xref: /freebsd/sys/contrib/openzfs/module/zfs/zio_checksum.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25  * Copyright 2013 Saso Kiselkov. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zil.h>
34 #include <sys/abd.h>
35 #include <zfs_fletcher.h>
36 
37 /*
38  * Checksum vectors.
39  *
40  * In the SPA, everything is checksummed.  We support checksum vectors
41  * for three distinct reasons:
42  *
43  *   1. Different kinds of data need different levels of protection.
44  *	For SPA metadata, we always want a very strong checksum.
45  *	For user data, we let users make the trade-off between speed
46  *	and checksum strength.
47  *
48  *   2. Cryptographic hash and MAC algorithms are an area of active research.
49  *	It is likely that in future hash functions will be at least as strong
50  *	as current best-of-breed, and may be substantially faster as well.
51  *	We want the ability to take advantage of these new hashes as soon as
52  *	they become available.
53  *
54  *   3. If someone develops hardware that can compute a strong hash quickly,
55  *	we want the ability to take advantage of that hardware.
56  *
57  * Of course, we don't want a checksum upgrade to invalidate existing
58  * data, so we store the checksum *function* in eight bits of the bp.
59  * This gives us room for up to 256 different checksum functions.
60  *
61  * When writing a block, we always checksum it with the latest-and-greatest
62  * checksum function of the appropriate strength.  When reading a block,
63  * we compare the expected checksum against the actual checksum, which we
64  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
65  *
66  * SALTED CHECKSUMS
67  *
68  * To enable the use of less secure hash algorithms with dedup, we
69  * introduce the notion of salted checksums (MACs, really).  A salted
70  * checksum is fed both a random 256-bit value (the salt) and the data
71  * to be checksummed.  This salt is kept secret (stored on the pool, but
72  * never shown to the user).  Thus even if an attacker knew of collision
73  * weaknesses in the hash algorithm, they won't be able to mount a known
74  * plaintext attack on the DDT, since the actual hash value cannot be
75  * known ahead of time.  How the salt is used is algorithm-specific
76  * (some might simply prefix it to the data block, others might need to
77  * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
78  * object in the MOS (DMU_POOL_CHECKSUM_SALT).
79  *
80  * CONTEXT TEMPLATES
81  *
82  * Some hashing algorithms need to perform a substantial amount of
83  * initialization work (e.g. salted checksums above may need to pre-hash
84  * the salt) before being able to process data.  Performing this
85  * redundant work for each block would be wasteful, so we instead allow
86  * a checksum algorithm to do the work once (the first time it's used)
87  * and then keep this pre-initialized context as a template inside the
88  * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
89  * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
90  * construct and destruct the pre-initialized checksum context.  The
91  * pre-initialized context is then reused during each checksum
92  * invocation and passed to the checksum function.
93  */
94 
95 static void
abd_checksum_off(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)96 abd_checksum_off(abd_t *abd, uint64_t size,
97     const void *ctx_template, zio_cksum_t *zcp)
98 {
99 	(void) abd, (void) size, (void) ctx_template;
100 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
101 }
102 
103 static void
abd_fletcher_2_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)104 abd_fletcher_2_native(abd_t *abd, uint64_t size,
105     const void *ctx_template, zio_cksum_t *zcp)
106 {
107 	(void) ctx_template;
108 	fletcher_init(zcp);
109 	(void) abd_iterate_func(abd, 0, size,
110 	    fletcher_2_incremental_native, zcp);
111 }
112 
113 static void
abd_fletcher_2_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)114 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
115     const void *ctx_template, zio_cksum_t *zcp)
116 {
117 	(void) ctx_template;
118 	fletcher_init(zcp);
119 	(void) abd_iterate_func(abd, 0, size,
120 	    fletcher_2_incremental_byteswap, zcp);
121 }
122 
123 static inline void
abd_fletcher_4_impl(abd_t * abd,uint64_t size,zio_abd_checksum_data_t * acdp)124 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
125 {
126 	fletcher_4_abd_ops.acf_init(acdp);
127 	abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
128 	fletcher_4_abd_ops.acf_fini(acdp);
129 }
130 
131 void
abd_fletcher_4_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)132 abd_fletcher_4_native(abd_t *abd, uint64_t size,
133     const void *ctx_template, zio_cksum_t *zcp)
134 {
135 	(void) ctx_template;
136 	fletcher_4_ctx_t ctx;
137 
138 	zio_abd_checksum_data_t acd = {
139 		.acd_byteorder	= ZIO_CHECKSUM_NATIVE,
140 		.acd_zcp 	= zcp,
141 		.acd_ctx	= &ctx
142 	};
143 
144 	abd_fletcher_4_impl(abd, size, &acd);
145 
146 }
147 
148 void
abd_fletcher_4_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)149 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
150     const void *ctx_template, zio_cksum_t *zcp)
151 {
152 	(void) ctx_template;
153 	fletcher_4_ctx_t ctx;
154 
155 	zio_abd_checksum_data_t acd = {
156 		.acd_byteorder	= ZIO_CHECKSUM_BYTESWAP,
157 		.acd_zcp 	= zcp,
158 		.acd_ctx	= &ctx
159 	};
160 
161 	abd_fletcher_4_impl(abd, size, &acd);
162 }
163 
164 /*
165  * Checksum vectors.
166  *
167  * Note: you cannot change the name string for these functions, as they are
168  * embedded in on-disk data in some places (eg dedup table names).
169  */
170 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
171 	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
172 	{{NULL, NULL}, NULL, NULL, 0, "on"},
173 	{{abd_checksum_off,		abd_checksum_off},
174 	    NULL, NULL, 0, "off"},
175 	{{abd_checksum_sha256,		abd_checksum_sha256},
176 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
177 	    "label"},
178 	{{abd_checksum_sha256,		abd_checksum_sha256},
179 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
180 	    "gang_header"},
181 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
182 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
183 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
184 	    NULL, NULL, 0, "fletcher2"},
185 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
186 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
187 	{{abd_checksum_sha256,		abd_checksum_sha256},
188 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
189 	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
190 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
191 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
192 	{{abd_checksum_off,		abd_checksum_off},
193 	    NULL, NULL, 0, "noparity"},
194 	{{abd_checksum_sha512_native,	abd_checksum_sha512_byteswap},
195 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
196 	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
197 	{{abd_checksum_skein_native,	abd_checksum_skein_byteswap},
198 	    abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
199 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
200 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
201 	{{abd_checksum_edonr_native,	abd_checksum_edonr_byteswap},
202 	    abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
203 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
204 	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
205 	{{abd_checksum_blake3_native,	abd_checksum_blake3_byteswap},
206 	    abd_checksum_blake3_tmpl_init, abd_checksum_blake3_tmpl_free,
207 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
208 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "blake3"},
209 };
210 
211 /*
212  * The flag corresponding to the "verify" in dedup=[checksum,]verify
213  * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
214  */
215 spa_feature_t
zio_checksum_to_feature(enum zio_checksum cksum)216 zio_checksum_to_feature(enum zio_checksum cksum)
217 {
218 	VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
219 
220 	switch (cksum) {
221 	case ZIO_CHECKSUM_BLAKE3:
222 		return (SPA_FEATURE_BLAKE3);
223 	case ZIO_CHECKSUM_SHA512:
224 		return (SPA_FEATURE_SHA512);
225 	case ZIO_CHECKSUM_SKEIN:
226 		return (SPA_FEATURE_SKEIN);
227 	case ZIO_CHECKSUM_EDONR:
228 		return (SPA_FEATURE_EDONR);
229 	default:
230 		return (SPA_FEATURE_NONE);
231 	}
232 }
233 
234 enum zio_checksum
zio_checksum_select(enum zio_checksum child,enum zio_checksum parent)235 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
236 {
237 	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
238 	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
239 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
240 
241 	if (child == ZIO_CHECKSUM_INHERIT)
242 		return (parent);
243 
244 	if (child == ZIO_CHECKSUM_ON)
245 		return (ZIO_CHECKSUM_ON_VALUE);
246 
247 	return (child);
248 }
249 
250 enum zio_checksum
zio_checksum_dedup_select(spa_t * spa,enum zio_checksum child,enum zio_checksum parent)251 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
252     enum zio_checksum parent)
253 {
254 	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
255 	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
256 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
257 
258 	if (child == ZIO_CHECKSUM_INHERIT)
259 		return (parent);
260 
261 	if (child == ZIO_CHECKSUM_ON)
262 		return (spa_dedup_checksum(spa));
263 
264 	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
265 		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
266 
267 	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
268 	    ZCHECKSUM_FLAG_DEDUP) ||
269 	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
270 
271 	return (child);
272 }
273 
274 /*
275  * Set the external verifier for a gang block based on <vdev, offset, txg>,
276  * a tuple which is guaranteed to be unique for the life of the pool.
277  */
278 static void
zio_checksum_gang_verifier(zio_cksum_t * zcp,const blkptr_t * bp)279 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
280 {
281 	const dva_t *dva = BP_IDENTITY(bp);
282 	uint64_t txg = BP_GET_BIRTH(bp);
283 
284 	ASSERT(BP_IS_GANG(bp));
285 
286 	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
287 }
288 
289 /*
290  * Set the external verifier for a label block based on its offset.
291  * The vdev is implicit, and the txg is unknowable at pool open time --
292  * hence the logic in vdev_uberblock_load() to find the most recent copy.
293  */
294 static void
zio_checksum_label_verifier(zio_cksum_t * zcp,uint64_t offset)295 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
296 {
297 	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
298 }
299 
300 /*
301  * Calls the template init function of a checksum which supports context
302  * templates and installs the template into the spa_t.
303  */
304 static void
zio_checksum_template_init(enum zio_checksum checksum,spa_t * spa)305 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
306 {
307 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
308 
309 	if (ci->ci_tmpl_init == NULL)
310 		return;
311 	if (spa->spa_cksum_tmpls[checksum] != NULL)
312 		return;
313 
314 	VERIFY(ci->ci_tmpl_free != NULL);
315 	mutex_enter(&spa->spa_cksum_tmpls_lock);
316 	if (spa->spa_cksum_tmpls[checksum] == NULL) {
317 		spa->spa_cksum_tmpls[checksum] =
318 		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
319 		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
320 	}
321 	mutex_exit(&spa->spa_cksum_tmpls_lock);
322 }
323 
324 /* convenience function to update a checksum to accommodate an encryption MAC */
325 static void
zio_checksum_handle_crypt(zio_cksum_t * cksum,zio_cksum_t * saved,boolean_t xor)326 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
327 {
328 	/*
329 	 * Weak checksums do not have their entropy spread evenly
330 	 * across the bits of the checksum. Therefore, when truncating
331 	 * a weak checksum we XOR the first 2 words with the last 2 so
332 	 * that we don't "lose" any entropy unnecessarily.
333 	 */
334 	if (xor) {
335 		cksum->zc_word[0] ^= cksum->zc_word[2];
336 		cksum->zc_word[1] ^= cksum->zc_word[3];
337 	}
338 
339 	cksum->zc_word[2] = saved->zc_word[2];
340 	cksum->zc_word[3] = saved->zc_word[3];
341 }
342 
343 /*
344  * Generate the checksum.
345  */
346 void
zio_checksum_compute(zio_t * zio,enum zio_checksum checksum,abd_t * abd,uint64_t size)347 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
348     abd_t *abd, uint64_t size)
349 {
350 	static const uint64_t zec_magic = ZEC_MAGIC;
351 	blkptr_t *bp = zio->io_bp;
352 	uint64_t offset = zio->io_offset;
353 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
354 	zio_cksum_t cksum, saved;
355 	spa_t *spa = zio->io_spa;
356 	boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
357 
358 	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
359 	ASSERT(ci->ci_func[0] != NULL);
360 
361 	zio_checksum_template_init(checksum, spa);
362 
363 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
364 		zio_eck_t eck;
365 		size_t eck_offset;
366 
367 		memset(&saved, 0, sizeof (zio_cksum_t));
368 
369 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
370 			zil_chain_t zilc;
371 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
372 
373 			uint64_t nused = P2ROUNDUP_TYPED(zilc.zc_nused,
374 			    ZIL_MIN_BLKSZ, uint64_t);
375 			ASSERT3U(size, >=, nused);
376 			size = nused;
377 			eck = zilc.zc_eck;
378 			eck_offset = offsetof(zil_chain_t, zc_eck);
379 		} else {
380 			ASSERT3U(size, >=, sizeof (zio_eck_t));
381 			eck_offset = size - sizeof (zio_eck_t);
382 			abd_copy_to_buf_off(&eck, abd, eck_offset,
383 			    sizeof (zio_eck_t));
384 		}
385 
386 		if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
387 			zio_checksum_gang_verifier(&eck.zec_cksum, bp);
388 		} else if (checksum == ZIO_CHECKSUM_LABEL) {
389 			zio_checksum_label_verifier(&eck.zec_cksum, offset);
390 		} else {
391 			saved = eck.zec_cksum;
392 			eck.zec_cksum = bp->blk_cksum;
393 		}
394 
395 		abd_copy_from_buf_off(abd, &zec_magic,
396 		    eck_offset + offsetof(zio_eck_t, zec_magic),
397 		    sizeof (zec_magic));
398 		abd_copy_from_buf_off(abd, &eck.zec_cksum,
399 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
400 		    sizeof (zio_cksum_t));
401 
402 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
403 		    &cksum);
404 		if (bp != NULL && BP_USES_CRYPT(bp) &&
405 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
406 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
407 
408 		abd_copy_from_buf_off(abd, &cksum,
409 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
410 		    sizeof (zio_cksum_t));
411 	} else {
412 		saved = bp->blk_cksum;
413 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
414 		    &cksum);
415 		if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
416 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
417 		bp->blk_cksum = cksum;
418 	}
419 }
420 
421 int
zio_checksum_error_impl(spa_t * spa,const blkptr_t * bp,enum zio_checksum checksum,abd_t * abd,uint64_t size,uint64_t offset,zio_bad_cksum_t * info)422 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
423     enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset,
424     zio_bad_cksum_t *info)
425 {
426 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
427 	zio_cksum_t actual_cksum, expected_cksum;
428 	zio_eck_t eck;
429 	int byteswap;
430 
431 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
432 		return (SET_ERROR(EINVAL));
433 
434 	zio_checksum_template_init(checksum, spa);
435 
436 	IMPLY(bp == NULL, ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED);
437 	IMPLY(bp == NULL, checksum == ZIO_CHECKSUM_LABEL);
438 
439 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
440 		zio_cksum_t verifier;
441 		size_t eck_offset;
442 
443 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
444 			zil_chain_t zilc;
445 			uint64_t nused;
446 
447 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
448 
449 			eck = zilc.zc_eck;
450 			eck_offset = offsetof(zil_chain_t, zc_eck) +
451 			    offsetof(zio_eck_t, zec_cksum);
452 
453 			if (eck.zec_magic == ZEC_MAGIC) {
454 				nused = zilc.zc_nused;
455 			} else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
456 				nused = BSWAP_64(zilc.zc_nused);
457 			} else {
458 				return (SET_ERROR(ECKSUM));
459 			}
460 
461 			nused = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
462 			if (size < nused)
463 				return (SET_ERROR(ECKSUM));
464 			size = nused;
465 		} else {
466 			if (size < sizeof (zio_eck_t))
467 				return (SET_ERROR(ECKSUM));
468 			eck_offset = size - sizeof (zio_eck_t);
469 			abd_copy_to_buf_off(&eck, abd, eck_offset,
470 			    sizeof (zio_eck_t));
471 			eck_offset += offsetof(zio_eck_t, zec_cksum);
472 		}
473 
474 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
475 			zio_checksum_gang_verifier(&verifier, bp);
476 		else if (checksum == ZIO_CHECKSUM_LABEL)
477 			zio_checksum_label_verifier(&verifier, offset);
478 		else
479 			verifier = bp->blk_cksum;
480 
481 		byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
482 
483 		if (byteswap)
484 			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
485 
486 		expected_cksum = eck.zec_cksum;
487 
488 		abd_copy_from_buf_off(abd, &verifier, eck_offset,
489 		    sizeof (zio_cksum_t));
490 
491 		ci->ci_func[byteswap](abd, size,
492 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
493 
494 		abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
495 		    sizeof (zio_cksum_t));
496 
497 		if (byteswap) {
498 			byteswap_uint64_array(&expected_cksum,
499 			    sizeof (zio_cksum_t));
500 		}
501 	} else {
502 		byteswap = BP_SHOULD_BYTESWAP(bp);
503 		expected_cksum = bp->blk_cksum;
504 		ci->ci_func[byteswap](abd, size,
505 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
506 	}
507 
508 	/*
509 	 * MAC checksums are a special case since half of this checksum will
510 	 * actually be the encryption MAC. This will be verified by the
511 	 * decryption process, so we just check the truncated checksum now.
512 	 * Objset blocks use embedded MACs so we don't truncate the checksum
513 	 * for them.
514 	 */
515 	if (bp != NULL && BP_USES_CRYPT(bp) &&
516 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
517 		if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
518 			actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
519 			actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
520 		}
521 
522 		actual_cksum.zc_word[2] = 0;
523 		actual_cksum.zc_word[3] = 0;
524 		expected_cksum.zc_word[2] = 0;
525 		expected_cksum.zc_word[3] = 0;
526 	}
527 
528 	if (info != NULL) {
529 		info->zbc_checksum_name = ci->ci_name;
530 		info->zbc_byteswapped = byteswap;
531 		info->zbc_injected = 0;
532 		info->zbc_has_cksum = 1;
533 	}
534 
535 	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
536 		return (SET_ERROR(ECKSUM));
537 
538 	return (0);
539 }
540 
541 int
zio_checksum_error(zio_t * zio,zio_bad_cksum_t * info)542 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
543 {
544 	blkptr_t *bp = zio->io_bp;
545 	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
546 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
547 	int error;
548 	uint64_t size = (bp == NULL ? zio->io_size :
549 	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
550 	uint64_t offset = zio->io_offset;
551 	abd_t *data = zio->io_abd;
552 	spa_t *spa = zio->io_spa;
553 
554 	error = zio_checksum_error_impl(spa, bp, checksum, data, size,
555 	    offset, info);
556 
557 	if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
558 		error = zio_handle_fault_injection(zio, ECKSUM);
559 		if (error != 0)
560 			info->zbc_injected = 1;
561 	}
562 
563 	return (error);
564 }
565 
566 /*
567  * Called by a spa_t that's about to be deallocated. This steps through
568  * all of the checksum context templates and deallocates any that were
569  * initialized using the algorithm-specific template init function.
570  */
571 void
zio_checksum_templates_free(spa_t * spa)572 zio_checksum_templates_free(spa_t *spa)
573 {
574 	for (enum zio_checksum checksum = 0;
575 	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
576 		if (spa->spa_cksum_tmpls[checksum] != NULL) {
577 			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
578 
579 			VERIFY(ci->ci_tmpl_free != NULL);
580 			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
581 			spa->spa_cksum_tmpls[checksum] = NULL;
582 		}
583 	}
584 }
585