1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory object module.
63 */
64
65 #include "opt_vm.h"
66
67 #include <sys/systm.h>
68 #include <sys/blockcount.h>
69 #include <sys/conf.h>
70 #include <sys/cpuset.h>
71 #include <sys/ipc.h>
72 #include <sys/jail.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/mutex.h>
79 #include <sys/pctrie.h>
80 #include <sys/proc.h>
81 #include <sys/refcount.h>
82 #include <sys/shm.h>
83 #include <sys/sx.h>
84 #include <sys/sysctl.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_pagequeue.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/uma.h>
108
109 static int old_msync;
110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111 "Use old (insecure) msync behavior");
112
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114 boolean_t *allclean);
115 static void vm_object_backing_remove(vm_object_t object);
116
117 /*
118 * Virtual memory objects maintain the actual data
119 * associated with allocated virtual memory. A given
120 * page of memory exists within exactly one object.
121 *
122 * An object is only deallocated when all "references"
123 * are given up. Only one "reference" to a given
124 * region of an object should be writeable.
125 *
126 * Associated with each object is a list of all resident
127 * memory pages belonging to that object; this list is
128 * maintained by the "vm_page" module, and locked by the object's
129 * lock.
130 *
131 * Each object also records a "pager" routine which is
132 * used to retrieve (and store) pages to the proper backing
133 * storage. In addition, objects may be backed by other
134 * objects from which they were virtual-copied.
135 *
136 * The only items within the object structure which are
137 * modified after time of creation are:
138 * reference count locked by object's lock
139 * pager routine locked by object's lock
140 *
141 */
142
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx; /* lock for object list and count */
145
146 struct vm_object kernel_object_store;
147
148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149 "VM object stats");
150
151 static COUNTER_U64_DEFINE_EARLY(object_collapses);
152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153 &object_collapses,
154 "VM object collapses");
155
156 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158 &object_bypasses,
159 "VM object bypasses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
163 &object_collapse_waits,
164 "Number of sleeps for collapse");
165
166 static uma_zone_t obj_zone;
167
168 static int vm_object_zinit(void *mem, int size, int flags);
169
170 #ifdef INVARIANTS
171 static void vm_object_zdtor(void *mem, int size, void *arg);
172
173 static void
vm_object_zdtor(void * mem,int size,void * arg)174 vm_object_zdtor(void *mem, int size, void *arg)
175 {
176 vm_object_t object;
177
178 object = (vm_object_t)mem;
179 KASSERT(object->ref_count == 0,
180 ("object %p ref_count = %d", object, object->ref_count));
181 KASSERT(vm_radix_is_empty(&object->rtree),
182 ("object %p has resident pages in its trie", object));
183 #if VM_NRESERVLEVEL > 0
184 KASSERT(LIST_EMPTY(&object->rvq),
185 ("object %p has reservations",
186 object));
187 #endif
188 KASSERT(!vm_object_busied(object),
189 ("object %p busy = %d", object, blockcount_read(&object->busy)));
190 KASSERT(object->resident_page_count == 0,
191 ("object %p resident_page_count = %d",
192 object, object->resident_page_count));
193 KASSERT(atomic_load_int(&object->shadow_count) == 0,
194 ("object %p shadow_count = %d",
195 object, atomic_load_int(&object->shadow_count)));
196 KASSERT(object->type == OBJT_DEAD,
197 ("object %p has non-dead type %d",
198 object, object->type));
199 KASSERT(object->charge == 0 && object->cred == NULL,
200 ("object %p has non-zero charge %ju (%p)",
201 object, (uintmax_t)object->charge, object->cred));
202 }
203 #endif
204
205 static int
vm_object_zinit(void * mem,int size,int flags)206 vm_object_zinit(void *mem, int size, int flags)
207 {
208 vm_object_t object;
209
210 object = (vm_object_t)mem;
211 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
212
213 /* These are true for any object that has been freed */
214 object->type = OBJT_DEAD;
215 vm_radix_init(&object->rtree);
216 refcount_init(&object->ref_count, 0);
217 blockcount_init(&object->paging_in_progress);
218 blockcount_init(&object->busy);
219 object->resident_page_count = 0;
220 atomic_store_int(&object->shadow_count, 0);
221 object->flags = OBJ_DEAD;
222
223 mtx_lock(&vm_object_list_mtx);
224 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
225 mtx_unlock(&vm_object_list_mtx);
226 return (0);
227 }
228
229 static void
_vm_object_allocate(objtype_t type,vm_pindex_t size,u_short flags,vm_object_t object,void * handle)230 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
231 vm_object_t object, void *handle)
232 {
233 LIST_INIT(&object->shadow_head);
234
235 object->type = type;
236 object->flags = flags;
237 if ((flags & OBJ_SWAP) != 0) {
238 pctrie_init(&object->un_pager.swp.swp_blks);
239 object->un_pager.swp.writemappings = 0;
240 }
241
242 /*
243 * Ensure that swap_pager_swapoff() iteration over object_list
244 * sees up to date type and pctrie head if it observed
245 * non-dead object.
246 */
247 atomic_thread_fence_rel();
248
249 object->pg_color = 0;
250 object->size = size;
251 object->domain.dr_policy = NULL;
252 object->generation = 1;
253 object->cleangeneration = 1;
254 refcount_init(&object->ref_count, 1);
255 object->memattr = VM_MEMATTR_DEFAULT;
256 object->cred = NULL;
257 object->charge = 0;
258 object->handle = handle;
259 object->backing_object = NULL;
260 object->backing_object_offset = (vm_ooffset_t) 0;
261 #if VM_NRESERVLEVEL > 0
262 LIST_INIT(&object->rvq);
263 #endif
264 umtx_shm_object_init(object);
265 }
266
267 /*
268 * vm_object_init:
269 *
270 * Initialize the VM objects module.
271 */
272 void
vm_object_init(void)273 vm_object_init(void)
274 {
275 TAILQ_INIT(&vm_object_list);
276 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
277
278 rw_init(&kernel_object->lock, "kernel vm object");
279 vm_radix_init(&kernel_object->rtree);
280 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
281 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
282 #if VM_NRESERVLEVEL > 0
283 kernel_object->flags |= OBJ_COLORED;
284 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286 kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
287
288 /*
289 * The lock portion of struct vm_object must be type stable due
290 * to vm_pageout_fallback_object_lock locking a vm object
291 * without holding any references to it.
292 *
293 * paging_in_progress is valid always. Lockless references to
294 * the objects may acquire pip and then check OBJ_DEAD.
295 */
296 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298 vm_object_zdtor,
299 #else
300 NULL,
301 #endif
302 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303
304 vm_radix_zinit();
305 }
306
307 void
vm_object_clear_flag(vm_object_t object,u_short bits)308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310
311 VM_OBJECT_ASSERT_WLOCKED(object);
312 object->flags &= ~bits;
313 }
314
315 /*
316 * Sets the default memory attribute for the specified object. Pages
317 * that are allocated to this object are by default assigned this memory
318 * attribute.
319 *
320 * Presently, this function must be called before any pages are allocated
321 * to the object. In the future, this requirement may be relaxed for
322 * "default" and "swap" objects.
323 */
324 int
vm_object_set_memattr(vm_object_t object,vm_memattr_t memattr)325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327
328 VM_OBJECT_ASSERT_WLOCKED(object);
329
330 if (object->type == OBJT_DEAD)
331 return (KERN_INVALID_ARGUMENT);
332 if (!vm_radix_is_empty(&object->rtree))
333 return (KERN_FAILURE);
334
335 object->memattr = memattr;
336 return (KERN_SUCCESS);
337 }
338
339 void
vm_object_pip_add(vm_object_t object,short i)340 vm_object_pip_add(vm_object_t object, short i)
341 {
342
343 if (i > 0)
344 blockcount_acquire(&object->paging_in_progress, i);
345 }
346
347 void
vm_object_pip_wakeup(vm_object_t object)348 vm_object_pip_wakeup(vm_object_t object)
349 {
350
351 vm_object_pip_wakeupn(object, 1);
352 }
353
354 void
vm_object_pip_wakeupn(vm_object_t object,short i)355 vm_object_pip_wakeupn(vm_object_t object, short i)
356 {
357
358 if (i > 0)
359 blockcount_release(&object->paging_in_progress, i);
360 }
361
362 /*
363 * Atomically drop the object lock and wait for pip to drain. This protects
364 * from sleep/wakeup races due to identity changes. The lock is not re-acquired
365 * on return.
366 */
367 static void
vm_object_pip_sleep(vm_object_t object,const char * waitid)368 vm_object_pip_sleep(vm_object_t object, const char *waitid)
369 {
370
371 (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
372 waitid, PVM | PDROP);
373 }
374
375 void
vm_object_pip_wait(vm_object_t object,const char * waitid)376 vm_object_pip_wait(vm_object_t object, const char *waitid)
377 {
378
379 VM_OBJECT_ASSERT_WLOCKED(object);
380
381 blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
382 PVM);
383 }
384
385 void
vm_object_pip_wait_unlocked(vm_object_t object,const char * waitid)386 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
387 {
388
389 VM_OBJECT_ASSERT_UNLOCKED(object);
390
391 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
392 }
393
394 /*
395 * vm_object_allocate:
396 *
397 * Returns a new object with the given size.
398 */
399 vm_object_t
vm_object_allocate(objtype_t type,vm_pindex_t size)400 vm_object_allocate(objtype_t type, vm_pindex_t size)
401 {
402 vm_object_t object;
403 u_short flags;
404
405 switch (type) {
406 case OBJT_DEAD:
407 panic("vm_object_allocate: can't create OBJT_DEAD");
408 case OBJT_SWAP:
409 flags = OBJ_COLORED | OBJ_SWAP;
410 break;
411 case OBJT_DEVICE:
412 case OBJT_SG:
413 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
414 break;
415 case OBJT_MGTDEVICE:
416 flags = OBJ_FICTITIOUS;
417 break;
418 case OBJT_PHYS:
419 flags = OBJ_UNMANAGED;
420 break;
421 case OBJT_VNODE:
422 flags = 0;
423 break;
424 default:
425 panic("vm_object_allocate: type %d is undefined or dynamic",
426 type);
427 }
428 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
429 _vm_object_allocate(type, size, flags, object, NULL);
430
431 return (object);
432 }
433
434 vm_object_t
vm_object_allocate_dyn(objtype_t dyntype,vm_pindex_t size,u_short flags)435 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
436 {
437 vm_object_t object;
438
439 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
440 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
441 _vm_object_allocate(dyntype, size, flags, object, NULL);
442
443 return (object);
444 }
445
446 /*
447 * vm_object_allocate_anon:
448 *
449 * Returns a new default object of the given size and marked as
450 * anonymous memory for special split/collapse handling. Color
451 * to be initialized by the caller.
452 */
453 vm_object_t
vm_object_allocate_anon(vm_pindex_t size,vm_object_t backing_object,struct ucred * cred,vm_size_t charge)454 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
455 struct ucred *cred, vm_size_t charge)
456 {
457 vm_object_t handle, object;
458
459 if (backing_object == NULL)
460 handle = NULL;
461 else if ((backing_object->flags & OBJ_ANON) != 0)
462 handle = backing_object->handle;
463 else
464 handle = backing_object;
465 object = uma_zalloc(obj_zone, M_WAITOK);
466 _vm_object_allocate(OBJT_SWAP, size,
467 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
468 object->cred = cred;
469 object->charge = cred != NULL ? charge : 0;
470 return (object);
471 }
472
473 static void
vm_object_reference_vnode(vm_object_t object)474 vm_object_reference_vnode(vm_object_t object)
475 {
476 u_int old;
477
478 /*
479 * vnode objects need the lock for the first reference
480 * to serialize with vnode_object_deallocate().
481 */
482 if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
483 VM_OBJECT_RLOCK(object);
484 old = refcount_acquire(&object->ref_count);
485 if (object->type == OBJT_VNODE && old == 0)
486 vref(object->handle);
487 VM_OBJECT_RUNLOCK(object);
488 }
489 }
490
491 /*
492 * vm_object_reference:
493 *
494 * Acquires a reference to the given object.
495 */
496 void
vm_object_reference(vm_object_t object)497 vm_object_reference(vm_object_t object)
498 {
499
500 if (object == NULL)
501 return;
502
503 if (object->type == OBJT_VNODE)
504 vm_object_reference_vnode(object);
505 else
506 refcount_acquire(&object->ref_count);
507 KASSERT((object->flags & OBJ_DEAD) == 0,
508 ("vm_object_reference: Referenced dead object."));
509 }
510
511 /*
512 * vm_object_reference_locked:
513 *
514 * Gets another reference to the given object.
515 *
516 * The object must be locked.
517 */
518 void
vm_object_reference_locked(vm_object_t object)519 vm_object_reference_locked(vm_object_t object)
520 {
521 u_int old;
522
523 VM_OBJECT_ASSERT_LOCKED(object);
524 old = refcount_acquire(&object->ref_count);
525 if (object->type == OBJT_VNODE && old == 0)
526 vref(object->handle);
527 KASSERT((object->flags & OBJ_DEAD) == 0,
528 ("vm_object_reference: Referenced dead object."));
529 }
530
531 /*
532 * Handle deallocating an object of type OBJT_VNODE.
533 */
534 static void
vm_object_deallocate_vnode(vm_object_t object)535 vm_object_deallocate_vnode(vm_object_t object)
536 {
537 struct vnode *vp = (struct vnode *) object->handle;
538 bool last;
539
540 KASSERT(object->type == OBJT_VNODE,
541 ("vm_object_deallocate_vnode: not a vnode object"));
542 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
543
544 /* Object lock to protect handle lookup. */
545 last = refcount_release(&object->ref_count);
546 VM_OBJECT_RUNLOCK(object);
547
548 if (!last)
549 return;
550
551 if (!umtx_shm_vnobj_persistent)
552 umtx_shm_object_terminated(object);
553
554 /* vrele may need the vnode lock. */
555 vrele(vp);
556 }
557
558 /*
559 * We dropped a reference on an object and discovered that it had a
560 * single remaining shadow. This is a sibling of the reference we
561 * dropped. Attempt to collapse the sibling and backing object.
562 */
563 static vm_object_t
vm_object_deallocate_anon(vm_object_t backing_object)564 vm_object_deallocate_anon(vm_object_t backing_object)
565 {
566 vm_object_t object;
567
568 /* Fetch the final shadow. */
569 object = LIST_FIRST(&backing_object->shadow_head);
570 KASSERT(object != NULL &&
571 atomic_load_int(&backing_object->shadow_count) == 1,
572 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
573 backing_object->ref_count,
574 atomic_load_int(&backing_object->shadow_count)));
575 KASSERT((object->flags & OBJ_ANON) != 0,
576 ("invalid shadow object %p", object));
577
578 if (!VM_OBJECT_TRYWLOCK(object)) {
579 /*
580 * Prevent object from disappearing since we do not have a
581 * reference.
582 */
583 vm_object_pip_add(object, 1);
584 VM_OBJECT_WUNLOCK(backing_object);
585 VM_OBJECT_WLOCK(object);
586 vm_object_pip_wakeup(object);
587 } else
588 VM_OBJECT_WUNLOCK(backing_object);
589
590 /*
591 * Check for a collapse/terminate race with the last reference holder.
592 */
593 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594 !refcount_acquire_if_not_zero(&object->ref_count)) {
595 VM_OBJECT_WUNLOCK(object);
596 return (NULL);
597 }
598 backing_object = object->backing_object;
599 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600 vm_object_collapse(object);
601 VM_OBJECT_WUNLOCK(object);
602
603 return (object);
604 }
605
606 /*
607 * vm_object_deallocate:
608 *
609 * Release a reference to the specified object,
610 * gained either through a vm_object_allocate
611 * or a vm_object_reference call. When all references
612 * are gone, storage associated with this object
613 * may be relinquished.
614 *
615 * No object may be locked.
616 */
617 void
vm_object_deallocate(vm_object_t object)618 vm_object_deallocate(vm_object_t object)
619 {
620 vm_object_t temp;
621 bool released;
622
623 while (object != NULL) {
624 /*
625 * If the reference count goes to 0 we start calling
626 * vm_object_terminate() on the object chain. A ref count
627 * of 1 may be a special case depending on the shadow count
628 * being 0 or 1. These cases require a write lock on the
629 * object.
630 */
631 if ((object->flags & OBJ_ANON) == 0)
632 released = refcount_release_if_gt(&object->ref_count, 1);
633 else
634 released = refcount_release_if_gt(&object->ref_count, 2);
635 if (released)
636 return;
637
638 if (object->type == OBJT_VNODE) {
639 VM_OBJECT_RLOCK(object);
640 if (object->type == OBJT_VNODE) {
641 vm_object_deallocate_vnode(object);
642 return;
643 }
644 VM_OBJECT_RUNLOCK(object);
645 }
646
647 VM_OBJECT_WLOCK(object);
648 KASSERT(object->ref_count > 0,
649 ("vm_object_deallocate: object deallocated too many times: %d",
650 object->type));
651
652 /*
653 * If this is not the final reference to an anonymous
654 * object we may need to collapse the shadow chain.
655 */
656 if (!refcount_release(&object->ref_count)) {
657 if (object->ref_count > 1 ||
658 atomic_load_int(&object->shadow_count) == 0) {
659 if ((object->flags & OBJ_ANON) != 0 &&
660 object->ref_count == 1)
661 vm_object_set_flag(object,
662 OBJ_ONEMAPPING);
663 VM_OBJECT_WUNLOCK(object);
664 return;
665 }
666
667 /* Handle collapsing last ref on anonymous objects. */
668 object = vm_object_deallocate_anon(object);
669 continue;
670 }
671
672 /*
673 * Handle the final reference to an object. We restart
674 * the loop with the backing object to avoid recursion.
675 */
676 umtx_shm_object_terminated(object);
677 temp = object->backing_object;
678 if (temp != NULL) {
679 KASSERT(object->type == OBJT_SWAP,
680 ("shadowed tmpfs v_object 2 %p", object));
681 vm_object_backing_remove(object);
682 }
683
684 KASSERT((object->flags & OBJ_DEAD) == 0,
685 ("vm_object_deallocate: Terminating dead object."));
686 vm_object_set_flag(object, OBJ_DEAD);
687 vm_object_terminate(object);
688 object = temp;
689 }
690 }
691
692 void
vm_object_destroy(vm_object_t object)693 vm_object_destroy(vm_object_t object)
694 {
695 uma_zfree(obj_zone, object);
696 }
697
698 static void
vm_object_sub_shadow(vm_object_t object)699 vm_object_sub_shadow(vm_object_t object)
700 {
701 KASSERT(object->shadow_count >= 1,
702 ("object %p sub_shadow count zero", object));
703 atomic_subtract_int(&object->shadow_count, 1);
704 }
705
706 static void
vm_object_backing_remove_locked(vm_object_t object)707 vm_object_backing_remove_locked(vm_object_t object)
708 {
709 vm_object_t backing_object;
710
711 backing_object = object->backing_object;
712 VM_OBJECT_ASSERT_WLOCKED(object);
713 VM_OBJECT_ASSERT_WLOCKED(backing_object);
714
715 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
716 ("vm_object_backing_remove: Removing collapsing object."));
717
718 vm_object_sub_shadow(backing_object);
719 if ((object->flags & OBJ_SHADOWLIST) != 0) {
720 LIST_REMOVE(object, shadow_list);
721 vm_object_clear_flag(object, OBJ_SHADOWLIST);
722 }
723 object->backing_object = NULL;
724 }
725
726 static void
vm_object_backing_remove(vm_object_t object)727 vm_object_backing_remove(vm_object_t object)
728 {
729 vm_object_t backing_object;
730
731 VM_OBJECT_ASSERT_WLOCKED(object);
732
733 backing_object = object->backing_object;
734 if ((object->flags & OBJ_SHADOWLIST) != 0) {
735 VM_OBJECT_WLOCK(backing_object);
736 vm_object_backing_remove_locked(object);
737 VM_OBJECT_WUNLOCK(backing_object);
738 } else {
739 object->backing_object = NULL;
740 vm_object_sub_shadow(backing_object);
741 }
742 }
743
744 static void
vm_object_backing_insert_locked(vm_object_t object,vm_object_t backing_object)745 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
746 {
747
748 VM_OBJECT_ASSERT_WLOCKED(object);
749
750 atomic_add_int(&backing_object->shadow_count, 1);
751 if ((backing_object->flags & OBJ_ANON) != 0) {
752 VM_OBJECT_ASSERT_WLOCKED(backing_object);
753 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
754 shadow_list);
755 vm_object_set_flag(object, OBJ_SHADOWLIST);
756 }
757 object->backing_object = backing_object;
758 }
759
760 static void
vm_object_backing_insert(vm_object_t object,vm_object_t backing_object)761 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
762 {
763
764 VM_OBJECT_ASSERT_WLOCKED(object);
765
766 if ((backing_object->flags & OBJ_ANON) != 0) {
767 VM_OBJECT_WLOCK(backing_object);
768 vm_object_backing_insert_locked(object, backing_object);
769 VM_OBJECT_WUNLOCK(backing_object);
770 } else {
771 object->backing_object = backing_object;
772 atomic_add_int(&backing_object->shadow_count, 1);
773 }
774 }
775
776 /*
777 * Insert an object into a backing_object's shadow list with an additional
778 * reference to the backing_object added.
779 */
780 static void
vm_object_backing_insert_ref(vm_object_t object,vm_object_t backing_object)781 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
782 {
783
784 VM_OBJECT_ASSERT_WLOCKED(object);
785
786 if ((backing_object->flags & OBJ_ANON) != 0) {
787 VM_OBJECT_WLOCK(backing_object);
788 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
789 ("shadowing dead anonymous object"));
790 vm_object_reference_locked(backing_object);
791 vm_object_backing_insert_locked(object, backing_object);
792 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
793 VM_OBJECT_WUNLOCK(backing_object);
794 } else {
795 vm_object_reference(backing_object);
796 atomic_add_int(&backing_object->shadow_count, 1);
797 object->backing_object = backing_object;
798 }
799 }
800
801 /*
802 * Transfer a backing reference from backing_object to object.
803 */
804 static void
vm_object_backing_transfer(vm_object_t object,vm_object_t backing_object)805 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
806 {
807 vm_object_t new_backing_object;
808
809 /*
810 * Note that the reference to backing_object->backing_object
811 * moves from within backing_object to within object.
812 */
813 vm_object_backing_remove_locked(object);
814 new_backing_object = backing_object->backing_object;
815 if (new_backing_object == NULL)
816 return;
817 if ((new_backing_object->flags & OBJ_ANON) != 0) {
818 VM_OBJECT_WLOCK(new_backing_object);
819 vm_object_backing_remove_locked(backing_object);
820 vm_object_backing_insert_locked(object, new_backing_object);
821 VM_OBJECT_WUNLOCK(new_backing_object);
822 } else {
823 /*
824 * shadow_count for new_backing_object is left
825 * unchanged, its reference provided by backing_object
826 * is replaced by object.
827 */
828 object->backing_object = new_backing_object;
829 backing_object->backing_object = NULL;
830 }
831 }
832
833 /*
834 * Wait for a concurrent collapse to settle.
835 */
836 static void
vm_object_collapse_wait(vm_object_t object)837 vm_object_collapse_wait(vm_object_t object)
838 {
839
840 VM_OBJECT_ASSERT_WLOCKED(object);
841
842 while ((object->flags & OBJ_COLLAPSING) != 0) {
843 vm_object_pip_wait(object, "vmcolwait");
844 counter_u64_add(object_collapse_waits, 1);
845 }
846 }
847
848 /*
849 * Waits for a backing object to clear a pending collapse and returns
850 * it locked if it is an ANON object.
851 */
852 static vm_object_t
vm_object_backing_collapse_wait(vm_object_t object)853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855 vm_object_t backing_object;
856
857 VM_OBJECT_ASSERT_WLOCKED(object);
858
859 for (;;) {
860 backing_object = object->backing_object;
861 if (backing_object == NULL ||
862 (backing_object->flags & OBJ_ANON) == 0)
863 return (NULL);
864 VM_OBJECT_WLOCK(backing_object);
865 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866 break;
867 VM_OBJECT_WUNLOCK(object);
868 vm_object_pip_sleep(backing_object, "vmbckwait");
869 counter_u64_add(object_collapse_waits, 1);
870 VM_OBJECT_WLOCK(object);
871 }
872 return (backing_object);
873 }
874
875 /*
876 * vm_object_terminate_single_page removes a pageable page from the object,
877 * and removes it from the paging queues and frees it, if it is not wired.
878 * It is invoked via callback from vm_object_terminate_pages.
879 */
880 static void
vm_object_terminate_single_page(vm_page_t p,void * objectv)881 vm_object_terminate_single_page(vm_page_t p, void *objectv)
882 {
883 vm_object_t object __diagused = objectv;
884
885 vm_page_assert_unbusied(p);
886 KASSERT(p->object == object &&
887 (p->ref_count & VPRC_OBJREF) != 0,
888 ("%s: page %p is inconsistent", __func__, p));
889 p->object = NULL;
890 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
891 KASSERT((object->flags & OBJ_UNMANAGED) != 0 ||
892 vm_page_astate_load(p).queue != PQ_NONE,
893 ("%s: page %p does not belong to a queue", __func__, p));
894 VM_CNT_INC(v_pfree);
895 vm_page_free(p);
896 }
897 }
898
899 /*
900 * vm_object_terminate_pages removes any remaining pageable pages
901 * from the object and resets the object to an empty state.
902 */
903 static void
vm_object_terminate_pages(vm_object_t object)904 vm_object_terminate_pages(vm_object_t object)
905 {
906 VM_OBJECT_ASSERT_WLOCKED(object);
907
908 /*
909 * If the object contained any pages, then reset it to an empty state.
910 * Rather than incrementally removing each page from the object, the
911 * page and object are reset to any empty state.
912 */
913 if (object->resident_page_count == 0)
914 return;
915
916 vm_radix_reclaim_callback(&object->rtree,
917 vm_object_terminate_single_page, object);
918 object->resident_page_count = 0;
919 if (object->type == OBJT_VNODE)
920 vdrop(object->handle);
921 }
922
923 /*
924 * vm_object_terminate actually destroys the specified object, freeing
925 * up all previously used resources.
926 *
927 * The object must be locked.
928 * This routine may block.
929 */
930 void
vm_object_terminate(vm_object_t object)931 vm_object_terminate(vm_object_t object)
932 {
933
934 VM_OBJECT_ASSERT_WLOCKED(object);
935 KASSERT((object->flags & OBJ_DEAD) != 0,
936 ("terminating non-dead obj %p", object));
937 KASSERT((object->flags & OBJ_COLLAPSING) == 0,
938 ("terminating collapsing obj %p", object));
939 KASSERT(object->backing_object == NULL,
940 ("terminating shadow obj %p", object));
941
942 /*
943 * Wait for the pageout daemon and other current users to be
944 * done with the object. Note that new paging_in_progress
945 * users can come after this wait, but they must check
946 * OBJ_DEAD flag set (without unlocking the object), and avoid
947 * the object being terminated.
948 */
949 vm_object_pip_wait(object, "objtrm");
950
951 KASSERT(object->ref_count == 0,
952 ("vm_object_terminate: object with references, ref_count=%d",
953 object->ref_count));
954
955 if ((object->flags & OBJ_PG_DTOR) == 0)
956 vm_object_terminate_pages(object);
957
958 #if VM_NRESERVLEVEL > 0
959 if (__predict_false(!LIST_EMPTY(&object->rvq)))
960 vm_reserv_break_all(object);
961 #endif
962
963 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
964 ("%s: non-swap obj %p has cred", __func__, object));
965
966 /*
967 * Let the pager know object is dead.
968 */
969 vm_pager_deallocate(object);
970 VM_OBJECT_WUNLOCK(object);
971
972 vm_object_destroy(object);
973 }
974
975 /*
976 * Make the page read-only so that we can clear the object flags. However, if
977 * this is a nosync mmap then the object is likely to stay dirty so do not
978 * mess with the page and do not clear the object flags. Returns TRUE if the
979 * page should be flushed, and FALSE otherwise.
980 */
981 static boolean_t
vm_object_page_remove_write(vm_page_t p,int flags,boolean_t * allclean)982 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
983 {
984
985 vm_page_assert_busied(p);
986
987 /*
988 * If we have been asked to skip nosync pages and this is a
989 * nosync page, skip it. Note that the object flags were not
990 * cleared in this case so we do not have to set them.
991 */
992 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
993 *allclean = FALSE;
994 return (FALSE);
995 } else {
996 pmap_remove_write(p);
997 return (p->dirty != 0);
998 }
999 }
1000
1001 static int
vm_object_page_clean_flush(struct pctrie_iter * pages,vm_page_t p,int pagerflags,int flags,boolean_t * allclean,bool * eio)1002 vm_object_page_clean_flush(struct pctrie_iter *pages, vm_page_t p,
1003 int pagerflags, int flags, boolean_t *allclean, bool *eio)
1004 {
1005 vm_page_t ma[vm_pageout_page_count];
1006 int count, runlen;
1007
1008 vm_page_assert_xbusied(p);
1009 ma[0] = p;
1010 runlen = vm_radix_iter_lookup_range(pages, p->pindex + 1,
1011 &ma[1], vm_pageout_page_count - 1);
1012 for (count = 1; count <= runlen; count++) {
1013 p = ma[count];
1014 if (vm_page_tryxbusy(p) == 0)
1015 break;
1016 if (!vm_object_page_remove_write(p, flags, allclean)) {
1017 vm_page_xunbusy(p);
1018 break;
1019 }
1020 }
1021
1022 return (vm_pageout_flush(ma, count, pagerflags, eio));
1023 }
1024
1025 /*
1026 * vm_object_page_clean
1027 *
1028 * Clean all dirty pages in the specified range of object. Leaves page
1029 * on whatever queue it is currently on. If NOSYNC is set then do not
1030 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1031 * leaving the object dirty.
1032 *
1033 * For swap objects backing tmpfs regular files, do not flush anything,
1034 * but remove write protection on the mapped pages to update mtime through
1035 * mmaped writes.
1036 *
1037 * When stuffing pages asynchronously, allow clustering. XXX we need a
1038 * synchronous clustering mode implementation.
1039 *
1040 * Odd semantics: if start == end, we clean everything.
1041 *
1042 * The object must be locked.
1043 *
1044 * Returns FALSE if some page from the range was not written, as
1045 * reported by the pager, and TRUE otherwise.
1046 */
1047 boolean_t
vm_object_page_clean(vm_object_t object,vm_ooffset_t start,vm_ooffset_t end,int flags)1048 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1049 int flags)
1050 {
1051 struct pctrie_iter pages;
1052 vm_page_t np, p;
1053 vm_pindex_t pi, tend, tstart;
1054 int curgeneration, n, pagerflags;
1055 boolean_t res, allclean;
1056 bool eio;
1057
1058 VM_OBJECT_ASSERT_WLOCKED(object);
1059
1060 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1061 return (TRUE);
1062
1063 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1064 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1065 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1066
1067 tstart = OFF_TO_IDX(start);
1068 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1069 allclean = tstart == 0 && tend >= object->size;
1070 res = TRUE;
1071 vm_page_iter_init(&pages, object);
1072
1073 rescan:
1074 curgeneration = object->generation;
1075
1076 for (p = vm_radix_iter_lookup_ge(&pages, tstart); p != NULL; p = np) {
1077 pi = p->pindex;
1078 if (pi >= tend)
1079 break;
1080 if (vm_page_none_valid(p)) {
1081 np = vm_radix_iter_step(&pages);
1082 continue;
1083 }
1084 if (!vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL)) {
1085 pctrie_iter_reset(&pages);
1086 if (object->generation != curgeneration &&
1087 (flags & OBJPC_SYNC) != 0)
1088 goto rescan;
1089 np = vm_radix_iter_lookup_ge(&pages, pi);
1090 continue;
1091 }
1092 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1093 np = vm_radix_iter_step(&pages);
1094 vm_page_xunbusy(p);
1095 continue;
1096 }
1097 if (object->type == OBJT_VNODE) {
1098 n = vm_object_page_clean_flush(&pages, p, pagerflags,
1099 flags, &allclean, &eio);
1100 pctrie_iter_reset(&pages);
1101 if (eio) {
1102 res = FALSE;
1103 allclean = FALSE;
1104 }
1105 if (object->generation != curgeneration &&
1106 (flags & OBJPC_SYNC) != 0)
1107 goto rescan;
1108
1109 /*
1110 * If the VOP_PUTPAGES() did a truncated write, so
1111 * that even the first page of the run is not fully
1112 * written, vm_pageout_flush() returns 0 as the run
1113 * length. Since the condition that caused truncated
1114 * write may be permanent, e.g. exhausted free space,
1115 * accepting n == 0 would cause an infinite loop.
1116 *
1117 * Forwarding the iterator leaves the unwritten page
1118 * behind, but there is not much we can do there if
1119 * filesystem refuses to write it.
1120 */
1121 if (n == 0) {
1122 n = 1;
1123 allclean = FALSE;
1124 }
1125 } else {
1126 n = 1;
1127 vm_page_xunbusy(p);
1128 }
1129 np = vm_radix_iter_lookup_ge(&pages, pi + n);
1130 }
1131 #if 0
1132 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1133 #endif
1134
1135 /*
1136 * Leave updating cleangeneration for tmpfs objects to tmpfs
1137 * scan. It needs to update mtime, which happens for other
1138 * filesystems during page writeouts.
1139 */
1140 if (allclean && object->type == OBJT_VNODE)
1141 object->cleangeneration = curgeneration;
1142 return (res);
1143 }
1144
1145 /*
1146 * Note that there is absolutely no sense in writing out
1147 * anonymous objects, so we track down the vnode object
1148 * to write out.
1149 * We invalidate (remove) all pages from the address space
1150 * for semantic correctness.
1151 *
1152 * If the backing object is a device object with unmanaged pages, then any
1153 * mappings to the specified range of pages must be removed before this
1154 * function is called.
1155 *
1156 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1157 * may start out with a NULL object.
1158 */
1159 boolean_t
vm_object_sync(vm_object_t object,vm_ooffset_t offset,vm_size_t size,boolean_t syncio,boolean_t invalidate)1160 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1161 boolean_t syncio, boolean_t invalidate)
1162 {
1163 vm_object_t backing_object;
1164 struct vnode *vp;
1165 struct mount *mp;
1166 int error, flags, fsync_after;
1167 boolean_t res;
1168
1169 if (object == NULL)
1170 return (TRUE);
1171 res = TRUE;
1172 error = 0;
1173 VM_OBJECT_WLOCK(object);
1174 while ((backing_object = object->backing_object) != NULL) {
1175 VM_OBJECT_WLOCK(backing_object);
1176 offset += object->backing_object_offset;
1177 VM_OBJECT_WUNLOCK(object);
1178 object = backing_object;
1179 if (object->size < OFF_TO_IDX(offset + size))
1180 size = IDX_TO_OFF(object->size) - offset;
1181 }
1182 /*
1183 * Flush pages if writing is allowed, invalidate them
1184 * if invalidation requested. Pages undergoing I/O
1185 * will be ignored by vm_object_page_remove().
1186 *
1187 * We cannot lock the vnode and then wait for paging
1188 * to complete without deadlocking against vm_fault.
1189 * Instead we simply call vm_object_page_remove() and
1190 * allow it to block internally on a page-by-page
1191 * basis when it encounters pages undergoing async
1192 * I/O.
1193 */
1194 if (object->type == OBJT_VNODE &&
1195 vm_object_mightbedirty(object) != 0 &&
1196 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1197 VM_OBJECT_WUNLOCK(object);
1198 (void)vn_start_write(vp, &mp, V_WAIT);
1199 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1200 if (syncio && !invalidate && offset == 0 &&
1201 atop(size) == object->size) {
1202 /*
1203 * If syncing the whole mapping of the file,
1204 * it is faster to schedule all the writes in
1205 * async mode, also allowing the clustering,
1206 * and then wait for i/o to complete.
1207 */
1208 flags = 0;
1209 fsync_after = TRUE;
1210 } else {
1211 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1212 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1213 fsync_after = FALSE;
1214 }
1215 VM_OBJECT_WLOCK(object);
1216 res = vm_object_page_clean(object, offset, offset + size,
1217 flags);
1218 VM_OBJECT_WUNLOCK(object);
1219 if (fsync_after) {
1220 for (;;) {
1221 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1222 if (error != ERELOOKUP)
1223 break;
1224
1225 /*
1226 * Allow SU/bufdaemon to handle more
1227 * dependencies in the meantime.
1228 */
1229 VOP_UNLOCK(vp);
1230 vn_finished_write(mp);
1231
1232 (void)vn_start_write(vp, &mp, V_WAIT);
1233 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1234 }
1235 }
1236 VOP_UNLOCK(vp);
1237 vn_finished_write(mp);
1238 if (error != 0)
1239 res = FALSE;
1240 VM_OBJECT_WLOCK(object);
1241 }
1242 if ((object->type == OBJT_VNODE ||
1243 object->type == OBJT_DEVICE) && invalidate) {
1244 if (object->type == OBJT_DEVICE)
1245 /*
1246 * The option OBJPR_NOTMAPPED must be passed here
1247 * because vm_object_page_remove() cannot remove
1248 * unmanaged mappings.
1249 */
1250 flags = OBJPR_NOTMAPPED;
1251 else if (old_msync)
1252 flags = 0;
1253 else
1254 flags = OBJPR_CLEANONLY;
1255 vm_object_page_remove(object, OFF_TO_IDX(offset),
1256 OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1257 }
1258 VM_OBJECT_WUNLOCK(object);
1259 return (res);
1260 }
1261
1262 /*
1263 * Determine whether the given advice can be applied to the object. Advice is
1264 * not applied to unmanaged pages since they never belong to page queues, and
1265 * since MADV_FREE is destructive, it can apply only to anonymous pages that
1266 * have been mapped at most once.
1267 */
1268 static bool
vm_object_advice_applies(vm_object_t object,int advice)1269 vm_object_advice_applies(vm_object_t object, int advice)
1270 {
1271
1272 if ((object->flags & OBJ_UNMANAGED) != 0)
1273 return (false);
1274 if (advice != MADV_FREE)
1275 return (true);
1276 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1277 (OBJ_ONEMAPPING | OBJ_ANON));
1278 }
1279
1280 static void
vm_object_madvise_freespace(vm_object_t object,int advice,vm_pindex_t pindex,vm_size_t size)1281 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1282 vm_size_t size)
1283 {
1284
1285 if (advice == MADV_FREE)
1286 vm_pager_freespace(object, pindex, size);
1287 }
1288
1289 /*
1290 * vm_object_madvise:
1291 *
1292 * Implements the madvise function at the object/page level.
1293 *
1294 * MADV_WILLNEED (any object)
1295 *
1296 * Activate the specified pages if they are resident.
1297 *
1298 * MADV_DONTNEED (any object)
1299 *
1300 * Deactivate the specified pages if they are resident.
1301 *
1302 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1303 *
1304 * Deactivate and clean the specified pages if they are
1305 * resident. This permits the process to reuse the pages
1306 * without faulting or the kernel to reclaim the pages
1307 * without I/O.
1308 */
1309 void
vm_object_madvise(vm_object_t object,vm_pindex_t pindex,vm_pindex_t end,int advice)1310 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1311 int advice)
1312 {
1313 struct pctrie_iter pages;
1314 vm_pindex_t tpindex;
1315 vm_object_t backing_object, tobject;
1316 vm_page_t m, tm;
1317
1318 if (object == NULL)
1319 return;
1320
1321 vm_page_iter_init(&pages, object);
1322 relookup:
1323 VM_OBJECT_WLOCK(object);
1324 if (!vm_object_advice_applies(object, advice)) {
1325 VM_OBJECT_WUNLOCK(object);
1326 return;
1327 }
1328 for (m = vm_radix_iter_lookup_ge(&pages, pindex); pindex < end;
1329 pindex++) {
1330 tobject = object;
1331
1332 /*
1333 * If the next page isn't resident in the top-level object, we
1334 * need to search the shadow chain. When applying MADV_FREE, we
1335 * take care to release any swap space used to store
1336 * non-resident pages.
1337 */
1338 if (m == NULL || pindex < m->pindex) {
1339 /*
1340 * Optimize a common case: if the top-level object has
1341 * no backing object, we can skip over the non-resident
1342 * range in constant time.
1343 */
1344 if (object->backing_object == NULL) {
1345 tpindex = (m != NULL && m->pindex < end) ?
1346 m->pindex : end;
1347 vm_object_madvise_freespace(object, advice,
1348 pindex, tpindex - pindex);
1349 if ((pindex = tpindex) == end)
1350 break;
1351 goto next_page;
1352 }
1353
1354 tpindex = pindex;
1355 do {
1356 vm_object_madvise_freespace(tobject, advice,
1357 tpindex, 1);
1358 /*
1359 * Prepare to search the next object in the
1360 * chain.
1361 */
1362 backing_object = tobject->backing_object;
1363 if (backing_object == NULL)
1364 goto next_pindex;
1365 VM_OBJECT_WLOCK(backing_object);
1366 tpindex +=
1367 OFF_TO_IDX(tobject->backing_object_offset);
1368 if (tobject != object)
1369 VM_OBJECT_WUNLOCK(tobject);
1370 tobject = backing_object;
1371 if (!vm_object_advice_applies(tobject, advice))
1372 goto next_pindex;
1373 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1374 NULL);
1375 } else {
1376 next_page:
1377 tm = m;
1378 m = vm_radix_iter_step(&pages);
1379 }
1380
1381 /*
1382 * If the page is not in a normal state, skip it. The page
1383 * can not be invalidated while the object lock is held.
1384 */
1385 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1386 goto next_pindex;
1387 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1388 ("vm_object_madvise: page %p is fictitious", tm));
1389 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1390 ("vm_object_madvise: page %p is not managed", tm));
1391 if (vm_page_tryxbusy(tm) == 0) {
1392 if (object != tobject)
1393 VM_OBJECT_WUNLOCK(object);
1394 if (advice == MADV_WILLNEED) {
1395 /*
1396 * Reference the page before unlocking and
1397 * sleeping so that the page daemon is less
1398 * likely to reclaim it.
1399 */
1400 vm_page_aflag_set(tm, PGA_REFERENCED);
1401 }
1402 if (!vm_page_busy_sleep(tm, "madvpo", 0))
1403 VM_OBJECT_WUNLOCK(tobject);
1404 pctrie_iter_reset(&pages);
1405 goto relookup;
1406 }
1407 vm_page_advise(tm, advice);
1408 vm_page_xunbusy(tm);
1409 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1410 next_pindex:
1411 if (tobject != object)
1412 VM_OBJECT_WUNLOCK(tobject);
1413 }
1414 VM_OBJECT_WUNLOCK(object);
1415 }
1416
1417 /*
1418 * vm_object_shadow:
1419 *
1420 * Create a new object which is backed by the
1421 * specified existing object range. The source
1422 * object reference is deallocated.
1423 *
1424 * The new object and offset into that object
1425 * are returned in the source parameters.
1426 */
1427 void
vm_object_shadow(vm_object_t * object,vm_ooffset_t * offset,vm_size_t length,struct ucred * cred,bool shared)1428 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1429 struct ucred *cred, bool shared)
1430 {
1431 vm_object_t source;
1432 vm_object_t result;
1433
1434 source = *object;
1435
1436 /*
1437 * Don't create the new object if the old object isn't shared.
1438 *
1439 * If we hold the only reference we can guarantee that it won't
1440 * increase while we have the map locked. Otherwise the race is
1441 * harmless and we will end up with an extra shadow object that
1442 * will be collapsed later.
1443 */
1444 if (source != NULL && source->ref_count == 1 &&
1445 (source->flags & OBJ_ANON) != 0)
1446 return;
1447
1448 /*
1449 * Allocate a new object with the given length.
1450 */
1451 result = vm_object_allocate_anon(atop(length), source, cred, length);
1452
1453 /*
1454 * Store the offset into the source object, and fix up the offset into
1455 * the new object.
1456 */
1457 result->backing_object_offset = *offset;
1458
1459 if (shared || source != NULL) {
1460 VM_OBJECT_WLOCK(result);
1461
1462 /*
1463 * The new object shadows the source object, adding a
1464 * reference to it. Our caller changes his reference
1465 * to point to the new object, removing a reference to
1466 * the source object. Net result: no change of
1467 * reference count, unless the caller needs to add one
1468 * more reference due to forking a shared map entry.
1469 */
1470 if (shared) {
1471 vm_object_reference_locked(result);
1472 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1473 }
1474
1475 /*
1476 * Try to optimize the result object's page color when
1477 * shadowing in order to maintain page coloring
1478 * consistency in the combined shadowed object.
1479 */
1480 if (source != NULL) {
1481 vm_object_backing_insert(result, source);
1482 result->domain = source->domain;
1483 #if VM_NRESERVLEVEL > 0
1484 vm_object_set_flag(result,
1485 (source->flags & OBJ_COLORED));
1486 result->pg_color = (source->pg_color +
1487 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1488 1)) - 1);
1489 #endif
1490 }
1491 VM_OBJECT_WUNLOCK(result);
1492 }
1493
1494 /*
1495 * Return the new things
1496 */
1497 *offset = 0;
1498 *object = result;
1499 }
1500
1501 /*
1502 * vm_object_split:
1503 *
1504 * Split the pages in a map entry into a new object. This affords
1505 * easier removal of unused pages, and keeps object inheritance from
1506 * being a negative impact on memory usage.
1507 */
1508 void
vm_object_split(vm_map_entry_t entry)1509 vm_object_split(vm_map_entry_t entry)
1510 {
1511 struct pctrie_iter pages;
1512 vm_page_t m;
1513 vm_object_t orig_object, new_object, backing_object;
1514 vm_pindex_t offidxstart;
1515 vm_size_t size;
1516
1517 orig_object = entry->object.vm_object;
1518 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1519 ("vm_object_split: Splitting object with multiple mappings."));
1520 if ((orig_object->flags & OBJ_ANON) == 0)
1521 return;
1522 if (orig_object->ref_count <= 1)
1523 return;
1524 VM_OBJECT_WUNLOCK(orig_object);
1525
1526 offidxstart = OFF_TO_IDX(entry->offset);
1527 size = atop(entry->end - entry->start);
1528
1529 new_object = vm_object_allocate_anon(size, orig_object,
1530 orig_object->cred, ptoa(size));
1531
1532 /*
1533 * We must wait for the orig_object to complete any in-progress
1534 * collapse so that the swap blocks are stable below. The
1535 * additional reference on backing_object by new object will
1536 * prevent further collapse operations until split completes.
1537 */
1538 VM_OBJECT_WLOCK(orig_object);
1539 vm_object_collapse_wait(orig_object);
1540
1541 /*
1542 * At this point, the new object is still private, so the order in
1543 * which the original and new objects are locked does not matter.
1544 */
1545 VM_OBJECT_WLOCK(new_object);
1546 new_object->domain = orig_object->domain;
1547 backing_object = orig_object->backing_object;
1548 if (backing_object != NULL) {
1549 vm_object_backing_insert_ref(new_object, backing_object);
1550 new_object->backing_object_offset =
1551 orig_object->backing_object_offset + entry->offset;
1552 }
1553 if (orig_object->cred != NULL) {
1554 crhold(orig_object->cred);
1555 KASSERT(orig_object->charge >= ptoa(size),
1556 ("orig_object->charge < 0"));
1557 orig_object->charge -= ptoa(size);
1558 }
1559
1560 /*
1561 * Mark the split operation so that swap_pager_getpages() knows
1562 * that the object is in transition.
1563 */
1564 vm_object_set_flag(orig_object, OBJ_SPLIT);
1565 vm_page_iter_limit_init(&pages, orig_object, offidxstart + size);
1566 retry:
1567 KASSERT(pctrie_iter_is_reset(&pages),
1568 ("%s: pctrie_iter not reset for retry", __func__));
1569 for (m = vm_radix_iter_lookup_ge(&pages, offidxstart); m != NULL;
1570 m = vm_radix_iter_step(&pages)) {
1571 /*
1572 * We must wait for pending I/O to complete before we can
1573 * rename the page.
1574 *
1575 * We do not have to VM_PROT_NONE the page as mappings should
1576 * not be changed by this operation.
1577 */
1578 if (vm_page_tryxbusy(m) == 0) {
1579 VM_OBJECT_WUNLOCK(new_object);
1580 if (vm_page_busy_sleep(m, "spltwt", 0))
1581 VM_OBJECT_WLOCK(orig_object);
1582 pctrie_iter_reset(&pages);
1583 VM_OBJECT_WLOCK(new_object);
1584 goto retry;
1585 }
1586
1587 /*
1588 * If the page was left invalid, it was likely placed there by
1589 * an incomplete fault. Just remove and ignore.
1590 *
1591 * One other possibility is that the map entry is wired, in
1592 * which case we must hang on to the page to avoid leaking it,
1593 * as the map entry owns the wiring. This case can arise if the
1594 * backing object is truncated by the pager.
1595 */
1596 if (vm_page_none_valid(m) && entry->wired_count == 0) {
1597 if (vm_page_iter_remove(&pages, m))
1598 vm_page_free(m);
1599 continue;
1600 }
1601
1602 /* vm_page_iter_rename() will dirty the page if it is valid. */
1603 if (!vm_page_iter_rename(&pages, m, new_object, m->pindex -
1604 offidxstart)) {
1605 vm_page_xunbusy(m);
1606 VM_OBJECT_WUNLOCK(new_object);
1607 VM_OBJECT_WUNLOCK(orig_object);
1608 vm_radix_wait();
1609 pctrie_iter_reset(&pages);
1610 VM_OBJECT_WLOCK(orig_object);
1611 VM_OBJECT_WLOCK(new_object);
1612 goto retry;
1613 }
1614
1615 #if VM_NRESERVLEVEL > 0
1616 /*
1617 * If some of the reservation's allocated pages remain with
1618 * the original object, then transferring the reservation to
1619 * the new object is neither particularly beneficial nor
1620 * particularly harmful as compared to leaving the reservation
1621 * with the original object. If, however, all of the
1622 * reservation's allocated pages are transferred to the new
1623 * object, then transferring the reservation is typically
1624 * beneficial. Determining which of these two cases applies
1625 * would be more costly than unconditionally renaming the
1626 * reservation.
1627 */
1628 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1629 #endif
1630 }
1631
1632 /*
1633 * swap_pager_copy() can sleep, in which case the orig_object's
1634 * and new_object's locks are released and reacquired.
1635 */
1636 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1637 vm_page_iter_init(&pages, new_object);
1638 VM_RADIX_FOREACH(m, &pages)
1639 vm_page_xunbusy(m);
1640
1641 vm_object_clear_flag(orig_object, OBJ_SPLIT);
1642 VM_OBJECT_WUNLOCK(orig_object);
1643 VM_OBJECT_WUNLOCK(new_object);
1644 entry->object.vm_object = new_object;
1645 entry->offset = 0LL;
1646 vm_object_deallocate(orig_object);
1647 VM_OBJECT_WLOCK(new_object);
1648 }
1649
1650 static vm_page_t
vm_object_collapse_scan_wait(struct pctrie_iter * pages,vm_object_t object,vm_page_t p)1651 vm_object_collapse_scan_wait(struct pctrie_iter *pages, vm_object_t object,
1652 vm_page_t p)
1653 {
1654 vm_object_t backing_object;
1655
1656 VM_OBJECT_ASSERT_WLOCKED(object);
1657 backing_object = object->backing_object;
1658 VM_OBJECT_ASSERT_WLOCKED(backing_object);
1659
1660 KASSERT(p == NULL || p->object == object || p->object == backing_object,
1661 ("invalid ownership %p %p %p", p, object, backing_object));
1662 /* The page is only NULL when rename fails. */
1663 if (p == NULL) {
1664 VM_OBJECT_WUNLOCK(object);
1665 VM_OBJECT_WUNLOCK(backing_object);
1666 vm_radix_wait();
1667 VM_OBJECT_WLOCK(object);
1668 } else if (p->object == object) {
1669 VM_OBJECT_WUNLOCK(backing_object);
1670 if (vm_page_busy_sleep(p, "vmocol", 0))
1671 VM_OBJECT_WLOCK(object);
1672 } else {
1673 VM_OBJECT_WUNLOCK(object);
1674 if (!vm_page_busy_sleep(p, "vmocol", 0))
1675 VM_OBJECT_WUNLOCK(backing_object);
1676 VM_OBJECT_WLOCK(object);
1677 }
1678 VM_OBJECT_WLOCK(backing_object);
1679 vm_page_iter_init(pages, backing_object);
1680 return (vm_radix_iter_lookup_ge(pages, 0));
1681 }
1682
1683 static void
vm_object_collapse_scan(vm_object_t object)1684 vm_object_collapse_scan(vm_object_t object)
1685 {
1686 struct pctrie_iter pages;
1687 vm_object_t backing_object;
1688 vm_page_t next, p, pp;
1689 vm_pindex_t backing_offset_index, new_pindex;
1690
1691 VM_OBJECT_ASSERT_WLOCKED(object);
1692 VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1693
1694 backing_object = object->backing_object;
1695 backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1696
1697 /*
1698 * Our scan
1699 */
1700 vm_page_iter_init(&pages, backing_object);
1701 for (p = vm_radix_iter_lookup_ge(&pages, 0); p != NULL; p = next) {
1702 /*
1703 * Check for busy page
1704 */
1705 if (vm_page_tryxbusy(p) == 0) {
1706 next = vm_object_collapse_scan_wait(&pages, object, p);
1707 continue;
1708 }
1709
1710 KASSERT(object->backing_object == backing_object,
1711 ("vm_object_collapse_scan: backing object mismatch %p != %p",
1712 object->backing_object, backing_object));
1713 KASSERT(p->object == backing_object,
1714 ("vm_object_collapse_scan: object mismatch %p != %p",
1715 p->object, backing_object));
1716
1717 if (p->pindex < backing_offset_index || object->size <=
1718 (new_pindex = p->pindex - backing_offset_index)) {
1719 vm_pager_freespace(backing_object, p->pindex, 1);
1720
1721 KASSERT(!pmap_page_is_mapped(p),
1722 ("freeing mapped page %p", p));
1723 if (vm_page_iter_remove(&pages, p))
1724 vm_page_free(p);
1725 next = vm_radix_iter_step(&pages);
1726 continue;
1727 }
1728
1729 if (!vm_page_all_valid(p)) {
1730 KASSERT(!pmap_page_is_mapped(p),
1731 ("freeing mapped page %p", p));
1732 if (vm_page_iter_remove(&pages, p))
1733 vm_page_free(p);
1734 next = vm_radix_iter_step(&pages);
1735 continue;
1736 }
1737
1738 pp = vm_page_lookup(object, new_pindex);
1739 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1740 vm_page_xunbusy(p);
1741 /*
1742 * The page in the parent is busy and possibly not
1743 * (yet) valid. Until its state is finalized by the
1744 * busy bit owner, we can't tell whether it shadows the
1745 * original page.
1746 */
1747 next = vm_object_collapse_scan_wait(&pages, object, pp);
1748 continue;
1749 }
1750
1751 if (pp != NULL && vm_page_none_valid(pp)) {
1752 /*
1753 * The page was invalid in the parent. Likely placed
1754 * there by an incomplete fault. Just remove and
1755 * ignore. p can replace it.
1756 */
1757 if (vm_page_remove(pp))
1758 vm_page_free(pp);
1759 pp = NULL;
1760 }
1761
1762 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1763 NULL)) {
1764 /*
1765 * The page already exists in the parent OR swap exists
1766 * for this location in the parent. Leave the parent's
1767 * page alone. Destroy the original page from the
1768 * backing object.
1769 */
1770 vm_pager_freespace(backing_object, p->pindex, 1);
1771 KASSERT(!pmap_page_is_mapped(p),
1772 ("freeing mapped page %p", p));
1773 if (pp != NULL)
1774 vm_page_xunbusy(pp);
1775 if (vm_page_iter_remove(&pages, p))
1776 vm_page_free(p);
1777 next = vm_radix_iter_step(&pages);
1778 continue;
1779 }
1780
1781 /*
1782 * Page does not exist in parent, rename the page from the
1783 * backing object to the main object.
1784 *
1785 * If the page was mapped to a process, it can remain mapped
1786 * through the rename. vm_page_iter_rename() will dirty the
1787 * page.
1788 */
1789 if (!vm_page_iter_rename(&pages, p, object, new_pindex)) {
1790 vm_page_xunbusy(p);
1791 next = vm_object_collapse_scan_wait(&pages, object,
1792 NULL);
1793 continue;
1794 }
1795
1796 /* Use the old pindex to free the right page. */
1797 vm_pager_freespace(backing_object, new_pindex +
1798 backing_offset_index, 1);
1799
1800 #if VM_NRESERVLEVEL > 0
1801 /*
1802 * Rename the reservation.
1803 */
1804 vm_reserv_rename(p, object, backing_object,
1805 backing_offset_index);
1806 #endif
1807 vm_page_xunbusy(p);
1808 next = vm_radix_iter_step(&pages);
1809 }
1810 return;
1811 }
1812
1813 /*
1814 * vm_object_collapse:
1815 *
1816 * Collapse an object with the object backing it.
1817 * Pages in the backing object are moved into the
1818 * parent, and the backing object is deallocated.
1819 */
1820 void
vm_object_collapse(vm_object_t object)1821 vm_object_collapse(vm_object_t object)
1822 {
1823 vm_object_t backing_object, new_backing_object;
1824
1825 VM_OBJECT_ASSERT_WLOCKED(object);
1826
1827 while (TRUE) {
1828 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1829 ("collapsing invalid object"));
1830
1831 /*
1832 * Wait for the backing_object to finish any pending
1833 * collapse so that the caller sees the shortest possible
1834 * shadow chain.
1835 */
1836 backing_object = vm_object_backing_collapse_wait(object);
1837 if (backing_object == NULL)
1838 return;
1839
1840 KASSERT(object->ref_count > 0 &&
1841 object->ref_count > atomic_load_int(&object->shadow_count),
1842 ("collapse with invalid ref %d or shadow %d count.",
1843 object->ref_count, atomic_load_int(&object->shadow_count)));
1844 KASSERT((backing_object->flags &
1845 (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1846 ("vm_object_collapse: Backing object already collapsing."));
1847 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1848 ("vm_object_collapse: object is already collapsing."));
1849
1850 /*
1851 * We know that we can either collapse the backing object if
1852 * the parent is the only reference to it, or (perhaps) have
1853 * the parent bypass the object if the parent happens to shadow
1854 * all the resident pages in the entire backing object.
1855 */
1856 if (backing_object->ref_count == 1) {
1857 KASSERT(atomic_load_int(&backing_object->shadow_count)
1858 == 1,
1859 ("vm_object_collapse: shadow_count: %d",
1860 atomic_load_int(&backing_object->shadow_count)));
1861 vm_object_pip_add(object, 1);
1862 vm_object_set_flag(object, OBJ_COLLAPSING);
1863 vm_object_pip_add(backing_object, 1);
1864 vm_object_set_flag(backing_object, OBJ_DEAD);
1865
1866 /*
1867 * If there is exactly one reference to the backing
1868 * object, we can collapse it into the parent.
1869 */
1870 vm_object_collapse_scan(object);
1871
1872 /*
1873 * Move the pager from backing_object to object.
1874 *
1875 * swap_pager_copy() can sleep, in which case the
1876 * backing_object's and object's locks are released and
1877 * reacquired.
1878 */
1879 swap_pager_copy(backing_object, object,
1880 OFF_TO_IDX(object->backing_object_offset), TRUE);
1881
1882 /*
1883 * Object now shadows whatever backing_object did.
1884 */
1885 vm_object_clear_flag(object, OBJ_COLLAPSING);
1886 vm_object_backing_transfer(object, backing_object);
1887 object->backing_object_offset +=
1888 backing_object->backing_object_offset;
1889 VM_OBJECT_WUNLOCK(object);
1890 vm_object_pip_wakeup(object);
1891
1892 /*
1893 * Discard backing_object.
1894 *
1895 * Since the backing object has no pages, no pager left,
1896 * and no object references within it, all that is
1897 * necessary is to dispose of it.
1898 */
1899 KASSERT(backing_object->ref_count == 1, (
1900 "backing_object %p was somehow re-referenced during collapse!",
1901 backing_object));
1902 vm_object_pip_wakeup(backing_object);
1903 (void)refcount_release(&backing_object->ref_count);
1904 umtx_shm_object_terminated(backing_object);
1905 vm_object_terminate(backing_object);
1906 counter_u64_add(object_collapses, 1);
1907 VM_OBJECT_WLOCK(object);
1908 } else {
1909 /*
1910 * If we do not entirely shadow the backing object,
1911 * there is nothing we can do so we give up.
1912 *
1913 * The object lock and backing_object lock must not
1914 * be dropped during this sequence.
1915 */
1916 if (!swap_pager_scan_all_shadowed(object)) {
1917 VM_OBJECT_WUNLOCK(backing_object);
1918 break;
1919 }
1920
1921 /*
1922 * Make the parent shadow the next object in the
1923 * chain. Deallocating backing_object will not remove
1924 * it, since its reference count is at least 2.
1925 */
1926 vm_object_backing_remove_locked(object);
1927 new_backing_object = backing_object->backing_object;
1928 if (new_backing_object != NULL) {
1929 vm_object_backing_insert_ref(object,
1930 new_backing_object);
1931 object->backing_object_offset +=
1932 backing_object->backing_object_offset;
1933 }
1934
1935 /*
1936 * Drop the reference count on backing_object. Since
1937 * its ref_count was at least 2, it will not vanish.
1938 */
1939 (void)refcount_release(&backing_object->ref_count);
1940 KASSERT(backing_object->ref_count >= 1, (
1941 "backing_object %p was somehow dereferenced during collapse!",
1942 backing_object));
1943 VM_OBJECT_WUNLOCK(backing_object);
1944 counter_u64_add(object_bypasses, 1);
1945 }
1946
1947 /*
1948 * Try again with this object's new backing object.
1949 */
1950 }
1951 }
1952
1953 /*
1954 * vm_object_page_remove:
1955 *
1956 * For the given object, either frees or invalidates each of the
1957 * specified pages. In general, a page is freed. However, if a page is
1958 * wired for any reason other than the existence of a managed, wired
1959 * mapping, then it may be invalidated but not removed from the object.
1960 * Pages are specified by the given range ["start", "end") and the option
1961 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
1962 * extends from "start" to the end of the object. If the option
1963 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1964 * specified range are affected. If the option OBJPR_NOTMAPPED is
1965 * specified, then the pages within the specified range must have no
1966 * mappings. Otherwise, if this option is not specified, any mappings to
1967 * the specified pages are removed before the pages are freed or
1968 * invalidated.
1969 *
1970 * In general, this operation should only be performed on objects that
1971 * contain managed pages. There are, however, two exceptions. First, it
1972 * is performed on the kernel and kmem objects by vm_map_entry_delete().
1973 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1974 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must
1975 * not be specified and the option OBJPR_NOTMAPPED must be specified.
1976 *
1977 * The object must be locked.
1978 */
1979 void
vm_object_page_remove(vm_object_t object,vm_pindex_t start,vm_pindex_t end,int options)1980 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1981 int options)
1982 {
1983 struct pctrie_iter pages;
1984 vm_page_t p;
1985
1986 VM_OBJECT_ASSERT_WLOCKED(object);
1987 KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1988 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1989 ("vm_object_page_remove: illegal options for object %p", object));
1990 if (object->resident_page_count == 0)
1991 return;
1992 vm_object_pip_add(object, 1);
1993 vm_page_iter_limit_init(&pages, object, end);
1994 again:
1995 KASSERT(pctrie_iter_is_reset(&pages),
1996 ("%s: pctrie_iter not reset for retry", __func__));
1997 for (p = vm_radix_iter_lookup_ge(&pages, start); p != NULL;
1998 p = vm_radix_iter_step(&pages)) {
1999 /*
2000 * Skip invalid pages if asked to do so. Try to avoid acquiring
2001 * the busy lock, as some consumers rely on this to avoid
2002 * deadlocks.
2003 *
2004 * A thread may concurrently transition the page from invalid to
2005 * valid using only the busy lock, so the result of this check
2006 * is immediately stale. It is up to consumers to handle this,
2007 * for instance by ensuring that all invalid->valid transitions
2008 * happen with a mutex held, as may be possible for a
2009 * filesystem.
2010 */
2011 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2012 continue;
2013
2014 /*
2015 * If the page is wired for any reason besides the existence
2016 * of managed, wired mappings, then it cannot be freed. For
2017 * example, fictitious pages, which represent device memory,
2018 * are inherently wired and cannot be freed. They can,
2019 * however, be invalidated if the option OBJPR_CLEANONLY is
2020 * not specified.
2021 */
2022 if (vm_page_tryxbusy(p) == 0) {
2023 if (vm_page_busy_sleep(p, "vmopar", 0))
2024 VM_OBJECT_WLOCK(object);
2025 pctrie_iter_reset(&pages);
2026 goto again;
2027 }
2028 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2029 vm_page_xunbusy(p);
2030 continue;
2031 }
2032 if (vm_page_wired(p)) {
2033 wired:
2034 if ((options & OBJPR_NOTMAPPED) == 0 &&
2035 object->ref_count != 0)
2036 pmap_remove_all(p);
2037 if ((options & OBJPR_CLEANONLY) == 0) {
2038 vm_page_invalid(p);
2039 vm_page_undirty(p);
2040 }
2041 vm_page_xunbusy(p);
2042 continue;
2043 }
2044 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2045 ("vm_object_page_remove: page %p is fictitious", p));
2046 if ((options & OBJPR_CLEANONLY) != 0 &&
2047 !vm_page_none_valid(p)) {
2048 if ((options & OBJPR_NOTMAPPED) == 0 &&
2049 object->ref_count != 0 &&
2050 !vm_page_try_remove_write(p))
2051 goto wired;
2052 if (p->dirty != 0) {
2053 vm_page_xunbusy(p);
2054 continue;
2055 }
2056 }
2057 if ((options & OBJPR_NOTMAPPED) == 0 &&
2058 object->ref_count != 0 && !vm_page_try_remove_all(p))
2059 goto wired;
2060 vm_page_iter_free(&pages, p);
2061 }
2062 vm_object_pip_wakeup(object);
2063
2064 vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2065 start);
2066 }
2067
2068 /*
2069 * vm_object_page_noreuse:
2070 *
2071 * For the given object, attempt to move the specified pages to
2072 * the head of the inactive queue. This bypasses regular LRU
2073 * operation and allows the pages to be reused quickly under memory
2074 * pressure. If a page is wired for any reason, then it will not
2075 * be queued. Pages are specified by the range ["start", "end").
2076 * As a special case, if "end" is zero, then the range extends from
2077 * "start" to the end of the object.
2078 *
2079 * This operation should only be performed on objects that
2080 * contain non-fictitious, managed pages.
2081 *
2082 * The object must be locked.
2083 */
2084 void
vm_object_page_noreuse(vm_object_t object,vm_pindex_t start,vm_pindex_t end)2085 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2086 {
2087 struct pctrie_iter pages;
2088 vm_page_t p;
2089
2090 VM_OBJECT_ASSERT_LOCKED(object);
2091 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2092 ("vm_object_page_noreuse: illegal object %p", object));
2093 if (object->resident_page_count == 0)
2094 return;
2095
2096 vm_page_iter_limit_init(&pages, object, end);
2097 VM_RADIX_FOREACH_FROM(p, &pages, start)
2098 vm_page_deactivate_noreuse(p);
2099 }
2100
2101 /*
2102 * Populate the specified range of the object with valid pages. Returns
2103 * TRUE if the range is successfully populated and FALSE otherwise.
2104 *
2105 * Note: This function should be optimized to pass a larger array of
2106 * pages to vm_pager_get_pages() before it is applied to a non-
2107 * OBJT_DEVICE object.
2108 *
2109 * The object must be locked.
2110 */
2111 boolean_t
vm_object_populate(vm_object_t object,vm_pindex_t start,vm_pindex_t end)2112 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2113 {
2114 struct pctrie_iter pages;
2115 vm_page_t m;
2116 vm_pindex_t pindex;
2117 int rv;
2118
2119 vm_page_iter_init(&pages, object);
2120 VM_OBJECT_ASSERT_WLOCKED(object);
2121 for (pindex = start; pindex < end; pindex++) {
2122 rv = vm_page_grab_valid_iter(&m, object, pindex,
2123 VM_ALLOC_NORMAL, &pages);
2124 if (rv != VM_PAGER_OK)
2125 break;
2126
2127 /*
2128 * Keep "m" busy because a subsequent iteration may unlock
2129 * the object.
2130 */
2131 }
2132 if (pindex > start) {
2133 pages.limit = pindex;
2134 VM_RADIX_FORALL_FROM(m, &pages, start)
2135 vm_page_xunbusy(m);
2136 }
2137 return (pindex == end);
2138 }
2139
2140 /*
2141 * Routine: vm_object_coalesce
2142 * Function: Coalesces two objects backing up adjoining
2143 * regions of memory into a single object.
2144 *
2145 * returns TRUE if objects were combined.
2146 *
2147 * NOTE: Only works at the moment if the second object is NULL -
2148 * if it's not, which object do we lock first?
2149 *
2150 * Parameters:
2151 * prev_object First object to coalesce
2152 * prev_offset Offset into prev_object
2153 * prev_size Size of reference to prev_object
2154 * next_size Size of reference to the second object
2155 * reserved Indicator that extension region has
2156 * swap accounted for
2157 *
2158 * Conditions:
2159 * The object must *not* be locked.
2160 */
2161 boolean_t
vm_object_coalesce(vm_object_t prev_object,vm_ooffset_t prev_offset,vm_size_t prev_size,vm_size_t next_size,boolean_t reserved)2162 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2163 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2164 {
2165 vm_pindex_t next_pindex;
2166
2167 if (prev_object == NULL)
2168 return (TRUE);
2169 if ((prev_object->flags & OBJ_ANON) == 0)
2170 return (FALSE);
2171
2172 VM_OBJECT_WLOCK(prev_object);
2173 /*
2174 * Try to collapse the object first.
2175 */
2176 vm_object_collapse(prev_object);
2177
2178 /*
2179 * Can't coalesce if: . more than one reference . paged out . shadows
2180 * another object . has a copy elsewhere (any of which mean that the
2181 * pages not mapped to prev_entry may be in use anyway)
2182 */
2183 if (prev_object->backing_object != NULL) {
2184 VM_OBJECT_WUNLOCK(prev_object);
2185 return (FALSE);
2186 }
2187
2188 prev_size >>= PAGE_SHIFT;
2189 next_size >>= PAGE_SHIFT;
2190 next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2191
2192 if (prev_object->ref_count > 1 &&
2193 prev_object->size != next_pindex &&
2194 (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2195 VM_OBJECT_WUNLOCK(prev_object);
2196 return (FALSE);
2197 }
2198
2199 /*
2200 * Account for the charge.
2201 */
2202 if (prev_object->cred != NULL) {
2203 /*
2204 * If prev_object was charged, then this mapping,
2205 * although not charged now, may become writable
2206 * later. Non-NULL cred in the object would prevent
2207 * swap reservation during enabling of the write
2208 * access, so reserve swap now. Failed reservation
2209 * cause allocation of the separate object for the map
2210 * entry, and swap reservation for this entry is
2211 * managed in appropriate time.
2212 */
2213 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2214 prev_object->cred)) {
2215 VM_OBJECT_WUNLOCK(prev_object);
2216 return (FALSE);
2217 }
2218 prev_object->charge += ptoa(next_size);
2219 }
2220
2221 /*
2222 * Remove any pages that may still be in the object from a previous
2223 * deallocation.
2224 */
2225 if (next_pindex < prev_object->size) {
2226 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2227 next_size, 0);
2228 #if 0
2229 if (prev_object->cred != NULL) {
2230 KASSERT(prev_object->charge >=
2231 ptoa(prev_object->size - next_pindex),
2232 ("object %p overcharged 1 %jx %jx", prev_object,
2233 (uintmax_t)next_pindex, (uintmax_t)next_size));
2234 prev_object->charge -= ptoa(prev_object->size -
2235 next_pindex);
2236 }
2237 #endif
2238 }
2239
2240 /*
2241 * Extend the object if necessary.
2242 */
2243 if (next_pindex + next_size > prev_object->size)
2244 prev_object->size = next_pindex + next_size;
2245
2246 VM_OBJECT_WUNLOCK(prev_object);
2247 return (TRUE);
2248 }
2249
2250 /*
2251 * Fill in the m_dst array with up to *rbehind optional pages before m_src[0]
2252 * and up to *rahead optional pages after m_src[count - 1]. In both cases, stop
2253 * the filling-in short on encountering a cached page, an object boundary limit,
2254 * or an allocation error. Update *rbehind and *rahead to indicate the number
2255 * of pages allocated. Copy elements of m_src into array elements from
2256 * m_dst[*rbehind] to m_dst[*rbehind + count -1].
2257 */
2258 void
vm_object_prepare_buf_pages(vm_object_t object,vm_page_t * ma_dst,int count,int * rbehind,int * rahead,vm_page_t * ma_src)2259 vm_object_prepare_buf_pages(vm_object_t object, vm_page_t *ma_dst, int count,
2260 int *rbehind, int *rahead, vm_page_t *ma_src)
2261 {
2262 struct pctrie_iter pages;
2263 vm_pindex_t pindex;
2264 vm_page_t m, mpred, msucc;
2265
2266 vm_page_iter_init(&pages, object);
2267 VM_OBJECT_ASSERT_LOCKED(object);
2268 if (*rbehind != 0) {
2269 m = ma_src[0];
2270 pindex = m->pindex;
2271 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2272 *rbehind = MIN(*rbehind,
2273 pindex - (mpred != NULL ? mpred->pindex + 1 : 0));
2274 for (int i = 0; i < *rbehind; i++) {
2275 m = vm_page_alloc_iter(object, pindex - i - 1,
2276 VM_ALLOC_NORMAL, &pages);
2277 if (m == NULL) {
2278 /* Shift the array. */
2279 for (int j = 0; j < i; j++)
2280 ma_dst[j] = ma_dst[j + *rbehind - i];
2281 *rbehind = i;
2282 *rahead = 0;
2283 break;
2284 }
2285 ma_dst[*rbehind - i - 1] = m;
2286 }
2287 }
2288 for (int i = 0; i < count; i++)
2289 ma_dst[*rbehind + i] = ma_src[i];
2290 if (*rahead != 0) {
2291 m = ma_src[count - 1];
2292 pindex = m->pindex + 1;
2293 msucc = vm_radix_iter_lookup_ge(&pages, pindex);
2294 *rahead = MIN(*rahead,
2295 (msucc != NULL ? msucc->pindex : object->size) - pindex);
2296 for (int i = 0; i < *rahead; i++) {
2297 m = vm_page_alloc_iter(object, pindex + i,
2298 VM_ALLOC_NORMAL, &pages);
2299 if (m == NULL) {
2300 *rahead = i;
2301 break;
2302 }
2303 ma_dst[*rbehind + count + i] = m;
2304 }
2305 }
2306 }
2307
2308 void
vm_object_set_writeable_dirty_(vm_object_t object)2309 vm_object_set_writeable_dirty_(vm_object_t object)
2310 {
2311 atomic_add_int(&object->generation, 1);
2312 }
2313
2314 bool
vm_object_mightbedirty_(vm_object_t object)2315 vm_object_mightbedirty_(vm_object_t object)
2316 {
2317 return (object->generation != object->cleangeneration);
2318 }
2319
2320 /*
2321 * vm_object_unwire:
2322 *
2323 * For each page offset within the specified range of the given object,
2324 * find the highest-level page in the shadow chain and unwire it. A page
2325 * must exist at every page offset, and the highest-level page must be
2326 * wired.
2327 */
2328 void
vm_object_unwire(vm_object_t object,vm_ooffset_t offset,vm_size_t length,uint8_t queue)2329 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2330 uint8_t queue)
2331 {
2332 struct pctrie_iter pages;
2333 vm_object_t tobject, t1object;
2334 vm_page_t m, tm;
2335 vm_pindex_t end_pindex, pindex, tpindex;
2336 int depth, locked_depth;
2337
2338 KASSERT((offset & PAGE_MASK) == 0,
2339 ("vm_object_unwire: offset is not page aligned"));
2340 KASSERT((length & PAGE_MASK) == 0,
2341 ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2342 /* The wired count of a fictitious page never changes. */
2343 if ((object->flags & OBJ_FICTITIOUS) != 0)
2344 return;
2345 pindex = OFF_TO_IDX(offset);
2346 end_pindex = pindex + atop(length);
2347 vm_page_iter_init(&pages, object);
2348 again:
2349 locked_depth = 1;
2350 VM_OBJECT_RLOCK(object);
2351 m = vm_radix_iter_lookup_ge(&pages, pindex);
2352 while (pindex < end_pindex) {
2353 if (m == NULL || pindex < m->pindex) {
2354 /*
2355 * The first object in the shadow chain doesn't
2356 * contain a page at the current index. Therefore,
2357 * the page must exist in a backing object.
2358 */
2359 tobject = object;
2360 tpindex = pindex;
2361 depth = 0;
2362 do {
2363 tpindex +=
2364 OFF_TO_IDX(tobject->backing_object_offset);
2365 tobject = tobject->backing_object;
2366 KASSERT(tobject != NULL,
2367 ("vm_object_unwire: missing page"));
2368 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2369 goto next_page;
2370 depth++;
2371 if (depth == locked_depth) {
2372 locked_depth++;
2373 VM_OBJECT_RLOCK(tobject);
2374 }
2375 } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2376 NULL);
2377 } else {
2378 tm = m;
2379 m = vm_radix_iter_step(&pages);
2380 }
2381 if (vm_page_trysbusy(tm) == 0) {
2382 for (tobject = object; locked_depth >= 1;
2383 locked_depth--) {
2384 t1object = tobject->backing_object;
2385 if (tm->object != tobject)
2386 VM_OBJECT_RUNLOCK(tobject);
2387 tobject = t1object;
2388 }
2389 tobject = tm->object;
2390 if (!vm_page_busy_sleep(tm, "unwbo",
2391 VM_ALLOC_IGN_SBUSY))
2392 VM_OBJECT_RUNLOCK(tobject);
2393 pctrie_iter_reset(&pages);
2394 goto again;
2395 }
2396 vm_page_unwire(tm, queue);
2397 vm_page_sunbusy(tm);
2398 next_page:
2399 pindex++;
2400 }
2401 /* Release the accumulated object locks. */
2402 for (tobject = object; locked_depth >= 1; locked_depth--) {
2403 t1object = tobject->backing_object;
2404 VM_OBJECT_RUNLOCK(tobject);
2405 tobject = t1object;
2406 }
2407 }
2408
2409 /*
2410 * Return the vnode for the given object, or NULL if none exists.
2411 * For tmpfs objects, the function may return NULL if there is
2412 * no vnode allocated at the time of the call.
2413 */
2414 struct vnode *
vm_object_vnode(vm_object_t object)2415 vm_object_vnode(vm_object_t object)
2416 {
2417 struct vnode *vp;
2418
2419 VM_OBJECT_ASSERT_LOCKED(object);
2420 vm_pager_getvp(object, &vp, NULL);
2421 return (vp);
2422 }
2423
2424 /*
2425 * Busy the vm object. This prevents new pages belonging to the object from
2426 * becoming busy. Existing pages persist as busy. Callers are responsible
2427 * for checking page state before proceeding.
2428 */
2429 void
vm_object_busy(vm_object_t obj)2430 vm_object_busy(vm_object_t obj)
2431 {
2432
2433 VM_OBJECT_ASSERT_LOCKED(obj);
2434
2435 blockcount_acquire(&obj->busy, 1);
2436 /* The fence is required to order loads of page busy. */
2437 atomic_thread_fence_acq_rel();
2438 }
2439
2440 void
vm_object_unbusy(vm_object_t obj)2441 vm_object_unbusy(vm_object_t obj)
2442 {
2443
2444 blockcount_release(&obj->busy, 1);
2445 }
2446
2447 void
vm_object_busy_wait(vm_object_t obj,const char * wmesg)2448 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2449 {
2450
2451 VM_OBJECT_ASSERT_UNLOCKED(obj);
2452
2453 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2454 }
2455
2456 /*
2457 * This function aims to determine if the object is mapped,
2458 * specifically, if it is referenced by a vm_map_entry. Because
2459 * objects occasionally acquire transient references that do not
2460 * represent a mapping, the method used here is inexact. However, it
2461 * has very low overhead and is good enough for the advisory
2462 * vm.vmtotal sysctl.
2463 */
2464 bool
vm_object_is_active(vm_object_t obj)2465 vm_object_is_active(vm_object_t obj)
2466 {
2467
2468 return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2469 }
2470
2471 static int
vm_object_list_handler(struct sysctl_req * req,bool swap_only)2472 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2473 {
2474 struct pctrie_iter pages;
2475 struct kinfo_vmobject *kvo;
2476 char *fullpath, *freepath;
2477 struct vnode *vp;
2478 struct vattr va;
2479 vm_object_t obj;
2480 vm_page_t m;
2481 u_long sp;
2482 int count, error;
2483 key_t key;
2484 unsigned short seq;
2485 bool want_path;
2486
2487 if (req->oldptr == NULL) {
2488 /*
2489 * If an old buffer has not been provided, generate an
2490 * estimate of the space needed for a subsequent call.
2491 */
2492 mtx_lock(&vm_object_list_mtx);
2493 count = 0;
2494 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2495 if (obj->type == OBJT_DEAD)
2496 continue;
2497 count++;
2498 }
2499 mtx_unlock(&vm_object_list_mtx);
2500 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2501 count * 11 / 10));
2502 }
2503
2504 want_path = !(swap_only || jailed(curthread->td_ucred));
2505 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2506 error = 0;
2507
2508 /*
2509 * VM objects are type stable and are never removed from the
2510 * list once added. This allows us to safely read obj->object_list
2511 * after reacquiring the VM object lock.
2512 */
2513 mtx_lock(&vm_object_list_mtx);
2514 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2515 if (obj->type == OBJT_DEAD ||
2516 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2517 continue;
2518 VM_OBJECT_RLOCK(obj);
2519 if (obj->type == OBJT_DEAD ||
2520 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2521 VM_OBJECT_RUNLOCK(obj);
2522 continue;
2523 }
2524 mtx_unlock(&vm_object_list_mtx);
2525 kvo->kvo_size = ptoa(obj->size);
2526 kvo->kvo_resident = obj->resident_page_count;
2527 kvo->kvo_ref_count = obj->ref_count;
2528 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2529 kvo->kvo_memattr = obj->memattr;
2530 kvo->kvo_active = 0;
2531 kvo->kvo_inactive = 0;
2532 kvo->kvo_laundry = 0;
2533 kvo->kvo_flags = 0;
2534 if (!swap_only) {
2535 vm_page_iter_init(&pages, obj);
2536 VM_RADIX_FOREACH(m, &pages) {
2537 /*
2538 * A page may belong to the object but be
2539 * dequeued and set to PQ_NONE while the
2540 * object lock is not held. This makes the
2541 * reads of m->queue below racy, and we do not
2542 * count pages set to PQ_NONE. However, this
2543 * sysctl is only meant to give an
2544 * approximation of the system anyway.
2545 */
2546 if (vm_page_active(m))
2547 kvo->kvo_active++;
2548 else if (vm_page_inactive(m))
2549 kvo->kvo_inactive++;
2550 else if (vm_page_in_laundry(m))
2551 kvo->kvo_laundry++;
2552 }
2553 }
2554
2555 kvo->kvo_vn_fileid = 0;
2556 kvo->kvo_vn_fsid = 0;
2557 kvo->kvo_vn_fsid_freebsd11 = 0;
2558 freepath = NULL;
2559 fullpath = "";
2560 vp = NULL;
2561 kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp :
2562 NULL);
2563 if (vp != NULL) {
2564 vref(vp);
2565 } else if ((obj->flags & OBJ_ANON) != 0) {
2566 MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2567 kvo->kvo_me = (uintptr_t)obj;
2568 /* tmpfs objs are reported as vnodes */
2569 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2570 sp = swap_pager_swapped_pages(obj);
2571 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2572 }
2573 if (obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) {
2574 cdev_pager_get_path(obj, kvo->kvo_path,
2575 sizeof(kvo->kvo_path));
2576 }
2577 VM_OBJECT_RUNLOCK(obj);
2578 if ((obj->flags & OBJ_SYSVSHM) != 0) {
2579 kvo->kvo_flags |= KVMO_FLAG_SYSVSHM;
2580 shmobjinfo(obj, &key, &seq);
2581 kvo->kvo_vn_fileid = key;
2582 kvo->kvo_vn_fsid_freebsd11 = seq;
2583 }
2584 if ((obj->flags & OBJ_POSIXSHM) != 0) {
2585 kvo->kvo_flags |= KVMO_FLAG_POSIXSHM;
2586 shm_get_path(obj, kvo->kvo_path,
2587 sizeof(kvo->kvo_path));
2588 }
2589 if (vp != NULL) {
2590 vn_fullpath(vp, &fullpath, &freepath);
2591 vn_lock(vp, LK_SHARED | LK_RETRY);
2592 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2593 kvo->kvo_vn_fileid = va.va_fileid;
2594 kvo->kvo_vn_fsid = va.va_fsid;
2595 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2596 /* truncate */
2597 }
2598 vput(vp);
2599 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2600 free(freepath, M_TEMP);
2601 }
2602
2603 /* Pack record size down */
2604 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2605 + strlen(kvo->kvo_path) + 1;
2606 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2607 sizeof(uint64_t));
2608 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2609 maybe_yield();
2610 mtx_lock(&vm_object_list_mtx);
2611 if (error)
2612 break;
2613 }
2614 mtx_unlock(&vm_object_list_mtx);
2615 free(kvo, M_TEMP);
2616 return (error);
2617 }
2618
2619 static int
sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)2620 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2621 {
2622 return (vm_object_list_handler(req, false));
2623 }
2624
2625 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2626 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2627 "List of VM objects");
2628
2629 static int
sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)2630 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2631 {
2632 return (vm_object_list_handler(req, true));
2633 }
2634
2635 /*
2636 * This sysctl returns list of the anonymous or swap objects. Intent
2637 * is to provide stripped optimized list useful to analyze swap use.
2638 * Since technically non-swap (default) objects participate in the
2639 * shadow chains, and are converted to swap type as needed by swap
2640 * pager, we must report them.
2641 */
2642 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2643 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2644 sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2645 "List of swap VM objects");
2646
2647 #include "opt_ddb.h"
2648 #ifdef DDB
2649 #include <sys/kernel.h>
2650
2651 #include <sys/cons.h>
2652
2653 #include <ddb/ddb.h>
2654
2655 static int
_vm_object_in_map(vm_map_t map,vm_object_t object,vm_map_entry_t entry)2656 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2657 {
2658 vm_map_t tmpm;
2659 vm_map_entry_t tmpe;
2660 vm_object_t obj;
2661
2662 if (map == 0)
2663 return 0;
2664
2665 if (entry == 0) {
2666 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2667 if (_vm_object_in_map(map, object, tmpe)) {
2668 return 1;
2669 }
2670 }
2671 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2672 tmpm = entry->object.sub_map;
2673 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2674 if (_vm_object_in_map(tmpm, object, tmpe)) {
2675 return 1;
2676 }
2677 }
2678 } else if ((obj = entry->object.vm_object) != NULL) {
2679 for (; obj; obj = obj->backing_object)
2680 if (obj == object) {
2681 return 1;
2682 }
2683 }
2684 return 0;
2685 }
2686
2687 static int
vm_object_in_map(vm_object_t object)2688 vm_object_in_map(vm_object_t object)
2689 {
2690 struct proc *p;
2691
2692 /* sx_slock(&allproc_lock); */
2693 FOREACH_PROC_IN_SYSTEM(p) {
2694 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2695 continue;
2696 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2697 /* sx_sunlock(&allproc_lock); */
2698 return 1;
2699 }
2700 }
2701 /* sx_sunlock(&allproc_lock); */
2702 if (_vm_object_in_map(kernel_map, object, 0))
2703 return 1;
2704 return 0;
2705 }
2706
DB_SHOW_COMMAND_FLAGS(vmochk,vm_object_check,DB_CMD_MEMSAFE)2707 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2708 {
2709 vm_object_t object;
2710
2711 /*
2712 * make sure that internal objs are in a map somewhere
2713 * and none have zero ref counts.
2714 */
2715 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2716 if ((object->flags & OBJ_ANON) != 0) {
2717 if (object->ref_count == 0) {
2718 db_printf(
2719 "vmochk: internal obj has zero ref count: %lu\n",
2720 (u_long)object->size);
2721 }
2722 if (!vm_object_in_map(object)) {
2723 db_printf(
2724 "vmochk: internal obj is not in a map: "
2725 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2726 object->ref_count, (u_long)object->size,
2727 (u_long)object->size,
2728 (void *)object->backing_object);
2729 }
2730 }
2731 if (db_pager_quit)
2732 return;
2733 }
2734 }
2735
2736 /*
2737 * vm_object_print: [ debug ]
2738 */
DB_SHOW_COMMAND(object,vm_object_print_static)2739 DB_SHOW_COMMAND(object, vm_object_print_static)
2740 {
2741 struct pctrie_iter pages;
2742 /* XXX convert args. */
2743 vm_object_t object = (vm_object_t)addr;
2744 boolean_t full = have_addr;
2745
2746 vm_page_t p;
2747
2748 /* XXX count is an (unused) arg. Avoid shadowing it. */
2749 #define count was_count
2750
2751 int count;
2752
2753 if (object == NULL)
2754 return;
2755
2756 db_iprintf("Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x",
2757 object, (int)object->type, (uintmax_t)object->size,
2758 object->resident_page_count, object->ref_count, object->flags);
2759 db_iprintf(" ruid %d charge %jx\n",
2760 object->cred ? object->cred->cr_ruid : -1,
2761 (uintmax_t)object->charge);
2762 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2763 atomic_load_int(&object->shadow_count),
2764 object->backing_object ? object->backing_object->ref_count : 0,
2765 object->backing_object, (uintmax_t)object->backing_object_offset);
2766
2767 if (!full)
2768 return;
2769
2770 db_indent += 2;
2771 count = 0;
2772 vm_page_iter_init(&pages, object);
2773 VM_RADIX_FOREACH(p, &pages) {
2774 if (count == 0)
2775 db_iprintf("memory:=");
2776 else if (count == 6) {
2777 db_printf("\n");
2778 db_iprintf(" ...");
2779 count = 0;
2780 } else
2781 db_printf(",");
2782 count++;
2783
2784 db_printf("(off=0x%jx,page=0x%jx)",
2785 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2786
2787 if (db_pager_quit)
2788 break;
2789 }
2790 if (count != 0)
2791 db_printf("\n");
2792 db_indent -= 2;
2793 }
2794
2795 /* XXX. */
2796 #undef count
2797
2798 /* XXX need this non-static entry for calling from vm_map_print. */
2799 void
vm_object_print(long addr,boolean_t have_addr,long count,char * modif)2800 vm_object_print(
2801 /* db_expr_t */ long addr,
2802 boolean_t have_addr,
2803 /* db_expr_t */ long count,
2804 char *modif)
2805 {
2806 vm_object_print_static(addr, have_addr, count, modif);
2807 }
2808
DB_SHOW_COMMAND_FLAGS(vmopag,vm_object_print_pages,DB_CMD_MEMSAFE)2809 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2810 {
2811 struct pctrie_iter pages;
2812 vm_object_t object;
2813 vm_page_t m, start_m;
2814 int rcount;
2815
2816 TAILQ_FOREACH(object, &vm_object_list, object_list) {
2817 db_printf("new object: %p\n", (void *)object);
2818 if (db_pager_quit)
2819 return;
2820 start_m = NULL;
2821 vm_page_iter_init(&pages, object);
2822 VM_RADIX_FOREACH(m, &pages) {
2823 if (start_m == NULL) {
2824 start_m = m;
2825 rcount = 0;
2826 } else if (start_m->pindex + rcount != m->pindex ||
2827 VM_PAGE_TO_PHYS(start_m) + ptoa(rcount) !=
2828 VM_PAGE_TO_PHYS(m)) {
2829 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2830 (long)start_m->pindex, rcount,
2831 (long)VM_PAGE_TO_PHYS(start_m));
2832 if (db_pager_quit)
2833 return;
2834 start_m = m;
2835 rcount = 0;
2836 }
2837 rcount++;
2838 }
2839 if (start_m != NULL) {
2840 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2841 (long)start_m->pindex, rcount,
2842 (long)VM_PAGE_TO_PHYS(start_m));
2843 if (db_pager_quit)
2844 return;
2845 }
2846 }
2847 }
2848 #endif /* DDB */
2849