we exhaust the matching expressions. We'll set the stop
1368 * flag once we fall out of the loop.
1369 */
1370 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1371 return(retval);
1372 }
1373
1374 /*
1375 * If the return action hasn't been set to descend yet, that means
1376 * we haven't seen anything other than bus matching patterns. So
1377 * tell the caller to stop descending the tree -- the user doesn't
1378 * want to match against lower level tree elements.
1379 */
1380 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1381 retval |= DM_RET_STOP;
1382
1383 return(retval);
1384 }
1385
1386 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1387 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1388 struct cam_ed *device)
1389 {
1390 dev_match_ret retval;
1391 u_int i;
1392
1393 retval = DM_RET_NONE;
1394
1395 /*
1396 * If we aren't given something to match against, that's an error.
1397 */
1398 if (device == NULL)
1399 return(DM_RET_ERROR);
1400
1401 /*
1402 * If there are no match entries, then this device matches no
1403 * matter what.
1404 */
1405 if ((patterns == NULL) || (num_patterns == 0))
1406 return(DM_RET_DESCEND | DM_RET_COPY);
1407
1408 for (i = 0; i < num_patterns; i++) {
1409 struct device_match_pattern *cur_pattern;
1410 struct scsi_vpd_device_id *device_id_page;
1411 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1412
1413 /*
1414 * If the pattern in question isn't for a device node, we
1415 * aren't interested.
1416 */
1417 if (patterns[i].type == DEV_MATCH_PERIPH &&
1418 (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1419 pp->target_id != device->target->target_id)
1420 continue;
1421 if (patterns[i].type == DEV_MATCH_PERIPH &&
1422 (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1423 pp->target_lun != device->lun_id)
1424 continue;
1425 if (patterns[i].type != DEV_MATCH_DEVICE) {
1426 if ((patterns[i].type == DEV_MATCH_PERIPH)
1427 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1428 retval |= DM_RET_DESCEND;
1429 continue;
1430 }
1431
1432 cur_pattern = &patterns[i].pattern.device_pattern;
1433
1434 /* Error out if mutually exclusive options are specified. */
1435 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1436 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1437 return(DM_RET_ERROR);
1438
1439 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1440 && (cur_pattern->path_id != device->target->bus->path_id))
1441 continue;
1442
1443 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1444 && (cur_pattern->target_id != device->target->target_id))
1445 continue;
1446
1447 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1448 && (cur_pattern->target_lun != device->lun_id))
1449 continue;
1450
1451 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1452 && (cam_quirkmatch((caddr_t)&device->inq_data,
1453 (caddr_t)&cur_pattern->data.inq_pat,
1454 1, sizeof(cur_pattern->data.inq_pat),
1455 scsi_static_inquiry_match) == NULL))
1456 continue;
1457
1458 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1459 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1460 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1461 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1462 device->device_id_len
1463 - SVPD_DEVICE_ID_HDR_LEN,
1464 cur_pattern->data.devid_pat.id,
1465 cur_pattern->data.devid_pat.id_len) != 0))
1466 continue;
1467
1468 /*
1469 * If we get to this point, the user definitely wants
1470 * information on this device. So tell the caller to copy
1471 * the data out.
1472 */
1473 retval |= DM_RET_COPY;
1474
1475 /*
1476 * If the return action has been set to descend, then we
1477 * know that we've already seen a peripheral matching
1478 * expression, therefore we need to further descend the tree.
1479 * This won't change by continuing around the loop, so we
1480 * go ahead and return. If we haven't seen a peripheral
1481 * matching expression, we keep going around the loop until
1482 * we exhaust the matching expressions. We'll set the stop
1483 * flag once we fall out of the loop.
1484 */
1485 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1486 return(retval);
1487 }
1488
1489 /*
1490 * If the return action hasn't been set to descend yet, that means
1491 * we haven't seen any peripheral matching patterns. So tell the
1492 * caller to stop descending the tree -- the user doesn't want to
1493 * match against lower level tree elements.
1494 */
1495 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1496 retval |= DM_RET_STOP;
1497
1498 return(retval);
1499 }
1500
1501 /*
1502 * Match a single peripheral against any number of match patterns.
1503 */
1504 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1505 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1506 struct cam_periph *periph)
1507 {
1508 dev_match_ret retval;
1509 u_int i;
1510
1511 /*
1512 * If we aren't given something to match against, that's an error.
1513 */
1514 if (periph == NULL)
1515 return(DM_RET_ERROR);
1516
1517 /*
1518 * If there are no match entries, then this peripheral matches no
1519 * matter what.
1520 */
1521 if ((patterns == NULL) || (num_patterns == 0))
1522 return(DM_RET_STOP | DM_RET_COPY);
1523
1524 /*
1525 * There aren't any nodes below a peripheral node, so there's no
1526 * reason to descend the tree any further.
1527 */
1528 retval = DM_RET_STOP;
1529
1530 for (i = 0; i < num_patterns; i++) {
1531 struct periph_match_pattern *cur_pattern;
1532
1533 /*
1534 * If the pattern in question isn't for a peripheral, we
1535 * aren't interested.
1536 */
1537 if (patterns[i].type != DEV_MATCH_PERIPH)
1538 continue;
1539
1540 cur_pattern = &patterns[i].pattern.periph_pattern;
1541
1542 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1543 && (cur_pattern->path_id != periph->path->bus->path_id))
1544 continue;
1545
1546 /*
1547 * For the target and lun id's, we have to make sure the
1548 * target and lun pointers aren't NULL. The xpt peripheral
1549 * has a wildcard target and device.
1550 */
1551 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1552 && ((periph->path->target == NULL)
1553 ||(cur_pattern->target_id != periph->path->target->target_id)))
1554 continue;
1555
1556 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1557 && ((periph->path->device == NULL)
1558 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1559 continue;
1560
1561 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1562 && (cur_pattern->unit_number != periph->unit_number))
1563 continue;
1564
1565 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1566 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1567 DEV_IDLEN) != 0))
1568 continue;
1569
1570 /*
1571 * If we get to this point, the user definitely wants
1572 * information on this peripheral. So tell the caller to
1573 * copy the data out.
1574 */
1575 retval |= DM_RET_COPY;
1576
1577 /*
1578 * The return action has already been set to stop, since
1579 * peripherals don't have any nodes below them in the EDT.
1580 */
1581 return(retval);
1582 }
1583
1584 /*
1585 * If we get to this point, the peripheral that was passed in
1586 * doesn't match any of the patterns.
1587 */
1588 return(retval);
1589 }
1590
1591 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1592 xptedtbusfunc(struct cam_eb *bus, void *arg)
1593 {
1594 struct ccb_dev_match *cdm;
1595 struct cam_et *target;
1596 dev_match_ret retval;
1597
1598 cdm = (struct ccb_dev_match *)arg;
1599
1600 /*
1601 * If our position is for something deeper in the tree, that means
1602 * that we've already seen this node. So, we keep going down.
1603 */
1604 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1605 && (cdm->pos.cookie.bus == bus)
1606 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1607 && (cdm->pos.cookie.target != NULL))
1608 retval = DM_RET_DESCEND;
1609 else
1610 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1611
1612 /*
1613 * If we got an error, bail out of the search.
1614 */
1615 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1616 cdm->status = CAM_DEV_MATCH_ERROR;
1617 return(0);
1618 }
1619
1620 /*
1621 * If the copy flag is set, copy this bus out.
1622 */
1623 if (retval & DM_RET_COPY) {
1624 int spaceleft, j;
1625
1626 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1627 sizeof(struct dev_match_result));
1628
1629 /*
1630 * If we don't have enough space to put in another
1631 * match result, save our position and tell the
1632 * user there are more devices to check.
1633 */
1634 if (spaceleft < sizeof(struct dev_match_result)) {
1635 bzero(&cdm->pos, sizeof(cdm->pos));
1636 cdm->pos.position_type =
1637 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1638
1639 cdm->pos.cookie.bus = bus;
1640 cdm->pos.generations[CAM_BUS_GENERATION]=
1641 xsoftc.bus_generation;
1642 cdm->status = CAM_DEV_MATCH_MORE;
1643 return(0);
1644 }
1645 j = cdm->num_matches;
1646 cdm->num_matches++;
1647 cdm->matches[j].type = DEV_MATCH_BUS;
1648 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1649 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1650 cdm->matches[j].result.bus_result.unit_number =
1651 bus->sim->unit_number;
1652 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1653 bus->sim->sim_name,
1654 sizeof(cdm->matches[j].result.bus_result.dev_name));
1655 }
1656
1657 /*
1658 * If the user is only interested in buses, there's no
1659 * reason to descend to the next level in the tree.
1660 */
1661 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1662 return(1);
1663
1664 /*
1665 * If there is a target generation recorded, check it to
1666 * make sure the target list hasn't changed.
1667 */
1668 mtx_lock(&bus->eb_mtx);
1669 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1670 && (cdm->pos.cookie.bus == bus)
1671 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1672 && (cdm->pos.cookie.target != NULL)) {
1673 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1674 bus->generation)) {
1675 mtx_unlock(&bus->eb_mtx);
1676 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1677 return (0);
1678 }
1679 target = (struct cam_et *)cdm->pos.cookie.target;
1680 target->refcount++;
1681 } else
1682 target = NULL;
1683 mtx_unlock(&bus->eb_mtx);
1684
1685 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1686 }
1687
1688 static int
xptedttargetfunc(struct cam_et * target,void * arg)1689 xptedttargetfunc(struct cam_et *target, void *arg)
1690 {
1691 struct ccb_dev_match *cdm;
1692 struct cam_eb *bus;
1693 struct cam_ed *device;
1694
1695 cdm = (struct ccb_dev_match *)arg;
1696 bus = target->bus;
1697
1698 /*
1699 * If there is a device list generation recorded, check it to
1700 * make sure the device list hasn't changed.
1701 */
1702 mtx_lock(&bus->eb_mtx);
1703 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1704 && (cdm->pos.cookie.bus == bus)
1705 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1706 && (cdm->pos.cookie.target == target)
1707 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1708 && (cdm->pos.cookie.device != NULL)) {
1709 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1710 target->generation) {
1711 mtx_unlock(&bus->eb_mtx);
1712 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1713 return(0);
1714 }
1715 device = (struct cam_ed *)cdm->pos.cookie.device;
1716 device->refcount++;
1717 } else
1718 device = NULL;
1719 mtx_unlock(&bus->eb_mtx);
1720
1721 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1722 }
1723
1724 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1725 xptedtdevicefunc(struct cam_ed *device, void *arg)
1726 {
1727 struct cam_eb *bus;
1728 struct cam_periph *periph;
1729 struct ccb_dev_match *cdm;
1730 dev_match_ret retval;
1731
1732 cdm = (struct ccb_dev_match *)arg;
1733 bus = device->target->bus;
1734
1735 /*
1736 * If our position is for something deeper in the tree, that means
1737 * that we've already seen this node. So, we keep going down.
1738 */
1739 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1740 && (cdm->pos.cookie.device == device)
1741 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1742 && (cdm->pos.cookie.periph != NULL))
1743 retval = DM_RET_DESCEND;
1744 else
1745 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1746 device);
1747
1748 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1749 cdm->status = CAM_DEV_MATCH_ERROR;
1750 return(0);
1751 }
1752
1753 /*
1754 * If the copy flag is set, copy this device out.
1755 */
1756 if (retval & DM_RET_COPY) {
1757 int spaceleft, j;
1758
1759 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1760 sizeof(struct dev_match_result));
1761
1762 /*
1763 * If we don't have enough space to put in another
1764 * match result, save our position and tell the
1765 * user there are more devices to check.
1766 */
1767 if (spaceleft < sizeof(struct dev_match_result)) {
1768 bzero(&cdm->pos, sizeof(cdm->pos));
1769 cdm->pos.position_type =
1770 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1771 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1772
1773 cdm->pos.cookie.bus = device->target->bus;
1774 cdm->pos.generations[CAM_BUS_GENERATION]=
1775 xsoftc.bus_generation;
1776 cdm->pos.cookie.target = device->target;
1777 cdm->pos.generations[CAM_TARGET_GENERATION] =
1778 device->target->bus->generation;
1779 cdm->pos.cookie.device = device;
1780 cdm->pos.generations[CAM_DEV_GENERATION] =
1781 device->target->generation;
1782 cdm->status = CAM_DEV_MATCH_MORE;
1783 return(0);
1784 }
1785 j = cdm->num_matches;
1786 cdm->num_matches++;
1787 cdm->matches[j].type = DEV_MATCH_DEVICE;
1788 cdm->matches[j].result.device_result.path_id =
1789 device->target->bus->path_id;
1790 cdm->matches[j].result.device_result.target_id =
1791 device->target->target_id;
1792 cdm->matches[j].result.device_result.target_lun =
1793 device->lun_id;
1794 cdm->matches[j].result.device_result.protocol =
1795 device->protocol;
1796 bcopy(&device->inq_data,
1797 &cdm->matches[j].result.device_result.inq_data,
1798 sizeof(struct scsi_inquiry_data));
1799 bcopy(&device->ident_data,
1800 &cdm->matches[j].result.device_result.ident_data,
1801 sizeof(struct ata_params));
1802
1803 /* Let the user know whether this device is unconfigured */
1804 if (device->flags & CAM_DEV_UNCONFIGURED)
1805 cdm->matches[j].result.device_result.flags =
1806 DEV_RESULT_UNCONFIGURED;
1807 else
1808 cdm->matches[j].result.device_result.flags =
1809 DEV_RESULT_NOFLAG;
1810 }
1811
1812 /*
1813 * If the user isn't interested in peripherals, don't descend
1814 * the tree any further.
1815 */
1816 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1817 return(1);
1818
1819 /*
1820 * If there is a peripheral list generation recorded, make sure
1821 * it hasn't changed.
1822 */
1823 xpt_lock_buses();
1824 mtx_lock(&bus->eb_mtx);
1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1826 && (cdm->pos.cookie.bus == bus)
1827 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1828 && (cdm->pos.cookie.target == device->target)
1829 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1830 && (cdm->pos.cookie.device == device)
1831 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1832 && (cdm->pos.cookie.periph != NULL)) {
1833 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1834 device->generation) {
1835 mtx_unlock(&bus->eb_mtx);
1836 xpt_unlock_buses();
1837 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1838 return(0);
1839 }
1840 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1841 periph->refcount++;
1842 } else
1843 periph = NULL;
1844 mtx_unlock(&bus->eb_mtx);
1845 xpt_unlock_buses();
1846
1847 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1848 }
1849
1850 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1851 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1852 {
1853 struct ccb_dev_match *cdm;
1854 dev_match_ret retval;
1855
1856 cdm = (struct ccb_dev_match *)arg;
1857
1858 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1859
1860 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1861 cdm->status = CAM_DEV_MATCH_ERROR;
1862 return(0);
1863 }
1864
1865 /*
1866 * If the copy flag is set, copy this peripheral out.
1867 */
1868 if (retval & DM_RET_COPY) {
1869 int spaceleft, j;
1870 size_t l;
1871
1872 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1873 sizeof(struct dev_match_result));
1874
1875 /*
1876 * If we don't have enough space to put in another
1877 * match result, save our position and tell the
1878 * user there are more devices to check.
1879 */
1880 if (spaceleft < sizeof(struct dev_match_result)) {
1881 bzero(&cdm->pos, sizeof(cdm->pos));
1882 cdm->pos.position_type =
1883 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1884 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1885 CAM_DEV_POS_PERIPH;
1886
1887 cdm->pos.cookie.bus = periph->path->bus;
1888 cdm->pos.generations[CAM_BUS_GENERATION]=
1889 xsoftc.bus_generation;
1890 cdm->pos.cookie.target = periph->path->target;
1891 cdm->pos.generations[CAM_TARGET_GENERATION] =
1892 periph->path->bus->generation;
1893 cdm->pos.cookie.device = periph->path->device;
1894 cdm->pos.generations[CAM_DEV_GENERATION] =
1895 periph->path->target->generation;
1896 cdm->pos.cookie.periph = periph;
1897 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1898 periph->path->device->generation;
1899 cdm->status = CAM_DEV_MATCH_MORE;
1900 return(0);
1901 }
1902
1903 j = cdm->num_matches;
1904 cdm->num_matches++;
1905 cdm->matches[j].type = DEV_MATCH_PERIPH;
1906 cdm->matches[j].result.periph_result.path_id =
1907 periph->path->bus->path_id;
1908 cdm->matches[j].result.periph_result.target_id =
1909 periph->path->target->target_id;
1910 cdm->matches[j].result.periph_result.target_lun =
1911 periph->path->device->lun_id;
1912 cdm->matches[j].result.periph_result.unit_number =
1913 periph->unit_number;
1914 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1915 strlcpy(cdm->matches[j].result.periph_result.periph_name,
1916 periph->periph_name, l);
1917 }
1918
1919 return(1);
1920 }
1921
1922 static int
xptedtmatch(struct ccb_dev_match * cdm)1923 xptedtmatch(struct ccb_dev_match *cdm)
1924 {
1925 struct cam_eb *bus;
1926 int ret;
1927
1928 cdm->num_matches = 0;
1929
1930 /*
1931 * Check the bus list generation. If it has changed, the user
1932 * needs to reset everything and start over.
1933 */
1934 xpt_lock_buses();
1935 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1936 && (cdm->pos.cookie.bus != NULL)) {
1937 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1938 xsoftc.bus_generation) {
1939 xpt_unlock_buses();
1940 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1941 return(0);
1942 }
1943 bus = (struct cam_eb *)cdm->pos.cookie.bus;
1944 bus->refcount++;
1945 } else
1946 bus = NULL;
1947 xpt_unlock_buses();
1948
1949 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1950
1951 /*
1952 * If we get back 0, that means that we had to stop before fully
1953 * traversing the EDT. It also means that one of the subroutines
1954 * has set the status field to the proper value. If we get back 1,
1955 * we've fully traversed the EDT and copied out any matching entries.
1956 */
1957 if (ret == 1)
1958 cdm->status = CAM_DEV_MATCH_LAST;
1959
1960 return(ret);
1961 }
1962
1963 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1964 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1965 {
1966 struct cam_periph *periph;
1967 struct ccb_dev_match *cdm;
1968
1969 cdm = (struct ccb_dev_match *)arg;
1970
1971 xpt_lock_buses();
1972 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1973 && (cdm->pos.cookie.pdrv == pdrv)
1974 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1975 && (cdm->pos.cookie.periph != NULL)) {
1976 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1977 (*pdrv)->generation) {
1978 xpt_unlock_buses();
1979 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1980 return(0);
1981 }
1982 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1983 periph->refcount++;
1984 } else
1985 periph = NULL;
1986 xpt_unlock_buses();
1987
1988 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1989 }
1990
1991 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1992 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1993 {
1994 struct ccb_dev_match *cdm;
1995 dev_match_ret retval;
1996
1997 cdm = (struct ccb_dev_match *)arg;
1998
1999 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2000
2001 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2002 cdm->status = CAM_DEV_MATCH_ERROR;
2003 return(0);
2004 }
2005
2006 /*
2007 * If the copy flag is set, copy this peripheral out.
2008 */
2009 if (retval & DM_RET_COPY) {
2010 int spaceleft, j;
2011 size_t l;
2012
2013 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2014 sizeof(struct dev_match_result));
2015
2016 /*
2017 * If we don't have enough space to put in another
2018 * match result, save our position and tell the
2019 * user there are more devices to check.
2020 */
2021 if (spaceleft < sizeof(struct dev_match_result)) {
2022 struct periph_driver **pdrv;
2023
2024 pdrv = NULL;
2025 bzero(&cdm->pos, sizeof(cdm->pos));
2026 cdm->pos.position_type =
2027 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2028 CAM_DEV_POS_PERIPH;
2029
2030 /*
2031 * This may look a bit non-sensical, but it is
2032 * actually quite logical. There are very few
2033 * peripheral drivers, and bloating every peripheral
2034 * structure with a pointer back to its parent
2035 * peripheral driver linker set entry would cost
2036 * more in the long run than doing this quick lookup.
2037 */
2038 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2039 if (strcmp((*pdrv)->driver_name,
2040 periph->periph_name) == 0)
2041 break;
2042 }
2043
2044 if (*pdrv == NULL) {
2045 cdm->status = CAM_DEV_MATCH_ERROR;
2046 return(0);
2047 }
2048
2049 cdm->pos.cookie.pdrv = pdrv;
2050 /*
2051 * The periph generation slot does double duty, as
2052 * does the periph pointer slot. They are used for
2053 * both edt and pdrv lookups and positioning.
2054 */
2055 cdm->pos.cookie.periph = periph;
2056 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2057 (*pdrv)->generation;
2058 cdm->status = CAM_DEV_MATCH_MORE;
2059 return(0);
2060 }
2061
2062 j = cdm->num_matches;
2063 cdm->num_matches++;
2064 cdm->matches[j].type = DEV_MATCH_PERIPH;
2065 cdm->matches[j].result.periph_result.path_id =
2066 periph->path->bus->path_id;
2067
2068 /*
2069 * The transport layer peripheral doesn't have a target or
2070 * lun.
2071 */
2072 if (periph->path->target)
2073 cdm->matches[j].result.periph_result.target_id =
2074 periph->path->target->target_id;
2075 else
2076 cdm->matches[j].result.periph_result.target_id =
2077 CAM_TARGET_WILDCARD;
2078
2079 if (periph->path->device)
2080 cdm->matches[j].result.periph_result.target_lun =
2081 periph->path->device->lun_id;
2082 else
2083 cdm->matches[j].result.periph_result.target_lun =
2084 CAM_LUN_WILDCARD;
2085
2086 cdm->matches[j].result.periph_result.unit_number =
2087 periph->unit_number;
2088 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2089 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2090 periph->periph_name, l);
2091 }
2092
2093 return(1);
2094 }
2095
2096 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2097 xptperiphlistmatch(struct ccb_dev_match *cdm)
2098 {
2099 int ret;
2100
2101 cdm->num_matches = 0;
2102
2103 /*
2104 * At this point in the edt traversal function, we check the bus
2105 * list generation to make sure that no buses have been added or
2106 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2107 * For the peripheral driver list traversal function, however, we
2108 * don't have to worry about new peripheral driver types coming or
2109 * going; they're in a linker set, and therefore can't change
2110 * without a recompile.
2111 */
2112
2113 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2114 && (cdm->pos.cookie.pdrv != NULL))
2115 ret = xptpdrvtraverse(
2116 (struct periph_driver **)cdm->pos.cookie.pdrv,
2117 xptplistpdrvfunc, cdm);
2118 else
2119 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2120
2121 /*
2122 * If we get back 0, that means that we had to stop before fully
2123 * traversing the peripheral driver tree. It also means that one of
2124 * the subroutines has set the status field to the proper value. If
2125 * we get back 1, we've fully traversed the EDT and copied out any
2126 * matching entries.
2127 */
2128 if (ret == 1)
2129 cdm->status = CAM_DEV_MATCH_LAST;
2130
2131 return(ret);
2132 }
2133
2134 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2135 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2136 {
2137 struct cam_eb *bus, *next_bus;
2138 int retval;
2139
2140 retval = 1;
2141 if (start_bus)
2142 bus = start_bus;
2143 else {
2144 xpt_lock_buses();
2145 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2146 if (bus == NULL) {
2147 xpt_unlock_buses();
2148 return (retval);
2149 }
2150 bus->refcount++;
2151 xpt_unlock_buses();
2152 }
2153 for (; bus != NULL; bus = next_bus) {
2154 retval = tr_func(bus, arg);
2155 if (retval == 0) {
2156 xpt_release_bus(bus);
2157 break;
2158 }
2159 xpt_lock_buses();
2160 next_bus = TAILQ_NEXT(bus, links);
2161 if (next_bus)
2162 next_bus->refcount++;
2163 xpt_unlock_buses();
2164 xpt_release_bus(bus);
2165 }
2166 return(retval);
2167 }
2168
2169 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2170 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2171 xpt_targetfunc_t *tr_func, void *arg)
2172 {
2173 struct cam_et *target, *next_target;
2174 int retval;
2175
2176 retval = 1;
2177 if (start_target)
2178 target = start_target;
2179 else {
2180 mtx_lock(&bus->eb_mtx);
2181 target = TAILQ_FIRST(&bus->et_entries);
2182 if (target == NULL) {
2183 mtx_unlock(&bus->eb_mtx);
2184 return (retval);
2185 }
2186 target->refcount++;
2187 mtx_unlock(&bus->eb_mtx);
2188 }
2189 for (; target != NULL; target = next_target) {
2190 retval = tr_func(target, arg);
2191 if (retval == 0) {
2192 xpt_release_target(target);
2193 break;
2194 }
2195 mtx_lock(&bus->eb_mtx);
2196 next_target = TAILQ_NEXT(target, links);
2197 if (next_target)
2198 next_target->refcount++;
2199 mtx_unlock(&bus->eb_mtx);
2200 xpt_release_target(target);
2201 }
2202 return(retval);
2203 }
2204
2205 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2206 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2207 xpt_devicefunc_t *tr_func, void *arg)
2208 {
2209 struct cam_eb *bus;
2210 struct cam_ed *device, *next_device;
2211 int retval;
2212
2213 retval = 1;
2214 bus = target->bus;
2215 if (start_device)
2216 device = start_device;
2217 else {
2218 mtx_lock(&bus->eb_mtx);
2219 device = TAILQ_FIRST(&target->ed_entries);
2220 if (device == NULL) {
2221 mtx_unlock(&bus->eb_mtx);
2222 return (retval);
2223 }
2224 device->refcount++;
2225 mtx_unlock(&bus->eb_mtx);
2226 }
2227 for (; device != NULL; device = next_device) {
2228 mtx_lock(&device->device_mtx);
2229 retval = tr_func(device, arg);
2230 mtx_unlock(&device->device_mtx);
2231 if (retval == 0) {
2232 xpt_release_device(device);
2233 break;
2234 }
2235 mtx_lock(&bus->eb_mtx);
2236 next_device = TAILQ_NEXT(device, links);
2237 if (next_device)
2238 next_device->refcount++;
2239 mtx_unlock(&bus->eb_mtx);
2240 xpt_release_device(device);
2241 }
2242 return(retval);
2243 }
2244
2245 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2246 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2247 xpt_periphfunc_t *tr_func, void *arg)
2248 {
2249 struct cam_eb *bus;
2250 struct cam_periph *periph, *next_periph;
2251 int retval;
2252
2253 retval = 1;
2254
2255 bus = device->target->bus;
2256 if (start_periph)
2257 periph = start_periph;
2258 else {
2259 xpt_lock_buses();
2260 mtx_lock(&bus->eb_mtx);
2261 periph = SLIST_FIRST(&device->periphs);
2262 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2263 periph = SLIST_NEXT(periph, periph_links);
2264 if (periph == NULL) {
2265 mtx_unlock(&bus->eb_mtx);
2266 xpt_unlock_buses();
2267 return (retval);
2268 }
2269 periph->refcount++;
2270 mtx_unlock(&bus->eb_mtx);
2271 xpt_unlock_buses();
2272 }
2273 for (; periph != NULL; periph = next_periph) {
2274 retval = tr_func(periph, arg);
2275 if (retval == 0) {
2276 cam_periph_release_locked(periph);
2277 break;
2278 }
2279 xpt_lock_buses();
2280 mtx_lock(&bus->eb_mtx);
2281 next_periph = SLIST_NEXT(periph, periph_links);
2282 while (next_periph != NULL &&
2283 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2284 next_periph = SLIST_NEXT(next_periph, periph_links);
2285 if (next_periph)
2286 next_periph->refcount++;
2287 mtx_unlock(&bus->eb_mtx);
2288 xpt_unlock_buses();
2289 cam_periph_release_locked(periph);
2290 }
2291 return(retval);
2292 }
2293
2294 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2295 xptpdrvtraverse(struct periph_driver **start_pdrv,
2296 xpt_pdrvfunc_t *tr_func, void *arg)
2297 {
2298 struct periph_driver **pdrv;
2299 int retval;
2300
2301 retval = 1;
2302
2303 /*
2304 * We don't traverse the peripheral driver list like we do the
2305 * other lists, because it is a linker set, and therefore cannot be
2306 * changed during runtime. If the peripheral driver list is ever
2307 * re-done to be something other than a linker set (i.e. it can
2308 * change while the system is running), the list traversal should
2309 * be modified to work like the other traversal functions.
2310 */
2311 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2312 *pdrv != NULL; pdrv++) {
2313 retval = tr_func(pdrv, arg);
2314
2315 if (retval == 0)
2316 return(retval);
2317 }
2318
2319 return(retval);
2320 }
2321
2322 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2323 xptpdperiphtraverse(struct periph_driver **pdrv,
2324 struct cam_periph *start_periph,
2325 xpt_periphfunc_t *tr_func, void *arg)
2326 {
2327 struct cam_periph *periph, *next_periph;
2328 int retval;
2329
2330 retval = 1;
2331
2332 if (start_periph)
2333 periph = start_periph;
2334 else {
2335 xpt_lock_buses();
2336 periph = TAILQ_FIRST(&(*pdrv)->units);
2337 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2338 periph = TAILQ_NEXT(periph, unit_links);
2339 if (periph == NULL) {
2340 xpt_unlock_buses();
2341 return (retval);
2342 }
2343 periph->refcount++;
2344 xpt_unlock_buses();
2345 }
2346 for (; periph != NULL; periph = next_periph) {
2347 cam_periph_lock(periph);
2348 retval = tr_func(periph, arg);
2349 cam_periph_unlock(periph);
2350 if (retval == 0) {
2351 cam_periph_release(periph);
2352 break;
2353 }
2354 xpt_lock_buses();
2355 next_periph = TAILQ_NEXT(periph, unit_links);
2356 while (next_periph != NULL &&
2357 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2358 next_periph = TAILQ_NEXT(next_periph, unit_links);
2359 if (next_periph)
2360 next_periph->refcount++;
2361 xpt_unlock_buses();
2362 cam_periph_release(periph);
2363 }
2364 return(retval);
2365 }
2366
2367 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2368 xptdefbusfunc(struct cam_eb *bus, void *arg)
2369 {
2370 struct xpt_traverse_config *tr_config;
2371
2372 tr_config = (struct xpt_traverse_config *)arg;
2373
2374 if (tr_config->depth == XPT_DEPTH_BUS) {
2375 xpt_busfunc_t *tr_func;
2376
2377 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2378
2379 return(tr_func(bus, tr_config->tr_arg));
2380 } else
2381 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2382 }
2383
2384 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2385 xptdeftargetfunc(struct cam_et *target, void *arg)
2386 {
2387 struct xpt_traverse_config *tr_config;
2388
2389 tr_config = (struct xpt_traverse_config *)arg;
2390
2391 if (tr_config->depth == XPT_DEPTH_TARGET) {
2392 xpt_targetfunc_t *tr_func;
2393
2394 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2395
2396 return(tr_func(target, tr_config->tr_arg));
2397 } else
2398 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2399 }
2400
2401 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2402 xptdefdevicefunc(struct cam_ed *device, void *arg)
2403 {
2404 struct xpt_traverse_config *tr_config;
2405
2406 tr_config = (struct xpt_traverse_config *)arg;
2407
2408 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2409 xpt_devicefunc_t *tr_func;
2410
2411 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2412
2413 return(tr_func(device, tr_config->tr_arg));
2414 } else
2415 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2416 }
2417
2418 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2419 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2420 {
2421 struct xpt_traverse_config *tr_config;
2422 xpt_periphfunc_t *tr_func;
2423
2424 tr_config = (struct xpt_traverse_config *)arg;
2425
2426 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2427
2428 /*
2429 * Unlike the other default functions, we don't check for depth
2430 * here. The peripheral driver level is the last level in the EDT,
2431 * so if we're here, we should execute the function in question.
2432 */
2433 return(tr_func(periph, tr_config->tr_arg));
2434 }
2435
2436 /*
2437 * Execute the given function for every bus in the EDT.
2438 */
2439 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2440 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2441 {
2442 struct xpt_traverse_config tr_config;
2443
2444 tr_config.depth = XPT_DEPTH_BUS;
2445 tr_config.tr_func = tr_func;
2446 tr_config.tr_arg = arg;
2447
2448 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2449 }
2450
2451 /*
2452 * Execute the given function for every device in the EDT.
2453 */
2454 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2455 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2456 {
2457 struct xpt_traverse_config tr_config;
2458
2459 tr_config.depth = XPT_DEPTH_DEVICE;
2460 tr_config.tr_func = tr_func;
2461 tr_config.tr_arg = arg;
2462
2463 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2464 }
2465
2466 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2467 xptsetasyncfunc(struct cam_ed *device, void *arg)
2468 {
2469 struct cam_path path;
2470 struct ccb_getdev cgd;
2471 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2472
2473 /*
2474 * Don't report unconfigured devices (Wildcard devs,
2475 * devices only for target mode, device instances
2476 * that have been invalidated but are waiting for
2477 * their last reference count to be released).
2478 */
2479 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2480 return (1);
2481
2482 xpt_compile_path(&path,
2483 NULL,
2484 device->target->bus->path_id,
2485 device->target->target_id,
2486 device->lun_id);
2487 xpt_gdev_type(&cgd, &path);
2488 CAM_PROBE4(xpt, async__cb, csa->callback_arg,
2489 AC_FOUND_DEVICE, &path, &cgd);
2490 csa->callback(csa->callback_arg,
2491 AC_FOUND_DEVICE,
2492 &path, &cgd);
2493 xpt_release_path(&path);
2494
2495 return(1);
2496 }
2497
2498 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2499 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2500 {
2501 struct cam_path path;
2502 struct ccb_pathinq cpi;
2503 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2504
2505 xpt_compile_path(&path, /*periph*/NULL,
2506 bus->path_id,
2507 CAM_TARGET_WILDCARD,
2508 CAM_LUN_WILDCARD);
2509 xpt_path_lock(&path);
2510 xpt_path_inq(&cpi, &path);
2511 CAM_PROBE4(xpt, async__cb, csa->callback_arg,
2512 AC_PATH_REGISTERED, &path, &cpi);
2513 csa->callback(csa->callback_arg,
2514 AC_PATH_REGISTERED,
2515 &path, &cpi);
2516 xpt_path_unlock(&path);
2517 xpt_release_path(&path);
2518
2519 return(1);
2520 }
2521
2522 void
xpt_action(union ccb * start_ccb)2523 xpt_action(union ccb *start_ccb)
2524 {
2525
2526 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2527 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2528 xpt_action_name(start_ccb->ccb_h.func_code)));
2529
2530 /*
2531 * Either it isn't queued, or it has a real priority. There still too
2532 * many places that reuse CCBs with a real priority to do immediate
2533 * queries to do the other side of this assert.
2534 */
2535 KASSERT((start_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 ||
2536 start_ccb->ccb_h.pinfo.priority != CAM_PRIORITY_NONE,
2537 ("%s: queued ccb and CAM_PRIORITY_NONE illegal.", __func__));
2538
2539 CAM_PROBE1(xpt, action, start_ccb);
2540 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2541 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2542 }
2543
2544 void
xpt_action_default(union ccb * start_ccb)2545 xpt_action_default(union ccb *start_ccb)
2546 {
2547 struct cam_path *path;
2548 struct cam_sim *sim;
2549 struct mtx *mtx;
2550
2551 path = start_ccb->ccb_h.path;
2552 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2553 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2554 xpt_action_name(start_ccb->ccb_h.func_code)));
2555
2556 switch (start_ccb->ccb_h.func_code) {
2557 case XPT_SCSI_IO:
2558 {
2559 struct cam_ed *device;
2560
2561 /*
2562 * For the sake of compatibility with SCSI-1
2563 * devices that may not understand the identify
2564 * message, we include lun information in the
2565 * second byte of all commands. SCSI-1 specifies
2566 * that luns are a 3 bit value and reserves only 3
2567 * bits for lun information in the CDB. Later
2568 * revisions of the SCSI spec allow for more than 8
2569 * luns, but have deprecated lun information in the
2570 * CDB. So, if the lun won't fit, we must omit.
2571 *
2572 * Also be aware that during initial probing for devices,
2573 * the inquiry information is unknown but initialized to 0.
2574 * This means that this code will be exercised while probing
2575 * devices with an ANSI revision greater than 2.
2576 */
2577 device = path->device;
2578 if (device->protocol_version <= SCSI_REV_2
2579 && start_ccb->ccb_h.target_lun < 8
2580 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2581 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2582 start_ccb->ccb_h.target_lun << 5;
2583 }
2584 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2585 }
2586 /* FALLTHROUGH */
2587 case XPT_TARGET_IO:
2588 case XPT_CONT_TARGET_IO:
2589 start_ccb->csio.sense_resid = 0;
2590 start_ccb->csio.resid = 0;
2591 /* FALLTHROUGH */
2592 case XPT_ATA_IO:
2593 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2594 start_ccb->ataio.resid = 0;
2595 /* FALLTHROUGH */
2596 case XPT_NVME_IO:
2597 case XPT_NVME_ADMIN:
2598 case XPT_MMC_IO:
2599 case XPT_MMC_GET_TRAN_SETTINGS:
2600 case XPT_MMC_SET_TRAN_SETTINGS:
2601 case XPT_RESET_DEV:
2602 case XPT_ENG_EXEC:
2603 case XPT_SMP_IO:
2604 {
2605 struct cam_devq *devq;
2606
2607 devq = path->bus->sim->devq;
2608 mtx_lock(&devq->send_mtx);
2609 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2610 if (xpt_schedule_devq(devq, path->device) != 0)
2611 xpt_run_devq(devq);
2612 mtx_unlock(&devq->send_mtx);
2613 break;
2614 }
2615 case XPT_CALC_GEOMETRY:
2616 /* Filter out garbage */
2617 if (start_ccb->ccg.block_size == 0
2618 || start_ccb->ccg.volume_size == 0) {
2619 start_ccb->ccg.cylinders = 0;
2620 start_ccb->ccg.heads = 0;
2621 start_ccb->ccg.secs_per_track = 0;
2622 start_ccb->ccb_h.status = CAM_REQ_CMP;
2623 break;
2624 }
2625 goto call_sim;
2626 case XPT_ABORT:
2627 {
2628 union ccb* abort_ccb;
2629
2630 abort_ccb = start_ccb->cab.abort_ccb;
2631 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2632 struct cam_ed *device;
2633 struct cam_devq *devq;
2634
2635 device = abort_ccb->ccb_h.path->device;
2636 devq = device->sim->devq;
2637
2638 mtx_lock(&devq->send_mtx);
2639 if (abort_ccb->ccb_h.pinfo.index > 0) {
2640 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2641 abort_ccb->ccb_h.status =
2642 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2643 xpt_freeze_devq_device(device, 1);
2644 mtx_unlock(&devq->send_mtx);
2645 xpt_done(abort_ccb);
2646 start_ccb->ccb_h.status = CAM_REQ_CMP;
2647 break;
2648 }
2649 mtx_unlock(&devq->send_mtx);
2650
2651 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2652 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2653 /*
2654 * We've caught this ccb en route to
2655 * the SIM. Flag it for abort and the
2656 * SIM will do so just before starting
2657 * real work on the CCB.
2658 */
2659 abort_ccb->ccb_h.status =
2660 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2661 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2662 start_ccb->ccb_h.status = CAM_REQ_CMP;
2663 break;
2664 }
2665 }
2666 if (XPT_FC_IS_QUEUED(abort_ccb)
2667 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2668 /*
2669 * It's already completed but waiting
2670 * for our SWI to get to it.
2671 */
2672 start_ccb->ccb_h.status = CAM_UA_ABORT;
2673 break;
2674 }
2675 /*
2676 * If we weren't able to take care of the abort request
2677 * in the XPT, pass the request down to the SIM for processing.
2678 */
2679 }
2680 /* FALLTHROUGH */
2681 case XPT_ACCEPT_TARGET_IO:
2682 case XPT_EN_LUN:
2683 case XPT_IMMED_NOTIFY:
2684 case XPT_NOTIFY_ACK:
2685 case XPT_RESET_BUS:
2686 case XPT_IMMEDIATE_NOTIFY:
2687 case XPT_NOTIFY_ACKNOWLEDGE:
2688 case XPT_GET_SIM_KNOB_OLD:
2689 case XPT_GET_SIM_KNOB:
2690 case XPT_SET_SIM_KNOB:
2691 case XPT_GET_TRAN_SETTINGS:
2692 case XPT_SET_TRAN_SETTINGS:
2693 case XPT_PATH_INQ:
2694 call_sim:
2695 sim = path->bus->sim;
2696 mtx = sim->mtx;
2697 if (mtx && !mtx_owned(mtx))
2698 mtx_lock(mtx);
2699 else
2700 mtx = NULL;
2701
2702 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2703 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2704 (*(sim->sim_action))(sim, start_ccb);
2705 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2706 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2707 if (mtx)
2708 mtx_unlock(mtx);
2709 break;
2710 case XPT_PATH_STATS:
2711 start_ccb->cpis.last_reset = path->bus->last_reset;
2712 start_ccb->ccb_h.status = CAM_REQ_CMP;
2713 break;
2714 case XPT_GDEV_TYPE:
2715 {
2716 struct cam_ed *dev;
2717
2718 dev = path->device;
2719 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2720 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2721 } else {
2722 struct ccb_getdev *cgd;
2723
2724 cgd = &start_ccb->cgd;
2725 cgd->protocol = dev->protocol;
2726 cgd->inq_data = dev->inq_data;
2727 cgd->ident_data = dev->ident_data;
2728 cgd->inq_flags = dev->inq_flags;
2729 cgd->ccb_h.status = CAM_REQ_CMP;
2730 cgd->serial_num_len = dev->serial_num_len;
2731 if ((dev->serial_num_len > 0)
2732 && (dev->serial_num != NULL))
2733 bcopy(dev->serial_num, cgd->serial_num,
2734 dev->serial_num_len);
2735 }
2736 break;
2737 }
2738 case XPT_GDEV_STATS:
2739 {
2740 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2741 struct cam_ed *dev = path->device;
2742 struct cam_eb *bus = path->bus;
2743 struct cam_et *tar = path->target;
2744 struct cam_devq *devq = bus->sim->devq;
2745
2746 mtx_lock(&devq->send_mtx);
2747 cgds->dev_openings = dev->ccbq.dev_openings;
2748 cgds->dev_active = dev->ccbq.dev_active;
2749 cgds->allocated = dev->ccbq.allocated;
2750 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2751 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2752 cgds->last_reset = tar->last_reset;
2753 cgds->maxtags = dev->maxtags;
2754 cgds->mintags = dev->mintags;
2755 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2756 cgds->last_reset = bus->last_reset;
2757 mtx_unlock(&devq->send_mtx);
2758 cgds->ccb_h.status = CAM_REQ_CMP;
2759 break;
2760 }
2761 case XPT_GDEVLIST:
2762 {
2763 struct cam_periph *nperiph;
2764 struct periph_list *periph_head;
2765 struct ccb_getdevlist *cgdl;
2766 u_int i;
2767 struct cam_ed *device;
2768 bool found;
2769
2770 found = false;
2771
2772 /*
2773 * Don't want anyone mucking with our data.
2774 */
2775 device = path->device;
2776 periph_head = &device->periphs;
2777 cgdl = &start_ccb->cgdl;
2778
2779 /*
2780 * Check and see if the list has changed since the user
2781 * last requested a list member. If so, tell them that the
2782 * list has changed, and therefore they need to start over
2783 * from the beginning.
2784 */
2785 if ((cgdl->index != 0) &&
2786 (cgdl->generation != device->generation)) {
2787 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2788 break;
2789 }
2790
2791 /*
2792 * Traverse the list of peripherals and attempt to find
2793 * the requested peripheral.
2794 */
2795 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2796 (nperiph != NULL) && (i <= cgdl->index);
2797 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2798 if (i == cgdl->index) {
2799 strlcpy(cgdl->periph_name,
2800 nperiph->periph_name,
2801 sizeof(cgdl->periph_name));
2802 cgdl->unit_number = nperiph->unit_number;
2803 found = true;
2804 }
2805 }
2806 if (!found) {
2807 cgdl->status = CAM_GDEVLIST_ERROR;
2808 break;
2809 }
2810
2811 if (nperiph == NULL)
2812 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2813 else
2814 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2815
2816 cgdl->index++;
2817 cgdl->generation = device->generation;
2818
2819 cgdl->ccb_h.status = CAM_REQ_CMP;
2820 break;
2821 }
2822 case XPT_DEV_MATCH:
2823 {
2824 dev_pos_type position_type;
2825 struct ccb_dev_match *cdm;
2826
2827 cdm = &start_ccb->cdm;
2828
2829 /*
2830 * There are two ways of getting at information in the EDT.
2831 * The first way is via the primary EDT tree. It starts
2832 * with a list of buses, then a list of targets on a bus,
2833 * then devices/luns on a target, and then peripherals on a
2834 * device/lun. The "other" way is by the peripheral driver
2835 * lists. The peripheral driver lists are organized by
2836 * peripheral driver. (obviously) So it makes sense to
2837 * use the peripheral driver list if the user is looking
2838 * for something like "da1", or all "da" devices. If the
2839 * user is looking for something on a particular bus/target
2840 * or lun, it's generally better to go through the EDT tree.
2841 */
2842
2843 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2844 position_type = cdm->pos.position_type;
2845 else {
2846 u_int i;
2847
2848 position_type = CAM_DEV_POS_NONE;
2849
2850 for (i = 0; i < cdm->num_patterns; i++) {
2851 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2852 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2853 position_type = CAM_DEV_POS_EDT;
2854 break;
2855 }
2856 }
2857
2858 if (cdm->num_patterns == 0)
2859 position_type = CAM_DEV_POS_EDT;
2860 else if (position_type == CAM_DEV_POS_NONE)
2861 position_type = CAM_DEV_POS_PDRV;
2862 }
2863
2864 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2865 case CAM_DEV_POS_EDT:
2866 xptedtmatch(cdm);
2867 break;
2868 case CAM_DEV_POS_PDRV:
2869 xptperiphlistmatch(cdm);
2870 break;
2871 default:
2872 cdm->status = CAM_DEV_MATCH_ERROR;
2873 break;
2874 }
2875
2876 if (cdm->status == CAM_DEV_MATCH_ERROR)
2877 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2878 else
2879 start_ccb->ccb_h.status = CAM_REQ_CMP;
2880
2881 break;
2882 }
2883 case XPT_SASYNC_CB:
2884 {
2885 struct ccb_setasync *csa;
2886 struct async_node *cur_entry;
2887 struct async_list *async_head;
2888 uint32_t added;
2889
2890 csa = &start_ccb->csa;
2891 added = csa->event_enable;
2892 async_head = &path->device->asyncs;
2893
2894 /*
2895 * If there is already an entry for us, simply
2896 * update it.
2897 */
2898 cur_entry = SLIST_FIRST(async_head);
2899 while (cur_entry != NULL) {
2900 if ((cur_entry->callback_arg == csa->callback_arg)
2901 && (cur_entry->callback == csa->callback))
2902 break;
2903 cur_entry = SLIST_NEXT(cur_entry, links);
2904 }
2905
2906 if (cur_entry != NULL) {
2907 /*
2908 * If the request has no flags set,
2909 * remove the entry.
2910 */
2911 added &= ~cur_entry->event_enable;
2912 if (csa->event_enable == 0) {
2913 SLIST_REMOVE(async_head, cur_entry,
2914 async_node, links);
2915 xpt_release_device(path->device);
2916 free(cur_entry, M_CAMXPT);
2917 } else {
2918 cur_entry->event_enable = csa->event_enable;
2919 }
2920 csa->event_enable = added;
2921 } else {
2922 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2923 M_NOWAIT);
2924 if (cur_entry == NULL) {
2925 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2926 break;
2927 }
2928 cur_entry->event_enable = csa->event_enable;
2929 cur_entry->event_lock = (path->bus->sim->mtx &&
2930 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2931 cur_entry->callback_arg = csa->callback_arg;
2932 cur_entry->callback = csa->callback;
2933 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2934 xpt_acquire_device(path->device);
2935 }
2936 start_ccb->ccb_h.status = CAM_REQ_CMP;
2937 break;
2938 }
2939 case XPT_REL_SIMQ:
2940 {
2941 struct ccb_relsim *crs;
2942 struct cam_ed *dev;
2943
2944 crs = &start_ccb->crs;
2945 dev = path->device;
2946 if (dev == NULL) {
2947 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2948 break;
2949 }
2950
2951 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2952 /* Don't ever go below one opening */
2953 if (crs->openings > 0) {
2954 xpt_dev_ccbq_resize(path, crs->openings);
2955 if (bootverbose) {
2956 xpt_print(path,
2957 "number of openings is now %d\n",
2958 crs->openings);
2959 }
2960 }
2961 }
2962
2963 mtx_lock(&dev->sim->devq->send_mtx);
2964 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2965 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2966 /*
2967 * Just extend the old timeout and decrement
2968 * the freeze count so that a single timeout
2969 * is sufficient for releasing the queue.
2970 */
2971 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2972 callout_stop(&dev->callout);
2973 } else {
2974 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2975 }
2976
2977 callout_reset_sbt(&dev->callout,
2978 SBT_1MS * crs->release_timeout, SBT_1MS,
2979 xpt_release_devq_timeout, dev, 0);
2980
2981 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2982 }
2983
2984 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2985 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2986 /*
2987 * Decrement the freeze count so that a single
2988 * completion is still sufficient to unfreeze
2989 * the queue.
2990 */
2991 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2992 } else {
2993 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2994 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2995 }
2996 }
2997
2998 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2999 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3000 || (dev->ccbq.dev_active == 0)) {
3001 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3002 } else {
3003 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3004 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3005 }
3006 }
3007 mtx_unlock(&dev->sim->devq->send_mtx);
3008
3009 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3010 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3011 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3012 start_ccb->ccb_h.status = CAM_REQ_CMP;
3013 break;
3014 }
3015 case XPT_DEBUG: {
3016 struct cam_path *oldpath;
3017
3018 /* Check that all request bits are supported. */
3019 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3020 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3021 break;
3022 }
3023
3024 cam_dflags = CAM_DEBUG_NONE;
3025 if (cam_dpath != NULL) {
3026 oldpath = cam_dpath;
3027 cam_dpath = NULL;
3028 xpt_free_path(oldpath);
3029 }
3030 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3031 if (xpt_create_path(&cam_dpath, NULL,
3032 start_ccb->ccb_h.path_id,
3033 start_ccb->ccb_h.target_id,
3034 start_ccb->ccb_h.target_lun) !=
3035 CAM_REQ_CMP) {
3036 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3037 } else {
3038 cam_dflags = start_ccb->cdbg.flags;
3039 start_ccb->ccb_h.status = CAM_REQ_CMP;
3040 xpt_print(cam_dpath, "debugging flags now %x\n",
3041 cam_dflags);
3042 }
3043 } else
3044 start_ccb->ccb_h.status = CAM_REQ_CMP;
3045 break;
3046 }
3047 case XPT_NOOP:
3048 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3049 xpt_freeze_devq(path, 1);
3050 start_ccb->ccb_h.status = CAM_REQ_CMP;
3051 break;
3052 case XPT_REPROBE_LUN:
3053 xpt_async(AC_INQ_CHANGED, path, NULL);
3054 start_ccb->ccb_h.status = CAM_REQ_CMP;
3055 xpt_done(start_ccb);
3056 break;
3057 case XPT_ASYNC:
3058 /*
3059 * Queue the async operation so it can be run from a sleepable
3060 * context.
3061 */
3062 start_ccb->ccb_h.status = CAM_REQ_CMP;
3063 mtx_lock(&cam_async.cam_doneq_mtx);
3064 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3065 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3066 mtx_unlock(&cam_async.cam_doneq_mtx);
3067 wakeup(&cam_async.cam_doneq);
3068 break;
3069 default:
3070 case XPT_SDEV_TYPE:
3071 case XPT_TERM_IO:
3072 case XPT_ENG_INQ:
3073 /* XXX Implement */
3074 xpt_print(start_ccb->ccb_h.path,
3075 "%s: CCB type %#x %s not supported\n", __func__,
3076 start_ccb->ccb_h.func_code,
3077 xpt_action_name(start_ccb->ccb_h.func_code));
3078 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3079 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3080 xpt_done(start_ccb);
3081 }
3082 break;
3083 }
3084 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3085 ("xpt_action_default: func= %#x %s status %#x\n",
3086 start_ccb->ccb_h.func_code,
3087 xpt_action_name(start_ccb->ccb_h.func_code),
3088 start_ccb->ccb_h.status));
3089 }
3090
3091 /*
3092 * Call the sim poll routine to allow the sim to complete
3093 * any inflight requests, then call camisr_runqueue to
3094 * complete any CCB that the polling completed.
3095 */
3096 void
xpt_sim_poll(struct cam_sim * sim)3097 xpt_sim_poll(struct cam_sim *sim)
3098 {
3099 struct mtx *mtx;
3100
3101 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3102 mtx = sim->mtx;
3103 if (mtx)
3104 mtx_lock(mtx);
3105 (*(sim->sim_poll))(sim);
3106 if (mtx)
3107 mtx_unlock(mtx);
3108 camisr_runqueue();
3109 }
3110
3111 uint32_t
xpt_poll_setup(union ccb * start_ccb)3112 xpt_poll_setup(union ccb *start_ccb)
3113 {
3114 uint32_t timeout;
3115 struct cam_sim *sim;
3116 struct cam_devq *devq;
3117 struct cam_ed *dev;
3118
3119 timeout = start_ccb->ccb_h.timeout * 10;
3120 sim = start_ccb->ccb_h.path->bus->sim;
3121 devq = sim->devq;
3122 dev = start_ccb->ccb_h.path->device;
3123
3124 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3125
3126 /*
3127 * Steal an opening so that no other queued requests
3128 * can get it before us while we simulate interrupts.
3129 */
3130 mtx_lock(&devq->send_mtx);
3131 dev->ccbq.dev_openings--;
3132 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3133 (--timeout > 0)) {
3134 mtx_unlock(&devq->send_mtx);
3135 DELAY(100);
3136 xpt_sim_poll(sim);
3137 mtx_lock(&devq->send_mtx);
3138 }
3139 dev->ccbq.dev_openings++;
3140 mtx_unlock(&devq->send_mtx);
3141
3142 return (timeout);
3143 }
3144
3145 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3146 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3147 {
3148
3149 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3150 ("%s: non-pollable sim", __func__));
3151 while (--timeout > 0) {
3152 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3153 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3154 != CAM_REQ_INPROG)
3155 break;
3156 DELAY(100);
3157 }
3158
3159 if (timeout == 0) {
3160 /*
3161 * XXX Is it worth adding a sim_timeout entry
3162 * point so we can attempt recovery? If
3163 * this is only used for dumps, I don't think
3164 * it is.
3165 */
3166 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3167 }
3168 }
3169
3170 /*
3171 * Schedule a peripheral driver to receive a ccb when its
3172 * target device has space for more transactions.
3173 */
3174 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3175 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3176 {
3177
3178 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3179 cam_periph_assert(periph, MA_OWNED);
3180 if (new_priority < periph->scheduled_priority) {
3181 periph->scheduled_priority = new_priority;
3182 xpt_run_allocq(periph, 0);
3183 }
3184 }
3185
3186 /*
3187 * Schedule a device to run on a given queue.
3188 * If the device was inserted as a new entry on the queue,
3189 * return 1 meaning the device queue should be run. If we
3190 * were already queued, implying someone else has already
3191 * started the queue, return 0 so the caller doesn't attempt
3192 * to run the queue.
3193 */
3194 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3195 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3196 uint32_t new_priority)
3197 {
3198 int retval;
3199 uint32_t old_priority;
3200
3201 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3202
3203 old_priority = pinfo->priority;
3204
3205 /*
3206 * Are we already queued?
3207 */
3208 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3209 /* Simply reorder based on new priority */
3210 if (new_priority < old_priority) {
3211 camq_change_priority(queue, pinfo->index,
3212 new_priority);
3213 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3214 ("changed priority to %d\n",
3215 new_priority));
3216 retval = 1;
3217 } else
3218 retval = 0;
3219 } else {
3220 /* New entry on the queue */
3221 if (new_priority < old_priority)
3222 pinfo->priority = new_priority;
3223
3224 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3225 ("Inserting onto queue\n"));
3226 pinfo->generation = ++queue->generation;
3227 camq_insert(queue, pinfo);
3228 retval = 1;
3229 }
3230 return (retval);
3231 }
3232
3233 static void
xpt_run_allocq_task(void * context,int pending)3234 xpt_run_allocq_task(void *context, int pending)
3235 {
3236 struct cam_periph *periph = context;
3237
3238 cam_periph_lock(periph);
3239 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3240 xpt_run_allocq(periph, 1);
3241 cam_periph_unlock(periph);
3242 cam_periph_release(periph);
3243 }
3244
3245 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3246 xpt_run_allocq(struct cam_periph *periph, int sleep)
3247 {
3248 struct cam_ed *device;
3249 union ccb *ccb;
3250 uint32_t prio;
3251
3252 cam_periph_assert(periph, MA_OWNED);
3253 if (periph->periph_allocating)
3254 return;
3255 cam_periph_doacquire(periph);
3256 periph->periph_allocating = 1;
3257 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3258 device = periph->path->device;
3259 ccb = NULL;
3260 restart:
3261 while ((prio = min(periph->scheduled_priority,
3262 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3263 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3264 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3265 if (ccb == NULL &&
3266 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3267 if (sleep) {
3268 ccb = xpt_get_ccb(periph);
3269 goto restart;
3270 }
3271 if (periph->flags & CAM_PERIPH_RUN_TASK)
3272 break;
3273 cam_periph_doacquire(periph);
3274 periph->flags |= CAM_PERIPH_RUN_TASK;
3275 taskqueue_enqueue(xsoftc.xpt_taskq,
3276 &periph->periph_run_task);
3277 break;
3278 }
3279 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3280 if (prio == periph->immediate_priority) {
3281 periph->immediate_priority = CAM_PRIORITY_NONE;
3282 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3283 ("waking cam_periph_getccb()\n"));
3284 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3285 periph_links.sle);
3286 wakeup(&periph->ccb_list);
3287 } else {
3288 periph->scheduled_priority = CAM_PRIORITY_NONE;
3289 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3290 ("calling periph_start()\n"));
3291 periph->periph_start(periph, ccb);
3292 }
3293 ccb = NULL;
3294 }
3295 if (ccb != NULL)
3296 xpt_release_ccb(ccb);
3297 periph->periph_allocating = 0;
3298 cam_periph_release_locked(periph);
3299 }
3300
3301 static void
xpt_run_devq(struct cam_devq * devq)3302 xpt_run_devq(struct cam_devq *devq)
3303 {
3304 struct mtx *mtx;
3305
3306 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3307
3308 devq->send_queue.qfrozen_cnt++;
3309 while ((devq->send_queue.entries > 0)
3310 && (devq->send_openings > 0)
3311 && (devq->send_queue.qfrozen_cnt <= 1)) {
3312 struct cam_ed *device;
3313 union ccb *work_ccb;
3314 struct cam_sim *sim;
3315 struct xpt_proto *proto;
3316
3317 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3318 CAMQ_HEAD);
3319 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3320 ("running device %p\n", device));
3321
3322 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3323 if (work_ccb == NULL) {
3324 printf("device on run queue with no ccbs???\n");
3325 continue;
3326 }
3327
3328 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3329 mtx_lock(&xsoftc.xpt_highpower_lock);
3330 if (xsoftc.num_highpower <= 0) {
3331 /*
3332 * We got a high power command, but we
3333 * don't have any available slots. Freeze
3334 * the device queue until we have a slot
3335 * available.
3336 */
3337 xpt_freeze_devq_device(device, 1);
3338 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3339 highpowerq_entry);
3340
3341 mtx_unlock(&xsoftc.xpt_highpower_lock);
3342 continue;
3343 } else {
3344 /*
3345 * Consume a high power slot while
3346 * this ccb runs.
3347 */
3348 xsoftc.num_highpower--;
3349 }
3350 mtx_unlock(&xsoftc.xpt_highpower_lock);
3351 }
3352 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3353 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3354 devq->send_openings--;
3355 devq->send_active++;
3356 xpt_schedule_devq(devq, device);
3357 mtx_unlock(&devq->send_mtx);
3358
3359 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3360 /*
3361 * The client wants to freeze the queue
3362 * after this CCB is sent.
3363 */
3364 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3365 }
3366
3367 /* In Target mode, the peripheral driver knows best... */
3368 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3369 if ((device->inq_flags & SID_CmdQue) != 0
3370 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3371 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3372 else
3373 /*
3374 * Clear this in case of a retried CCB that
3375 * failed due to a rejected tag.
3376 */
3377 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3378 }
3379
3380 KASSERT(device == work_ccb->ccb_h.path->device,
3381 ("device (%p) / path->device (%p) mismatch",
3382 device, work_ccb->ccb_h.path->device));
3383 proto = xpt_proto_find(device->protocol);
3384 if (proto && proto->ops->debug_out)
3385 proto->ops->debug_out(work_ccb);
3386
3387 /*
3388 * Device queues can be shared among multiple SIM instances
3389 * that reside on different buses. Use the SIM from the
3390 * queued device, rather than the one from the calling bus.
3391 */
3392 sim = device->sim;
3393 mtx = sim->mtx;
3394 if (mtx && !mtx_owned(mtx))
3395 mtx_lock(mtx);
3396 else
3397 mtx = NULL;
3398 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3399 (*(sim->sim_action))(sim, work_ccb);
3400 if (mtx)
3401 mtx_unlock(mtx);
3402 mtx_lock(&devq->send_mtx);
3403 }
3404 devq->send_queue.qfrozen_cnt--;
3405 }
3406
3407 /*
3408 * This function merges stuff from the src ccb into the dst ccb, while keeping
3409 * important fields in the dst ccb constant.
3410 */
3411 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3412 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3413 {
3414
3415 /*
3416 * Pull fields that are valid for peripheral drivers to set
3417 * into the dst CCB along with the CCB "payload".
3418 */
3419 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3420 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3421 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3422 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3423 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3424 sizeof(union ccb) - sizeof(struct ccb_hdr));
3425 }
3426
3427 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3428 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3429 uint32_t priority, uint32_t flags)
3430 {
3431
3432 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3433 ccb_h->pinfo.priority = priority;
3434 ccb_h->path = path;
3435 ccb_h->path_id = path->bus->path_id;
3436 if (path->target)
3437 ccb_h->target_id = path->target->target_id;
3438 else
3439 ccb_h->target_id = CAM_TARGET_WILDCARD;
3440 if (path->device) {
3441 ccb_h->target_lun = path->device->lun_id;
3442 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3443 } else {
3444 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3445 }
3446 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3447 ccb_h->flags = flags;
3448 ccb_h->xflags = 0;
3449 }
3450
3451 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3452 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3453 {
3454 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3455 }
3456
3457 /* Path manipulation functions */
3458 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3459 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3460 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3461 {
3462 struct cam_path *path;
3463 cam_status status;
3464
3465 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3466
3467 if (path == NULL) {
3468 status = CAM_RESRC_UNAVAIL;
3469 return(status);
3470 }
3471 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3472 if (status != CAM_REQ_CMP) {
3473 free(path, M_CAMPATH);
3474 path = NULL;
3475 }
3476 *new_path_ptr = path;
3477 return (status);
3478 }
3479
3480 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3481 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3482 struct cam_periph *periph, path_id_t path_id,
3483 target_id_t target_id, lun_id_t lun_id)
3484 {
3485
3486 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3487 lun_id));
3488 }
3489
3490 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3491 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3492 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3493 {
3494 struct cam_eb *bus;
3495 struct cam_et *target;
3496 struct cam_ed *device;
3497 cam_status status;
3498
3499 status = CAM_REQ_CMP; /* Completed without error */
3500 target = NULL; /* Wildcarded */
3501 device = NULL; /* Wildcarded */
3502
3503 /*
3504 * We will potentially modify the EDT, so block interrupts
3505 * that may attempt to create cam paths.
3506 */
3507 bus = xpt_find_bus(path_id);
3508 if (bus == NULL) {
3509 status = CAM_PATH_INVALID;
3510 } else {
3511 xpt_lock_buses();
3512 mtx_lock(&bus->eb_mtx);
3513 target = xpt_find_target(bus, target_id);
3514 if (target == NULL) {
3515 /* Create one */
3516 struct cam_et *new_target;
3517
3518 new_target = xpt_alloc_target(bus, target_id);
3519 if (new_target == NULL) {
3520 status = CAM_RESRC_UNAVAIL;
3521 } else {
3522 target = new_target;
3523 }
3524 }
3525 xpt_unlock_buses();
3526 if (target != NULL) {
3527 device = xpt_find_device(target, lun_id);
3528 if (device == NULL) {
3529 /* Create one */
3530 struct cam_ed *new_device;
3531
3532 new_device =
3533 (*(bus->xport->ops->alloc_device))(bus,
3534 target,
3535 lun_id);
3536 if (new_device == NULL) {
3537 status = CAM_RESRC_UNAVAIL;
3538 } else {
3539 device = new_device;
3540 }
3541 }
3542 }
3543 mtx_unlock(&bus->eb_mtx);
3544 }
3545
3546 /*
3547 * Only touch the user's data if we are successful.
3548 */
3549 if (status == CAM_REQ_CMP) {
3550 new_path->periph = perph;
3551 new_path->bus = bus;
3552 new_path->target = target;
3553 new_path->device = device;
3554 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3555 } else {
3556 if (device != NULL)
3557 xpt_release_device(device);
3558 if (target != NULL)
3559 xpt_release_target(target);
3560 if (bus != NULL)
3561 xpt_release_bus(bus);
3562 }
3563 return (status);
3564 }
3565
3566 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3567 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3568 {
3569 struct cam_path *new_path;
3570
3571 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3572 if (new_path == NULL)
3573 return (ENOMEM);
3574 *new_path = *path;
3575 if (path->bus != NULL)
3576 xpt_acquire_bus(path->bus);
3577 if (path->target != NULL)
3578 xpt_acquire_target(path->target);
3579 if (path->device != NULL)
3580 xpt_acquire_device(path->device);
3581 *new_path_ptr = new_path;
3582 return (0);
3583 }
3584
3585 void
xpt_release_path(struct cam_path * path)3586 xpt_release_path(struct cam_path *path)
3587 {
3588 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3589 if (path->device != NULL) {
3590 xpt_release_device(path->device);
3591 path->device = NULL;
3592 }
3593 if (path->target != NULL) {
3594 xpt_release_target(path->target);
3595 path->target = NULL;
3596 }
3597 if (path->bus != NULL) {
3598 xpt_release_bus(path->bus);
3599 path->bus = NULL;
3600 }
3601 }
3602
3603 void
xpt_free_path(struct cam_path * path)3604 xpt_free_path(struct cam_path *path)
3605 {
3606
3607 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3608 xpt_release_path(path);
3609 free(path, M_CAMPATH);
3610 }
3611
3612 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3613 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3614 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3615 {
3616
3617 xpt_lock_buses();
3618 if (bus_ref) {
3619 if (path->bus)
3620 *bus_ref = path->bus->refcount;
3621 else
3622 *bus_ref = 0;
3623 }
3624 if (periph_ref) {
3625 if (path->periph)
3626 *periph_ref = path->periph->refcount;
3627 else
3628 *periph_ref = 0;
3629 }
3630 xpt_unlock_buses();
3631 if (target_ref) {
3632 if (path->target)
3633 *target_ref = path->target->refcount;
3634 else
3635 *target_ref = 0;
3636 }
3637 if (device_ref) {
3638 if (path->device)
3639 *device_ref = path->device->refcount;
3640 else
3641 *device_ref = 0;
3642 }
3643 }
3644
3645 /*
3646 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3647 * in path1, 2 for match with wildcards in path2.
3648 */
3649 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3650 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3651 {
3652 int retval = 0;
3653
3654 if (path1->bus != path2->bus) {
3655 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3656 retval = 1;
3657 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3658 retval = 2;
3659 else
3660 return (-1);
3661 }
3662 if (path1->target != path2->target) {
3663 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3664 if (retval == 0)
3665 retval = 1;
3666 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3667 retval = 2;
3668 else
3669 return (-1);
3670 }
3671 if (path1->device != path2->device) {
3672 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3673 if (retval == 0)
3674 retval = 1;
3675 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3676 retval = 2;
3677 else
3678 return (-1);
3679 }
3680 return (retval);
3681 }
3682
3683 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3684 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3685 {
3686 int retval = 0;
3687
3688 if (path->bus != dev->target->bus) {
3689 if (path->bus->path_id == CAM_BUS_WILDCARD)
3690 retval = 1;
3691 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3692 retval = 2;
3693 else
3694 return (-1);
3695 }
3696 if (path->target != dev->target) {
3697 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3698 if (retval == 0)
3699 retval = 1;
3700 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3701 retval = 2;
3702 else
3703 return (-1);
3704 }
3705 if (path->device != dev) {
3706 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3707 if (retval == 0)
3708 retval = 1;
3709 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3710 retval = 2;
3711 else
3712 return (-1);
3713 }
3714 return (retval);
3715 }
3716
3717 void
xpt_print_path(struct cam_path * path)3718 xpt_print_path(struct cam_path *path)
3719 {
3720 struct sbuf sb;
3721 char buffer[XPT_PRINT_LEN];
3722
3723 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3724 xpt_path_sbuf(path, &sb);
3725 sbuf_finish(&sb);
3726 printf("%s", sbuf_data(&sb));
3727 sbuf_delete(&sb);
3728 }
3729
3730 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3731 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3732 {
3733 if (device == NULL)
3734 sbuf_cat(sb, "(nopath): ");
3735 else {
3736 sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3737 device->sim->sim_name,
3738 device->sim->unit_number,
3739 device->sim->bus_id,
3740 device->target->target_id,
3741 (uintmax_t)device->lun_id);
3742 }
3743 }
3744
3745 void
xpt_print(struct cam_path * path,const char * fmt,...)3746 xpt_print(struct cam_path *path, const char *fmt, ...)
3747 {
3748 va_list ap;
3749 struct sbuf sb;
3750 char buffer[XPT_PRINT_LEN];
3751
3752 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3753
3754 xpt_path_sbuf(path, &sb);
3755 va_start(ap, fmt);
3756 sbuf_vprintf(&sb, fmt, ap);
3757 va_end(ap);
3758
3759 sbuf_finish(&sb);
3760 printf("%s", sbuf_data(&sb));
3761 sbuf_delete(&sb);
3762 }
3763
3764 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3765 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3766 {
3767 struct sbuf sb;
3768
3769 sbuf_new(&sb, str, str_len, 0);
3770 xpt_path_sbuf(path, &sb);
3771 sbuf_finish(&sb);
3772 return (str);
3773 }
3774
3775 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3776 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3777 {
3778
3779 if (path == NULL)
3780 sbuf_cat(sb, "(nopath): ");
3781 else {
3782 if (path->periph != NULL)
3783 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3784 path->periph->unit_number);
3785 else
3786 sbuf_cat(sb, "(noperiph:");
3787
3788 if (path->bus != NULL)
3789 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3790 path->bus->sim->unit_number,
3791 path->bus->sim->bus_id);
3792 else
3793 sbuf_cat(sb, "nobus:");
3794
3795 if (path->target != NULL)
3796 sbuf_printf(sb, "%d:", path->target->target_id);
3797 else
3798 sbuf_cat(sb, "X:");
3799
3800 if (path->device != NULL)
3801 sbuf_printf(sb, "%jx): ",
3802 (uintmax_t)path->device->lun_id);
3803 else
3804 sbuf_cat(sb, "X): ");
3805 }
3806 }
3807
3808 path_id_t
xpt_path_path_id(struct cam_path * path)3809 xpt_path_path_id(struct cam_path *path)
3810 {
3811 return(path->bus->path_id);
3812 }
3813
3814 target_id_t
xpt_path_target_id(struct cam_path * path)3815 xpt_path_target_id(struct cam_path *path)
3816 {
3817 if (path->target != NULL)
3818 return (path->target->target_id);
3819 else
3820 return (CAM_TARGET_WILDCARD);
3821 }
3822
3823 lun_id_t
xpt_path_lun_id(struct cam_path * path)3824 xpt_path_lun_id(struct cam_path *path)
3825 {
3826 if (path->device != NULL)
3827 return (path->device->lun_id);
3828 else
3829 return (CAM_LUN_WILDCARD);
3830 }
3831
3832 struct cam_sim *
xpt_path_sim(struct cam_path * path)3833 xpt_path_sim(struct cam_path *path)
3834 {
3835
3836 return (path->bus->sim);
3837 }
3838
3839 struct cam_periph*
xpt_path_periph(struct cam_path * path)3840 xpt_path_periph(struct cam_path *path)
3841 {
3842
3843 return (path->periph);
3844 }
3845
3846 /*
3847 * Release a CAM control block for the caller. Remit the cost of the structure
3848 * to the device referenced by the path. If the this device had no 'credits'
3849 * and peripheral drivers have registered async callbacks for this notification
3850 * call them now.
3851 */
3852 void
xpt_release_ccb(union ccb * free_ccb)3853 xpt_release_ccb(union ccb *free_ccb)
3854 {
3855 struct cam_ed *device;
3856 struct cam_periph *periph;
3857
3858 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3859 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3860 device = free_ccb->ccb_h.path->device;
3861 periph = free_ccb->ccb_h.path->periph;
3862
3863 xpt_free_ccb(free_ccb);
3864 periph->periph_allocated--;
3865 cam_ccbq_release_opening(&device->ccbq);
3866 xpt_run_allocq(periph, 0);
3867 }
3868
3869 /* Functions accessed by SIM drivers */
3870
3871 static struct xpt_xport_ops xport_default_ops = {
3872 .alloc_device = xpt_alloc_device_default,
3873 .action = xpt_action_default,
3874 .async = xpt_dev_async_default,
3875 };
3876 static struct xpt_xport xport_default = {
3877 .xport = XPORT_UNKNOWN,
3878 .name = "unknown",
3879 .ops = &xport_default_ops,
3880 };
3881
3882 CAM_XPT_XPORT(xport_default);
3883
3884 /*
3885 * A sim structure, listing the SIM entry points and instance
3886 * identification info is passed to xpt_bus_register to hook the SIM
3887 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3888 * for this new bus and places it in the array of buses and assigns
3889 * it a path_id. The path_id may be influenced by "hard wiring"
3890 * information specified by the user. Once interrupt services are
3891 * available, the bus will be probed.
3892 */
3893 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3894 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3895 {
3896 struct cam_eb *new_bus;
3897 struct cam_eb *old_bus;
3898 struct ccb_pathinq cpi;
3899 struct cam_path *path;
3900 cam_status status;
3901
3902 sim->bus_id = bus;
3903 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3904 M_CAMXPT, M_NOWAIT|M_ZERO);
3905 if (new_bus == NULL) {
3906 /* Couldn't satisfy request */
3907 return (ENOMEM);
3908 }
3909
3910 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3911 TAILQ_INIT(&new_bus->et_entries);
3912 cam_sim_hold(sim);
3913 new_bus->sim = sim;
3914 timevalclear(&new_bus->last_reset);
3915 new_bus->flags = 0;
3916 new_bus->refcount = 1; /* Held until a bus_deregister event */
3917 new_bus->generation = 0;
3918 new_bus->parent_dev = parent;
3919
3920 xpt_lock_buses();
3921 sim->path_id = new_bus->path_id =
3922 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3923 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3924 while (old_bus != NULL
3925 && old_bus->path_id < new_bus->path_id)
3926 old_bus = TAILQ_NEXT(old_bus, links);
3927 if (old_bus != NULL)
3928 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3929 else
3930 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3931 xsoftc.bus_generation++;
3932 xpt_unlock_buses();
3933
3934 /*
3935 * Set a default transport so that a PATH_INQ can be issued to
3936 * the SIM. This will then allow for probing and attaching of
3937 * a more appropriate transport.
3938 */
3939 new_bus->xport = &xport_default;
3940
3941 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3942 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3943 if (status != CAM_REQ_CMP) {
3944 xpt_release_bus(new_bus);
3945 return (ENOMEM);
3946 }
3947
3948 xpt_path_inq(&cpi, path);
3949
3950 /*
3951 * Use the results of PATH_INQ to pick a transport. Note that
3952 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3953 * xport_default instead of a transport from
3954 * cam_xpt_port_set.
3955 */
3956 if (cam_ccb_success((union ccb *)&cpi) &&
3957 cpi.transport != XPORT_UNSPECIFIED) {
3958 struct xpt_xport **xpt;
3959
3960 SET_FOREACH(xpt, cam_xpt_xport_set) {
3961 if ((*xpt)->xport == cpi.transport) {
3962 new_bus->xport = *xpt;
3963 break;
3964 }
3965 }
3966 if (new_bus->xport == &xport_default) {
3967 xpt_print(path,
3968 "No transport found for %d\n", cpi.transport);
3969 xpt_release_bus(new_bus);
3970 xpt_free_path(path);
3971 return (EINVAL);
3972 }
3973 }
3974
3975 /* Notify interested parties */
3976 if (sim->path_id != CAM_XPT_PATH_ID) {
3977 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3978 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3979 union ccb *scan_ccb;
3980
3981 /* Initiate bus rescan. */
3982 scan_ccb = xpt_alloc_ccb_nowait();
3983 if (scan_ccb != NULL) {
3984 scan_ccb->ccb_h.path = path;
3985 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3986 scan_ccb->crcn.flags = 0;
3987 xpt_rescan(scan_ccb);
3988 } else {
3989 xpt_print(path,
3990 "Can't allocate CCB to scan bus\n");
3991 xpt_free_path(path);
3992 }
3993 } else
3994 xpt_free_path(path);
3995 } else
3996 xpt_free_path(path);
3997 return (CAM_SUCCESS);
3998 }
3999
4000 int
xpt_bus_deregister(path_id_t pathid)4001 xpt_bus_deregister(path_id_t pathid)
4002 {
4003 struct cam_path bus_path;
4004 cam_status status;
4005
4006 status = xpt_compile_path(&bus_path, NULL, pathid,
4007 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4008 if (status != CAM_REQ_CMP)
4009 return (ENOMEM);
4010
4011 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4012 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4013
4014 /* Release the reference count held while registered. */
4015 xpt_release_bus(bus_path.bus);
4016 xpt_release_path(&bus_path);
4017
4018 return (CAM_SUCCESS);
4019 }
4020
4021 static path_id_t
xptnextfreepathid(void)4022 xptnextfreepathid(void)
4023 {
4024 struct cam_eb *bus;
4025 path_id_t pathid;
4026 const char *strval;
4027
4028 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4029 pathid = 0;
4030 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4031 retry:
4032 /* Find an unoccupied pathid */
4033 while (bus != NULL && bus->path_id <= pathid) {
4034 if (bus->path_id == pathid)
4035 pathid++;
4036 bus = TAILQ_NEXT(bus, links);
4037 }
4038
4039 /*
4040 * Ensure that this pathid is not reserved for
4041 * a bus that may be registered in the future.
4042 */
4043 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4044 ++pathid;
4045 /* Start the search over */
4046 goto retry;
4047 }
4048 return (pathid);
4049 }
4050
4051 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4052 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4053 {
4054 path_id_t pathid;
4055 int i, dunit, val;
4056 char buf[32];
4057 const char *dname;
4058
4059 pathid = CAM_XPT_PATH_ID;
4060 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4061 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4062 return (pathid);
4063 i = 0;
4064 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4065 if (strcmp(dname, "scbus")) {
4066 /* Avoid a bit of foot shooting. */
4067 continue;
4068 }
4069 if (dunit < 0) /* unwired?! */
4070 continue;
4071 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4072 if (sim_bus == val) {
4073 pathid = dunit;
4074 break;
4075 }
4076 } else if (sim_bus == 0) {
4077 /* Unspecified matches bus 0 */
4078 pathid = dunit;
4079 break;
4080 } else {
4081 printf(
4082 "Ambiguous scbus configuration for %s%d bus %d, cannot wire down. The kernel\n"
4083 "config entry for scbus%d should specify a controller bus.\n"
4084 "Scbus will be assigned dynamically.\n",
4085 sim_name, sim_unit, sim_bus, dunit);
4086 break;
4087 }
4088 }
4089
4090 if (pathid == CAM_XPT_PATH_ID)
4091 pathid = xptnextfreepathid();
4092 return (pathid);
4093 }
4094
4095 static const char *
xpt_async_string(uint32_t async_code)4096 xpt_async_string(uint32_t async_code)
4097 {
4098
4099 switch (async_code) {
4100 case AC_BUS_RESET: return ("AC_BUS_RESET");
4101 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4102 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4103 case AC_SENT_BDR: return ("AC_SENT_BDR");
4104 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4105 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4106 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4107 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4108 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4109 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4110 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4111 case AC_CONTRACT: return ("AC_CONTRACT");
4112 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4113 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4114 }
4115 return ("AC_UNKNOWN");
4116 }
4117
4118 static int
xpt_async_size(uint32_t async_code)4119 xpt_async_size(uint32_t async_code)
4120 {
4121
4122 switch (async_code) {
4123 case AC_BUS_RESET: return (0);
4124 case AC_UNSOL_RESEL: return (0);
4125 case AC_SCSI_AEN: return (0);
4126 case AC_SENT_BDR: return (0);
4127 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4128 case AC_PATH_DEREGISTERED: return (0);
4129 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4130 case AC_LOST_DEVICE: return (0);
4131 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4132 case AC_INQ_CHANGED: return (0);
4133 case AC_GETDEV_CHANGED: return (0);
4134 case AC_CONTRACT: return (sizeof(struct ac_contract));
4135 case AC_ADVINFO_CHANGED: return (-1);
4136 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4137 }
4138 return (0);
4139 }
4140
4141 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4142 xpt_async_process_dev(struct cam_ed *device, void *arg)
4143 {
4144 union ccb *ccb = arg;
4145 struct cam_path *path = ccb->ccb_h.path;
4146 void *async_arg = ccb->casync.async_arg_ptr;
4147 uint32_t async_code = ccb->casync.async_code;
4148 bool relock;
4149
4150 if (path->device != device
4151 && path->device->lun_id != CAM_LUN_WILDCARD
4152 && device->lun_id != CAM_LUN_WILDCARD)
4153 return (1);
4154
4155 /*
4156 * The async callback could free the device.
4157 * If it is a broadcast async, it doesn't hold
4158 * device reference, so take our own reference.
4159 */
4160 xpt_acquire_device(device);
4161
4162 /*
4163 * If async for specific device is to be delivered to
4164 * the wildcard client, take the specific device lock.
4165 * XXX: We may need a way for client to specify it.
4166 */
4167 if ((device->lun_id == CAM_LUN_WILDCARD &&
4168 path->device->lun_id != CAM_LUN_WILDCARD) ||
4169 (device->target->target_id == CAM_TARGET_WILDCARD &&
4170 path->target->target_id != CAM_TARGET_WILDCARD) ||
4171 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4172 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4173 mtx_unlock(&device->device_mtx);
4174 xpt_path_lock(path);
4175 relock = true;
4176 } else
4177 relock = false;
4178
4179 (*(device->target->bus->xport->ops->async))(async_code,
4180 device->target->bus, device->target, device, async_arg);
4181 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4182
4183 if (relock) {
4184 xpt_path_unlock(path);
4185 mtx_lock(&device->device_mtx);
4186 }
4187 xpt_release_device(device);
4188 return (1);
4189 }
4190
4191 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4192 xpt_async_process_tgt(struct cam_et *target, void *arg)
4193 {
4194 union ccb *ccb = arg;
4195 struct cam_path *path = ccb->ccb_h.path;
4196
4197 if (path->target != target
4198 && path->target->target_id != CAM_TARGET_WILDCARD
4199 && target->target_id != CAM_TARGET_WILDCARD)
4200 return (1);
4201
4202 if (ccb->casync.async_code == AC_SENT_BDR) {
4203 /* Update our notion of when the last reset occurred */
4204 microtime(&target->last_reset);
4205 }
4206
4207 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4208 }
4209
4210 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4211 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4212 {
4213 struct cam_eb *bus;
4214 struct cam_path *path;
4215 void *async_arg;
4216 uint32_t async_code;
4217
4218 path = ccb->ccb_h.path;
4219 async_code = ccb->casync.async_code;
4220 async_arg = ccb->casync.async_arg_ptr;
4221 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4222 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4223 bus = path->bus;
4224
4225 if (async_code == AC_BUS_RESET) {
4226 /* Update our notion of when the last reset occurred */
4227 microtime(&bus->last_reset);
4228 }
4229
4230 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4231
4232 /*
4233 * If this wasn't a fully wildcarded async, tell all
4234 * clients that want all async events.
4235 */
4236 if (bus != xpt_periph->path->bus) {
4237 xpt_path_lock(xpt_periph->path);
4238 xpt_async_process_dev(xpt_periph->path->device, ccb);
4239 xpt_path_unlock(xpt_periph->path);
4240 }
4241
4242 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4243 xpt_release_devq(path, 1, TRUE);
4244 else
4245 xpt_release_simq(path->bus->sim, TRUE);
4246 if (ccb->casync.async_arg_size > 0)
4247 free(async_arg, M_CAMXPT);
4248 xpt_free_path(path);
4249 xpt_free_ccb(ccb);
4250 }
4251
4252 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4253 xpt_async_bcast(struct async_list *async_head,
4254 uint32_t async_code,
4255 struct cam_path *path, void *async_arg)
4256 {
4257 struct async_node *cur_entry;
4258 struct mtx *mtx;
4259
4260 cur_entry = SLIST_FIRST(async_head);
4261 while (cur_entry != NULL) {
4262 struct async_node *next_entry;
4263 /*
4264 * Grab the next list entry before we call the current
4265 * entry's callback. This is because the callback function
4266 * can delete its async callback entry.
4267 */
4268 next_entry = SLIST_NEXT(cur_entry, links);
4269 if ((cur_entry->event_enable & async_code) != 0) {
4270 mtx = cur_entry->event_lock ?
4271 path->device->sim->mtx : NULL;
4272 if (mtx)
4273 mtx_lock(mtx);
4274 CAM_PROBE4(xpt, async__cb, cur_entry->callback_arg,
4275 async_code, path, async_arg);
4276 cur_entry->callback(cur_entry->callback_arg,
4277 async_code, path,
4278 async_arg);
4279 if (mtx)
4280 mtx_unlock(mtx);
4281 }
4282 cur_entry = next_entry;
4283 }
4284 }
4285
4286 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4287 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4288 {
4289 union ccb *ccb;
4290 int size;
4291
4292 ccb = xpt_alloc_ccb_nowait();
4293 if (ccb == NULL) {
4294 xpt_print(path, "Can't allocate CCB to send %s\n",
4295 xpt_async_string(async_code));
4296 return;
4297 }
4298
4299 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4300 xpt_print(path, "Can't allocate path to send %s\n",
4301 xpt_async_string(async_code));
4302 xpt_free_ccb(ccb);
4303 return;
4304 }
4305 ccb->ccb_h.path->periph = NULL;
4306 ccb->ccb_h.func_code = XPT_ASYNC;
4307 ccb->ccb_h.cbfcnp = xpt_async_process;
4308 ccb->ccb_h.flags |= CAM_UNLOCKED;
4309 ccb->casync.async_code = async_code;
4310 ccb->casync.async_arg_size = 0;
4311 size = xpt_async_size(async_code);
4312 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4313 ("xpt_async: func %#x %s aync_code %d %s\n",
4314 ccb->ccb_h.func_code,
4315 xpt_action_name(ccb->ccb_h.func_code),
4316 async_code,
4317 xpt_async_string(async_code)));
4318 if (size > 0 && async_arg != NULL) {
4319 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4320 if (ccb->casync.async_arg_ptr == NULL) {
4321 xpt_print(path, "Can't allocate argument to send %s\n",
4322 xpt_async_string(async_code));
4323 xpt_free_path(ccb->ccb_h.path);
4324 xpt_free_ccb(ccb);
4325 return;
4326 }
4327 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4328 ccb->casync.async_arg_size = size;
4329 } else if (size < 0) {
4330 ccb->casync.async_arg_ptr = async_arg;
4331 ccb->casync.async_arg_size = size;
4332 }
4333 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4334 xpt_freeze_devq(path, 1);
4335 else
4336 xpt_freeze_simq(path->bus->sim, 1);
4337 xpt_action(ccb);
4338 }
4339
4340 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4341 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4342 struct cam_et *target, struct cam_ed *device,
4343 void *async_arg)
4344 {
4345
4346 /*
4347 * We only need to handle events for real devices.
4348 */
4349 if (target->target_id == CAM_TARGET_WILDCARD
4350 || device->lun_id == CAM_LUN_WILDCARD)
4351 return;
4352
4353 printf("%s called\n", __func__);
4354 }
4355
4356 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4357 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4358 {
4359 struct cam_devq *devq;
4360 uint32_t freeze;
4361
4362 devq = dev->sim->devq;
4363 mtx_assert(&devq->send_mtx, MA_OWNED);
4364 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4365 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4366 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4367 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4368 /* Remove frozen device from sendq. */
4369 if (device_is_queued(dev))
4370 camq_remove(&devq->send_queue, dev->devq_entry.index);
4371 return (freeze);
4372 }
4373
4374 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4375 xpt_freeze_devq(struct cam_path *path, u_int count)
4376 {
4377 struct cam_ed *dev = path->device;
4378 struct cam_devq *devq;
4379 uint32_t freeze;
4380
4381 devq = dev->sim->devq;
4382 mtx_lock(&devq->send_mtx);
4383 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4384 freeze = xpt_freeze_devq_device(dev, count);
4385 mtx_unlock(&devq->send_mtx);
4386 return (freeze);
4387 }
4388
4389 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4390 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4391 {
4392 struct cam_devq *devq;
4393 uint32_t freeze;
4394
4395 devq = sim->devq;
4396 mtx_lock(&devq->send_mtx);
4397 freeze = (devq->send_queue.qfrozen_cnt += count);
4398 mtx_unlock(&devq->send_mtx);
4399 return (freeze);
4400 }
4401
4402 static void
xpt_release_devq_timeout(void * arg)4403 xpt_release_devq_timeout(void *arg)
4404 {
4405 struct cam_ed *dev;
4406 struct cam_devq *devq;
4407
4408 dev = (struct cam_ed *)arg;
4409 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4410 devq = dev->sim->devq;
4411 mtx_assert(&devq->send_mtx, MA_OWNED);
4412 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4413 xpt_run_devq(devq);
4414 }
4415
4416 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4417 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4418 {
4419 struct cam_ed *dev;
4420 struct cam_devq *devq;
4421
4422 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4423 count, run_queue));
4424 dev = path->device;
4425 devq = dev->sim->devq;
4426 mtx_lock(&devq->send_mtx);
4427 if (xpt_release_devq_device(dev, count, run_queue))
4428 xpt_run_devq(dev->sim->devq);
4429 mtx_unlock(&devq->send_mtx);
4430 }
4431
4432 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4433 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4434 {
4435
4436 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4437 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4438 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4439 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4440 if (count > dev->ccbq.queue.qfrozen_cnt) {
4441 #ifdef INVARIANTS
4442 printf("xpt_release_devq(): requested %u > present %u\n",
4443 count, dev->ccbq.queue.qfrozen_cnt);
4444 #endif
4445 count = dev->ccbq.queue.qfrozen_cnt;
4446 }
4447 dev->ccbq.queue.qfrozen_cnt -= count;
4448 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4449 /*
4450 * No longer need to wait for a successful
4451 * command completion.
4452 */
4453 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4454 /*
4455 * Remove any timeouts that might be scheduled
4456 * to release this queue.
4457 */
4458 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4459 callout_stop(&dev->callout);
4460 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4461 }
4462 /*
4463 * Now that we are unfrozen schedule the
4464 * device so any pending transactions are
4465 * run.
4466 */
4467 xpt_schedule_devq(dev->sim->devq, dev);
4468 } else
4469 run_queue = 0;
4470 return (run_queue);
4471 }
4472
4473 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4474 xpt_release_simq(struct cam_sim *sim, int run_queue)
4475 {
4476 struct cam_devq *devq;
4477
4478 devq = sim->devq;
4479 mtx_lock(&devq->send_mtx);
4480 if (devq->send_queue.qfrozen_cnt <= 0) {
4481 #ifdef INVARIANTS
4482 printf("xpt_release_simq: requested 1 > present %u\n",
4483 devq->send_queue.qfrozen_cnt);
4484 #endif
4485 } else
4486 devq->send_queue.qfrozen_cnt--;
4487 if (devq->send_queue.qfrozen_cnt == 0) {
4488 if (run_queue) {
4489 /*
4490 * Now that we are unfrozen run the send queue.
4491 */
4492 xpt_run_devq(sim->devq);
4493 }
4494 }
4495 mtx_unlock(&devq->send_mtx);
4496 }
4497
4498 void
xpt_done(union ccb * done_ccb)4499 xpt_done(union ccb *done_ccb)
4500 {
4501 struct cam_doneq *queue;
4502 int run, hash;
4503
4504 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4505 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4506 done_ccb->csio.bio != NULL)
4507 biotrack(done_ccb->csio.bio, __func__);
4508 #endif
4509
4510 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4511 ("xpt_done: func= %#x %s status %#x\n",
4512 done_ccb->ccb_h.func_code,
4513 xpt_action_name(done_ccb->ccb_h.func_code),
4514 done_ccb->ccb_h.status));
4515 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) {
4516 CAM_PROBE1(xpt, done, done_ccb);
4517 return;
4518 }
4519
4520 /* Store the time the ccb was in the sim */
4521 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4522 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4523 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4524 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4525 queue = &cam_doneqs[hash];
4526 mtx_lock(&queue->cam_doneq_mtx);
4527 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4528 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4529 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4530 mtx_unlock(&queue->cam_doneq_mtx);
4531 if (run && !dumping)
4532 wakeup(&queue->cam_doneq);
4533 }
4534
4535 void
xpt_done_direct(union ccb * done_ccb)4536 xpt_done_direct(union ccb *done_ccb)
4537 {
4538
4539 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4540 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4541 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4542 return;
4543
4544 /* Store the time the ccb was in the sim */
4545 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4546 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4547 xpt_done_process(&done_ccb->ccb_h);
4548 }
4549
4550 union ccb *
xpt_alloc_ccb(void)4551 xpt_alloc_ccb(void)
4552 {
4553 union ccb *new_ccb;
4554
4555 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4556 return (new_ccb);
4557 }
4558
4559 union ccb *
xpt_alloc_ccb_nowait(void)4560 xpt_alloc_ccb_nowait(void)
4561 {
4562 union ccb *new_ccb;
4563
4564 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4565 return (new_ccb);
4566 }
4567
4568 void
xpt_free_ccb(union ccb * free_ccb)4569 xpt_free_ccb(union ccb *free_ccb)
4570 {
4571 struct cam_periph *periph;
4572
4573 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4574 /*
4575 * Looks like a CCB allocated from a periph UMA zone.
4576 */
4577 periph = free_ccb->ccb_h.path->periph;
4578 uma_zfree(periph->ccb_zone, free_ccb);
4579 } else {
4580 free(free_ccb, M_CAMCCB);
4581 }
4582 }
4583
4584 /* Private XPT functions */
4585
4586 /*
4587 * Get a CAM control block for the caller. Charge the structure to the device
4588 * referenced by the path. If we don't have sufficient resources to allocate
4589 * more ccbs, we return NULL.
4590 */
4591 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4592 xpt_get_ccb_nowait(struct cam_periph *periph)
4593 {
4594 union ccb *new_ccb;
4595 int alloc_flags;
4596
4597 if (periph->ccb_zone != NULL) {
4598 alloc_flags = CAM_CCB_FROM_UMA;
4599 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4600 } else {
4601 alloc_flags = 0;
4602 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4603 }
4604 if (new_ccb == NULL)
4605 return (NULL);
4606 new_ccb->ccb_h.alloc_flags = alloc_flags;
4607 periph->periph_allocated++;
4608 cam_ccbq_take_opening(&periph->path->device->ccbq);
4609 return (new_ccb);
4610 }
4611
4612 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4613 xpt_get_ccb(struct cam_periph *periph)
4614 {
4615 union ccb *new_ccb;
4616 int alloc_flags;
4617
4618 cam_periph_unlock(periph);
4619 if (periph->ccb_zone != NULL) {
4620 alloc_flags = CAM_CCB_FROM_UMA;
4621 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4622 } else {
4623 alloc_flags = 0;
4624 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4625 }
4626 new_ccb->ccb_h.alloc_flags = alloc_flags;
4627 cam_periph_lock(periph);
4628 periph->periph_allocated++;
4629 cam_ccbq_take_opening(&periph->path->device->ccbq);
4630 return (new_ccb);
4631 }
4632
4633 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4634 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4635 {
4636 struct ccb_hdr *ccb_h;
4637
4638 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4639 cam_periph_assert(periph, MA_OWNED);
4640 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4641 ccb_h->pinfo.priority != priority) {
4642 if (priority < periph->immediate_priority) {
4643 periph->immediate_priority = priority;
4644 xpt_run_allocq(periph, 0);
4645 } else
4646 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4647 "cgticb", 0);
4648 }
4649 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4650 return ((union ccb *)ccb_h);
4651 }
4652
4653 static void
xpt_acquire_bus(struct cam_eb * bus)4654 xpt_acquire_bus(struct cam_eb *bus)
4655 {
4656
4657 xpt_lock_buses();
4658 bus->refcount++;
4659 xpt_unlock_buses();
4660 }
4661
4662 static void
xpt_release_bus(struct cam_eb * bus)4663 xpt_release_bus(struct cam_eb *bus)
4664 {
4665
4666 xpt_lock_buses();
4667 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4668 if (--bus->refcount > 0) {
4669 xpt_unlock_buses();
4670 return;
4671 }
4672 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4673 xsoftc.bus_generation++;
4674 xpt_unlock_buses();
4675 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4676 ("destroying bus, but target list is not empty"));
4677 cam_sim_release(bus->sim);
4678 mtx_destroy(&bus->eb_mtx);
4679 free(bus, M_CAMXPT);
4680 }
4681
4682 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4683 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4684 {
4685 struct cam_et *cur_target, *target;
4686
4687 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4688 mtx_assert(&bus->eb_mtx, MA_OWNED);
4689 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4690 M_NOWAIT|M_ZERO);
4691 if (target == NULL)
4692 return (NULL);
4693
4694 TAILQ_INIT(&target->ed_entries);
4695 target->bus = bus;
4696 target->target_id = target_id;
4697 target->refcount = 1;
4698 target->generation = 0;
4699 target->luns = NULL;
4700 target->wluns = NULL;
4701 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4702 timevalclear(&target->last_reset);
4703 /*
4704 * Hold a reference to our parent bus so it
4705 * will not go away before we do.
4706 */
4707 bus->refcount++;
4708
4709 /* Insertion sort into our bus's target list */
4710 cur_target = TAILQ_FIRST(&bus->et_entries);
4711 while (cur_target != NULL && cur_target->target_id < target_id)
4712 cur_target = TAILQ_NEXT(cur_target, links);
4713 if (cur_target != NULL) {
4714 TAILQ_INSERT_BEFORE(cur_target, target, links);
4715 } else {
4716 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4717 }
4718 bus->generation++;
4719 return (target);
4720 }
4721
4722 static void
xpt_acquire_target(struct cam_et * target)4723 xpt_acquire_target(struct cam_et *target)
4724 {
4725 struct cam_eb *bus = target->bus;
4726
4727 mtx_lock(&bus->eb_mtx);
4728 target->refcount++;
4729 mtx_unlock(&bus->eb_mtx);
4730 }
4731
4732 static void
xpt_release_target(struct cam_et * target)4733 xpt_release_target(struct cam_et *target)
4734 {
4735 struct cam_eb *bus = target->bus;
4736
4737 mtx_lock(&bus->eb_mtx);
4738 if (--target->refcount > 0) {
4739 mtx_unlock(&bus->eb_mtx);
4740 return;
4741 }
4742 TAILQ_REMOVE(&bus->et_entries, target, links);
4743 bus->generation++;
4744 mtx_unlock(&bus->eb_mtx);
4745 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4746 ("destroying target, but device list is not empty"));
4747 xpt_release_bus(bus);
4748 mtx_destroy(&target->luns_mtx);
4749 if (target->luns)
4750 free(target->luns, M_CAMXPT);
4751 free(target, M_CAMXPT);
4752 }
4753
4754 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4755 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4756 lun_id_t lun_id)
4757 {
4758 struct cam_ed *device;
4759
4760 device = xpt_alloc_device(bus, target, lun_id);
4761 if (device == NULL)
4762 return (NULL);
4763
4764 device->mintags = 1;
4765 device->maxtags = 1;
4766 return (device);
4767 }
4768
4769 static void
xpt_destroy_device(void * context,int pending)4770 xpt_destroy_device(void *context, int pending)
4771 {
4772 struct cam_ed *device = context;
4773
4774 mtx_lock(&device->device_mtx);
4775 mtx_destroy(&device->device_mtx);
4776 free(device, M_CAMDEV);
4777 }
4778
4779 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4780 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4781 {
4782 struct cam_ed *cur_device, *device;
4783 struct cam_devq *devq;
4784 cam_status status;
4785
4786 mtx_assert(&bus->eb_mtx, MA_OWNED);
4787 /* Make space for us in the device queue on our bus */
4788 devq = bus->sim->devq;
4789 mtx_lock(&devq->send_mtx);
4790 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4791 mtx_unlock(&devq->send_mtx);
4792 if (status != CAM_REQ_CMP)
4793 return (NULL);
4794
4795 device = (struct cam_ed *)malloc(sizeof(*device),
4796 M_CAMDEV, M_NOWAIT|M_ZERO);
4797 if (device == NULL)
4798 return (NULL);
4799
4800 cam_init_pinfo(&device->devq_entry);
4801 device->target = target;
4802 device->lun_id = lun_id;
4803 device->sim = bus->sim;
4804 if (cam_ccbq_init(&device->ccbq,
4805 bus->sim->max_dev_openings) != 0) {
4806 free(device, M_CAMDEV);
4807 return (NULL);
4808 }
4809 SLIST_INIT(&device->asyncs);
4810 SLIST_INIT(&device->periphs);
4811 device->generation = 0;
4812 device->flags = CAM_DEV_UNCONFIGURED;
4813 device->tag_delay_count = 0;
4814 device->tag_saved_openings = 0;
4815 device->refcount = 1;
4816 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4817 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4818 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4819 /*
4820 * Hold a reference to our parent bus so it
4821 * will not go away before we do.
4822 */
4823 target->refcount++;
4824
4825 cur_device = TAILQ_FIRST(&target->ed_entries);
4826 while (cur_device != NULL && cur_device->lun_id < lun_id)
4827 cur_device = TAILQ_NEXT(cur_device, links);
4828 if (cur_device != NULL)
4829 TAILQ_INSERT_BEFORE(cur_device, device, links);
4830 else
4831 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4832 target->generation++;
4833 return (device);
4834 }
4835
4836 void
xpt_acquire_device(struct cam_ed * device)4837 xpt_acquire_device(struct cam_ed *device)
4838 {
4839 struct cam_eb *bus = device->target->bus;
4840
4841 mtx_lock(&bus->eb_mtx);
4842 device->refcount++;
4843 mtx_unlock(&bus->eb_mtx);
4844 }
4845
4846 void
xpt_release_device(struct cam_ed * device)4847 xpt_release_device(struct cam_ed *device)
4848 {
4849 struct cam_eb *bus = device->target->bus;
4850 struct cam_devq *devq;
4851
4852 mtx_lock(&bus->eb_mtx);
4853 if (--device->refcount > 0) {
4854 mtx_unlock(&bus->eb_mtx);
4855 return;
4856 }
4857
4858 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4859 device->target->generation++;
4860 mtx_unlock(&bus->eb_mtx);
4861
4862 /* Release our slot in the devq */
4863 devq = bus->sim->devq;
4864 mtx_lock(&devq->send_mtx);
4865 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4866
4867 KASSERT(SLIST_EMPTY(&device->periphs),
4868 ("destroying device, but periphs list is not empty"));
4869 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4870 ("destroying device while still queued for ccbs"));
4871
4872 /* The send_mtx must be held when accessing the callout */
4873 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4874 callout_stop(&device->callout);
4875
4876 mtx_unlock(&devq->send_mtx);
4877
4878 xpt_release_target(device->target);
4879
4880 cam_ccbq_fini(&device->ccbq);
4881 /*
4882 * Free allocated memory. free(9) does nothing if the
4883 * supplied pointer is NULL, so it is safe to call without
4884 * checking.
4885 */
4886 free(device->supported_vpds, M_CAMXPT);
4887 free(device->device_id, M_CAMXPT);
4888 free(device->ext_inq, M_CAMXPT);
4889 free(device->physpath, M_CAMXPT);
4890 free(device->rcap_buf, M_CAMXPT);
4891 free(device->serial_num, M_CAMXPT);
4892 free(device->nvme_data, M_CAMXPT);
4893 free(device->nvme_cdata, M_CAMXPT);
4894 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4895 }
4896
4897 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4898 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4899 {
4900 int result;
4901 struct cam_ed *dev;
4902
4903 dev = path->device;
4904 mtx_lock(&dev->sim->devq->send_mtx);
4905 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4906 mtx_unlock(&dev->sim->devq->send_mtx);
4907 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4908 || (dev->inq_flags & SID_CmdQue) != 0)
4909 dev->tag_saved_openings = newopenings;
4910 return (result);
4911 }
4912
4913 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4914 xpt_find_bus(path_id_t path_id)
4915 {
4916 struct cam_eb *bus;
4917
4918 xpt_lock_buses();
4919 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4920 bus != NULL;
4921 bus = TAILQ_NEXT(bus, links)) {
4922 if (bus->path_id == path_id) {
4923 bus->refcount++;
4924 break;
4925 }
4926 }
4927 xpt_unlock_buses();
4928 return (bus);
4929 }
4930
4931 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4932 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4933 {
4934 struct cam_et *target;
4935
4936 mtx_assert(&bus->eb_mtx, MA_OWNED);
4937 for (target = TAILQ_FIRST(&bus->et_entries);
4938 target != NULL;
4939 target = TAILQ_NEXT(target, links)) {
4940 if (target->target_id == target_id) {
4941 target->refcount++;
4942 break;
4943 }
4944 }
4945 return (target);
4946 }
4947
4948 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4949 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4950 {
4951 struct cam_ed *device;
4952
4953 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4954 for (device = TAILQ_FIRST(&target->ed_entries);
4955 device != NULL;
4956 device = TAILQ_NEXT(device, links)) {
4957 if (device->lun_id == lun_id) {
4958 device->refcount++;
4959 break;
4960 }
4961 }
4962 return (device);
4963 }
4964
4965 void
xpt_start_tags(struct cam_path * path)4966 xpt_start_tags(struct cam_path *path)
4967 {
4968 struct ccb_relsim crs;
4969 struct cam_ed *device;
4970 struct cam_sim *sim;
4971 int newopenings;
4972
4973 device = path->device;
4974 sim = path->bus->sim;
4975 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4976 xpt_freeze_devq(path, /*count*/1);
4977 device->inq_flags |= SID_CmdQue;
4978 if (device->tag_saved_openings != 0)
4979 newopenings = device->tag_saved_openings;
4980 else
4981 newopenings = min(device->maxtags,
4982 sim->max_tagged_dev_openings);
4983 xpt_dev_ccbq_resize(path, newopenings);
4984 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4985 memset(&crs, 0, sizeof(crs));
4986 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4987 crs.ccb_h.func_code = XPT_REL_SIMQ;
4988 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4989 crs.openings
4990 = crs.release_timeout
4991 = crs.qfrozen_cnt
4992 = 0;
4993 xpt_action((union ccb *)&crs);
4994 }
4995
4996 void
xpt_stop_tags(struct cam_path * path)4997 xpt_stop_tags(struct cam_path *path)
4998 {
4999 struct ccb_relsim crs;
5000 struct cam_ed *device;
5001 struct cam_sim *sim;
5002
5003 device = path->device;
5004 sim = path->bus->sim;
5005 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5006 device->tag_delay_count = 0;
5007 xpt_freeze_devq(path, /*count*/1);
5008 device->inq_flags &= ~SID_CmdQue;
5009 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5010 xpt_async(AC_GETDEV_CHANGED, path, NULL);
5011 memset(&crs, 0, sizeof(crs));
5012 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5013 crs.ccb_h.func_code = XPT_REL_SIMQ;
5014 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5015 crs.openings
5016 = crs.release_timeout
5017 = crs.qfrozen_cnt
5018 = 0;
5019 xpt_action((union ccb *)&crs);
5020 }
5021
5022 /*
5023 * Assume all possible buses are detected by this time, so allow boot
5024 * as soon as they all are scanned.
5025 */
5026 static void
xpt_boot_delay(void * arg)5027 xpt_boot_delay(void *arg)
5028 {
5029
5030 xpt_release_boot();
5031 }
5032
5033 /*
5034 * Now that all config hooks have completed, start boot_delay timer,
5035 * waiting for possibly still undetected buses (USB) to appear.
5036 */
5037 static void
xpt_ch_done(void * arg)5038 xpt_ch_done(void *arg)
5039 {
5040
5041 callout_init(&xsoftc.boot_callout, 1);
5042 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5043 SBT_1MS, xpt_boot_delay, NULL, 0);
5044 }
5045 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5046
5047 /*
5048 * Now that interrupts are enabled, go find our devices
5049 */
5050 static void
xpt_config(void * arg)5051 xpt_config(void *arg)
5052 {
5053 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5054 printf("xpt_config: failed to create taskqueue thread.\n");
5055
5056 /* Setup debugging path */
5057 if (cam_dflags != CAM_DEBUG_NONE) {
5058 if (xpt_create_path(&cam_dpath, NULL,
5059 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5060 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5061 printf(
5062 "xpt_config: xpt_create_path() failed for debug target %d:%d:%d, debugging disabled\n",
5063 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5064 cam_dflags = CAM_DEBUG_NONE;
5065 }
5066 } else
5067 cam_dpath = NULL;
5068
5069 periphdriver_init(1);
5070 xpt_hold_boot();
5071
5072 /* Fire up rescan thread. */
5073 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5074 "cam", "scanner")) {
5075 printf("xpt_config: failed to create rescan thread.\n");
5076 }
5077 }
5078
5079 void
xpt_hold_boot_locked(void)5080 xpt_hold_boot_locked(void)
5081 {
5082
5083 if (xsoftc.buses_to_config++ == 0)
5084 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5085 }
5086
5087 void
xpt_hold_boot(void)5088 xpt_hold_boot(void)
5089 {
5090
5091 xpt_lock_buses();
5092 xpt_hold_boot_locked();
5093 xpt_unlock_buses();
5094 }
5095
5096 void
xpt_release_boot(void)5097 xpt_release_boot(void)
5098 {
5099
5100 xpt_lock_buses();
5101 if (--xsoftc.buses_to_config == 0) {
5102 if (xsoftc.buses_config_done == 0) {
5103 xsoftc.buses_config_done = 1;
5104 xsoftc.buses_to_config++;
5105 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5106 NULL);
5107 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5108 } else
5109 root_mount_rel(&xsoftc.xpt_rootmount);
5110 }
5111 xpt_unlock_buses();
5112 }
5113
5114 /*
5115 * If the given device only has one peripheral attached to it, and if that
5116 * peripheral is the passthrough driver, announce it. This insures that the
5117 * user sees some sort of announcement for every peripheral in their system.
5118 */
5119 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5120 xptpassannouncefunc(struct cam_ed *device, void *arg)
5121 {
5122 struct cam_periph *periph;
5123 int i;
5124
5125 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5126 periph = SLIST_NEXT(periph, periph_links), i++);
5127
5128 periph = SLIST_FIRST(&device->periphs);
5129 if ((i == 1)
5130 && (strncmp(periph->periph_name, "pass", 4) == 0))
5131 xpt_announce_periph(periph, NULL);
5132
5133 return(1);
5134 }
5135
5136 static void
xpt_finishconfig_task(void * context,int pending)5137 xpt_finishconfig_task(void *context, int pending)
5138 {
5139
5140 periphdriver_init(2);
5141 /*
5142 * Check for devices with no "standard" peripheral driver
5143 * attached. For any devices like that, announce the
5144 * passthrough driver so the user will see something.
5145 */
5146 if (!bootverbose)
5147 xpt_for_all_devices(xptpassannouncefunc, NULL);
5148
5149 xpt_release_boot();
5150 }
5151
5152 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5153 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5154 struct cam_path *path)
5155 {
5156 struct ccb_setasync csa;
5157 cam_status status;
5158 bool xptpath = false;
5159
5160 if (path == NULL) {
5161 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5162 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5163 if (status != CAM_REQ_CMP)
5164 return (status);
5165 xpt_path_lock(path);
5166 xptpath = true;
5167 }
5168
5169 memset(&csa, 0, sizeof(csa));
5170 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5171 csa.ccb_h.func_code = XPT_SASYNC_CB;
5172 csa.event_enable = event;
5173 csa.callback = cbfunc;
5174 csa.callback_arg = cbarg;
5175 xpt_action((union ccb *)&csa);
5176 status = csa.ccb_h.status;
5177
5178 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5179 ("xpt_register_async: func %p\n", cbfunc));
5180
5181 if (xptpath) {
5182 xpt_path_unlock(path);
5183 xpt_free_path(path);
5184 }
5185
5186 if ((status == CAM_REQ_CMP) &&
5187 (csa.event_enable & AC_FOUND_DEVICE)) {
5188 /*
5189 * Get this peripheral up to date with all
5190 * the currently existing devices.
5191 */
5192 xpt_for_all_devices(xptsetasyncfunc, &csa);
5193 }
5194 if ((status == CAM_REQ_CMP) &&
5195 (csa.event_enable & AC_PATH_REGISTERED)) {
5196 /*
5197 * Get this peripheral up to date with all
5198 * the currently existing buses.
5199 */
5200 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5201 }
5202
5203 return (status);
5204 }
5205
5206 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5207 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5208 {
5209 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5210
5211 switch (work_ccb->ccb_h.func_code) {
5212 /* Common cases first */
5213 case XPT_PATH_INQ: /* Path routing inquiry */
5214 {
5215 struct ccb_pathinq *cpi;
5216
5217 cpi = &work_ccb->cpi;
5218 cpi->version_num = 1; /* XXX??? */
5219 cpi->hba_inquiry = 0;
5220 cpi->target_sprt = 0;
5221 cpi->hba_misc = 0;
5222 cpi->hba_eng_cnt = 0;
5223 cpi->max_target = 0;
5224 cpi->max_lun = 0;
5225 cpi->initiator_id = 0;
5226 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5227 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5228 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5229 cpi->unit_number = sim->unit_number;
5230 cpi->bus_id = sim->bus_id;
5231 cpi->base_transfer_speed = 0;
5232 cpi->protocol = PROTO_UNSPECIFIED;
5233 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5234 cpi->transport = XPORT_UNSPECIFIED;
5235 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5236 cpi->ccb_h.status = CAM_REQ_CMP;
5237 break;
5238 }
5239 default:
5240 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5241 break;
5242 }
5243 xpt_done(work_ccb);
5244 }
5245
5246 /*
5247 * The xpt as a "controller" has no interrupt sources, so polling
5248 * is a no-op.
5249 */
5250 static void
xptpoll(struct cam_sim * sim)5251 xptpoll(struct cam_sim *sim)
5252 {
5253 }
5254
5255 void
xpt_lock_buses(void)5256 xpt_lock_buses(void)
5257 {
5258 mtx_lock(&xsoftc.xpt_topo_lock);
5259 }
5260
5261 void
xpt_unlock_buses(void)5262 xpt_unlock_buses(void)
5263 {
5264 mtx_unlock(&xsoftc.xpt_topo_lock);
5265 }
5266
5267 struct mtx *
xpt_path_mtx(struct cam_path * path)5268 xpt_path_mtx(struct cam_path *path)
5269 {
5270
5271 return (&path->device->device_mtx);
5272 }
5273
5274 static void
xpt_done_process(struct ccb_hdr * ccb_h)5275 xpt_done_process(struct ccb_hdr *ccb_h)
5276 {
5277 struct cam_sim *sim = NULL;
5278 struct cam_devq *devq = NULL;
5279 struct mtx *mtx = NULL;
5280
5281 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5282 struct ccb_scsiio *csio;
5283
5284 if (ccb_h->func_code == XPT_SCSI_IO) {
5285 csio = &((union ccb *)ccb_h)->csio;
5286 if (csio->bio != NULL)
5287 biotrack(csio->bio, __func__);
5288 }
5289 #endif
5290
5291 if (ccb_h->flags & CAM_HIGH_POWER) {
5292 struct highpowerlist *hphead;
5293 struct cam_ed *device;
5294
5295 mtx_lock(&xsoftc.xpt_highpower_lock);
5296 hphead = &xsoftc.highpowerq;
5297
5298 device = STAILQ_FIRST(hphead);
5299
5300 /*
5301 * Increment the count since this command is done.
5302 */
5303 xsoftc.num_highpower++;
5304
5305 /*
5306 * Any high powered commands queued up?
5307 */
5308 if (device != NULL) {
5309 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5310 mtx_unlock(&xsoftc.xpt_highpower_lock);
5311
5312 mtx_lock(&device->sim->devq->send_mtx);
5313 xpt_release_devq_device(device,
5314 /*count*/1, /*runqueue*/TRUE);
5315 mtx_unlock(&device->sim->devq->send_mtx);
5316 } else
5317 mtx_unlock(&xsoftc.xpt_highpower_lock);
5318 }
5319
5320 /*
5321 * Insulate against a race where the periph is destroyed but CCBs are
5322 * still not all processed. This shouldn't happen, but allows us better
5323 * bug diagnostic when it does.
5324 */
5325 if (ccb_h->path->bus)
5326 sim = ccb_h->path->bus->sim;
5327
5328 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5329 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5330 xpt_release_simq(sim, /*run_queue*/FALSE);
5331 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5332 }
5333
5334 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5335 && (ccb_h->status & CAM_DEV_QFRZN)) {
5336 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5337 ccb_h->status &= ~CAM_DEV_QFRZN;
5338 }
5339
5340 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5341 struct cam_ed *dev = ccb_h->path->device;
5342
5343 if (sim)
5344 devq = sim->devq;
5345 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5346 ccb_h, xpt_action_name(ccb_h->func_code)));
5347
5348 mtx_lock(&devq->send_mtx);
5349 devq->send_active--;
5350 devq->send_openings++;
5351 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5352
5353 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5354 && (dev->ccbq.dev_active == 0))) {
5355 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5356 xpt_release_devq_device(dev, /*count*/1,
5357 /*run_queue*/FALSE);
5358 }
5359
5360 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5361 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5362 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5363 xpt_release_devq_device(dev, /*count*/1,
5364 /*run_queue*/FALSE);
5365 }
5366
5367 if (!device_is_queued(dev))
5368 (void)xpt_schedule_devq(devq, dev);
5369 xpt_run_devq(devq);
5370 mtx_unlock(&devq->send_mtx);
5371
5372 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5373 mtx = xpt_path_mtx(ccb_h->path);
5374 mtx_lock(mtx);
5375
5376 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5377 && (--dev->tag_delay_count == 0))
5378 xpt_start_tags(ccb_h->path);
5379 }
5380 }
5381
5382 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5383 if (mtx == NULL) {
5384 mtx = xpt_path_mtx(ccb_h->path);
5385 mtx_lock(mtx);
5386 }
5387 } else {
5388 if (mtx != NULL) {
5389 mtx_unlock(mtx);
5390 mtx = NULL;
5391 }
5392 }
5393
5394 /*
5395 * Call as late as possible. Do we want an early one too before the
5396 * unfreeze / releases above?
5397 */
5398 CAM_PROBE1(xpt, done, (union ccb *)ccb_h); /* container_of? */
5399 /* Call the peripheral driver's callback */
5400 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5401 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5402 if (mtx != NULL)
5403 mtx_unlock(mtx);
5404 }
5405
5406 /*
5407 * Parameterize instead and use xpt_done_td?
5408 */
5409 static void
xpt_async_td(void * arg)5410 xpt_async_td(void *arg)
5411 {
5412 struct cam_doneq *queue = arg;
5413 struct ccb_hdr *ccb_h;
5414 STAILQ_HEAD(, ccb_hdr) doneq;
5415
5416 STAILQ_INIT(&doneq);
5417 mtx_lock(&queue->cam_doneq_mtx);
5418 while (1) {
5419 while (STAILQ_EMPTY(&queue->cam_doneq))
5420 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5421 PRIBIO, "-", 0);
5422 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5423 mtx_unlock(&queue->cam_doneq_mtx);
5424
5425 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5426 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5427 xpt_done_process(ccb_h);
5428 }
5429
5430 mtx_lock(&queue->cam_doneq_mtx);
5431 }
5432 }
5433
5434 void
xpt_done_td(void * arg)5435 xpt_done_td(void *arg)
5436 {
5437 struct cam_doneq *queue = arg;
5438 struct ccb_hdr *ccb_h;
5439 STAILQ_HEAD(, ccb_hdr) doneq;
5440
5441 STAILQ_INIT(&doneq);
5442 mtx_lock(&queue->cam_doneq_mtx);
5443 while (1) {
5444 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5445 queue->cam_doneq_sleep = 1;
5446 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5447 PRIBIO, "-", 0);
5448 queue->cam_doneq_sleep = 0;
5449 }
5450 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5451 mtx_unlock(&queue->cam_doneq_mtx);
5452
5453 THREAD_NO_SLEEPING();
5454 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5455 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5456 xpt_done_process(ccb_h);
5457 }
5458 THREAD_SLEEPING_OK();
5459
5460 mtx_lock(&queue->cam_doneq_mtx);
5461 }
5462 }
5463
5464 static void
camisr_runqueue(void)5465 camisr_runqueue(void)
5466 {
5467 struct ccb_hdr *ccb_h;
5468 struct cam_doneq *queue;
5469 int i;
5470
5471 /* Process global queues. */
5472 for (i = 0; i < cam_num_doneqs; i++) {
5473 queue = &cam_doneqs[i];
5474 mtx_lock(&queue->cam_doneq_mtx);
5475 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5476 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5477 mtx_unlock(&queue->cam_doneq_mtx);
5478 xpt_done_process(ccb_h);
5479 mtx_lock(&queue->cam_doneq_mtx);
5480 }
5481 mtx_unlock(&queue->cam_doneq_mtx);
5482 }
5483 }
5484
5485 /**
5486 * @brief Return the device_t associated with the path
5487 *
5488 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5489 * stored in the internal cam_eb bus structure. There is no guarnatee any given
5490 * path will have a @c device_t associated with it (it's legal to call @c
5491 * xpt_bus_register with a @c NULL @c device_t.
5492 *
5493 * @param path Path to return the device_t for.
5494 */
5495 device_t
xpt_path_sim_device(const struct cam_path * path)5496 xpt_path_sim_device(const struct cam_path *path)
5497 {
5498 return (path->bus->parent_dev);
5499 }
5500
5501 struct kv
5502 {
5503 uint32_t v;
5504 const char *name;
5505 };
5506
5507 static struct kv map[] = {
5508 { XPT_NOOP, "XPT_NOOP" },
5509 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5510 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5511 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5512 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5513 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5514 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5515 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5516 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5517 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5518 { XPT_DEBUG, "XPT_DEBUG" },
5519 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5520 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5521 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5522 { XPT_ASYNC, "XPT_ASYNC" },
5523 { XPT_ABORT, "XPT_ABORT" },
5524 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5525 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5526 { XPT_TERM_IO, "XPT_TERM_IO" },
5527 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5528 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5529 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5530 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5531 { XPT_ATA_IO, "XPT_ATA_IO" },
5532 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5533 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5534 { XPT_NVME_IO, "XPT_NVME_IO" },
5535 { XPT_MMC_IO, "XPT_MMC_IO" },
5536 { XPT_SMP_IO, "XPT_SMP_IO" },
5537 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5538 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5539 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5540 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5541 { XPT_EN_LUN, "XPT_EN_LUN" },
5542 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5543 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5544 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5545 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5546 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5547 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5548 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5549 { 0, 0 }
5550 };
5551
5552 const char *
xpt_action_name(uint32_t action)5553 xpt_action_name(uint32_t action)
5554 {
5555 static char buffer[32]; /* Only for unknown messages -- racy */
5556 struct kv *walker = map;
5557
5558 while (walker->name != NULL) {
5559 if (walker->v == action)
5560 return (walker->name);
5561 walker++;
5562 }
5563
5564 snprintf(buffer, sizeof(buffer), "%#x", action);
5565 return (buffer);
5566 }
5567
5568 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5569 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5570 {
5571 struct sbuf sbuf;
5572 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5573 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5574 va_list ap;
5575
5576 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5577 xpt_path_sbuf(path, sb);
5578 va_start(ap, fmt);
5579 sbuf_vprintf(sb, fmt, ap);
5580 va_end(ap);
5581 sbuf_finish(sb);
5582 sbuf_delete(sb);
5583 if (cam_debug_delay != 0)
5584 DELAY(cam_debug_delay);
5585 }
5586
5587 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5588 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5589 {
5590 struct sbuf sbuf;
5591 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5592 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5593 va_list ap;
5594
5595 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5596 xpt_device_sbuf(dev, sb);
5597 va_start(ap, fmt);
5598 sbuf_vprintf(sb, fmt, ap);
5599 va_end(ap);
5600 sbuf_finish(sb);
5601 sbuf_delete(sb);
5602 if (cam_debug_delay != 0)
5603 DELAY(cam_debug_delay);
5604 }
5605
5606 void
xpt_cam_debug(const char * fmt,...)5607 xpt_cam_debug(const char *fmt, ...)
5608 {
5609 struct sbuf sbuf;
5610 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5611 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5612 va_list ap;
5613
5614 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5615 sbuf_cat(sb, "cam_debug: ");
5616 va_start(ap, fmt);
5617 sbuf_vprintf(sb, fmt, ap);
5618 va_end(ap);
5619 sbuf_finish(sb);
5620 sbuf_delete(sb);
5621 if (cam_debug_delay != 0)
5622 DELAY(cam_debug_delay);
5623 }
5624