xref: /freebsd/stand/libsa/zalloc.c (revision 7c43148a974877188a930e4078a164f83da8e652)
1 /*
2  * This module derived from code donated to the FreeBSD Project by
3  * Matthew Dillon <dillon@backplane.com>
4  *
5  * Copyright (c) 1998 The FreeBSD Project
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 
32 /*
33  * LIB/MEMORY/ZALLOC.C	- self contained low-overhead memory pool/allocation
34  *			  subsystem
35  *
36  *	This subsystem implements memory pools and memory allocation
37  *	routines.
38  *
39  *	Pools are managed via a linked list of 'free' areas.  Allocating
40  *	memory creates holes in the freelist, freeing memory fills them.
41  *	Since the freelist consists only of free memory areas, it is possible
42  *	to allocate the entire pool without incuring any structural overhead.
43  *
44  *	The system works best when allocating similarly-sized chunks of
45  *	memory.  Care must be taken to avoid fragmentation when
46  *	allocating/deallocating dissimilar chunks.
47  *
48  *	When a memory pool is first allocated, the entire pool is marked as
49  *	allocated.  This is done mainly because we do not want to modify any
50  *	portion of a pool's data area until we are given permission.  The
51  *	caller must explicitly deallocate portions of the pool to make them
52  *	available.
53  *
54  *	z[n]xalloc() works like z[n]alloc() but the allocation is made from
55  *	within the specified address range.  If the segment could not be
56  *	allocated, NULL is returned.  WARNING!  The address range will be
57  *	aligned to an 8 or 16 byte boundry depending on the cpu so if you
58  *	give an unaligned address range, unexpected results may occur.
59  *
60  *	If a standard allocation fails, the reclaim function will be called
61  *	to recover some space.  This usually causes other portions of the
62  *	same pool to be released.  Memory allocations at this low level
63  *	should not block but you can do that too in your reclaim function
64  *	if you want.  Reclaim does not function when z[n]xalloc() is used,
65  *	only for z[n]alloc().
66  *
67  *	Allocation and frees of 0 bytes are valid operations.
68  */
69 
70 #include "zalloc_defs.h"
71 
72 /*
73  * Objects in the pool must be aligned to at least the size of struct MemNode.
74  * They must also be aligned to MALLOCALIGN, which should normally be larger
75  * than the struct, so assert that to be so at compile time.
76  */
77 typedef char assert_align[(sizeof(struct MemNode) <= MALLOCALIGN) ? 1 : -1];
78 
79 #define	MEMNODE_SIZE_MASK	MALLOCALIGN_MASK
80 
81 /*
82  * znalloc() -	allocate memory (without zeroing) from pool.  Call reclaim
83  *		and retry if appropriate, return NULL if unable to allocate
84  *		memory.
85  */
86 
87 void *
znalloc(MemPool * mp,uintptr_t bytes,size_t align)88 znalloc(MemPool *mp, uintptr_t bytes, size_t align)
89 {
90 	MemNode **pmn;
91 	MemNode *mn;
92 
93 	/*
94 	 * align according to pool object size (can be 0).  This is
95 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
96 	 *
97 	*/
98 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
99 
100 	if (bytes == 0)
101 		return ((void *)-1);
102 
103 	/*
104 	 * locate freelist entry big enough to hold the object.  If all objects
105 	 * are the same size, this is a constant-time function.
106 	 */
107 
108 	if (bytes > mp->mp_Size - mp->mp_Used)
109 		return (NULL);
110 
111 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
112 		char *ptr = (char *)mn;
113 		uintptr_t dptr;
114 		char *aligned;
115 		size_t extra;
116 
117 		dptr = (uintptr_t)(ptr + MALLOCALIGN);  /* pointer to data */
118 		aligned = (char *)(roundup2(dptr, align) - MALLOCALIGN);
119 		extra = aligned - ptr;
120 
121 		if (bytes + extra > mn->mr_Bytes)
122 			continue;
123 
124 		/*
125 		 * Cut extra from head and create new memory node from
126 		 * remainder.
127 		 */
128 
129 		if (extra != 0) {
130 			MemNode *new;
131 
132 			new = (MemNode *)aligned;
133 			new->mr_Next = mn->mr_Next;
134 			new->mr_Bytes = mn->mr_Bytes - extra;
135 
136 			/* And update current memory node */
137 			mn->mr_Bytes = extra;
138 			mn->mr_Next = new;
139 			/* In next iteration, we will get our aligned address */
140 			continue;
141 		}
142 
143 		/*
144 		 *  Cut a chunk of memory out of the beginning of this
145 		 *  block and fixup the link appropriately.
146 		 */
147 
148 		if (mn->mr_Bytes == bytes) {
149 			*pmn = mn->mr_Next;
150 		} else {
151 			mn = (MemNode *)((char *)mn + bytes);
152 			mn->mr_Next  = ((MemNode *)ptr)->mr_Next;
153 			mn->mr_Bytes = ((MemNode *)ptr)->mr_Bytes - bytes;
154 			*pmn = mn;
155 		}
156 		mp->mp_Used += bytes;
157 		return(ptr);
158 	}
159 
160 	/*
161 	 * Memory pool is full, return NULL.
162 	 */
163 
164 	return (NULL);
165 }
166 
167 /*
168  * zfree() - free previously allocated memory
169  */
170 
171 void
zfree(MemPool * mp,void * ptr,uintptr_t bytes)172 zfree(MemPool *mp, void *ptr, uintptr_t bytes)
173 {
174 	MemNode **pmn;
175 	MemNode *mn;
176 
177 	/*
178 	 * align according to pool object size (can be 0).  This is
179 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
180 	 */
181 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
182 
183 	if (bytes == 0)
184 		return;
185 
186 	/*
187 	 * panic if illegal pointer
188 	 */
189 
190 	if ((char *)ptr < (char *)mp->mp_Base ||
191 	    (char *)ptr + bytes > (char *)mp->mp_End ||
192 	    ((uintptr_t)ptr & MEMNODE_SIZE_MASK) != 0)
193 		panic("zfree(%p,%ju): wild pointer", ptr, (uintmax_t)bytes);
194 
195 	/*
196 	 * free the segment
197 	 */
198 	mp->mp_Used -= bytes;
199 
200 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
201 		/*
202 		 * If area between last node and current node
203 		 *  - check range
204 		 *  - check merge with next area
205 		 *  - check merge with previous area
206 		 */
207 		if ((char *)ptr <= (char *)mn) {
208 			/*
209 			 * range check
210 			 */
211 			if ((char *)ptr + bytes > (char *)mn) {
212 				panic("zfree(%p,%ju): corrupt memlist1", ptr,
213 				    (uintmax_t)bytes);
214 			}
215 
216 			/*
217 			 * merge against next area or create independent area
218 			 */
219 
220 			if ((char *)ptr + bytes == (char *)mn) {
221 				((MemNode *)ptr)->mr_Next = mn->mr_Next;
222 				((MemNode *)ptr)->mr_Bytes =
223 				    bytes + mn->mr_Bytes;
224 			} else {
225 				((MemNode *)ptr)->mr_Next = mn;
226 				((MemNode *)ptr)->mr_Bytes = bytes;
227 			}
228 			*pmn = mn = (MemNode *)ptr;
229 
230 			/*
231 			 * merge against previous area (if there is a previous
232 			 * area).
233 			 */
234 
235 			if (pmn != &mp->mp_First) {
236 				if ((char *)pmn + ((MemNode*)pmn)->mr_Bytes ==
237 				    (char *)ptr) {
238 					((MemNode *)pmn)->mr_Next = mn->mr_Next;
239 					((MemNode *)pmn)->mr_Bytes +=
240 					    mn->mr_Bytes;
241 					mn = (MemNode *)pmn;
242 				}
243 			}
244 			return;
245 		}
246 		if ((char *)ptr < (char *)mn + mn->mr_Bytes) {
247 			panic("zfree(%p,%ju): corrupt memlist2", ptr,
248 			    (uintmax_t)bytes);
249 		}
250 	}
251 	/*
252 	 * We are beyond the last MemNode, append new MemNode.  Merge against
253 	 * previous area if possible.
254 	 */
255 	if (pmn == &mp->mp_First ||
256 	    (char *)pmn + ((MemNode *)pmn)->mr_Bytes != (char *)ptr) {
257 		((MemNode *)ptr)->mr_Next = NULL;
258 		((MemNode *)ptr)->mr_Bytes = bytes;
259 		*pmn = (MemNode *)ptr;
260 		mn = (MemNode *)ptr;
261 	} else {
262 		((MemNode *)pmn)->mr_Bytes += bytes;
263 		mn = (MemNode *)pmn;
264 	}
265 }
266 
267 /*
268  * zextendPool() - extend memory pool to cover additional space.
269  *
270  *		   Note: the added memory starts out as allocated, you
271  *		   must free it to make it available to the memory subsystem.
272  *
273  *		   Note: mp_Size may not reflect (mp_End - mp_Base) range
274  *		   due to other parts of the system doing their own sbrk()
275  *		   calls.
276  */
277 
278 void
zextendPool(MemPool * mp,void * base,uintptr_t bytes)279 zextendPool(MemPool *mp, void *base, uintptr_t bytes)
280 {
281 	if (mp->mp_Size == 0) {
282 		mp->mp_Base = base;
283 		mp->mp_Used = bytes;
284 		mp->mp_End = (char *)base + bytes;
285 		mp->mp_Size = bytes;
286 	} else {
287 		void *pend = (char *)mp->mp_Base + mp->mp_Size;
288 
289 		if (base < mp->mp_Base) {
290 			mp->mp_Size += (char *)mp->mp_Base - (char *)base;
291 			mp->mp_Used += (char *)mp->mp_Base - (char *)base;
292 			mp->mp_Base = base;
293 		}
294 		base = (char *)base + bytes;
295 		if (base > pend) {
296 			mp->mp_Size += (char *)base - (char *)pend;
297 			mp->mp_Used += (char *)base - (char *)pend;
298 			mp->mp_End = (char *)base;
299 		}
300 	}
301 }
302 
303 #ifdef ZALLOCDEBUG
304 
305 void
zallocstats(MemPool * mp)306 zallocstats(MemPool *mp)
307 {
308 	int abytes = 0;
309 	int hbytes = 0;
310 	int fcount = 0;
311 	MemNode *mn;
312 
313 	printf("%d bytes reserved", (int)mp->mp_Size);
314 
315 	mn = mp->mp_First;
316 
317 	if ((void *)mn != (void *)mp->mp_Base) {
318 		abytes += (char *)mn - (char *)mp->mp_Base;
319 	}
320 
321 	while (mn != NULL) {
322 		if ((char *)mn + mn->mr_Bytes != mp->mp_End) {
323 			hbytes += mn->mr_Bytes;
324 			++fcount;
325 		}
326 		if (mn->mr_Next != NULL) {
327 			abytes += (char *)mn->mr_Next -
328 			    ((char *)mn + mn->mr_Bytes);
329 		}
330 		mn = mn->mr_Next;
331 	}
332 	printf(" %d bytes allocated\n%d fragments (%d bytes fragmented)\n",
333 	    abytes, fcount, hbytes);
334 }
335 
336 #endif
337