1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 //
31 // Tests for Google Test itself. This verifies that the basic constructs of
32 // Google Test work.
33
34 #include "gtest/gtest.h"
35
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40 bool dummy =
41 GTEST_FLAG_GET(also_run_disabled_tests) ||
42 GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43 GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44 GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45 GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46 GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47 GTEST_FLAG_GET(repeat) > 0 ||
48 GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49 GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50 GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51 GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52 GTEST_FLAG_GET(throw_on_failure);
53 EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
54 }
55
56 #include <limits.h> // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <ostream>
65 #include <set>
66 #include <stdexcept>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <utility>
71 #include <vector>
72
73 #include "gtest/gtest-spi.h"
74 #include "src/gtest-internal-inl.h"
75
76 struct ConvertibleGlobalType {
77 // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78 // The outer enable_if is to ensure the overload resolution doesn't encounter
79 // an ambiguity.
80 template <
81 class T,
82 std::enable_if_t<
83 false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84 operator T() const; // NOLINT(google-explicit-constructor)
85 };
86 void operator<<(ConvertibleGlobalType&, int);
87 static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88 << 1)(*)()) > 0,
89 "error in operator<< overload resolution");
90
91 namespace testing {
92 namespace internal {
93
94 #if GTEST_CAN_STREAM_RESULTS_
95
96 class StreamingListenerTest : public Test {
97 public:
98 class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99 public:
100 // Sends a string to the socket.
Send(const std::string & message)101 void Send(const std::string& message) override { output_ += message; }
102
103 std::string output_;
104 };
105
StreamingListenerTest()106 StreamingListenerTest()
107 : fake_sock_writer_(new FakeSocketWriter),
108 streamer_(fake_sock_writer_),
109 test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110 CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111
112 protected:
output()113 std::string* output() { return &(fake_sock_writer_->output_); }
114
115 FakeSocketWriter* const fake_sock_writer_;
116 StreamingListener streamer_;
117 UnitTest unit_test_;
118 TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
119 };
120
TEST_F(StreamingListenerTest,OnTestProgramEnd)121 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122 *output() = "";
123 streamer_.OnTestProgramEnd(unit_test_);
124 EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125 }
126
TEST_F(StreamingListenerTest,OnTestIterationEnd)127 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128 *output() = "";
129 streamer_.OnTestIterationEnd(unit_test_, 42);
130 EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132
TEST_F(StreamingListenerTest,OnTestSuiteStart)133 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134 *output() = "";
135 streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136 EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137 }
138
TEST_F(StreamingListenerTest,OnTestSuiteEnd)139 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140 *output() = "";
141 streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142 EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144
TEST_F(StreamingListenerTest,OnTestStart)145 TEST_F(StreamingListenerTest, OnTestStart) {
146 *output() = "";
147 streamer_.OnTestStart(test_info_obj_);
148 EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149 }
150
TEST_F(StreamingListenerTest,OnTestEnd)151 TEST_F(StreamingListenerTest, OnTestEnd) {
152 *output() = "";
153 streamer_.OnTestEnd(test_info_obj_);
154 EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155 }
156
TEST_F(StreamingListenerTest,OnTestPartResult)157 TEST_F(StreamingListenerTest, OnTestPartResult) {
158 *output() = "";
159 streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160 "foo.cc", 42, "failed=\n&%"));
161
162 // Meta characters in the failure message should be properly escaped.
163 EXPECT_EQ(
164 "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165 *output());
166 }
167
168 #endif // GTEST_CAN_STREAM_RESULTS_
169
170 // Provides access to otherwise private parts of the TestEventListeners class
171 // that are needed to test it.
172 class TestEventListenersAccessor {
173 public:
GetRepeater(TestEventListeners * listeners)174 static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175 return listeners->repeater();
176 }
177
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)178 static void SetDefaultResultPrinter(TestEventListeners* listeners,
179 TestEventListener* listener) {
180 listeners->SetDefaultResultPrinter(listener);
181 }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)182 static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183 TestEventListener* listener) {
184 listeners->SetDefaultXmlGenerator(listener);
185 }
186
EventForwardingEnabled(const TestEventListeners & listeners)187 static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188 return listeners.EventForwardingEnabled();
189 }
190
SuppressEventForwarding(TestEventListeners * listeners)191 static void SuppressEventForwarding(TestEventListeners* listeners) {
192 listeners->SuppressEventForwarding(true);
193 }
194 };
195
196 class UnitTestRecordPropertyTestHelper : public Test {
197 protected:
UnitTestRecordPropertyTestHelper()198 UnitTestRecordPropertyTestHelper() {}
199
200 // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)201 void UnitTestRecordProperty(const char* key, const std::string& value) {
202 unit_test_.RecordProperty(key, value);
203 }
204
205 UnitTest unit_test_;
206 };
207
208 } // namespace internal
209 } // namespace testing
210
211 using testing::AssertionFailure;
212 using testing::AssertionResult;
213 using testing::AssertionSuccess;
214 using testing::DoubleLE;
215 using testing::EmptyTestEventListener;
216 using testing::Environment;
217 using testing::FloatLE;
218 using testing::IsNotSubstring;
219 using testing::IsSubstring;
220 using testing::kMaxStackTraceDepth;
221 using testing::Message;
222 using testing::ScopedFakeTestPartResultReporter;
223 using testing::StaticAssertTypeEq;
224 using testing::Test;
225 using testing::TestEventListeners;
226 using testing::TestInfo;
227 using testing::TestPartResult;
228 using testing::TestPartResultArray;
229 using testing::TestProperty;
230 using testing::TestResult;
231 using testing::TimeInMillis;
232 using testing::UnitTest;
233 using testing::internal::AlwaysFalse;
234 using testing::internal::AlwaysTrue;
235 using testing::internal::AppendUserMessage;
236 using testing::internal::ArrayAwareFind;
237 using testing::internal::ArrayEq;
238 using testing::internal::CodePointToUtf8;
239 using testing::internal::CopyArray;
240 using testing::internal::CountIf;
241 using testing::internal::EqFailure;
242 using testing::internal::FloatingPoint;
243 using testing::internal::ForEach;
244 using testing::internal::FormatEpochTimeInMillisAsIso8601;
245 using testing::internal::FormatTimeInMillisAsSeconds;
246 using testing::internal::GetElementOr;
247 using testing::internal::GetNextRandomSeed;
248 using testing::internal::GetRandomSeedFromFlag;
249 using testing::internal::GetTestTypeId;
250 using testing::internal::GetTimeInMillis;
251 using testing::internal::GetTypeId;
252 using testing::internal::GetUnitTestImpl;
253 using testing::internal::GTestFlagSaver;
254 using testing::internal::HasDebugStringAndShortDebugString;
255 using testing::internal::Int32FromEnvOrDie;
256 using testing::internal::IsContainer;
257 using testing::internal::IsContainerTest;
258 using testing::internal::IsNotContainer;
259 using testing::internal::kMaxRandomSeed;
260 using testing::internal::kTestTypeIdInGoogleTest;
261 using testing::internal::NativeArray;
262 using testing::internal::ParseFlag;
263 using testing::internal::RelationToSourceCopy;
264 using testing::internal::RelationToSourceReference;
265 using testing::internal::ShouldRunTestOnShard;
266 using testing::internal::ShouldShard;
267 using testing::internal::ShouldUseColor;
268 using testing::internal::Shuffle;
269 using testing::internal::ShuffleRange;
270 using testing::internal::SkipPrefix;
271 using testing::internal::StreamableToString;
272 using testing::internal::String;
273 using testing::internal::TestEventListenersAccessor;
274 using testing::internal::TestResultAccessor;
275 using testing::internal::WideStringToUtf8;
276 using testing::internal::edit_distance::CalculateOptimalEdits;
277 using testing::internal::edit_distance::CreateUnifiedDiff;
278 using testing::internal::edit_distance::EditType;
279
280 #if GTEST_HAS_STREAM_REDIRECTION
281 using testing::internal::CaptureStdout;
282 using testing::internal::GetCapturedStdout;
283 #endif
284
285 #ifdef GTEST_IS_THREADSAFE
286 using testing::internal::ThreadWithParam;
287 #endif
288
289 class TestingVector : public std::vector<int> {};
290
operator <<(::std::ostream & os,const TestingVector & vector)291 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292 os << "{ ";
293 for (size_t i = 0; i < vector.size(); i++) {
294 os << vector[i] << " ";
295 }
296 os << "}";
297 return os;
298 }
299
300 // This line tests that we can define tests in an unnamed namespace.
301 namespace {
302
TEST(GetRandomSeedFromFlagTest,HandlesZero)303 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304 const int seed = GetRandomSeedFromFlag(0);
305 EXPECT_LE(1, seed);
306 EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307 }
308
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)309 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310 EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311 EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312 EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314 GetRandomSeedFromFlag(kMaxRandomSeed));
315 }
316
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)317 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318 const int seed1 = GetRandomSeedFromFlag(-1);
319 EXPECT_LE(1, seed1);
320 EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321
322 const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323 EXPECT_LE(1, seed2);
324 EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325 }
326
TEST(GetNextRandomSeedTest,WorksForValidInput)327 TEST(GetNextRandomSeedTest, WorksForValidInput) {
328 EXPECT_EQ(2, GetNextRandomSeed(1));
329 EXPECT_EQ(3, GetNextRandomSeed(2));
330 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331 GetNextRandomSeed(kMaxRandomSeed - 1));
332 EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333
334 // We deliberately don't test GetNextRandomSeed() with invalid
335 // inputs, as that requires death tests, which are expensive. This
336 // is fine as GetNextRandomSeed() is internal and has a
337 // straightforward definition.
338 }
339
ClearCurrentTestPartResults()340 static void ClearCurrentTestPartResults() {
341 TestResultAccessor::ClearTestPartResults(
342 GetUnitTestImpl()->current_test_result());
343 }
344
345 // Tests GetTypeId.
346
TEST(GetTypeIdTest,ReturnsSameValueForSameType)347 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348 EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349 EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350 }
351
352 class SubClassOfTest : public Test {};
353 class AnotherSubClassOfTest : public Test {};
354
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)355 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356 EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357 EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358 EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359 EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362 }
363
364 // Verifies that GetTestTypeId() returns the same value, no matter it
365 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)366 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367 EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368 }
369
370 // Tests CanonicalizeForStdLibVersioning.
371
372 using ::testing::internal::CanonicalizeForStdLibVersioning;
373
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)374 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377 EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378 EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379 EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380 EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381 }
382
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)383 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386
387 EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389
390 EXPECT_EQ("std::bind",
391 CanonicalizeForStdLibVersioning("std::__google::bind"));
392 EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393 }
394
395 // Tests FormatTimeInMillisAsSeconds().
396
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398 EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399 }
400
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)401 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402 EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403 EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404 EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405 EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406 EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407 EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408 EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409 EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410 EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411 }
412
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)413 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414 EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415 EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416 EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417 EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418 EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419 EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420 EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421 EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422 EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423 }
424
425 // TODO: b/287046337 - In emscripten, local time zone modification is not
426 // supported.
427 #if !defined(__EMSCRIPTEN__)
428 // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
429 // for particular dates below was verified in Python using
430 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
431
432 // FormatEpochTimeInMillisAsIso8601 depends on the local timezone, so we
433 // have to set up a particular timezone to obtain predictable results.
434 class FormatEpochTimeInMillisAsIso8601Test : public Test {
435 public:
436 // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
437 // 32 bits, even when 64-bit integer types are available. We have to
438 // force the constants to have a 64-bit type here.
439 static const TimeInMillis kMillisPerSec = 1000;
440
441 private:
SetUp()442 void SetUp() override {
443 saved_tz_.reset();
444
445 GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
446 if (const char* tz = getenv("TZ")) {
447 saved_tz_ = std::make_unique<std::string>(tz);
448 }
449 GTEST_DISABLE_MSC_DEPRECATED_POP_()
450
451 // Set the local time zone for FormatEpochTimeInMillisAsIso8601 to be
452 // a fixed time zone for reproducibility purposes.
453 SetTimeZone("UTC+00");
454 }
455
TearDown()456 void TearDown() override {
457 SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
458 saved_tz_.reset();
459 }
460
SetTimeZone(const char * time_zone)461 static void SetTimeZone(const char* time_zone) {
462 // tzset() distinguishes between the TZ variable being present and empty
463 // and not being present, so we have to consider the case of time_zone
464 // being NULL.
465 #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
466 // ...Unless it's MSVC, whose standard library's _putenv doesn't
467 // distinguish between an empty and a missing variable.
468 const std::string env_var =
469 std::string("TZ=") + (time_zone ? time_zone : "");
470 _putenv(env_var.c_str());
471 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
472 tzset();
473 GTEST_DISABLE_MSC_WARNINGS_POP_()
474 #else
475 #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
476 // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
477 // See https://github.com/android/ndk/issues/1604.
478 setenv("TZ", "UTC", 1);
479 tzset();
480 #endif
481 if (time_zone) {
482 setenv(("TZ"), time_zone, 1);
483 } else {
484 unsetenv("TZ");
485 }
486 tzset();
487 #endif
488 }
489
490 std::unique_ptr<std::string> saved_tz_; // Empty and null are different here
491 };
492
493 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
494
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)495 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
496 EXPECT_EQ("2011-10-31T18:52:42.000",
497 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
498 }
499
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)500 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
501 EXPECT_EQ("2011-10-31T18:52:42.234",
502 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
503 }
504
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)505 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
506 EXPECT_EQ("2011-09-03T05:07:02.000",
507 FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
508 }
509
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)510 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
511 EXPECT_EQ("2011-09-28T17:08:22.000",
512 FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
513 }
514
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)515 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
516 EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
517 }
518
519 #endif // __EMSCRIPTEN__
520
521 #ifdef __BORLANDC__
522 // Silences warnings: "Condition is always true", "Unreachable code"
523 #pragma option push -w-ccc -w-rch
524 #endif
525
526 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
527 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)528 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
529 EXPECT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
530 ASSERT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
531 EXPECT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
532 ASSERT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
533 EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
534 ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
535
536 const int* const p = nullptr;
537 EXPECT_EQ(0, p); // NOLINT
538 ASSERT_EQ(0, p); // NOLINT
539 EXPECT_EQ(NULL, p); // NOLINT
540 ASSERT_EQ(NULL, p); // NOLINT
541 EXPECT_EQ(nullptr, p);
542 ASSERT_EQ(nullptr, p);
543 }
544
545 struct ConvertToAll {
546 template <typename T>
operator T__anon19f4cde20111::ConvertToAll547 operator T() const { // NOLINT
548 return T();
549 }
550 };
551
552 struct ConvertToPointer {
553 template <class T>
operator T*__anon19f4cde20111::ConvertToPointer554 operator T*() const { // NOLINT
555 return nullptr;
556 }
557 };
558
559 struct ConvertToAllButNoPointers {
560 template <typename T,
561 typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anon19f4cde20111::ConvertToAllButNoPointers562 operator T() const { // NOLINT
563 return T();
564 }
565 };
566
567 struct MyType {};
operator ==(MyType const &,MyType const &)568 inline bool operator==(MyType const&, MyType const&) { return true; }
569
TEST(NullLiteralTest,ImplicitConversion)570 TEST(NullLiteralTest, ImplicitConversion) {
571 EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
572 #if !defined(__GNUC__) || defined(__clang__)
573 // Disabled due to GCC bug gcc.gnu.org/PR89580
574 EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
575 #endif
576 EXPECT_EQ(ConvertToAll{}, MyType{});
577 EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
578 }
579
580 #ifdef __clang__
581 #pragma clang diagnostic push
582 #if __has_warning("-Wzero-as-null-pointer-constant")
583 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
584 #endif
585 #endif
586
TEST(NullLiteralTest,NoConversionNoWarning)587 TEST(NullLiteralTest, NoConversionNoWarning) {
588 // Test that gtests detection and handling of null pointer constants
589 // doesn't trigger a warning when '0' isn't actually used as null.
590 EXPECT_EQ(0, 0);
591 ASSERT_EQ(0, 0);
592 }
593
594 #ifdef __clang__
595 #pragma clang diagnostic pop
596 #endif
597
598 #ifdef __BORLANDC__
599 // Restores warnings after previous "#pragma option push" suppressed them.
600 #pragma option pop
601 #endif
602
603 //
604 // Tests CodePointToUtf8().
605
606 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)607 TEST(CodePointToUtf8Test, CanEncodeNul) {
608 EXPECT_EQ("", CodePointToUtf8(L'\0'));
609 }
610
611 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)612 TEST(CodePointToUtf8Test, CanEncodeAscii) {
613 EXPECT_EQ("a", CodePointToUtf8(L'a'));
614 EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
615 EXPECT_EQ("&", CodePointToUtf8(L'&'));
616 EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
617 }
618
619 // Tests that Unicode code-points that have 8 to 11 bits are encoded
620 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)621 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
622 // 000 1101 0011 => 110-00011 10-010011
623 EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
624
625 // 101 0111 0110 => 110-10101 10-110110
626 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
627 // in wide strings and wide chars. In order to accommodate them, we have to
628 // introduce such character constants as integers.
629 EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
630 }
631
632 // Tests that Unicode code-points that have 12 to 16 bits are encoded
633 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)634 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
635 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
636 EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
637
638 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
639 EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
640 }
641
642 #if !GTEST_WIDE_STRING_USES_UTF16_
643 // Tests in this group require a wchar_t to hold > 16 bits, and thus
644 // are skipped on Windows, and Cygwin, where a wchar_t is
645 // 16-bit wide. This code may not compile on those systems.
646
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)649 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
650 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
651 EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
652
653 // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
654 EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
655
656 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
657 EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
658 }
659
660 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)661 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
662 EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
663 }
664
665 #endif // !GTEST_WIDE_STRING_USES_UTF16_
666
667 // Tests WideStringToUtf8().
668
669 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)670 TEST(WideStringToUtf8Test, CanEncodeNul) {
671 EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
672 EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
673 }
674
675 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)676 TEST(WideStringToUtf8Test, CanEncodeAscii) {
677 EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
678 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
679 EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
680 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
681 }
682
683 // Tests that Unicode code-points that have 8 to 11 bits are encoded
684 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)685 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
686 // 000 1101 0011 => 110-00011 10-010011
687 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
688 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
689
690 // 101 0111 0110 => 110-10101 10-110110
691 const wchar_t s[] = {0x576, '\0'};
692 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
693 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
694 }
695
696 // Tests that Unicode code-points that have 12 to 16 bits are encoded
697 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)698 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
699 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
700 const wchar_t s1[] = {0x8D3, '\0'};
701 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
702 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
703
704 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
705 const wchar_t s2[] = {0xC74D, '\0'};
706 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
707 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
708 }
709
710 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)711 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
712 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
713 }
714
715 // Tests that the conversion stops when the function reaches the limit
716 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)717 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
718 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
719 }
720
721 #if !GTEST_WIDE_STRING_USES_UTF16_
722 // Tests that Unicode code-points that have 17 to 21 bits are encoded
723 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
724 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)725 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
726 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
727 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
728 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
729
730 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
731 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
732 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
733 }
734
735 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)736 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
737 EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
738 WideStringToUtf8(L"\xABCDFF", -1).c_str());
739 }
740 #else // !GTEST_WIDE_STRING_USES_UTF16_
741 // Tests that surrogate pairs are encoded correctly on the systems using
742 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)743 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
744 const wchar_t s[] = {0xD801, 0xDC00, '\0'};
745 EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
746 }
747
748 // Tests that encoding an invalid UTF-16 surrogate pair
749 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)750 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
751 // Leading surrogate is at the end of the string.
752 const wchar_t s1[] = {0xD800, '\0'};
753 EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
754 // Leading surrogate is not followed by the trailing surrogate.
755 const wchar_t s2[] = {0xD800, 'M', '\0'};
756 EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
757 // Trailing surrogate appearas without a leading surrogate.
758 const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
759 EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
760 }
761 #endif // !GTEST_WIDE_STRING_USES_UTF16_
762
763 // Tests that codepoint concatenation works correctly.
764 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)765 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
766 const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
767 EXPECT_STREQ(
768 "\xF4\x88\x98\xB4"
769 "\xEC\x9D\x8D"
770 "\n"
771 "\xD5\xB6"
772 "\xE0\xA3\x93"
773 "\xF4\x88\x98\xB4",
774 WideStringToUtf8(s, -1).c_str());
775 }
776 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)777 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
778 const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
779 EXPECT_STREQ(
780 "\xEC\x9D\x8D"
781 "\n"
782 "\xD5\xB6"
783 "\xE0\xA3\x93",
784 WideStringToUtf8(s, -1).c_str());
785 }
786 #endif // !GTEST_WIDE_STRING_USES_UTF16_
787
788 // Tests the Random class.
789
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)790 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
791 testing::internal::Random random(42);
792 EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
793 "Cannot generate a number in the range \\[0, 0\\)");
794 EXPECT_DEATH_IF_SUPPORTED(
795 random.Generate(testing::internal::Random::kMaxRange + 1),
796 "Generation of a number in \\[0, 2147483649\\) was requested, "
797 "but this can only generate numbers in \\[0, 2147483648\\)");
798 }
799
TEST(RandomTest,GeneratesNumbersWithinRange)800 TEST(RandomTest, GeneratesNumbersWithinRange) {
801 constexpr uint32_t kRange = 10000;
802 testing::internal::Random random(12345);
803 for (int i = 0; i < 10; i++) {
804 EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
805 }
806
807 testing::internal::Random random2(testing::internal::Random::kMaxRange);
808 for (int i = 0; i < 10; i++) {
809 EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
810 }
811 }
812
TEST(RandomTest,RepeatsWhenReseeded)813 TEST(RandomTest, RepeatsWhenReseeded) {
814 constexpr int kSeed = 123;
815 constexpr int kArraySize = 10;
816 constexpr uint32_t kRange = 10000;
817 uint32_t values[kArraySize];
818
819 testing::internal::Random random(kSeed);
820 for (int i = 0; i < kArraySize; i++) {
821 values[i] = random.Generate(kRange);
822 }
823
824 random.Reseed(kSeed);
825 for (int i = 0; i < kArraySize; i++) {
826 EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
827 }
828 }
829
830 // Tests STL container utilities.
831
832 // Tests CountIf().
833
IsPositive(int n)834 static bool IsPositive(int n) { return n > 0; }
835
TEST(ContainerUtilityTest,CountIf)836 TEST(ContainerUtilityTest, CountIf) {
837 std::vector<int> v;
838 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
839
840 v.push_back(-1);
841 v.push_back(0);
842 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
843
844 v.push_back(2);
845 v.push_back(-10);
846 v.push_back(10);
847 EXPECT_EQ(2, CountIf(v, IsPositive));
848 }
849
850 // Tests ForEach().
851
852 static int g_sum = 0;
Accumulate(int n)853 static void Accumulate(int n) { g_sum += n; }
854
TEST(ContainerUtilityTest,ForEach)855 TEST(ContainerUtilityTest, ForEach) {
856 std::vector<int> v;
857 g_sum = 0;
858 ForEach(v, Accumulate);
859 EXPECT_EQ(0, g_sum); // Works for an empty container;
860
861 g_sum = 0;
862 v.push_back(1);
863 ForEach(v, Accumulate);
864 EXPECT_EQ(1, g_sum); // Works for a container with one element.
865
866 g_sum = 0;
867 v.push_back(20);
868 v.push_back(300);
869 ForEach(v, Accumulate);
870 EXPECT_EQ(321, g_sum);
871 }
872
873 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)874 TEST(ContainerUtilityTest, GetElementOr) {
875 std::vector<char> a;
876 EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
877
878 a.push_back('a');
879 a.push_back('b');
880 EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
881 EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
882 EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
883 EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
884 }
885
TEST(ContainerUtilityDeathTest,ShuffleRange)886 TEST(ContainerUtilityDeathTest, ShuffleRange) {
887 std::vector<int> a;
888 a.push_back(0);
889 a.push_back(1);
890 a.push_back(2);
891 testing::internal::Random random(1);
892
893 EXPECT_DEATH_IF_SUPPORTED(
894 ShuffleRange(&random, -1, 1, &a),
895 "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
896 EXPECT_DEATH_IF_SUPPORTED(
897 ShuffleRange(&random, 4, 4, &a),
898 "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
899 EXPECT_DEATH_IF_SUPPORTED(
900 ShuffleRange(&random, 3, 2, &a),
901 "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
902 EXPECT_DEATH_IF_SUPPORTED(
903 ShuffleRange(&random, 3, 4, &a),
904 "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
905 }
906
907 class VectorShuffleTest : public Test {
908 protected:
909 static const size_t kVectorSize = 20;
910
VectorShuffleTest()911 VectorShuffleTest() : random_(1) {
912 for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
913 vector_.push_back(i);
914 }
915 }
916
VectorIsCorrupt(const TestingVector & vector)917 static bool VectorIsCorrupt(const TestingVector& vector) {
918 if (kVectorSize != vector.size()) {
919 return true;
920 }
921
922 bool found_in_vector[kVectorSize] = {false};
923 for (size_t i = 0; i < vector.size(); i++) {
924 const int e = vector[i];
925 if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
926 return true;
927 }
928 found_in_vector[e] = true;
929 }
930
931 // Vector size is correct, elements' range is correct, no
932 // duplicate elements. Therefore no corruption has occurred.
933 return false;
934 }
935
VectorIsNotCorrupt(const TestingVector & vector)936 static bool VectorIsNotCorrupt(const TestingVector& vector) {
937 return !VectorIsCorrupt(vector);
938 }
939
RangeIsShuffled(const TestingVector & vector,int begin,int end)940 static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
941 for (int i = begin; i < end; i++) {
942 if (i != vector[static_cast<size_t>(i)]) {
943 return true;
944 }
945 }
946 return false;
947 }
948
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)949 static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
950 int end) {
951 return !RangeIsShuffled(vector, begin, end);
952 }
953
VectorIsShuffled(const TestingVector & vector)954 static bool VectorIsShuffled(const TestingVector& vector) {
955 return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
956 }
957
VectorIsUnshuffled(const TestingVector & vector)958 static bool VectorIsUnshuffled(const TestingVector& vector) {
959 return !VectorIsShuffled(vector);
960 }
961
962 testing::internal::Random random_;
963 TestingVector vector_;
964 }; // class VectorShuffleTest
965
966 const size_t VectorShuffleTest::kVectorSize;
967
TEST_F(VectorShuffleTest,HandlesEmptyRange)968 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
969 // Tests an empty range at the beginning...
970 ShuffleRange(&random_, 0, 0, &vector_);
971 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972 ASSERT_PRED1(VectorIsUnshuffled, vector_);
973
974 // ...in the middle...
975 ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
976 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977 ASSERT_PRED1(VectorIsUnshuffled, vector_);
978
979 // ...at the end...
980 ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
981 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
982 ASSERT_PRED1(VectorIsUnshuffled, vector_);
983
984 // ...and past the end.
985 ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
986 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987 ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 }
989
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)990 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
991 // Tests a size one range at the beginning...
992 ShuffleRange(&random_, 0, 1, &vector_);
993 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
994 ASSERT_PRED1(VectorIsUnshuffled, vector_);
995
996 // ...in the middle...
997 ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
998 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
999 ASSERT_PRED1(VectorIsUnshuffled, vector_);
1000
1001 // ...and at the end.
1002 ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
1003 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1004 ASSERT_PRED1(VectorIsUnshuffled, vector_);
1005 }
1006
1007 // Because we use our own random number generator and a fixed seed,
1008 // we can guarantee that the following "random" tests will succeed.
1009
TEST_F(VectorShuffleTest,ShufflesEntireVector)1010 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1011 Shuffle(&random_, &vector_);
1012 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1013 EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1014
1015 // Tests the first and last elements in particular to ensure that
1016 // there are no off-by-one problems in our shuffle algorithm.
1017 EXPECT_NE(0, vector_[0]);
1018 EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1019 }
1020
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1021 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1022 const int kRangeSize = kVectorSize / 2;
1023
1024 ShuffleRange(&random_, 0, kRangeSize, &vector_);
1025
1026 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1027 EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1028 EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1029 static_cast<int>(kVectorSize));
1030 }
1031
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1032 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1033 const int kRangeSize = kVectorSize / 2;
1034 ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1035
1036 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1037 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1038 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1039 static_cast<int>(kVectorSize));
1040 }
1041
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1042 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1043 const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1044 ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1045
1046 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1047 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1048 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1049 EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1050 static_cast<int>(kVectorSize));
1051 }
1052
TEST_F(VectorShuffleTest,ShufflesRepeatably)1053 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1054 TestingVector vector2;
1055 for (size_t i = 0; i < kVectorSize; i++) {
1056 vector2.push_back(static_cast<int>(i));
1057 }
1058
1059 random_.Reseed(1234);
1060 Shuffle(&random_, &vector_);
1061 random_.Reseed(1234);
1062 Shuffle(&random_, &vector2);
1063
1064 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1065 ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1066
1067 for (size_t i = 0; i < kVectorSize; i++) {
1068 EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1069 }
1070 }
1071
1072 // Tests the size of the AssertHelper class.
1073
TEST(AssertHelperTest,AssertHelperIsSmall)1074 TEST(AssertHelperTest, AssertHelperIsSmall) {
1075 // To avoid breaking clients that use lots of assertions in one
1076 // function, we cannot grow the size of AssertHelper.
1077 EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1078 }
1079
1080 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1081 TEST(StringTest, EndsWithCaseInsensitive) {
1082 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1083 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1084 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1085 EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1086
1087 EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1088 EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1089 EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1090 }
1091
1092 // C++Builder's preprocessor is buggy; it fails to expand macros that
1093 // appear in macro parameters after wide char literals. Provide an alias
1094 // for NULL as a workaround.
1095 static const wchar_t* const kNull = nullptr;
1096
1097 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1098 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1099 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1100 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1101 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1102 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1103 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1104 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1105 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1106 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1107 }
1108
1109 #ifdef GTEST_OS_WINDOWS
1110
1111 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1112 TEST(StringTest, ShowWideCString) {
1113 EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1114 EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1115 EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1116 }
1117
1118 #ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1119 TEST(StringTest, AnsiAndUtf16Null) {
1120 EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1121 EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1122 }
1123
TEST(StringTest,AnsiAndUtf16ConvertBasic)1124 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1125 const char* ansi = String::Utf16ToAnsi(L"str");
1126 EXPECT_STREQ("str", ansi);
1127 delete[] ansi;
1128 const WCHAR* utf16 = String::AnsiToUtf16("str");
1129 EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1130 delete[] utf16;
1131 }
1132
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1133 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1134 const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1135 EXPECT_STREQ(".:\\ \"*?", ansi);
1136 delete[] ansi;
1137 const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1138 EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1139 delete[] utf16;
1140 }
1141 #endif // GTEST_OS_WINDOWS_MOBILE
1142
1143 #endif // GTEST_OS_WINDOWS
1144
1145 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1146 TEST(TestPropertyTest, StringValue) {
1147 TestProperty property("key", "1");
1148 EXPECT_STREQ("key", property.key());
1149 EXPECT_STREQ("1", property.value());
1150 }
1151
1152 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1153 TEST(TestPropertyTest, ReplaceStringValue) {
1154 TestProperty property("key", "1");
1155 EXPECT_STREQ("1", property.value());
1156 property.SetValue("2");
1157 EXPECT_STREQ("2", property.value());
1158 }
1159
1160 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1161 // functions (i.e. their definitions cannot be inlined at the call
1162 // sites), or C++Builder won't compile the code.
AddFatalFailure()1163 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1164
AddNonfatalFailure()1165 static void AddNonfatalFailure() {
1166 ADD_FAILURE() << "Expected non-fatal failure.";
1167 }
1168
1169 class ScopedFakeTestPartResultReporterTest : public Test {
1170 public: // Must be public and not protected due to a bug in g++ 3.4.2.
1171 enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
AddFailure(FailureMode failure)1172 static void AddFailure(FailureMode failure) {
1173 if (failure == FATAL_FAILURE) {
1174 AddFatalFailure();
1175 } else {
1176 AddNonfatalFailure();
1177 }
1178 }
1179 };
1180
1181 // Tests that ScopedFakeTestPartResultReporter intercepts test
1182 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1183 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1184 TestPartResultArray results;
1185 {
1186 ScopedFakeTestPartResultReporter reporter(
1187 ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1188 &results);
1189 AddFailure(NONFATAL_FAILURE);
1190 AddFailure(FATAL_FAILURE);
1191 }
1192
1193 EXPECT_EQ(2, results.size());
1194 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1195 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1196 }
1197
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1198 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1199 TestPartResultArray results;
1200 {
1201 // Tests, that the deprecated constructor still works.
1202 ScopedFakeTestPartResultReporter reporter(&results);
1203 AddFailure(NONFATAL_FAILURE);
1204 }
1205 EXPECT_EQ(1, results.size());
1206 }
1207
1208 #ifdef GTEST_IS_THREADSAFE
1209
1210 class ScopedFakeTestPartResultReporterWithThreadsTest
1211 : public ScopedFakeTestPartResultReporterTest {
1212 protected:
AddFailureInOtherThread(FailureMode failure)1213 static void AddFailureInOtherThread(FailureMode failure) {
1214 ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1215 thread.Join();
1216 }
1217 };
1218
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1219 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1220 InterceptsTestFailuresInAllThreads) {
1221 TestPartResultArray results;
1222 {
1223 ScopedFakeTestPartResultReporter reporter(
1224 ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1225 AddFailure(NONFATAL_FAILURE);
1226 AddFailure(FATAL_FAILURE);
1227 AddFailureInOtherThread(NONFATAL_FAILURE);
1228 AddFailureInOtherThread(FATAL_FAILURE);
1229 }
1230
1231 EXPECT_EQ(4, results.size());
1232 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1233 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1234 EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1235 EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1236 }
1237
1238 #endif // GTEST_IS_THREADSAFE
1239
1240 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1241 // work even if the failure is generated in a called function rather than
1242 // the current context.
1243
1244 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1245
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1246 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1247 EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1248 }
1249
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1250 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1251 EXPECT_FATAL_FAILURE(AddFatalFailure(),
1252 ::std::string("Expected fatal failure."));
1253 }
1254
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1255 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1256 // We have another test below to verify that the macro catches fatal
1257 // failures generated on another thread.
1258 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1259 "Expected fatal failure.");
1260 }
1261
1262 #ifdef __BORLANDC__
1263 // Silences warnings: "Condition is always true"
1264 #pragma option push -w-ccc
1265 #endif
1266
1267 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1268 // function even when the statement in it contains ASSERT_*.
1269
NonVoidFunction()1270 int NonVoidFunction() {
1271 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1272 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1273 return 0;
1274 }
1275
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1276 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1277 NonVoidFunction();
1278 }
1279
1280 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1281 // current function even though 'statement' generates a fatal failure.
1282
DoesNotAbortHelper(bool * aborted)1283 void DoesNotAbortHelper(bool* aborted) {
1284 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1285 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1286
1287 *aborted = false;
1288 }
1289
1290 #ifdef __BORLANDC__
1291 // Restores warnings after previous "#pragma option push" suppressed them.
1292 #pragma option pop
1293 #endif
1294
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1295 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1296 bool aborted = true;
1297 DoesNotAbortHelper(&aborted);
1298 EXPECT_FALSE(aborted);
1299 }
1300
1301 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1302 // statement that contains a macro which expands to code containing an
1303 // unprotected comma.
1304
1305 static int global_var = 0;
1306 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1307
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1308 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1309 #ifndef __BORLANDC__
1310 // ICE's in C++Builder.
1311 EXPECT_FATAL_FAILURE(
1312 {
1313 GTEST_USE_UNPROTECTED_COMMA_;
1314 AddFatalFailure();
1315 },
1316 "");
1317 #endif
1318
1319 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1320 {
1321 GTEST_USE_UNPROTECTED_COMMA_;
1322 AddFatalFailure();
1323 },
1324 "");
1325 }
1326
1327 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1328
1329 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1330
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1331 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1332 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1333 }
1334
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1335 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1336 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1337 ::std::string("Expected non-fatal failure."));
1338 }
1339
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1340 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1341 // We have another test below to verify that the macro catches
1342 // non-fatal failures generated on another thread.
1343 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1344 "Expected non-fatal failure.");
1345 }
1346
1347 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1348 // statement that contains a macro which expands to code containing an
1349 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1350 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1351 EXPECT_NONFATAL_FAILURE(
1352 {
1353 GTEST_USE_UNPROTECTED_COMMA_;
1354 AddNonfatalFailure();
1355 },
1356 "");
1357
1358 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1359 {
1360 GTEST_USE_UNPROTECTED_COMMA_;
1361 AddNonfatalFailure();
1362 },
1363 "");
1364 }
1365
1366 #ifdef GTEST_IS_THREADSAFE
1367
1368 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1369 ExpectFailureWithThreadsTest;
1370
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1371 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1372 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1373 "Expected fatal failure.");
1374 }
1375
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1376 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1377 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1378 AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1379 }
1380
1381 #endif // GTEST_IS_THREADSAFE
1382
1383 // Tests the TestProperty class.
1384
TEST(TestPropertyTest,ConstructorWorks)1385 TEST(TestPropertyTest, ConstructorWorks) {
1386 const TestProperty property("key", "value");
1387 EXPECT_STREQ("key", property.key());
1388 EXPECT_STREQ("value", property.value());
1389 }
1390
TEST(TestPropertyTest,SetValue)1391 TEST(TestPropertyTest, SetValue) {
1392 TestProperty property("key", "value_1");
1393 EXPECT_STREQ("key", property.key());
1394 property.SetValue("value_2");
1395 EXPECT_STREQ("key", property.key());
1396 EXPECT_STREQ("value_2", property.value());
1397 }
1398
1399 // Tests the TestResult class
1400
1401 // The test fixture for testing TestResult.
1402 class TestResultTest : public Test {
1403 protected:
1404 typedef std::vector<TestPartResult> TPRVector;
1405
1406 // We make use of 2 TestPartResult objects,
1407 TestPartResult *pr1, *pr2;
1408
1409 // ... and 3 TestResult objects.
1410 TestResult *r0, *r1, *r2;
1411
SetUp()1412 void SetUp() override {
1413 // pr1 is for success.
1414 pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1415 "Success!");
1416
1417 // pr2 is for fatal failure.
1418 pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1419 -1, // This line number means "unknown"
1420 "Failure!");
1421
1422 // Creates the TestResult objects.
1423 r0 = new TestResult();
1424 r1 = new TestResult();
1425 r2 = new TestResult();
1426
1427 // In order to test TestResult, we need to modify its internal
1428 // state, in particular the TestPartResult vector it holds.
1429 // test_part_results() returns a const reference to this vector.
1430 // We cast it to a non-const object s.t. it can be modified
1431 TPRVector* results1 =
1432 const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1433 TPRVector* results2 =
1434 const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1435
1436 // r0 is an empty TestResult.
1437
1438 // r1 contains a single SUCCESS TestPartResult.
1439 results1->push_back(*pr1);
1440
1441 // r2 contains a SUCCESS, and a FAILURE.
1442 results2->push_back(*pr1);
1443 results2->push_back(*pr2);
1444 }
1445
TearDown()1446 void TearDown() override {
1447 delete pr1;
1448 delete pr2;
1449
1450 delete r0;
1451 delete r1;
1452 delete r2;
1453 }
1454
1455 // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1456 static void CompareTestPartResult(const TestPartResult& expected,
1457 const TestPartResult& actual) {
1458 EXPECT_EQ(expected.type(), actual.type());
1459 EXPECT_STREQ(expected.file_name(), actual.file_name());
1460 EXPECT_EQ(expected.line_number(), actual.line_number());
1461 EXPECT_STREQ(expected.summary(), actual.summary());
1462 EXPECT_STREQ(expected.message(), actual.message());
1463 EXPECT_EQ(expected.passed(), actual.passed());
1464 EXPECT_EQ(expected.failed(), actual.failed());
1465 EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1466 EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1467 }
1468 };
1469
1470 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1471 TEST_F(TestResultTest, total_part_count) {
1472 ASSERT_EQ(0, r0->total_part_count());
1473 ASSERT_EQ(1, r1->total_part_count());
1474 ASSERT_EQ(2, r2->total_part_count());
1475 }
1476
1477 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1478 TEST_F(TestResultTest, Passed) {
1479 ASSERT_TRUE(r0->Passed());
1480 ASSERT_TRUE(r1->Passed());
1481 ASSERT_FALSE(r2->Passed());
1482 }
1483
1484 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1485 TEST_F(TestResultTest, Failed) {
1486 ASSERT_FALSE(r0->Failed());
1487 ASSERT_FALSE(r1->Failed());
1488 ASSERT_TRUE(r2->Failed());
1489 }
1490
1491 // Tests TestResult::GetTestPartResult().
1492
1493 typedef TestResultTest TestResultDeathTest;
1494
TEST_F(TestResultDeathTest,GetTestPartResult)1495 TEST_F(TestResultDeathTest, GetTestPartResult) {
1496 CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1497 CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1498 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1499 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1500 }
1501
1502 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1503 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1504 TestResult test_result;
1505 ASSERT_EQ(0, test_result.test_property_count());
1506 }
1507
1508 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1509 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1510 TestResult test_result;
1511 TestProperty property("key_1", "1");
1512 TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1513 ASSERT_EQ(1, test_result.test_property_count());
1514 const TestProperty& actual_property = test_result.GetTestProperty(0);
1515 EXPECT_STREQ("key_1", actual_property.key());
1516 EXPECT_STREQ("1", actual_property.value());
1517 }
1518
1519 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1520 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1521 TestResult test_result;
1522 TestProperty property_1("key_1", "1");
1523 TestProperty property_2("key_2", "2");
1524 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1525 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1526 ASSERT_EQ(2, test_result.test_property_count());
1527 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1528 EXPECT_STREQ("key_1", actual_property_1.key());
1529 EXPECT_STREQ("1", actual_property_1.value());
1530
1531 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1532 EXPECT_STREQ("key_2", actual_property_2.key());
1533 EXPECT_STREQ("2", actual_property_2.value());
1534 }
1535
1536 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1537 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1538 TestResult test_result;
1539 TestProperty property_1_1("key_1", "1");
1540 TestProperty property_2_1("key_2", "2");
1541 TestProperty property_1_2("key_1", "12");
1542 TestProperty property_2_2("key_2", "22");
1543 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1544 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1545 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1546 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1547
1548 ASSERT_EQ(2, test_result.test_property_count());
1549 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1550 EXPECT_STREQ("key_1", actual_property_1.key());
1551 EXPECT_STREQ("12", actual_property_1.value());
1552
1553 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1554 EXPECT_STREQ("key_2", actual_property_2.key());
1555 EXPECT_STREQ("22", actual_property_2.value());
1556 }
1557
1558 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1559 TEST(TestResultPropertyTest, GetTestProperty) {
1560 TestResult test_result;
1561 TestProperty property_1("key_1", "1");
1562 TestProperty property_2("key_2", "2");
1563 TestProperty property_3("key_3", "3");
1564 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1565 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1566 TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1567
1568 const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1569 const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1570 const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1571
1572 EXPECT_STREQ("key_1", fetched_property_1.key());
1573 EXPECT_STREQ("1", fetched_property_1.value());
1574
1575 EXPECT_STREQ("key_2", fetched_property_2.key());
1576 EXPECT_STREQ("2", fetched_property_2.value());
1577
1578 EXPECT_STREQ("key_3", fetched_property_3.key());
1579 EXPECT_STREQ("3", fetched_property_3.value());
1580
1581 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1582 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1583 }
1584
1585 // Tests the Test class.
1586 //
1587 // It's difficult to test every public method of this class (we are
1588 // already stretching the limit of Google Test by using it to test itself!).
1589 // Fortunately, we don't have to do that, as we are already testing
1590 // the functionalities of the Test class extensively by using Google Test
1591 // alone.
1592 //
1593 // Therefore, this section only contains one test.
1594
1595 // Tests that GTestFlagSaver works on Windows and Mac.
1596
1597 class GTestFlagSaverTest : public Test {
1598 protected:
1599 // Saves the Google Test flags such that we can restore them later, and
1600 // then sets them to their default values. This will be called
1601 // before the first test in this test case is run.
SetUpTestSuite()1602 static void SetUpTestSuite() {
1603 saver_ = new GTestFlagSaver;
1604
1605 GTEST_FLAG_SET(also_run_disabled_tests, false);
1606 GTEST_FLAG_SET(break_on_failure, false);
1607 GTEST_FLAG_SET(catch_exceptions, false);
1608 GTEST_FLAG_SET(death_test_use_fork, false);
1609 GTEST_FLAG_SET(color, "auto");
1610 GTEST_FLAG_SET(fail_fast, false);
1611 GTEST_FLAG_SET(filter, "");
1612 GTEST_FLAG_SET(list_tests, false);
1613 GTEST_FLAG_SET(output, "");
1614 GTEST_FLAG_SET(brief, false);
1615 GTEST_FLAG_SET(print_time, true);
1616 GTEST_FLAG_SET(random_seed, 0);
1617 GTEST_FLAG_SET(repeat, 1);
1618 GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1619 GTEST_FLAG_SET(shuffle, false);
1620 GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1621 GTEST_FLAG_SET(stream_result_to, "");
1622 GTEST_FLAG_SET(throw_on_failure, false);
1623 }
1624
1625 // Restores the Google Test flags that the tests have modified. This will
1626 // be called after the last test in this test case is run.
TearDownTestSuite()1627 static void TearDownTestSuite() {
1628 delete saver_;
1629 saver_ = nullptr;
1630 }
1631
1632 // Verifies that the Google Test flags have their default values, and then
1633 // modifies each of them.
VerifyAndModifyFlags()1634 void VerifyAndModifyFlags() {
1635 EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1636 EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1637 EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1638 EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1639 EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1640 EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1641 EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1642 EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1643 EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1644 EXPECT_FALSE(GTEST_FLAG_GET(brief));
1645 EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1646 EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1647 EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1648 EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1649 EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1650 EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1651 EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1652 EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1653
1654 GTEST_FLAG_SET(also_run_disabled_tests, true);
1655 GTEST_FLAG_SET(break_on_failure, true);
1656 GTEST_FLAG_SET(catch_exceptions, true);
1657 GTEST_FLAG_SET(color, "no");
1658 GTEST_FLAG_SET(death_test_use_fork, true);
1659 GTEST_FLAG_SET(fail_fast, true);
1660 GTEST_FLAG_SET(filter, "abc");
1661 GTEST_FLAG_SET(list_tests, true);
1662 GTEST_FLAG_SET(output, "xml:foo.xml");
1663 GTEST_FLAG_SET(brief, true);
1664 GTEST_FLAG_SET(print_time, false);
1665 GTEST_FLAG_SET(random_seed, 1);
1666 GTEST_FLAG_SET(repeat, 100);
1667 GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1668 GTEST_FLAG_SET(shuffle, true);
1669 GTEST_FLAG_SET(stack_trace_depth, 1);
1670 GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1671 GTEST_FLAG_SET(throw_on_failure, true);
1672 }
1673
1674 private:
1675 // For saving Google Test flags during this test case.
1676 static GTestFlagSaver* saver_;
1677 };
1678
1679 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1680
1681 // Google Test doesn't guarantee the order of tests. The following two
1682 // tests are designed to work regardless of their order.
1683
1684 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1685 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1686
1687 // Verifies that the Google Test flags in the body of the previous test were
1688 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1689 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1690
1691 // Sets an environment variable with the given name to the given
1692 // value. If the value argument is "", unsets the environment
1693 // variable. The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1694 static void SetEnv(const char* name, const char* value) {
1695 #ifdef GTEST_OS_WINDOWS_MOBILE
1696 // Environment variables are not supported on Windows CE.
1697 return;
1698 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1699 // C++Builder's putenv only stores a pointer to its parameter; we have to
1700 // ensure that the string remains valid as long as it might be needed.
1701 // We use an std::map to do so.
1702 static std::map<std::string, std::string*> added_env;
1703
1704 // Because putenv stores a pointer to the string buffer, we can't delete the
1705 // previous string (if present) until after it's replaced.
1706 std::string* prev_env = NULL;
1707 if (added_env.find(name) != added_env.end()) {
1708 prev_env = added_env[name];
1709 }
1710 added_env[name] =
1711 new std::string((Message() << name << "=" << value).GetString());
1712
1713 // The standard signature of putenv accepts a 'char*' argument. Other
1714 // implementations, like C++Builder's, accept a 'const char*'.
1715 // We cast away the 'const' since that would work for both variants.
1716 putenv(const_cast<char*>(added_env[name]->c_str()));
1717 delete prev_env;
1718 #elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper.
1719 _putenv((Message() << name << "=" << value).GetString().c_str());
1720 #else
1721 if (*value == '\0') {
1722 unsetenv(name);
1723 } else {
1724 setenv(name, value, 1);
1725 }
1726 #endif // GTEST_OS_WINDOWS_MOBILE
1727 }
1728
1729 #ifndef GTEST_OS_WINDOWS_MOBILE
1730 // Environment variables are not supported on Windows CE.
1731
1732 using testing::internal::Int32FromGTestEnv;
1733
1734 // Tests Int32FromGTestEnv().
1735
1736 // Tests that Int32FromGTestEnv() returns the default value when the
1737 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1738 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1739 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1740 EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1741 }
1742
1743 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1744
1745 // Tests that Int32FromGTestEnv() returns the default value when the
1746 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1747 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1748 printf("(expecting 2 warnings)\n");
1749
1750 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1751 EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1752
1753 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1754 EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1755 }
1756
1757 // Tests that Int32FromGTestEnv() returns the default value when the
1758 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1759 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1760 printf("(expecting 2 warnings)\n");
1761
1762 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1763 EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1764
1765 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1766 EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1767 }
1768
1769 #endif // !defined(GTEST_GET_INT32_FROM_ENV_)
1770
1771 // Tests that Int32FromGTestEnv() parses and returns the value of the
1772 // environment variable when it represents a valid decimal integer in
1773 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1774 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1775 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1776 EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1777
1778 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1779 EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1780 }
1781 #endif // !GTEST_OS_WINDOWS_MOBILE
1782
1783 // Tests ParseFlag().
1784
1785 // Tests that ParseInt32Flag() returns false and doesn't change the
1786 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1787 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1788 int32_t value = 123;
1789 EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1790 EXPECT_EQ(123, value);
1791
1792 EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1793 EXPECT_EQ(123, value);
1794 }
1795
1796 // Tests that ParseFlag() returns false and doesn't change the
1797 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1798 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1799 printf("(expecting 2 warnings)\n");
1800
1801 int32_t value = 123;
1802 EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1803 EXPECT_EQ(123, value);
1804
1805 EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1806 EXPECT_EQ(123, value);
1807 }
1808
1809 // Tests that ParseInt32Flag() returns false and doesn't change the
1810 // output value when the flag does not represent a valid decimal
1811 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1812 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1813 printf("(expecting 2 warnings)\n");
1814
1815 int32_t value = 123;
1816 EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1817 EXPECT_EQ(123, value);
1818
1819 EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1820 EXPECT_EQ(123, value);
1821 }
1822
1823 // Tests that ParseInt32Flag() parses the value of the flag and
1824 // returns true when the flag represents a valid decimal integer in
1825 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1826 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1827 int32_t value = 123;
1828 EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1829 EXPECT_EQ(456, value);
1830
1831 EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1832 EXPECT_EQ(-789, value);
1833 }
1834
1835 // Tests that Int32FromEnvOrDie() parses the value of the var or
1836 // returns the correct default.
1837 // Environment variables are not supported on Windows CE.
1838 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1839 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1840 EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1842 EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1843 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1844 EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1845 }
1846 #endif // !GTEST_OS_WINDOWS_MOBILE
1847
1848 // Tests that Int32FromEnvOrDie() aborts with an error message
1849 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1850 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1851 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1852 EXPECT_DEATH_IF_SUPPORTED(
1853 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1854 }
1855
1856 // Tests that Int32FromEnvOrDie() aborts with an error message
1857 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1858 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1859 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1860 EXPECT_DEATH_IF_SUPPORTED(
1861 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1862 }
1863
1864 // Tests that ShouldRunTestOnShard() selects all tests
1865 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1866 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1867 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1868 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1869 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1870 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1871 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1872 }
1873
1874 class ShouldShardTest : public testing::Test {
1875 protected:
SetUp()1876 void SetUp() override {
1877 index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1878 total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1879 }
1880
TearDown()1881 void TearDown() override {
1882 SetEnv(index_var_, "");
1883 SetEnv(total_var_, "");
1884 }
1885
1886 const char* index_var_;
1887 const char* total_var_;
1888 };
1889
1890 // Tests that sharding is disabled if neither of the environment variables
1891 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1892 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1893 SetEnv(index_var_, "");
1894 SetEnv(total_var_, "");
1895
1896 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1897 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1898 }
1899
1900 // Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1901 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1902 SetEnv(index_var_, "0");
1903 SetEnv(total_var_, "1");
1904 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1905 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1906 }
1907
1908 // Tests that sharding is enabled if total_shards > 1 and
1909 // we are not in a death test subprocess.
1910 // Environment variables are not supported on Windows CE.
1911 #ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1912 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1913 SetEnv(index_var_, "4");
1914 SetEnv(total_var_, "22");
1915 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1916 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1917
1918 SetEnv(index_var_, "8");
1919 SetEnv(total_var_, "9");
1920 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1921 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1922
1923 SetEnv(index_var_, "0");
1924 SetEnv(total_var_, "9");
1925 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1926 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1927 }
1928 #endif // !GTEST_OS_WINDOWS_MOBILE
1929
1930 // Tests that we exit in error if the sharding values are not valid.
1931
1932 typedef ShouldShardTest ShouldShardDeathTest;
1933
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1934 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1935 SetEnv(index_var_, "4");
1936 SetEnv(total_var_, "4");
1937 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938
1939 SetEnv(index_var_, "4");
1940 SetEnv(total_var_, "-2");
1941 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942
1943 SetEnv(index_var_, "5");
1944 SetEnv(total_var_, "");
1945 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946
1947 SetEnv(index_var_, "");
1948 SetEnv(total_var_, "5");
1949 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1950 }
1951
1952 // Tests that ShouldRunTestOnShard is a partition when 5
1953 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1954 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1955 // Choose an arbitrary number of tests and shards.
1956 const int num_tests = 17;
1957 const int num_shards = 5;
1958
1959 // Check partitioning: each test should be on exactly 1 shard.
1960 for (int test_id = 0; test_id < num_tests; test_id++) {
1961 int prev_selected_shard_index = -1;
1962 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1963 if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1964 if (prev_selected_shard_index < 0) {
1965 prev_selected_shard_index = shard_index;
1966 } else {
1967 ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1968 << shard_index << " are both selected to run test "
1969 << test_id;
1970 }
1971 }
1972 }
1973 }
1974
1975 // Check balance: This is not required by the sharding protocol, but is a
1976 // desirable property for performance.
1977 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1978 int num_tests_on_shard = 0;
1979 for (int test_id = 0; test_id < num_tests; test_id++) {
1980 num_tests_on_shard +=
1981 ShouldRunTestOnShard(num_shards, shard_index, test_id);
1982 }
1983 EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1984 }
1985 }
1986
1987 // For the same reason we are not explicitly testing everything in the
1988 // Test class, there are no separate tests for the following classes
1989 // (except for some trivial cases):
1990 //
1991 // TestSuite, UnitTest, UnitTestResultPrinter.
1992 //
1993 // Similarly, there are no separate tests for the following macros:
1994 //
1995 // TEST, TEST_F, RUN_ALL_TESTS
1996
TEST(UnitTestTest,CanGetOriginalWorkingDir)1997 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1998 ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1999 EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2000 }
2001
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2002 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2003 EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2004 EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2005 }
2006
2007 // When a property using a reserved key is supplied to this function, it
2008 // tests that a non-fatal failure is added, a fatal failure is not added,
2009 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2010 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2011 const TestResult& test_result, const char* key) {
2012 EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2013 ASSERT_EQ(0, test_result.test_property_count())
2014 << "Property for key '" << key << "' recorded unexpectedly.";
2015 }
2016
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2017 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2018 const char* key) {
2019 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2020 ASSERT_TRUE(test_info != nullptr);
2021 ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2022 key);
2023 }
2024
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2025 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2026 const char* key) {
2027 const testing::TestSuite* test_suite =
2028 UnitTest::GetInstance()->current_test_suite();
2029 ASSERT_TRUE(test_suite != nullptr);
2030 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2031 test_suite->ad_hoc_test_result(), key);
2032 }
2033
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2034 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2035 const char* key) {
2036 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2037 UnitTest::GetInstance()->ad_hoc_test_result(), key);
2038 }
2039
2040 // Tests that property recording functions in UnitTest outside of tests
2041 // functions correctly. Creating a separate instance of UnitTest ensures it
2042 // is in a state similar to the UnitTest's singleton's between tests.
2043 class UnitTestRecordPropertyTest
2044 : public testing::internal::UnitTestRecordPropertyTestHelper {
2045 public:
SetUpTestSuite()2046 static void SetUpTestSuite() {
2047 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048 "disabled");
2049 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050 "errors");
2051 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052 "failures");
2053 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054 "name");
2055 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2056 "tests");
2057 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2058 "time");
2059
2060 Test::RecordProperty("test_case_key_1", "1");
2061
2062 const testing::TestSuite* test_suite =
2063 UnitTest::GetInstance()->current_test_suite();
2064
2065 ASSERT_TRUE(test_suite != nullptr);
2066
2067 ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2068 EXPECT_STREQ("test_case_key_1",
2069 test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2070 EXPECT_STREQ("1",
2071 test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2072 }
2073 };
2074
2075 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2076 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2077 UnitTestRecordProperty("key_1", "1");
2078
2079 ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2080
2081 EXPECT_STREQ("key_1",
2082 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2083 EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2084 }
2085
2086 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2087 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2088 UnitTestRecordProperty("key_1", "1");
2089 UnitTestRecordProperty("key_2", "2");
2090
2091 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2092
2093 EXPECT_STREQ("key_1",
2094 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2095 EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2096
2097 EXPECT_STREQ("key_2",
2098 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2099 EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2100 }
2101
2102 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2103 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2104 UnitTestRecordProperty("key_1", "1");
2105 UnitTestRecordProperty("key_2", "2");
2106 UnitTestRecordProperty("key_1", "12");
2107 UnitTestRecordProperty("key_2", "22");
2108
2109 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2110
2111 EXPECT_STREQ("key_1",
2112 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2113 EXPECT_STREQ("12",
2114 unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2115
2116 EXPECT_STREQ("key_2",
2117 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2118 EXPECT_STREQ("22",
2119 unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2120 }
2121
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2122 TEST_F(UnitTestRecordPropertyTest,
2123 AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2124 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2125 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2126 "value_param");
2127 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128 "type_param");
2129 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2130 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2131 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2132 "classname");
2133 }
2134
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2135 TEST_F(UnitTestRecordPropertyTest,
2136 AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2137 EXPECT_NONFATAL_FAILURE(
2138 Test::RecordProperty("name", "1"),
2139 "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2140 " 'file', and 'line' are reserved");
2141 }
2142
2143 class UnitTestRecordPropertyTestEnvironment : public Environment {
2144 public:
TearDown()2145 void TearDown() override {
2146 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147 "tests");
2148 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149 "failures");
2150 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151 "disabled");
2152 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153 "errors");
2154 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155 "name");
2156 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157 "timestamp");
2158 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2159 "time");
2160 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2161 "random_seed");
2162 }
2163 };
2164
2165 // This will test property recording outside of any test or test case.
2166 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static Environment* record_property_env =
2167 AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2168
2169 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2170 // of various arities. They do not attempt to be exhaustive. Rather,
2171 // view them as smoke tests that can be easily reviewed and verified.
2172 // A more complete set of tests for predicate assertions can be found
2173 // in gtest_pred_impl_unittest.cc.
2174
2175 // First, some predicates and predicate-formatters needed by the tests.
2176
2177 // Returns true if and only if the argument is an even number.
IsEven(int n)2178 bool IsEven(int n) { return (n % 2) == 0; }
2179
2180 // A functor that returns true if and only if the argument is an even number.
2181 struct IsEvenFunctor {
operator ()__anon19f4cde20111::IsEvenFunctor2182 bool operator()(int n) { return IsEven(n); }
2183 };
2184
2185 // A predicate-formatter function that asserts the argument is an even
2186 // number.
AssertIsEven(const char * expr,int n)2187 AssertionResult AssertIsEven(const char* expr, int n) {
2188 if (IsEven(n)) {
2189 return AssertionSuccess();
2190 }
2191
2192 Message msg;
2193 msg << expr << " evaluates to " << n << ", which is not even.";
2194 return AssertionFailure(msg);
2195 }
2196
2197 // A predicate function that returns AssertionResult for use in
2198 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2199 AssertionResult ResultIsEven(int n) {
2200 if (IsEven(n))
2201 return AssertionSuccess() << n << " is even";
2202 else
2203 return AssertionFailure() << n << " is odd";
2204 }
2205
2206 // A predicate function that returns AssertionResult but gives no
2207 // explanation why it succeeds. Needed for testing that
2208 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2209 AssertionResult ResultIsEvenNoExplanation(int n) {
2210 if (IsEven(n))
2211 return AssertionSuccess();
2212 else
2213 return AssertionFailure() << n << " is odd";
2214 }
2215
2216 // A predicate-formatter functor that asserts the argument is an even
2217 // number.
2218 struct AssertIsEvenFunctor {
operator ()__anon19f4cde20111::AssertIsEvenFunctor2219 AssertionResult operator()(const char* expr, int n) {
2220 return AssertIsEven(expr, n);
2221 }
2222 };
2223
2224 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2225 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2226
2227 // A functor that returns true if and only if the sum of the arguments is an
2228 // even number.
2229 struct SumIsEven3Functor {
operator ()__anon19f4cde20111::SumIsEven3Functor2230 bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2231 };
2232
2233 // A predicate-formatter function that asserts the sum of the
2234 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2235 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2236 const char* e4, int n1, int n2, int n3,
2237 int n4) {
2238 const int sum = n1 + n2 + n3 + n4;
2239 if (IsEven(sum)) {
2240 return AssertionSuccess();
2241 }
2242
2243 Message msg;
2244 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2245 << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2246 << ", which is not even.";
2247 return AssertionFailure(msg);
2248 }
2249
2250 // A predicate-formatter functor that asserts the sum of the arguments
2251 // is an even number.
2252 struct AssertSumIsEven5Functor {
operator ()__anon19f4cde20111::AssertSumIsEven5Functor2253 AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2254 const char* e4, const char* e5, int n1, int n2,
2255 int n3, int n4, int n5) {
2256 const int sum = n1 + n2 + n3 + n4 + n5;
2257 if (IsEven(sum)) {
2258 return AssertionSuccess();
2259 }
2260
2261 Message msg;
2262 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2263 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2264 << n5 << ") evaluates to " << sum << ", which is not even.";
2265 return AssertionFailure(msg);
2266 }
2267 };
2268
2269 // Tests unary predicate assertions.
2270
2271 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2272 TEST(Pred1Test, WithoutFormat) {
2273 // Success cases.
2274 EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2275 ASSERT_PRED1(IsEven, 4);
2276
2277 // Failure cases.
2278 EXPECT_NONFATAL_FAILURE(
2279 { // NOLINT
2280 EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2281 },
2282 "This failure is expected.");
2283 EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2284 }
2285
2286 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2287 TEST(Pred1Test, WithFormat) {
2288 // Success cases.
2289 EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2290 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2291 << "This failure is UNEXPECTED!";
2292
2293 // Failure cases.
2294 const int n = 5;
2295 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2296 "n evaluates to 5, which is not even.");
2297 EXPECT_FATAL_FAILURE(
2298 { // NOLINT
2299 ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2300 },
2301 "This failure is expected.");
2302 }
2303
2304 // Tests that unary predicate assertions evaluates their arguments
2305 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2306 TEST(Pred1Test, SingleEvaluationOnFailure) {
2307 // A success case.
2308 static int n = 0;
2309 EXPECT_PRED1(IsEven, n++);
2310 EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2311
2312 // A failure case.
2313 EXPECT_FATAL_FAILURE(
2314 { // NOLINT
2315 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2316 << "This failure is expected.";
2317 },
2318 "This failure is expected.");
2319 EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2320 }
2321
2322 // Tests predicate assertions whose arity is >= 2.
2323
2324 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2325 TEST(PredTest, WithoutFormat) {
2326 // Success cases.
2327 ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2328 EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2329
2330 // Failure cases.
2331 const int n1 = 1;
2332 const int n2 = 2;
2333 EXPECT_NONFATAL_FAILURE(
2334 { // NOLINT
2335 EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2336 },
2337 "This failure is expected.");
2338 EXPECT_FATAL_FAILURE(
2339 { // NOLINT
2340 ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2341 },
2342 "evaluates to false");
2343 }
2344
2345 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2346 TEST(PredTest, WithFormat) {
2347 // Success cases.
2348 ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2349 << "This failure is UNEXPECTED!";
2350 EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2351
2352 // Failure cases.
2353 const int n1 = 1;
2354 const int n2 = 2;
2355 const int n3 = 4;
2356 const int n4 = 6;
2357 EXPECT_NONFATAL_FAILURE(
2358 { // NOLINT
2359 EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2360 },
2361 "evaluates to 13, which is not even.");
2362 EXPECT_FATAL_FAILURE(
2363 { // NOLINT
2364 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2365 << "This failure is expected.";
2366 },
2367 "This failure is expected.");
2368 }
2369
2370 // Tests that predicate assertions evaluates their arguments
2371 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2372 TEST(PredTest, SingleEvaluationOnFailure) {
2373 // A success case.
2374 int n1 = 0;
2375 int n2 = 0;
2376 EXPECT_PRED2(SumIsEven2, n1++, n2++);
2377 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2378 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2379
2380 // Another success case.
2381 n1 = n2 = 0;
2382 int n3 = 0;
2383 int n4 = 0;
2384 int n5 = 0;
2385 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2386 << "This failure is UNEXPECTED!";
2387 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2388 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2389 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2390 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2391 EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2392
2393 // A failure case.
2394 n1 = n2 = n3 = 0;
2395 EXPECT_NONFATAL_FAILURE(
2396 { // NOLINT
2397 EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2398 << "This failure is expected.";
2399 },
2400 "This failure is expected.");
2401 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2402 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2403 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2404
2405 // Another failure case.
2406 n1 = n2 = n3 = n4 = 0;
2407 EXPECT_NONFATAL_FAILURE(
2408 { // NOLINT
2409 EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2410 },
2411 "evaluates to 1, which is not even.");
2412 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2413 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2414 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2415 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2416 }
2417
2418 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2419 TEST(PredTest, ExpectPredEvalFailure) {
2420 std::set<int> set_a = {2, 1, 3, 4, 5};
2421 std::set<int> set_b = {0, 4, 8};
2422 const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2423 EXPECT_NONFATAL_FAILURE(
2424 EXPECT_PRED2(compare_sets, set_a, set_b),
2425 "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2426 "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2427 }
2428
2429 // Some helper functions for testing using overloaded/template
2430 // functions with ASSERT_PREDn and EXPECT_PREDn.
2431
IsPositive(double x)2432 bool IsPositive(double x) { return x > 0; }
2433
2434 template <typename T>
IsNegative(T x)2435 bool IsNegative(T x) {
2436 return x < 0;
2437 }
2438
2439 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2440 bool GreaterThan(T1 x1, T2 x2) {
2441 return x1 > x2;
2442 }
2443
2444 // Tests that overloaded functions can be used in *_PRED* as long as
2445 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2446 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2447 // C++Builder requires C-style casts rather than static_cast.
2448 EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2449 ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2450 }
2451
2452 // Tests that template functions can be used in *_PRED* as long as
2453 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2454 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2455 EXPECT_PRED1(IsNegative<int>, -5);
2456 // Makes sure that we can handle templates with more than one
2457 // parameter.
2458 ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2459 }
2460
2461 // Some helper functions for testing using overloaded/template
2462 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2463
IsPositiveFormat(const char *,int n)2464 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2465 return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466 }
2467
IsPositiveFormat(const char *,double x)2468 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2469 return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2470 }
2471
2472 template <typename T>
IsNegativeFormat(const char *,T x)2473 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2474 return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2475 }
2476
2477 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2478 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2479 const T1& x1, const T2& x2) {
2480 return x1 == x2 ? AssertionSuccess()
2481 : AssertionFailure(Message() << "Failure");
2482 }
2483
2484 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2485 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2486 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2487 EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2488 ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2489 }
2490
2491 // Tests that template functions can be used in *_PRED_FORMAT* without
2492 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2493 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2494 EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2495 ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2496 }
2497
2498 // Tests string assertions.
2499
2500 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2501 TEST(StringAssertionTest, ASSERT_STREQ) {
2502 const char* const p1 = "good";
2503 ASSERT_STREQ(p1, p1);
2504
2505 // Let p2 have the same content as p1, but be at a different address.
2506 const char p2[] = "good";
2507 ASSERT_STREQ(p1, p2);
2508
2509 EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), " \"bad\"\n \"good\"");
2510 }
2511
2512 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2513 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2514 ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2515 EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2516 }
2517
2518 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2519 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2520 EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2521 }
2522
2523 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2524 TEST(StringAssertionTest, ASSERT_STRNE) {
2525 ASSERT_STRNE("hi", "Hi");
2526 ASSERT_STRNE("Hi", nullptr);
2527 ASSERT_STRNE(nullptr, "Hi");
2528 ASSERT_STRNE("", nullptr);
2529 ASSERT_STRNE(nullptr, "");
2530 ASSERT_STRNE("", "Hi");
2531 ASSERT_STRNE("Hi", "");
2532 EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2533 }
2534
2535 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2536 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2537 ASSERT_STRCASEEQ("hi", "Hi");
2538 ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2539
2540 ASSERT_STRCASEEQ("", "");
2541 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2542 }
2543
2544 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2545 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2546 ASSERT_STRCASENE("hi1", "Hi2");
2547 ASSERT_STRCASENE("Hi", nullptr);
2548 ASSERT_STRCASENE(nullptr, "Hi");
2549 ASSERT_STRCASENE("", nullptr);
2550 ASSERT_STRCASENE(nullptr, "");
2551 ASSERT_STRCASENE("", "Hi");
2552 ASSERT_STRCASENE("Hi", "");
2553 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2554 }
2555
2556 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2557 TEST(StringAssertionTest, STREQ_Wide) {
2558 // NULL strings.
2559 ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2560
2561 // Empty strings.
2562 ASSERT_STREQ(L"", L"");
2563
2564 // Non-null vs NULL.
2565 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2566
2567 // Equal strings.
2568 EXPECT_STREQ(L"Hi", L"Hi");
2569
2570 // Unequal strings.
2571 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2572
2573 // Strings containing wide characters.
2574 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2575
2576 // The streaming variation.
2577 EXPECT_NONFATAL_FAILURE(
2578 { // NOLINT
2579 EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2580 },
2581 "Expected failure");
2582 }
2583
2584 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2585 TEST(StringAssertionTest, STRNE_Wide) {
2586 // NULL strings.
2587 EXPECT_NONFATAL_FAILURE(
2588 { // NOLINT
2589 EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2590 },
2591 "");
2592
2593 // Empty strings.
2594 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2595
2596 // Non-null vs NULL.
2597 ASSERT_STRNE(L"non-null", nullptr);
2598
2599 // Equal strings.
2600 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2601
2602 // Unequal strings.
2603 EXPECT_STRNE(L"abc", L"Abc");
2604
2605 // Strings containing wide characters.
2606 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2607
2608 // The streaming variation.
2609 ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2610 }
2611
2612 // Tests for ::testing::IsSubstring().
2613
2614 // Tests that IsSubstring() returns the correct result when the input
2615 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2616 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2617 EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2618 EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2619 EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2620
2621 EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2622 EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2623 }
2624
2625 // Tests that IsSubstring() returns the correct result when the input
2626 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2627 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2628 EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2629 EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2630 EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2631
2632 EXPECT_TRUE(
2633 IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2634 EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2635 }
2636
2637 // Tests that IsSubstring() generates the correct message when the input
2638 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2639 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2640 EXPECT_STREQ(
2641 "Value of: needle_expr\n"
2642 " Actual: \"needle\"\n"
2643 "Expected: a substring of haystack_expr\n"
2644 "Which is: \"haystack\"",
2645 IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2646 .failure_message());
2647 }
2648
2649 // Tests that IsSubstring returns the correct result when the input
2650 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2651 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2652 EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2653 EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2654 }
2655
2656 #if GTEST_HAS_STD_WSTRING
2657 // Tests that IsSubstring returns the correct result when the input
2658 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2659 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2660 EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661 EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662 }
2663
2664 // Tests that IsSubstring() generates the correct message when the input
2665 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2666 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2667 EXPECT_STREQ(
2668 "Value of: needle_expr\n"
2669 " Actual: L\"needle\"\n"
2670 "Expected: a substring of haystack_expr\n"
2671 "Which is: L\"haystack\"",
2672 IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2673 L"haystack")
2674 .failure_message());
2675 }
2676
2677 #endif // GTEST_HAS_STD_WSTRING
2678
2679 // Tests for ::testing::IsNotSubstring().
2680
2681 // Tests that IsNotSubstring() returns the correct result when the input
2682 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2683 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2684 EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2685 EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2686 }
2687
2688 // Tests that IsNotSubstring() returns the correct result when the input
2689 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2690 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2691 EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2692 EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2693 }
2694
2695 // Tests that IsNotSubstring() generates the correct message when the input
2696 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2697 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2698 EXPECT_STREQ(
2699 "Value of: needle_expr\n"
2700 " Actual: L\"needle\"\n"
2701 "Expected: not a substring of haystack_expr\n"
2702 "Which is: L\"two needles\"",
2703 IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2704 .failure_message());
2705 }
2706
2707 // Tests that IsNotSubstring returns the correct result when the input
2708 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2709 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2710 EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2711 EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2712 }
2713
2714 // Tests that IsNotSubstring() generates the correct message when the input
2715 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2716 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2717 EXPECT_STREQ(
2718 "Value of: needle_expr\n"
2719 " Actual: \"needle\"\n"
2720 "Expected: not a substring of haystack_expr\n"
2721 "Which is: \"two needles\"",
2722 IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2723 "two needles")
2724 .failure_message());
2725 }
2726
2727 #if GTEST_HAS_STD_WSTRING
2728
2729 // Tests that IsNotSubstring returns the correct result when the input
2730 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2731 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2732 EXPECT_FALSE(
2733 IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2734 EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2735 }
2736
2737 #endif // GTEST_HAS_STD_WSTRING
2738
2739 // Tests floating-point assertions.
2740
2741 template <typename RawType>
2742 class FloatingPointTest : public Test {
2743 protected:
2744 // Pre-calculated numbers to be used by the tests.
2745 struct TestValues {
2746 RawType close_to_positive_zero;
2747 RawType close_to_negative_zero;
2748 RawType further_from_negative_zero;
2749
2750 RawType close_to_one;
2751 RawType further_from_one;
2752
2753 RawType infinity;
2754 RawType close_to_infinity;
2755 RawType further_from_infinity;
2756
2757 RawType nan1;
2758 RawType nan2;
2759 };
2760
2761 typedef typename testing::internal::FloatingPoint<RawType> Floating;
2762 typedef typename Floating::Bits Bits;
2763
SetUp()2764 void SetUp() override {
2765 const uint32_t max_ulps = Floating::kMaxUlps;
2766
2767 // The bits that represent 0.0.
2768 const Bits zero_bits = Floating(0).bits();
2769
2770 // Makes some numbers close to 0.0.
2771 values_.close_to_positive_zero =
2772 Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2773 values_.close_to_negative_zero =
2774 -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2775 values_.further_from_negative_zero =
2776 -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2777
2778 // The bits that represent 1.0.
2779 const Bits one_bits = Floating(1).bits();
2780
2781 // Makes some numbers close to 1.0.
2782 values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2783 values_.further_from_one =
2784 Floating::ReinterpretBits(one_bits + max_ulps + 1);
2785
2786 // +infinity.
2787 values_.infinity = Floating::Infinity();
2788
2789 // The bits that represent +infinity.
2790 const Bits infinity_bits = Floating(values_.infinity).bits();
2791
2792 // Makes some numbers close to infinity.
2793 values_.close_to_infinity =
2794 Floating::ReinterpretBits(infinity_bits - max_ulps);
2795 values_.further_from_infinity =
2796 Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2797
2798 // Makes some NAN's. Sets the most significant bit of the fraction so that
2799 // our NaN's are quiet; trying to process a signaling NaN would raise an
2800 // exception if our environment enables floating point exceptions.
2801 values_.nan1 = Floating::ReinterpretBits(
2802 Floating::kExponentBitMask |
2803 (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2804 values_.nan2 = Floating::ReinterpretBits(
2805 Floating::kExponentBitMask |
2806 (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2807 }
2808
TestSize()2809 void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2810
2811 static TestValues values_;
2812 };
2813
2814 template <typename RawType>
2815 typename FloatingPointTest<RawType>::TestValues
2816 FloatingPointTest<RawType>::values_;
2817
2818 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2819 typedef FloatingPointTest<float> FloatTest;
2820
2821 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2822 TEST_F(FloatTest, Size) { TestSize(); }
2823
2824 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2825 TEST_F(FloatTest, Zeros) {
2826 EXPECT_FLOAT_EQ(0.0, -0.0);
2827 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2828 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2829 }
2830
2831 // Tests comparing numbers close to 0.
2832 //
2833 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2834 // overflow occurs when comparing numbers whose absolute value is very
2835 // small.
TEST_F(FloatTest,AlmostZeros)2836 TEST_F(FloatTest, AlmostZeros) {
2837 // In C++Builder, names within local classes (such as used by
2838 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2839 // scoping class. Use a static local alias as a workaround.
2840 // We use the assignment syntax since some compilers, like Sun Studio,
2841 // don't allow initializing references using construction syntax
2842 // (parentheses).
2843 static const FloatTest::TestValues& v = this->values_;
2844
2845 EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2846 EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2847 EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2848
2849 EXPECT_FATAL_FAILURE(
2850 { // NOLINT
2851 ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2852 },
2853 "v.further_from_negative_zero");
2854 }
2855
2856 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2857 TEST_F(FloatTest, SmallDiff) {
2858 EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2859 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2860 "values_.further_from_one");
2861 }
2862
2863 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2864 TEST_F(FloatTest, LargeDiff) {
2865 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2866 }
2867
2868 // Tests comparing with infinity.
2869 //
2870 // This ensures that no overflow occurs when comparing numbers whose
2871 // absolute value is very large.
TEST_F(FloatTest,Infinity)2872 TEST_F(FloatTest, Infinity) {
2873 EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2874 EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2875 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2876 "-values_.infinity");
2877
2878 // This is interesting as the representations of infinity and nan1
2879 // are only 1 DLP apart.
2880 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2881 "values_.nan1");
2882 }
2883
2884 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2885 TEST_F(FloatTest, NaN) {
2886 // In C++Builder, names within local classes (such as used by
2887 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2888 // scoping class. Use a static local alias as a workaround.
2889 // We use the assignment syntax since some compilers, like Sun Studio,
2890 // don't allow initializing references using construction syntax
2891 // (parentheses).
2892 static const FloatTest::TestValues& v = this->values_;
2893
2894 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2895 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2896 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2897
2898 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2899 }
2900
2901 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2902 TEST_F(FloatTest, Reflexive) {
2903 EXPECT_FLOAT_EQ(0.0, 0.0);
2904 EXPECT_FLOAT_EQ(1.0, 1.0);
2905 ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2906 }
2907
2908 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2909 TEST_F(FloatTest, Commutative) {
2910 // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2911 EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2912
2913 // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2914 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2915 "1.0");
2916 }
2917
2918 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2919 TEST_F(FloatTest, EXPECT_NEAR) {
2920 EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2921 EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2922 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
2923 "The difference between 1.0f and 1.5f is 0.5, "
2924 "which exceeds 0.25f");
2925 }
2926
2927 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2928 TEST_F(FloatTest, ASSERT_NEAR) {
2929 ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2930 ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2931 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
2932 "The difference between 1.0f and 1.5f is 0.5, "
2933 "which exceeds 0.25f");
2934 }
2935
2936 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2937 TEST_F(FloatTest, FloatLESucceeds) {
2938 EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2939 ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2940
2941 // or when val1 is greater than, but almost equals to, val2.
2942 EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2943 }
2944
2945 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2946 TEST_F(FloatTest, FloatLEFails) {
2947 // When val1 is greater than val2 by a large margin,
2948 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2949 "(2.0f) <= (1.0f)");
2950
2951 // or by a small yet non-negligible margin,
2952 EXPECT_NONFATAL_FAILURE(
2953 { // NOLINT
2954 EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2955 },
2956 "(values_.further_from_one) <= (1.0f)");
2957
2958 EXPECT_NONFATAL_FAILURE(
2959 { // NOLINT
2960 EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2961 },
2962 "(values_.nan1) <= (values_.infinity)");
2963 EXPECT_NONFATAL_FAILURE(
2964 { // NOLINT
2965 EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2966 },
2967 "(-values_.infinity) <= (values_.nan1)");
2968 EXPECT_FATAL_FAILURE(
2969 { // NOLINT
2970 ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2971 },
2972 "(values_.nan1) <= (values_.nan1)");
2973 }
2974
2975 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2976 typedef FloatingPointTest<double> DoubleTest;
2977
2978 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2979 TEST_F(DoubleTest, Size) { TestSize(); }
2980
2981 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2982 TEST_F(DoubleTest, Zeros) {
2983 EXPECT_DOUBLE_EQ(0.0, -0.0);
2984 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
2985 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
2986 }
2987
2988 // Tests comparing numbers close to 0.
2989 //
2990 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2991 // overflow occurs when comparing numbers whose absolute value is very
2992 // small.
TEST_F(DoubleTest,AlmostZeros)2993 TEST_F(DoubleTest, AlmostZeros) {
2994 // In C++Builder, names within local classes (such as used by
2995 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2996 // scoping class. Use a static local alias as a workaround.
2997 // We use the assignment syntax since some compilers, like Sun Studio,
2998 // don't allow initializing references using construction syntax
2999 // (parentheses).
3000 static const DoubleTest::TestValues& v = this->values_;
3001
3002 EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3003 EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3004 EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3005
3006 EXPECT_FATAL_FAILURE(
3007 { // NOLINT
3008 ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3009 v.further_from_negative_zero);
3010 },
3011 "v.further_from_negative_zero");
3012 }
3013
3014 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3015 TEST_F(DoubleTest, SmallDiff) {
3016 EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3017 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3018 "values_.further_from_one");
3019 }
3020
3021 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3022 TEST_F(DoubleTest, LargeDiff) {
3023 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3024 }
3025
3026 // Tests comparing with infinity.
3027 //
3028 // This ensures that no overflow occurs when comparing numbers whose
3029 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3030 TEST_F(DoubleTest, Infinity) {
3031 EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3032 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3033 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3034 "-values_.infinity");
3035
3036 // This is interesting as the representations of infinity_ and nan1_
3037 // are only 1 DLP apart.
3038 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3039 "values_.nan1");
3040 }
3041
3042 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3043 TEST_F(DoubleTest, NaN) {
3044 static const DoubleTest::TestValues& v = this->values_;
3045
3046 // Nokia's STLport crashes if we try to output infinity or NaN.
3047 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3048 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3049 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3050 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3051 }
3052
3053 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3054 TEST_F(DoubleTest, Reflexive) {
3055 EXPECT_DOUBLE_EQ(0.0, 0.0);
3056 EXPECT_DOUBLE_EQ(1.0, 1.0);
3057 ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3058 }
3059
3060 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3061 TEST_F(DoubleTest, Commutative) {
3062 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3063 EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3064
3065 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3066 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3067 "1.0");
3068 }
3069
3070 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3071 TEST_F(DoubleTest, EXPECT_NEAR) {
3072 EXPECT_NEAR(-1.0, -1.1, 0.2);
3073 EXPECT_NEAR(2.0, 3.0, 1.0);
3074 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3075 "The difference between 1.0 and 1.5 is 0.5, "
3076 "which exceeds 0.25");
3077 // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3078 // slightly different failure reporting path.
3079 EXPECT_NONFATAL_FAILURE(
3080 EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3081 "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3082 "minimum distance between doubles for numbers of this magnitude which is "
3083 "512");
3084 }
3085
3086 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3087 TEST_F(DoubleTest, ASSERT_NEAR) {
3088 ASSERT_NEAR(-1.0, -1.1, 0.2);
3089 ASSERT_NEAR(2.0, 3.0, 1.0);
3090 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3091 "The difference between 1.0 and 1.5 is 0.5, "
3092 "which exceeds 0.25");
3093 }
3094
3095 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3096 TEST_F(DoubleTest, DoubleLESucceeds) {
3097 EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3098 ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3099
3100 // or when val1 is greater than, but almost equals to, val2.
3101 EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3102 }
3103
3104 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3105 TEST_F(DoubleTest, DoubleLEFails) {
3106 // When val1 is greater than val2 by a large margin,
3107 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3108 "(2.0) <= (1.0)");
3109
3110 // or by a small yet non-negligible margin,
3111 EXPECT_NONFATAL_FAILURE(
3112 { // NOLINT
3113 EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3114 },
3115 "(values_.further_from_one) <= (1.0)");
3116
3117 EXPECT_NONFATAL_FAILURE(
3118 { // NOLINT
3119 EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3120 },
3121 "(values_.nan1) <= (values_.infinity)");
3122 EXPECT_NONFATAL_FAILURE(
3123 { // NOLINT
3124 EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3125 },
3126 " (-values_.infinity) <= (values_.nan1)");
3127 EXPECT_FATAL_FAILURE(
3128 { // NOLINT
3129 ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3130 },
3131 "(values_.nan1) <= (values_.nan1)");
3132 }
3133
3134 // Verifies that a test or test case whose name starts with DISABLED_ is
3135 // not run.
3136
3137 // A test whose name starts with DISABLED_.
3138 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3139 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3140 FAIL() << "Unexpected failure: Disabled test should not be run.";
3141 }
3142
3143 // A test whose name does not start with DISABLED_.
3144 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3145 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3146
3147 // A test case whose name starts with DISABLED_.
3148 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3149 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3150 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3151 }
3152
3153 // A test case and test whose names start with DISABLED_.
3154 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3155 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3156 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3157 }
3158
3159 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3160 // TearDownTestSuite() are not called.
3161 class DisabledTestsTest : public Test {
3162 protected:
SetUpTestSuite()3163 static void SetUpTestSuite() {
3164 FAIL() << "Unexpected failure: All tests disabled in test case. "
3165 "SetUpTestSuite() should not be called.";
3166 }
3167
TearDownTestSuite()3168 static void TearDownTestSuite() {
3169 FAIL() << "Unexpected failure: All tests disabled in test case. "
3170 "TearDownTestSuite() should not be called.";
3171 }
3172 };
3173
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3174 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3175 FAIL() << "Unexpected failure: Disabled test should not be run.";
3176 }
3177
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3178 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3179 FAIL() << "Unexpected failure: Disabled test should not be run.";
3180 }
3181
3182 // Tests that disabled typed tests aren't run.
3183
3184 template <typename T>
3185 class TypedTest : public Test {};
3186
3187 typedef testing::Types<int, double> NumericTypes;
3188 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3189
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3190 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3191 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3192 }
3193
3194 template <typename T>
3195 class DISABLED_TypedTest : public Test {};
3196
3197 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3198
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3199 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3200 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3201 }
3202
3203 // Tests that disabled type-parameterized tests aren't run.
3204
3205 template <typename T>
3206 class TypedTestP : public Test {};
3207
3208 TYPED_TEST_SUITE_P(TypedTestP);
3209
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3210 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3211 FAIL() << "Unexpected failure: "
3212 << "Disabled type-parameterized test should not run.";
3213 }
3214
3215 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3216
3217 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3218
3219 template <typename T>
3220 class DISABLED_TypedTestP : public Test {};
3221
3222 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3223
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3224 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3225 FAIL() << "Unexpected failure: "
3226 << "Disabled type-parameterized test should not run.";
3227 }
3228
3229 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3230
3231 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3232
3233 // Tests that assertion macros evaluate their arguments exactly once.
3234
3235 class SingleEvaluationTest : public Test {
3236 public: // Must be public and not protected due to a bug in g++ 3.4.2.
3237 // This helper function is needed by the FailedASSERT_STREQ test
3238 // below. It's public to work around C++Builder's bug with scoping local
3239 // classes.
CompareAndIncrementCharPtrs()3240 static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3241
3242 // This helper function is needed by the FailedASSERT_NE test below. It's
3243 // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3244 static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3245
3246 protected:
SingleEvaluationTest()3247 SingleEvaluationTest() {
3248 p1_ = s1_;
3249 p2_ = s2_;
3250 a_ = 0;
3251 b_ = 0;
3252 }
3253
3254 static const char* const s1_;
3255 static const char* const s2_;
3256 static const char* p1_;
3257 static const char* p2_;
3258
3259 static int a_;
3260 static int b_;
3261 };
3262
3263 const char* const SingleEvaluationTest::s1_ = "01234";
3264 const char* const SingleEvaluationTest::s2_ = "abcde";
3265 const char* SingleEvaluationTest::p1_;
3266 const char* SingleEvaluationTest::p2_;
3267 int SingleEvaluationTest::a_;
3268 int SingleEvaluationTest::b_;
3269
3270 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3271 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3272 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3273 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3274 "p2_++");
3275 EXPECT_EQ(s1_ + 1, p1_);
3276 EXPECT_EQ(s2_ + 1, p2_);
3277 }
3278
3279 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3280 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3281 // successful EXPECT_STRNE
3282 EXPECT_STRNE(p1_++, p2_++);
3283 EXPECT_EQ(s1_ + 1, p1_);
3284 EXPECT_EQ(s2_ + 1, p2_);
3285
3286 // failed EXPECT_STRCASEEQ
3287 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3288 EXPECT_EQ(s1_ + 2, p1_);
3289 EXPECT_EQ(s2_ + 2, p2_);
3290 }
3291
3292 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3293 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3294 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3295 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3296 "(a_++) != (b_++)");
3297 EXPECT_EQ(1, a_);
3298 EXPECT_EQ(1, b_);
3299 }
3300
3301 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3302 TEST_F(SingleEvaluationTest, OtherCases) {
3303 // successful EXPECT_TRUE
3304 EXPECT_TRUE(0 == a_++); // NOLINT
3305 EXPECT_EQ(1, a_);
3306
3307 // failed EXPECT_TRUE
3308 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3309 EXPECT_EQ(2, a_);
3310
3311 // successful EXPECT_GT
3312 EXPECT_GT(a_++, b_++);
3313 EXPECT_EQ(3, a_);
3314 EXPECT_EQ(1, b_);
3315
3316 // failed EXPECT_LT
3317 EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3318 EXPECT_EQ(4, a_);
3319 EXPECT_EQ(2, b_);
3320
3321 // successful ASSERT_TRUE
3322 ASSERT_TRUE(0 < a_++); // NOLINT
3323 EXPECT_EQ(5, a_);
3324
3325 // successful ASSERT_GT
3326 ASSERT_GT(a_++, b_++);
3327 EXPECT_EQ(6, a_);
3328 EXPECT_EQ(3, b_);
3329 }
3330
3331 #if GTEST_HAS_EXCEPTIONS
3332
3333 #if GTEST_HAS_RTTI
3334
3335 #define ERROR_DESC "std::runtime_error"
3336
3337 #else // GTEST_HAS_RTTI
3338
3339 #define ERROR_DESC "an std::exception-derived error"
3340
3341 #endif // GTEST_HAS_RTTI
3342
ThrowAnInteger()3343 void ThrowAnInteger() { throw 1; }
ThrowRuntimeError(const char * what)3344 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3345
3346 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3347 TEST_F(SingleEvaluationTest, ExceptionTests) {
3348 // successful EXPECT_THROW
3349 EXPECT_THROW(
3350 { // NOLINT
3351 a_++;
3352 ThrowAnInteger();
3353 },
3354 int);
3355 EXPECT_EQ(1, a_);
3356
3357 // failed EXPECT_THROW, throws different
3358 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3359 { // NOLINT
3360 a_++;
3361 ThrowAnInteger();
3362 },
3363 bool),
3364 "throws a different type");
3365 EXPECT_EQ(2, a_);
3366
3367 // failed EXPECT_THROW, throws runtime error
3368 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3369 { // NOLINT
3370 a_++;
3371 ThrowRuntimeError("A description");
3372 },
3373 bool),
3374 "throws " ERROR_DESC
3375 " with description \"A description\"");
3376 EXPECT_EQ(3, a_);
3377
3378 // failed EXPECT_THROW, throws nothing
3379 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3380 EXPECT_EQ(4, a_);
3381
3382 // successful EXPECT_NO_THROW
3383 EXPECT_NO_THROW(a_++);
3384 EXPECT_EQ(5, a_);
3385
3386 // failed EXPECT_NO_THROW
3387 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
3388 a_++;
3389 ThrowAnInteger();
3390 }),
3391 "it throws");
3392 EXPECT_EQ(6, a_);
3393
3394 // successful EXPECT_ANY_THROW
3395 EXPECT_ANY_THROW({ // NOLINT
3396 a_++;
3397 ThrowAnInteger();
3398 });
3399 EXPECT_EQ(7, a_);
3400
3401 // failed EXPECT_ANY_THROW
3402 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3403 EXPECT_EQ(8, a_);
3404 }
3405
3406 #endif // GTEST_HAS_EXCEPTIONS
3407
3408 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3409 class NoFatalFailureTest : public Test {
3410 protected:
Succeeds()3411 void Succeeds() {}
FailsNonFatal()3412 void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
Fails()3413 void Fails() { FAIL() << "some fatal failure"; }
3414
DoAssertNoFatalFailureOnFails()3415 void DoAssertNoFatalFailureOnFails() {
3416 ASSERT_NO_FATAL_FAILURE(Fails());
3417 ADD_FAILURE() << "should not reach here.";
3418 }
3419
DoExpectNoFatalFailureOnFails()3420 void DoExpectNoFatalFailureOnFails() {
3421 EXPECT_NO_FATAL_FAILURE(Fails());
3422 ADD_FAILURE() << "other failure";
3423 }
3424 };
3425
TEST_F(NoFatalFailureTest,NoFailure)3426 TEST_F(NoFatalFailureTest, NoFailure) {
3427 EXPECT_NO_FATAL_FAILURE(Succeeds());
3428 ASSERT_NO_FATAL_FAILURE(Succeeds());
3429 }
3430
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3431 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3432 EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3433 "some non-fatal failure");
3434 EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3435 "some non-fatal failure");
3436 }
3437
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3438 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3439 TestPartResultArray gtest_failures;
3440 {
3441 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3442 DoAssertNoFatalFailureOnFails();
3443 }
3444 ASSERT_EQ(2, gtest_failures.size());
3445 EXPECT_EQ(TestPartResult::kFatalFailure,
3446 gtest_failures.GetTestPartResult(0).type());
3447 EXPECT_EQ(TestPartResult::kFatalFailure,
3448 gtest_failures.GetTestPartResult(1).type());
3449 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3450 gtest_failures.GetTestPartResult(0).message());
3451 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3452 gtest_failures.GetTestPartResult(1).message());
3453 }
3454
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3455 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3456 TestPartResultArray gtest_failures;
3457 {
3458 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3459 DoExpectNoFatalFailureOnFails();
3460 }
3461 ASSERT_EQ(3, gtest_failures.size());
3462 EXPECT_EQ(TestPartResult::kFatalFailure,
3463 gtest_failures.GetTestPartResult(0).type());
3464 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3465 gtest_failures.GetTestPartResult(1).type());
3466 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3467 gtest_failures.GetTestPartResult(2).type());
3468 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3469 gtest_failures.GetTestPartResult(0).message());
3470 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3471 gtest_failures.GetTestPartResult(1).message());
3472 EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3473 gtest_failures.GetTestPartResult(2).message());
3474 }
3475
TEST_F(NoFatalFailureTest,MessageIsStreamable)3476 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3477 TestPartResultArray gtest_failures;
3478 {
3479 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3480 EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3481 }
3482 ASSERT_EQ(2, gtest_failures.size());
3483 EXPECT_EQ(TestPartResult::kFatalFailure,
3484 gtest_failures.GetTestPartResult(0).type());
3485 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3486 gtest_failures.GetTestPartResult(1).type());
3487 EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3488 gtest_failures.GetTestPartResult(0).message());
3489 EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3490 gtest_failures.GetTestPartResult(1).message());
3491 }
3492
3493 // Tests non-string assertions.
3494
EditsToString(const std::vector<EditType> & edits)3495 std::string EditsToString(const std::vector<EditType>& edits) {
3496 std::string out;
3497 for (size_t i = 0; i < edits.size(); ++i) {
3498 static const char kEdits[] = " +-/";
3499 out.append(1, kEdits[edits[i]]);
3500 }
3501 return out;
3502 }
3503
CharsToIndices(const std::string & str)3504 std::vector<size_t> CharsToIndices(const std::string& str) {
3505 std::vector<size_t> out;
3506 for (size_t i = 0; i < str.size(); ++i) {
3507 out.push_back(static_cast<size_t>(str[i]));
3508 }
3509 return out;
3510 }
3511
CharsToLines(const std::string & str)3512 std::vector<std::string> CharsToLines(const std::string& str) {
3513 std::vector<std::string> out;
3514 for (size_t i = 0; i < str.size(); ++i) {
3515 out.push_back(str.substr(i, 1));
3516 }
3517 return out;
3518 }
3519
TEST(EditDistance,TestSuites)3520 TEST(EditDistance, TestSuites) {
3521 struct Case {
3522 int line;
3523 const char* left;
3524 const char* right;
3525 const char* expected_edits;
3526 const char* expected_diff;
3527 };
3528 static const Case kCases[] = {
3529 // No change.
3530 {__LINE__, "A", "A", " ", ""},
3531 {__LINE__, "ABCDE", "ABCDE", " ", ""},
3532 // Simple adds.
3533 {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3534 {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3535 // Simple removes.
3536 {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3537 {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3538 // Simple replaces.
3539 {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3540 {__LINE__, "ABCD", "abcd", "////",
3541 "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3542 // Path finding.
3543 {__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +",
3544 "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3545 {__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ",
3546 "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3547 {__LINE__, "ABCDE", "BCDCD", "- +/",
3548 "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3549 {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++",
3550 "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3551 "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3552 {}};
3553 for (const Case* c = kCases; c->left; ++c) {
3554 EXPECT_TRUE(c->expected_edits ==
3555 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3556 CharsToIndices(c->right))))
3557 << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3558 << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3559 CharsToIndices(c->right)))
3560 << ">";
3561 EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3562 CharsToLines(c->right)))
3563 << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3564 << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3565 << ">";
3566 }
3567 }
3568
3569 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3570 TEST(AssertionTest, EqFailure) {
3571 const std::string foo_val("5"), bar_val("6");
3572 const std::string msg1(
3573 EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3574 EXPECT_STREQ(
3575 "Expected equality of these values:\n"
3576 " foo\n"
3577 " Which is: 5\n"
3578 " bar\n"
3579 " Which is: 6",
3580 msg1.c_str());
3581
3582 const std::string msg2(
3583 EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3584 EXPECT_STREQ(
3585 "Expected equality of these values:\n"
3586 " foo\n"
3587 " Which is: 5\n"
3588 " 6",
3589 msg2.c_str());
3590
3591 const std::string msg3(
3592 EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3593 EXPECT_STREQ(
3594 "Expected equality of these values:\n"
3595 " 5\n"
3596 " bar\n"
3597 " Which is: 6",
3598 msg3.c_str());
3599
3600 const std::string msg4(
3601 EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3602 EXPECT_STREQ(
3603 "Expected equality of these values:\n"
3604 " 5\n"
3605 " 6",
3606 msg4.c_str());
3607
3608 const std::string msg5(
3609 EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3610 .failure_message());
3611 EXPECT_STREQ(
3612 "Expected equality of these values:\n"
3613 " foo\n"
3614 " Which is: \"x\"\n"
3615 " bar\n"
3616 " Which is: \"y\"\n"
3617 "Ignoring case",
3618 msg5.c_str());
3619 }
3620
TEST(AssertionTest,EqFailureWithDiff)3621 TEST(AssertionTest, EqFailureWithDiff) {
3622 const std::string left(
3623 "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3624 const std::string right(
3625 "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3626 const std::string msg1(
3627 EqFailure("left", "right", left, right, false).failure_message());
3628 EXPECT_STREQ(
3629 "Expected equality of these values:\n"
3630 " left\n"
3631 " Which is: "
3632 "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3633 " right\n"
3634 " Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3635 "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3636 "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3637 msg1.c_str());
3638 }
3639
3640 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3641 TEST(AssertionTest, AppendUserMessage) {
3642 const std::string foo("foo");
3643
3644 Message msg;
3645 EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3646
3647 msg << "bar";
3648 EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3649 }
3650
3651 #ifdef __BORLANDC__
3652 // Silences warnings: "Condition is always true", "Unreachable code"
3653 #pragma option push -w-ccc -w-rch
3654 #endif
3655
3656 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3657 TEST(AssertionTest, ASSERT_TRUE) {
3658 ASSERT_TRUE(2 > 1); // NOLINT
3659 EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3660 }
3661
3662 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3663 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3664 ASSERT_TRUE(ResultIsEven(2));
3665 #ifndef __BORLANDC__
3666 // ICE's in C++Builder.
3667 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3668 "Value of: ResultIsEven(3)\n"
3669 " Actual: false (3 is odd)\n"
3670 "Expected: true");
3671 #endif
3672 ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3673 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3674 "Value of: ResultIsEvenNoExplanation(3)\n"
3675 " Actual: false (3 is odd)\n"
3676 "Expected: true");
3677 }
3678
3679 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3680 TEST(AssertionTest, ASSERT_FALSE) {
3681 ASSERT_FALSE(2 < 1); // NOLINT
3682 EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3683 "Value of: 2 > 1\n"
3684 " Actual: true\n"
3685 "Expected: false");
3686 }
3687
3688 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3689 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3690 ASSERT_FALSE(ResultIsEven(3));
3691 #ifndef __BORLANDC__
3692 // ICE's in C++Builder.
3693 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3694 "Value of: ResultIsEven(2)\n"
3695 " Actual: true (2 is even)\n"
3696 "Expected: false");
3697 #endif
3698 ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3699 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3700 "Value of: ResultIsEvenNoExplanation(2)\n"
3701 " Actual: true\n"
3702 "Expected: false");
3703 }
3704
3705 #ifdef __BORLANDC__
3706 // Restores warnings after previous "#pragma option push" suppressed them
3707 #pragma option pop
3708 #endif
3709
3710 // Tests using ASSERT_EQ on double values. The purpose is to make
3711 // sure that the specialization we did for integer and anonymous enums
3712 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3713 TEST(ExpectTest, ASSERT_EQ_Double) {
3714 // A success.
3715 ASSERT_EQ(5.6, 5.6);
3716
3717 // A failure.
3718 EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3719 }
3720
3721 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3722 TEST(AssertionTest, ASSERT_EQ) {
3723 ASSERT_EQ(5, 2 + 3);
3724 // clang-format off
3725 EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3726 "Expected equality of these values:\n"
3727 " 5\n"
3728 " 2*3\n"
3729 " Which is: 6");
3730 // clang-format on
3731 }
3732
3733 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3734 TEST(AssertionTest, ASSERT_EQ_NULL) {
3735 // A success.
3736 const char* p = nullptr;
3737 ASSERT_EQ(nullptr, p);
3738
3739 // A failure.
3740 static int n = 0;
3741 EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), " &n\n Which is:");
3742 }
3743
3744 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3745 // treated as a null pointer by the compiler, we need to make sure
3746 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3747 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3748 TEST(ExpectTest, ASSERT_EQ_0) {
3749 int n = 0;
3750
3751 // A success.
3752 ASSERT_EQ(0, n);
3753
3754 // A failure.
3755 EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), " 0\n 5.6");
3756 }
3757
3758 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3759 TEST(AssertionTest, ASSERT_NE) {
3760 ASSERT_NE(6, 7);
3761 EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3762 "Expected: ('a') != ('a'), "
3763 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3764 }
3765
3766 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3767 TEST(AssertionTest, ASSERT_LE) {
3768 ASSERT_LE(2, 3);
3769 ASSERT_LE(2, 2);
3770 EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3771 }
3772
3773 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3774 TEST(AssertionTest, ASSERT_LT) {
3775 ASSERT_LT(2, 3);
3776 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3777 }
3778
3779 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3780 TEST(AssertionTest, ASSERT_GE) {
3781 ASSERT_GE(2, 1);
3782 ASSERT_GE(2, 2);
3783 EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3784 }
3785
3786 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3787 TEST(AssertionTest, ASSERT_GT) {
3788 ASSERT_GT(2, 1);
3789 EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3790 }
3791
3792 #if GTEST_HAS_EXCEPTIONS
3793
ThrowNothing()3794 void ThrowNothing() {}
3795
3796 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3797 TEST(AssertionTest, ASSERT_THROW) {
3798 ASSERT_THROW(ThrowAnInteger(), int);
3799
3800 #ifndef __BORLANDC__
3801
3802 // ICE's in C++Builder 2007 and 2009.
3803 EXPECT_FATAL_FAILURE(
3804 ASSERT_THROW(ThrowAnInteger(), bool),
3805 "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3806 " Actual: it throws a different type.");
3807 EXPECT_FATAL_FAILURE(
3808 ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3809 "Expected: ThrowRuntimeError(\"A description\") "
3810 "throws an exception of type std::logic_error.\n "
3811 "Actual: it throws " ERROR_DESC
3812 " "
3813 "with description \"A description\".");
3814 #endif
3815
3816 EXPECT_FATAL_FAILURE(
3817 ASSERT_THROW(ThrowNothing(), bool),
3818 "Expected: ThrowNothing() throws an exception of type bool.\n"
3819 " Actual: it throws nothing.");
3820 }
3821
3822 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3823 TEST(AssertionTest, ASSERT_NO_THROW) {
3824 ASSERT_NO_THROW(ThrowNothing());
3825 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3826 "Expected: ThrowAnInteger() doesn't throw an exception."
3827 "\n Actual: it throws.");
3828 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3829 "Expected: ThrowRuntimeError(\"A description\") "
3830 "doesn't throw an exception.\n "
3831 "Actual: it throws " ERROR_DESC
3832 " "
3833 "with description \"A description\".");
3834 }
3835
3836 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3837 TEST(AssertionTest, ASSERT_ANY_THROW) {
3838 ASSERT_ANY_THROW(ThrowAnInteger());
3839 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3840 "Expected: ThrowNothing() throws an exception.\n"
3841 " Actual: it doesn't.");
3842 }
3843
3844 #endif // GTEST_HAS_EXCEPTIONS
3845
3846 // Makes sure we deal with the precedence of <<. This test should
3847 // compile.
TEST(AssertionTest,AssertPrecedence)3848 TEST(AssertionTest, AssertPrecedence) {
3849 ASSERT_EQ(1 < 2, true);
3850 bool false_value = false;
3851 ASSERT_EQ(true && false_value, false);
3852 }
3853
3854 // A subroutine used by the following test.
TestEq1(int x)3855 void TestEq1(int x) { ASSERT_EQ(1, x); }
3856
3857 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3858 TEST(AssertionTest, NonFixtureSubroutine) {
3859 EXPECT_FATAL_FAILURE(TestEq1(2), " x\n Which is: 2");
3860 }
3861
3862 // An uncopyable class.
3863 class Uncopyable {
3864 public:
Uncopyable(int a_value)3865 explicit Uncopyable(int a_value) : value_(a_value) {}
3866
value() const3867 int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3868 bool operator==(const Uncopyable& rhs) const {
3869 return value() == rhs.value();
3870 }
3871
3872 private:
3873 // This constructor deliberately has no implementation, as we don't
3874 // want this class to be copyable.
3875 Uncopyable(const Uncopyable&); // NOLINT
3876
3877 int value_;
3878 };
3879
operator <<(::std::ostream & os,const Uncopyable & value)3880 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3881 return os << value.value();
3882 }
3883
IsPositiveUncopyable(const Uncopyable & x)3884 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3885
3886 // A subroutine used by the following test.
TestAssertNonPositive()3887 void TestAssertNonPositive() {
3888 Uncopyable y(-1);
3889 ASSERT_PRED1(IsPositiveUncopyable, y);
3890 }
3891 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3892 void TestAssertEqualsUncopyable() {
3893 Uncopyable x(5);
3894 Uncopyable y(-1);
3895 ASSERT_EQ(x, y);
3896 }
3897
3898 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3899 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3900 Uncopyable x(5);
3901 ASSERT_PRED1(IsPositiveUncopyable, x);
3902 ASSERT_EQ(x, x);
3903 EXPECT_FATAL_FAILURE(
3904 TestAssertNonPositive(),
3905 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3906 EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3907 "Expected equality of these values:\n"
3908 " x\n Which is: 5\n y\n Which is: -1");
3909 }
3910
3911 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3912 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3913 Uncopyable x(5);
3914 EXPECT_PRED1(IsPositiveUncopyable, x);
3915 Uncopyable y(-1);
3916 EXPECT_NONFATAL_FAILURE(
3917 EXPECT_PRED1(IsPositiveUncopyable, y),
3918 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3919 EXPECT_EQ(x, x);
3920 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3921 "Expected equality of these values:\n"
3922 " x\n Which is: 5\n y\n Which is: -1");
3923 }
3924
3925 enum NamedEnum { kE1 = 0, kE2 = 1 };
3926
TEST(AssertionTest,NamedEnum)3927 TEST(AssertionTest, NamedEnum) {
3928 EXPECT_EQ(kE1, kE1);
3929 EXPECT_LT(kE1, kE2);
3930 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3931 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3932 }
3933
3934 // Sun Studio and HP aCC2reject this code.
3935 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3936
3937 // Tests using assertions with anonymous enums.
3938 enum {
3939 kCaseA = -1,
3940
3941 #ifdef GTEST_OS_LINUX
3942
3943 // We want to test the case where the size of the anonymous enum is
3944 // larger than sizeof(int), to make sure our implementation of the
3945 // assertions doesn't truncate the enums. However, MSVC
3946 // (incorrectly) doesn't allow an enum value to exceed the range of
3947 // an int, so this has to be conditionally compiled.
3948 //
3949 // On Linux, kCaseB and kCaseA have the same value when truncated to
3950 // int size. We want to test whether this will confuse the
3951 // assertions.
3952 kCaseB = testing::internal::kMaxBiggestInt,
3953
3954 #else
3955
3956 kCaseB = INT_MAX,
3957
3958 #endif // GTEST_OS_LINUX
3959
3960 kCaseC = 42
3961 };
3962
TEST(AssertionTest,AnonymousEnum)3963 TEST(AssertionTest, AnonymousEnum) {
3964 #ifdef GTEST_OS_LINUX
3965
3966 EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3967
3968 #endif // GTEST_OS_LINUX
3969
3970 EXPECT_EQ(kCaseA, kCaseA);
3971 EXPECT_NE(kCaseA, kCaseB);
3972 EXPECT_LT(kCaseA, kCaseB);
3973 EXPECT_LE(kCaseA, kCaseB);
3974 EXPECT_GT(kCaseB, kCaseA);
3975 EXPECT_GE(kCaseA, kCaseA);
3976 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
3977 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
3978
3979 ASSERT_EQ(kCaseA, kCaseA);
3980 ASSERT_NE(kCaseA, kCaseB);
3981 ASSERT_LT(kCaseA, kCaseB);
3982 ASSERT_LE(kCaseA, kCaseB);
3983 ASSERT_GT(kCaseB, kCaseA);
3984 ASSERT_GE(kCaseA, kCaseA);
3985
3986 #ifndef __BORLANDC__
3987
3988 // ICE's in C++Builder.
3989 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), " kCaseB\n Which is: ");
3990 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: 42");
3991 #endif
3992
3993 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: -1");
3994 }
3995
3996 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3997
3998 #ifdef GTEST_OS_WINDOWS
3999
UnexpectedHRESULTFailure()4000 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
4001
OkHRESULTSuccess()4002 static HRESULT OkHRESULTSuccess() { return S_OK; }
4003
FalseHRESULTSuccess()4004 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4005
4006 // HRESULT assertion tests test both zero and non-zero
4007 // success codes as well as failure message for each.
4008 //
4009 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4010 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4011 EXPECT_HRESULT_SUCCEEDED(S_OK);
4012 EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4013
4014 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4015 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4016 " Actual: 0x8000FFFF");
4017 }
4018
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4019 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4020 ASSERT_HRESULT_SUCCEEDED(S_OK);
4021 ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4022
4023 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4024 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4025 " Actual: 0x8000FFFF");
4026 }
4027
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4028 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4029 EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4030
4031 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4032 "Expected: (OkHRESULTSuccess()) fails.\n"
4033 " Actual: 0x0");
4034 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4035 "Expected: (FalseHRESULTSuccess()) fails.\n"
4036 " Actual: 0x1");
4037 }
4038
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4039 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4040 ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4041
4042 #ifndef __BORLANDC__
4043
4044 // ICE's in C++Builder 2007 and 2009.
4045 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4046 "Expected: (OkHRESULTSuccess()) fails.\n"
4047 " Actual: 0x0");
4048 #endif
4049
4050 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4051 "Expected: (FalseHRESULTSuccess()) fails.\n"
4052 " Actual: 0x1");
4053 }
4054
4055 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4056 TEST(HRESULTAssertionTest, Streaming) {
4057 EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4058 ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4059 EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4060 ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4061
4062 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4063 << "expected failure",
4064 "expected failure");
4065
4066 #ifndef __BORLANDC__
4067
4068 // ICE's in C++Builder 2007 and 2009.
4069 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4070 << "expected failure",
4071 "expected failure");
4072 #endif
4073
4074 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4075 "expected failure");
4076
4077 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4078 "expected failure");
4079 }
4080
4081 #endif // GTEST_OS_WINDOWS
4082
4083 // The following code intentionally tests a suboptimal syntax.
4084 #ifdef __GNUC__
4085 #pragma GCC diagnostic push
4086 #pragma GCC diagnostic ignored "-Wdangling-else"
4087 #pragma GCC diagnostic ignored "-Wempty-body"
4088 #pragma GCC diagnostic ignored "-Wpragmas"
4089 #endif
4090 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4091 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4092 if (AlwaysFalse())
4093 ASSERT_TRUE(false) << "This should never be executed; "
4094 "It's a compilation test only.";
4095
4096 if (AlwaysTrue())
4097 EXPECT_FALSE(false);
4098 else
4099 ; // NOLINT
4100
4101 if (AlwaysFalse()) ASSERT_LT(1, 3);
4102
4103 if (AlwaysFalse())
4104 ; // NOLINT
4105 else
4106 EXPECT_GT(3, 2) << "";
4107 }
4108 #ifdef __GNUC__
4109 #pragma GCC diagnostic pop
4110 #endif
4111
4112 #if GTEST_HAS_EXCEPTIONS
4113 // Tests that the compiler will not complain about unreachable code in the
4114 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4115 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4116 int n = 0;
4117
4118 EXPECT_THROW(throw 1, int);
4119 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4120 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw n, const char*), "");
4121 EXPECT_NO_THROW(n++);
4122 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4123 EXPECT_ANY_THROW(throw 1);
4124 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4125 }
4126
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4127 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4128 EXPECT_THROW(throw std::exception(), std::exception);
4129 }
4130
4131 // The following code intentionally tests a suboptimal syntax.
4132 #ifdef __GNUC__
4133 #pragma GCC diagnostic push
4134 #pragma GCC diagnostic ignored "-Wdangling-else"
4135 #pragma GCC diagnostic ignored "-Wempty-body"
4136 #pragma GCC diagnostic ignored "-Wpragmas"
4137 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4138 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4139 if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4140
4141 if (AlwaysTrue())
4142 EXPECT_THROW(ThrowAnInteger(), int);
4143 else
4144 ; // NOLINT
4145
4146 if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4147
4148 if (AlwaysTrue())
4149 EXPECT_NO_THROW(ThrowNothing());
4150 else
4151 ; // NOLINT
4152
4153 if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4154
4155 if (AlwaysTrue())
4156 EXPECT_ANY_THROW(ThrowAnInteger());
4157 else
4158 ; // NOLINT
4159 }
4160 #ifdef __GNUC__
4161 #pragma GCC diagnostic pop
4162 #endif
4163
4164 #endif // GTEST_HAS_EXCEPTIONS
4165
4166 // The following code intentionally tests a suboptimal syntax.
4167 #ifdef __GNUC__
4168 #pragma GCC diagnostic push
4169 #pragma GCC diagnostic ignored "-Wdangling-else"
4170 #pragma GCC diagnostic ignored "-Wempty-body"
4171 #pragma GCC diagnostic ignored "-Wpragmas"
4172 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4173 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4174 if (AlwaysFalse())
4175 EXPECT_NO_FATAL_FAILURE(FAIL())
4176 << "This should never be executed. " << "It's a compilation test only.";
4177 else
4178 ; // NOLINT
4179
4180 if (AlwaysFalse())
4181 ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4182 else
4183 ; // NOLINT
4184
4185 if (AlwaysTrue())
4186 EXPECT_NO_FATAL_FAILURE(SUCCEED());
4187 else
4188 ; // NOLINT
4189
4190 if (AlwaysFalse())
4191 ; // NOLINT
4192 else
4193 ASSERT_NO_FATAL_FAILURE(SUCCEED());
4194 }
4195 #ifdef __GNUC__
4196 #pragma GCC diagnostic pop
4197 #endif
4198
4199 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4200 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4201 switch (0) {
4202 case 1:
4203 break;
4204 default:
4205 ASSERT_TRUE(true);
4206 }
4207
4208 switch (0)
4209 case 0:
4210 EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4211
4212 // Binary assertions are implemented using a different code path
4213 // than the Boolean assertions. Hence we test them separately.
4214 switch (0) {
4215 case 1:
4216 default:
4217 ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4218 }
4219
4220 switch (0)
4221 case 0:
4222 EXPECT_NE(1, 2);
4223 }
4224
4225 #if GTEST_HAS_EXCEPTIONS
4226
ThrowAString()4227 void ThrowAString() { throw "std::string"; }
4228
4229 // Test that the exception assertion macros compile and work with const
4230 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4231 TEST(AssertionSyntaxTest, WorksWithConst) {
4232 ASSERT_THROW(ThrowAString(), const char*);
4233
4234 EXPECT_THROW(ThrowAString(), const char*);
4235 }
4236
4237 #endif // GTEST_HAS_EXCEPTIONS
4238
4239 } // namespace
4240
4241 namespace testing {
4242
4243 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4244 TEST(SuccessfulAssertionTest, SUCCEED) {
4245 SUCCEED();
4246 SUCCEED() << "OK";
4247 EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4248 }
4249
4250 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4251 TEST(SuccessfulAssertionTest, EXPECT) {
4252 EXPECT_TRUE(true);
4253 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4254 }
4255
4256 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4257 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4258 EXPECT_STREQ("", "");
4259 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4260 }
4261
4262 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4263 TEST(SuccessfulAssertionTest, ASSERT) {
4264 ASSERT_TRUE(true);
4265 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4266 }
4267
4268 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4269 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4270 ASSERT_STREQ("", "");
4271 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4272 }
4273
4274 } // namespace testing
4275
4276 namespace {
4277
4278 // Tests the message streaming variation of assertions.
4279
TEST(AssertionWithMessageTest,EXPECT)4280 TEST(AssertionWithMessageTest, EXPECT) {
4281 EXPECT_EQ(1, 1) << "This should succeed.";
4282 EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4283 "Expected failure #1");
4284 EXPECT_LE(1, 2) << "This should succeed.";
4285 EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4286 "Expected failure #2.");
4287 EXPECT_GE(1, 0) << "This should succeed.";
4288 EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4289 "Expected failure #3.");
4290
4291 EXPECT_STREQ("1", "1") << "This should succeed.";
4292 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4293 "Expected failure #4.");
4294 EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4295 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4296 "Expected failure #5.");
4297
4298 EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4299 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4300 "Expected failure #6.");
4301 EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4302 }
4303
TEST(AssertionWithMessageTest,ASSERT)4304 TEST(AssertionWithMessageTest, ASSERT) {
4305 ASSERT_EQ(1, 1) << "This should succeed.";
4306 ASSERT_NE(1, 2) << "This should succeed.";
4307 ASSERT_LE(1, 2) << "This should succeed.";
4308 ASSERT_LT(1, 2) << "This should succeed.";
4309 ASSERT_GE(1, 0) << "This should succeed.";
4310 EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4311 "Expected failure.");
4312 }
4313
TEST(AssertionWithMessageTest,ASSERT_STR)4314 TEST(AssertionWithMessageTest, ASSERT_STR) {
4315 ASSERT_STREQ("1", "1") << "This should succeed.";
4316 ASSERT_STRNE("1", "2") << "This should succeed.";
4317 ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4318 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4319 "Expected failure.");
4320 }
4321
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4322 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4323 ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4324 ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4325 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.", // NOLINT
4326 "Expect failure.");
4327 }
4328
4329 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4330 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4331 ASSERT_FALSE(false) << "This shouldn't fail.";
4332 EXPECT_FATAL_FAILURE(
4333 { // NOLINT
4334 ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4335 << " evaluates to " << true;
4336 },
4337 "Expected failure");
4338 }
4339
4340 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4341 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4342
4343 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4344 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4345
4346 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4347 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4348 ASSERT_TRUE(true) << "This should succeed.";
4349 ASSERT_TRUE(true) << true;
4350 EXPECT_FATAL_FAILURE(
4351 { // NOLINT
4352 ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4353 << static_cast<char*>(nullptr);
4354 },
4355 "(null)(null)");
4356 }
4357
4358 #ifdef GTEST_OS_WINDOWS
4359 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4360 TEST(AssertionWithMessageTest, WideStringMessage) {
4361 EXPECT_NONFATAL_FAILURE(
4362 { // NOLINT
4363 EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4364 },
4365 "This failure is expected.");
4366 EXPECT_FATAL_FAILURE(
4367 { // NOLINT
4368 ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4369 },
4370 "This failure is expected too.");
4371 }
4372 #endif // GTEST_OS_WINDOWS
4373
4374 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4375 TEST(ExpectTest, EXPECT_TRUE) {
4376 EXPECT_TRUE(true) << "Intentional success";
4377 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4378 "Intentional failure #1.");
4379 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4380 "Intentional failure #2.");
4381 EXPECT_TRUE(2 > 1); // NOLINT
4382 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4383 "Value of: 2 < 1\n"
4384 " Actual: false\n"
4385 "Expected: true");
4386 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4387 }
4388
4389 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4390 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4391 EXPECT_TRUE(ResultIsEven(2));
4392 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4393 "Value of: ResultIsEven(3)\n"
4394 " Actual: false (3 is odd)\n"
4395 "Expected: true");
4396 EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4397 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4398 "Value of: ResultIsEvenNoExplanation(3)\n"
4399 " Actual: false (3 is odd)\n"
4400 "Expected: true");
4401 }
4402
4403 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4404 TEST(ExpectTest, EXPECT_FALSE) {
4405 EXPECT_FALSE(2 < 1); // NOLINT
4406 EXPECT_FALSE(false) << "Intentional success";
4407 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4408 "Intentional failure #1.");
4409 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4410 "Intentional failure #2.");
4411 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4412 "Value of: 2 > 1\n"
4413 " Actual: true\n"
4414 "Expected: false");
4415 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4416 }
4417
4418 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4419 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4420 EXPECT_FALSE(ResultIsEven(3));
4421 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4422 "Value of: ResultIsEven(2)\n"
4423 " Actual: true (2 is even)\n"
4424 "Expected: false");
4425 EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4426 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4427 "Value of: ResultIsEvenNoExplanation(2)\n"
4428 " Actual: true\n"
4429 "Expected: false");
4430 }
4431
4432 #ifdef __BORLANDC__
4433 // Restores warnings after previous "#pragma option push" suppressed them
4434 #pragma option pop
4435 #endif
4436
4437 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4438 TEST(ExpectTest, EXPECT_EQ) {
4439 EXPECT_EQ(5, 2 + 3);
4440 // clang-format off
4441 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4442 "Expected equality of these values:\n"
4443 " 5\n"
4444 " 2*3\n"
4445 " Which is: 6");
4446 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4447 // clang-format on
4448 }
4449
4450 // Tests using EXPECT_EQ on double values. The purpose is to make
4451 // sure that the specialization we did for integer and anonymous enums
4452 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4453 TEST(ExpectTest, EXPECT_EQ_Double) {
4454 // A success.
4455 EXPECT_EQ(5.6, 5.6);
4456
4457 // A failure.
4458 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4459 }
4460
4461 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4462 TEST(ExpectTest, EXPECT_EQ_NULL) {
4463 // A success.
4464 const char* p = nullptr;
4465 EXPECT_EQ(nullptr, p);
4466
4467 // A failure.
4468 int n = 0;
4469 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), " &n\n Which is:");
4470 }
4471
4472 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4473 // treated as a null pointer by the compiler, we need to make sure
4474 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4475 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4476 TEST(ExpectTest, EXPECT_EQ_0) {
4477 int n = 0;
4478
4479 // A success.
4480 EXPECT_EQ(0, n);
4481
4482 // A failure.
4483 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), " 0\n 5.6");
4484 }
4485
4486 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4487 TEST(ExpectTest, EXPECT_NE) {
4488 EXPECT_NE(6, 7);
4489
4490 EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4491 "Expected: ('a') != ('a'), "
4492 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4493 EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4494 char* const p0 = nullptr;
4495 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4496 // Only way to get the Nokia compiler to compile the cast
4497 // is to have a separate void* variable first. Putting
4498 // the two casts on the same line doesn't work, neither does
4499 // a direct C-style to char*.
4500 void* pv1 = (void*)0x1234; // NOLINT
4501 char* const p1 = reinterpret_cast<char*>(pv1);
4502 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4503 }
4504
4505 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4506 TEST(ExpectTest, EXPECT_LE) {
4507 EXPECT_LE(2, 3);
4508 EXPECT_LE(2, 2);
4509 EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4510 "Expected: (2) <= (0), actual: 2 vs 0");
4511 EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4512 }
4513
4514 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4515 TEST(ExpectTest, EXPECT_LT) {
4516 EXPECT_LT(2, 3);
4517 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4518 "Expected: (2) < (2), actual: 2 vs 2");
4519 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4520 }
4521
4522 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4523 TEST(ExpectTest, EXPECT_GE) {
4524 EXPECT_GE(2, 1);
4525 EXPECT_GE(2, 2);
4526 EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4527 "Expected: (2) >= (3), actual: 2 vs 3");
4528 EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4529 }
4530
4531 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4532 TEST(ExpectTest, EXPECT_GT) {
4533 EXPECT_GT(2, 1);
4534 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4535 "Expected: (2) > (2), actual: 2 vs 2");
4536 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4537 }
4538
4539 #if GTEST_HAS_EXCEPTIONS
4540
4541 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4542 TEST(ExpectTest, EXPECT_THROW) {
4543 EXPECT_THROW(ThrowAnInteger(), int);
4544 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4545 "Expected: ThrowAnInteger() throws an exception of "
4546 "type bool.\n Actual: it throws a different type.");
4547 EXPECT_NONFATAL_FAILURE(
4548 EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4549 "Expected: ThrowRuntimeError(\"A description\") "
4550 "throws an exception of type std::logic_error.\n "
4551 "Actual: it throws " ERROR_DESC
4552 " "
4553 "with description \"A description\".");
4554 EXPECT_NONFATAL_FAILURE(
4555 EXPECT_THROW(ThrowNothing(), bool),
4556 "Expected: ThrowNothing() throws an exception of type bool.\n"
4557 " Actual: it throws nothing.");
4558 }
4559
4560 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4561 TEST(ExpectTest, EXPECT_NO_THROW) {
4562 EXPECT_NO_THROW(ThrowNothing());
4563 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4564 "Expected: ThrowAnInteger() doesn't throw an "
4565 "exception.\n Actual: it throws.");
4566 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4567 "Expected: ThrowRuntimeError(\"A description\") "
4568 "doesn't throw an exception.\n "
4569 "Actual: it throws " ERROR_DESC
4570 " "
4571 "with description \"A description\".");
4572 }
4573
4574 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4575 TEST(ExpectTest, EXPECT_ANY_THROW) {
4576 EXPECT_ANY_THROW(ThrowAnInteger());
4577 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4578 "Expected: ThrowNothing() throws an exception.\n"
4579 " Actual: it doesn't.");
4580 }
4581
4582 #endif // GTEST_HAS_EXCEPTIONS
4583
4584 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4585 TEST(ExpectTest, ExpectPrecedence) {
4586 EXPECT_EQ(1 < 2, true);
4587 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4588 " true && false\n Which is: false");
4589 }
4590
4591 // Tests the StreamableToString() function.
4592
4593 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4594 TEST(StreamableToStringTest, Scalar) {
4595 EXPECT_STREQ("5", StreamableToString(5).c_str());
4596 }
4597
4598 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4599 TEST(StreamableToStringTest, Pointer) {
4600 int n = 0;
4601 int* p = &n;
4602 EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4603 }
4604
4605 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4606 TEST(StreamableToStringTest, NullPointer) {
4607 int* p = nullptr;
4608 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4609 }
4610
4611 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4612 TEST(StreamableToStringTest, CString) {
4613 EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4614 }
4615
4616 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4617 TEST(StreamableToStringTest, NullCString) {
4618 char* p = nullptr;
4619 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4620 }
4621
4622 // Tests using streamable values as assertion messages.
4623
4624 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4625 TEST(StreamableTest, string) {
4626 static const std::string str(
4627 "This failure message is a std::string, and is expected.");
4628 EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4629 }
4630
4631 // Tests that we can output strings containing embedded NULs.
4632 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4633 TEST(StreamableTest, stringWithEmbeddedNUL) {
4634 static const char char_array_with_nul[] =
4635 "Here's a NUL\0 and some more string";
4636 static const std::string string_with_nul(
4637 char_array_with_nul,
4638 sizeof(char_array_with_nul) - 1); // drops the trailing NUL
4639 EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4640 "Here's a NUL\\0 and some more string");
4641 }
4642
4643 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4644 TEST(StreamableTest, NULChar) {
4645 EXPECT_FATAL_FAILURE(
4646 { // NOLINT
4647 FAIL() << "A NUL" << '\0' << " and some more string";
4648 },
4649 "A NUL\\0 and some more string");
4650 }
4651
4652 // Tests using int as an assertion message.
TEST(StreamableTest,int)4653 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4654
4655 // Tests using NULL char pointer as an assertion message.
4656 //
4657 // In MSVC, streaming a NULL char * causes access violation. Google Test
4658 // implemented a workaround (substituting "(null)" for NULL). This
4659 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4660 TEST(StreamableTest, NullCharPtr) {
4661 EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4662 }
4663
4664 // Tests that basic IO manipulators (endl, ends, and flush) can be
4665 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4666 TEST(StreamableTest, BasicIoManip) {
4667 EXPECT_FATAL_FAILURE(
4668 { // NOLINT
4669 FAIL() << "Line 1." << std::endl
4670 << "A NUL char " << std::ends << std::flush << " in line 2.";
4671 },
4672 "Line 1.\nA NUL char \\0 in line 2.");
4673 }
4674
4675 // Tests the macros that haven't been covered so far.
4676
AddFailureHelper(bool * aborted)4677 void AddFailureHelper(bool* aborted) {
4678 *aborted = true;
4679 ADD_FAILURE() << "Intentional failure.";
4680 *aborted = false;
4681 }
4682
4683 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4684 TEST(MacroTest, ADD_FAILURE) {
4685 bool aborted = true;
4686 EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4687 EXPECT_FALSE(aborted);
4688 }
4689
4690 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4691 TEST(MacroTest, ADD_FAILURE_AT) {
4692 // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4693 // the failure message contains the user-streamed part.
4694 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4695
4696 // Verifies that the user-streamed part is optional.
4697 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4698
4699 // Unfortunately, we cannot verify that the failure message contains
4700 // the right file path and line number the same way, as
4701 // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4702 // line number. Instead, we do that in googletest-output-test_.cc.
4703 }
4704
4705 // Tests FAIL.
TEST(MacroTest,FAIL)4706 TEST(MacroTest, FAIL) {
4707 EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4708 EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4709 "Intentional failure.");
4710 }
4711
4712 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4713 TEST(MacroTest, GTEST_FAIL_AT) {
4714 // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4715 // the failure message contains the user-streamed part.
4716 EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4717
4718 // Verifies that the user-streamed part is optional.
4719 EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4720
4721 // See the ADD_FAIL_AT test above to see how we test that the failure message
4722 // contains the right filename and line number -- the same applies here.
4723 }
4724
4725 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4726 TEST(MacroTest, SUCCEED) {
4727 SUCCEED();
4728 SUCCEED() << "Explicit success.";
4729 }
4730
4731 // Tests for EXPECT_EQ() and ASSERT_EQ().
4732 //
4733 // These tests fail *intentionally*, s.t. the failure messages can be
4734 // generated and tested.
4735 //
4736 // We have different tests for different argument types.
4737
4738 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4739 TEST(EqAssertionTest, Bool) {
4740 EXPECT_EQ(true, true);
4741 EXPECT_FATAL_FAILURE(
4742 {
4743 bool false_value = false;
4744 ASSERT_EQ(false_value, true);
4745 },
4746 " false_value\n Which is: false\n true");
4747 }
4748
4749 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4750 TEST(EqAssertionTest, Int) {
4751 ASSERT_EQ(32, 32);
4752 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), " 32\n 33");
4753 }
4754
4755 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4756 TEST(EqAssertionTest, Time_T) {
4757 EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4758 EXPECT_FATAL_FAILURE(
4759 ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4760 }
4761
4762 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4763 TEST(EqAssertionTest, Char) {
4764 ASSERT_EQ('z', 'z');
4765 const char ch = 'b';
4766 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), " ch\n Which is: 'b'");
4767 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), " ch\n Which is: 'b'");
4768 }
4769
4770 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4771 TEST(EqAssertionTest, WideChar) {
4772 EXPECT_EQ(L'b', L'b');
4773
4774 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4775 "Expected equality of these values:\n"
4776 " L'\0'\n"
4777 " Which is: L'\0' (0, 0x0)\n"
4778 " L'x'\n"
4779 " Which is: L'x' (120, 0x78)");
4780
4781 static wchar_t wchar;
4782 wchar = L'b';
4783 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4784 wchar = 0x8119;
4785 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4786 " wchar\n Which is: L'");
4787 }
4788
4789 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4790 TEST(EqAssertionTest, StdString) {
4791 // Compares a const char* to an std::string that has identical
4792 // content.
4793 ASSERT_EQ("Test", ::std::string("Test"));
4794
4795 // Compares two identical std::strings.
4796 static const ::std::string str1("A * in the middle");
4797 static const ::std::string str2(str1);
4798 EXPECT_EQ(str1, str2);
4799
4800 // Compares a const char* to an std::string that has different
4801 // content
4802 EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4803
4804 // Compares an std::string to a char* that has different content.
4805 char* const p1 = const_cast<char*>("foo");
4806 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4807
4808 // Compares two std::strings that have different contents, one of
4809 // which having a NUL character in the middle. This should fail.
4810 static ::std::string str3(str1);
4811 str3.at(2) = '\0';
4812 EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4813 " str3\n Which is: \"A \\0 in the middle\"");
4814 }
4815
4816 #if GTEST_HAS_STD_WSTRING
4817
4818 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4819 TEST(EqAssertionTest, StdWideString) {
4820 // Compares two identical std::wstrings.
4821 const ::std::wstring wstr1(L"A * in the middle");
4822 const ::std::wstring wstr2(wstr1);
4823 ASSERT_EQ(wstr1, wstr2);
4824
4825 // Compares an std::wstring to a const wchar_t* that has identical
4826 // content.
4827 const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4828 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4829
4830 // Compares an std::wstring to a const wchar_t* that has different
4831 // content.
4832 const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4833 EXPECT_NONFATAL_FAILURE(
4834 { // NOLINT
4835 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4836 },
4837 "kTestX8120");
4838
4839 // Compares two std::wstrings that have different contents, one of
4840 // which having a NUL character in the middle.
4841 ::std::wstring wstr3(wstr1);
4842 wstr3.at(2) = L'\0';
4843 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4844
4845 // Compares a wchar_t* to an std::wstring that has different
4846 // content.
4847 EXPECT_FATAL_FAILURE(
4848 { // NOLINT
4849 ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4850 },
4851 "");
4852 }
4853
4854 #endif // GTEST_HAS_STD_WSTRING
4855
4856 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4857 TEST(EqAssertionTest, CharPointer) {
4858 char* const p0 = nullptr;
4859 // Only way to get the Nokia compiler to compile the cast
4860 // is to have a separate void* variable first. Putting
4861 // the two casts on the same line doesn't work, neither does
4862 // a direct C-style to char*.
4863 void* pv1 = (void*)0x1234; // NOLINT
4864 void* pv2 = (void*)0xABC0; // NOLINT
4865 char* const p1 = reinterpret_cast<char*>(pv1);
4866 char* const p2 = reinterpret_cast<char*>(pv2);
4867 ASSERT_EQ(p1, p1);
4868
4869 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
4870 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
4871 EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4872 reinterpret_cast<char*>(0xABC0)),
4873 "ABC0");
4874 }
4875
4876 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4877 TEST(EqAssertionTest, WideCharPointer) {
4878 wchar_t* const p0 = nullptr;
4879 // Only way to get the Nokia compiler to compile the cast
4880 // is to have a separate void* variable first. Putting
4881 // the two casts on the same line doesn't work, neither does
4882 // a direct C-style to char*.
4883 void* pv1 = (void*)0x1234; // NOLINT
4884 void* pv2 = (void*)0xABC0; // NOLINT
4885 wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4886 wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4887 EXPECT_EQ(p0, p0);
4888
4889 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
4890 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
4891 void* pv3 = (void*)0x1234; // NOLINT
4892 void* pv4 = (void*)0xABC0; // NOLINT
4893 const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4894 const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4895 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4896 }
4897
4898 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4899 TEST(EqAssertionTest, OtherPointer) {
4900 ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4901 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4902 reinterpret_cast<const int*>(0x1234)),
4903 "0x1234");
4904 }
4905
4906 // A class that supports binary comparison operators but not streaming.
4907 class UnprintableChar {
4908 public:
UnprintableChar(char ch)4909 explicit UnprintableChar(char ch) : char_(ch) {}
4910
operator ==(const UnprintableChar & rhs) const4911 bool operator==(const UnprintableChar& rhs) const {
4912 return char_ == rhs.char_;
4913 }
operator !=(const UnprintableChar & rhs) const4914 bool operator!=(const UnprintableChar& rhs) const {
4915 return char_ != rhs.char_;
4916 }
operator <(const UnprintableChar & rhs) const4917 bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
operator <=(const UnprintableChar & rhs) const4918 bool operator<=(const UnprintableChar& rhs) const {
4919 return char_ <= rhs.char_;
4920 }
operator >(const UnprintableChar & rhs) const4921 bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
operator >=(const UnprintableChar & rhs) const4922 bool operator>=(const UnprintableChar& rhs) const {
4923 return char_ >= rhs.char_;
4924 }
4925
4926 private:
4927 char char_;
4928 };
4929
4930 // Tests that ASSERT_EQ() and friends don't require the arguments to
4931 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4932 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4933 const UnprintableChar x('x'), y('y');
4934 ASSERT_EQ(x, x);
4935 EXPECT_NE(x, y);
4936 ASSERT_LT(x, y);
4937 EXPECT_LE(x, y);
4938 ASSERT_GT(y, x);
4939 EXPECT_GE(x, x);
4940
4941 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4942 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4943 EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4944 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4945 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4946
4947 // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4948 // variables, so we have to write UnprintableChar('x') instead of x.
4949 #ifndef __BORLANDC__
4950 // ICE's in C++Builder.
4951 EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4952 "1-byte object <78>");
4953 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4954 "1-byte object <78>");
4955 #endif
4956 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4957 "1-byte object <79>");
4958 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4959 "1-byte object <78>");
4960 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4961 "1-byte object <79>");
4962 }
4963
4964 // Tests the FRIEND_TEST macro.
4965
4966 // This class has a private member we want to test. We will test it
4967 // both in a TEST and in a TEST_F.
4968 class Foo {
4969 public:
4970 Foo() = default;
4971
4972 private:
Bar() const4973 int Bar() const { return 1; }
4974
4975 // Declares the friend tests that can access the private member
4976 // Bar().
4977 FRIEND_TEST(FRIEND_TEST_Test, TEST);
4978 FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4979 };
4980
4981 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4982 // class's private members. This should compile.
TEST(FRIEND_TEST_Test,TEST)4983 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
4984
4985 // The fixture needed to test using FRIEND_TEST with TEST_F.
4986 class FRIEND_TEST_Test2 : public Test {
4987 protected:
4988 Foo foo;
4989 };
4990
4991 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4992 // class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4993 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
4994
4995 // Tests the life cycle of Test objects.
4996
4997 // The test fixture for testing the life cycle of Test objects.
4998 //
4999 // This class counts the number of live test objects that uses this
5000 // fixture.
5001 class TestLifeCycleTest : public Test {
5002 protected:
5003 // Constructor. Increments the number of test objects that uses
5004 // this fixture.
TestLifeCycleTest()5005 TestLifeCycleTest() { count_++; }
5006
5007 // Destructor. Decrements the number of test objects that uses this
5008 // fixture.
~TestLifeCycleTest()5009 ~TestLifeCycleTest() override { count_--; }
5010
5011 // Returns the number of live test objects that uses this fixture.
count() const5012 int count() const { return count_; }
5013
5014 private:
5015 static int count_;
5016 };
5017
5018 int TestLifeCycleTest::count_ = 0;
5019
5020 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5021 TEST_F(TestLifeCycleTest, Test1) {
5022 // There should be only one test object in this test case that's
5023 // currently alive.
5024 ASSERT_EQ(1, count());
5025 }
5026
5027 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5028 TEST_F(TestLifeCycleTest, Test2) {
5029 // After Test1 is done and Test2 is started, there should still be
5030 // only one live test object, as the object for Test1 should've been
5031 // deleted.
5032 ASSERT_EQ(1, count());
5033 }
5034
5035 } // namespace
5036
5037 // Tests that the copy constructor works when it is NOT optimized away by
5038 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5039 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5040 // Checks that the copy constructor doesn't try to dereference NULL pointers
5041 // in the source object.
5042 AssertionResult r1 = AssertionSuccess();
5043 AssertionResult r2 = r1;
5044 // The following line is added to prevent the compiler from optimizing
5045 // away the constructor call.
5046 r1 << "abc";
5047
5048 AssertionResult r3 = r1;
5049 EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5050 EXPECT_STREQ("abc", r1.message());
5051 }
5052
5053 // Tests that AssertionSuccess and AssertionFailure construct
5054 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5055 TEST(AssertionResultTest, ConstructionWorks) {
5056 AssertionResult r1 = AssertionSuccess();
5057 EXPECT_TRUE(r1);
5058 EXPECT_STREQ("", r1.message());
5059
5060 AssertionResult r2 = AssertionSuccess() << "abc";
5061 EXPECT_TRUE(r2);
5062 EXPECT_STREQ("abc", r2.message());
5063
5064 AssertionResult r3 = AssertionFailure();
5065 EXPECT_FALSE(r3);
5066 EXPECT_STREQ("", r3.message());
5067
5068 AssertionResult r4 = AssertionFailure() << "def";
5069 EXPECT_FALSE(r4);
5070 EXPECT_STREQ("def", r4.message());
5071
5072 AssertionResult r5 = AssertionFailure(Message() << "ghi");
5073 EXPECT_FALSE(r5);
5074 EXPECT_STREQ("ghi", r5.message());
5075 }
5076
5077 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5078 TEST(AssertionResultTest, NegationWorks) {
5079 AssertionResult r1 = AssertionSuccess() << "abc";
5080 EXPECT_FALSE(!r1);
5081 EXPECT_STREQ("abc", (!r1).message());
5082
5083 AssertionResult r2 = AssertionFailure() << "def";
5084 EXPECT_TRUE(!r2);
5085 EXPECT_STREQ("def", (!r2).message());
5086 }
5087
TEST(AssertionResultTest,StreamingWorks)5088 TEST(AssertionResultTest, StreamingWorks) {
5089 AssertionResult r = AssertionSuccess();
5090 r << "abc" << 'd' << 0 << true;
5091 EXPECT_STREQ("abcd0true", r.message());
5092 }
5093
TEST(AssertionResultTest,CanStreamOstreamManipulators)5094 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5095 AssertionResult r = AssertionSuccess();
5096 r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5097 EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5098 }
5099
5100 // The next test uses explicit conversion operators
5101
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5102 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5103 struct ExplicitlyConvertibleToBool {
5104 explicit operator bool() const { return value; }
5105 bool value;
5106 };
5107 ExplicitlyConvertibleToBool v1 = {false};
5108 ExplicitlyConvertibleToBool v2 = {true};
5109 EXPECT_FALSE(v1);
5110 EXPECT_TRUE(v2);
5111 }
5112
5113 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5114 operator AssertionResult() const { return AssertionResult(true); }
5115 };
5116
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5117 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5118 ConvertibleToAssertionResult obj;
5119 EXPECT_TRUE(obj);
5120 }
5121
5122 // Tests streaming a user type whose definition and operator << are
5123 // both in the global namespace.
5124 class Base {
5125 public:
Base(int an_x)5126 explicit Base(int an_x) : x_(an_x) {}
x() const5127 int x() const { return x_; }
5128
5129 private:
5130 int x_;
5131 };
operator <<(std::ostream & os,const Base & val)5132 std::ostream& operator<<(std::ostream& os, const Base& val) {
5133 return os << val.x();
5134 }
operator <<(std::ostream & os,const Base * pointer)5135 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5136 return os << "(" << pointer->x() << ")";
5137 }
5138
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5139 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5140 Message msg;
5141 Base a(1);
5142
5143 msg << a << &a; // Uses ::operator<<.
5144 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5145 }
5146
5147 // Tests streaming a user type whose definition and operator<< are
5148 // both in an unnamed namespace.
5149 namespace {
5150 class MyTypeInUnnamedNameSpace : public Base {
5151 public:
MyTypeInUnnamedNameSpace(int an_x)5152 explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5153 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5154 std::ostream& operator<<(std::ostream& os,
5155 const MyTypeInUnnamedNameSpace& val) {
5156 return os << val.x();
5157 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5158 std::ostream& operator<<(std::ostream& os,
5159 const MyTypeInUnnamedNameSpace* pointer) {
5160 return os << "(" << pointer->x() << ")";
5161 }
5162 } // namespace
5163
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5164 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5165 Message msg;
5166 MyTypeInUnnamedNameSpace a(1);
5167
5168 msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5169 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5170 }
5171
5172 // Tests streaming a user type whose definition and operator<< are
5173 // both in a user namespace.
5174 namespace namespace1 {
5175 class MyTypeInNameSpace1 : public Base {
5176 public:
MyTypeInNameSpace1(int an_x)5177 explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5178 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5179 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5180 return os << val.x();
5181 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5182 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5183 return os << "(" << pointer->x() << ")";
5184 }
5185 } // namespace namespace1
5186
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5187 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5188 Message msg;
5189 namespace1::MyTypeInNameSpace1 a(1);
5190
5191 msg << a << &a; // Uses namespace1::operator<<.
5192 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5193 }
5194
5195 // Tests streaming a user type whose definition is in a user namespace
5196 // but whose operator<< is in the global namespace.
5197 namespace namespace2 {
5198 class MyTypeInNameSpace2 : public ::Base {
5199 public:
MyTypeInNameSpace2(int an_x)5200 explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5201 };
5202 } // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5203 std::ostream& operator<<(std::ostream& os,
5204 const namespace2::MyTypeInNameSpace2& val) {
5205 return os << val.x();
5206 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5207 std::ostream& operator<<(std::ostream& os,
5208 const namespace2::MyTypeInNameSpace2* pointer) {
5209 return os << "(" << pointer->x() << ")";
5210 }
5211
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5212 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5213 Message msg;
5214 namespace2::MyTypeInNameSpace2 a(1);
5215
5216 msg << a << &a; // Uses ::operator<<.
5217 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5218 }
5219
5220 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5221 TEST(MessageTest, NullPointers) {
5222 Message msg;
5223 char* const p1 = nullptr;
5224 unsigned char* const p2 = nullptr;
5225 int* p3 = nullptr;
5226 double* p4 = nullptr;
5227 bool* p5 = nullptr;
5228 Message* p6 = nullptr;
5229
5230 msg << p1 << p2 << p3 << p4 << p5 << p6;
5231 ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5232 }
5233
5234 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5235 TEST(MessageTest, WideStrings) {
5236 // Streams a NULL of type const wchar_t*.
5237 const wchar_t* const_wstr = nullptr;
5238 EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5239
5240 // Streams a NULL of type wchar_t*.
5241 wchar_t* wstr = nullptr;
5242 EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5243
5244 // Streams a non-NULL of type const wchar_t*.
5245 const_wstr = L"abc\x8119";
5246 EXPECT_STREQ("abc\xe8\x84\x99",
5247 (Message() << const_wstr).GetString().c_str());
5248
5249 // Streams a non-NULL of type wchar_t*.
5250 wstr = const_cast<wchar_t*>(const_wstr);
5251 EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5252 }
5253
5254 // This line tests that we can define tests in the testing namespace.
5255 namespace testing {
5256
5257 // Tests the TestInfo class.
5258
5259 class TestInfoTest : public Test {
5260 protected:
GetTestInfo(const char * test_name)5261 static const TestInfo* GetTestInfo(const char* test_name) {
5262 const TestSuite* const test_suite =
5263 GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5264
5265 for (int i = 0; i < test_suite->total_test_count(); ++i) {
5266 const TestInfo* const test_info = test_suite->GetTestInfo(i);
5267 if (strcmp(test_name, test_info->name()) == 0) return test_info;
5268 }
5269 return nullptr;
5270 }
5271
GetTestResult(const TestInfo * test_info)5272 static const TestResult* GetTestResult(const TestInfo* test_info) {
5273 return test_info->result();
5274 }
5275 };
5276
5277 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5278 TEST_F(TestInfoTest, Names) {
5279 const TestInfo* const test_info = GetTestInfo("Names");
5280
5281 ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5282 ASSERT_STREQ("Names", test_info->name());
5283 }
5284
5285 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5286 TEST_F(TestInfoTest, result) {
5287 const TestInfo* const test_info = GetTestInfo("result");
5288
5289 // Initially, there is no TestPartResult for this test.
5290 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5291
5292 // After the previous assertion, there is still none.
5293 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5294 }
5295
5296 #define VERIFY_CODE_LOCATION \
5297 const int expected_line = __LINE__ - 1; \
5298 const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5299 ASSERT_TRUE(test_info); \
5300 EXPECT_STREQ(__FILE__, test_info->file()); \
5301 EXPECT_EQ(expected_line, test_info->line())
5302
5303 // clang-format off
TEST(CodeLocationForTEST,Verify)5304 TEST(CodeLocationForTEST, Verify) {
5305 VERIFY_CODE_LOCATION;
5306 }
5307
5308 class CodeLocationForTESTF : public Test {};
5309
TEST_F(CodeLocationForTESTF,Verify)5310 TEST_F(CodeLocationForTESTF, Verify) {
5311 VERIFY_CODE_LOCATION;
5312 }
5313
5314 class CodeLocationForTESTP : public TestWithParam<int> {};
5315
TEST_P(CodeLocationForTESTP,Verify)5316 TEST_P(CodeLocationForTESTP, Verify) {
5317 VERIFY_CODE_LOCATION;
5318 }
5319
5320 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5321
5322 template <typename T>
5323 class CodeLocationForTYPEDTEST : public Test {};
5324
5325 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5326
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5327 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5328 VERIFY_CODE_LOCATION;
5329 }
5330
5331 template <typename T>
5332 class CodeLocationForTYPEDTESTP : public Test {};
5333
5334 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5335
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5336 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5337 VERIFY_CODE_LOCATION;
5338 }
5339
5340 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5341
5342 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5343
5344 #undef VERIFY_CODE_LOCATION
5345 // clang-format on
5346
5347 // Tests setting up and tearing down a test case.
5348 // Legacy API is deprecated but still available
5349 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5350 class SetUpTestCaseTest : public Test {
5351 protected:
5352 // This will be called once before the first test in this test case
5353 // is run.
SetUpTestCase()5354 static void SetUpTestCase() {
5355 printf("Setting up the test case . . .\n");
5356
5357 // Initializes some shared resource. In this simple example, we
5358 // just create a C string. More complex stuff can be done if
5359 // desired.
5360 shared_resource_ = "123";
5361
5362 // Increments the number of test cases that have been set up.
5363 counter_++;
5364
5365 // SetUpTestCase() should be called only once.
5366 EXPECT_EQ(1, counter_);
5367 }
5368
5369 // This will be called once after the last test in this test case is
5370 // run.
TearDownTestCase()5371 static void TearDownTestCase() {
5372 printf("Tearing down the test case . . .\n");
5373
5374 // Decrements the number of test cases that have been set up.
5375 counter_--;
5376
5377 // TearDownTestCase() should be called only once.
5378 EXPECT_EQ(0, counter_);
5379
5380 // Cleans up the shared resource.
5381 shared_resource_ = nullptr;
5382 }
5383
5384 // This will be called before each test in this test case.
SetUp()5385 void SetUp() override {
5386 // SetUpTestCase() should be called only once, so counter_ should
5387 // always be 1.
5388 EXPECT_EQ(1, counter_);
5389 }
5390
5391 // Number of test cases that have been set up.
5392 static int counter_;
5393
5394 // Some resource to be shared by all tests in this test case.
5395 static const char* shared_resource_;
5396 };
5397
5398 int SetUpTestCaseTest::counter_ = 0;
5399 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5400
5401 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5402 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5403
5404 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5405 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5406 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5407
5408 // Tests SetupTestSuite/TearDown TestSuite
5409 class SetUpTestSuiteTest : public Test {
5410 protected:
5411 // This will be called once before the first test in this test case
5412 // is run.
SetUpTestSuite()5413 static void SetUpTestSuite() {
5414 printf("Setting up the test suite . . .\n");
5415
5416 // Initializes some shared resource. In this simple example, we
5417 // just create a C string. More complex stuff can be done if
5418 // desired.
5419 shared_resource_ = "123";
5420
5421 // Increments the number of test cases that have been set up.
5422 counter_++;
5423
5424 // SetUpTestSuite() should be called only once.
5425 EXPECT_EQ(1, counter_);
5426 }
5427
5428 // This will be called once after the last test in this test case is
5429 // run.
TearDownTestSuite()5430 static void TearDownTestSuite() {
5431 printf("Tearing down the test suite . . .\n");
5432
5433 // Decrements the number of test suites that have been set up.
5434 counter_--;
5435
5436 // TearDownTestSuite() should be called only once.
5437 EXPECT_EQ(0, counter_);
5438
5439 // Cleans up the shared resource.
5440 shared_resource_ = nullptr;
5441 }
5442
5443 // This will be called before each test in this test case.
SetUp()5444 void SetUp() override {
5445 // SetUpTestSuite() should be called only once, so counter_ should
5446 // always be 1.
5447 EXPECT_EQ(1, counter_);
5448 }
5449
5450 // Number of test suites that have been set up.
5451 static int counter_;
5452
5453 // Some resource to be shared by all tests in this test case.
5454 static const char* shared_resource_;
5455 };
5456
5457 int SetUpTestSuiteTest::counter_ = 0;
5458 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5459
5460 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5461 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5462 EXPECT_STRNE(nullptr, shared_resource_);
5463 }
5464
5465 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5466 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5467 EXPECT_STREQ("123", shared_resource_);
5468 }
5469
5470 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5471
5472 // The Flags struct stores a copy of all Google Test flags.
5473 struct Flags {
5474 // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5475 Flags()
5476 : also_run_disabled_tests(false),
5477 break_on_failure(false),
5478 catch_exceptions(false),
5479 death_test_use_fork(false),
5480 fail_fast(false),
5481 filter(""),
5482 list_tests(false),
5483 output(""),
5484 brief(false),
5485 print_time(true),
5486 random_seed(0),
5487 repeat(1),
5488 recreate_environments_when_repeating(true),
5489 shuffle(false),
5490 stack_trace_depth(kMaxStackTraceDepth),
5491 stream_result_to(""),
5492 throw_on_failure(false) {}
5493
5494 // Factory methods.
5495
5496 // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5497 // the given value.
AlsoRunDisabledTeststesting::Flags5498 static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5499 Flags flags;
5500 flags.also_run_disabled_tests = also_run_disabled_tests;
5501 return flags;
5502 }
5503
5504 // Creates a Flags struct where the gtest_break_on_failure flag has
5505 // the given value.
BreakOnFailuretesting::Flags5506 static Flags BreakOnFailure(bool break_on_failure) {
5507 Flags flags;
5508 flags.break_on_failure = break_on_failure;
5509 return flags;
5510 }
5511
5512 // Creates a Flags struct where the gtest_catch_exceptions flag has
5513 // the given value.
CatchExceptionstesting::Flags5514 static Flags CatchExceptions(bool catch_exceptions) {
5515 Flags flags;
5516 flags.catch_exceptions = catch_exceptions;
5517 return flags;
5518 }
5519
5520 // Creates a Flags struct where the gtest_death_test_use_fork flag has
5521 // the given value.
DeathTestUseForktesting::Flags5522 static Flags DeathTestUseFork(bool death_test_use_fork) {
5523 Flags flags;
5524 flags.death_test_use_fork = death_test_use_fork;
5525 return flags;
5526 }
5527
5528 // Creates a Flags struct where the gtest_fail_fast flag has
5529 // the given value.
FailFasttesting::Flags5530 static Flags FailFast(bool fail_fast) {
5531 Flags flags;
5532 flags.fail_fast = fail_fast;
5533 return flags;
5534 }
5535
5536 // Creates a Flags struct where the gtest_filter flag has the given
5537 // value.
Filtertesting::Flags5538 static Flags Filter(const char* filter) {
5539 Flags flags;
5540 flags.filter = filter;
5541 return flags;
5542 }
5543
5544 // Creates a Flags struct where the gtest_list_tests flag has the
5545 // given value.
ListTeststesting::Flags5546 static Flags ListTests(bool list_tests) {
5547 Flags flags;
5548 flags.list_tests = list_tests;
5549 return flags;
5550 }
5551
5552 // Creates a Flags struct where the gtest_output flag has the given
5553 // value.
Outputtesting::Flags5554 static Flags Output(const char* output) {
5555 Flags flags;
5556 flags.output = output;
5557 return flags;
5558 }
5559
5560 // Creates a Flags struct where the gtest_brief flag has the given
5561 // value.
Brieftesting::Flags5562 static Flags Brief(bool brief) {
5563 Flags flags;
5564 flags.brief = brief;
5565 return flags;
5566 }
5567
5568 // Creates a Flags struct where the gtest_print_time flag has the given
5569 // value.
PrintTimetesting::Flags5570 static Flags PrintTime(bool print_time) {
5571 Flags flags;
5572 flags.print_time = print_time;
5573 return flags;
5574 }
5575
5576 // Creates a Flags struct where the gtest_random_seed flag has the given
5577 // value.
RandomSeedtesting::Flags5578 static Flags RandomSeed(int32_t random_seed) {
5579 Flags flags;
5580 flags.random_seed = random_seed;
5581 return flags;
5582 }
5583
5584 // Creates a Flags struct where the gtest_repeat flag has the given
5585 // value.
Repeattesting::Flags5586 static Flags Repeat(int32_t repeat) {
5587 Flags flags;
5588 flags.repeat = repeat;
5589 return flags;
5590 }
5591
5592 // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5593 // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5594 static Flags RecreateEnvironmentsWhenRepeating(
5595 bool recreate_environments_when_repeating) {
5596 Flags flags;
5597 flags.recreate_environments_when_repeating =
5598 recreate_environments_when_repeating;
5599 return flags;
5600 }
5601
5602 // Creates a Flags struct where the gtest_shuffle flag has the given
5603 // value.
Shuffletesting::Flags5604 static Flags Shuffle(bool shuffle) {
5605 Flags flags;
5606 flags.shuffle = shuffle;
5607 return flags;
5608 }
5609
5610 // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5611 // the given value.
StackTraceDepthtesting::Flags5612 static Flags StackTraceDepth(int32_t stack_trace_depth) {
5613 Flags flags;
5614 flags.stack_trace_depth = stack_trace_depth;
5615 return flags;
5616 }
5617
5618 // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5619 // the given value.
StreamResultTotesting::Flags5620 static Flags StreamResultTo(const char* stream_result_to) {
5621 Flags flags;
5622 flags.stream_result_to = stream_result_to;
5623 return flags;
5624 }
5625
5626 // Creates a Flags struct where the gtest_throw_on_failure flag has
5627 // the given value.
ThrowOnFailuretesting::Flags5628 static Flags ThrowOnFailure(bool throw_on_failure) {
5629 Flags flags;
5630 flags.throw_on_failure = throw_on_failure;
5631 return flags;
5632 }
5633
5634 // These fields store the flag values.
5635 bool also_run_disabled_tests;
5636 bool break_on_failure;
5637 bool catch_exceptions;
5638 bool death_test_use_fork;
5639 bool fail_fast;
5640 const char* filter;
5641 bool list_tests;
5642 const char* output;
5643 bool brief;
5644 bool print_time;
5645 int32_t random_seed;
5646 int32_t repeat;
5647 bool recreate_environments_when_repeating;
5648 bool shuffle;
5649 int32_t stack_trace_depth;
5650 const char* stream_result_to;
5651 bool throw_on_failure;
5652 };
5653
5654 // Fixture for testing ParseGoogleTestFlagsOnly().
5655 class ParseFlagsTest : public Test {
5656 protected:
5657 // Clears the flags before each test.
SetUp()5658 void SetUp() override {
5659 GTEST_FLAG_SET(also_run_disabled_tests, false);
5660 GTEST_FLAG_SET(break_on_failure, false);
5661 GTEST_FLAG_SET(catch_exceptions, false);
5662 GTEST_FLAG_SET(death_test_use_fork, false);
5663 GTEST_FLAG_SET(fail_fast, false);
5664 GTEST_FLAG_SET(filter, "");
5665 GTEST_FLAG_SET(list_tests, false);
5666 GTEST_FLAG_SET(output, "");
5667 GTEST_FLAG_SET(brief, false);
5668 GTEST_FLAG_SET(print_time, true);
5669 GTEST_FLAG_SET(random_seed, 0);
5670 GTEST_FLAG_SET(repeat, 1);
5671 GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5672 GTEST_FLAG_SET(shuffle, false);
5673 GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5674 GTEST_FLAG_SET(stream_result_to, "");
5675 GTEST_FLAG_SET(throw_on_failure, false);
5676 }
5677
5678 // Asserts that two narrow or wide string arrays are equal.
5679 template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5680 static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5681 CharType** array2) {
5682 ASSERT_EQ(size1, size2) << " Array sizes different.";
5683
5684 for (int i = 0; i != size1; i++) {
5685 ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5686 }
5687 }
5688
5689 // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5690 static void CheckFlags(const Flags& expected) {
5691 EXPECT_EQ(expected.also_run_disabled_tests,
5692 GTEST_FLAG_GET(also_run_disabled_tests));
5693 EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5694 EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5695 EXPECT_EQ(expected.death_test_use_fork,
5696 GTEST_FLAG_GET(death_test_use_fork));
5697 EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5698 EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5699 EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5700 EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5701 EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5702 EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5703 EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5704 EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5705 EXPECT_EQ(expected.recreate_environments_when_repeating,
5706 GTEST_FLAG_GET(recreate_environments_when_repeating));
5707 EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5708 EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5709 EXPECT_STREQ(expected.stream_result_to,
5710 GTEST_FLAG_GET(stream_result_to).c_str());
5711 EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5712 }
5713
5714 // Parses a command line (specified by argc1 and argv1), then
5715 // verifies that the flag values are expected and that the
5716 // recognized flags are removed from the command line.
5717 template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5718 static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5719 const CharType** argv2, const Flags& expected,
5720 bool should_print_help) {
5721 const bool saved_help_flag = ::testing::internal::g_help_flag;
5722 ::testing::internal::g_help_flag = false;
5723
5724 #if GTEST_HAS_STREAM_REDIRECTION
5725 CaptureStdout();
5726 #endif
5727
5728 // Parses the command line.
5729 internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5730
5731 #if GTEST_HAS_STREAM_REDIRECTION
5732 const std::string captured_stdout = GetCapturedStdout();
5733 #endif
5734
5735 // Verifies the flag values.
5736 CheckFlags(expected);
5737
5738 // Verifies that the recognized flags are removed from the command
5739 // line.
5740 AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5741
5742 // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5743 // help message for the flags it recognizes.
5744 EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5745
5746 #if GTEST_HAS_STREAM_REDIRECTION
5747 const char* const expected_help_fragment =
5748 "This program contains tests written using";
5749 if (should_print_help) {
5750 EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5751 } else {
5752 EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5753 captured_stdout);
5754 }
5755 #endif // GTEST_HAS_STREAM_REDIRECTION
5756
5757 ::testing::internal::g_help_flag = saved_help_flag;
5758 }
5759
5760 // This macro wraps TestParsingFlags s.t. the user doesn't need
5761 // to specify the array sizes.
5762
5763 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5764 TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1, \
5765 sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected, \
5766 should_print_help)
5767 };
5768
5769 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5770 TEST_F(ParseFlagsTest, Empty) {
5771 const char* argv[] = {nullptr};
5772
5773 const char* argv2[] = {nullptr};
5774
5775 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5776 }
5777
5778 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5779 TEST_F(ParseFlagsTest, NoFlag) {
5780 const char* argv[] = {"foo.exe", nullptr};
5781
5782 const char* argv2[] = {"foo.exe", nullptr};
5783
5784 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5785 }
5786
5787 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5788 TEST_F(ParseFlagsTest, FailFast) {
5789 const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5790
5791 const char* argv2[] = {"foo.exe", nullptr};
5792
5793 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5794 }
5795
5796 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5797 TEST_F(ParseFlagsTest, FilterEmpty) {
5798 const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5799
5800 const char* argv2[] = {"foo.exe", nullptr};
5801
5802 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5803 }
5804
5805 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5806 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5807 const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5808
5809 const char* argv2[] = {"foo.exe", nullptr};
5810
5811 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5812 }
5813
5814 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5815 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5816 const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5817
5818 const char* argv2[] = {"foo.exe", nullptr};
5819
5820 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5821 }
5822
5823 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5824 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5825 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5826
5827 const char* argv2[] = {"foo.exe", nullptr};
5828
5829 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5830 }
5831
5832 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5833 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5834 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5835
5836 const char* argv2[] = {"foo.exe", nullptr};
5837
5838 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5839 }
5840
5841 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5842 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5843 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5844
5845 const char* argv2[] = {"foo.exe", nullptr};
5846
5847 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5848 }
5849
5850 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5851 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5852 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5853 const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5854
5855 const char* argv2[] = {"foo.exe", nullptr};
5856
5857 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5858 }
5859
5860 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5861 TEST_F(ParseFlagsTest, CatchExceptions) {
5862 const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5863
5864 const char* argv2[] = {"foo.exe", nullptr};
5865
5866 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5867 }
5868
5869 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5870 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5871 const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5872
5873 const char* argv2[] = {"foo.exe", nullptr};
5874
5875 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5876 }
5877
5878 // Tests having the same flag twice with different values. The
5879 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5880 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5881 const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5882 nullptr};
5883
5884 const char* argv2[] = {"foo.exe", nullptr};
5885
5886 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5887 }
5888
5889 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5890 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5891 const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5892 "bar", // Unrecognized by Google Test.
5893 "--gtest_filter=b", nullptr};
5894
5895 const char* argv2[] = {"foo.exe", "bar", nullptr};
5896
5897 Flags flags;
5898 flags.break_on_failure = true;
5899 flags.filter = "b";
5900 GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5901 }
5902
5903 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5904 TEST_F(ParseFlagsTest, ListTestsFlag) {
5905 const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5906
5907 const char* argv2[] = {"foo.exe", nullptr};
5908
5909 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5910 }
5911
5912 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)5913 TEST_F(ParseFlagsTest, ListTestsTrue) {
5914 const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5915
5916 const char* argv2[] = {"foo.exe", nullptr};
5917
5918 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5919 }
5920
5921 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)5922 TEST_F(ParseFlagsTest, ListTestsFalse) {
5923 const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5924
5925 const char* argv2[] = {"foo.exe", nullptr};
5926
5927 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5928 }
5929
5930 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)5931 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5932 const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5933
5934 const char* argv2[] = {"foo.exe", nullptr};
5935
5936 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5937 }
5938
5939 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)5940 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5941 const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5942
5943 const char* argv2[] = {"foo.exe", nullptr};
5944
5945 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5946 }
5947
5948 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)5949 TEST_F(ParseFlagsTest, OutputXml) {
5950 const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
5951
5952 const char* argv2[] = {"foo.exe", nullptr};
5953
5954 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5955 }
5956
5957 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)5958 TEST_F(ParseFlagsTest, OutputXmlFile) {
5959 const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
5960
5961 const char* argv2[] = {"foo.exe", nullptr};
5962
5963 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5964 }
5965
5966 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)5967 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
5968 const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
5969 nullptr};
5970
5971 const char* argv2[] = {"foo.exe", nullptr};
5972
5973 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
5974 false);
5975 }
5976
5977 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)5978 TEST_F(ParseFlagsTest, BriefFlag) {
5979 const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
5980
5981 const char* argv2[] = {"foo.exe", nullptr};
5982
5983 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5984 }
5985
5986 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)5987 TEST_F(ParseFlagsTest, BriefFlagTrue) {
5988 const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
5989
5990 const char* argv2[] = {"foo.exe", nullptr};
5991
5992 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5993 }
5994
5995 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)5996 TEST_F(ParseFlagsTest, BriefFlagFalse) {
5997 const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
5998
5999 const char* argv2[] = {"foo.exe", nullptr};
6000
6001 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6002 }
6003
6004 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6005 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6006 const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6007
6008 const char* argv2[] = {"foo.exe", nullptr};
6009
6010 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6011 }
6012
6013 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6014 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6015 const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6016
6017 const char* argv2[] = {"foo.exe", nullptr};
6018
6019 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6020 }
6021
6022 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6023 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6024 const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6025
6026 const char* argv2[] = {"foo.exe", nullptr};
6027
6028 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6029 }
6030
6031 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6032 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6033 const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6034
6035 const char* argv2[] = {"foo.exe", nullptr};
6036
6037 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6038 }
6039
6040 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6041 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6042 const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6043
6044 const char* argv2[] = {"foo.exe", nullptr};
6045
6046 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6047 }
6048
6049 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6050 TEST_F(ParseFlagsTest, RandomSeed) {
6051 const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6052
6053 const char* argv2[] = {"foo.exe", nullptr};
6054
6055 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6056 }
6057
6058 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6059 TEST_F(ParseFlagsTest, Repeat) {
6060 const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6061
6062 const char* argv2[] = {"foo.exe", nullptr};
6063
6064 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6065 }
6066
6067 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6068 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6069 const char* argv[] = {
6070 "foo.exe",
6071 "--gtest_recreate_environments_when_repeating=0",
6072 nullptr,
6073 };
6074
6075 const char* argv2[] = {"foo.exe", nullptr};
6076
6077 GTEST_TEST_PARSING_FLAGS_(
6078 argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6079 }
6080
6081 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6082 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6083 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6084
6085 const char* argv2[] = {"foo.exe", nullptr};
6086
6087 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6088 false);
6089 }
6090
6091 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6092 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6093 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6094 nullptr};
6095
6096 const char* argv2[] = {"foo.exe", nullptr};
6097
6098 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6099 false);
6100 }
6101
6102 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6103 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6104 const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6105 nullptr};
6106
6107 const char* argv2[] = {"foo.exe", nullptr};
6108
6109 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6110 false);
6111 }
6112
6113 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6114 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6115 const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6116
6117 const char* argv2[] = {"foo.exe", nullptr};
6118
6119 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6120 }
6121
6122 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6123 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6124 const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6125
6126 const char* argv2[] = {"foo.exe", nullptr};
6127
6128 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6129 }
6130
6131 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6132 TEST_F(ParseFlagsTest, ShuffleTrue) {
6133 const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6134
6135 const char* argv2[] = {"foo.exe", nullptr};
6136
6137 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6138 }
6139
6140 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6141 TEST_F(ParseFlagsTest, StackTraceDepth) {
6142 const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6143
6144 const char* argv2[] = {"foo.exe", nullptr};
6145
6146 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6147 }
6148
TEST_F(ParseFlagsTest,StreamResultTo)6149 TEST_F(ParseFlagsTest, StreamResultTo) {
6150 const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6151 nullptr};
6152
6153 const char* argv2[] = {"foo.exe", nullptr};
6154
6155 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6156 Flags::StreamResultTo("localhost:1234"), false);
6157 }
6158
6159 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6160 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6161 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6162
6163 const char* argv2[] = {"foo.exe", nullptr};
6164
6165 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6166 }
6167
6168 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6169 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6170 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6171
6172 const char* argv2[] = {"foo.exe", nullptr};
6173
6174 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6175 }
6176
6177 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6178 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6179 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6180 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6181
6182 const char* argv2[] = {"foo.exe", nullptr};
6183
6184 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6185 }
6186
6187 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)6188 TEST_F(ParseFlagsTest, FilterBad) {
6189 const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6190
6191 const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6192
6193 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6194 // Invalid flag arguments are a fatal error when using the Abseil Flags.
6195 EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6196 testing::ExitedWithCode(1),
6197 "ERROR: Missing the value for the flag 'gtest_filter'");
6198 #elif !defined(GTEST_HAS_ABSL)
6199 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6200 #else
6201 static_cast<void>(argv);
6202 static_cast<void>(argv2);
6203 #endif
6204 }
6205
6206 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6207 TEST_F(ParseFlagsTest, OutputEmpty) {
6208 const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6209
6210 const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6211
6212 #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6213 // Invalid flag arguments are a fatal error when using the Abseil Flags.
6214 EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6215 testing::ExitedWithCode(1),
6216 "ERROR: Missing the value for the flag 'gtest_output'");
6217 #elif !defined(GTEST_HAS_ABSL)
6218 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6219 #else
6220 static_cast<void>(argv);
6221 static_cast<void>(argv2);
6222 #endif
6223 }
6224
6225 #ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest,AbseilPositionalFlags)6226 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6227 const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6228 "--other_flag", nullptr};
6229
6230 // When using Abseil flags, it should be possible to pass flags not recognized
6231 // using "--" to delimit positional arguments. These flags should be returned
6232 // though argv.
6233 const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6234
6235 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6236 }
6237 #endif
6238
TEST_F(ParseFlagsTest,UnrecognizedFlags)6239 TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6240 const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6241 nullptr};
6242
6243 const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6244
6245 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6246 }
6247
6248 #ifdef GTEST_OS_WINDOWS
6249 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6250 TEST_F(ParseFlagsTest, WideStrings) {
6251 const wchar_t* argv[] = {L"foo.exe",
6252 L"--gtest_filter=Foo*",
6253 L"--gtest_list_tests=1",
6254 L"--gtest_break_on_failure",
6255 L"--non_gtest_flag",
6256 NULL};
6257
6258 const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6259
6260 Flags expected_flags;
6261 expected_flags.break_on_failure = true;
6262 expected_flags.filter = "Foo*";
6263 expected_flags.list_tests = true;
6264
6265 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6266 }
6267 #endif // GTEST_OS_WINDOWS
6268
6269 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6270 class FlagfileTest : public ParseFlagsTest {
6271 public:
SetUp()6272 void SetUp() override {
6273 ParseFlagsTest::SetUp();
6274
6275 testdata_path_.Set(internal::FilePath(
6276 testing::TempDir() + internal::GetCurrentExecutableName().string() +
6277 "_flagfile_test"));
6278 testing::internal::posix::RmDir(testdata_path_.c_str());
6279 EXPECT_TRUE(testdata_path_.CreateFolder());
6280 }
6281
TearDown()6282 void TearDown() override {
6283 testing::internal::posix::RmDir(testdata_path_.c_str());
6284 ParseFlagsTest::TearDown();
6285 }
6286
CreateFlagfile(const char * contents)6287 internal::FilePath CreateFlagfile(const char* contents) {
6288 internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6289 testdata_path_, internal::FilePath("unique"), "txt"));
6290 FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6291 fprintf(f, "%s", contents);
6292 fclose(f);
6293 return file_path;
6294 }
6295
6296 private:
6297 internal::FilePath testdata_path_;
6298 };
6299
6300 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6301 TEST_F(FlagfileTest, Empty) {
6302 internal::FilePath flagfile_path(CreateFlagfile(""));
6303 std::string flagfile_flag =
6304 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6305
6306 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6307
6308 const char* argv2[] = {"foo.exe", nullptr};
6309
6310 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6311 }
6312
6313 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6314 TEST_F(FlagfileTest, FilterNonEmpty) {
6315 internal::FilePath flagfile_path(
6316 CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6317 std::string flagfile_flag =
6318 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6319
6320 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6321
6322 const char* argv2[] = {"foo.exe", nullptr};
6323
6324 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6325 }
6326
6327 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6328 TEST_F(FlagfileTest, SeveralFlags) {
6329 internal::FilePath flagfile_path(
6330 CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6331 "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6332 "--" GTEST_FLAG_PREFIX_ "list_tests"));
6333 std::string flagfile_flag =
6334 std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6335
6336 const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6337
6338 const char* argv2[] = {"foo.exe", nullptr};
6339
6340 Flags expected_flags;
6341 expected_flags.break_on_failure = true;
6342 expected_flags.filter = "abc";
6343 expected_flags.list_tests = true;
6344
6345 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6346 }
6347 #endif // GTEST_USE_OWN_FLAGFILE_FLAG_
6348
6349 // Tests current_test_info() in UnitTest.
6350 class CurrentTestInfoTest : public Test {
6351 protected:
6352 // Tests that current_test_info() returns NULL before the first test in
6353 // the test case is run.
SetUpTestSuite()6354 static void SetUpTestSuite() {
6355 // There should be no tests running at this point.
6356 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6357 EXPECT_TRUE(test_info == nullptr)
6358 << "There should be no tests running at this point.";
6359 }
6360
6361 // Tests that current_test_info() returns NULL after the last test in
6362 // the test case has run.
TearDownTestSuite()6363 static void TearDownTestSuite() {
6364 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6365 EXPECT_TRUE(test_info == nullptr)
6366 << "There should be no tests running at this point.";
6367 }
6368 };
6369
6370 // Tests that current_test_info() returns TestInfo for currently running
6371 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6372 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6373 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6374 ASSERT_TRUE(nullptr != test_info)
6375 << "There is a test running so we should have a valid TestInfo.";
6376 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6377 << "Expected the name of the currently running test suite.";
6378 EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6379 << "Expected the name of the currently running test.";
6380 }
6381
6382 // Tests that current_test_info() returns TestInfo for currently running
6383 // test by checking the expected test name against the actual one. We
6384 // use this test to see that the TestInfo object actually changed from
6385 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6386 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6387 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6388 ASSERT_TRUE(nullptr != test_info)
6389 << "There is a test running so we should have a valid TestInfo.";
6390 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6391 << "Expected the name of the currently running test suite.";
6392 EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6393 << "Expected the name of the currently running test.";
6394 }
6395
6396 } // namespace testing
6397
6398 // These two lines test that we can define tests in a namespace that
6399 // has the name "testing" and is nested in another namespace.
6400 namespace my_namespace {
6401 namespace testing {
6402
6403 // Makes sure that TEST knows to use ::testing::Test instead of
6404 // ::my_namespace::testing::Test.
6405 class Test {};
6406
6407 // Makes sure that an assertion knows to use ::testing::Message instead of
6408 // ::my_namespace::testing::Message.
6409 class Message {};
6410
6411 // Makes sure that an assertion knows to use
6412 // ::testing::AssertionResult instead of
6413 // ::my_namespace::testing::AssertionResult.
6414 class AssertionResult {};
6415
6416 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6417 TEST(NestedTestingNamespaceTest, Success) {
6418 EXPECT_EQ(1, 1) << "This shouldn't fail.";
6419 }
6420
6421 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6422 TEST(NestedTestingNamespaceTest, Failure) {
6423 EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6424 "This failure is expected.");
6425 }
6426
6427 } // namespace testing
6428 } // namespace my_namespace
6429
6430 // Tests that one can call superclass SetUp and TearDown methods--
6431 // that is, that they are not private.
6432 // No tests are based on this fixture; the test "passes" if it compiles
6433 // successfully.
6434 class ProtectedFixtureMethodsTest : public Test {
6435 protected:
SetUp()6436 void SetUp() override { Test::SetUp(); }
TearDown()6437 void TearDown() override { Test::TearDown(); }
6438 };
6439
6440 // StreamingAssertionsTest tests the streaming versions of a representative
6441 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6442 TEST(StreamingAssertionsTest, Unconditional) {
6443 SUCCEED() << "expected success";
6444 EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6445 "expected failure");
6446 EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6447 }
6448
6449 #ifdef __BORLANDC__
6450 // Silences warnings: "Condition is always true", "Unreachable code"
6451 #pragma option push -w-ccc -w-rch
6452 #endif
6453
TEST(StreamingAssertionsTest,Truth)6454 TEST(StreamingAssertionsTest, Truth) {
6455 EXPECT_TRUE(true) << "unexpected failure";
6456 ASSERT_TRUE(true) << "unexpected failure";
6457 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6458 "expected failure");
6459 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6460 "expected failure");
6461 }
6462
TEST(StreamingAssertionsTest,Truth2)6463 TEST(StreamingAssertionsTest, Truth2) {
6464 EXPECT_FALSE(false) << "unexpected failure";
6465 ASSERT_FALSE(false) << "unexpected failure";
6466 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6467 "expected failure");
6468 EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6469 "expected failure");
6470 }
6471
6472 #ifdef __BORLANDC__
6473 // Restores warnings after previous "#pragma option push" suppressed them
6474 #pragma option pop
6475 #endif
6476
TEST(StreamingAssertionsTest,IntegerEquals)6477 TEST(StreamingAssertionsTest, IntegerEquals) {
6478 EXPECT_EQ(1, 1) << "unexpected failure";
6479 ASSERT_EQ(1, 1) << "unexpected failure";
6480 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6481 "expected failure");
6482 EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6483 "expected failure");
6484 }
6485
TEST(StreamingAssertionsTest,IntegerLessThan)6486 TEST(StreamingAssertionsTest, IntegerLessThan) {
6487 EXPECT_LT(1, 2) << "unexpected failure";
6488 ASSERT_LT(1, 2) << "unexpected failure";
6489 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6490 "expected failure");
6491 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6492 "expected failure");
6493 }
6494
TEST(StreamingAssertionsTest,StringsEqual)6495 TEST(StreamingAssertionsTest, StringsEqual) {
6496 EXPECT_STREQ("foo", "foo") << "unexpected failure";
6497 ASSERT_STREQ("foo", "foo") << "unexpected failure";
6498 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6499 "expected failure");
6500 EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6501 "expected failure");
6502 }
6503
TEST(StreamingAssertionsTest,StringsNotEqual)6504 TEST(StreamingAssertionsTest, StringsNotEqual) {
6505 EXPECT_STRNE("foo", "bar") << "unexpected failure";
6506 ASSERT_STRNE("foo", "bar") << "unexpected failure";
6507 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6508 "expected failure");
6509 EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6510 "expected failure");
6511 }
6512
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6513 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6514 EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6515 ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6516 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6517 "expected failure");
6518 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6519 "expected failure");
6520 }
6521
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6522 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6523 EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6524 ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6525 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6526 "expected failure");
6527 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6528 "expected failure");
6529 }
6530
TEST(StreamingAssertionsTest,FloatingPointEquals)6531 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6532 EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6533 ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6534 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6535 "expected failure");
6536 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6537 "expected failure");
6538 }
6539
6540 #if GTEST_HAS_EXCEPTIONS
6541
TEST(StreamingAssertionsTest,Throw)6542 TEST(StreamingAssertionsTest, Throw) {
6543 EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6544 ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6545 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6546 << "expected failure",
6547 "expected failure");
6548 EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6549 << "expected failure",
6550 "expected failure");
6551 }
6552
TEST(StreamingAssertionsTest,NoThrow)6553 TEST(StreamingAssertionsTest, NoThrow) {
6554 EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6555 ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6556 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6557 << "expected failure",
6558 "expected failure");
6559 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6560 "expected failure");
6561 }
6562
TEST(StreamingAssertionsTest,AnyThrow)6563 TEST(StreamingAssertionsTest, AnyThrow) {
6564 EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6565 ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6566 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6567 << "expected failure",
6568 "expected failure");
6569 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6570 "expected failure");
6571 }
6572
6573 #endif // GTEST_HAS_EXCEPTIONS
6574
6575 // Tests that Google Test correctly decides whether to use colors in the output.
6576
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6577 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6578 GTEST_FLAG_SET(color, "yes");
6579
6580 SetEnv("TERM", "xterm"); // TERM supports colors.
6581 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6582 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6583
6584 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6585 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6586 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6587 }
6588
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6589 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6590 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6591
6592 GTEST_FLAG_SET(color, "True");
6593 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6594
6595 GTEST_FLAG_SET(color, "t");
6596 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6597
6598 GTEST_FLAG_SET(color, "1");
6599 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6600 }
6601
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6602 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6603 GTEST_FLAG_SET(color, "no");
6604
6605 SetEnv("TERM", "xterm"); // TERM supports colors.
6606 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6607 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6608
6609 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6610 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6611 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6612 }
6613
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6614 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6615 SetEnv("TERM", "xterm"); // TERM supports colors.
6616
6617 GTEST_FLAG_SET(color, "F");
6618 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6619
6620 GTEST_FLAG_SET(color, "0");
6621 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6622
6623 GTEST_FLAG_SET(color, "unknown");
6624 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6625 }
6626
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6627 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6628 GTEST_FLAG_SET(color, "auto");
6629
6630 SetEnv("TERM", "xterm"); // TERM supports colors.
6631 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6632 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6633 }
6634
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6635 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6636 GTEST_FLAG_SET(color, "auto");
6637
6638 #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6639 // On Windows, we ignore the TERM variable as it's usually not set.
6640
6641 SetEnv("TERM", "dumb");
6642 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6643
6644 SetEnv("TERM", "");
6645 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6646
6647 SetEnv("TERM", "xterm");
6648 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6649 #else
6650 // On non-Windows platforms, we rely on TERM to determine if the
6651 // terminal supports colors.
6652
6653 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6654 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6655
6656 SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6657 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6658
6659 SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6660 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6661
6662 SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6663 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6664
6665 SetEnv("TERM", "xterm"); // TERM supports colors.
6666 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6667
6668 SetEnv("TERM", "xterm-color"); // TERM supports colors.
6669 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6670
6671 SetEnv("TERM", "xterm-kitty"); // TERM supports colors.
6672 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6673
6674 SetEnv("TERM", "alacritty"); // TERM supports colors.
6675 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6676
6677 SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6678 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6679
6680 SetEnv("TERM", "screen"); // TERM supports colors.
6681 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6682
6683 SetEnv("TERM", "screen-256color"); // TERM supports colors.
6684 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6685
6686 SetEnv("TERM", "tmux"); // TERM supports colors.
6687 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6688
6689 SetEnv("TERM", "tmux-256color"); // TERM supports colors.
6690 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6691
6692 SetEnv("TERM", "rxvt-unicode"); // TERM supports colors.
6693 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6694
6695 SetEnv("TERM", "rxvt-unicode-256color"); // TERM supports colors.
6696 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6697
6698 SetEnv("TERM", "linux"); // TERM supports colors.
6699 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6700
6701 SetEnv("TERM", "cygwin"); // TERM supports colors.
6702 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6703 #endif // GTEST_OS_WINDOWS
6704 }
6705
6706 // Verifies that StaticAssertTypeEq works in a namespace scope.
6707
6708 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy1 =
6709 StaticAssertTypeEq<bool, bool>();
6710 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy2 =
6711 StaticAssertTypeEq<const int, const int>();
6712
6713 // Verifies that StaticAssertTypeEq works in a class.
6714
6715 template <typename T>
6716 class StaticAssertTypeEqTestHelper {
6717 public:
StaticAssertTypeEqTestHelper()6718 StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6719 };
6720
TEST(StaticAssertTypeEqTest,WorksInClass)6721 TEST(StaticAssertTypeEqTest, WorksInClass) {
6722 StaticAssertTypeEqTestHelper<bool>();
6723 }
6724
6725 // Verifies that StaticAssertTypeEq works inside a function.
6726
6727 typedef int IntAlias;
6728
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6729 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6730 StaticAssertTypeEq<int, IntAlias>();
6731 StaticAssertTypeEq<int*, IntAlias*>();
6732 }
6733
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6734 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6735 EXPECT_FALSE(HasNonfatalFailure());
6736 }
6737
FailFatally()6738 static void FailFatally() { FAIL(); }
6739
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6740 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6741 FailFatally();
6742 const bool has_nonfatal_failure = HasNonfatalFailure();
6743 ClearCurrentTestPartResults();
6744 EXPECT_FALSE(has_nonfatal_failure);
6745 }
6746
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6747 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6748 ADD_FAILURE();
6749 const bool has_nonfatal_failure = HasNonfatalFailure();
6750 ClearCurrentTestPartResults();
6751 EXPECT_TRUE(has_nonfatal_failure);
6752 }
6753
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6754 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6755 FailFatally();
6756 ADD_FAILURE();
6757 const bool has_nonfatal_failure = HasNonfatalFailure();
6758 ClearCurrentTestPartResults();
6759 EXPECT_TRUE(has_nonfatal_failure);
6760 }
6761
6762 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6763 static bool HasNonfatalFailureHelper() {
6764 return testing::Test::HasNonfatalFailure();
6765 }
6766
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6767 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6768 EXPECT_FALSE(HasNonfatalFailureHelper());
6769 }
6770
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6771 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6772 ADD_FAILURE();
6773 const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6774 ClearCurrentTestPartResults();
6775 EXPECT_TRUE(has_nonfatal_failure);
6776 }
6777
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6778 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6779 EXPECT_FALSE(HasFailure());
6780 }
6781
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6782 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6783 FailFatally();
6784 const bool has_failure = HasFailure();
6785 ClearCurrentTestPartResults();
6786 EXPECT_TRUE(has_failure);
6787 }
6788
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6789 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6790 ADD_FAILURE();
6791 const bool has_failure = HasFailure();
6792 ClearCurrentTestPartResults();
6793 EXPECT_TRUE(has_failure);
6794 }
6795
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6796 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6797 FailFatally();
6798 ADD_FAILURE();
6799 const bool has_failure = HasFailure();
6800 ClearCurrentTestPartResults();
6801 EXPECT_TRUE(has_failure);
6802 }
6803
6804 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6805 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6806
TEST(HasFailureTest,WorksOutsideOfTestBody)6807 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6808 EXPECT_FALSE(HasFailureHelper());
6809 }
6810
TEST(HasFailureTest,WorksOutsideOfTestBody2)6811 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6812 ADD_FAILURE();
6813 const bool has_failure = HasFailureHelper();
6814 ClearCurrentTestPartResults();
6815 EXPECT_TRUE(has_failure);
6816 }
6817
6818 class TestListener : public EmptyTestEventListener {
6819 public:
TestListener()6820 TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6821 TestListener(int* on_start_counter, bool* is_destroyed)
6822 : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6823
~TestListener()6824 ~TestListener() override {
6825 if (is_destroyed_) *is_destroyed_ = true;
6826 }
6827
6828 protected:
OnTestProgramStart(const UnitTest &)6829 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6830 if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6831 }
6832
6833 private:
6834 int* on_start_counter_;
6835 bool* is_destroyed_;
6836 };
6837
6838 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6839 TEST(TestEventListenersTest, ConstructionWorks) {
6840 TestEventListeners listeners;
6841
6842 EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6843 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6844 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6845 }
6846
6847 // Tests that the TestEventListeners destructor deletes all the listeners it
6848 // owns.
TEST(TestEventListenersTest,DestructionWorks)6849 TEST(TestEventListenersTest, DestructionWorks) {
6850 bool default_result_printer_is_destroyed = false;
6851 bool default_xml_printer_is_destroyed = false;
6852 bool extra_listener_is_destroyed = false;
6853 TestListener* default_result_printer =
6854 new TestListener(nullptr, &default_result_printer_is_destroyed);
6855 TestListener* default_xml_printer =
6856 new TestListener(nullptr, &default_xml_printer_is_destroyed);
6857 TestListener* extra_listener =
6858 new TestListener(nullptr, &extra_listener_is_destroyed);
6859
6860 {
6861 TestEventListeners listeners;
6862 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6863 default_result_printer);
6864 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6865 default_xml_printer);
6866 listeners.Append(extra_listener);
6867 }
6868 EXPECT_TRUE(default_result_printer_is_destroyed);
6869 EXPECT_TRUE(default_xml_printer_is_destroyed);
6870 EXPECT_TRUE(extra_listener_is_destroyed);
6871 }
6872
6873 // Tests that a listener Append'ed to a TestEventListeners list starts
6874 // receiving events.
TEST(TestEventListenersTest,Append)6875 TEST(TestEventListenersTest, Append) {
6876 int on_start_counter = 0;
6877 bool is_destroyed = false;
6878 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6879 {
6880 TestEventListeners listeners;
6881 listeners.Append(listener);
6882 TestEventListenersAccessor::GetRepeater(&listeners)
6883 ->OnTestProgramStart(*UnitTest::GetInstance());
6884 EXPECT_EQ(1, on_start_counter);
6885 }
6886 EXPECT_TRUE(is_destroyed);
6887 }
6888
6889 // Tests that listeners receive events in the order they were appended to
6890 // the list, except for *End requests, which must be received in the reverse
6891 // order.
6892 class SequenceTestingListener : public EmptyTestEventListener {
6893 public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6894 SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6895 : vector_(vector), id_(id) {}
6896
6897 protected:
OnTestProgramStart(const UnitTest &)6898 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6899 vector_->push_back(GetEventDescription("OnTestProgramStart"));
6900 }
6901
OnTestProgramEnd(const UnitTest &)6902 void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6903 vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6904 }
6905
OnTestIterationStart(const UnitTest &,int)6906 void OnTestIterationStart(const UnitTest& /*unit_test*/,
6907 int /*iteration*/) override {
6908 vector_->push_back(GetEventDescription("OnTestIterationStart"));
6909 }
6910
OnTestIterationEnd(const UnitTest &,int)6911 void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6912 int /*iteration*/) override {
6913 vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6914 }
6915
6916 private:
GetEventDescription(const char * method)6917 std::string GetEventDescription(const char* method) {
6918 Message message;
6919 message << id_ << "." << method;
6920 return message.GetString();
6921 }
6922
6923 std::vector<std::string>* vector_;
6924 const char* const id_;
6925
6926 SequenceTestingListener(const SequenceTestingListener&) = delete;
6927 SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6928 };
6929
TEST(EventListenerTest,AppendKeepsOrder)6930 TEST(EventListenerTest, AppendKeepsOrder) {
6931 std::vector<std::string> vec;
6932 TestEventListeners listeners;
6933 listeners.Append(new SequenceTestingListener(&vec, "1st"));
6934 listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6935 listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6936
6937 TestEventListenersAccessor::GetRepeater(&listeners)
6938 ->OnTestProgramStart(*UnitTest::GetInstance());
6939 ASSERT_EQ(3U, vec.size());
6940 EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6941 EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6942 EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6943
6944 vec.clear();
6945 TestEventListenersAccessor::GetRepeater(&listeners)
6946 ->OnTestProgramEnd(*UnitTest::GetInstance());
6947 ASSERT_EQ(3U, vec.size());
6948 EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6949 EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6950 EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6951
6952 vec.clear();
6953 TestEventListenersAccessor::GetRepeater(&listeners)
6954 ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
6955 ASSERT_EQ(3U, vec.size());
6956 EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6957 EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6958 EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6959
6960 vec.clear();
6961 TestEventListenersAccessor::GetRepeater(&listeners)
6962 ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
6963 ASSERT_EQ(3U, vec.size());
6964 EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6965 EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6966 EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6967 }
6968
6969 // Tests that a listener removed from a TestEventListeners list stops receiving
6970 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6971 TEST(TestEventListenersTest, Release) {
6972 int on_start_counter = 0;
6973 bool is_destroyed = false;
6974 // Although Append passes the ownership of this object to the list,
6975 // the following calls release it, and we need to delete it before the
6976 // test ends.
6977 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6978 {
6979 TestEventListeners listeners;
6980 listeners.Append(listener);
6981 EXPECT_EQ(listener, listeners.Release(listener));
6982 TestEventListenersAccessor::GetRepeater(&listeners)
6983 ->OnTestProgramStart(*UnitTest::GetInstance());
6984 EXPECT_TRUE(listeners.Release(listener) == nullptr);
6985 }
6986 EXPECT_EQ(0, on_start_counter);
6987 EXPECT_FALSE(is_destroyed);
6988 delete listener;
6989 }
6990
6991 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6992 TEST(EventListenerTest, SuppressEventForwarding) {
6993 int on_start_counter = 0;
6994 TestListener* listener = new TestListener(&on_start_counter, nullptr);
6995
6996 TestEventListeners listeners;
6997 listeners.Append(listener);
6998 ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6999 TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7000 ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7001 TestEventListenersAccessor::GetRepeater(&listeners)
7002 ->OnTestProgramStart(*UnitTest::GetInstance());
7003 EXPECT_EQ(0, on_start_counter);
7004 }
7005
7006 // Tests that events generated by Google Test are not forwarded in
7007 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprocesses)7008 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7009 EXPECT_DEATH_IF_SUPPORTED(
7010 {
7011 GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7012 *GetUnitTestImpl()->listeners()))
7013 << "expected failure";
7014 },
7015 "expected failure");
7016 }
7017
7018 // Tests that a listener installed via SetDefaultResultPrinter() starts
7019 // receiving events and is returned via default_result_printer() and that
7020 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7021 TEST(EventListenerTest, default_result_printer) {
7022 int on_start_counter = 0;
7023 bool is_destroyed = false;
7024 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7025
7026 TestEventListeners listeners;
7027 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7028
7029 EXPECT_EQ(listener, listeners.default_result_printer());
7030
7031 TestEventListenersAccessor::GetRepeater(&listeners)
7032 ->OnTestProgramStart(*UnitTest::GetInstance());
7033
7034 EXPECT_EQ(1, on_start_counter);
7035
7036 // Replacing default_result_printer with something else should remove it
7037 // from the list and destroy it.
7038 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7039
7040 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7041 EXPECT_TRUE(is_destroyed);
7042
7043 // After broadcasting an event the counter is still the same, indicating
7044 // the listener is not in the list anymore.
7045 TestEventListenersAccessor::GetRepeater(&listeners)
7046 ->OnTestProgramStart(*UnitTest::GetInstance());
7047 EXPECT_EQ(1, on_start_counter);
7048 }
7049
7050 // Tests that the default_result_printer listener stops receiving events
7051 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7052 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7053 int on_start_counter = 0;
7054 bool is_destroyed = false;
7055 // Although Append passes the ownership of this object to the list,
7056 // the following calls release it, and we need to delete it before the
7057 // test ends.
7058 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7059 {
7060 TestEventListeners listeners;
7061 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7062
7063 EXPECT_EQ(listener, listeners.Release(listener));
7064 EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7065 EXPECT_FALSE(is_destroyed);
7066
7067 // Broadcasting events now should not affect default_result_printer.
7068 TestEventListenersAccessor::GetRepeater(&listeners)
7069 ->OnTestProgramStart(*UnitTest::GetInstance());
7070 EXPECT_EQ(0, on_start_counter);
7071 }
7072 // Destroying the list should not affect the listener now, too.
7073 EXPECT_FALSE(is_destroyed);
7074 delete listener;
7075 }
7076
7077 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7078 // receiving events and is returned via default_xml_generator() and that
7079 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7080 TEST(EventListenerTest, default_xml_generator) {
7081 int on_start_counter = 0;
7082 bool is_destroyed = false;
7083 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7084
7085 TestEventListeners listeners;
7086 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7087
7088 EXPECT_EQ(listener, listeners.default_xml_generator());
7089
7090 TestEventListenersAccessor::GetRepeater(&listeners)
7091 ->OnTestProgramStart(*UnitTest::GetInstance());
7092
7093 EXPECT_EQ(1, on_start_counter);
7094
7095 // Replacing default_xml_generator with something else should remove it
7096 // from the list and destroy it.
7097 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7098
7099 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7100 EXPECT_TRUE(is_destroyed);
7101
7102 // After broadcasting an event the counter is still the same, indicating
7103 // the listener is not in the list anymore.
7104 TestEventListenersAccessor::GetRepeater(&listeners)
7105 ->OnTestProgramStart(*UnitTest::GetInstance());
7106 EXPECT_EQ(1, on_start_counter);
7107 }
7108
7109 // Tests that the default_xml_generator listener stops receiving events
7110 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7111 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7112 int on_start_counter = 0;
7113 bool is_destroyed = false;
7114 // Although Append passes the ownership of this object to the list,
7115 // the following calls release it, and we need to delete it before the
7116 // test ends.
7117 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7118 {
7119 TestEventListeners listeners;
7120 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7121
7122 EXPECT_EQ(listener, listeners.Release(listener));
7123 EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7124 EXPECT_FALSE(is_destroyed);
7125
7126 // Broadcasting events now should not affect default_xml_generator.
7127 TestEventListenersAccessor::GetRepeater(&listeners)
7128 ->OnTestProgramStart(*UnitTest::GetInstance());
7129 EXPECT_EQ(0, on_start_counter);
7130 }
7131 // Destroying the list should not affect the listener now, too.
7132 EXPECT_FALSE(is_destroyed);
7133 delete listener;
7134 }
7135
7136 // Tests to ensure that the alternative, verbose spellings of
7137 // some of the macros work. We don't test them thoroughly as that
7138 // would be quite involved. Since their implementations are
7139 // straightforward, and they are rarely used, we'll just rely on the
7140 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7141 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
7142 GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
7143
7144 // GTEST_FAIL is the same as FAIL.
7145 EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7146 "An expected failure");
7147
7148 // GTEST_ASSERT_XY is the same as ASSERT_XY.
7149
7150 GTEST_ASSERT_EQ(0, 0);
7151 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7152 "An expected failure");
7153 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7154 "An expected failure");
7155
7156 GTEST_ASSERT_NE(0, 1);
7157 GTEST_ASSERT_NE(1, 0);
7158 EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7159 "An expected failure");
7160
7161 GTEST_ASSERT_LE(0, 0);
7162 GTEST_ASSERT_LE(0, 1);
7163 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7164 "An expected failure");
7165
7166 GTEST_ASSERT_LT(0, 1);
7167 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7168 "An expected failure");
7169 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7170 "An expected failure");
7171
7172 GTEST_ASSERT_GE(0, 0);
7173 GTEST_ASSERT_GE(1, 0);
7174 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7175 "An expected failure");
7176
7177 GTEST_ASSERT_GT(1, 0);
7178 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7179 "An expected failure");
7180 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7181 "An expected failure");
7182 }
7183
7184 // Tests for internal utilities necessary for implementation of the universal
7185 // printing.
7186
7187 class ConversionHelperBase {};
7188 class ConversionHelperDerived : public ConversionHelperBase {};
7189
7190 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7191 std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7192 std::string ShortDebugString() const { return ""; }
7193 };
7194
7195 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7196
7197 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7198 std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7199 int ShortDebugString() const { return 1; }
7200 };
7201
7202 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7203 std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7204 std::string ShortDebugString() const { return ""; }
7205 };
7206
7207 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7208 std::string DebugString() { return ""; }
7209 };
7210
7211 struct IncompleteType;
7212
7213 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7214 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7215 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7216 static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7217 "const_true");
7218 static_assert(
7219 HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7220 "const_true");
7221 static_assert(HasDebugStringAndShortDebugString<
7222 const InheritsDebugStringMethods>::value,
7223 "const_true");
7224 static_assert(
7225 !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7226 "const_false");
7227 static_assert(
7228 !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7229 "const_false");
7230 static_assert(
7231 !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7232 "const_false");
7233 static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7234 "const_false");
7235 static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7236 }
7237
7238 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7239 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7240 TEST(HasDebugStringAndShortDebugStringTest,
7241 ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7242 EXPECT_TRUE(
7243 HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7244 }
7245
7246 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7247 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7248 TEST(HasDebugStringAndShortDebugStringTest,
7249 ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7250 EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7251 EXPECT_FALSE(
7252 HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7253 }
7254
7255 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7256
7257 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7258 void TestGTestRemoveReferenceAndConst() {
7259 static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7260 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7261 }
7262
TEST(RemoveReferenceToConstTest,Works)7263 TEST(RemoveReferenceToConstTest, Works) {
7264 TestGTestRemoveReferenceAndConst<int, int>();
7265 TestGTestRemoveReferenceAndConst<double, double&>();
7266 TestGTestRemoveReferenceAndConst<char, const char>();
7267 TestGTestRemoveReferenceAndConst<char, const char&>();
7268 TestGTestRemoveReferenceAndConst<const char*, const char*>();
7269 }
7270
7271 // Tests GTEST_REFERENCE_TO_CONST_.
7272
7273 template <typename T1, typename T2>
TestGTestReferenceToConst()7274 void TestGTestReferenceToConst() {
7275 static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7276 "GTEST_REFERENCE_TO_CONST_ failed.");
7277 }
7278
TEST(GTestReferenceToConstTest,Works)7279 TEST(GTestReferenceToConstTest, Works) {
7280 TestGTestReferenceToConst<const char&, char>();
7281 TestGTestReferenceToConst<const int&, const int>();
7282 TestGTestReferenceToConst<const double&, double>();
7283 TestGTestReferenceToConst<const std::string&, const std::string&>();
7284 }
7285
7286 // Tests IsContainerTest.
7287
7288 class NonContainer {};
7289
TEST(IsContainerTestTest,WorksForNonContainer)7290 TEST(IsContainerTestTest, WorksForNonContainer) {
7291 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7292 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7293 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7294 }
7295
TEST(IsContainerTestTest,WorksForContainer)7296 TEST(IsContainerTestTest, WorksForContainer) {
7297 EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7298 EXPECT_EQ(sizeof(IsContainer),
7299 sizeof(IsContainerTest<std::map<int, double>>(0)));
7300 }
7301
7302 struct ConstOnlyContainerWithPointerIterator {
7303 using const_iterator = int*;
7304 const_iterator begin() const;
7305 const_iterator end() const;
7306 };
7307
7308 struct ConstOnlyContainerWithClassIterator {
7309 struct const_iterator {
7310 const int& operator*() const;
7311 const_iterator& operator++(/* pre-increment */);
7312 };
7313 const_iterator begin() const;
7314 const_iterator end() const;
7315 };
7316
TEST(IsContainerTestTest,ConstOnlyContainer)7317 TEST(IsContainerTestTest, ConstOnlyContainer) {
7318 EXPECT_EQ(sizeof(IsContainer),
7319 sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7320 EXPECT_EQ(sizeof(IsContainer),
7321 sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7322 }
7323
7324 // Tests IsHashTable.
7325 struct AHashTable {
7326 typedef void hasher;
7327 };
7328 struct NotReallyAHashTable {
7329 typedef void hasher;
7330 typedef void reverse_iterator;
7331 };
TEST(IsHashTable,Basic)7332 TEST(IsHashTable, Basic) {
7333 EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7334 EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7335 EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7336 EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7337 }
7338
7339 // Tests ArrayEq().
7340
TEST(ArrayEqTest,WorksForDegeneratedArrays)7341 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7342 EXPECT_TRUE(ArrayEq(5, 5L));
7343 EXPECT_FALSE(ArrayEq('a', 0));
7344 }
7345
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7346 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7347 // Note that a and b are distinct but compatible types.
7348 const int a[] = {0, 1};
7349 long b[] = {0, 1};
7350 EXPECT_TRUE(ArrayEq(a, b));
7351 EXPECT_TRUE(ArrayEq(a, 2, b));
7352
7353 b[0] = 2;
7354 EXPECT_FALSE(ArrayEq(a, b));
7355 EXPECT_FALSE(ArrayEq(a, 1, b));
7356 }
7357
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7358 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7359 const char a[][3] = {"hi", "lo"};
7360 const char b[][3] = {"hi", "lo"};
7361 const char c[][3] = {"hi", "li"};
7362
7363 EXPECT_TRUE(ArrayEq(a, b));
7364 EXPECT_TRUE(ArrayEq(a, 2, b));
7365
7366 EXPECT_FALSE(ArrayEq(a, c));
7367 EXPECT_FALSE(ArrayEq(a, 2, c));
7368 }
7369
7370 // Tests ArrayAwareFind().
7371
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7372 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7373 const char a[] = "hello";
7374 EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7375 EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7376 }
7377
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7378 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7379 int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7380 const int b[2] = {2, 3};
7381 EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7382
7383 const int c[2] = {6, 7};
7384 EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7385 }
7386
7387 // Tests CopyArray().
7388
TEST(CopyArrayTest,WorksForDegeneratedArrays)7389 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7390 int n = 0;
7391 CopyArray('a', &n);
7392 EXPECT_EQ('a', n);
7393 }
7394
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7395 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7396 const char a[3] = "hi";
7397 int b[3];
7398 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7399 CopyArray(a, &b);
7400 EXPECT_TRUE(ArrayEq(a, b));
7401 #endif
7402
7403 int c[3];
7404 CopyArray(a, 3, c);
7405 EXPECT_TRUE(ArrayEq(a, c));
7406 }
7407
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7408 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7409 const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7410 int b[2][3];
7411 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7412 CopyArray(a, &b);
7413 EXPECT_TRUE(ArrayEq(a, b));
7414 #endif
7415
7416 int c[2][3];
7417 CopyArray(a, 2, c);
7418 EXPECT_TRUE(ArrayEq(a, c));
7419 }
7420
7421 // Tests NativeArray.
7422
TEST(NativeArrayTest,ConstructorFromArrayWorks)7423 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7424 const int a[3] = {0, 1, 2};
7425 NativeArray<int> na(a, 3, RelationToSourceReference());
7426 EXPECT_EQ(3U, na.size());
7427 EXPECT_EQ(a, na.begin());
7428 }
7429
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7430 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7431 typedef int Array[2];
7432 Array* a = new Array[1];
7433 (*a)[0] = 0;
7434 (*a)[1] = 1;
7435 NativeArray<int> na(*a, 2, RelationToSourceCopy());
7436 EXPECT_NE(*a, na.begin());
7437 delete[] a;
7438 EXPECT_EQ(0, na.begin()[0]);
7439 EXPECT_EQ(1, na.begin()[1]);
7440
7441 // We rely on the heap checker to verify that na deletes the copy of
7442 // array.
7443 }
7444
TEST(NativeArrayTest,TypeMembersAreCorrect)7445 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7446 StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7447 StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7448
7449 StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7450 StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7451 }
7452
TEST(NativeArrayTest,MethodsWork)7453 TEST(NativeArrayTest, MethodsWork) {
7454 const int a[3] = {0, 1, 2};
7455 NativeArray<int> na(a, 3, RelationToSourceCopy());
7456 ASSERT_EQ(3U, na.size());
7457 EXPECT_EQ(3, na.end() - na.begin());
7458
7459 NativeArray<int>::const_iterator it = na.begin();
7460 EXPECT_EQ(0, *it);
7461 ++it;
7462 EXPECT_EQ(1, *it);
7463 it++;
7464 EXPECT_EQ(2, *it);
7465 ++it;
7466 EXPECT_EQ(na.end(), it);
7467
7468 EXPECT_TRUE(na == na);
7469
7470 NativeArray<int> na2(a, 3, RelationToSourceReference());
7471 EXPECT_TRUE(na == na2);
7472
7473 const int b1[3] = {0, 1, 1};
7474 const int b2[4] = {0, 1, 2, 3};
7475 EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7476 EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7477 }
7478
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7479 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7480 const char a[2][3] = {"hi", "lo"};
7481 NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7482 ASSERT_EQ(2U, na.size());
7483 EXPECT_EQ(a, na.begin());
7484 }
7485
7486 // ElemFromList
TEST(ElemFromList,Basic)7487 TEST(ElemFromList, Basic) {
7488 using testing::internal::ElemFromList;
7489 EXPECT_TRUE(
7490 (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7491 EXPECT_TRUE(
7492 (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7493 EXPECT_TRUE(
7494 (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7495 EXPECT_TRUE((
7496 std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7497 char, int, int, int, int>::type>::value));
7498 }
7499
7500 // FlatTuple
TEST(FlatTuple,Basic)7501 TEST(FlatTuple, Basic) {
7502 using testing::internal::FlatTuple;
7503
7504 FlatTuple<int, double, const char*> tuple = {};
7505 EXPECT_EQ(0, tuple.Get<0>());
7506 EXPECT_EQ(0.0, tuple.Get<1>());
7507 EXPECT_EQ(nullptr, tuple.Get<2>());
7508
7509 tuple = FlatTuple<int, double, const char*>(
7510 testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7511 EXPECT_EQ(7, tuple.Get<0>());
7512 EXPECT_EQ(3.2, tuple.Get<1>());
7513 EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7514
7515 tuple.Get<1>() = 5.1;
7516 EXPECT_EQ(5.1, tuple.Get<1>());
7517 }
7518
7519 namespace {
AddIntToString(int i,const std::string & s)7520 std::string AddIntToString(int i, const std::string& s) {
7521 return s + std::to_string(i);
7522 }
7523 } // namespace
7524
TEST(FlatTuple,Apply)7525 TEST(FlatTuple, Apply) {
7526 using testing::internal::FlatTuple;
7527
7528 FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7529 5, "Hello"};
7530
7531 // Lambda.
7532 EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7533 return i == static_cast<int>(s.size());
7534 }));
7535
7536 // Function.
7537 EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7538
7539 // Mutating operations.
7540 tuple.Apply([](int& i, std::string& s) {
7541 ++i;
7542 s += s;
7543 });
7544 EXPECT_EQ(tuple.Get<0>(), 6);
7545 EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7546 }
7547
7548 struct ConstructionCounting {
ConstructionCountingConstructionCounting7549 ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7550 ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7551 ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7552 ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7553 ConstructionCounting& operator=(const ConstructionCounting&) {
7554 ++copy_assignment_calls;
7555 return *this;
7556 }
operator =ConstructionCounting7557 ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7558 ++move_assignment_calls;
7559 return *this;
7560 }
7561
ResetConstructionCounting7562 static void Reset() {
7563 default_ctor_calls = 0;
7564 dtor_calls = 0;
7565 copy_ctor_calls = 0;
7566 move_ctor_calls = 0;
7567 copy_assignment_calls = 0;
7568 move_assignment_calls = 0;
7569 }
7570
7571 static int default_ctor_calls;
7572 static int dtor_calls;
7573 static int copy_ctor_calls;
7574 static int move_ctor_calls;
7575 static int copy_assignment_calls;
7576 static int move_assignment_calls;
7577 };
7578
7579 int ConstructionCounting::default_ctor_calls = 0;
7580 int ConstructionCounting::dtor_calls = 0;
7581 int ConstructionCounting::copy_ctor_calls = 0;
7582 int ConstructionCounting::move_ctor_calls = 0;
7583 int ConstructionCounting::copy_assignment_calls = 0;
7584 int ConstructionCounting::move_assignment_calls = 0;
7585
TEST(FlatTuple,ConstructorCalls)7586 TEST(FlatTuple, ConstructorCalls) {
7587 using testing::internal::FlatTuple;
7588
7589 // Default construction.
7590 ConstructionCounting::Reset();
7591 { FlatTuple<ConstructionCounting> tuple; }
7592 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7593 EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7594 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7595 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7596 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7597 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7598
7599 // Copy construction.
7600 ConstructionCounting::Reset();
7601 {
7602 ConstructionCounting elem;
7603 FlatTuple<ConstructionCounting> tuple{
7604 testing::internal::FlatTupleConstructTag{}, elem};
7605 }
7606 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7607 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7608 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7609 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7610 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7611 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7612
7613 // Move construction.
7614 ConstructionCounting::Reset();
7615 {
7616 FlatTuple<ConstructionCounting> tuple{
7617 testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7618 }
7619 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7620 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7621 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7622 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7623 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7624 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7625
7626 // Copy assignment.
7627 // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7628 // elements
7629 ConstructionCounting::Reset();
7630 {
7631 FlatTuple<ConstructionCounting> tuple;
7632 ConstructionCounting elem;
7633 tuple.Get<0>() = elem;
7634 }
7635 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7636 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7637 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7638 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7639 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7640 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7641
7642 // Move assignment.
7643 // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7644 // elements
7645 ConstructionCounting::Reset();
7646 {
7647 FlatTuple<ConstructionCounting> tuple;
7648 tuple.Get<0>() = ConstructionCounting{};
7649 }
7650 EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7651 EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7652 EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7653 EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7654 EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7655 EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7656
7657 ConstructionCounting::Reset();
7658 }
7659
TEST(FlatTuple,ManyTypes)7660 TEST(FlatTuple, ManyTypes) {
7661 using testing::internal::FlatTuple;
7662
7663 // Instantiate FlatTuple with 257 ints.
7664 // Tests show that we can do it with thousands of elements, but very long
7665 // compile times makes it unusuitable for this test.
7666 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7667 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7668 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7669 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7670 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7671 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7672
7673 // Let's make sure that we can have a very long list of types without blowing
7674 // up the template instantiation depth.
7675 FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7676
7677 tuple.Get<0>() = 7;
7678 tuple.Get<99>() = 17;
7679 tuple.Get<256>() = 1000;
7680 EXPECT_EQ(7, tuple.Get<0>());
7681 EXPECT_EQ(17, tuple.Get<99>());
7682 EXPECT_EQ(1000, tuple.Get<256>());
7683 }
7684
7685 // Tests SkipPrefix().
7686
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7687 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7688 const char* const str = "hello";
7689
7690 const char* p = str;
7691 EXPECT_TRUE(SkipPrefix("", &p));
7692 EXPECT_EQ(str, p);
7693
7694 p = str;
7695 EXPECT_TRUE(SkipPrefix("hell", &p));
7696 EXPECT_EQ(str + 4, p);
7697 }
7698
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7699 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7700 const char* const str = "world";
7701
7702 const char* p = str;
7703 EXPECT_FALSE(SkipPrefix("W", &p));
7704 EXPECT_EQ(str, p);
7705
7706 p = str;
7707 EXPECT_FALSE(SkipPrefix("world!", &p));
7708 EXPECT_EQ(str, p);
7709 }
7710
7711 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7712 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7713 const testing::TestResult& test_result =
7714 testing::UnitTest::GetInstance()->ad_hoc_test_result();
7715 EXPECT_FALSE(test_result.Failed());
7716 }
7717
7718 class DynamicUnitTestFixture : public testing::Test {};
7719
7720 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7721 void TestBody() override { EXPECT_TRUE(true); }
7722 };
7723
7724 auto* dynamic_test = testing::RegisterTest(
7725 "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anon19f4cde20a02() 7726 __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7727
TEST(RegisterTest,WasRegistered)7728 TEST(RegisterTest, WasRegistered) {
7729 const auto& unittest = testing::UnitTest::GetInstance();
7730 for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7731 auto* tests = unittest->GetTestSuite(i);
7732 if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7733 for (int j = 0; j < tests->total_test_count(); ++j) {
7734 if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7735 // Found it.
7736 EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7737 EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7738 return;
7739 }
7740 }
7741
7742 FAIL() << "Didn't find the test!";
7743 }
7744
7745 // Test that the pattern globbing algorithm is linear. If not, this test should
7746 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7747 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7748 std::string name(100, 'a'); // Construct the string (a^100)b
7749 name.push_back('b');
7750
7751 std::string pattern; // Construct the string ((a*)^100)b
7752 for (int i = 0; i < 100; ++i) {
7753 pattern.append("a*");
7754 }
7755 pattern.push_back('b');
7756
7757 EXPECT_TRUE(
7758 testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7759 }
7760
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7761 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7762 const std::string name = "aaaa";
7763 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7764 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7765 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7766 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7767 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7768 }
7769
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7770 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7771 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7772 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7773 EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7774 EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7775 }
7776