1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_reserv.h>
111
112 #define PFBAK 4
113 #define PFFOR 4
114
115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
116
117 #define VM_FAULT_DONTNEED_MIN 1048576
118
119 struct faultstate {
120 /* Fault parameters. */
121 vm_offset_t vaddr;
122 vm_page_t *m_hold;
123 vm_prot_t fault_type;
124 vm_prot_t prot;
125 int fault_flags;
126 boolean_t wired;
127
128 /* Control state. */
129 struct timeval oom_start_time;
130 bool oom_started;
131 int nera;
132 bool can_read_lock;
133
134 /* Page reference for cow. */
135 vm_page_t m_cow;
136
137 /* Current object. */
138 vm_object_t object;
139 vm_pindex_t pindex;
140 vm_page_t m;
141
142 /* Top-level map object. */
143 vm_object_t first_object;
144 vm_pindex_t first_pindex;
145 vm_page_t first_m;
146
147 /* Map state. */
148 vm_map_t map;
149 vm_map_entry_t entry;
150 int map_generation;
151 bool lookup_still_valid;
152
153 /* Vnode if locked. */
154 struct vnode *vp;
155 };
156
157 /*
158 * Return codes for internal fault routines.
159 */
160 enum fault_status {
161 FAULT_SUCCESS = 10000, /* Return success to user. */
162 FAULT_FAILURE, /* Return failure to user. */
163 FAULT_CONTINUE, /* Continue faulting. */
164 FAULT_RESTART, /* Restart fault. */
165 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
166 FAULT_HARD, /* Performed I/O. */
167 FAULT_SOFT, /* Found valid page. */
168 FAULT_PROTECTION_FAILURE, /* Invalid access. */
169 };
170
171 enum fault_next_status {
172 FAULT_NEXT_GOTOBJ = 1,
173 FAULT_NEXT_NOOBJ,
174 FAULT_NEXT_RESTART,
175 };
176
177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
178 int ahead);
179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
180 int backward, int forward, bool obj_locked);
181
182 static int vm_pfault_oom_attempts = 3;
183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
184 &vm_pfault_oom_attempts, 0,
185 "Number of page allocation attempts in page fault handler before it "
186 "triggers OOM handling");
187
188 static int vm_pfault_oom_wait = 10;
189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
190 &vm_pfault_oom_wait, 0,
191 "Number of seconds to wait for free pages before retrying "
192 "the page fault handler");
193
194 static inline void
vm_fault_page_release(vm_page_t * mp)195 vm_fault_page_release(vm_page_t *mp)
196 {
197 vm_page_t m;
198
199 m = *mp;
200 if (m != NULL) {
201 /*
202 * We are likely to loop around again and attempt to busy
203 * this page. Deactivating it leaves it available for
204 * pageout while optimizing fault restarts.
205 */
206 vm_page_deactivate(m);
207 vm_page_xunbusy(m);
208 *mp = NULL;
209 }
210 }
211
212 static inline void
vm_fault_page_free(vm_page_t * mp)213 vm_fault_page_free(vm_page_t *mp)
214 {
215 vm_page_t m;
216
217 m = *mp;
218 if (m != NULL) {
219 VM_OBJECT_ASSERT_WLOCKED(m->object);
220 if (!vm_page_wired(m))
221 vm_page_free(m);
222 else
223 vm_page_xunbusy(m);
224 *mp = NULL;
225 }
226 }
227
228 /*
229 * Return true if a vm_pager_get_pages() call is needed in order to check
230 * whether the pager might have a particular page, false if it can be determined
231 * immediately that the pager can not have a copy. For swap objects, this can
232 * be checked quickly.
233 */
234 static inline bool
vm_fault_object_needs_getpages(vm_object_t object)235 vm_fault_object_needs_getpages(vm_object_t object)
236 {
237 VM_OBJECT_ASSERT_LOCKED(object);
238
239 return ((object->flags & OBJ_SWAP) == 0 ||
240 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
241 }
242
243 static inline void
vm_fault_unlock_map(struct faultstate * fs)244 vm_fault_unlock_map(struct faultstate *fs)
245 {
246
247 if (fs->lookup_still_valid) {
248 vm_map_lookup_done(fs->map, fs->entry);
249 fs->lookup_still_valid = false;
250 }
251 }
252
253 static void
vm_fault_unlock_vp(struct faultstate * fs)254 vm_fault_unlock_vp(struct faultstate *fs)
255 {
256
257 if (fs->vp != NULL) {
258 vput(fs->vp);
259 fs->vp = NULL;
260 }
261 }
262
263 static void
vm_fault_deallocate(struct faultstate * fs)264 vm_fault_deallocate(struct faultstate *fs)
265 {
266
267 vm_fault_page_release(&fs->m_cow);
268 vm_fault_page_release(&fs->m);
269 vm_object_pip_wakeup(fs->object);
270 if (fs->object != fs->first_object) {
271 VM_OBJECT_WLOCK(fs->first_object);
272 vm_fault_page_free(&fs->first_m);
273 VM_OBJECT_WUNLOCK(fs->first_object);
274 vm_object_pip_wakeup(fs->first_object);
275 }
276 vm_object_deallocate(fs->first_object);
277 vm_fault_unlock_map(fs);
278 vm_fault_unlock_vp(fs);
279 }
280
281 static void
vm_fault_unlock_and_deallocate(struct faultstate * fs)282 vm_fault_unlock_and_deallocate(struct faultstate *fs)
283 {
284
285 VM_OBJECT_UNLOCK(fs->object);
286 vm_fault_deallocate(fs);
287 }
288
289 static void
vm_fault_dirty(struct faultstate * fs,vm_page_t m)290 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
291 {
292 bool need_dirty;
293
294 if (((fs->prot & VM_PROT_WRITE) == 0 &&
295 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
296 (m->oflags & VPO_UNMANAGED) != 0)
297 return;
298
299 VM_PAGE_OBJECT_BUSY_ASSERT(m);
300
301 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
302 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
303 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
304
305 vm_object_set_writeable_dirty(m->object);
306
307 /*
308 * If the fault is a write, we know that this page is being
309 * written NOW so dirty it explicitly to save on
310 * pmap_is_modified() calls later.
311 *
312 * Also, since the page is now dirty, we can possibly tell
313 * the pager to release any swap backing the page.
314 */
315 if (need_dirty && vm_page_set_dirty(m) == 0) {
316 /*
317 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
318 * if the page is already dirty to prevent data written with
319 * the expectation of being synced from not being synced.
320 * Likewise if this entry does not request NOSYNC then make
321 * sure the page isn't marked NOSYNC. Applications sharing
322 * data should use the same flags to avoid ping ponging.
323 */
324 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
325 vm_page_aflag_set(m, PGA_NOSYNC);
326 else
327 vm_page_aflag_clear(m, PGA_NOSYNC);
328 }
329
330 }
331
332 /*
333 * Unlocks fs.first_object and fs.map on success.
334 */
335 static enum fault_status
vm_fault_soft_fast(struct faultstate * fs)336 vm_fault_soft_fast(struct faultstate *fs)
337 {
338 vm_page_t m, m_map;
339 #if VM_NRESERVLEVEL > 0
340 vm_page_t m_super;
341 int flags;
342 #endif
343 int psind;
344 vm_offset_t vaddr;
345
346 MPASS(fs->vp == NULL);
347
348 /*
349 * If we fail, vast majority of the time it is because the page is not
350 * there to begin with. Opportunistically perform the lookup and
351 * subsequent checks without the object lock, revalidate later.
352 *
353 * Note: a busy page can be mapped for read|execute access.
354 */
355 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
356 if (m == NULL || !vm_page_all_valid(m) ||
357 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
358 VM_OBJECT_WLOCK(fs->first_object);
359 return (FAULT_FAILURE);
360 }
361
362 vaddr = fs->vaddr;
363
364 VM_OBJECT_RLOCK(fs->first_object);
365
366 /*
367 * Now that we stabilized the state, revalidate the page is in the shape
368 * we encountered above.
369 */
370
371 if (m->object != fs->first_object || m->pindex != fs->first_pindex)
372 goto fail;
373
374 vm_object_busy(fs->first_object);
375
376 if (!vm_page_all_valid(m) ||
377 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
378 goto fail_busy;
379
380 m_map = m;
381 psind = 0;
382 #if VM_NRESERVLEVEL > 0
383 if ((m->flags & PG_FICTITIOUS) == 0 &&
384 (m_super = vm_reserv_to_superpage(m)) != NULL) {
385 psind = m_super->psind;
386 KASSERT(psind > 0,
387 ("psind %d of m_super %p < 1", psind, m_super));
388 flags = PS_ALL_VALID;
389 if ((fs->prot & VM_PROT_WRITE) != 0) {
390 /*
391 * Create a superpage mapping allowing write access
392 * only if none of the constituent pages are busy and
393 * all of them are already dirty (except possibly for
394 * the page that was faulted on).
395 */
396 flags |= PS_NONE_BUSY;
397 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
398 flags |= PS_ALL_DIRTY;
399 }
400 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
401 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
402 (vaddr & (pagesizes[psind] - 1)) !=
403 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
404 !vm_page_ps_test(m_super, psind, flags, m) ||
405 !pmap_ps_enabled(fs->map->pmap)) {
406 psind--;
407 if (psind == 0)
408 break;
409 m_super += rounddown2(m - m_super,
410 atop(pagesizes[psind]));
411 KASSERT(m_super->psind >= psind,
412 ("psind %d of m_super %p < %d", m_super->psind,
413 m_super, psind));
414 }
415 if (psind > 0) {
416 m_map = m_super;
417 vaddr = rounddown2(vaddr, pagesizes[psind]);
418 /* Preset the modified bit for dirty superpages. */
419 if ((flags & PS_ALL_DIRTY) != 0)
420 fs->fault_type |= VM_PROT_WRITE;
421 }
422 }
423 #endif
424 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
425 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
426 KERN_SUCCESS)
427 goto fail_busy;
428 if (fs->m_hold != NULL) {
429 (*fs->m_hold) = m;
430 vm_page_wire(m);
431 }
432 if (psind == 0 && !fs->wired)
433 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
434 VM_OBJECT_RUNLOCK(fs->first_object);
435 vm_fault_dirty(fs, m);
436 vm_object_unbusy(fs->first_object);
437 vm_map_lookup_done(fs->map, fs->entry);
438 curthread->td_ru.ru_minflt++;
439 return (FAULT_SUCCESS);
440 fail_busy:
441 vm_object_unbusy(fs->first_object);
442 fail:
443 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
444 VM_OBJECT_RUNLOCK(fs->first_object);
445 VM_OBJECT_WLOCK(fs->first_object);
446 }
447 return (FAULT_FAILURE);
448 }
449
450 static void
vm_fault_restore_map_lock(struct faultstate * fs)451 vm_fault_restore_map_lock(struct faultstate *fs)
452 {
453
454 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
455 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
456
457 if (!vm_map_trylock_read(fs->map)) {
458 VM_OBJECT_WUNLOCK(fs->first_object);
459 vm_map_lock_read(fs->map);
460 VM_OBJECT_WLOCK(fs->first_object);
461 }
462 fs->lookup_still_valid = true;
463 }
464
465 static void
vm_fault_populate_check_page(vm_page_t m)466 vm_fault_populate_check_page(vm_page_t m)
467 {
468
469 /*
470 * Check each page to ensure that the pager is obeying the
471 * interface: the page must be installed in the object, fully
472 * valid, and exclusively busied.
473 */
474 MPASS(m != NULL);
475 MPASS(vm_page_all_valid(m));
476 MPASS(vm_page_xbusied(m));
477 }
478
479 static void
vm_fault_populate_cleanup(vm_object_t object,vm_pindex_t first,vm_pindex_t last)480 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
481 vm_pindex_t last)
482 {
483 struct pctrie_iter pages;
484 vm_page_t m;
485
486 VM_OBJECT_ASSERT_WLOCKED(object);
487 MPASS(first <= last);
488 vm_page_iter_limit_init(&pages, object, last + 1);
489 VM_RADIX_FORALL_FROM(m, &pages, first) {
490 vm_fault_populate_check_page(m);
491 vm_page_deactivate(m);
492 vm_page_xunbusy(m);
493 }
494 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
495 }
496
497 static enum fault_status
vm_fault_populate(struct faultstate * fs)498 vm_fault_populate(struct faultstate *fs)
499 {
500 vm_offset_t vaddr;
501 vm_page_t m;
502 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
503 int bdry_idx, i, npages, psind, rv;
504 enum fault_status res;
505
506 MPASS(fs->object == fs->first_object);
507 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
508 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
509 MPASS(fs->first_object->backing_object == NULL);
510 MPASS(fs->lookup_still_valid);
511
512 pager_first = OFF_TO_IDX(fs->entry->offset);
513 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
514 vm_fault_unlock_map(fs);
515 vm_fault_unlock_vp(fs);
516
517 res = FAULT_SUCCESS;
518
519 /*
520 * Call the pager (driver) populate() method.
521 *
522 * There is no guarantee that the method will be called again
523 * if the current fault is for read, and a future fault is
524 * for write. Report the entry's maximum allowed protection
525 * to the driver.
526 */
527 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
528 fs->fault_type, fs->entry->max_protection, &pager_first,
529 &pager_last);
530
531 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
532 if (rv == VM_PAGER_BAD) {
533 /*
534 * VM_PAGER_BAD is the backdoor for a pager to request
535 * normal fault handling.
536 */
537 vm_fault_restore_map_lock(fs);
538 if (fs->map->timestamp != fs->map_generation)
539 return (FAULT_RESTART);
540 return (FAULT_CONTINUE);
541 }
542 if (rv != VM_PAGER_OK)
543 return (FAULT_FAILURE); /* AKA SIGSEGV */
544
545 /* Ensure that the driver is obeying the interface. */
546 MPASS(pager_first <= pager_last);
547 MPASS(fs->first_pindex <= pager_last);
548 MPASS(fs->first_pindex >= pager_first);
549 MPASS(pager_last < fs->first_object->size);
550
551 vm_fault_restore_map_lock(fs);
552 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
553 if (fs->map->timestamp != fs->map_generation) {
554 if (bdry_idx == 0) {
555 vm_fault_populate_cleanup(fs->first_object, pager_first,
556 pager_last);
557 } else {
558 m = vm_page_lookup(fs->first_object, pager_first);
559 if (m != fs->m)
560 vm_page_xunbusy(m);
561 }
562 return (FAULT_RESTART);
563 }
564
565 /*
566 * The map is unchanged after our last unlock. Process the fault.
567 *
568 * First, the special case of largepage mappings, where
569 * populate only busies the first page in superpage run.
570 */
571 if (bdry_idx != 0) {
572 KASSERT(PMAP_HAS_LARGEPAGES,
573 ("missing pmap support for large pages"));
574 m = vm_page_lookup(fs->first_object, pager_first);
575 vm_fault_populate_check_page(m);
576 VM_OBJECT_WUNLOCK(fs->first_object);
577 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
578 fs->entry->offset;
579 /* assert alignment for entry */
580 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
581 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
582 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
583 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
584 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
585 ("unaligned superpage m %p %#jx", m,
586 (uintmax_t)VM_PAGE_TO_PHYS(m)));
587 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
588 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
589 PMAP_ENTER_LARGEPAGE, bdry_idx);
590 VM_OBJECT_WLOCK(fs->first_object);
591 vm_page_xunbusy(m);
592 if (rv != KERN_SUCCESS) {
593 res = FAULT_FAILURE;
594 goto out;
595 }
596 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
597 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
598 vm_page_wire(m + i);
599 }
600 if (fs->m_hold != NULL) {
601 *fs->m_hold = m + (fs->first_pindex - pager_first);
602 vm_page_wire(*fs->m_hold);
603 }
604 goto out;
605 }
606
607 /*
608 * The range [pager_first, pager_last] that is given to the
609 * pager is only a hint. The pager may populate any range
610 * within the object that includes the requested page index.
611 * In case the pager expanded the range, clip it to fit into
612 * the map entry.
613 */
614 map_first = OFF_TO_IDX(fs->entry->offset);
615 if (map_first > pager_first) {
616 vm_fault_populate_cleanup(fs->first_object, pager_first,
617 map_first - 1);
618 pager_first = map_first;
619 }
620 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
621 if (map_last < pager_last) {
622 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
623 pager_last);
624 pager_last = map_last;
625 }
626 for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
627 m = vm_page_lookup(fs->first_object, pidx);
628 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
629 KASSERT(m != NULL && m->pindex == pidx,
630 ("%s: pindex mismatch", __func__));
631 psind = m->psind;
632 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
633 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
634 !pmap_ps_enabled(fs->map->pmap)))
635 psind--;
636
637 npages = atop(pagesizes[psind]);
638 for (i = 0; i < npages; i++) {
639 vm_fault_populate_check_page(&m[i]);
640 vm_fault_dirty(fs, &m[i]);
641 }
642 VM_OBJECT_WUNLOCK(fs->first_object);
643 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
644 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
645
646 /*
647 * pmap_enter() may fail for a superpage mapping if additional
648 * protection policies prevent the full mapping.
649 * For example, this will happen on amd64 if the entire
650 * address range does not share the same userspace protection
651 * key. Revert to single-page mappings if this happens.
652 */
653 MPASS(rv == KERN_SUCCESS ||
654 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
655 if (__predict_false(psind > 0 &&
656 rv == KERN_PROTECTION_FAILURE)) {
657 MPASS(!fs->wired);
658 for (i = 0; i < npages; i++) {
659 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
660 &m[i], fs->prot, fs->fault_type, 0);
661 MPASS(rv == KERN_SUCCESS);
662 }
663 }
664
665 VM_OBJECT_WLOCK(fs->first_object);
666 for (i = 0; i < npages; i++) {
667 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
668 m[i].pindex == fs->first_pindex)
669 vm_page_wire(&m[i]);
670 else
671 vm_page_activate(&m[i]);
672 if (fs->m_hold != NULL &&
673 m[i].pindex == fs->first_pindex) {
674 (*fs->m_hold) = &m[i];
675 vm_page_wire(&m[i]);
676 }
677 vm_page_xunbusy(&m[i]);
678 }
679 }
680 out:
681 curthread->td_ru.ru_majflt++;
682 return (res);
683 }
684
685 static int prot_fault_translation;
686 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
687 &prot_fault_translation, 0,
688 "Control signal to deliver on protection fault");
689
690 /* compat definition to keep common code for signal translation */
691 #define UCODE_PAGEFLT 12
692 #ifdef T_PAGEFLT
693 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
694 #endif
695
696 /*
697 * vm_fault_trap:
698 *
699 * Handle a page fault occurring at the given address,
700 * requiring the given permissions, in the map specified.
701 * If successful, the page is inserted into the
702 * associated physical map.
703 *
704 * NOTE: the given address should be truncated to the
705 * proper page address.
706 *
707 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
708 * a standard error specifying why the fault is fatal is returned.
709 *
710 * The map in question must be referenced, and remains so.
711 * Caller may hold no locks.
712 */
713 int
vm_fault_trap(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,int * signo,int * ucode)714 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
715 int fault_flags, int *signo, int *ucode)
716 {
717 int result;
718
719 MPASS(signo == NULL || ucode != NULL);
720 #ifdef KTRACE
721 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
722 ktrfault(vaddr, fault_type);
723 #endif
724 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
725 NULL);
726 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
727 result == KERN_INVALID_ADDRESS ||
728 result == KERN_RESOURCE_SHORTAGE ||
729 result == KERN_PROTECTION_FAILURE ||
730 result == KERN_OUT_OF_BOUNDS,
731 ("Unexpected Mach error %d from vm_fault()", result));
732 #ifdef KTRACE
733 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
734 ktrfaultend(result);
735 #endif
736 if (result != KERN_SUCCESS && signo != NULL) {
737 switch (result) {
738 case KERN_FAILURE:
739 case KERN_INVALID_ADDRESS:
740 *signo = SIGSEGV;
741 *ucode = SEGV_MAPERR;
742 break;
743 case KERN_RESOURCE_SHORTAGE:
744 *signo = SIGBUS;
745 *ucode = BUS_OOMERR;
746 break;
747 case KERN_OUT_OF_BOUNDS:
748 *signo = SIGBUS;
749 *ucode = BUS_OBJERR;
750 break;
751 case KERN_PROTECTION_FAILURE:
752 if (prot_fault_translation == 0) {
753 /*
754 * Autodetect. This check also covers
755 * the images without the ABI-tag ELF
756 * note.
757 */
758 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
759 curproc->p_osrel >= P_OSREL_SIGSEGV) {
760 *signo = SIGSEGV;
761 *ucode = SEGV_ACCERR;
762 } else {
763 *signo = SIGBUS;
764 *ucode = UCODE_PAGEFLT;
765 }
766 } else if (prot_fault_translation == 1) {
767 /* Always compat mode. */
768 *signo = SIGBUS;
769 *ucode = UCODE_PAGEFLT;
770 } else {
771 /* Always SIGSEGV mode. */
772 *signo = SIGSEGV;
773 *ucode = SEGV_ACCERR;
774 }
775 break;
776 default:
777 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
778 result));
779 break;
780 }
781 }
782 return (result);
783 }
784
785 static bool
vm_fault_object_ensure_wlocked(struct faultstate * fs)786 vm_fault_object_ensure_wlocked(struct faultstate *fs)
787 {
788 if (fs->object == fs->first_object)
789 VM_OBJECT_ASSERT_WLOCKED(fs->object);
790
791 if (!fs->can_read_lock) {
792 VM_OBJECT_ASSERT_WLOCKED(fs->object);
793 return (true);
794 }
795
796 if (VM_OBJECT_WOWNED(fs->object))
797 return (true);
798
799 if (VM_OBJECT_TRYUPGRADE(fs->object))
800 return (true);
801
802 return (false);
803 }
804
805 static enum fault_status
vm_fault_lock_vnode(struct faultstate * fs,bool objlocked)806 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
807 {
808 struct vnode *vp;
809 int error, locked;
810
811 if (fs->object->type != OBJT_VNODE)
812 return (FAULT_CONTINUE);
813 vp = fs->object->handle;
814 if (vp == fs->vp) {
815 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
816 return (FAULT_CONTINUE);
817 }
818
819 /*
820 * Perform an unlock in case the desired vnode changed while
821 * the map was unlocked during a retry.
822 */
823 vm_fault_unlock_vp(fs);
824
825 locked = VOP_ISLOCKED(vp);
826 if (locked != LK_EXCLUSIVE)
827 locked = LK_SHARED;
828
829 /*
830 * We must not sleep acquiring the vnode lock while we have
831 * the page exclusive busied or the object's
832 * paging-in-progress count incremented. Otherwise, we could
833 * deadlock.
834 */
835 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
836 if (error == 0) {
837 fs->vp = vp;
838 return (FAULT_CONTINUE);
839 }
840
841 vhold(vp);
842 if (objlocked)
843 vm_fault_unlock_and_deallocate(fs);
844 else
845 vm_fault_deallocate(fs);
846 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
847 vdrop(vp);
848 fs->vp = vp;
849 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
850 return (FAULT_RESTART);
851 }
852
853 /*
854 * Calculate the desired readahead. Handle drop-behind.
855 *
856 * Returns the number of readahead blocks to pass to the pager.
857 */
858 static int
vm_fault_readahead(struct faultstate * fs)859 vm_fault_readahead(struct faultstate *fs)
860 {
861 int era, nera;
862 u_char behavior;
863
864 KASSERT(fs->lookup_still_valid, ("map unlocked"));
865 era = fs->entry->read_ahead;
866 behavior = vm_map_entry_behavior(fs->entry);
867 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
868 nera = 0;
869 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
870 nera = VM_FAULT_READ_AHEAD_MAX;
871 if (fs->vaddr == fs->entry->next_read)
872 vm_fault_dontneed(fs, fs->vaddr, nera);
873 } else if (fs->vaddr == fs->entry->next_read) {
874 /*
875 * This is a sequential fault. Arithmetically
876 * increase the requested number of pages in
877 * the read-ahead window. The requested
878 * number of pages is "# of sequential faults
879 * x (read ahead min + 1) + read ahead min"
880 */
881 nera = VM_FAULT_READ_AHEAD_MIN;
882 if (era > 0) {
883 nera += era + 1;
884 if (nera > VM_FAULT_READ_AHEAD_MAX)
885 nera = VM_FAULT_READ_AHEAD_MAX;
886 }
887 if (era == VM_FAULT_READ_AHEAD_MAX)
888 vm_fault_dontneed(fs, fs->vaddr, nera);
889 } else {
890 /*
891 * This is a non-sequential fault.
892 */
893 nera = 0;
894 }
895 if (era != nera) {
896 /*
897 * A read lock on the map suffices to update
898 * the read ahead count safely.
899 */
900 fs->entry->read_ahead = nera;
901 }
902
903 return (nera);
904 }
905
906 static int
vm_fault_lookup(struct faultstate * fs)907 vm_fault_lookup(struct faultstate *fs)
908 {
909 int result;
910
911 KASSERT(!fs->lookup_still_valid,
912 ("vm_fault_lookup: Map already locked."));
913 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
914 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
915 &fs->first_pindex, &fs->prot, &fs->wired);
916 if (result != KERN_SUCCESS) {
917 vm_fault_unlock_vp(fs);
918 return (result);
919 }
920
921 fs->map_generation = fs->map->timestamp;
922
923 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
924 panic("%s: fault on nofault entry, addr: %#lx",
925 __func__, (u_long)fs->vaddr);
926 }
927
928 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
929 fs->entry->wiring_thread != curthread) {
930 vm_map_unlock_read(fs->map);
931 vm_map_lock(fs->map);
932 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
933 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
934 vm_fault_unlock_vp(fs);
935 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
936 vm_map_unlock_and_wait(fs->map, 0);
937 } else
938 vm_map_unlock(fs->map);
939 return (KERN_RESOURCE_SHORTAGE);
940 }
941
942 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
943
944 if (fs->wired)
945 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
946 else
947 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
948 ("!fs->wired && VM_FAULT_WIRE"));
949 fs->lookup_still_valid = true;
950
951 return (KERN_SUCCESS);
952 }
953
954 static int
vm_fault_relookup(struct faultstate * fs)955 vm_fault_relookup(struct faultstate *fs)
956 {
957 vm_object_t retry_object;
958 vm_pindex_t retry_pindex;
959 vm_prot_t retry_prot;
960 int result;
961
962 if (!vm_map_trylock_read(fs->map))
963 return (KERN_RESTART);
964
965 fs->lookup_still_valid = true;
966 if (fs->map->timestamp == fs->map_generation)
967 return (KERN_SUCCESS);
968
969 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
970 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
971 &fs->wired);
972 if (result != KERN_SUCCESS) {
973 /*
974 * If retry of map lookup would have blocked then
975 * retry fault from start.
976 */
977 if (result == KERN_FAILURE)
978 return (KERN_RESTART);
979 return (result);
980 }
981 if (retry_object != fs->first_object ||
982 retry_pindex != fs->first_pindex)
983 return (KERN_RESTART);
984
985 /*
986 * Check whether the protection has changed or the object has
987 * been copied while we left the map unlocked. Changing from
988 * read to write permission is OK - we leave the page
989 * write-protected, and catch the write fault. Changing from
990 * write to read permission means that we can't mark the page
991 * write-enabled after all.
992 */
993 fs->prot &= retry_prot;
994 fs->fault_type &= retry_prot;
995 if (fs->prot == 0)
996 return (KERN_RESTART);
997
998 /* Reassert because wired may have changed. */
999 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1000 ("!wired && VM_FAULT_WIRE"));
1001
1002 return (KERN_SUCCESS);
1003 }
1004
1005 static void
vm_fault_cow(struct faultstate * fs)1006 vm_fault_cow(struct faultstate *fs)
1007 {
1008 bool is_first_object_locked;
1009
1010 KASSERT(fs->object != fs->first_object,
1011 ("source and target COW objects are identical"));
1012
1013 /*
1014 * This allows pages to be virtually copied from a backing_object
1015 * into the first_object, where the backing object has no other
1016 * refs to it, and cannot gain any more refs. Instead of a bcopy,
1017 * we just move the page from the backing object to the first
1018 * object. Note that we must mark the page dirty in the first
1019 * object so that it will go out to swap when needed.
1020 */
1021 is_first_object_locked = false;
1022 if (
1023 /*
1024 * Only one shadow object and no other refs.
1025 */
1026 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1027 /*
1028 * No other ways to look the object up
1029 */
1030 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1031 /*
1032 * We don't chase down the shadow chain and we can acquire locks.
1033 */
1034 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1035 fs->object == fs->first_object->backing_object &&
1036 VM_OBJECT_TRYWLOCK(fs->object)) {
1037 /*
1038 * Remove but keep xbusy for replace. fs->m is moved into
1039 * fs->first_object and left busy while fs->first_m is
1040 * conditionally freed.
1041 */
1042 vm_page_remove_xbusy(fs->m);
1043 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1044 fs->first_m);
1045 vm_page_dirty(fs->m);
1046 #if VM_NRESERVLEVEL > 0
1047 /*
1048 * Rename the reservation.
1049 */
1050 vm_reserv_rename(fs->m, fs->first_object, fs->object,
1051 OFF_TO_IDX(fs->first_object->backing_object_offset));
1052 #endif
1053 VM_OBJECT_WUNLOCK(fs->object);
1054 VM_OBJECT_WUNLOCK(fs->first_object);
1055 fs->first_m = fs->m;
1056 fs->m = NULL;
1057 VM_CNT_INC(v_cow_optim);
1058 } else {
1059 if (is_first_object_locked)
1060 VM_OBJECT_WUNLOCK(fs->first_object);
1061 /*
1062 * Oh, well, lets copy it.
1063 */
1064 pmap_copy_page(fs->m, fs->first_m);
1065 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1066 vm_page_wire(fs->first_m);
1067 vm_page_unwire(fs->m, PQ_INACTIVE);
1068 }
1069 /*
1070 * Save the COW page to be released after pmap_enter is
1071 * complete. The new copy will be marked valid when we're ready
1072 * to map it.
1073 */
1074 fs->m_cow = fs->m;
1075 fs->m = NULL;
1076
1077 /*
1078 * Typically, the shadow object is either private to this
1079 * address space (OBJ_ONEMAPPING) or its pages are read only.
1080 * In the highly unusual case where the pages of a shadow object
1081 * are read/write shared between this and other address spaces,
1082 * we need to ensure that any pmap-level mappings to the
1083 * original, copy-on-write page from the backing object are
1084 * removed from those other address spaces.
1085 *
1086 * The flag check is racy, but this is tolerable: if
1087 * OBJ_ONEMAPPING is cleared after the check, the busy state
1088 * ensures that new mappings of m_cow can't be created.
1089 * pmap_enter() will replace an existing mapping in the current
1090 * address space. If OBJ_ONEMAPPING is set after the check,
1091 * removing mappings will at worse trigger some unnecessary page
1092 * faults.
1093 */
1094 vm_page_assert_xbusied(fs->m_cow);
1095 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1096 pmap_remove_all(fs->m_cow);
1097 }
1098
1099 vm_object_pip_wakeup(fs->object);
1100
1101 /*
1102 * Only use the new page below...
1103 */
1104 fs->object = fs->first_object;
1105 fs->pindex = fs->first_pindex;
1106 fs->m = fs->first_m;
1107 VM_CNT_INC(v_cow_faults);
1108 curthread->td_cow++;
1109 }
1110
1111 static enum fault_next_status
vm_fault_next(struct faultstate * fs)1112 vm_fault_next(struct faultstate *fs)
1113 {
1114 vm_object_t next_object;
1115
1116 if (fs->object == fs->first_object || !fs->can_read_lock)
1117 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1118 else
1119 VM_OBJECT_ASSERT_LOCKED(fs->object);
1120
1121 /*
1122 * The requested page does not exist at this object/
1123 * offset. Remove the invalid page from the object,
1124 * waking up anyone waiting for it, and continue on to
1125 * the next object. However, if this is the top-level
1126 * object, we must leave the busy page in place to
1127 * prevent another process from rushing past us, and
1128 * inserting the page in that object at the same time
1129 * that we are.
1130 */
1131 if (fs->object == fs->first_object) {
1132 fs->first_m = fs->m;
1133 fs->m = NULL;
1134 } else if (fs->m != NULL) {
1135 if (!vm_fault_object_ensure_wlocked(fs)) {
1136 fs->can_read_lock = false;
1137 vm_fault_unlock_and_deallocate(fs);
1138 return (FAULT_NEXT_RESTART);
1139 }
1140 vm_fault_page_free(&fs->m);
1141 }
1142
1143 /*
1144 * Move on to the next object. Lock the next object before
1145 * unlocking the current one.
1146 */
1147 next_object = fs->object->backing_object;
1148 if (next_object == NULL)
1149 return (FAULT_NEXT_NOOBJ);
1150 MPASS(fs->first_m != NULL);
1151 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1152 if (fs->can_read_lock)
1153 VM_OBJECT_RLOCK(next_object);
1154 else
1155 VM_OBJECT_WLOCK(next_object);
1156 vm_object_pip_add(next_object, 1);
1157 if (fs->object != fs->first_object)
1158 vm_object_pip_wakeup(fs->object);
1159 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1160 VM_OBJECT_UNLOCK(fs->object);
1161 fs->object = next_object;
1162
1163 return (FAULT_NEXT_GOTOBJ);
1164 }
1165
1166 static void
vm_fault_zerofill(struct faultstate * fs)1167 vm_fault_zerofill(struct faultstate *fs)
1168 {
1169
1170 /*
1171 * If there's no object left, fill the page in the top
1172 * object with zeros.
1173 */
1174 if (fs->object != fs->first_object) {
1175 vm_object_pip_wakeup(fs->object);
1176 fs->object = fs->first_object;
1177 fs->pindex = fs->first_pindex;
1178 }
1179 MPASS(fs->first_m != NULL);
1180 MPASS(fs->m == NULL);
1181 fs->m = fs->first_m;
1182 fs->first_m = NULL;
1183
1184 /*
1185 * Zero the page if necessary and mark it valid.
1186 */
1187 if ((fs->m->flags & PG_ZERO) == 0) {
1188 pmap_zero_page(fs->m);
1189 } else {
1190 VM_CNT_INC(v_ozfod);
1191 }
1192 VM_CNT_INC(v_zfod);
1193 vm_page_valid(fs->m);
1194 }
1195
1196 /*
1197 * Initiate page fault after timeout. Returns true if caller should
1198 * do vm_waitpfault() after the call.
1199 */
1200 static bool
vm_fault_allocate_oom(struct faultstate * fs)1201 vm_fault_allocate_oom(struct faultstate *fs)
1202 {
1203 struct timeval now;
1204
1205 vm_fault_unlock_and_deallocate(fs);
1206 if (vm_pfault_oom_attempts < 0)
1207 return (true);
1208 if (!fs->oom_started) {
1209 fs->oom_started = true;
1210 getmicrotime(&fs->oom_start_time);
1211 return (true);
1212 }
1213
1214 getmicrotime(&now);
1215 timevalsub(&now, &fs->oom_start_time);
1216 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1217 return (true);
1218
1219 if (bootverbose)
1220 printf(
1221 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1222 curproc->p_pid, curproc->p_comm);
1223 vm_pageout_oom(VM_OOM_MEM_PF);
1224 fs->oom_started = false;
1225 return (false);
1226 }
1227
1228 /*
1229 * Allocate a page directly or via the object populate method.
1230 */
1231 static enum fault_status
vm_fault_allocate(struct faultstate * fs,struct pctrie_iter * pages)1232 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1233 {
1234 struct domainset *dset;
1235 enum fault_status res;
1236
1237 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1238 res = vm_fault_lock_vnode(fs, true);
1239 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1240 if (res == FAULT_RESTART)
1241 return (res);
1242 }
1243
1244 if (fs->pindex >= fs->object->size) {
1245 vm_fault_unlock_and_deallocate(fs);
1246 return (FAULT_OUT_OF_BOUNDS);
1247 }
1248
1249 if (fs->object == fs->first_object &&
1250 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1251 fs->first_object->shadow_count == 0) {
1252 res = vm_fault_populate(fs);
1253 switch (res) {
1254 case FAULT_SUCCESS:
1255 case FAULT_FAILURE:
1256 case FAULT_RESTART:
1257 vm_fault_unlock_and_deallocate(fs);
1258 return (res);
1259 case FAULT_CONTINUE:
1260 pctrie_iter_reset(pages);
1261 /*
1262 * Pager's populate() method
1263 * returned VM_PAGER_BAD.
1264 */
1265 break;
1266 default:
1267 panic("inconsistent return codes");
1268 }
1269 }
1270
1271 /*
1272 * Allocate a new page for this object/offset pair.
1273 *
1274 * If the process has a fatal signal pending, prioritize the allocation
1275 * with the expectation that the process will exit shortly and free some
1276 * pages. In particular, the signal may have been posted by the page
1277 * daemon in an attempt to resolve an out-of-memory condition.
1278 *
1279 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1280 * might be not observed here, and allocation fails, causing a restart
1281 * and new reading of the p_flag.
1282 */
1283 dset = fs->object->domain.dr_policy;
1284 if (dset == NULL)
1285 dset = curthread->td_domain.dr_policy;
1286 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1287 #if VM_NRESERVLEVEL > 0
1288 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1289 #endif
1290 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1291 vm_fault_unlock_and_deallocate(fs);
1292 return (FAULT_FAILURE);
1293 }
1294 fs->m = vm_page_alloc_after(fs->object, pages, fs->pindex,
1295 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0,
1296 vm_radix_iter_lookup_lt(pages, fs->pindex));
1297 }
1298 if (fs->m == NULL) {
1299 if (vm_fault_allocate_oom(fs))
1300 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1301 return (FAULT_RESTART);
1302 }
1303 fs->oom_started = false;
1304
1305 return (FAULT_CONTINUE);
1306 }
1307
1308 /*
1309 * Call the pager to retrieve the page if there is a chance
1310 * that the pager has it, and potentially retrieve additional
1311 * pages at the same time.
1312 */
1313 static enum fault_status
vm_fault_getpages(struct faultstate * fs,int * behindp,int * aheadp)1314 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1315 {
1316 vm_offset_t e_end, e_start;
1317 int ahead, behind, cluster_offset, rv;
1318 enum fault_status status;
1319 u_char behavior;
1320
1321 /*
1322 * Prepare for unlocking the map. Save the map
1323 * entry's start and end addresses, which are used to
1324 * optimize the size of the pager operation below.
1325 * Even if the map entry's addresses change after
1326 * unlocking the map, using the saved addresses is
1327 * safe.
1328 */
1329 e_start = fs->entry->start;
1330 e_end = fs->entry->end;
1331 behavior = vm_map_entry_behavior(fs->entry);
1332
1333 /*
1334 * If the pager for the current object might have
1335 * the page, then determine the number of additional
1336 * pages to read and potentially reprioritize
1337 * previously read pages for earlier reclamation.
1338 * These operations should only be performed once per
1339 * page fault. Even if the current pager doesn't
1340 * have the page, the number of additional pages to
1341 * read will apply to subsequent objects in the
1342 * shadow chain.
1343 */
1344 if (fs->nera == -1 && !P_KILLED(curproc))
1345 fs->nera = vm_fault_readahead(fs);
1346
1347 /*
1348 * Release the map lock before locking the vnode or
1349 * sleeping in the pager. (If the current object has
1350 * a shadow, then an earlier iteration of this loop
1351 * may have already unlocked the map.)
1352 */
1353 vm_fault_unlock_map(fs);
1354
1355 status = vm_fault_lock_vnode(fs, false);
1356 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1357 if (status == FAULT_RESTART)
1358 return (status);
1359 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1360 ("vm_fault: vnode-backed object mapped by system map"));
1361
1362 /*
1363 * Page in the requested page and hint the pager,
1364 * that it may bring up surrounding pages.
1365 */
1366 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1367 P_KILLED(curproc)) {
1368 behind = 0;
1369 ahead = 0;
1370 } else {
1371 /* Is this a sequential fault? */
1372 if (fs->nera > 0) {
1373 behind = 0;
1374 ahead = fs->nera;
1375 } else {
1376 /*
1377 * Request a cluster of pages that is
1378 * aligned to a VM_FAULT_READ_DEFAULT
1379 * page offset boundary within the
1380 * object. Alignment to a page offset
1381 * boundary is more likely to coincide
1382 * with the underlying file system
1383 * block than alignment to a virtual
1384 * address boundary.
1385 */
1386 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1387 behind = ulmin(cluster_offset,
1388 atop(fs->vaddr - e_start));
1389 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1390 }
1391 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1392 }
1393 *behindp = behind;
1394 *aheadp = ahead;
1395 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1396 if (rv == VM_PAGER_OK)
1397 return (FAULT_HARD);
1398 if (rv == VM_PAGER_ERROR)
1399 printf("vm_fault: pager read error, pid %d (%s)\n",
1400 curproc->p_pid, curproc->p_comm);
1401 /*
1402 * If an I/O error occurred or the requested page was
1403 * outside the range of the pager, clean up and return
1404 * an error.
1405 */
1406 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1407 VM_OBJECT_WLOCK(fs->object);
1408 vm_fault_page_free(&fs->m);
1409 vm_fault_unlock_and_deallocate(fs);
1410 return (FAULT_OUT_OF_BOUNDS);
1411 }
1412 KASSERT(rv == VM_PAGER_FAIL,
1413 ("%s: unexpected pager error %d", __func__, rv));
1414 return (FAULT_CONTINUE);
1415 }
1416
1417 /*
1418 * Wait/Retry if the page is busy. We have to do this if the page is
1419 * either exclusive or shared busy because the vm_pager may be using
1420 * read busy for pageouts (and even pageins if it is the vnode pager),
1421 * and we could end up trying to pagein and pageout the same page
1422 * simultaneously.
1423 *
1424 * We can theoretically allow the busy case on a read fault if the page
1425 * is marked valid, but since such pages are typically already pmap'd,
1426 * putting that special case in might be more effort then it is worth.
1427 * We cannot under any circumstances mess around with a shared busied
1428 * page except, perhaps, to pmap it.
1429 */
1430 static void
vm_fault_busy_sleep(struct faultstate * fs)1431 vm_fault_busy_sleep(struct faultstate *fs)
1432 {
1433 /*
1434 * Reference the page before unlocking and
1435 * sleeping so that the page daemon is less
1436 * likely to reclaim it.
1437 */
1438 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1439 if (fs->object != fs->first_object) {
1440 vm_fault_page_release(&fs->first_m);
1441 vm_object_pip_wakeup(fs->first_object);
1442 }
1443 vm_object_pip_wakeup(fs->object);
1444 vm_fault_unlock_map(fs);
1445 if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1446 !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1447 VM_OBJECT_UNLOCK(fs->object);
1448 VM_CNT_INC(v_intrans);
1449 vm_object_deallocate(fs->first_object);
1450 }
1451
1452 /*
1453 * Handle page lookup, populate, allocate, page-in for the current
1454 * object.
1455 *
1456 * The object is locked on entry and will remain locked with a return
1457 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1458 * Otherwise, the object will be unlocked upon return.
1459 */
1460 static enum fault_status
vm_fault_object(struct faultstate * fs,int * behindp,int * aheadp)1461 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1462 {
1463 struct pctrie_iter pages;
1464 enum fault_status res;
1465 bool dead;
1466
1467 if (fs->object == fs->first_object || !fs->can_read_lock)
1468 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1469 else
1470 VM_OBJECT_ASSERT_LOCKED(fs->object);
1471
1472 /*
1473 * If the object is marked for imminent termination, we retry
1474 * here, since the collapse pass has raced with us. Otherwise,
1475 * if we see terminally dead object, return fail.
1476 */
1477 if ((fs->object->flags & OBJ_DEAD) != 0) {
1478 dead = fs->object->type == OBJT_DEAD;
1479 vm_fault_unlock_and_deallocate(fs);
1480 if (dead)
1481 return (FAULT_PROTECTION_FAILURE);
1482 pause("vmf_de", 1);
1483 return (FAULT_RESTART);
1484 }
1485
1486 /*
1487 * See if the page is resident.
1488 */
1489 vm_page_iter_init(&pages, fs->object);
1490 fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1491 if (fs->m != NULL) {
1492 if (!vm_page_tryxbusy(fs->m)) {
1493 vm_fault_busy_sleep(fs);
1494 return (FAULT_RESTART);
1495 }
1496
1497 /*
1498 * The page is marked busy for other processes and the
1499 * pagedaemon. If it is still completely valid we are
1500 * done.
1501 */
1502 if (vm_page_all_valid(fs->m)) {
1503 VM_OBJECT_UNLOCK(fs->object);
1504 return (FAULT_SOFT);
1505 }
1506 }
1507
1508 /*
1509 * Page is not resident. If the pager might contain the page
1510 * or this is the beginning of the search, allocate a new
1511 * page.
1512 */
1513 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1514 fs->object == fs->first_object)) {
1515 if (!vm_fault_object_ensure_wlocked(fs)) {
1516 fs->can_read_lock = false;
1517 vm_fault_unlock_and_deallocate(fs);
1518 return (FAULT_RESTART);
1519 }
1520 res = vm_fault_allocate(fs, &pages);
1521 if (res != FAULT_CONTINUE)
1522 return (res);
1523 }
1524
1525 /*
1526 * Check to see if the pager can possibly satisfy this fault.
1527 * If not, skip to the next object without dropping the lock to
1528 * preserve atomicity of shadow faults.
1529 */
1530 if (vm_fault_object_needs_getpages(fs->object)) {
1531 /*
1532 * At this point, we have either allocated a new page
1533 * or found an existing page that is only partially
1534 * valid.
1535 *
1536 * We hold a reference on the current object and the
1537 * page is exclusive busied. The exclusive busy
1538 * prevents simultaneous faults and collapses while
1539 * the object lock is dropped.
1540 */
1541 VM_OBJECT_UNLOCK(fs->object);
1542 res = vm_fault_getpages(fs, behindp, aheadp);
1543 if (res == FAULT_CONTINUE)
1544 VM_OBJECT_WLOCK(fs->object);
1545 } else {
1546 res = FAULT_CONTINUE;
1547 }
1548 return (res);
1549 }
1550
1551 int
vm_fault(vm_map_t map,vm_offset_t vaddr,vm_prot_t fault_type,int fault_flags,vm_page_t * m_hold)1552 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1553 int fault_flags, vm_page_t *m_hold)
1554 {
1555 struct pctrie_iter pages;
1556 struct faultstate fs;
1557 int ahead, behind, faultcount, rv;
1558 enum fault_status res;
1559 enum fault_next_status res_next;
1560 bool hardfault;
1561
1562 VM_CNT_INC(v_vm_faults);
1563
1564 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1565 return (KERN_PROTECTION_FAILURE);
1566
1567 fs.vp = NULL;
1568 fs.vaddr = vaddr;
1569 fs.m_hold = m_hold;
1570 fs.fault_flags = fault_flags;
1571 fs.map = map;
1572 fs.lookup_still_valid = false;
1573 fs.oom_started = false;
1574 fs.nera = -1;
1575 fs.can_read_lock = true;
1576 faultcount = 0;
1577 hardfault = false;
1578
1579 RetryFault:
1580 fs.fault_type = fault_type;
1581
1582 /*
1583 * Find the backing store object and offset into it to begin the
1584 * search.
1585 */
1586 rv = vm_fault_lookup(&fs);
1587 if (rv != KERN_SUCCESS) {
1588 if (rv == KERN_RESOURCE_SHORTAGE)
1589 goto RetryFault;
1590 return (rv);
1591 }
1592
1593 /*
1594 * Try to avoid lock contention on the top-level object through
1595 * special-case handling of some types of page faults, specifically,
1596 * those that are mapping an existing page from the top-level object.
1597 * Under this condition, a read lock on the object suffices, allowing
1598 * multiple page faults of a similar type to run in parallel.
1599 */
1600 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1601 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1602 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1603 res = vm_fault_soft_fast(&fs);
1604 if (res == FAULT_SUCCESS) {
1605 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1606 return (KERN_SUCCESS);
1607 }
1608 VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1609 } else {
1610 vm_page_iter_init(&pages, fs.first_object);
1611 VM_OBJECT_WLOCK(fs.first_object);
1612 }
1613
1614 /*
1615 * Make a reference to this object to prevent its disposal while we
1616 * are messing with it. Once we have the reference, the map is free
1617 * to be diddled. Since objects reference their shadows (and copies),
1618 * they will stay around as well.
1619 *
1620 * Bump the paging-in-progress count to prevent size changes (e.g.
1621 * truncation operations) during I/O.
1622 */
1623 vm_object_reference_locked(fs.first_object);
1624 vm_object_pip_add(fs.first_object, 1);
1625
1626 fs.m_cow = fs.m = fs.first_m = NULL;
1627
1628 /*
1629 * Search for the page at object/offset.
1630 */
1631 fs.object = fs.first_object;
1632 fs.pindex = fs.first_pindex;
1633
1634 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1635 res = vm_fault_allocate(&fs, &pages);
1636 switch (res) {
1637 case FAULT_RESTART:
1638 goto RetryFault;
1639 case FAULT_SUCCESS:
1640 return (KERN_SUCCESS);
1641 case FAULT_FAILURE:
1642 return (KERN_FAILURE);
1643 case FAULT_OUT_OF_BOUNDS:
1644 return (KERN_OUT_OF_BOUNDS);
1645 case FAULT_CONTINUE:
1646 break;
1647 default:
1648 panic("vm_fault: Unhandled status %d", res);
1649 }
1650 }
1651
1652 while (TRUE) {
1653 KASSERT(fs.m == NULL,
1654 ("page still set %p at loop start", fs.m));
1655
1656 res = vm_fault_object(&fs, &behind, &ahead);
1657 switch (res) {
1658 case FAULT_SOFT:
1659 goto found;
1660 case FAULT_HARD:
1661 faultcount = behind + 1 + ahead;
1662 hardfault = true;
1663 goto found;
1664 case FAULT_RESTART:
1665 goto RetryFault;
1666 case FAULT_SUCCESS:
1667 return (KERN_SUCCESS);
1668 case FAULT_FAILURE:
1669 return (KERN_FAILURE);
1670 case FAULT_OUT_OF_BOUNDS:
1671 return (KERN_OUT_OF_BOUNDS);
1672 case FAULT_PROTECTION_FAILURE:
1673 return (KERN_PROTECTION_FAILURE);
1674 case FAULT_CONTINUE:
1675 break;
1676 default:
1677 panic("vm_fault: Unhandled status %d", res);
1678 }
1679
1680 /*
1681 * The page was not found in the current object. Try to
1682 * traverse into a backing object or zero fill if none is
1683 * found.
1684 */
1685 res_next = vm_fault_next(&fs);
1686 if (res_next == FAULT_NEXT_RESTART)
1687 goto RetryFault;
1688 else if (res_next == FAULT_NEXT_GOTOBJ)
1689 continue;
1690 MPASS(res_next == FAULT_NEXT_NOOBJ);
1691 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1692 if (fs.first_object == fs.object)
1693 vm_fault_page_free(&fs.first_m);
1694 vm_fault_unlock_and_deallocate(&fs);
1695 return (KERN_OUT_OF_BOUNDS);
1696 }
1697 VM_OBJECT_UNLOCK(fs.object);
1698 vm_fault_zerofill(&fs);
1699 /* Don't try to prefault neighboring pages. */
1700 faultcount = 1;
1701 break;
1702 }
1703
1704 found:
1705 /*
1706 * A valid page has been found and exclusively busied. The
1707 * object lock must no longer be held.
1708 */
1709 vm_page_assert_xbusied(fs.m);
1710 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1711
1712 /*
1713 * If the page is being written, but isn't already owned by the
1714 * top-level object, we have to copy it into a new page owned by the
1715 * top-level object.
1716 */
1717 if (fs.object != fs.first_object) {
1718 /*
1719 * We only really need to copy if we want to write it.
1720 */
1721 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1722 vm_fault_cow(&fs);
1723 /*
1724 * We only try to prefault read-only mappings to the
1725 * neighboring pages when this copy-on-write fault is
1726 * a hard fault. In other cases, trying to prefault
1727 * is typically wasted effort.
1728 */
1729 if (faultcount == 0)
1730 faultcount = 1;
1731
1732 } else {
1733 fs.prot &= ~VM_PROT_WRITE;
1734 }
1735 }
1736
1737 /*
1738 * We must verify that the maps have not changed since our last
1739 * lookup.
1740 */
1741 if (!fs.lookup_still_valid) {
1742 rv = vm_fault_relookup(&fs);
1743 if (rv != KERN_SUCCESS) {
1744 vm_fault_deallocate(&fs);
1745 if (rv == KERN_RESTART)
1746 goto RetryFault;
1747 return (rv);
1748 }
1749 }
1750 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1751
1752 /*
1753 * If the page was filled by a pager, save the virtual address that
1754 * should be faulted on next under a sequential access pattern to the
1755 * map entry. A read lock on the map suffices to update this address
1756 * safely.
1757 */
1758 if (hardfault)
1759 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1760
1761 /*
1762 * If the page to be mapped was copied from a backing object, we defer
1763 * marking it valid until here, where the fault handler is guaranteed to
1764 * succeed. Otherwise we can end up with a shadowed, mapped page in the
1765 * backing object, which violates an invariant of vm_object_collapse()
1766 * that shadowed pages are not mapped.
1767 */
1768 if (fs.m_cow != NULL) {
1769 KASSERT(vm_page_none_valid(fs.m),
1770 ("vm_fault: page %p is already valid", fs.m_cow));
1771 vm_page_valid(fs.m);
1772 }
1773
1774 /*
1775 * Page must be completely valid or it is not fit to
1776 * map into user space. vm_pager_get_pages() ensures this.
1777 */
1778 vm_page_assert_xbusied(fs.m);
1779 KASSERT(vm_page_all_valid(fs.m),
1780 ("vm_fault: page %p partially invalid", fs.m));
1781
1782 vm_fault_dirty(&fs, fs.m);
1783
1784 /*
1785 * Put this page into the physical map. We had to do the unlock above
1786 * because pmap_enter() may sleep. We don't put the page
1787 * back on the active queue until later so that the pageout daemon
1788 * won't find it (yet).
1789 */
1790 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1791 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1792 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1793 fs.wired == 0)
1794 vm_fault_prefault(&fs, vaddr,
1795 faultcount > 0 ? behind : PFBAK,
1796 faultcount > 0 ? ahead : PFFOR, false);
1797
1798 /*
1799 * If the page is not wired down, then put it where the pageout daemon
1800 * can find it.
1801 */
1802 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1803 vm_page_wire(fs.m);
1804 else
1805 vm_page_activate(fs.m);
1806 if (fs.m_hold != NULL) {
1807 (*fs.m_hold) = fs.m;
1808 vm_page_wire(fs.m);
1809 }
1810 vm_page_xunbusy(fs.m);
1811 fs.m = NULL;
1812
1813 /*
1814 * Unlock everything, and return
1815 */
1816 vm_fault_deallocate(&fs);
1817 if (hardfault) {
1818 VM_CNT_INC(v_io_faults);
1819 curthread->td_ru.ru_majflt++;
1820 #ifdef RACCT
1821 if (racct_enable && fs.object->type == OBJT_VNODE) {
1822 PROC_LOCK(curproc);
1823 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1824 racct_add_force(curproc, RACCT_WRITEBPS,
1825 PAGE_SIZE + behind * PAGE_SIZE);
1826 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1827 } else {
1828 racct_add_force(curproc, RACCT_READBPS,
1829 PAGE_SIZE + ahead * PAGE_SIZE);
1830 racct_add_force(curproc, RACCT_READIOPS, 1);
1831 }
1832 PROC_UNLOCK(curproc);
1833 }
1834 #endif
1835 } else
1836 curthread->td_ru.ru_minflt++;
1837
1838 return (KERN_SUCCESS);
1839 }
1840
1841 /*
1842 * Speed up the reclamation of pages that precede the faulting pindex within
1843 * the first object of the shadow chain. Essentially, perform the equivalent
1844 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1845 * the faulting pindex by the cluster size when the pages read by vm_fault()
1846 * cross a cluster-size boundary. The cluster size is the greater of the
1847 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1848 *
1849 * When "fs->first_object" is a shadow object, the pages in the backing object
1850 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1851 * function must only be concerned with pages in the first object.
1852 */
1853 static void
vm_fault_dontneed(const struct faultstate * fs,vm_offset_t vaddr,int ahead)1854 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1855 {
1856 struct pctrie_iter pages;
1857 vm_map_entry_t entry;
1858 vm_object_t first_object;
1859 vm_offset_t end, start;
1860 vm_page_t m;
1861 vm_size_t size;
1862
1863 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1864 first_object = fs->first_object;
1865 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1866 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1867 VM_OBJECT_RLOCK(first_object);
1868 size = VM_FAULT_DONTNEED_MIN;
1869 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1870 size = pagesizes[1];
1871 end = rounddown2(vaddr, size);
1872 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1873 (entry = fs->entry)->start < end) {
1874 if (end - entry->start < size)
1875 start = entry->start;
1876 else
1877 start = end - size;
1878 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1879 vm_page_iter_limit_init(&pages, first_object,
1880 OFF_TO_IDX(entry->offset) +
1881 atop(end - entry->start));
1882 VM_RADIX_FOREACH_FROM(m, &pages,
1883 OFF_TO_IDX(entry->offset) +
1884 atop(start - entry->start)) {
1885 if (!vm_page_all_valid(m) ||
1886 vm_page_busied(m))
1887 continue;
1888
1889 /*
1890 * Don't clear PGA_REFERENCED, since it would
1891 * likely represent a reference by a different
1892 * process.
1893 *
1894 * Typically, at this point, prefetched pages
1895 * are still in the inactive queue. Only
1896 * pages that triggered page faults are in the
1897 * active queue. The test for whether the page
1898 * is in the inactive queue is racy; in the
1899 * worst case we will requeue the page
1900 * unnecessarily.
1901 */
1902 if (!vm_page_inactive(m))
1903 vm_page_deactivate(m);
1904 }
1905 }
1906 VM_OBJECT_RUNLOCK(first_object);
1907 }
1908 }
1909
1910 /*
1911 * vm_fault_prefault provides a quick way of clustering
1912 * pagefaults into a processes address space. It is a "cousin"
1913 * of vm_map_pmap_enter, except it runs at page fault time instead
1914 * of mmap time.
1915 */
1916 static void
vm_fault_prefault(const struct faultstate * fs,vm_offset_t addra,int backward,int forward,bool obj_locked)1917 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1918 int backward, int forward, bool obj_locked)
1919 {
1920 pmap_t pmap;
1921 vm_map_entry_t entry;
1922 vm_object_t backing_object, lobject;
1923 vm_offset_t addr, starta;
1924 vm_pindex_t pindex;
1925 vm_page_t m;
1926 vm_prot_t prot;
1927 int i;
1928
1929 pmap = fs->map->pmap;
1930 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1931 return;
1932
1933 entry = fs->entry;
1934
1935 if (addra < backward * PAGE_SIZE) {
1936 starta = entry->start;
1937 } else {
1938 starta = addra - backward * PAGE_SIZE;
1939 if (starta < entry->start)
1940 starta = entry->start;
1941 }
1942 prot = entry->protection;
1943
1944 /*
1945 * If pmap_enter() has enabled write access on a nearby mapping, then
1946 * don't attempt promotion, because it will fail.
1947 */
1948 if ((fs->prot & VM_PROT_WRITE) != 0)
1949 prot |= VM_PROT_NO_PROMOTE;
1950
1951 /*
1952 * Generate the sequence of virtual addresses that are candidates for
1953 * prefaulting in an outward spiral from the faulting virtual address,
1954 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1955 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1956 * If the candidate address doesn't have a backing physical page, then
1957 * the loop immediately terminates.
1958 */
1959 for (i = 0; i < 2 * imax(backward, forward); i++) {
1960 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1961 PAGE_SIZE);
1962 if (addr > addra + forward * PAGE_SIZE)
1963 addr = 0;
1964
1965 if (addr < starta || addr >= entry->end)
1966 continue;
1967
1968 if (!pmap_is_prefaultable(pmap, addr))
1969 continue;
1970
1971 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1972 lobject = entry->object.vm_object;
1973 if (!obj_locked)
1974 VM_OBJECT_RLOCK(lobject);
1975 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1976 !vm_fault_object_needs_getpages(lobject) &&
1977 (backing_object = lobject->backing_object) != NULL) {
1978 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1979 0, ("vm_fault_prefault: unaligned object offset"));
1980 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1981 VM_OBJECT_RLOCK(backing_object);
1982 if (!obj_locked || lobject != entry->object.vm_object)
1983 VM_OBJECT_RUNLOCK(lobject);
1984 lobject = backing_object;
1985 }
1986 if (m == NULL) {
1987 if (!obj_locked || lobject != entry->object.vm_object)
1988 VM_OBJECT_RUNLOCK(lobject);
1989 break;
1990 }
1991 if (vm_page_all_valid(m) &&
1992 (m->flags & PG_FICTITIOUS) == 0)
1993 pmap_enter_quick(pmap, addr, m, prot);
1994 if (!obj_locked || lobject != entry->object.vm_object)
1995 VM_OBJECT_RUNLOCK(lobject);
1996 }
1997 }
1998
1999 /*
2000 * Hold each of the physical pages that are mapped by the specified range of
2001 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2002 * and allow the specified types of access, "prot". If all of the implied
2003 * pages are successfully held, then the number of held pages is returned
2004 * together with pointers to those pages in the array "ma". However, if any
2005 * of the pages cannot be held, -1 is returned.
2006 */
2007 int
vm_fault_quick_hold_pages(vm_map_t map,vm_offset_t addr,vm_size_t len,vm_prot_t prot,vm_page_t * ma,int max_count)2008 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2009 vm_prot_t prot, vm_page_t *ma, int max_count)
2010 {
2011 vm_offset_t end, va;
2012 vm_page_t *mp;
2013 int count;
2014 boolean_t pmap_failed;
2015
2016 if (len == 0)
2017 return (0);
2018 end = round_page(addr + len);
2019 addr = trunc_page(addr);
2020
2021 if (!vm_map_range_valid(map, addr, end))
2022 return (-1);
2023
2024 if (atop(end - addr) > max_count)
2025 panic("vm_fault_quick_hold_pages: count > max_count");
2026 count = atop(end - addr);
2027
2028 /*
2029 * Most likely, the physical pages are resident in the pmap, so it is
2030 * faster to try pmap_extract_and_hold() first.
2031 */
2032 pmap_failed = FALSE;
2033 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2034 *mp = pmap_extract_and_hold(map->pmap, va, prot);
2035 if (*mp == NULL)
2036 pmap_failed = TRUE;
2037 else if ((prot & VM_PROT_WRITE) != 0 &&
2038 (*mp)->dirty != VM_PAGE_BITS_ALL) {
2039 /*
2040 * Explicitly dirty the physical page. Otherwise, the
2041 * caller's changes may go unnoticed because they are
2042 * performed through an unmanaged mapping or by a DMA
2043 * operation.
2044 *
2045 * The object lock is not held here.
2046 * See vm_page_clear_dirty_mask().
2047 */
2048 vm_page_dirty(*mp);
2049 }
2050 }
2051 if (pmap_failed) {
2052 /*
2053 * One or more pages could not be held by the pmap. Either no
2054 * page was mapped at the specified virtual address or that
2055 * mapping had insufficient permissions. Attempt to fault in
2056 * and hold these pages.
2057 *
2058 * If vm_fault_disable_pagefaults() was called,
2059 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2060 * acquire MD VM locks, which means we must not call
2061 * vm_fault(). Some (out of tree) callers mark
2062 * too wide a code area with vm_fault_disable_pagefaults()
2063 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2064 * the proper behaviour explicitly.
2065 */
2066 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2067 (curthread->td_pflags & TDP_NOFAULTING) != 0)
2068 goto error;
2069 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2070 if (*mp == NULL && vm_fault(map, va, prot,
2071 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2072 goto error;
2073 }
2074 return (count);
2075 error:
2076 for (mp = ma; mp < ma + count; mp++)
2077 if (*mp != NULL)
2078 vm_page_unwire(*mp, PQ_INACTIVE);
2079 return (-1);
2080 }
2081
2082 /*
2083 * Routine:
2084 * vm_fault_copy_entry
2085 * Function:
2086 * Create new object backing dst_entry with private copy of all
2087 * underlying pages. When src_entry is equal to dst_entry, function
2088 * implements COW for wired-down map entry. Otherwise, it forks
2089 * wired entry into dst_map.
2090 *
2091 * In/out conditions:
2092 * The source and destination maps must be locked for write.
2093 * The source map entry must be wired down (or be a sharing map
2094 * entry corresponding to a main map entry that is wired down).
2095 */
2096 void
vm_fault_copy_entry(vm_map_t dst_map,vm_map_t src_map __unused,vm_map_entry_t dst_entry,vm_map_entry_t src_entry,vm_ooffset_t * fork_charge)2097 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2098 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2099 vm_ooffset_t *fork_charge)
2100 {
2101 struct pctrie_iter pages;
2102 vm_object_t backing_object, dst_object, object, src_object;
2103 vm_pindex_t dst_pindex, pindex, src_pindex;
2104 vm_prot_t access, prot;
2105 vm_offset_t vaddr;
2106 vm_page_t dst_m, mpred;
2107 vm_page_t src_m;
2108 bool upgrade;
2109
2110 upgrade = src_entry == dst_entry;
2111 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2112 ("vm_fault_copy_entry: vm_object not NULL"));
2113
2114 /*
2115 * If not an upgrade, then enter the mappings in the pmap as
2116 * read and/or execute accesses. Otherwise, enter them as
2117 * write accesses.
2118 *
2119 * A writeable large page mapping is only created if all of
2120 * the constituent small page mappings are modified. Marking
2121 * PTEs as modified on inception allows promotion to happen
2122 * without taking potentially large number of soft faults.
2123 */
2124 access = prot = dst_entry->protection;
2125 if (!upgrade)
2126 access &= ~VM_PROT_WRITE;
2127
2128 src_object = src_entry->object.vm_object;
2129 src_pindex = OFF_TO_IDX(src_entry->offset);
2130
2131 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2132 dst_object = src_object;
2133 vm_object_reference(dst_object);
2134 } else {
2135 /*
2136 * Create the top-level object for the destination entry.
2137 * Doesn't actually shadow anything - we copy the pages
2138 * directly.
2139 */
2140 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2141 dst_entry->start), NULL, NULL, 0);
2142 #if VM_NRESERVLEVEL > 0
2143 dst_object->flags |= OBJ_COLORED;
2144 dst_object->pg_color = atop(dst_entry->start);
2145 #endif
2146 dst_object->domain = src_object->domain;
2147 dst_object->charge = dst_entry->end - dst_entry->start;
2148
2149 dst_entry->object.vm_object = dst_object;
2150 dst_entry->offset = 0;
2151 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2152 }
2153
2154 VM_OBJECT_WLOCK(dst_object);
2155 if (fork_charge != NULL) {
2156 KASSERT(dst_entry->cred == NULL,
2157 ("vm_fault_copy_entry: leaked swp charge"));
2158 dst_object->cred = curthread->td_ucred;
2159 crhold(dst_object->cred);
2160 *fork_charge += dst_object->charge;
2161 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2162 dst_object->cred == NULL) {
2163 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2164 dst_entry));
2165 dst_object->cred = dst_entry->cred;
2166 dst_entry->cred = NULL;
2167 }
2168
2169 /*
2170 * Loop through all of the virtual pages within the entry's
2171 * range, copying each page from the source object to the
2172 * destination object. Since the source is wired, those pages
2173 * must exist. In contrast, the destination is pageable.
2174 * Since the destination object doesn't share any backing storage
2175 * with the source object, all of its pages must be dirtied,
2176 * regardless of whether they can be written.
2177 */
2178 vm_page_iter_init(&pages, dst_object);
2179 mpred = (src_object == dst_object) ?
2180 vm_page_mpred(src_object, src_pindex) : NULL;
2181 for (vaddr = dst_entry->start, dst_pindex = 0;
2182 vaddr < dst_entry->end;
2183 vaddr += PAGE_SIZE, dst_pindex++, mpred = dst_m) {
2184 again:
2185 /*
2186 * Find the page in the source object, and copy it in.
2187 * Because the source is wired down, the page will be
2188 * in memory.
2189 */
2190 if (src_object != dst_object)
2191 VM_OBJECT_RLOCK(src_object);
2192 object = src_object;
2193 pindex = src_pindex + dst_pindex;
2194 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2195 (backing_object = object->backing_object) != NULL) {
2196 /*
2197 * Unless the source mapping is read-only or
2198 * it is presently being upgraded from
2199 * read-only, the first object in the shadow
2200 * chain should provide all of the pages. In
2201 * other words, this loop body should never be
2202 * executed when the source mapping is already
2203 * read/write.
2204 */
2205 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2206 upgrade,
2207 ("vm_fault_copy_entry: main object missing page"));
2208
2209 VM_OBJECT_RLOCK(backing_object);
2210 pindex += OFF_TO_IDX(object->backing_object_offset);
2211 if (object != dst_object)
2212 VM_OBJECT_RUNLOCK(object);
2213 object = backing_object;
2214 }
2215 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2216
2217 if (object != dst_object) {
2218 /*
2219 * Allocate a page in the destination object.
2220 */
2221 pindex = (src_object == dst_object ? src_pindex : 0) +
2222 dst_pindex;
2223 dst_m = vm_page_alloc_after(dst_object, &pages, pindex,
2224 VM_ALLOC_NORMAL, mpred);
2225 if (dst_m == NULL) {
2226 VM_OBJECT_WUNLOCK(dst_object);
2227 VM_OBJECT_RUNLOCK(object);
2228 vm_wait(dst_object);
2229 VM_OBJECT_WLOCK(dst_object);
2230 pctrie_iter_reset(&pages);
2231 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2232 goto again;
2233 }
2234
2235 /*
2236 * See the comment in vm_fault_cow().
2237 */
2238 if (src_object == dst_object &&
2239 (object->flags & OBJ_ONEMAPPING) == 0)
2240 pmap_remove_all(src_m);
2241 pmap_copy_page(src_m, dst_m);
2242
2243 /*
2244 * The object lock does not guarantee that "src_m" will
2245 * transition from invalid to valid, but it does ensure
2246 * that "src_m" will not transition from valid to
2247 * invalid.
2248 */
2249 dst_m->dirty = dst_m->valid = src_m->valid;
2250 VM_OBJECT_RUNLOCK(object);
2251 } else {
2252 dst_m = src_m;
2253 if (vm_page_busy_acquire(
2254 dst_m, VM_ALLOC_WAITFAIL) == 0) {
2255 pctrie_iter_reset(&pages);
2256 goto again;
2257 }
2258 if (dst_m->pindex >= dst_object->size) {
2259 /*
2260 * We are upgrading. Index can occur
2261 * out of bounds if the object type is
2262 * vnode and the file was truncated.
2263 */
2264 vm_page_xunbusy(dst_m);
2265 break;
2266 }
2267 }
2268
2269 /*
2270 * Enter it in the pmap. If a wired, copy-on-write
2271 * mapping is being replaced by a write-enabled
2272 * mapping, then wire that new mapping.
2273 *
2274 * The page can be invalid if the user called
2275 * msync(MS_INVALIDATE) or truncated the backing vnode
2276 * or shared memory object. In this case, do not
2277 * insert it into pmap, but still do the copy so that
2278 * all copies of the wired map entry have similar
2279 * backing pages.
2280 */
2281 if (vm_page_all_valid(dst_m)) {
2282 VM_OBJECT_WUNLOCK(dst_object);
2283 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2284 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2285 VM_OBJECT_WLOCK(dst_object);
2286 }
2287
2288 /*
2289 * Mark it no longer busy, and put it on the active list.
2290 */
2291 if (upgrade) {
2292 if (src_m != dst_m) {
2293 vm_page_unwire(src_m, PQ_INACTIVE);
2294 vm_page_wire(dst_m);
2295 } else {
2296 KASSERT(vm_page_wired(dst_m),
2297 ("dst_m %p is not wired", dst_m));
2298 }
2299 } else {
2300 vm_page_activate(dst_m);
2301 }
2302 vm_page_xunbusy(dst_m);
2303 }
2304 VM_OBJECT_WUNLOCK(dst_object);
2305 if (upgrade) {
2306 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2307 vm_object_deallocate(src_object);
2308 }
2309 }
2310
2311 /*
2312 * Block entry into the machine-independent layer's page fault handler by
2313 * the calling thread. Subsequent calls to vm_fault() by that thread will
2314 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2315 * spurious page faults.
2316 */
2317 int
vm_fault_disable_pagefaults(void)2318 vm_fault_disable_pagefaults(void)
2319 {
2320
2321 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2322 }
2323
2324 void
vm_fault_enable_pagefaults(int save)2325 vm_fault_enable_pagefaults(int save)
2326 {
2327
2328 curthread_pflags_restore(save);
2329 }
2330