1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/ProfileData/InstrProfCorrelator.h"
19 #include "llvm/ProfileData/InstrProfReader.h"
20 #include "llvm/ProfileData/InstrProfWriter.h"
21 #include "llvm/ProfileData/MemProf.h"
22 #include "llvm/ProfileData/MemProfReader.h"
23 #include "llvm/ProfileData/ProfileCommon.h"
24 #include "llvm/ProfileData/SampleProfReader.h"
25 #include "llvm/ProfileData/SampleProfWriter.h"
26 #include "llvm/Support/BalancedPartitioning.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Discriminator.h"
29 #include "llvm/Support/Errc.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Format.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Support/LLVMDriver.h"
34 #include "llvm/Support/MD5.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Support/Regex.h"
38 #include "llvm/Support/ThreadPool.h"
39 #include "llvm/Support/Threading.h"
40 #include "llvm/Support/VirtualFileSystem.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cmath>
45 #include <optional>
46 #include <queue>
47
48 using namespace llvm;
49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind;
50
51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations
52 // on each subcommand.
53 cl::SubCommand ShowSubcommand(
54 "show",
55 "Takes a profile data file and displays the profiles. See detailed "
56 "documentation in "
57 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show");
58 cl::SubCommand OrderSubcommand(
59 "order",
60 "Reads temporal profiling traces from a profile and outputs a function "
61 "order that reduces the number of page faults for those traces. See "
62 "detailed documentation in "
63 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order");
64 cl::SubCommand OverlapSubcommand(
65 "overlap",
66 "Computes and displays the overlap between two profiles. See detailed "
67 "documentation in "
68 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap");
69 cl::SubCommand MergeSubcommand(
70 "merge",
71 "Takes several profiles and merge them together. See detailed "
72 "documentation in "
73 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge");
74
75 namespace {
76 enum ProfileKinds { instr, sample, memory };
77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid };
78
79 enum ProfileFormat {
80 PF_None = 0,
81 PF_Text,
82 PF_Compact_Binary, // Deprecated
83 PF_Ext_Binary,
84 PF_GCC,
85 PF_Binary
86 };
87
88 enum class ShowFormat { Text, Json, Yaml };
89 } // namespace
90
91 // Common options.
92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
93 cl::init("-"), cl::desc("Output file"),
94 cl::sub(ShowSubcommand),
95 cl::sub(OrderSubcommand),
96 cl::sub(OverlapSubcommand),
97 cl::sub(MergeSubcommand));
98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub()
99 // will be used. llvm::cl::alias::done() method asserts this condition.
100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
101 cl::aliasopt(OutputFilename));
102
103 // Options common to at least two commands.
104 cl::opt<ProfileKinds> ProfileKind(
105 cl::desc("Profile kind:"), cl::sub(MergeSubcommand),
106 cl::sub(OverlapSubcommand), cl::init(instr),
107 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
108 clEnumVal(sample, "Sample profile")));
109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"),
110 cl::sub(ShowSubcommand),
111 cl::sub(OrderSubcommand));
112 cl::opt<unsigned> MaxDbgCorrelationWarnings(
113 "max-debug-info-correlation-warnings",
114 cl::desc("The maximum number of warnings to emit when correlating "
115 "profile from debug info (0 = no limit)"),
116 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5));
117 cl::opt<std::string> ProfiledBinary(
118 "profiled-binary", cl::init(""),
119 cl::desc("Path to binary from which the profile was collected."),
120 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
121 cl::opt<std::string> DebugInfoFilename(
122 "debug-info", cl::init(""),
123 cl::desc(
124 "For show, read and extract profile metadata from debug info and show "
125 "the functions it found. For merge, use the provided debug info to "
126 "correlate the raw profile."),
127 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
128 cl::opt<std::string>
129 BinaryFilename("binary-file", cl::init(""),
130 cl::desc("For merge, use the provided unstripped bianry to "
131 "correlate the raw profile."),
132 cl::sub(MergeSubcommand));
133 cl::opt<std::string> FuncNameFilter(
134 "function",
135 cl::desc("Only functions matching the filter are shown in the output. For "
136 "overlapping CSSPGO, this takes a function name with calling "
137 "context."),
138 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand),
139 cl::sub(MergeSubcommand));
140
141 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to
142 // factor out the common cl::sub in cl::opt constructor for subcommand-specific
143 // options.
144
145 // Options specific to merge subcommand.
146 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand),
147 cl::desc("<filename...>"));
148 cl::list<std::string> WeightedInputFilenames("weighted-input",
149 cl::sub(MergeSubcommand),
150 cl::desc("<weight>,<filename>"));
151 cl::opt<ProfileFormat> OutputFormat(
152 cl::desc("Format of output profile"), cl::sub(MergeSubcommand),
153 cl::init(PF_Ext_Binary),
154 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"),
155 clEnumValN(PF_Ext_Binary, "extbinary",
156 "Extensible binary encoding "
157 "(default)"),
158 clEnumValN(PF_Text, "text", "Text encoding"),
159 clEnumValN(PF_GCC, "gcc",
160 "GCC encoding (only meaningful for -sample)")));
161 cl::opt<std::string>
162 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand),
163 cl::desc("Path to file containing newline-separated "
164 "[<weight>,]<filename> entries"));
165 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
166 cl::aliasopt(InputFilenamesFile));
167 cl::opt<bool> DumpInputFileList(
168 "dump-input-file-list", cl::init(false), cl::Hidden,
169 cl::sub(MergeSubcommand),
170 cl::desc("Dump the list of input files and their weights, then exit"));
171 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
172 cl::sub(MergeSubcommand),
173 cl::desc("Symbol remapping file"));
174 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
175 cl::aliasopt(RemappingFile));
176 cl::opt<bool>
177 UseMD5("use-md5", cl::init(false), cl::Hidden,
178 cl::desc("Choose to use MD5 to represent string in name table (only "
179 "meaningful for -extbinary)"),
180 cl::sub(MergeSubcommand));
181 cl::opt<bool> CompressAllSections(
182 "compress-all-sections", cl::init(false), cl::Hidden,
183 cl::sub(MergeSubcommand),
184 cl::desc("Compress all sections when writing the profile (only "
185 "meaningful for -extbinary)"));
186 cl::opt<bool> SampleMergeColdContext(
187 "sample-merge-cold-context", cl::init(false), cl::Hidden,
188 cl::sub(MergeSubcommand),
189 cl::desc(
190 "Merge context sample profiles whose count is below cold threshold"));
191 cl::opt<bool> SampleTrimColdContext(
192 "sample-trim-cold-context", cl::init(false), cl::Hidden,
193 cl::sub(MergeSubcommand),
194 cl::desc(
195 "Trim context sample profiles whose count is below cold threshold"));
196 cl::opt<uint32_t> SampleColdContextFrameDepth(
197 "sample-frame-depth-for-cold-context", cl::init(1),
198 cl::sub(MergeSubcommand),
199 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
200 "context-less base profile"));
201 cl::opt<size_t> OutputSizeLimit(
202 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand),
203 cl::desc("Trim cold functions until profile size is below specified "
204 "limit in bytes. This uses a heursitic and functions may be "
205 "excessively trimmed"));
206 cl::opt<bool> GenPartialProfile(
207 "gen-partial-profile", cl::init(false), cl::Hidden,
208 cl::sub(MergeSubcommand),
209 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
210 cl::opt<std::string> SupplInstrWithSample(
211 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
212 cl::sub(MergeSubcommand),
213 cl::desc("Supplement an instr profile with sample profile, to correct "
214 "the profile unrepresentativeness issue. The sample "
215 "profile is the input of the flag. Output will be in instr "
216 "format (The flag only works with -instr)"));
217 cl::opt<float> ZeroCounterThreshold(
218 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
219 cl::sub(MergeSubcommand),
220 cl::desc("For the function which is cold in instr profile but hot in "
221 "sample profile, if the ratio of the number of zero counters "
222 "divided by the total number of counters is above the "
223 "threshold, the profile of the function will be regarded as "
224 "being harmful for performance and will be dropped."));
225 cl::opt<unsigned> SupplMinSizeThreshold(
226 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
227 cl::sub(MergeSubcommand),
228 cl::desc("If the size of a function is smaller than the threshold, "
229 "assume it can be inlined by PGO early inliner and it won't "
230 "be adjusted based on sample profile."));
231 cl::opt<unsigned> InstrProfColdThreshold(
232 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
233 cl::sub(MergeSubcommand),
234 cl::desc("User specified cold threshold for instr profile which will "
235 "override the cold threshold got from profile summary. "));
236 // WARNING: This reservoir size value is propagated to any input indexed
237 // profiles for simplicity. Changing this value between invocations could
238 // result in sample bias.
239 cl::opt<uint64_t> TemporalProfTraceReservoirSize(
240 "temporal-profile-trace-reservoir-size", cl::init(100),
241 cl::sub(MergeSubcommand),
242 cl::desc("The maximum number of stored temporal profile traces (default: "
243 "100)"));
244 cl::opt<uint64_t> TemporalProfMaxTraceLength(
245 "temporal-profile-max-trace-length", cl::init(10000),
246 cl::sub(MergeSubcommand),
247 cl::desc("The maximum length of a single temporal profile trace "
248 "(default: 10000)"));
249 cl::opt<std::string> FuncNameNegativeFilter(
250 "no-function", cl::init(""),
251 cl::sub(MergeSubcommand),
252 cl::desc("Exclude functions matching the filter from the output."));
253
254 cl::opt<FailureMode>
255 FailMode("failure-mode", cl::init(failIfAnyAreInvalid),
256 cl::desc("Failure mode:"), cl::sub(MergeSubcommand),
257 cl::values(clEnumValN(warnOnly, "warn",
258 "Do not fail and just print warnings."),
259 clEnumValN(failIfAnyAreInvalid, "any",
260 "Fail if any profile is invalid."),
261 clEnumValN(failIfAllAreInvalid, "all",
262 "Fail only if all profiles are invalid.")));
263
264 cl::opt<bool> OutputSparse(
265 "sparse", cl::init(false), cl::sub(MergeSubcommand),
266 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
267 cl::opt<unsigned> NumThreads(
268 "num-threads", cl::init(0), cl::sub(MergeSubcommand),
269 cl::desc("Number of merge threads to use (default: autodetect)"));
270 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
271 cl::aliasopt(NumThreads));
272
273 cl::opt<std::string> ProfileSymbolListFile(
274 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand),
275 cl::desc("Path to file containing the list of function symbols "
276 "used to populate profile symbol list"));
277
278 cl::opt<SampleProfileLayout> ProfileLayout(
279 "convert-sample-profile-layout",
280 cl::desc("Convert the generated profile to a profile with a new layout"),
281 cl::sub(MergeSubcommand), cl::init(SPL_None),
282 cl::values(
283 clEnumValN(SPL_Nest, "nest",
284 "Nested profile, the input should be CS flat profile"),
285 clEnumValN(SPL_Flat, "flat",
286 "Profile with nested inlinee flatten out")));
287
288 cl::opt<bool> DropProfileSymbolList(
289 "drop-profile-symbol-list", cl::init(false), cl::Hidden,
290 cl::sub(MergeSubcommand),
291 cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
292 "(only meaningful for -sample)"));
293
294 cl::opt<bool> KeepVTableSymbols(
295 "keep-vtable-symbols", cl::init(false), cl::Hidden,
296 cl::sub(MergeSubcommand),
297 cl::desc("If true, keep the vtable symbols in indexed profiles"));
298
299 // Temporary support for writing the previous version of the format, to enable
300 // some forward compatibility.
301 // TODO: Consider enabling this with future version changes as well, to ease
302 // deployment of newer versions of llvm-profdata.
303 cl::opt<bool> DoWritePrevVersion(
304 "write-prev-version", cl::init(false), cl::Hidden,
305 cl::desc("Write the previous version of indexed format, to enable "
306 "some forward compatibility."));
307
308 cl::opt<memprof::IndexedVersion> MemProfVersionRequested(
309 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand),
310 cl::desc("Specify the version of the memprof format to use"),
311 cl::init(memprof::Version0),
312 cl::values(clEnumValN(memprof::Version0, "0", "version 0"),
313 clEnumValN(memprof::Version1, "1", "version 1"),
314 clEnumValN(memprof::Version2, "2", "version 2"),
315 clEnumValN(memprof::Version3, "3", "version 3")));
316
317 cl::opt<bool> MemProfFullSchema(
318 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand),
319 cl::desc("Use the full schema for serialization"), cl::init(false));
320
321 // Options specific to overlap subcommand.
322 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
323 cl::desc("<base profile file>"),
324 cl::sub(OverlapSubcommand));
325 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
326 cl::desc("<test profile file>"),
327 cl::sub(OverlapSubcommand));
328
329 cl::opt<unsigned long long> SimilarityCutoff(
330 "similarity-cutoff", cl::init(0),
331 cl::desc("For sample profiles, list function names (with calling context "
332 "for csspgo) for overlapped functions "
333 "with similarities below the cutoff (percentage times 10000)."),
334 cl::sub(OverlapSubcommand));
335
336 cl::opt<bool> IsCS(
337 "cs", cl::init(false),
338 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."),
339 cl::sub(OverlapSubcommand));
340
341 cl::opt<unsigned long long> OverlapValueCutoff(
342 "value-cutoff", cl::init(-1),
343 cl::desc(
344 "Function level overlap information for every function (with calling "
345 "context for csspgo) in test "
346 "profile with max count value greater then the parameter value"),
347 cl::sub(OverlapSubcommand));
348
349 // Options specific to show subcommand.
350 cl::opt<bool> ShowCounts("counts", cl::init(false),
351 cl::desc("Show counter values for shown functions"),
352 cl::sub(ShowSubcommand));
353 cl::opt<ShowFormat>
354 SFormat("show-format", cl::init(ShowFormat::Text),
355 cl::desc("Emit output in the selected format if supported"),
356 cl::sub(ShowSubcommand),
357 cl::values(clEnumValN(ShowFormat::Text, "text",
358 "emit normal text output (default)"),
359 clEnumValN(ShowFormat::Json, "json", "emit JSON"),
360 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
361 // TODO: Consider replacing this with `--show-format=text-encoding`.
362 cl::opt<bool>
363 TextFormat("text", cl::init(false),
364 cl::desc("Show instr profile data in text dump format"),
365 cl::sub(ShowSubcommand));
366 cl::opt<bool>
367 JsonFormat("json",
368 cl::desc("Show sample profile data in the JSON format "
369 "(deprecated, please use --show-format=json)"),
370 cl::sub(ShowSubcommand));
371 cl::opt<bool> ShowIndirectCallTargets(
372 "ic-targets", cl::init(false),
373 cl::desc("Show indirect call site target values for shown functions"),
374 cl::sub(ShowSubcommand));
375 cl::opt<bool> ShowVTables("show-vtables", cl::init(false),
376 cl::desc("Show vtable names for shown functions"),
377 cl::sub(ShowSubcommand));
378 cl::opt<bool> ShowMemOPSizes(
379 "memop-sizes", cl::init(false),
380 cl::desc("Show the profiled sizes of the memory intrinsic calls "
381 "for shown functions"),
382 cl::sub(ShowSubcommand));
383 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
384 cl::desc("Show detailed profile summary"),
385 cl::sub(ShowSubcommand));
386 cl::list<uint32_t> DetailedSummaryCutoffs(
387 cl::CommaSeparated, "detailed-summary-cutoffs",
388 cl::desc(
389 "Cutoff percentages (times 10000) for generating detailed summary"),
390 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand));
391 cl::opt<bool>
392 ShowHotFuncList("hot-func-list", cl::init(false),
393 cl::desc("Show profile summary of a list of hot functions"),
394 cl::sub(ShowSubcommand));
395 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
396 cl::desc("Details for each and every function"),
397 cl::sub(ShowSubcommand));
398 cl::opt<bool> ShowCS("showcs", cl::init(false),
399 cl::desc("Show context sensitive counts"),
400 cl::sub(ShowSubcommand));
401 cl::opt<ProfileKinds> ShowProfileKind(
402 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand),
403 cl::init(instr),
404 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
405 clEnumVal(sample, "Sample profile"),
406 clEnumVal(memory, "MemProf memory access profile")));
407 cl::opt<uint32_t> TopNFunctions(
408 "topn", cl::init(0),
409 cl::desc("Show the list of functions with the largest internal counts"),
410 cl::sub(ShowSubcommand));
411 cl::opt<uint32_t> ShowValueCutoff(
412 "value-cutoff", cl::init(0),
413 cl::desc("Set the count value cutoff. Functions with the maximum count "
414 "less than this value will not be printed out. (Default is 0)"),
415 cl::sub(ShowSubcommand));
416 cl::opt<bool> OnlyListBelow(
417 "list-below-cutoff", cl::init(false),
418 cl::desc("Only output names of functions whose max count values are "
419 "below the cutoff value"),
420 cl::sub(ShowSubcommand));
421 cl::opt<bool> ShowProfileSymbolList(
422 "show-prof-sym-list", cl::init(false),
423 cl::desc("Show profile symbol list if it exists in the profile. "),
424 cl::sub(ShowSubcommand));
425 cl::opt<bool> ShowSectionInfoOnly(
426 "show-sec-info-only", cl::init(false),
427 cl::desc("Show the information of each section in the sample profile. "
428 "The flag is only usable when the sample profile is in "
429 "extbinary format"),
430 cl::sub(ShowSubcommand));
431 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
432 cl::desc("Show binary ids in the profile. "),
433 cl::sub(ShowSubcommand));
434 cl::opt<bool> ShowTemporalProfTraces(
435 "temporal-profile-traces",
436 cl::desc("Show temporal profile traces in the profile."),
437 cl::sub(ShowSubcommand));
438
439 cl::opt<bool>
440 ShowCovered("covered", cl::init(false),
441 cl::desc("Show only the functions that have been executed."),
442 cl::sub(ShowSubcommand));
443
444 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
445 cl::desc("Show profile version. "),
446 cl::sub(ShowSubcommand));
447
448 // Options specific to order subcommand.
449 cl::opt<unsigned>
450 NumTestTraces("num-test-traces", cl::init(0),
451 cl::desc("Keep aside the last <num-test-traces> traces in "
452 "the profile when computing the function order and "
453 "instead use them to evaluate that order"),
454 cl::sub(OrderSubcommand));
455
456 // We use this string to indicate that there are
457 // multiple static functions map to the same name.
458 const std::string DuplicateNameStr = "----";
459
warn(Twine Message,StringRef Whence="",StringRef Hint="")460 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") {
461 WithColor::warning();
462 if (!Whence.empty())
463 errs() << Whence << ": ";
464 errs() << Message << "\n";
465 if (!Hint.empty())
466 WithColor::note() << Hint << "\n";
467 }
468
warn(Error E,StringRef Whence="")469 static void warn(Error E, StringRef Whence = "") {
470 if (E.isA<InstrProfError>()) {
471 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
472 warn(IPE.message(), Whence);
473 });
474 }
475 }
476
exitWithError(Twine Message,StringRef Whence="",StringRef Hint="")477 static void exitWithError(Twine Message, StringRef Whence = "",
478 StringRef Hint = "") {
479 WithColor::error();
480 if (!Whence.empty())
481 errs() << Whence << ": ";
482 errs() << Message << "\n";
483 if (!Hint.empty())
484 WithColor::note() << Hint << "\n";
485 ::exit(1);
486 }
487
exitWithError(Error E,StringRef Whence="")488 static void exitWithError(Error E, StringRef Whence = "") {
489 if (E.isA<InstrProfError>()) {
490 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
491 instrprof_error instrError = IPE.get();
492 StringRef Hint = "";
493 if (instrError == instrprof_error::unrecognized_format) {
494 // Hint in case user missed specifying the profile type.
495 Hint = "Perhaps you forgot to use the --sample or --memory option?";
496 }
497 exitWithError(IPE.message(), Whence, Hint);
498 });
499 return;
500 }
501
502 exitWithError(toString(std::move(E)), Whence);
503 }
504
exitWithErrorCode(std::error_code EC,StringRef Whence="")505 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
506 exitWithError(EC.message(), Whence);
507 }
508
warnOrExitGivenError(FailureMode FailMode,std::error_code EC,StringRef Whence="")509 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
510 StringRef Whence = "") {
511 if (FailMode == failIfAnyAreInvalid)
512 exitWithErrorCode(EC, Whence);
513 else
514 warn(EC.message(), Whence);
515 }
516
handleMergeWriterError(Error E,StringRef WhenceFile="",StringRef WhenceFunction="",bool ShowHint=true)517 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
518 StringRef WhenceFunction = "",
519 bool ShowHint = true) {
520 if (!WhenceFile.empty())
521 errs() << WhenceFile << ": ";
522 if (!WhenceFunction.empty())
523 errs() << WhenceFunction << ": ";
524
525 auto IPE = instrprof_error::success;
526 E = handleErrors(std::move(E),
527 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
528 IPE = E->get();
529 return Error(std::move(E));
530 });
531 errs() << toString(std::move(E)) << "\n";
532
533 if (ShowHint) {
534 StringRef Hint = "";
535 if (IPE != instrprof_error::success) {
536 switch (IPE) {
537 case instrprof_error::hash_mismatch:
538 case instrprof_error::count_mismatch:
539 case instrprof_error::value_site_count_mismatch:
540 Hint = "Make sure that all profile data to be merged is generated "
541 "from the same binary.";
542 break;
543 default:
544 break;
545 }
546 }
547
548 if (!Hint.empty())
549 errs() << Hint << "\n";
550 }
551 }
552
553 namespace {
554 /// A remapper from original symbol names to new symbol names based on a file
555 /// containing a list of mappings from old name to new name.
556 class SymbolRemapper {
557 std::unique_ptr<MemoryBuffer> File;
558 DenseMap<StringRef, StringRef> RemappingTable;
559
560 public:
561 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
create(StringRef InputFile)562 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
563 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
564 if (!BufOrError)
565 exitWithErrorCode(BufOrError.getError(), InputFile);
566
567 auto Remapper = std::make_unique<SymbolRemapper>();
568 Remapper->File = std::move(BufOrError.get());
569
570 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
571 !LineIt.is_at_eof(); ++LineIt) {
572 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
573 if (Parts.first.empty() || Parts.second.empty() ||
574 Parts.second.count(' ')) {
575 exitWithError("unexpected line in remapping file",
576 (InputFile + ":" + Twine(LineIt.line_number())).str(),
577 "expected 'old_symbol new_symbol'");
578 }
579 Remapper->RemappingTable.insert(Parts);
580 }
581 return Remapper;
582 }
583
584 /// Attempt to map the given old symbol into a new symbol.
585 ///
586 /// \return The new symbol, or \p Name if no such symbol was found.
operator ()(StringRef Name)587 StringRef operator()(StringRef Name) {
588 StringRef New = RemappingTable.lookup(Name);
589 return New.empty() ? Name : New;
590 }
591
operator ()(FunctionId Name)592 FunctionId operator()(FunctionId Name) {
593 // MD5 name cannot be remapped.
594 if (!Name.isStringRef())
595 return Name;
596 StringRef New = RemappingTable.lookup(Name.stringRef());
597 return New.empty() ? Name : FunctionId(New);
598 }
599 };
600 }
601
602 struct WeightedFile {
603 std::string Filename;
604 uint64_t Weight;
605 };
606 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
607
608 /// Keep track of merged data and reported errors.
609 struct WriterContext {
610 std::mutex Lock;
611 InstrProfWriter Writer;
612 std::vector<std::pair<Error, std::string>> Errors;
613 std::mutex &ErrLock;
614 SmallSet<instrprof_error, 4> &WriterErrorCodes;
615
WriterContextWriterContext616 WriterContext(bool IsSparse, std::mutex &ErrLock,
617 SmallSet<instrprof_error, 4> &WriterErrorCodes,
618 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0)
619 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion,
620 MemProfVersionRequested, MemProfFullSchema),
621 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {}
622 };
623
624 /// Computer the overlap b/w profile BaseFilename and TestFileName,
625 /// and store the program level result to Overlap.
overlapInput(const std::string & BaseFilename,const std::string & TestFilename,WriterContext * WC,OverlapStats & Overlap,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)626 static void overlapInput(const std::string &BaseFilename,
627 const std::string &TestFilename, WriterContext *WC,
628 OverlapStats &Overlap,
629 const OverlapFuncFilters &FuncFilter,
630 raw_fd_ostream &OS, bool IsCS) {
631 auto FS = vfs::getRealFileSystem();
632 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS);
633 if (Error E = ReaderOrErr.takeError()) {
634 // Skip the empty profiles by returning sliently.
635 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
636 if (ErrorCode != instrprof_error::empty_raw_profile)
637 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
638 TestFilename);
639 return;
640 }
641
642 auto Reader = std::move(ReaderOrErr.get());
643 for (auto &I : *Reader) {
644 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
645 FuncOverlap.setFuncInfo(I.Name, I.Hash);
646
647 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
648 FuncOverlap.dump(OS);
649 }
650 }
651
652 /// Load an input into a writer context.
loadInput(const WeightedFile & Input,SymbolRemapper * Remapper,const InstrProfCorrelator * Correlator,const StringRef ProfiledBinary,WriterContext * WC)653 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
654 const InstrProfCorrelator *Correlator,
655 const StringRef ProfiledBinary, WriterContext *WC) {
656 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
657
658 // Copy the filename, because llvm::ThreadPool copied the input "const
659 // WeightedFile &" by value, making a reference to the filename within it
660 // invalid outside of this packaged task.
661 std::string Filename = Input.Filename;
662
663 using ::llvm::memprof::RawMemProfReader;
664 if (RawMemProfReader::hasFormat(Input.Filename)) {
665 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
666 if (!ReaderOrErr) {
667 exitWithError(ReaderOrErr.takeError(), Input.Filename);
668 }
669 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
670 // Check if the profile types can be merged, e.g. clang frontend profiles
671 // should not be merged with memprof profiles.
672 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
673 consumeError(std::move(E));
674 WC->Errors.emplace_back(
675 make_error<StringError>(
676 "Cannot merge MemProf profile with Clang generated profile.",
677 std::error_code()),
678 Filename);
679 return;
680 }
681
682 auto MemProfError = [&](Error E) {
683 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
684 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
685 Filename);
686 };
687
688 // Add the frame mappings into the writer context.
689 const auto &IdToFrame = Reader->getFrameMapping();
690 for (const auto &I : IdToFrame) {
691 bool Succeeded = WC->Writer.addMemProfFrame(
692 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
693 // If we weren't able to add the frame mappings then it doesn't make sense
694 // to try to add the records from this profile.
695 if (!Succeeded)
696 return;
697 }
698
699 // Add the call stacks into the writer context.
700 const auto &CSIdToCallStacks = Reader->getCallStacks();
701 for (const auto &I : CSIdToCallStacks) {
702 bool Succeeded = WC->Writer.addMemProfCallStack(
703 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
704 // If we weren't able to add the call stacks then it doesn't make sense
705 // to try to add the records from this profile.
706 if (!Succeeded)
707 return;
708 }
709
710 const auto &FunctionProfileData = Reader->getProfileData();
711 // Add the memprof records into the writer context.
712 for (const auto &[GUID, Record] : FunctionProfileData) {
713 WC->Writer.addMemProfRecord(GUID, Record);
714 }
715 return;
716 }
717
718 auto FS = vfs::getRealFileSystem();
719 // TODO: This only saves the first non-fatal error from InstrProfReader, and
720 // then added to WriterContext::Errors. However, this is not extensible, if
721 // we have more non-fatal errors from InstrProfReader in the future. How
722 // should this interact with different -failure-mode?
723 std::optional<std::pair<Error, std::string>> ReaderWarning;
724 auto Warn = [&](Error E) {
725 if (ReaderWarning) {
726 consumeError(std::move(E));
727 return;
728 }
729 // Only show the first time an error occurs in this file.
730 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
731 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename};
732 };
733 auto ReaderOrErr =
734 InstrProfReader::create(Input.Filename, *FS, Correlator, Warn);
735 if (Error E = ReaderOrErr.takeError()) {
736 // Skip the empty profiles by returning silently.
737 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
738 if (ErrCode != instrprof_error::empty_raw_profile)
739 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg),
740 Filename);
741 return;
742 }
743
744 auto Reader = std::move(ReaderOrErr.get());
745 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
746 consumeError(std::move(E));
747 WC->Errors.emplace_back(
748 make_error<StringError>(
749 "Merge IR generated profile with Clang generated profile.",
750 std::error_code()),
751 Filename);
752 return;
753 }
754
755 for (auto &I : *Reader) {
756 if (Remapper)
757 I.Name = (*Remapper)(I.Name);
758 const StringRef FuncName = I.Name;
759 bool Reported = false;
760 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
761 if (Reported) {
762 consumeError(std::move(E));
763 return;
764 }
765 Reported = true;
766 // Only show hint the first time an error occurs.
767 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
768 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
769 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second;
770 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg),
771 Input.Filename, FuncName, firstTime);
772 });
773 }
774
775 if (KeepVTableSymbols) {
776 const InstrProfSymtab &symtab = Reader->getSymtab();
777 const auto &VTableNames = symtab.getVTableNames();
778
779 for (const auto &kv : VTableNames)
780 WC->Writer.addVTableName(kv.getKey());
781 }
782
783 if (Reader->hasTemporalProfile()) {
784 auto &Traces = Reader->getTemporalProfTraces(Input.Weight);
785 if (!Traces.empty())
786 WC->Writer.addTemporalProfileTraces(
787 Traces, Reader->getTemporalProfTraceStreamSize());
788 }
789 if (Reader->hasError()) {
790 if (Error E = Reader->getError()) {
791 WC->Errors.emplace_back(std::move(E), Filename);
792 return;
793 }
794 }
795
796 std::vector<llvm::object::BuildID> BinaryIds;
797 if (Error E = Reader->readBinaryIds(BinaryIds)) {
798 WC->Errors.emplace_back(std::move(E), Filename);
799 return;
800 }
801 WC->Writer.addBinaryIds(BinaryIds);
802
803 if (ReaderWarning) {
804 WC->Errors.emplace_back(std::move(ReaderWarning->first),
805 ReaderWarning->second);
806 }
807 }
808
809 /// Merge the \p Src writer context into \p Dst.
mergeWriterContexts(WriterContext * Dst,WriterContext * Src)810 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
811 for (auto &ErrorPair : Src->Errors)
812 Dst->Errors.push_back(std::move(ErrorPair));
813 Src->Errors.clear();
814
815 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
816 exitWithError(std::move(E));
817
818 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
819 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
820 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
821 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second;
822 if (firstTime)
823 warn(toString(make_error<InstrProfError>(ErrorCode, Msg)));
824 });
825 }
826
827 static StringRef
getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type & Val)828 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) {
829 return Val.first();
830 }
831
832 static std::string
getFuncName(const SampleProfileMap::value_type & Val)833 getFuncName(const SampleProfileMap::value_type &Val) {
834 return Val.second.getContext().toString();
835 }
836
837 template <typename T>
filterFunctions(T & ProfileMap)838 static void filterFunctions(T &ProfileMap) {
839 bool hasFilter = !FuncNameFilter.empty();
840 bool hasNegativeFilter = !FuncNameNegativeFilter.empty();
841 if (!hasFilter && !hasNegativeFilter)
842 return;
843
844 // If filter starts with '?' it is MSVC mangled name, not a regex.
845 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+");
846 if (hasFilter && FuncNameFilter[0] == '?' &&
847 ProbablyMSVCMangledName.match(FuncNameFilter))
848 FuncNameFilter = llvm::Regex::escape(FuncNameFilter);
849 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' &&
850 ProbablyMSVCMangledName.match(FuncNameNegativeFilter))
851 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter);
852
853 size_t Count = ProfileMap.size();
854 llvm::Regex Pattern(FuncNameFilter);
855 llvm::Regex NegativePattern(FuncNameNegativeFilter);
856 std::string Error;
857 if (hasFilter && !Pattern.isValid(Error))
858 exitWithError(Error);
859 if (hasNegativeFilter && !NegativePattern.isValid(Error))
860 exitWithError(Error);
861
862 // Handle MD5 profile, so it is still able to match using the original name.
863 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter));
864 std::string NegativeMD5Name =
865 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter));
866
867 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) {
868 auto Tmp = I++;
869 const auto &FuncName = getFuncName(*Tmp);
870 // Negative filter has higher precedence than positive filter.
871 if ((hasNegativeFilter &&
872 (NegativePattern.match(FuncName) ||
873 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) ||
874 (hasFilter && !(Pattern.match(FuncName) ||
875 (FunctionSamples::UseMD5 && MD5Name == FuncName))))
876 ProfileMap.erase(Tmp);
877 }
878
879 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions "
880 << "in the original profile are filtered.\n";
881 }
882
writeInstrProfile(StringRef OutputFilename,ProfileFormat OutputFormat,InstrProfWriter & Writer)883 static void writeInstrProfile(StringRef OutputFilename,
884 ProfileFormat OutputFormat,
885 InstrProfWriter &Writer) {
886 std::error_code EC;
887 raw_fd_ostream Output(OutputFilename.data(), EC,
888 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
889 : sys::fs::OF_None);
890 if (EC)
891 exitWithErrorCode(EC, OutputFilename);
892
893 if (OutputFormat == PF_Text) {
894 if (Error E = Writer.writeText(Output))
895 warn(std::move(E));
896 } else {
897 if (Output.is_displayed())
898 exitWithError("cannot write a non-text format profile to the terminal");
899 if (Error E = Writer.write(Output))
900 warn(std::move(E));
901 }
902 }
903
mergeInstrProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,int MaxDbgCorrelationWarnings,const StringRef ProfiledBinary)904 static void mergeInstrProfile(const WeightedFileVector &Inputs,
905 SymbolRemapper *Remapper,
906 int MaxDbgCorrelationWarnings,
907 const StringRef ProfiledBinary) {
908 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue();
909 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue();
910 if (OutputFormat == PF_Compact_Binary)
911 exitWithError("Compact Binary is deprecated");
912 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary &&
913 OutputFormat != PF_Text)
914 exitWithError("unknown format is specified");
915
916 // TODO: Maybe we should support correlation with mixture of different
917 // correlation modes(w/wo debug-info/object correlation).
918 if (!DebugInfoFilename.empty() && !BinaryFilename.empty())
919 exitWithError("Expected only one of -debug-info, -binary-file");
920 std::string CorrelateFilename;
921 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE;
922 if (!DebugInfoFilename.empty()) {
923 CorrelateFilename = DebugInfoFilename;
924 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO;
925 } else if (!BinaryFilename.empty()) {
926 CorrelateFilename = BinaryFilename;
927 CorrelateKind = ProfCorrelatorKind::BINARY;
928 }
929
930 std::unique_ptr<InstrProfCorrelator> Correlator;
931 if (CorrelateKind != InstrProfCorrelator::NONE) {
932 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind)
933 .moveInto(Correlator))
934 exitWithError(std::move(Err), CorrelateFilename);
935 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
936 exitWithError(std::move(Err), CorrelateFilename);
937 }
938
939 std::mutex ErrorLock;
940 SmallSet<instrprof_error, 4> WriterErrorCodes;
941
942 // If NumThreads is not specified, auto-detect a good default.
943 if (NumThreads == 0)
944 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
945 unsigned((Inputs.size() + 1) / 2));
946
947 // Initialize the writer contexts.
948 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
949 for (unsigned I = 0; I < NumThreads; ++I)
950 Contexts.emplace_back(std::make_unique<WriterContext>(
951 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize,
952 MaxTraceLength));
953
954 if (NumThreads == 1) {
955 for (const auto &Input : Inputs)
956 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
957 Contexts[0].get());
958 } else {
959 DefaultThreadPool Pool(hardware_concurrency(NumThreads));
960
961 // Load the inputs in parallel (N/NumThreads serial steps).
962 unsigned Ctx = 0;
963 for (const auto &Input : Inputs) {
964 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
965 Contexts[Ctx].get());
966 Ctx = (Ctx + 1) % NumThreads;
967 }
968 Pool.wait();
969
970 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
971 unsigned Mid = Contexts.size() / 2;
972 unsigned End = Contexts.size();
973 assert(Mid > 0 && "Expected more than one context");
974 do {
975 for (unsigned I = 0; I < Mid; ++I)
976 Pool.async(mergeWriterContexts, Contexts[I].get(),
977 Contexts[I + Mid].get());
978 Pool.wait();
979 if (End & 1) {
980 Pool.async(mergeWriterContexts, Contexts[0].get(),
981 Contexts[End - 1].get());
982 Pool.wait();
983 }
984 End = Mid;
985 Mid /= 2;
986 } while (Mid > 0);
987 }
988
989 // Handle deferred errors encountered during merging. If the number of errors
990 // is equal to the number of inputs the merge failed.
991 unsigned NumErrors = 0;
992 for (std::unique_ptr<WriterContext> &WC : Contexts) {
993 for (auto &ErrorPair : WC->Errors) {
994 ++NumErrors;
995 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
996 }
997 }
998 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) ||
999 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
1000 exitWithError("no profile can be merged");
1001
1002 filterFunctions(Contexts[0]->Writer.getProfileData());
1003
1004 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
1005 }
1006
1007 /// The profile entry for a function in instrumentation profile.
1008 struct InstrProfileEntry {
1009 uint64_t MaxCount = 0;
1010 uint64_t NumEdgeCounters = 0;
1011 float ZeroCounterRatio = 0.0;
1012 InstrProfRecord *ProfRecord;
1013 InstrProfileEntry(InstrProfRecord *Record);
1014 InstrProfileEntry() = default;
1015 };
1016
InstrProfileEntry(InstrProfRecord * Record)1017 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
1018 ProfRecord = Record;
1019 uint64_t CntNum = Record->Counts.size();
1020 uint64_t ZeroCntNum = 0;
1021 for (size_t I = 0; I < CntNum; ++I) {
1022 MaxCount = std::max(MaxCount, Record->Counts[I]);
1023 ZeroCntNum += !Record->Counts[I];
1024 }
1025 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
1026 NumEdgeCounters = CntNum;
1027 }
1028
1029 /// Either set all the counters in the instr profile entry \p IFE to
1030 /// -1 / -2 /in order to drop the profile or scale up the
1031 /// counters in \p IFP to be above hot / cold threshold. We use
1032 /// the ratio of zero counters in the profile of a function to
1033 /// decide the profile is helpful or harmful for performance,
1034 /// and to choose whether to scale up or drop it.
updateInstrProfileEntry(InstrProfileEntry & IFE,bool SetToHot,uint64_t HotInstrThreshold,uint64_t ColdInstrThreshold,float ZeroCounterThreshold)1035 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
1036 uint64_t HotInstrThreshold,
1037 uint64_t ColdInstrThreshold,
1038 float ZeroCounterThreshold) {
1039 InstrProfRecord *ProfRecord = IFE.ProfRecord;
1040 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
1041 // If all or most of the counters of the function are zero, the
1042 // profile is unaccountable and should be dropped. Reset all the
1043 // counters to be -1 / -2 and PGO profile-use will drop the profile.
1044 // All counters being -1 also implies that the function is hot so
1045 // PGO profile-use will also set the entry count metadata to be
1046 // above hot threshold.
1047 // All counters being -2 implies that the function is warm so
1048 // PGO profile-use will also set the entry count metadata to be
1049 // above cold threshold.
1050 auto Kind =
1051 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
1052 ProfRecord->setPseudoCount(Kind);
1053 return;
1054 }
1055
1056 // Scale up the MaxCount to be multiple times above hot / cold threshold.
1057 const unsigned MultiplyFactor = 3;
1058 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
1059 uint64_t Numerator = Threshold * MultiplyFactor;
1060
1061 // Make sure Threshold for warm counters is below the HotInstrThreshold.
1062 if (!SetToHot && Threshold >= HotInstrThreshold) {
1063 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
1064 }
1065
1066 uint64_t Denominator = IFE.MaxCount;
1067 if (Numerator <= Denominator)
1068 return;
1069 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
1070 warn(toString(make_error<InstrProfError>(E)));
1071 });
1072 }
1073
1074 const uint64_t ColdPercentileIdx = 15;
1075 const uint64_t HotPercentileIdx = 11;
1076
1077 using sampleprof::FSDiscriminatorPass;
1078
1079 // Internal options to set FSDiscriminatorPass. Used in merge and show
1080 // commands.
1081 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
1082 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
1083 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
1084 "pass beyond this value. The enum values are defined in "
1085 "Support/Discriminator.h"),
1086 cl::values(clEnumVal(Base, "Use base discriminators only"),
1087 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
1088 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
1089 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
1090 clEnumVal(PassLast, "Use all discriminator bits (default)")));
1091
getDiscriminatorMask()1092 static unsigned getDiscriminatorMask() {
1093 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
1094 }
1095
1096 /// Adjust the instr profile in \p WC based on the sample profile in
1097 /// \p Reader.
1098 static void
adjustInstrProfile(std::unique_ptr<WriterContext> & WC,std::unique_ptr<sampleprof::SampleProfileReader> & Reader,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)1099 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
1100 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
1101 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
1102 unsigned InstrProfColdThreshold) {
1103 // Function to its entry in instr profile.
1104 StringMap<InstrProfileEntry> InstrProfileMap;
1105 StringMap<StringRef> StaticFuncMap;
1106 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
1107
1108 auto checkSampleProfileHasFUnique = [&Reader]() {
1109 for (const auto &PD : Reader->getProfiles()) {
1110 auto &FContext = PD.second.getContext();
1111 if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
1112 std::string::npos) {
1113 return true;
1114 }
1115 }
1116 return false;
1117 };
1118
1119 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
1120
1121 auto buildStaticFuncMap = [&StaticFuncMap,
1122 SampleProfileHasFUnique](const StringRef Name) {
1123 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"};
1124 size_t PrefixPos = StringRef::npos;
1125 for (auto &FilePrefix : FilePrefixes) {
1126 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter;
1127 PrefixPos = Name.find_insensitive(NamePrefix);
1128 if (PrefixPos == StringRef::npos)
1129 continue;
1130 PrefixPos += NamePrefix.size();
1131 break;
1132 }
1133
1134 if (PrefixPos == StringRef::npos) {
1135 return;
1136 }
1137
1138 StringRef NewName = Name.drop_front(PrefixPos);
1139 StringRef FName = Name.substr(0, PrefixPos - 1);
1140 if (NewName.size() == 0) {
1141 return;
1142 }
1143
1144 // This name should have a static linkage.
1145 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
1146 bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
1147
1148 // If sample profile and instrumented profile do not agree on symbol
1149 // uniqification.
1150 if (SampleProfileHasFUnique != ProfileHasFUnique) {
1151 // If instrumented profile uses -funique-internal-linkage-symbols,
1152 // we need to trim the name.
1153 if (ProfileHasFUnique) {
1154 NewName = NewName.substr(0, PostfixPos);
1155 } else {
1156 // If sample profile uses -funique-internal-linkage-symbols,
1157 // we build the map.
1158 std::string NStr =
1159 NewName.str() + getUniqueInternalLinkagePostfix(FName);
1160 NewName = StringRef(NStr);
1161 StaticFuncMap[NewName] = Name;
1162 return;
1163 }
1164 }
1165
1166 if (!StaticFuncMap.contains(NewName)) {
1167 StaticFuncMap[NewName] = Name;
1168 } else {
1169 StaticFuncMap[NewName] = DuplicateNameStr;
1170 }
1171 };
1172
1173 // We need to flatten the SampleFDO profile as the InstrFDO
1174 // profile does not have inlined callsite profiles.
1175 // One caveat is the pre-inlined function -- their samples
1176 // should be collapsed into the caller function.
1177 // Here we do a DFS traversal to get the flatten profile
1178 // info: the sum of entrycount and the max of maxcount.
1179 // Here is the algorithm:
1180 // recursive (FS, root_name) {
1181 // name = FS->getName();
1182 // get samples for FS;
1183 // if (InstrProf.find(name) {
1184 // root_name = name;
1185 // } else {
1186 // if (name is in static_func map) {
1187 // root_name = static_name;
1188 // }
1189 // }
1190 // update the Map entry for root_name;
1191 // for (subfs: FS) {
1192 // recursive(subfs, root_name);
1193 // }
1194 // }
1195 //
1196 // Here is an example.
1197 //
1198 // SampleProfile:
1199 // foo:12345:1000
1200 // 1: 1000
1201 // 2.1: 1000
1202 // 15: 5000
1203 // 4: bar:1000
1204 // 1: 1000
1205 // 2: goo:3000
1206 // 1: 3000
1207 // 8: bar:40000
1208 // 1: 10000
1209 // 2: goo:30000
1210 // 1: 30000
1211 //
1212 // InstrProfile has two entries:
1213 // foo
1214 // bar.cc;bar
1215 //
1216 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
1217 // {"foo", {1000, 5000}}
1218 // {"bar.cc;bar", {11000, 30000}}
1219 //
1220 // foo's has an entry count of 1000, and max body count of 5000.
1221 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and
1222 // 10000), and max count of 30000 (from the callsite in line 8).
1223 //
1224 // Note that goo's count will remain in bar.cc;bar() as it does not have an
1225 // entry in InstrProfile.
1226 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap;
1227 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
1228 &InstrProfileMap](const FunctionSamples &FS,
1229 const StringRef &RootName) {
1230 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
1231 const StringRef &RootName,
1232 auto &BuildImpl) -> void {
1233 std::string NameStr = FS.getFunction().str();
1234 const StringRef Name = NameStr;
1235 const StringRef *NewRootName = &RootName;
1236 uint64_t EntrySample = FS.getHeadSamplesEstimate();
1237 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
1238
1239 auto It = InstrProfileMap.find(Name);
1240 if (It != InstrProfileMap.end()) {
1241 NewRootName = &Name;
1242 } else {
1243 auto NewName = StaticFuncMap.find(Name);
1244 if (NewName != StaticFuncMap.end()) {
1245 It = InstrProfileMap.find(NewName->second.str());
1246 if (NewName->second != DuplicateNameStr) {
1247 NewRootName = &NewName->second;
1248 }
1249 } else {
1250 // Here the EntrySample is of an inlined function, so we should not
1251 // update the EntrySample in the map.
1252 EntrySample = 0;
1253 }
1254 }
1255 EntrySample += FlattenSampleMap[*NewRootName].first;
1256 MaxBodySample =
1257 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
1258 FlattenSampleMap[*NewRootName] =
1259 std::make_pair(EntrySample, MaxBodySample);
1260
1261 for (const auto &C : FS.getCallsiteSamples())
1262 for (const auto &F : C.second)
1263 BuildImpl(F.second, *NewRootName, BuildImpl);
1264 };
1265 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
1266 };
1267
1268 for (auto &PD : WC->Writer.getProfileData()) {
1269 // Populate IPBuilder.
1270 for (const auto &PDV : PD.getValue()) {
1271 InstrProfRecord Record = PDV.second;
1272 IPBuilder.addRecord(Record);
1273 }
1274
1275 // If a function has multiple entries in instr profile, skip it.
1276 if (PD.getValue().size() != 1)
1277 continue;
1278
1279 // Initialize InstrProfileMap.
1280 InstrProfRecord *R = &PD.getValue().begin()->second;
1281 StringRef FullName = PD.getKey();
1282 InstrProfileMap[FullName] = InstrProfileEntry(R);
1283 buildStaticFuncMap(FullName);
1284 }
1285
1286 for (auto &PD : Reader->getProfiles()) {
1287 sampleprof::FunctionSamples &FS = PD.second;
1288 std::string Name = FS.getFunction().str();
1289 BuildMaxSampleMap(FS, Name);
1290 }
1291
1292 ProfileSummary InstrPS = *IPBuilder.getSummary();
1293 ProfileSummary SamplePS = Reader->getSummary();
1294
1295 // Compute cold thresholds for instr profile and sample profile.
1296 uint64_t HotSampleThreshold =
1297 ProfileSummaryBuilder::getEntryForPercentile(
1298 SamplePS.getDetailedSummary(),
1299 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1300 .MinCount;
1301 uint64_t ColdSampleThreshold =
1302 ProfileSummaryBuilder::getEntryForPercentile(
1303 SamplePS.getDetailedSummary(),
1304 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1305 .MinCount;
1306 uint64_t HotInstrThreshold =
1307 ProfileSummaryBuilder::getEntryForPercentile(
1308 InstrPS.getDetailedSummary(),
1309 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1310 .MinCount;
1311 uint64_t ColdInstrThreshold =
1312 InstrProfColdThreshold
1313 ? InstrProfColdThreshold
1314 : ProfileSummaryBuilder::getEntryForPercentile(
1315 InstrPS.getDetailedSummary(),
1316 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1317 .MinCount;
1318
1319 // Find hot/warm functions in sample profile which is cold in instr profile
1320 // and adjust the profiles of those functions in the instr profile.
1321 for (const auto &E : FlattenSampleMap) {
1322 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
1323 if (SampleMaxCount < ColdSampleThreshold)
1324 continue;
1325 StringRef Name = E.first();
1326 auto It = InstrProfileMap.find(Name);
1327 if (It == InstrProfileMap.end()) {
1328 auto NewName = StaticFuncMap.find(Name);
1329 if (NewName != StaticFuncMap.end()) {
1330 It = InstrProfileMap.find(NewName->second.str());
1331 if (NewName->second == DuplicateNameStr) {
1332 WithColor::warning()
1333 << "Static function " << Name
1334 << " has multiple promoted names, cannot adjust profile.\n";
1335 }
1336 }
1337 }
1338 if (It == InstrProfileMap.end() ||
1339 It->second.MaxCount > ColdInstrThreshold ||
1340 It->second.NumEdgeCounters < SupplMinSizeThreshold)
1341 continue;
1342 bool SetToHot = SampleMaxCount >= HotSampleThreshold;
1343 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
1344 ColdInstrThreshold, ZeroCounterThreshold);
1345 }
1346 }
1347
1348 /// The main function to supplement instr profile with sample profile.
1349 /// \Inputs contains the instr profile. \p SampleFilename specifies the
1350 /// sample profile. \p OutputFilename specifies the output profile name.
1351 /// \p OutputFormat specifies the output profile format. \p OutputSparse
1352 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
1353 /// specifies the minimal size for the functions whose profile will be
1354 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
1355 /// a function contains too many zero counters and whether its profile
1356 /// should be dropped. \p InstrProfColdThreshold is the user specified
1357 /// cold threshold which will override the cold threshold got from the
1358 /// instr profile summary.
supplementInstrProfile(const WeightedFileVector & Inputs,StringRef SampleFilename,bool OutputSparse,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)1359 static void supplementInstrProfile(const WeightedFileVector &Inputs,
1360 StringRef SampleFilename, bool OutputSparse,
1361 unsigned SupplMinSizeThreshold,
1362 float ZeroCounterThreshold,
1363 unsigned InstrProfColdThreshold) {
1364 if (OutputFilename == "-")
1365 exitWithError("cannot write indexed profdata format to stdout");
1366 if (Inputs.size() != 1)
1367 exitWithError("expect one input to be an instr profile");
1368 if (Inputs[0].Weight != 1)
1369 exitWithError("expect instr profile doesn't have weight");
1370
1371 StringRef InstrFilename = Inputs[0].Filename;
1372
1373 // Read sample profile.
1374 LLVMContext Context;
1375 auto FS = vfs::getRealFileSystem();
1376 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
1377 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption);
1378 if (std::error_code EC = ReaderOrErr.getError())
1379 exitWithErrorCode(EC, SampleFilename);
1380 auto Reader = std::move(ReaderOrErr.get());
1381 if (std::error_code EC = Reader->read())
1382 exitWithErrorCode(EC, SampleFilename);
1383
1384 // Read instr profile.
1385 std::mutex ErrorLock;
1386 SmallSet<instrprof_error, 4> WriterErrorCodes;
1387 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
1388 WriterErrorCodes);
1389 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
1390 if (WC->Errors.size() > 0)
1391 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
1392
1393 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
1394 InstrProfColdThreshold);
1395 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
1396 }
1397
1398 /// Make a copy of the given function samples with all symbol names remapped
1399 /// by the provided symbol remapper.
1400 static sampleprof::FunctionSamples
remapSamples(const sampleprof::FunctionSamples & Samples,SymbolRemapper & Remapper,sampleprof_error & Error)1401 remapSamples(const sampleprof::FunctionSamples &Samples,
1402 SymbolRemapper &Remapper, sampleprof_error &Error) {
1403 sampleprof::FunctionSamples Result;
1404 Result.setFunction(Remapper(Samples.getFunction()));
1405 Result.addTotalSamples(Samples.getTotalSamples());
1406 Result.addHeadSamples(Samples.getHeadSamples());
1407 for (const auto &BodySample : Samples.getBodySamples()) {
1408 uint32_t MaskedDiscriminator =
1409 BodySample.first.Discriminator & getDiscriminatorMask();
1410 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
1411 BodySample.second.getSamples());
1412 for (const auto &Target : BodySample.second.getCallTargets()) {
1413 Result.addCalledTargetSamples(BodySample.first.LineOffset,
1414 MaskedDiscriminator,
1415 Remapper(Target.first), Target.second);
1416 }
1417 }
1418 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
1419 sampleprof::FunctionSamplesMap &Target =
1420 Result.functionSamplesAt(CallsiteSamples.first);
1421 for (const auto &Callsite : CallsiteSamples.second) {
1422 sampleprof::FunctionSamples Remapped =
1423 remapSamples(Callsite.second, Remapper, Error);
1424 mergeSampleProfErrors(Error,
1425 Target[Remapped.getFunction()].merge(Remapped));
1426 }
1427 }
1428 return Result;
1429 }
1430
1431 static sampleprof::SampleProfileFormat FormatMap[] = {
1432 sampleprof::SPF_None,
1433 sampleprof::SPF_Text,
1434 sampleprof::SPF_None,
1435 sampleprof::SPF_Ext_Binary,
1436 sampleprof::SPF_GCC,
1437 sampleprof::SPF_Binary};
1438
1439 static std::unique_ptr<MemoryBuffer>
getInputFileBuf(const StringRef & InputFile)1440 getInputFileBuf(const StringRef &InputFile) {
1441 if (InputFile == "")
1442 return {};
1443
1444 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
1445 if (!BufOrError)
1446 exitWithErrorCode(BufOrError.getError(), InputFile);
1447
1448 return std::move(*BufOrError);
1449 }
1450
populateProfileSymbolList(MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & PSL)1451 static void populateProfileSymbolList(MemoryBuffer *Buffer,
1452 sampleprof::ProfileSymbolList &PSL) {
1453 if (!Buffer)
1454 return;
1455
1456 SmallVector<StringRef, 32> SymbolVec;
1457 StringRef Data = Buffer->getBuffer();
1458 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1459
1460 for (StringRef SymbolStr : SymbolVec)
1461 PSL.add(SymbolStr.trim());
1462 }
1463
handleExtBinaryWriter(sampleprof::SampleProfileWriter & Writer,ProfileFormat OutputFormat,MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & WriterList,bool CompressAllSections,bool UseMD5,bool GenPartialProfile)1464 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
1465 ProfileFormat OutputFormat,
1466 MemoryBuffer *Buffer,
1467 sampleprof::ProfileSymbolList &WriterList,
1468 bool CompressAllSections, bool UseMD5,
1469 bool GenPartialProfile) {
1470 populateProfileSymbolList(Buffer, WriterList);
1471 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
1472 warn("Profile Symbol list is not empty but the output format is not "
1473 "ExtBinary format. The list will be lost in the output. ");
1474
1475 Writer.setProfileSymbolList(&WriterList);
1476
1477 if (CompressAllSections) {
1478 if (OutputFormat != PF_Ext_Binary)
1479 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
1480 else
1481 Writer.setToCompressAllSections();
1482 }
1483 if (UseMD5) {
1484 if (OutputFormat != PF_Ext_Binary)
1485 warn("-use-md5 is ignored. Specify -extbinary to enable it");
1486 else
1487 Writer.setUseMD5();
1488 }
1489 if (GenPartialProfile) {
1490 if (OutputFormat != PF_Ext_Binary)
1491 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
1492 else
1493 Writer.setPartialProfile();
1494 }
1495 }
1496
mergeSampleProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef ProfileSymbolListFile,size_t OutputSizeLimit)1497 static void mergeSampleProfile(const WeightedFileVector &Inputs,
1498 SymbolRemapper *Remapper,
1499 StringRef ProfileSymbolListFile,
1500 size_t OutputSizeLimit) {
1501 using namespace sampleprof;
1502 SampleProfileMap ProfileMap;
1503 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
1504 LLVMContext Context;
1505 sampleprof::ProfileSymbolList WriterList;
1506 std::optional<bool> ProfileIsProbeBased;
1507 std::optional<bool> ProfileIsCS;
1508 for (const auto &Input : Inputs) {
1509 auto FS = vfs::getRealFileSystem();
1510 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS,
1511 FSDiscriminatorPassOption);
1512 if (std::error_code EC = ReaderOrErr.getError()) {
1513 warnOrExitGivenError(FailMode, EC, Input.Filename);
1514 continue;
1515 }
1516
1517 // We need to keep the readers around until after all the files are
1518 // read so that we do not lose the function names stored in each
1519 // reader's memory. The function names are needed to write out the
1520 // merged profile map.
1521 Readers.push_back(std::move(ReaderOrErr.get()));
1522 const auto Reader = Readers.back().get();
1523 if (std::error_code EC = Reader->read()) {
1524 warnOrExitGivenError(FailMode, EC, Input.Filename);
1525 Readers.pop_back();
1526 continue;
1527 }
1528
1529 SampleProfileMap &Profiles = Reader->getProfiles();
1530 if (ProfileIsProbeBased &&
1531 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
1532 exitWithError(
1533 "cannot merge probe-based profile with non-probe-based profile");
1534 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
1535 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
1536 exitWithError("cannot merge CS profile with non-CS profile");
1537 ProfileIsCS = FunctionSamples::ProfileIsCS;
1538 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
1539 I != E; ++I) {
1540 sampleprof_error Result = sampleprof_error::success;
1541 FunctionSamples Remapped =
1542 Remapper ? remapSamples(I->second, *Remapper, Result)
1543 : FunctionSamples();
1544 FunctionSamples &Samples = Remapper ? Remapped : I->second;
1545 SampleContext FContext = Samples.getContext();
1546 mergeSampleProfErrors(Result,
1547 ProfileMap[FContext].merge(Samples, Input.Weight));
1548 if (Result != sampleprof_error::success) {
1549 std::error_code EC = make_error_code(Result);
1550 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
1551 FContext.toString());
1552 }
1553 }
1554
1555 if (!DropProfileSymbolList) {
1556 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
1557 Reader->getProfileSymbolList();
1558 if (ReaderList)
1559 WriterList.merge(*ReaderList);
1560 }
1561 }
1562
1563 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
1564 // Use threshold calculated from profile summary unless specified.
1565 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1566 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
1567 uint64_t SampleProfColdThreshold =
1568 ProfileSummaryBuilder::getColdCountThreshold(
1569 (Summary->getDetailedSummary()));
1570
1571 // Trim and merge cold context profile using cold threshold above;
1572 SampleContextTrimmer(ProfileMap)
1573 .trimAndMergeColdContextProfiles(
1574 SampleProfColdThreshold, SampleTrimColdContext,
1575 SampleMergeColdContext, SampleColdContextFrameDepth, false);
1576 }
1577
1578 if (ProfileLayout == llvm::sampleprof::SPL_Flat) {
1579 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS);
1580 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1581 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) {
1582 ProfileConverter CSConverter(ProfileMap);
1583 CSConverter.convertCSProfiles();
1584 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1585 }
1586
1587 filterFunctions(ProfileMap);
1588
1589 auto WriterOrErr =
1590 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
1591 if (std::error_code EC = WriterOrErr.getError())
1592 exitWithErrorCode(EC, OutputFilename);
1593
1594 auto Writer = std::move(WriterOrErr.get());
1595 // WriterList will have StringRef refering to string in Buffer.
1596 // Make sure Buffer lives as long as WriterList.
1597 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
1598 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
1599 CompressAllSections, UseMD5, GenPartialProfile);
1600
1601 // If OutputSizeLimit is 0 (default), it is the same as write().
1602 if (std::error_code EC =
1603 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit))
1604 exitWithErrorCode(EC);
1605 }
1606
parseWeightedFile(const StringRef & WeightedFilename)1607 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
1608 StringRef WeightStr, FileName;
1609 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
1610
1611 uint64_t Weight;
1612 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
1613 exitWithError("input weight must be a positive integer");
1614
1615 return {std::string(FileName), Weight};
1616 }
1617
addWeightedInput(WeightedFileVector & WNI,const WeightedFile & WF)1618 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
1619 StringRef Filename = WF.Filename;
1620 uint64_t Weight = WF.Weight;
1621
1622 // If it's STDIN just pass it on.
1623 if (Filename == "-") {
1624 WNI.push_back({std::string(Filename), Weight});
1625 return;
1626 }
1627
1628 llvm::sys::fs::file_status Status;
1629 llvm::sys::fs::status(Filename, Status);
1630 if (!llvm::sys::fs::exists(Status))
1631 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
1632 Filename);
1633 // If it's a source file, collect it.
1634 if (llvm::sys::fs::is_regular_file(Status)) {
1635 WNI.push_back({std::string(Filename), Weight});
1636 return;
1637 }
1638
1639 if (llvm::sys::fs::is_directory(Status)) {
1640 std::error_code EC;
1641 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
1642 F != E && !EC; F.increment(EC)) {
1643 if (llvm::sys::fs::is_regular_file(F->path())) {
1644 addWeightedInput(WNI, {F->path(), Weight});
1645 }
1646 }
1647 if (EC)
1648 exitWithErrorCode(EC, Filename);
1649 }
1650 }
1651
parseInputFilenamesFile(MemoryBuffer * Buffer,WeightedFileVector & WFV)1652 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
1653 WeightedFileVector &WFV) {
1654 if (!Buffer)
1655 return;
1656
1657 SmallVector<StringRef, 8> Entries;
1658 StringRef Data = Buffer->getBuffer();
1659 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1660 for (const StringRef &FileWeightEntry : Entries) {
1661 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
1662 // Skip comments.
1663 if (SanitizedEntry.starts_with("#"))
1664 continue;
1665 // If there's no comma, it's an unweighted profile.
1666 else if (!SanitizedEntry.contains(','))
1667 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
1668 else
1669 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
1670 }
1671 }
1672
merge_main(StringRef ProgName)1673 static int merge_main(StringRef ProgName) {
1674 WeightedFileVector WeightedInputs;
1675 for (StringRef Filename : InputFilenames)
1676 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1677 for (StringRef WeightedFilename : WeightedInputFilenames)
1678 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1679
1680 // Make sure that the file buffer stays alive for the duration of the
1681 // weighted input vector's lifetime.
1682 auto Buffer = getInputFileBuf(InputFilenamesFile);
1683 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1684
1685 if (WeightedInputs.empty())
1686 exitWithError("no input files specified. See " + ProgName + " merge -help");
1687
1688 if (DumpInputFileList) {
1689 for (auto &WF : WeightedInputs)
1690 outs() << WF.Weight << "," << WF.Filename << "\n";
1691 return 0;
1692 }
1693
1694 std::unique_ptr<SymbolRemapper> Remapper;
1695 if (!RemappingFile.empty())
1696 Remapper = SymbolRemapper::create(RemappingFile);
1697
1698 if (!SupplInstrWithSample.empty()) {
1699 if (ProfileKind != instr)
1700 exitWithError(
1701 "-supplement-instr-with-sample can only work with -instr. ");
1702
1703 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse,
1704 SupplMinSizeThreshold, ZeroCounterThreshold,
1705 InstrProfColdThreshold);
1706 return 0;
1707 }
1708
1709 if (ProfileKind == instr)
1710 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings,
1711 ProfiledBinary);
1712 else
1713 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile,
1714 OutputSizeLimit);
1715 return 0;
1716 }
1717
1718 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
overlapInstrProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)1719 static void overlapInstrProfile(const std::string &BaseFilename,
1720 const std::string &TestFilename,
1721 const OverlapFuncFilters &FuncFilter,
1722 raw_fd_ostream &OS, bool IsCS) {
1723 std::mutex ErrorLock;
1724 SmallSet<instrprof_error, 4> WriterErrorCodes;
1725 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1726 WeightedFile WeightedInput{BaseFilename, 1};
1727 OverlapStats Overlap;
1728 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1729 if (E)
1730 exitWithError(std::move(E), "error in getting profile count sums");
1731 if (Overlap.Base.CountSum < 1.0f) {
1732 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1733 exit(0);
1734 }
1735 if (Overlap.Test.CountSum < 1.0f) {
1736 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1737 exit(0);
1738 }
1739 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1740 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1741 IsCS);
1742 Overlap.dump(OS);
1743 }
1744
1745 namespace {
1746 struct SampleOverlapStats {
1747 SampleContext BaseName;
1748 SampleContext TestName;
1749 // Number of overlap units
1750 uint64_t OverlapCount = 0;
1751 // Total samples of overlap units
1752 uint64_t OverlapSample = 0;
1753 // Number of and total samples of units that only present in base or test
1754 // profile
1755 uint64_t BaseUniqueCount = 0;
1756 uint64_t BaseUniqueSample = 0;
1757 uint64_t TestUniqueCount = 0;
1758 uint64_t TestUniqueSample = 0;
1759 // Number of units and total samples in base or test profile
1760 uint64_t BaseCount = 0;
1761 uint64_t BaseSample = 0;
1762 uint64_t TestCount = 0;
1763 uint64_t TestSample = 0;
1764 // Number of and total samples of units that present in at least one profile
1765 uint64_t UnionCount = 0;
1766 uint64_t UnionSample = 0;
1767 // Weighted similarity
1768 double Similarity = 0.0;
1769 // For SampleOverlapStats instances representing functions, weights of the
1770 // function in base and test profiles
1771 double BaseWeight = 0.0;
1772 double TestWeight = 0.0;
1773
1774 SampleOverlapStats() = default;
1775 };
1776 } // end anonymous namespace
1777
1778 namespace {
1779 struct FuncSampleStats {
1780 uint64_t SampleSum = 0;
1781 uint64_t MaxSample = 0;
1782 uint64_t HotBlockCount = 0;
1783 FuncSampleStats() = default;
FuncSampleStats__anon209d874b1011::FuncSampleStats1784 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1785 uint64_t HotBlockCount)
1786 : SampleSum(SampleSum), MaxSample(MaxSample),
1787 HotBlockCount(HotBlockCount) {}
1788 };
1789 } // end anonymous namespace
1790
1791 namespace {
1792 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1793
1794 // Class for updating merging steps for two sorted maps. The class should be
1795 // instantiated with a map iterator type.
1796 template <class T> class MatchStep {
1797 public:
1798 MatchStep() = delete;
1799
MatchStep(T FirstIter,T FirstEnd,T SecondIter,T SecondEnd)1800 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1801 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1802 SecondEnd(SecondEnd), Status(MS_None) {}
1803
areBothFinished() const1804 bool areBothFinished() const {
1805 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1806 }
1807
isFirstFinished() const1808 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1809
isSecondFinished() const1810 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1811
1812 /// Advance one step based on the previous match status unless the previous
1813 /// status is MS_None. Then update Status based on the comparison between two
1814 /// container iterators at the current step. If the previous status is
1815 /// MS_None, it means two iterators are at the beginning and no comparison has
1816 /// been made, so we simply update Status without advancing the iterators.
1817 void updateOneStep();
1818
getFirstIter() const1819 T getFirstIter() const { return FirstIter; }
1820
getSecondIter() const1821 T getSecondIter() const { return SecondIter; }
1822
getMatchStatus() const1823 MatchStatus getMatchStatus() const { return Status; }
1824
1825 private:
1826 // Current iterator and end iterator of the first container.
1827 T FirstIter;
1828 T FirstEnd;
1829 // Current iterator and end iterator of the second container.
1830 T SecondIter;
1831 T SecondEnd;
1832 // Match status of the current step.
1833 MatchStatus Status;
1834 };
1835 } // end anonymous namespace
1836
updateOneStep()1837 template <class T> void MatchStep<T>::updateOneStep() {
1838 switch (Status) {
1839 case MS_Match:
1840 ++FirstIter;
1841 ++SecondIter;
1842 break;
1843 case MS_FirstUnique:
1844 ++FirstIter;
1845 break;
1846 case MS_SecondUnique:
1847 ++SecondIter;
1848 break;
1849 case MS_None:
1850 break;
1851 }
1852
1853 // Update Status according to iterators at the current step.
1854 if (areBothFinished())
1855 return;
1856 if (FirstIter != FirstEnd &&
1857 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1858 Status = MS_FirstUnique;
1859 else if (SecondIter != SecondEnd &&
1860 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1861 Status = MS_SecondUnique;
1862 else
1863 Status = MS_Match;
1864 }
1865
1866 // Return the sum of line/block samples, the max line/block sample, and the
1867 // number of line/block samples above the given threshold in a function
1868 // including its inlinees.
getFuncSampleStats(const sampleprof::FunctionSamples & Func,FuncSampleStats & FuncStats,uint64_t HotThreshold)1869 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1870 FuncSampleStats &FuncStats,
1871 uint64_t HotThreshold) {
1872 for (const auto &L : Func.getBodySamples()) {
1873 uint64_t Sample = L.second.getSamples();
1874 FuncStats.SampleSum += Sample;
1875 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1876 if (Sample >= HotThreshold)
1877 ++FuncStats.HotBlockCount;
1878 }
1879
1880 for (const auto &C : Func.getCallsiteSamples()) {
1881 for (const auto &F : C.second)
1882 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1883 }
1884 }
1885
1886 /// Predicate that determines if a function is hot with a given threshold. We
1887 /// keep it separate from its callsites for possible extension in the future.
isFunctionHot(const FuncSampleStats & FuncStats,uint64_t HotThreshold)1888 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1889 uint64_t HotThreshold) {
1890 // We intentionally compare the maximum sample count in a function with the
1891 // HotThreshold to get an approximate determination on hot functions.
1892 return (FuncStats.MaxSample >= HotThreshold);
1893 }
1894
1895 namespace {
1896 class SampleOverlapAggregator {
1897 public:
SampleOverlapAggregator(const std::string & BaseFilename,const std::string & TestFilename,double LowSimilarityThreshold,double Epsilon,const OverlapFuncFilters & FuncFilter)1898 SampleOverlapAggregator(const std::string &BaseFilename,
1899 const std::string &TestFilename,
1900 double LowSimilarityThreshold, double Epsilon,
1901 const OverlapFuncFilters &FuncFilter)
1902 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1903 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1904 FuncFilter(FuncFilter) {}
1905
1906 /// Detect 0-sample input profile and report to output stream. This interface
1907 /// should be called after loadProfiles().
1908 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1909
1910 /// Write out function-level similarity statistics for functions specified by
1911 /// options --function, --value-cutoff, and --similarity-cutoff.
1912 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1913
1914 /// Write out program-level similarity and overlap statistics.
1915 void dumpProgramSummary(raw_fd_ostream &OS) const;
1916
1917 /// Write out hot-function and hot-block statistics for base_profile,
1918 /// test_profile, and their overlap. For both cases, the overlap HO is
1919 /// calculated as follows:
1920 /// Given the number of functions (or blocks) that are hot in both profiles
1921 /// HCommon and the number of functions (or blocks) that are hot in at
1922 /// least one profile HUnion, HO = HCommon / HUnion.
1923 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1924
1925 /// This function tries matching functions in base and test profiles. For each
1926 /// pair of matched functions, it aggregates the function-level
1927 /// similarity into a profile-level similarity. It also dump function-level
1928 /// similarity information of functions specified by --function,
1929 /// --value-cutoff, and --similarity-cutoff options. The program-level
1930 /// similarity PS is computed as follows:
1931 /// Given function-level similarity FS(A) for all function A, the
1932 /// weight of function A in base profile WB(A), and the weight of function
1933 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1934 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1935 /// meaning no-overlap.
1936 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1937
1938 /// Initialize ProfOverlap with the sum of samples in base and test
1939 /// profiles. This function also computes and keeps the sum of samples and
1940 /// max sample counts of each function in BaseStats and TestStats for later
1941 /// use to avoid re-computations.
1942 void initializeSampleProfileOverlap();
1943
1944 /// Load profiles specified by BaseFilename and TestFilename.
1945 std::error_code loadProfiles();
1946
1947 using FuncSampleStatsMap =
1948 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1949
1950 private:
1951 SampleOverlapStats ProfOverlap;
1952 SampleOverlapStats HotFuncOverlap;
1953 SampleOverlapStats HotBlockOverlap;
1954 std::string BaseFilename;
1955 std::string TestFilename;
1956 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1957 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1958 // BaseStats and TestStats hold FuncSampleStats for each function, with
1959 // function name as the key.
1960 FuncSampleStatsMap BaseStats;
1961 FuncSampleStatsMap TestStats;
1962 // Low similarity threshold in floating point number
1963 double LowSimilarityThreshold;
1964 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1965 // for tracking hot blocks.
1966 uint64_t BaseHotThreshold;
1967 uint64_t TestHotThreshold;
1968 // A small threshold used to round the results of floating point accumulations
1969 // to resolve imprecision.
1970 const double Epsilon;
1971 std::multimap<double, SampleOverlapStats, std::greater<double>>
1972 FuncSimilarityDump;
1973 // FuncFilter carries specifications in options --value-cutoff and
1974 // --function.
1975 OverlapFuncFilters FuncFilter;
1976 // Column offsets for printing the function-level details table.
1977 static const unsigned int TestWeightCol = 15;
1978 static const unsigned int SimilarityCol = 30;
1979 static const unsigned int OverlapCol = 43;
1980 static const unsigned int BaseUniqueCol = 53;
1981 static const unsigned int TestUniqueCol = 67;
1982 static const unsigned int BaseSampleCol = 81;
1983 static const unsigned int TestSampleCol = 96;
1984 static const unsigned int FuncNameCol = 111;
1985
1986 /// Return a similarity of two line/block sample counters in the same
1987 /// function in base and test profiles. The line/block-similarity BS(i) is
1988 /// computed as follows:
1989 /// For an offsets i, given the sample count at i in base profile BB(i),
1990 /// the sample count at i in test profile BT(i), the sum of sample counts
1991 /// in this function in base profile SB, and the sum of sample counts in
1992 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1993 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1994 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1995 const SampleOverlapStats &FuncOverlap) const;
1996
1997 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1998 uint64_t HotBlockCount);
1999
2000 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
2001 FuncSampleStatsMap &HotFunc,
2002 uint64_t HotThreshold) const;
2003
2004 void computeHotFuncOverlap();
2005
2006 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2007 /// Difference for two sample units in a matched function according to the
2008 /// given match status.
2009 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
2010 uint64_t HotBlockCount,
2011 SampleOverlapStats &FuncOverlap,
2012 double &Difference, MatchStatus Status);
2013
2014 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2015 /// Difference for unmatched callees that only present in one profile in a
2016 /// matched caller function.
2017 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
2018 SampleOverlapStats &FuncOverlap,
2019 double &Difference, MatchStatus Status);
2020
2021 /// This function updates sample overlap statistics of an overlap function in
2022 /// base and test profile. It also calculates a function-internal similarity
2023 /// FIS as follows:
2024 /// For offsets i that have samples in at least one profile in this
2025 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
2026 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
2027 /// 0.0 meaning no overlap.
2028 double computeSampleFunctionInternalOverlap(
2029 const sampleprof::FunctionSamples &BaseFunc,
2030 const sampleprof::FunctionSamples &TestFunc,
2031 SampleOverlapStats &FuncOverlap);
2032
2033 /// Function-level similarity (FS) is a weighted value over function internal
2034 /// similarity (FIS). This function computes a function's FS from its FIS by
2035 /// applying the weight.
2036 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
2037 uint64_t TestFuncSample) const;
2038
2039 /// The function-level similarity FS(A) for a function A is computed as
2040 /// follows:
2041 /// Compute a function-internal similarity FIS(A) by
2042 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
2043 /// function A in base profile WB(A), and the weight of function A in test
2044 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
2045 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
2046 double
2047 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
2048 const sampleprof::FunctionSamples *TestFunc,
2049 SampleOverlapStats *FuncOverlap,
2050 uint64_t BaseFuncSample,
2051 uint64_t TestFuncSample);
2052
2053 /// Profile-level similarity (PS) is a weighted aggregate over function-level
2054 /// similarities (FS). This method weights the FS value by the function
2055 /// weights in the base and test profiles for the aggregation.
2056 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
2057 uint64_t TestFuncSample) const;
2058 };
2059 } // end anonymous namespace
2060
detectZeroSampleProfile(raw_fd_ostream & OS) const2061 bool SampleOverlapAggregator::detectZeroSampleProfile(
2062 raw_fd_ostream &OS) const {
2063 bool HaveZeroSample = false;
2064 if (ProfOverlap.BaseSample == 0) {
2065 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
2066 HaveZeroSample = true;
2067 }
2068 if (ProfOverlap.TestSample == 0) {
2069 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
2070 HaveZeroSample = true;
2071 }
2072 return HaveZeroSample;
2073 }
2074
computeBlockSimilarity(uint64_t BaseSample,uint64_t TestSample,const SampleOverlapStats & FuncOverlap) const2075 double SampleOverlapAggregator::computeBlockSimilarity(
2076 uint64_t BaseSample, uint64_t TestSample,
2077 const SampleOverlapStats &FuncOverlap) const {
2078 double BaseFrac = 0.0;
2079 double TestFrac = 0.0;
2080 if (FuncOverlap.BaseSample > 0)
2081 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
2082 if (FuncOverlap.TestSample > 0)
2083 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
2084 return 1.0 - std::fabs(BaseFrac - TestFrac);
2085 }
2086
updateHotBlockOverlap(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount)2087 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
2088 uint64_t TestSample,
2089 uint64_t HotBlockCount) {
2090 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
2091 bool IsTestHot = (TestSample >= TestHotThreshold);
2092 if (!IsBaseHot && !IsTestHot)
2093 return;
2094
2095 HotBlockOverlap.UnionCount += HotBlockCount;
2096 if (IsBaseHot)
2097 HotBlockOverlap.BaseCount += HotBlockCount;
2098 if (IsTestHot)
2099 HotBlockOverlap.TestCount += HotBlockCount;
2100 if (IsBaseHot && IsTestHot)
2101 HotBlockOverlap.OverlapCount += HotBlockCount;
2102 }
2103
getHotFunctions(const FuncSampleStatsMap & ProfStats,FuncSampleStatsMap & HotFunc,uint64_t HotThreshold) const2104 void SampleOverlapAggregator::getHotFunctions(
2105 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
2106 uint64_t HotThreshold) const {
2107 for (const auto &F : ProfStats) {
2108 if (isFunctionHot(F.second, HotThreshold))
2109 HotFunc.emplace(F.first, F.second);
2110 }
2111 }
2112
computeHotFuncOverlap()2113 void SampleOverlapAggregator::computeHotFuncOverlap() {
2114 FuncSampleStatsMap BaseHotFunc;
2115 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
2116 HotFuncOverlap.BaseCount = BaseHotFunc.size();
2117
2118 FuncSampleStatsMap TestHotFunc;
2119 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
2120 HotFuncOverlap.TestCount = TestHotFunc.size();
2121 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
2122
2123 for (const auto &F : BaseHotFunc) {
2124 if (TestHotFunc.count(F.first))
2125 ++HotFuncOverlap.OverlapCount;
2126 else
2127 ++HotFuncOverlap.UnionCount;
2128 }
2129 }
2130
updateOverlapStatsForFunction(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)2131 void SampleOverlapAggregator::updateOverlapStatsForFunction(
2132 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
2133 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
2134 assert(Status != MS_None &&
2135 "Match status should be updated before updating overlap statistics");
2136 if (Status == MS_FirstUnique) {
2137 TestSample = 0;
2138 FuncOverlap.BaseUniqueSample += BaseSample;
2139 } else if (Status == MS_SecondUnique) {
2140 BaseSample = 0;
2141 FuncOverlap.TestUniqueSample += TestSample;
2142 } else {
2143 ++FuncOverlap.OverlapCount;
2144 }
2145
2146 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
2147 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
2148 Difference +=
2149 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
2150 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
2151 }
2152
updateForUnmatchedCallee(const sampleprof::FunctionSamples & Func,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)2153 void SampleOverlapAggregator::updateForUnmatchedCallee(
2154 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
2155 double &Difference, MatchStatus Status) {
2156 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
2157 "Status must be either of the two unmatched cases");
2158 FuncSampleStats FuncStats;
2159 if (Status == MS_FirstUnique) {
2160 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
2161 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
2162 FuncStats.HotBlockCount, FuncOverlap,
2163 Difference, Status);
2164 } else {
2165 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
2166 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
2167 FuncStats.HotBlockCount, FuncOverlap,
2168 Difference, Status);
2169 }
2170 }
2171
computeSampleFunctionInternalOverlap(const sampleprof::FunctionSamples & BaseFunc,const sampleprof::FunctionSamples & TestFunc,SampleOverlapStats & FuncOverlap)2172 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
2173 const sampleprof::FunctionSamples &BaseFunc,
2174 const sampleprof::FunctionSamples &TestFunc,
2175 SampleOverlapStats &FuncOverlap) {
2176
2177 using namespace sampleprof;
2178
2179 double Difference = 0;
2180
2181 // Accumulate Difference for regular line/block samples in the function.
2182 // We match them through sort-merge join algorithm because
2183 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
2184 // by their offsets.
2185 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
2186 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
2187 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
2188 BlockIterStep.updateOneStep();
2189 while (!BlockIterStep.areBothFinished()) {
2190 uint64_t BaseSample =
2191 BlockIterStep.isFirstFinished()
2192 ? 0
2193 : BlockIterStep.getFirstIter()->second.getSamples();
2194 uint64_t TestSample =
2195 BlockIterStep.isSecondFinished()
2196 ? 0
2197 : BlockIterStep.getSecondIter()->second.getSamples();
2198 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
2199 Difference, BlockIterStep.getMatchStatus());
2200
2201 BlockIterStep.updateOneStep();
2202 }
2203
2204 // Accumulate Difference for callsite lines in the function. We match
2205 // them through sort-merge algorithm because
2206 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
2207 // ordered by their offsets.
2208 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
2209 BaseFunc.getCallsiteSamples().cbegin(),
2210 BaseFunc.getCallsiteSamples().cend(),
2211 TestFunc.getCallsiteSamples().cbegin(),
2212 TestFunc.getCallsiteSamples().cend());
2213 CallsiteIterStep.updateOneStep();
2214 while (!CallsiteIterStep.areBothFinished()) {
2215 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
2216 assert(CallsiteStepStatus != MS_None &&
2217 "Match status should be updated before entering loop body");
2218
2219 if (CallsiteStepStatus != MS_Match) {
2220 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
2221 ? CallsiteIterStep.getFirstIter()
2222 : CallsiteIterStep.getSecondIter();
2223 for (const auto &F : Callsite->second)
2224 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
2225 CallsiteStepStatus);
2226 } else {
2227 // There may be multiple inlinees at the same offset, so we need to try
2228 // matching all of them. This match is implemented through sort-merge
2229 // algorithm because callsite records at the same offset are ordered by
2230 // function names.
2231 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
2232 CallsiteIterStep.getFirstIter()->second.cbegin(),
2233 CallsiteIterStep.getFirstIter()->second.cend(),
2234 CallsiteIterStep.getSecondIter()->second.cbegin(),
2235 CallsiteIterStep.getSecondIter()->second.cend());
2236 CalleeIterStep.updateOneStep();
2237 while (!CalleeIterStep.areBothFinished()) {
2238 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
2239 if (CalleeStepStatus != MS_Match) {
2240 auto Callee = (CalleeStepStatus == MS_FirstUnique)
2241 ? CalleeIterStep.getFirstIter()
2242 : CalleeIterStep.getSecondIter();
2243 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
2244 CalleeStepStatus);
2245 } else {
2246 // An inlined function can contain other inlinees inside, so compute
2247 // the Difference recursively.
2248 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
2249 CalleeIterStep.getFirstIter()->second,
2250 CalleeIterStep.getSecondIter()->second,
2251 FuncOverlap);
2252 }
2253 CalleeIterStep.updateOneStep();
2254 }
2255 }
2256 CallsiteIterStep.updateOneStep();
2257 }
2258
2259 // Difference reflects the total differences of line/block samples in this
2260 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
2261 // reflect the similarity between function profiles in [0.0f to 1.0f].
2262 return (2.0 - Difference) / 2;
2263 }
2264
weightForFuncSimilarity(double FuncInternalSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const2265 double SampleOverlapAggregator::weightForFuncSimilarity(
2266 double FuncInternalSimilarity, uint64_t BaseFuncSample,
2267 uint64_t TestFuncSample) const {
2268 // Compute the weight as the distance between the function weights in two
2269 // profiles.
2270 double BaseFrac = 0.0;
2271 double TestFrac = 0.0;
2272 assert(ProfOverlap.BaseSample > 0 &&
2273 "Total samples in base profile should be greater than 0");
2274 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
2275 assert(ProfOverlap.TestSample > 0 &&
2276 "Total samples in test profile should be greater than 0");
2277 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
2278 double WeightDistance = std::fabs(BaseFrac - TestFrac);
2279
2280 // Take WeightDistance into the similarity.
2281 return FuncInternalSimilarity * (1 - WeightDistance);
2282 }
2283
2284 double
weightByImportance(double FuncSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const2285 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
2286 uint64_t BaseFuncSample,
2287 uint64_t TestFuncSample) const {
2288
2289 double BaseFrac = 0.0;
2290 double TestFrac = 0.0;
2291 assert(ProfOverlap.BaseSample > 0 &&
2292 "Total samples in base profile should be greater than 0");
2293 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
2294 assert(ProfOverlap.TestSample > 0 &&
2295 "Total samples in test profile should be greater than 0");
2296 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
2297 return FuncSimilarity * (BaseFrac + TestFrac);
2298 }
2299
computeSampleFunctionOverlap(const sampleprof::FunctionSamples * BaseFunc,const sampleprof::FunctionSamples * TestFunc,SampleOverlapStats * FuncOverlap,uint64_t BaseFuncSample,uint64_t TestFuncSample)2300 double SampleOverlapAggregator::computeSampleFunctionOverlap(
2301 const sampleprof::FunctionSamples *BaseFunc,
2302 const sampleprof::FunctionSamples *TestFunc,
2303 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
2304 uint64_t TestFuncSample) {
2305 // Default function internal similarity before weighted, meaning two functions
2306 // has no overlap.
2307 const double DefaultFuncInternalSimilarity = 0;
2308 double FuncSimilarity;
2309 double FuncInternalSimilarity;
2310
2311 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
2312 // In this case, we use DefaultFuncInternalSimilarity as the function internal
2313 // similarity.
2314 if (!BaseFunc || !TestFunc) {
2315 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
2316 } else {
2317 assert(FuncOverlap != nullptr &&
2318 "FuncOverlap should be provided in this case");
2319 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
2320 *BaseFunc, *TestFunc, *FuncOverlap);
2321 // Now, FuncInternalSimilarity may be a little less than 0 due to
2322 // imprecision of floating point accumulations. Make it zero if the
2323 // difference is below Epsilon.
2324 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
2325 ? 0
2326 : FuncInternalSimilarity;
2327 }
2328 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
2329 BaseFuncSample, TestFuncSample);
2330 return FuncSimilarity;
2331 }
2332
computeSampleProfileOverlap(raw_fd_ostream & OS)2333 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
2334 using namespace sampleprof;
2335
2336 std::unordered_map<SampleContext, const FunctionSamples *,
2337 SampleContext::Hash>
2338 BaseFuncProf;
2339 const auto &BaseProfiles = BaseReader->getProfiles();
2340 for (const auto &BaseFunc : BaseProfiles) {
2341 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
2342 }
2343 ProfOverlap.UnionCount = BaseFuncProf.size();
2344
2345 const auto &TestProfiles = TestReader->getProfiles();
2346 for (const auto &TestFunc : TestProfiles) {
2347 SampleOverlapStats FuncOverlap;
2348 FuncOverlap.TestName = TestFunc.second.getContext();
2349 assert(TestStats.count(FuncOverlap.TestName) &&
2350 "TestStats should have records for all functions in test profile "
2351 "except inlinees");
2352 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
2353
2354 bool Matched = false;
2355 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
2356 if (Match == BaseFuncProf.end()) {
2357 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
2358 ++ProfOverlap.TestUniqueCount;
2359 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
2360 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
2361
2362 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
2363
2364 double FuncSimilarity = computeSampleFunctionOverlap(
2365 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
2366 ProfOverlap.Similarity +=
2367 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
2368
2369 ++ProfOverlap.UnionCount;
2370 ProfOverlap.UnionSample += FuncStats.SampleSum;
2371 } else {
2372 ++ProfOverlap.OverlapCount;
2373
2374 // Two functions match with each other. Compute function-level overlap and
2375 // aggregate them into profile-level overlap.
2376 FuncOverlap.BaseName = Match->second->getContext();
2377 assert(BaseStats.count(FuncOverlap.BaseName) &&
2378 "BaseStats should have records for all functions in base profile "
2379 "except inlinees");
2380 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
2381
2382 FuncOverlap.Similarity = computeSampleFunctionOverlap(
2383 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
2384 FuncOverlap.TestSample);
2385 ProfOverlap.Similarity +=
2386 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
2387 FuncOverlap.TestSample);
2388 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
2389 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
2390
2391 // Accumulate the percentage of base unique and test unique samples into
2392 // ProfOverlap.
2393 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
2394 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
2395
2396 // Remove matched base functions for later reporting functions not found
2397 // in test profile.
2398 BaseFuncProf.erase(Match);
2399 Matched = true;
2400 }
2401
2402 // Print function-level similarity information if specified by options.
2403 assert(TestStats.count(FuncOverlap.TestName) &&
2404 "TestStats should have records for all functions in test profile "
2405 "except inlinees");
2406 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
2407 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
2408 (Matched && !FuncFilter.NameFilter.empty() &&
2409 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
2410 std::string::npos)) {
2411 assert(ProfOverlap.BaseSample > 0 &&
2412 "Total samples in base profile should be greater than 0");
2413 FuncOverlap.BaseWeight =
2414 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
2415 assert(ProfOverlap.TestSample > 0 &&
2416 "Total samples in test profile should be greater than 0");
2417 FuncOverlap.TestWeight =
2418 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
2419 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
2420 }
2421 }
2422
2423 // Traverse through functions in base profile but not in test profile.
2424 for (const auto &F : BaseFuncProf) {
2425 assert(BaseStats.count(F.second->getContext()) &&
2426 "BaseStats should have records for all functions in base profile "
2427 "except inlinees");
2428 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
2429 ++ProfOverlap.BaseUniqueCount;
2430 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
2431
2432 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
2433
2434 double FuncSimilarity = computeSampleFunctionOverlap(
2435 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
2436 ProfOverlap.Similarity +=
2437 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
2438
2439 ProfOverlap.UnionSample += FuncStats.SampleSum;
2440 }
2441
2442 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
2443 // of floating point accumulations. Make it 1.0 if the difference is below
2444 // Epsilon.
2445 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
2446 ? 1
2447 : ProfOverlap.Similarity;
2448
2449 computeHotFuncOverlap();
2450 }
2451
initializeSampleProfileOverlap()2452 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
2453 const auto &BaseProf = BaseReader->getProfiles();
2454 for (const auto &I : BaseProf) {
2455 ++ProfOverlap.BaseCount;
2456 FuncSampleStats FuncStats;
2457 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
2458 ProfOverlap.BaseSample += FuncStats.SampleSum;
2459 BaseStats.emplace(I.second.getContext(), FuncStats);
2460 }
2461
2462 const auto &TestProf = TestReader->getProfiles();
2463 for (const auto &I : TestProf) {
2464 ++ProfOverlap.TestCount;
2465 FuncSampleStats FuncStats;
2466 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
2467 ProfOverlap.TestSample += FuncStats.SampleSum;
2468 TestStats.emplace(I.second.getContext(), FuncStats);
2469 }
2470
2471 ProfOverlap.BaseName = StringRef(BaseFilename);
2472 ProfOverlap.TestName = StringRef(TestFilename);
2473 }
2474
dumpFuncSimilarity(raw_fd_ostream & OS) const2475 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
2476 using namespace sampleprof;
2477
2478 if (FuncSimilarityDump.empty())
2479 return;
2480
2481 formatted_raw_ostream FOS(OS);
2482 FOS << "Function-level details:\n";
2483 FOS << "Base weight";
2484 FOS.PadToColumn(TestWeightCol);
2485 FOS << "Test weight";
2486 FOS.PadToColumn(SimilarityCol);
2487 FOS << "Similarity";
2488 FOS.PadToColumn(OverlapCol);
2489 FOS << "Overlap";
2490 FOS.PadToColumn(BaseUniqueCol);
2491 FOS << "Base unique";
2492 FOS.PadToColumn(TestUniqueCol);
2493 FOS << "Test unique";
2494 FOS.PadToColumn(BaseSampleCol);
2495 FOS << "Base samples";
2496 FOS.PadToColumn(TestSampleCol);
2497 FOS << "Test samples";
2498 FOS.PadToColumn(FuncNameCol);
2499 FOS << "Function name\n";
2500 for (const auto &F : FuncSimilarityDump) {
2501 double OverlapPercent =
2502 F.second.UnionSample > 0
2503 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
2504 : 0;
2505 double BaseUniquePercent =
2506 F.second.BaseSample > 0
2507 ? static_cast<double>(F.second.BaseUniqueSample) /
2508 F.second.BaseSample
2509 : 0;
2510 double TestUniquePercent =
2511 F.second.TestSample > 0
2512 ? static_cast<double>(F.second.TestUniqueSample) /
2513 F.second.TestSample
2514 : 0;
2515
2516 FOS << format("%.2f%%", F.second.BaseWeight * 100);
2517 FOS.PadToColumn(TestWeightCol);
2518 FOS << format("%.2f%%", F.second.TestWeight * 100);
2519 FOS.PadToColumn(SimilarityCol);
2520 FOS << format("%.2f%%", F.second.Similarity * 100);
2521 FOS.PadToColumn(OverlapCol);
2522 FOS << format("%.2f%%", OverlapPercent * 100);
2523 FOS.PadToColumn(BaseUniqueCol);
2524 FOS << format("%.2f%%", BaseUniquePercent * 100);
2525 FOS.PadToColumn(TestUniqueCol);
2526 FOS << format("%.2f%%", TestUniquePercent * 100);
2527 FOS.PadToColumn(BaseSampleCol);
2528 FOS << F.second.BaseSample;
2529 FOS.PadToColumn(TestSampleCol);
2530 FOS << F.second.TestSample;
2531 FOS.PadToColumn(FuncNameCol);
2532 FOS << F.second.TestName.toString() << "\n";
2533 }
2534 }
2535
dumpProgramSummary(raw_fd_ostream & OS) const2536 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
2537 OS << "Profile overlap infomation for base_profile: "
2538 << ProfOverlap.BaseName.toString()
2539 << " and test_profile: " << ProfOverlap.TestName.toString()
2540 << "\nProgram level:\n";
2541
2542 OS << " Whole program profile similarity: "
2543 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
2544
2545 assert(ProfOverlap.UnionSample > 0 &&
2546 "Total samples in two profile should be greater than 0");
2547 double OverlapPercent =
2548 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
2549 assert(ProfOverlap.BaseSample > 0 &&
2550 "Total samples in base profile should be greater than 0");
2551 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
2552 ProfOverlap.BaseSample;
2553 assert(ProfOverlap.TestSample > 0 &&
2554 "Total samples in test profile should be greater than 0");
2555 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
2556 ProfOverlap.TestSample;
2557
2558 OS << " Whole program sample overlap: "
2559 << format("%.3f%%", OverlapPercent * 100) << "\n";
2560 OS << " percentage of samples unique in base profile: "
2561 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
2562 OS << " percentage of samples unique in test profile: "
2563 << format("%.3f%%", TestUniquePercent * 100) << "\n";
2564 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
2565 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
2566
2567 assert(ProfOverlap.UnionCount > 0 &&
2568 "There should be at least one function in two input profiles");
2569 double FuncOverlapPercent =
2570 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
2571 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
2572 << "\n";
2573 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
2574 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
2575 << "\n";
2576 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
2577 << "\n";
2578 }
2579
dumpHotFuncAndBlockOverlap(raw_fd_ostream & OS) const2580 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
2581 raw_fd_ostream &OS) const {
2582 assert(HotFuncOverlap.UnionCount > 0 &&
2583 "There should be at least one hot function in two input profiles");
2584 OS << " Hot-function overlap: "
2585 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
2586 HotFuncOverlap.UnionCount * 100)
2587 << "\n";
2588 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
2589 OS << " hot functions unique in base profile: "
2590 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
2591 OS << " hot functions unique in test profile: "
2592 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
2593
2594 assert(HotBlockOverlap.UnionCount > 0 &&
2595 "There should be at least one hot block in two input profiles");
2596 OS << " Hot-block overlap: "
2597 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
2598 HotBlockOverlap.UnionCount * 100)
2599 << "\n";
2600 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
2601 OS << " hot blocks unique in base profile: "
2602 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
2603 OS << " hot blocks unique in test profile: "
2604 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
2605 }
2606
loadProfiles()2607 std::error_code SampleOverlapAggregator::loadProfiles() {
2608 using namespace sampleprof;
2609
2610 LLVMContext Context;
2611 auto FS = vfs::getRealFileSystem();
2612 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS,
2613 FSDiscriminatorPassOption);
2614 if (std::error_code EC = BaseReaderOrErr.getError())
2615 exitWithErrorCode(EC, BaseFilename);
2616
2617 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS,
2618 FSDiscriminatorPassOption);
2619 if (std::error_code EC = TestReaderOrErr.getError())
2620 exitWithErrorCode(EC, TestFilename);
2621
2622 BaseReader = std::move(BaseReaderOrErr.get());
2623 TestReader = std::move(TestReaderOrErr.get());
2624
2625 if (std::error_code EC = BaseReader->read())
2626 exitWithErrorCode(EC, BaseFilename);
2627 if (std::error_code EC = TestReader->read())
2628 exitWithErrorCode(EC, TestFilename);
2629 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
2630 exitWithError(
2631 "cannot compare probe-based profile with non-probe-based profile");
2632 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
2633 exitWithError("cannot compare CS profile with non-CS profile");
2634
2635 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
2636 // profile summary.
2637 ProfileSummary &BasePS = BaseReader->getSummary();
2638 ProfileSummary &TestPS = TestReader->getSummary();
2639 BaseHotThreshold =
2640 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
2641 TestHotThreshold =
2642 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2643
2644 return std::error_code();
2645 }
2646
overlapSampleProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,uint64_t SimilarityCutoff,raw_fd_ostream & OS)2647 void overlapSampleProfile(const std::string &BaseFilename,
2648 const std::string &TestFilename,
2649 const OverlapFuncFilters &FuncFilter,
2650 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2651 using namespace sampleprof;
2652
2653 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2654 // report 2--3 places after decimal point in percentage numbers.
2655 SampleOverlapAggregator OverlapAggr(
2656 BaseFilename, TestFilename,
2657 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2658 if (std::error_code EC = OverlapAggr.loadProfiles())
2659 exitWithErrorCode(EC);
2660
2661 OverlapAggr.initializeSampleProfileOverlap();
2662 if (OverlapAggr.detectZeroSampleProfile(OS))
2663 return;
2664
2665 OverlapAggr.computeSampleProfileOverlap(OS);
2666
2667 OverlapAggr.dumpProgramSummary(OS);
2668 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2669 OverlapAggr.dumpFuncSimilarity(OS);
2670 }
2671
overlap_main()2672 static int overlap_main() {
2673 std::error_code EC;
2674 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2675 if (EC)
2676 exitWithErrorCode(EC, OutputFilename);
2677
2678 if (ProfileKind == instr)
2679 overlapInstrProfile(BaseFilename, TestFilename,
2680 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2681 OS, IsCS);
2682 else
2683 overlapSampleProfile(BaseFilename, TestFilename,
2684 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2685 SimilarityCutoff, OS);
2686
2687 return 0;
2688 }
2689
2690 namespace {
2691 struct ValueSitesStats {
2692 ValueSitesStats() = default;
2693 uint64_t TotalNumValueSites = 0;
2694 uint64_t TotalNumValueSitesWithValueProfile = 0;
2695 uint64_t TotalNumValues = 0;
2696 std::vector<unsigned> ValueSitesHistogram;
2697 };
2698 } // namespace
2699
traverseAllValueSites(const InstrProfRecord & Func,uint32_t VK,ValueSitesStats & Stats,raw_fd_ostream & OS,InstrProfSymtab * Symtab)2700 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2701 ValueSitesStats &Stats, raw_fd_ostream &OS,
2702 InstrProfSymtab *Symtab) {
2703 uint32_t NS = Func.getNumValueSites(VK);
2704 Stats.TotalNumValueSites += NS;
2705 for (size_t I = 0; I < NS; ++I) {
2706 auto VD = Func.getValueArrayForSite(VK, I);
2707 uint32_t NV = VD.size();
2708 if (NV == 0)
2709 continue;
2710 Stats.TotalNumValues += NV;
2711 Stats.TotalNumValueSitesWithValueProfile++;
2712 if (NV > Stats.ValueSitesHistogram.size())
2713 Stats.ValueSitesHistogram.resize(NV, 0);
2714 Stats.ValueSitesHistogram[NV - 1]++;
2715
2716 uint64_t SiteSum = 0;
2717 for (const auto &V : VD)
2718 SiteSum += V.Count;
2719 if (SiteSum == 0)
2720 SiteSum = 1;
2721
2722 for (const auto &V : VD) {
2723 OS << "\t[ " << format("%2u", I) << ", ";
2724 if (Symtab == nullptr)
2725 OS << format("%4" PRIu64, V.Value);
2726 else
2727 OS << Symtab->getFuncOrVarName(V.Value);
2728 OS << ", " << format("%10" PRId64, V.Count) << " ] ("
2729 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n";
2730 }
2731 }
2732 }
2733
showValueSitesStats(raw_fd_ostream & OS,uint32_t VK,ValueSitesStats & Stats)2734 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2735 ValueSitesStats &Stats) {
2736 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2737 OS << " Total number of sites with values: "
2738 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2739 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2740
2741 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2742 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2743 if (Stats.ValueSitesHistogram[I] > 0)
2744 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2745 }
2746 }
2747
showInstrProfile(ShowFormat SFormat,raw_fd_ostream & OS)2748 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
2749 if (SFormat == ShowFormat::Json)
2750 exitWithError("JSON output is not supported for instr profiles");
2751 if (SFormat == ShowFormat::Yaml)
2752 exitWithError("YAML output is not supported for instr profiles");
2753 auto FS = vfs::getRealFileSystem();
2754 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
2755 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2756 if (ShowDetailedSummary && Cutoffs.empty()) {
2757 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2758 }
2759 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2760 if (Error E = ReaderOrErr.takeError())
2761 exitWithError(std::move(E), Filename);
2762
2763 auto Reader = std::move(ReaderOrErr.get());
2764 bool IsIRInstr = Reader->isIRLevelProfile();
2765 size_t ShownFunctions = 0;
2766 size_t BelowCutoffFunctions = 0;
2767 int NumVPKind = IPVK_Last - IPVK_First + 1;
2768 std::vector<ValueSitesStats> VPStats(NumVPKind);
2769
2770 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2771 const std::pair<std::string, uint64_t> &v2) {
2772 return v1.second > v2.second;
2773 };
2774
2775 std::priority_queue<std::pair<std::string, uint64_t>,
2776 std::vector<std::pair<std::string, uint64_t>>,
2777 decltype(MinCmp)>
2778 HottestFuncs(MinCmp);
2779
2780 if (!TextFormat && OnlyListBelow) {
2781 OS << "The list of functions with the maximum counter less than "
2782 << ShowValueCutoff << ":\n";
2783 }
2784
2785 // Add marker so that IR-level instrumentation round-trips properly.
2786 if (TextFormat && IsIRInstr)
2787 OS << ":ir\n";
2788
2789 for (const auto &Func : *Reader) {
2790 if (Reader->isIRLevelProfile()) {
2791 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2792 if (FuncIsCS != ShowCS)
2793 continue;
2794 }
2795 bool Show = ShowAllFunctions ||
2796 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter));
2797
2798 bool doTextFormatDump = (Show && TextFormat);
2799
2800 if (doTextFormatDump) {
2801 InstrProfSymtab &Symtab = Reader->getSymtab();
2802 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2803 OS);
2804 continue;
2805 }
2806
2807 assert(Func.Counts.size() > 0 && "function missing entry counter");
2808 Builder.addRecord(Func);
2809
2810 if (ShowCovered) {
2811 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2812 OS << Func.Name << "\n";
2813 continue;
2814 }
2815
2816 uint64_t FuncMax = 0;
2817 uint64_t FuncSum = 0;
2818
2819 auto PseudoKind = Func.getCountPseudoKind();
2820 if (PseudoKind != InstrProfRecord::NotPseudo) {
2821 if (Show) {
2822 if (!ShownFunctions)
2823 OS << "Counters:\n";
2824 ++ShownFunctions;
2825 OS << " " << Func.Name << ":\n"
2826 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2827 << " Counters: " << Func.Counts.size();
2828 if (PseudoKind == InstrProfRecord::PseudoHot)
2829 OS << " <PseudoHot>\n";
2830 else if (PseudoKind == InstrProfRecord::PseudoWarm)
2831 OS << " <PseudoWarm>\n";
2832 else
2833 llvm_unreachable("Unknown PseudoKind");
2834 }
2835 continue;
2836 }
2837
2838 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2839 FuncMax = std::max(FuncMax, Func.Counts[I]);
2840 FuncSum += Func.Counts[I];
2841 }
2842
2843 if (FuncMax < ShowValueCutoff) {
2844 ++BelowCutoffFunctions;
2845 if (OnlyListBelow) {
2846 OS << " " << Func.Name << ": (Max = " << FuncMax
2847 << " Sum = " << FuncSum << ")\n";
2848 }
2849 continue;
2850 } else if (OnlyListBelow)
2851 continue;
2852
2853 if (TopNFunctions) {
2854 if (HottestFuncs.size() == TopNFunctions) {
2855 if (HottestFuncs.top().second < FuncMax) {
2856 HottestFuncs.pop();
2857 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2858 }
2859 } else
2860 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2861 }
2862
2863 if (Show) {
2864 if (!ShownFunctions)
2865 OS << "Counters:\n";
2866
2867 ++ShownFunctions;
2868
2869 OS << " " << Func.Name << ":\n"
2870 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2871 << " Counters: " << Func.Counts.size() << "\n";
2872 if (!IsIRInstr)
2873 OS << " Function count: " << Func.Counts[0] << "\n";
2874
2875 if (ShowIndirectCallTargets)
2876 OS << " Indirect Call Site Count: "
2877 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2878
2879 if (ShowVTables)
2880 OS << " Number of instrumented vtables: "
2881 << Func.getNumValueSites(IPVK_VTableTarget) << "\n";
2882
2883 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2884 if (ShowMemOPSizes && NumMemOPCalls > 0)
2885 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2886 << "\n";
2887
2888 if (ShowCounts) {
2889 OS << " Block counts: [";
2890 size_t Start = (IsIRInstr ? 0 : 1);
2891 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2892 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2893 }
2894 OS << "]\n";
2895 }
2896
2897 if (ShowIndirectCallTargets) {
2898 OS << " Indirect Target Results:\n";
2899 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2900 VPStats[IPVK_IndirectCallTarget], OS,
2901 &(Reader->getSymtab()));
2902 }
2903
2904 if (ShowVTables) {
2905 OS << " VTable Results:\n";
2906 traverseAllValueSites(Func, IPVK_VTableTarget,
2907 VPStats[IPVK_VTableTarget], OS,
2908 &(Reader->getSymtab()));
2909 }
2910
2911 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2912 OS << " Memory Intrinsic Size Results:\n";
2913 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2914 nullptr);
2915 }
2916 }
2917 }
2918 if (Reader->hasError())
2919 exitWithError(Reader->getError(), Filename);
2920
2921 if (TextFormat || ShowCovered)
2922 return 0;
2923 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2924 bool IsIR = Reader->isIRLevelProfile();
2925 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2926 if (IsIR)
2927 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2928 OS << "\n";
2929 if (ShowAllFunctions || !FuncNameFilter.empty())
2930 OS << "Functions shown: " << ShownFunctions << "\n";
2931 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2932 if (ShowValueCutoff > 0) {
2933 OS << "Number of functions with maximum count (< " << ShowValueCutoff
2934 << "): " << BelowCutoffFunctions << "\n";
2935 OS << "Number of functions with maximum count (>= " << ShowValueCutoff
2936 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2937 }
2938 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2939 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2940
2941 if (TopNFunctions) {
2942 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2943 while (!HottestFuncs.empty()) {
2944 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2945 HottestFuncs.pop();
2946 }
2947 OS << "Top " << TopNFunctions
2948 << " functions with the largest internal block counts: \n";
2949 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2950 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2951 }
2952
2953 if (ShownFunctions && ShowIndirectCallTargets) {
2954 OS << "Statistics for indirect call sites profile:\n";
2955 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2956 VPStats[IPVK_IndirectCallTarget]);
2957 }
2958
2959 if (ShownFunctions && ShowVTables) {
2960 OS << "Statistics for vtable profile:\n";
2961 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]);
2962 }
2963
2964 if (ShownFunctions && ShowMemOPSizes) {
2965 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2966 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2967 }
2968
2969 if (ShowDetailedSummary) {
2970 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2971 OS << "Total count: " << PS->getTotalCount() << "\n";
2972 PS->printDetailedSummary(OS);
2973 }
2974
2975 if (ShowBinaryIds)
2976 if (Error E = Reader->printBinaryIds(OS))
2977 exitWithError(std::move(E), Filename);
2978
2979 if (ShowProfileVersion)
2980 OS << "Profile version: " << Reader->getVersion() << "\n";
2981
2982 if (ShowTemporalProfTraces) {
2983 auto &Traces = Reader->getTemporalProfTraces();
2984 OS << "Temporal Profile Traces (samples=" << Traces.size()
2985 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n";
2986 for (unsigned i = 0; i < Traces.size(); i++) {
2987 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight
2988 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n";
2989 for (auto &NameRef : Traces[i].FunctionNameRefs)
2990 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n";
2991 }
2992 }
2993
2994 return 0;
2995 }
2996
showSectionInfo(sampleprof::SampleProfileReader * Reader,raw_fd_ostream & OS)2997 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2998 raw_fd_ostream &OS) {
2999 if (!Reader->dumpSectionInfo(OS)) {
3000 WithColor::warning() << "-show-sec-info-only is only supported for "
3001 << "sample profile in extbinary format and is "
3002 << "ignored for other formats.\n";
3003 return;
3004 }
3005 }
3006
3007 namespace {
3008 struct HotFuncInfo {
3009 std::string FuncName;
3010 uint64_t TotalCount = 0;
3011 double TotalCountPercent = 0.0f;
3012 uint64_t MaxCount = 0;
3013 uint64_t EntryCount = 0;
3014
3015 HotFuncInfo() = default;
3016
HotFuncInfo__anon209d874b1611::HotFuncInfo3017 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
3018 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
3019 MaxCount(MS), EntryCount(ES) {}
3020 };
3021 } // namespace
3022
3023 // Print out detailed information about hot functions in PrintValues vector.
3024 // Users specify titles and offset of every columns through ColumnTitle and
3025 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
3026 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
3027 // print out or let it be an empty string.
dumpHotFunctionList(const std::vector<std::string> & ColumnTitle,const std::vector<int> & ColumnOffset,const std::vector<HotFuncInfo> & PrintValues,uint64_t HotFuncCount,uint64_t TotalFuncCount,uint64_t HotProfCount,uint64_t TotalProfCount,const std::string & HotFuncMetric,uint32_t TopNFunctions,raw_fd_ostream & OS)3028 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
3029 const std::vector<int> &ColumnOffset,
3030 const std::vector<HotFuncInfo> &PrintValues,
3031 uint64_t HotFuncCount, uint64_t TotalFuncCount,
3032 uint64_t HotProfCount, uint64_t TotalProfCount,
3033 const std::string &HotFuncMetric,
3034 uint32_t TopNFunctions, raw_fd_ostream &OS) {
3035 assert(ColumnOffset.size() == ColumnTitle.size() &&
3036 "ColumnOffset and ColumnTitle should have the same size");
3037 assert(ColumnTitle.size() >= 4 &&
3038 "ColumnTitle should have at least 4 elements");
3039 assert(TotalFuncCount > 0 &&
3040 "There should be at least one function in the profile");
3041 double TotalProfPercent = 0;
3042 if (TotalProfCount > 0)
3043 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
3044
3045 formatted_raw_ostream FOS(OS);
3046 FOS << HotFuncCount << " out of " << TotalFuncCount
3047 << " functions with profile ("
3048 << format("%.2f%%",
3049 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
3050 << ") are considered hot functions";
3051 if (!HotFuncMetric.empty())
3052 FOS << " (" << HotFuncMetric << ")";
3053 FOS << ".\n";
3054 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
3055 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
3056
3057 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
3058 FOS.PadToColumn(ColumnOffset[I]);
3059 FOS << ColumnTitle[I];
3060 }
3061 FOS << "\n";
3062
3063 uint32_t Count = 0;
3064 for (const auto &R : PrintValues) {
3065 if (TopNFunctions && (Count++ == TopNFunctions))
3066 break;
3067 FOS.PadToColumn(ColumnOffset[0]);
3068 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
3069 FOS.PadToColumn(ColumnOffset[1]);
3070 FOS << R.MaxCount;
3071 FOS.PadToColumn(ColumnOffset[2]);
3072 FOS << R.EntryCount;
3073 FOS.PadToColumn(ColumnOffset[3]);
3074 FOS << R.FuncName << "\n";
3075 }
3076 }
3077
showHotFunctionList(const sampleprof::SampleProfileMap & Profiles,ProfileSummary & PS,uint32_t TopN,raw_fd_ostream & OS)3078 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
3079 ProfileSummary &PS, uint32_t TopN,
3080 raw_fd_ostream &OS) {
3081 using namespace sampleprof;
3082
3083 const uint32_t HotFuncCutoff = 990000;
3084 auto &SummaryVector = PS.getDetailedSummary();
3085 uint64_t MinCountThreshold = 0;
3086 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
3087 if (SummaryEntry.Cutoff == HotFuncCutoff) {
3088 MinCountThreshold = SummaryEntry.MinCount;
3089 break;
3090 }
3091 }
3092
3093 // Traverse all functions in the profile and keep only hot functions.
3094 // The following loop also calculates the sum of total samples of all
3095 // functions.
3096 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
3097 std::greater<uint64_t>>
3098 HotFunc;
3099 uint64_t ProfileTotalSample = 0;
3100 uint64_t HotFuncSample = 0;
3101 uint64_t HotFuncCount = 0;
3102
3103 for (const auto &I : Profiles) {
3104 FuncSampleStats FuncStats;
3105 const FunctionSamples &FuncProf = I.second;
3106 ProfileTotalSample += FuncProf.getTotalSamples();
3107 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
3108
3109 if (isFunctionHot(FuncStats, MinCountThreshold)) {
3110 HotFunc.emplace(FuncProf.getTotalSamples(),
3111 std::make_pair(&(I.second), FuncStats.MaxSample));
3112 HotFuncSample += FuncProf.getTotalSamples();
3113 ++HotFuncCount;
3114 }
3115 }
3116
3117 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
3118 "Entry sample", "Function name"};
3119 std::vector<int> ColumnOffset{0, 24, 42, 58};
3120 std::string Metric =
3121 std::string("max sample >= ") + std::to_string(MinCountThreshold);
3122 std::vector<HotFuncInfo> PrintValues;
3123 for (const auto &FuncPair : HotFunc) {
3124 const FunctionSamples &Func = *FuncPair.second.first;
3125 double TotalSamplePercent =
3126 (ProfileTotalSample > 0)
3127 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
3128 : 0;
3129 PrintValues.emplace_back(
3130 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
3131 TotalSamplePercent, FuncPair.second.second,
3132 Func.getHeadSamplesEstimate()));
3133 }
3134 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
3135 Profiles.size(), HotFuncSample, ProfileTotalSample,
3136 Metric, TopN, OS);
3137
3138 return 0;
3139 }
3140
showSampleProfile(ShowFormat SFormat,raw_fd_ostream & OS)3141 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3142 if (SFormat == ShowFormat::Yaml)
3143 exitWithError("YAML output is not supported for sample profiles");
3144 using namespace sampleprof;
3145 LLVMContext Context;
3146 auto FS = vfs::getRealFileSystem();
3147 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS,
3148 FSDiscriminatorPassOption);
3149 if (std::error_code EC = ReaderOrErr.getError())
3150 exitWithErrorCode(EC, Filename);
3151
3152 auto Reader = std::move(ReaderOrErr.get());
3153 if (ShowSectionInfoOnly) {
3154 showSectionInfo(Reader.get(), OS);
3155 return 0;
3156 }
3157
3158 if (std::error_code EC = Reader->read())
3159 exitWithErrorCode(EC, Filename);
3160
3161 if (ShowAllFunctions || FuncNameFilter.empty()) {
3162 if (SFormat == ShowFormat::Json)
3163 Reader->dumpJson(OS);
3164 else
3165 Reader->dump(OS);
3166 } else {
3167 if (SFormat == ShowFormat::Json)
3168 exitWithError(
3169 "the JSON format is supported only when all functions are to "
3170 "be printed");
3171
3172 // TODO: parse context string to support filtering by contexts.
3173 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter));
3174 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS);
3175 }
3176
3177 if (ShowProfileSymbolList) {
3178 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
3179 Reader->getProfileSymbolList();
3180 ReaderList->dump(OS);
3181 }
3182
3183 if (ShowDetailedSummary) {
3184 auto &PS = Reader->getSummary();
3185 PS.printSummary(OS);
3186 PS.printDetailedSummary(OS);
3187 }
3188
3189 if (ShowHotFuncList || TopNFunctions)
3190 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(),
3191 TopNFunctions, OS);
3192
3193 return 0;
3194 }
3195
showMemProfProfile(ShowFormat SFormat,raw_fd_ostream & OS)3196 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3197 if (SFormat == ShowFormat::Json)
3198 exitWithError("JSON output is not supported for MemProf");
3199 auto ReaderOr = llvm::memprof::RawMemProfReader::create(
3200 Filename, ProfiledBinary, /*KeepNames=*/true);
3201 if (Error E = ReaderOr.takeError())
3202 // Since the error can be related to the profile or the binary we do not
3203 // pass whence. Instead additional context is provided where necessary in
3204 // the error message.
3205 exitWithError(std::move(E), /*Whence*/ "");
3206
3207 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
3208 ReaderOr.get().release());
3209
3210 Reader->printYAML(OS);
3211 return 0;
3212 }
3213
showDebugInfoCorrelation(const std::string & Filename,ShowFormat SFormat,raw_fd_ostream & OS)3214 static int showDebugInfoCorrelation(const std::string &Filename,
3215 ShowFormat SFormat, raw_fd_ostream &OS) {
3216 if (SFormat == ShowFormat::Json)
3217 exitWithError("JSON output is not supported for debug info correlation");
3218 std::unique_ptr<InstrProfCorrelator> Correlator;
3219 if (auto Err =
3220 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO)
3221 .moveInto(Correlator))
3222 exitWithError(std::move(Err), Filename);
3223 if (SFormat == ShowFormat::Yaml) {
3224 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS))
3225 exitWithError(std::move(Err), Filename);
3226 return 0;
3227 }
3228
3229 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
3230 exitWithError(std::move(Err), Filename);
3231
3232 InstrProfSymtab Symtab;
3233 if (auto Err = Symtab.create(
3234 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
3235 exitWithError(std::move(Err), Filename);
3236
3237 if (ShowProfileSymbolList)
3238 Symtab.dumpNames(OS);
3239 // TODO: Read "Profile Data Type" from debug info to compute and show how many
3240 // counters the section holds.
3241 if (ShowDetailedSummary)
3242 OS << "Counters section size: 0x"
3243 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
3244 OS << "Found " << Correlator->getDataSize() << " functions\n";
3245
3246 return 0;
3247 }
3248
show_main(StringRef ProgName)3249 static int show_main(StringRef ProgName) {
3250 if (Filename.empty() && DebugInfoFilename.empty())
3251 exitWithError(
3252 "the positional argument '<profdata-file>' is required unless '--" +
3253 DebugInfoFilename.ArgStr + "' is provided");
3254
3255 if (Filename == OutputFilename) {
3256 errs() << ProgName
3257 << " show: Input file name cannot be the same as the output file "
3258 "name!\n";
3259 return 1;
3260 }
3261 if (JsonFormat)
3262 SFormat = ShowFormat::Json;
3263
3264 std::error_code EC;
3265 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3266 if (EC)
3267 exitWithErrorCode(EC, OutputFilename);
3268
3269 if (ShowAllFunctions && !FuncNameFilter.empty())
3270 WithColor::warning() << "-function argument ignored: showing all functions\n";
3271
3272 if (!DebugInfoFilename.empty())
3273 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS);
3274
3275 if (ShowProfileKind == instr)
3276 return showInstrProfile(SFormat, OS);
3277 if (ShowProfileKind == sample)
3278 return showSampleProfile(SFormat, OS);
3279 return showMemProfProfile(SFormat, OS);
3280 }
3281
order_main()3282 static int order_main() {
3283 std::error_code EC;
3284 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3285 if (EC)
3286 exitWithErrorCode(EC, OutputFilename);
3287 auto FS = vfs::getRealFileSystem();
3288 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
3289 if (Error E = ReaderOrErr.takeError())
3290 exitWithError(std::move(E), Filename);
3291
3292 auto Reader = std::move(ReaderOrErr.get());
3293 for (auto &I : *Reader) {
3294 // Read all entries
3295 (void)I;
3296 }
3297 ArrayRef Traces = Reader->getTemporalProfTraces();
3298 if (NumTestTraces && NumTestTraces >= Traces.size())
3299 exitWithError(
3300 "--" + NumTestTraces.ArgStr +
3301 " must be smaller than the total number of traces: expected: < " +
3302 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces));
3303 ArrayRef TestTraces = Traces.take_back(NumTestTraces);
3304 Traces = Traces.drop_back(NumTestTraces);
3305
3306 std::vector<BPFunctionNode> Nodes;
3307 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes);
3308 BalancedPartitioningConfig Config;
3309 BalancedPartitioning BP(Config);
3310 BP.run(Nodes);
3311
3312 OS << "# Ordered " << Nodes.size() << " functions\n";
3313 if (!TestTraces.empty()) {
3314 // Since we don't know the symbol sizes, we assume 32 functions per page.
3315 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber;
3316 for (auto &Node : Nodes)
3317 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32;
3318
3319 SmallSet<unsigned, 0> TouchedPages;
3320 unsigned Area = 0;
3321 for (auto &Trace : TestTraces) {
3322 for (auto Id : Trace.FunctionNameRefs) {
3323 auto It = IdToPageNumber.find(Id);
3324 if (It == IdToPageNumber.end())
3325 continue;
3326 TouchedPages.insert(It->getSecond());
3327 Area += TouchedPages.size();
3328 }
3329 TouchedPages.clear();
3330 }
3331 OS << "# Total area under the page fault curve: " << (float)Area << "\n";
3332 }
3333 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the "
3334 "linkage and this output does not take that into account. Some "
3335 "post-processing may be required before passing to the linker via "
3336 "-order_file.\n";
3337 for (auto &N : Nodes) {
3338 auto [Filename, ParsedFuncName] =
3339 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id));
3340 if (!Filename.empty())
3341 OS << "# " << Filename << "\n";
3342 OS << ParsedFuncName << "\n";
3343 }
3344 return 0;
3345 }
3346
llvm_profdata_main(int argc,char ** argvNonConst,const llvm::ToolContext &)3347 int llvm_profdata_main(int argc, char **argvNonConst,
3348 const llvm::ToolContext &) {
3349 const char **argv = const_cast<const char **>(argvNonConst);
3350
3351 StringRef ProgName(sys::path::filename(argv[0]));
3352
3353 if (argc < 2) {
3354 errs() << ProgName
3355 << ": No subcommand specified! Run llvm-profata --help for usage.\n";
3356 return 1;
3357 }
3358
3359 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n");
3360
3361 if (ShowSubcommand)
3362 return show_main(ProgName);
3363
3364 if (OrderSubcommand)
3365 return order_main();
3366
3367 if (OverlapSubcommand)
3368 return overlap_main();
3369
3370 if (MergeSubcommand)
3371 return merge_main(ProgName);
3372
3373 errs() << ProgName
3374 << ": Unknown command. Run llvm-profdata --help for usage.\n";
3375 return 1;
3376 }
3377