xref: /freebsd/sys/kern/vfs_subr.c (revision a7aac8c20497d1666a15f160ef99acddd55a1365)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void	v_init_counters(struct vnode *);
110 static void	vn_seqc_init(struct vnode *);
111 static void	vn_seqc_write_end_free(struct vnode *vp);
112 static void	vgonel(struct vnode *);
113 static bool	vhold_recycle_free(struct vnode *);
114 static void	vdropl_recycle(struct vnode *vp);
115 static void	vdrop_recycle(struct vnode *vp);
116 static void	vfs_knllock(void *arg);
117 static void	vfs_knlunlock(void *arg);
118 static void	vfs_knl_assert_lock(void *arg, int what);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 		    daddr_t startlbn, daddr_t endlbn);
122 static void	vnlru_recalc(void);
123 
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125     "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127     "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode recycling");
132 
133 /*
134  * Number of vnodes in existence.  Increased whenever getnewvnode()
135  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136  */
137 static u_long __exclusive_cache_line numvnodes;
138 
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140     "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142     "Number of vnodes in existence");
143 
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146     "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148     "Number of vnodes created by getnewvnode");
149 
150 /*
151  * Conversion tables for conversion from vnode types to inode formats
152  * and back.
153  */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162 
163 /*
164  * List of allocates vnodes in the system.
165  */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169 
170 /*
171  * "Free" vnode target.  Free vnodes are rarely completely free, but are
172  * just ones that are cheap to recycle.  Usually they are for files which
173  * have been stat'd but not read; these usually have inode and namecache
174  * data attached to them.  This target is the preferred minimum size of a
175  * sub-cache consisting mostly of such files. The system balances the size
176  * of this sub-cache with its complement to try to prevent either from
177  * thrashing while the other is relatively inactive.  The targets express
178  * a preference for the best balance.
179  *
180  * "Above" this target there are 2 further targets (watermarks) related
181  * to recyling of free vnodes.  In the best-operating case, the cache is
182  * exactly full, the free list has size between vlowat and vhiwat above the
183  * free target, and recycling from it and normal use maintains this state.
184  * Sometimes the free list is below vlowat or even empty, but this state
185  * is even better for immediate use provided the cache is not full.
186  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187  * ones) to reach one of these states.  The watermarks are currently hard-
188  * coded as 4% and 9% of the available space higher.  These and the default
189  * of 25% for wantfreevnodes are too large if the memory size is large.
190  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191  * whenever vnlru_proc() becomes active.
192  */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196 
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199     "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201     &recycles_count, 0,
202     "Number of vnodes recycled to meet vnode cache targets");
203 
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206     &recycles_free_count, 0,
207     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209     &recycles_free_count, 0,
210     "Number of free vnodes recycled to meet vnode cache targets");
211 
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214     &direct_recycles_free_count,
215     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216 
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219     "Number of times LRU requeue was skipped due to lock contention");
220 
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224 
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227     &deferred_inact, 0, "Number of times inactive processing was deferred");
228 
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231 
232 /*
233  * Lock for any access to the following:
234  *	vnode_list
235  *	numvnodes
236  *	freevnodes
237  */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239 
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242 
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245 
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249 
250 __read_frequently smr_t vfs_smr;
251 
252 /*
253  * The workitem queue.
254  *
255  * It is useful to delay writes of file data and filesystem metadata
256  * for tens of seconds so that quickly created and deleted files need
257  * not waste disk bandwidth being created and removed. To realize this,
258  * we append vnodes to a "workitem" queue. When running with a soft
259  * updates implementation, most pending metadata dependencies should
260  * not wait for more than a few seconds. Thus, mounted on block devices
261  * are delayed only about a half the time that file data is delayed.
262  * Similarly, directory updates are more critical, so are only delayed
263  * about a third the time that file data is delayed. Thus, there are
264  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265  * one each second (driven off the filesystem syncer process). The
266  * syncer_delayno variable indicates the next queue that is to be processed.
267  * Items that need to be processed soon are placed in this queue:
268  *
269  *	syncer_workitem_pending[syncer_delayno]
270  *
271  * A delay of fifteen seconds is done by placing the request fifteen
272  * entries later in the queue:
273  *
274  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275  *
276  */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282  * The sync_mtx protects:
283  *	bo->bo_synclist
284  *	sync_vnode_count
285  *	syncer_delayno
286  *	syncer_state
287  *	syncer_workitem_pending
288  *	syncer_worklist_len
289  *	rushjob
290  */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293 
294 #define SYNCER_MAXDELAY		32
295 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
296 static int syncdelay = 30;		/* max time to delay syncing data */
297 static int filedelay = 30;		/* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299     "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29;		/* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302     "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28;		/* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305     "Time to delay syncing metadata (in seconds)");
306 static int rushjob;		/* number of slots to run ASAP */
307 static int stat_rush_requests;	/* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309     "Number of times I/O speeded up (rush requests)");
310 
311 #define	VDBATCH_SIZE 8
312 struct vdbatch {
313 	u_int index;
314 	struct mtx lock;
315 	struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318 
319 static void	vdbatch_dequeue(struct vnode *vp);
320 
321 /*
322  * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323  * we probably don't want to pause for the whole second each time.
324  */
325 #define SYNCER_SHUTDOWN_SPEEDUP		32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329     syncer_state;
330 
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes;		/* gap between wanted and desired */
334 static u_long vhiwat;		/* enough extras after expansion */
335 static u_long vlowat;		/* minimal extras before expansion */
336 static bool vstir;		/* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
338 
339 static u_long vnlru_read_freevnodes(void);
340 
341 /*
342  * Note that no attempt is made to sanitize these parameters.
343  */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 	u_long val;
348 	int error;
349 
350 	val = desiredvnodes;
351 	error = sysctl_handle_long(oidp, &val, 0, req);
352 	if (error != 0 || req->newptr == NULL)
353 		return (error);
354 
355 	if (val == desiredvnodes)
356 		return (0);
357 	mtx_lock(&vnode_list_mtx);
358 	desiredvnodes = val;
359 	wantfreevnodes = desiredvnodes / 4;
360 	vnlru_recalc();
361 	mtx_unlock(&vnode_list_mtx);
362 	/*
363 	 * XXX There is no protection against multiple threads changing
364 	 * desiredvnodes at the same time. Locking above only helps vnlru and
365 	 * getnewvnode.
366 	 */
367 	vfs_hash_changesize(desiredvnodes);
368 	cache_changesize(desiredvnodes);
369 	return (0);
370 }
371 
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374     "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes");
378 
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 	u_long rfreevnodes;
383 
384 	rfreevnodes = vnlru_read_freevnodes();
385 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387 
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390     "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes");
394 
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 	u_long val;
399 	int error;
400 
401 	val = wantfreevnodes;
402 	error = sysctl_handle_long(oidp, &val, 0, req);
403 	if (error != 0 || req->newptr == NULL)
404 		return (error);
405 
406 	if (val == wantfreevnodes)
407 		return (0);
408 	mtx_lock(&vnode_list_mtx);
409 	wantfreevnodes = val;
410 	vnlru_recalc();
411 	mtx_unlock(&vnode_list_mtx);
412 	return (0);
413 }
414 
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes");
421 
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425 
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 	struct vnode *vp;
430 	struct nameidata nd;
431 	char *buf;
432 	unsigned long ndflags;
433 	int error;
434 
435 	if (req->newptr == NULL)
436 		return (EINVAL);
437 	if (req->newlen >= PATH_MAX)
438 		return (E2BIG);
439 
440 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 	error = SYSCTL_IN(req, buf, req->newlen);
442 	if (error != 0)
443 		goto out;
444 
445 	buf[req->newlen] = '\0';
446 
447 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 	if ((error = namei(&nd)) != 0)
450 		goto out;
451 	vp = nd.ni_vp;
452 
453 	if (VN_IS_DOOMED(vp)) {
454 		/*
455 		 * This vnode is being recycled.  Return != 0 to let the caller
456 		 * know that the sysctl had no effect.  Return EAGAIN because a
457 		 * subsequent call will likely succeed (since namei will create
458 		 * a new vnode if necessary)
459 		 */
460 		error = EAGAIN;
461 		goto putvnode;
462 	}
463 
464 	vgone(vp);
465 putvnode:
466 	vput(vp);
467 	NDFREE_PNBUF(&nd);
468 out:
469 	free(buf, M_TEMP);
470 	return (error);
471 }
472 
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 	struct thread *td = curthread;
477 	struct vnode *vp;
478 	struct file *fp;
479 	int error;
480 	int fd;
481 
482 	if (req->newptr == NULL)
483 		return (EBADF);
484 
485         error = sysctl_handle_int(oidp, &fd, 0, req);
486         if (error != 0)
487                 return (error);
488 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 	if (error != 0)
490 		return (error);
491 	vp = fp->f_vnode;
492 
493 	error = vn_lock(vp, LK_EXCLUSIVE);
494 	if (error != 0)
495 		goto drop;
496 
497 	vgone(vp);
498 	VOP_UNLOCK(vp);
499 drop:
500 	fdrop(fp, td);
501 	return (error);
502 }
503 
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_ftry_reclaim_vnode, "I",
510     "Try to reclaim a vnode by its file descriptor");
511 
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517     "vnsz2log needs to be updated");
518 #endif
519 
520 /*
521  * Support for the bufobj clean & dirty pctrie.
522  */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528 
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 	uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535     buf_trie_smr);
536 
537 /*
538  * Lookup the next element greater than or equal to lblkno, accounting for the
539  * fact that, for pctries, negative values are greater than nonnegative ones.
540  */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 	struct buf *bp;
545 
546 	bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 	if (bp == NULL && lblkno < 0)
548 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 	if (bp != NULL && bp->b_lblkno < lblkno)
550 		bp = NULL;
551 	return (bp);
552 }
553 
554 /*
555  * Insert bp, and find the next element smaller than bp, accounting for the fact
556  * that, for pctries, negative values are greater than nonnegative ones.
557  */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 	int error;
562 
563 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 	if (error != EEXIST) {
565 		if (*n == NULL && bp->b_lblkno >= 0)
566 			*n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 		if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 			*n = NULL;
569 	}
570 	return (error);
571 }
572 
573 /*
574  * Initialize the vnode management data structures.
575  *
576  * Reevaluate the following cap on the number of vnodes after the physical
577  * memory size exceeds 512GB.  In the limit, as the physical memory size
578  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579  */
580 #ifndef	MAXVNODES_MAX
581 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
582 #endif
583 
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585 
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 	struct vnode *vp;
590 
591 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 	vp->v_type = VMARKER;
593 	vp->v_mount = mp;
594 
595 	return (vp);
596 }
597 
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601 
602 	MPASS(vp->v_type == VMARKER);
603 	free(vp, M_VNODE_MARKER);
604 }
605 
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 	return (0);
612 }
613 
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 	size_t end1, end2, off1, off2;
618 
619 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
620 	    offsetof(struct vnode, v_dbatchcpu),
621 	    "KASAN marks require updating");
622 
623 	off1 = offsetof(struct vnode, v_vnodelist);
624 	off2 = offsetof(struct vnode, v_dbatchcpu);
625 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627 
628 	/*
629 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 	 * after the vnode has been freed.  Try to get some KASAN coverage by
631 	 * marking everything except those two fields as invalid.  Because
632 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 	 * the same 8-byte aligned word must also be marked valid.
634 	 */
635 
636 	/* Handle the area from the start until v_vnodelist... */
637 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639 
640 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 	if (off2 > off1)
644 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 		    off2 - off1, KASAN_UMA_FREED);
646 
647 	/* ... and finally the area from v_dbatchcpu to the end. */
648 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 	    KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653 
654 /*
655  * Initialize a vnode as it first enters the zone.
656  */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 	struct vnode *vp;
661 
662 	vp = mem;
663 	bzero(vp, size);
664 	/*
665 	 * Setup locks.
666 	 */
667 	vp->v_vnlock = &vp->v_lock;
668 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 	/*
670 	 * By default, don't allow shared locks unless filesystems opt-in.
671 	 */
672 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 	    LK_NOSHARE | LK_IS_VNODE);
674 	/*
675 	 * Initialize bufobj.
676 	 */
677 	bufobj_init(&vp->v_bufobj, vp);
678 	/*
679 	 * Initialize namecache.
680 	 */
681 	cache_vnode_init(vp);
682 	/*
683 	 * Initialize rangelocks.
684 	 */
685 	rangelock_init(&vp->v_rl);
686 
687 	vp->v_dbatchcpu = NOCPU;
688 
689 	vp->v_state = VSTATE_DEAD;
690 
691 	/*
692 	 * Check vhold_recycle_free for an explanation.
693 	 */
694 	vp->v_holdcnt = VHOLD_NO_SMR;
695 	vp->v_type = VNON;
696 	mtx_lock(&vnode_list_mtx);
697 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 	mtx_unlock(&vnode_list_mtx);
699 	return (0);
700 }
701 
702 /*
703  * Free a vnode when it is cleared from the zone.
704  */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 	struct vnode *vp;
709 	struct bufobj *bo;
710 
711 	vp = mem;
712 	vdbatch_dequeue(vp);
713 	mtx_lock(&vnode_list_mtx);
714 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 	mtx_unlock(&vnode_list_mtx);
716 	rangelock_destroy(&vp->v_rl);
717 	lockdestroy(vp->v_vnlock);
718 	mtx_destroy(&vp->v_interlock);
719 	bo = &vp->v_bufobj;
720 	rw_destroy(BO_LOCKPTR(bo));
721 
722 	kasan_mark(mem, size, size, 0);
723 }
724 
725 /*
726  * Provide the size of NFS nclnode and NFS fh for calculation of the
727  * vnode memory consumption.  The size is specified directly to
728  * eliminate dependency on NFS-private header.
729  *
730  * Other filesystems may use bigger or smaller (like UFS and ZFS)
731  * private inode data, but the NFS-based estimation is ample enough.
732  * Still, we care about differences in the size between 64- and 32-bit
733  * platforms.
734  *
735  * Namecache structure size is heuristically
736  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737  */
738 #ifdef _LP64
739 #define	NFS_NCLNODE_SZ	(528 + 64)
740 #define	NC_SZ		148
741 #else
742 #define	NFS_NCLNODE_SZ	(360 + 32)
743 #define	NC_SZ		92
744 #endif
745 
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 	struct vdbatch *vd;
750 	uma_ctor ctor;
751 	uma_dtor dtor;
752 	int cpu, physvnodes, virtvnodes;
753 
754 	/*
755 	 * 'desiredvnodes' is the minimum of a function of the physical memory
756 	 * size and another of the kernel heap size (UMA limit, a portion of the
757 	 * KVA).
758 	 *
759 	 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 	 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 	 * 'physvnodes' applies instead.  With the current automatic tuning for
762 	 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 	 */
764 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 	    min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 	desiredvnodes = min(physvnodes, virtvnodes);
769 	if (desiredvnodes > MAXVNODES_MAX) {
770 		if (bootverbose)
771 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 			    desiredvnodes, MAXVNODES_MAX);
773 		desiredvnodes = MAXVNODES_MAX;
774 	}
775 	wantfreevnodes = desiredvnodes / 4;
776 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 	TAILQ_INIT(&vnode_list);
778 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 	/*
780 	 * The lock is taken to appease WITNESS.
781 	 */
782 	mtx_lock(&vnode_list_mtx);
783 	vnlru_recalc();
784 	mtx_unlock(&vnode_list_mtx);
785 	vnode_list_free_marker = vn_alloc_marker(NULL);
786 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789 
790 #ifdef KASAN
791 	ctor = vnode_ctor;
792 	dtor = vnode_dtor;
793 #else
794 	ctor = NULL;
795 	dtor = NULL;
796 #endif
797 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 	uma_zone_set_smr(vnode_zone, vfs_smr);
800 
801 	/*
802 	 * Preallocate enough nodes to support one-per buf so that
803 	 * we can not fail an insert.  reassignbuf() callers can not
804 	 * tolerate the insertion failure.
805 	 */
806 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 	uma_prealloc(buf_trie_zone, nbuf);
811 
812 	vnodes_created = counter_u64_alloc(M_WAITOK);
813 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815 
816 	/*
817 	 * Initialize the filesystem syncer.
818 	 */
819 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 	    &syncer_mask);
821 	syncer_maxdelay = syncer_mask + 1;
822 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 	cv_init(&sync_wakeup, "syncer");
824 
825 	CPU_FOREACH(cpu) {
826 		vd = DPCPU_ID_PTR((cpu), vd);
827 		bzero(vd, sizeof(*vd));
828 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 	}
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832 
833 /*
834  * Mark a mount point as busy. Used to synchronize access and to delay
835  * unmounting. Eventually, mountlist_mtx is not released on failure.
836  *
837  * vfs_busy() is a custom lock, it can block the caller.
838  * vfs_busy() only sleeps if the unmount is active on the mount point.
839  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840  * vnode belonging to mp.
841  *
842  * Lookup uses vfs_busy() to traverse mount points.
843  * root fs			var fs
844  * / vnode lock		A	/ vnode lock (/var)		D
845  * /var vnode lock	B	/log vnode lock(/var/log)	E
846  * vfs_busy lock	C	vfs_busy lock			F
847  *
848  * Within each file system, the lock order is C->A->B and F->D->E.
849  *
850  * When traversing across mounts, the system follows that lock order:
851  *
852  *        C->A->B
853  *              |
854  *              +->F->D->E
855  *
856  * The lookup() process for namei("/var") illustrates the process:
857  *  1. VOP_LOOKUP() obtains B while A is held
858  *  2. vfs_busy() obtains a shared lock on F while A and B are held
859  *  3. vput() releases lock on B
860  *  4. vput() releases lock on A
861  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
862  *  6. vfs_unbusy() releases shared lock on F
863  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864  *     Attempt to lock A (instead of vp_crossmp) while D is held would
865  *     violate the global order, causing deadlocks.
866  *
867  * dounmount() locks B while F is drained.  Note that for stacked
868  * filesystems, D and B in the example above may be the same lock,
869  * which introdues potential lock order reversal deadlock between
870  * dounmount() and step 5 above.  These filesystems may avoid the LOR
871  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872  * remain held until after step 5.
873  */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 	struct mount_pcpu *mpcpu;
878 
879 	MPASS((flags & ~MBF_MASK) == 0);
880 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881 
882 	if (vfs_op_thread_enter(mp, mpcpu)) {
883 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 		vfs_op_thread_exit(mp, mpcpu);
889 		if (flags & MBF_MNTLSTLOCK)
890 			mtx_unlock(&mountlist_mtx);
891 		return (0);
892 	}
893 
894 	MNT_ILOCK(mp);
895 	vfs_assert_mount_counters(mp);
896 	MNT_REF(mp);
897 	/*
898 	 * If mount point is currently being unmounted, sleep until the
899 	 * mount point fate is decided.  If thread doing the unmounting fails,
900 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 	 * that this mount point has survived the unmount attempt and vfs_busy
902 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 	 * about to be really destroyed.  vfs_busy needs to release its
905 	 * reference on the mount point in this case and return with ENOENT,
906 	 * telling the caller the mount it tried to busy is no longer valid.
907 	 */
908 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 		    ("%s: non-empty upper mount list with pending unmount",
911 		    __func__));
912 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 			MNT_REL(mp);
914 			MNT_IUNLOCK(mp);
915 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 			    __func__);
917 			return (ENOENT);
918 		}
919 		if (flags & MBF_MNTLSTLOCK)
920 			mtx_unlock(&mountlist_mtx);
921 		mp->mnt_kern_flag |= MNTK_MWAIT;
922 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 		if (flags & MBF_MNTLSTLOCK)
924 			mtx_lock(&mountlist_mtx);
925 		MNT_ILOCK(mp);
926 	}
927 	if (flags & MBF_MNTLSTLOCK)
928 		mtx_unlock(&mountlist_mtx);
929 	mp->mnt_lockref++;
930 	MNT_IUNLOCK(mp);
931 	return (0);
932 }
933 
934 /*
935  * Free a busy filesystem.
936  */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 	struct mount_pcpu *mpcpu;
941 	int c;
942 
943 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944 
945 	if (vfs_op_thread_enter(mp, mpcpu)) {
946 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 		vfs_op_thread_exit(mp, mpcpu);
950 		return;
951 	}
952 
953 	MNT_ILOCK(mp);
954 	vfs_assert_mount_counters(mp);
955 	MNT_REL(mp);
956 	c = --mp->mnt_lockref;
957 	if (mp->mnt_vfs_ops == 0) {
958 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 		MNT_IUNLOCK(mp);
960 		return;
961 	}
962 	if (c < 0)
963 		vfs_dump_mount_counters(mp);
964 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 		wakeup(&mp->mnt_lockref);
969 	}
970 	MNT_IUNLOCK(mp);
971 }
972 
973 /*
974  * Lookup a mount point by filesystem identifier.
975  */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 	struct mount *mp;
980 
981 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 	mtx_lock(&mountlist_mtx);
983 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 			vfs_ref(mp);
986 			mtx_unlock(&mountlist_mtx);
987 			return (mp);
988 		}
989 	}
990 	mtx_unlock(&mountlist_mtx);
991 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 	return ((struct mount *) 0);
993 }
994 
995 /*
996  * Lookup a mount point by filesystem identifier, busying it before
997  * returning.
998  *
999  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000  * cache for popular filesystem identifiers.  The cache is lockess, using
1001  * the fact that struct mount's are never freed.  In worst case we may
1002  * get pointer to unmounted or even different filesystem, so we have to
1003  * check what we got, and go slow way if so.
1004  */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define	FSID_CACHE_SIZE	256
1009 	typedef struct mount * volatile vmp_t;
1010 	static vmp_t cache[FSID_CACHE_SIZE];
1011 	struct mount *mp;
1012 	int error;
1013 	uint32_t hash;
1014 
1015 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 	hash = fsid->val[0] ^ fsid->val[1];
1017 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 	mp = cache[hash];
1019 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 		goto slow;
1021 	if (vfs_busy(mp, 0) != 0) {
1022 		cache[hash] = NULL;
1023 		goto slow;
1024 	}
1025 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 		return (mp);
1027 	else
1028 	    vfs_unbusy(mp);
1029 
1030 slow:
1031 	mtx_lock(&mountlist_mtx);
1032 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 			if (error) {
1036 				cache[hash] = NULL;
1037 				mtx_unlock(&mountlist_mtx);
1038 				return (NULL);
1039 			}
1040 			cache[hash] = mp;
1041 			return (mp);
1042 		}
1043 	}
1044 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 	mtx_unlock(&mountlist_mtx);
1046 	return ((struct mount *) 0);
1047 }
1048 
1049 /*
1050  * Check if a user can access privileged mount options.
1051  */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 	int error;
1056 
1057 	if (jailed(td->td_ucred)) {
1058 		/*
1059 		 * If the jail of the calling thread lacks permission for
1060 		 * this type of file system, deny immediately.
1061 		 */
1062 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 			return (EPERM);
1064 
1065 		/*
1066 		 * If the file system was mounted outside the jail of the
1067 		 * calling thread, deny immediately.
1068 		 */
1069 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 			return (EPERM);
1071 	}
1072 
1073 	/*
1074 	 * If file system supports delegated administration, we don't check
1075 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 	 * by the file system itself.
1077 	 * If this is not the user that did original mount, we check for
1078 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 	 */
1080 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 			return (error);
1084 	}
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1090  * will be used to create fake device numbers for stat().  Also try (but
1091  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1093  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094  *
1095  * Keep in mind that several mounts may be running in parallel.  Starting
1096  * the search one past where the previous search terminated is both a
1097  * micro-optimization and a defense against returning the same fsid to
1098  * different mounts.
1099  */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 	static uint16_t mntid_base;
1104 	struct mount *nmp;
1105 	fsid_t tfsid;
1106 	int mtype;
1107 
1108 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 	mtx_lock(&mntid_mtx);
1110 	mtype = mp->mnt_vfc->vfc_typenum;
1111 	tfsid.val[1] = mtype;
1112 	mtype = (mtype & 0xFF) << 24;
1113 	for (;;) {
1114 		tfsid.val[0] = makedev(255,
1115 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 		mntid_base++;
1117 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 			break;
1119 		vfs_rel(nmp);
1120 	}
1121 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 	mtx_unlock(&mntid_mtx);
1124 }
1125 
1126 /*
1127  * Knob to control the precision of file timestamps:
1128  *
1129  *   0 = seconds only; nanoseconds zeroed.
1130  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1131  *   2 = seconds and nanoseconds, truncated to microseconds.
1132  * >=3 = seconds and nanoseconds, maximum precision.
1133  */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135 
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1139     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140     "3+: sec + ns (max. precision))");
1141 
1142 /*
1143  * Get a current timestamp.
1144  */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 	struct timeval tv;
1149 
1150 	switch (timestamp_precision) {
1151 	case TSP_SEC:
1152 		tsp->tv_sec = time_second;
1153 		tsp->tv_nsec = 0;
1154 		break;
1155 	case TSP_HZ:
1156 		getnanotime(tsp);
1157 		break;
1158 	case TSP_USEC:
1159 		microtime(&tv);
1160 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 		break;
1162 	case TSP_NSEC:
1163 	default:
1164 		nanotime(tsp);
1165 		break;
1166 	}
1167 }
1168 
1169 /*
1170  * Set vnode attributes to VNOVAL
1171  */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175 
1176 	vap->va_type = VNON;
1177 	vap->va_size = VNOVAL;
1178 	vap->va_bytes = VNOVAL;
1179 	vap->va_mode = VNOVAL;
1180 	vap->va_nlink = VNOVAL;
1181 	vap->va_uid = VNOVAL;
1182 	vap->va_gid = VNOVAL;
1183 	vap->va_fsid = VNOVAL;
1184 	vap->va_fileid = VNOVAL;
1185 	vap->va_blocksize = VNOVAL;
1186 	vap->va_rdev = VNOVAL;
1187 	vap->va_atime.tv_sec = VNOVAL;
1188 	vap->va_atime.tv_nsec = VNOVAL;
1189 	vap->va_mtime.tv_sec = VNOVAL;
1190 	vap->va_mtime.tv_nsec = VNOVAL;
1191 	vap->va_ctime.tv_sec = VNOVAL;
1192 	vap->va_ctime.tv_nsec = VNOVAL;
1193 	vap->va_birthtime.tv_sec = VNOVAL;
1194 	vap->va_birthtime.tv_nsec = VNOVAL;
1195 	vap->va_flags = VNOVAL;
1196 	vap->va_gen = VNOVAL;
1197 	vap->va_vaflags = 0;
1198 	vap->va_filerev = VNOVAL;
1199 	vap->va_bsdflags = 0;
1200 }
1201 
1202 /*
1203  * Try to reduce the total number of vnodes.
1204  *
1205  * This routine (and its user) are buggy in at least the following ways:
1206  * - all parameters were picked years ago when RAM sizes were significantly
1207  *   smaller
1208  * - it can pick vnodes based on pages used by the vm object, but filesystems
1209  *   like ZFS don't use it making the pick broken
1210  * - since ZFS has its own aging policy it gets partially combated by this one
1211  * - a dedicated method should be provided for filesystems to let them decide
1212  *   whether the vnode should be recycled
1213  *
1214  * This routine is called when we have too many vnodes.  It attempts
1215  * to free <count> vnodes and will potentially free vnodes that still
1216  * have VM backing store (VM backing store is typically the cause
1217  * of a vnode blowout so we want to do this).  Therefore, this operation
1218  * is not considered cheap.
1219  *
1220  * A number of conditions may prevent a vnode from being reclaimed.
1221  * the buffer cache may have references on the vnode, a directory
1222  * vnode may still have references due to the namei cache representing
1223  * underlying files, or the vnode may be in active use.   It is not
1224  * desirable to reuse such vnodes.  These conditions may cause the
1225  * number of vnodes to reach some minimum value regardless of what
1226  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1227  *
1228  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229  * 			 entries if this argument is strue
1230  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1231  *			 pages.
1232  * @param target	 How many vnodes to reclaim.
1233  * @return		 The number of vnodes that were reclaimed.
1234  */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 	struct vnode *vp, *mvp;
1239 	struct mount *mp;
1240 	struct vm_object *object;
1241 	u_long done;
1242 	bool retried;
1243 
1244 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1245 
1246 	retried = false;
1247 	done = 0;
1248 
1249 	mvp = vnode_list_reclaim_marker;
1250 restart:
1251 	vp = mvp;
1252 	while (done < target) {
1253 		vp = TAILQ_NEXT(vp, v_vnodelist);
1254 		if (__predict_false(vp == NULL))
1255 			break;
1256 
1257 		if (__predict_false(vp->v_type == VMARKER))
1258 			continue;
1259 
1260 		/*
1261 		 * If it's been deconstructed already, it's still
1262 		 * referenced, or it exceeds the trigger, skip it.
1263 		 * Also skip free vnodes.  We are trying to make space
1264 		 * for more free vnodes, not reduce their count.
1265 		 */
1266 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 			goto next_iter;
1269 
1270 		if (vp->v_type == VBAD || vp->v_type == VNON)
1271 			goto next_iter;
1272 
1273 		object = atomic_load_ptr(&vp->v_object);
1274 		if (object == NULL || object->resident_page_count > trigger) {
1275 			goto next_iter;
1276 		}
1277 
1278 		/*
1279 		 * Handle races against vnode allocation. Filesystems lock the
1280 		 * vnode some time after it gets returned from getnewvnode,
1281 		 * despite type and hold count being manipulated earlier.
1282 		 * Resorting to checking v_mount restores guarantees present
1283 		 * before the global list was reworked to contain all vnodes.
1284 		 */
1285 		if (!VI_TRYLOCK(vp))
1286 			goto next_iter;
1287 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 			VI_UNLOCK(vp);
1289 			goto next_iter;
1290 		}
1291 		if (vp->v_mount == NULL) {
1292 			VI_UNLOCK(vp);
1293 			goto next_iter;
1294 		}
1295 		vholdl(vp);
1296 		VI_UNLOCK(vp);
1297 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 		mtx_unlock(&vnode_list_mtx);
1300 
1301 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 			vdrop_recycle(vp);
1303 			goto next_iter_unlocked;
1304 		}
1305 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 			vdrop_recycle(vp);
1307 			vn_finished_write(mp);
1308 			goto next_iter_unlocked;
1309 		}
1310 
1311 		VI_LOCK(vp);
1312 		if (vp->v_usecount > 0 ||
1313 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 		    vp->v_object->resident_page_count > trigger)) {
1316 			VOP_UNLOCK(vp);
1317 			vdropl_recycle(vp);
1318 			vn_finished_write(mp);
1319 			goto next_iter_unlocked;
1320 		}
1321 		recycles_count++;
1322 		vgonel(vp);
1323 		VOP_UNLOCK(vp);
1324 		vdropl_recycle(vp);
1325 		vn_finished_write(mp);
1326 		done++;
1327 next_iter_unlocked:
1328 		maybe_yield();
1329 		mtx_lock(&vnode_list_mtx);
1330 		goto restart;
1331 next_iter:
1332 		MPASS(vp->v_type != VMARKER);
1333 		if (!should_yield())
1334 			continue;
1335 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 		mtx_unlock(&vnode_list_mtx);
1338 		kern_yield(PRI_USER);
1339 		mtx_lock(&vnode_list_mtx);
1340 		goto restart;
1341 	}
1342 	if (done == 0 && !retried) {
1343 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 		retried = true;
1346 		goto restart;
1347 	}
1348 	return (done);
1349 }
1350 
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355     &max_free_per_call, 0,
1356     "limit on vnode free requests per call to the vnlru_free routine");
1357 
1358 /*
1359  * Attempt to recycle requested amount of free vnodes.
1360  */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 	struct vnode *vp;
1365 	struct mount *mp;
1366 	int ocount;
1367 	bool retried;
1368 
1369 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 	if (count > max_free_per_call)
1371 		count = max_free_per_call;
1372 	if (count == 0) {
1373 		mtx_unlock(&vnode_list_mtx);
1374 		return (0);
1375 	}
1376 	ocount = count;
1377 	retried = false;
1378 	vp = mvp;
1379 	for (;;) {
1380 		vp = TAILQ_NEXT(vp, v_vnodelist);
1381 		if (__predict_false(vp == NULL)) {
1382 			/*
1383 			 * The free vnode marker can be past eligible vnodes:
1384 			 * 1. if vdbatch_process trylock failed
1385 			 * 2. if vtryrecycle failed
1386 			 *
1387 			 * If so, start the scan from scratch.
1388 			 */
1389 			if (!retried && vnlru_read_freevnodes() > 0) {
1390 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 				vp = mvp;
1393 				retried = true;
1394 				continue;
1395 			}
1396 
1397 			/*
1398 			 * Give up
1399 			 */
1400 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 			mtx_unlock(&vnode_list_mtx);
1403 			break;
1404 		}
1405 		if (__predict_false(vp->v_type == VMARKER))
1406 			continue;
1407 		if (vp->v_holdcnt > 0)
1408 			continue;
1409 		/*
1410 		 * Don't recycle if our vnode is from different type
1411 		 * of mount point.  Note that mp is type-safe, the
1412 		 * check does not reach unmapped address even if
1413 		 * vnode is reclaimed.
1414 		 */
1415 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 		    mp->mnt_op != mnt_op) {
1417 			continue;
1418 		}
1419 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 			continue;
1421 		}
1422 		if (!vhold_recycle_free(vp))
1423 			continue;
1424 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 		mtx_unlock(&vnode_list_mtx);
1427 		/*
1428 		 * FIXME: ignores the return value, meaning it may be nothing
1429 		 * got recycled but it claims otherwise to the caller.
1430 		 *
1431 		 * Originally the value started being ignored in 2005 with
1432 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 		 *
1434 		 * Respecting the value can run into significant stalls if most
1435 		 * vnodes belong to one file system and it has writes
1436 		 * suspended.  In presence of many threads and millions of
1437 		 * vnodes they keep contending on the vnode_list_mtx lock only
1438 		 * to find vnodes they can't recycle.
1439 		 *
1440 		 * The solution would be to pre-check if the vnode is likely to
1441 		 * be recycle-able, but it needs to happen with the
1442 		 * vnode_list_mtx lock held. This runs into a problem where
1443 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 		 * writes are frozen) can take locks which LOR against it.
1445 		 *
1446 		 * Check nullfs for one example (null_getwritemount).
1447 		 */
1448 		vtryrecycle(vp, isvnlru);
1449 		count--;
1450 		if (count == 0) {
1451 			break;
1452 		}
1453 		mtx_lock(&vnode_list_mtx);
1454 		vp = mvp;
1455 	}
1456 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 	return (ocount - count);
1458 }
1459 
1460 /*
1461  * XXX: returns without vnode_list_mtx locked!
1462  */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 	int ret;
1467 
1468 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 	return (ret);
1472 }
1473 
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 	int ret;
1478 
1479 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 	return (ret);
1483 }
1484 
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488 
1489 	mtx_lock(&vnode_list_mtx);
1490 	return (vnlru_free_locked_vnlru(count));
1491 }
1492 
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496 
1497 	MPASS(mnt_op != NULL);
1498 	MPASS(mvp != NULL);
1499 	VNPASS(mvp->v_type == VMARKER, mvp);
1500 	mtx_lock(&vnode_list_mtx);
1501 	vnlru_free_impl(count, mnt_op, mvp, true);
1502 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504 
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 	struct vnode *mvp;
1509 
1510 	mvp = vn_alloc_marker(NULL);
1511 	mtx_lock(&vnode_list_mtx);
1512 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 	mtx_unlock(&vnode_list_mtx);
1514 	return (mvp);
1515 }
1516 
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 	mtx_lock(&vnode_list_mtx);
1521 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 	mtx_unlock(&vnode_list_mtx);
1523 	vn_free_marker(mvp);
1524 }
1525 
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529 
1530 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 	vlowat = vhiwat / 2;
1534 }
1535 
1536 /*
1537  * Attempt to recycle vnodes in a context that is always safe to block.
1538  * Calling vlrurecycle() from the bowels of filesystem code has some
1539  * interesting deadlock problems.
1540  */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544 
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546     "Number of times vnlru awakened due to vnode shortage");
1547 
1548 #define VNLRU_COUNT_SLOP 100
1549 
1550 /*
1551  * The main freevnodes counter is only updated when a counter local to CPU
1552  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553  * walked to compute a more accurate total.
1554  *
1555  * Note: the actual value at any given moment can still exceed slop, but it
1556  * should not be by significant margin in practice.
1557  */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559 
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563 
1564 	atomic_add_long(&freevnodes, *lfreevnodes);
1565 	*lfreevnodes = 0;
1566 	critical_exit();
1567 }
1568 
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 	int8_t *lfreevnodes;
1573 
1574 	critical_enter();
1575 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 	(*lfreevnodes)++;
1577 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 		vfs_freevnodes_rollup(lfreevnodes);
1579 	else
1580 		critical_exit();
1581 }
1582 
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 	int8_t *lfreevnodes;
1587 
1588 	critical_enter();
1589 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 	(*lfreevnodes)--;
1591 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 		vfs_freevnodes_rollup(lfreevnodes);
1593 	else
1594 		critical_exit();
1595 }
1596 
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 	long slop, rfreevnodes, rfreevnodes_old;
1601 	int cpu;
1602 
1603 	rfreevnodes = atomic_load_long(&freevnodes);
1604 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605 
1606 	if (rfreevnodes > rfreevnodes_old)
1607 		slop = rfreevnodes - rfreevnodes_old;
1608 	else
1609 		slop = rfreevnodes_old - rfreevnodes;
1610 	if (slop < VNLRU_FREEVNODES_SLOP)
1611 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 	CPU_FOREACH(cpu) {
1613 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 	}
1615 	atomic_store_long(&freevnodes_old, rfreevnodes);
1616 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618 
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 	u_long rfreevnodes, space;
1623 
1624 	if (__predict_false(rnumvnodes > desiredvnodes))
1625 		return (true);
1626 
1627 	space = desiredvnodes - rnumvnodes;
1628 	if (space < limit) {
1629 		rfreevnodes = vnlru_read_freevnodes();
1630 		if (rfreevnodes > wantfreevnodes)
1631 			space += rfreevnodes - wantfreevnodes;
1632 	}
1633 	return (space < limit);
1634 }
1635 
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639 
1640 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 	if (vnlruproc_sig == 0) {
1642 		vnlruproc_sig = 1;
1643 		vnlruproc_kicks++;
1644 		wakeup(vnlruproc);
1645 	}
1646 }
1647 
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651 
1652 	if (vnlru_read_freevnodes() > wantfreevnodes)
1653 		return;
1654 
1655 	if (vnlruproc_sig)
1656 		return;
1657 	mtx_lock(&vnode_list_mtx);
1658 	vnlru_kick_locked();
1659 	mtx_unlock(&vnode_list_mtx);
1660 }
1661 
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665 
1666 	if (vnlruproc_sig) {
1667 		vnlruproc_sig = 0;
1668 		wakeup(&vnlruproc_sig);
1669 	}
1670 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672 
1673 /*
1674  * A lighter version of the machinery below.
1675  *
1676  * Tries to reach goals only by recycling free vnodes and does not invoke
1677  * uma_reclaim(UMA_RECLAIM_DRAIN).
1678  *
1679  * This works around pathological behavior in vnlru in presence of tons of free
1680  * vnodes, but without having to rewrite the machinery at this time. Said
1681  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682  * (cycling through all levels of "force") when the count is transiently above
1683  * limit. This happens a lot when all vnodes are used up and vn_alloc
1684  * speculatively increments the counter.
1685  *
1686  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687  * 1 million files in total and 20 find(1) processes stating them in parallel
1688  * (one per each tree).
1689  *
1690  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691  * seconds to execute (time varies *wildly* between runs). With the workaround
1692  * it consistently stays around 20 seconds [it got further down with later
1693  * changes].
1694  *
1695  * That is to say the entire thing needs a fundamental redesign (most notably
1696  * to accommodate faster recycling), the above only tries to get it ouf the way.
1697  *
1698  * Return values are:
1699  * -1 -- fallback to regular vnlru loop
1700  *  0 -- do nothing, go to sleep
1701  * >0 -- recycle this many vnodes
1702  */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 	u_long rnumvnodes, rfreevnodes;
1707 
1708 	if (vstir || vnlruproc_sig == 1)
1709 		return (-1);
1710 
1711 	rnumvnodes = atomic_load_long(&numvnodes);
1712 	rfreevnodes = vnlru_read_freevnodes();
1713 
1714 	/*
1715 	 * vnode limit might have changed and now we may be at a significant
1716 	 * excess. Bail if we can't sort it out with free vnodes.
1717 	 *
1718 	 * Due to atomic updates the count can legitimately go above
1719 	 * the limit for a short period, don't bother doing anything in
1720 	 * that case.
1721 	 */
1722 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 		    rfreevnodes <= wantfreevnodes) {
1725 			return (-1);
1726 		}
1727 
1728 		return (rnumvnodes - desiredvnodes);
1729 	}
1730 
1731 	/*
1732 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 	 * to begin with.
1734 	 */
1735 	if (rnumvnodes < wantfreevnodes) {
1736 		return (0);
1737 	}
1738 
1739 	if (rfreevnodes < wantfreevnodes) {
1740 		return (-1);
1741 	}
1742 
1743 	return (0);
1744 }
1745 
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 	long freecount;
1750 
1751 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752 
1753 	freecount = vnlru_proc_light_pick();
1754 	if (freecount == -1)
1755 		return (false);
1756 
1757 	if (freecount != 0) {
1758 		vnlru_free_vnlru(freecount);
1759 	}
1760 
1761 	mtx_lock(&vnode_list_mtx);
1762 	vnlru_proc_sleep();
1763 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 	return (true);
1765 }
1766 
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770 
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 	u_long rnumvnodes, rfreevnodes, target;
1775 	unsigned long onumvnodes;
1776 	int done, force, trigger, usevnodes;
1777 	bool reclaim_nc_src, want_reread;
1778 
1779 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 	    SHUTDOWN_PRI_FIRST);
1781 
1782 	force = 0;
1783 	want_reread = false;
1784 	for (;;) {
1785 		kproc_suspend_check(vnlruproc);
1786 
1787 		if (force == 0 && vnlru_proc_light())
1788 			continue;
1789 
1790 		mtx_lock(&vnode_list_mtx);
1791 		rnumvnodes = atomic_load_long(&numvnodes);
1792 
1793 		if (want_reread) {
1794 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 			want_reread = false;
1796 		}
1797 
1798 		/*
1799 		 * If numvnodes is too large (due to desiredvnodes being
1800 		 * adjusted using its sysctl, or emergency growth), first
1801 		 * try to reduce it by discarding free vnodes.
1802 		 */
1803 		if (rnumvnodes > desiredvnodes + 10) {
1804 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 			mtx_lock(&vnode_list_mtx);
1806 			rnumvnodes = atomic_load_long(&numvnodes);
1807 		}
1808 		/*
1809 		 * Sleep if the vnode cache is in a good state.  This is
1810 		 * when it is not over-full and has space for about a 4%
1811 		 * or 9% expansion (by growing its size or inexcessively
1812 		 * reducing free vnode count).  Otherwise, try to reclaim
1813 		 * space for a 10% expansion.
1814 		 */
1815 		if (vstir && force == 0) {
1816 			force = 1;
1817 			vstir = false;
1818 		}
1819 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 			vnlru_proc_sleep();
1821 			continue;
1822 		}
1823 		rfreevnodes = vnlru_read_freevnodes();
1824 
1825 		onumvnodes = rnumvnodes;
1826 		/*
1827 		 * Calculate parameters for recycling.  These are the same
1828 		 * throughout the loop to give some semblance of fairness.
1829 		 * The trigger point is to avoid recycling vnodes with lots
1830 		 * of resident pages.  We aren't trying to free memory; we
1831 		 * are trying to recycle or at least free vnodes.
1832 		 */
1833 		if (rnumvnodes <= desiredvnodes)
1834 			usevnodes = rnumvnodes - rfreevnodes;
1835 		else
1836 			usevnodes = rnumvnodes;
1837 		if (usevnodes <= 0)
1838 			usevnodes = 1;
1839 		/*
1840 		 * The trigger value is chosen to give a conservatively
1841 		 * large value to ensure that it alone doesn't prevent
1842 		 * making progress.  The value can easily be so large that
1843 		 * it is effectively infinite in some congested and
1844 		 * misconfigured cases, and this is necessary.  Normally
1845 		 * it is about 8 to 100 (pages), which is quite large.
1846 		 */
1847 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 		if (force < 2)
1849 			trigger = vsmalltrigger;
1850 		reclaim_nc_src = force >= 3;
1851 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 		target = target / 10 + 1;
1853 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 		mtx_unlock(&vnode_list_mtx);
1855 		/*
1856 		 * Total number of vnodes can transiently go slightly above the
1857 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 		 * this happens.
1859 		 */
1860 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 		    numvnodes <= desiredvnodes) {
1862 			uma_reclaim_calls++;
1863 			uma_reclaim(UMA_RECLAIM_DRAIN);
1864 		}
1865 		if (done == 0) {
1866 			if (force == 0 || force == 1) {
1867 				force = 2;
1868 				continue;
1869 			}
1870 			if (force == 2) {
1871 				force = 3;
1872 				continue;
1873 			}
1874 			want_reread = true;
1875 			force = 0;
1876 			vnlru_nowhere++;
1877 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 		} else {
1879 			want_reread = true;
1880 			kern_yield(PRI_USER);
1881 		}
1882 	}
1883 }
1884 
1885 static struct kproc_desc vnlru_kp = {
1886 	"vnlru",
1887 	vnlru_proc,
1888 	&vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891     &vnlru_kp);
1892 
1893 /*
1894  * Routines having to do with the management of the vnode table.
1895  */
1896 
1897 /*
1898  * Try to recycle a freed vnode.
1899  */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 	struct mount *vnmp;
1904 
1905 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 	VNPASS(vp->v_holdcnt > 0, vp);
1907 	/*
1908 	 * This vnode may found and locked via some other list, if so we
1909 	 * can't recycle it yet.
1910 	 */
1911 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 		CTR2(KTR_VFS,
1913 		    "%s: impossible to recycle, vp %p lock is already held",
1914 		    __func__, vp);
1915 		vdrop_recycle(vp);
1916 		return (EWOULDBLOCK);
1917 	}
1918 	/*
1919 	 * Don't recycle if its filesystem is being suspended.
1920 	 */
1921 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 		VOP_UNLOCK(vp);
1923 		CTR2(KTR_VFS,
1924 		    "%s: impossible to recycle, cannot start the write for %p",
1925 		    __func__, vp);
1926 		vdrop_recycle(vp);
1927 		return (EBUSY);
1928 	}
1929 	/*
1930 	 * If we got this far, we need to acquire the interlock and see if
1931 	 * anyone picked up this vnode from another list.  If not, we will
1932 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 	 * will skip over it.
1934 	 */
1935 	VI_LOCK(vp);
1936 	if (vp->v_usecount) {
1937 		VOP_UNLOCK(vp);
1938 		vdropl_recycle(vp);
1939 		vn_finished_write(vnmp);
1940 		CTR2(KTR_VFS,
1941 		    "%s: impossible to recycle, %p is already referenced",
1942 		    __func__, vp);
1943 		return (EBUSY);
1944 	}
1945 	if (!VN_IS_DOOMED(vp)) {
1946 		if (isvnlru)
1947 			recycles_free_count++;
1948 		else
1949 			counter_u64_add(direct_recycles_free_count, 1);
1950 		vgonel(vp);
1951 	}
1952 	VOP_UNLOCK(vp);
1953 	vdropl_recycle(vp);
1954 	vn_finished_write(vnmp);
1955 	return (0);
1956 }
1957 
1958 /*
1959  * Allocate a new vnode.
1960  *
1961  * The operation never returns an error. Returning an error was disabled
1962  * in r145385 (dated 2005) with the following comment:
1963  *
1964  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965  *
1966  * Given the age of this commit (almost 15 years at the time of writing this
1967  * comment) restoring the ability to fail requires a significant audit of
1968  * all codepaths.
1969  *
1970  * The routine can try to free a vnode or stall for up to 1 second waiting for
1971  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972  */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975 
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977     "Number of times vnode allocation blocked waiting on vnlru");
1978 
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 	u_long rfreevnodes;
1983 
1984 	if (bumped) {
1985 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 			atomic_subtract_long(&numvnodes, 1);
1987 			bumped = false;
1988 		}
1989 	}
1990 
1991 	mtx_lock(&vnode_list_mtx);
1992 
1993 	/*
1994 	 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 	 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 	 * actually passed if 'bumped' is true (else it is 0).
1997 	 */
1998 	rnumvnodes = atomic_load_long(&numvnodes);
1999 	if (rnumvnodes + !bumped < desiredvnodes) {
2000 		vn_alloc_cyclecount = 0;
2001 		mtx_unlock(&vnode_list_mtx);
2002 		goto alloc;
2003 	}
2004 
2005 	rfreevnodes = vnlru_read_freevnodes();
2006 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 		vn_alloc_cyclecount = 0;
2008 		vstir = true;
2009 	}
2010 
2011 	/*
2012 	 * Grow the vnode cache if it will not be above its target max after
2013 	 * growing.  Otherwise, if there is at least one free vnode, try to
2014 	 * reclaim 1 item from it before growing the cache (possibly above its
2015 	 * target max if the reclamation failed or is delayed).
2016 	 */
2017 	if (vnlru_free_locked_direct(1) > 0)
2018 		goto alloc;
2019 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 		/*
2022 		 * Wait for space for a new vnode.
2023 		 */
2024 		if (bumped) {
2025 			atomic_subtract_long(&numvnodes, 1);
2026 			bumped = false;
2027 		}
2028 		mtx_lock(&vnode_list_mtx);
2029 		vnlru_kick_locked();
2030 		vn_alloc_sleeps++;
2031 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 		    vnlru_read_freevnodes() > 1)
2034 			vnlru_free_locked_direct(1);
2035 		else
2036 			mtx_unlock(&vnode_list_mtx);
2037 	}
2038 alloc:
2039 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 	if (!bumped)
2041 		atomic_add_long(&numvnodes, 1);
2042 	vnlru_kick_cond();
2043 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045 
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 	u_long rnumvnodes;
2050 
2051 	if (__predict_false(vn_alloc_cyclecount != 0))
2052 		return (vn_alloc_hard(mp, 0, false));
2053 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 		return (vn_alloc_hard(mp, rnumvnodes, true));
2056 	}
2057 
2058 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060 
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064 
2065 	atomic_subtract_long(&numvnodes, 1);
2066 	uma_zfree_smr(vnode_zone, vp);
2067 }
2068 
2069 /*
2070  * Allocate a new vnode.
2071  */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074     struct vnode **vpp)
2075 {
2076 	struct vnode *vp;
2077 	struct thread *td;
2078 	struct lock_object *lo;
2079 
2080 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081 
2082 	KASSERT(vops->registered,
2083 	    ("%s: not registered vector op %p\n", __func__, vops));
2084 	cache_validate_vop_vector(mp, vops);
2085 
2086 	td = curthread;
2087 	if (td->td_vp_reserved != NULL) {
2088 		vp = td->td_vp_reserved;
2089 		td->td_vp_reserved = NULL;
2090 	} else {
2091 		vp = vn_alloc(mp);
2092 	}
2093 	counter_u64_add(vnodes_created, 1);
2094 
2095 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2096 
2097 	/*
2098 	 * Locks are given the generic name "vnode" when created.
2099 	 * Follow the historic practice of using the filesystem
2100 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 	 *
2102 	 * Locks live in a witness group keyed on their name. Thus,
2103 	 * when a lock is renamed, it must also move from the witness
2104 	 * group of its old name to the witness group of its new name.
2105 	 *
2106 	 * The change only needs to be made when the vnode moves
2107 	 * from one filesystem type to another. We ensure that each
2108 	 * filesystem use a single static name pointer for its tag so
2109 	 * that we can compare pointers rather than doing a strcmp().
2110 	 */
2111 	lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 	if (lo->lo_name != tag) {
2114 #endif
2115 		lo->lo_name = tag;
2116 #ifdef WITNESS
2117 		WITNESS_DESTROY(lo);
2118 		WITNESS_INIT(lo, tag);
2119 	}
2120 #endif
2121 	/*
2122 	 * By default, don't allow shared locks unless filesystems opt-in.
2123 	 */
2124 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 	/*
2126 	 * Finalize various vnode identity bits.
2127 	 */
2128 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 	vp->v_type = VNON;
2132 	vp->v_op = vops;
2133 	vp->v_irflag = 0;
2134 	v_init_counters(vp);
2135 	vn_seqc_init(vp);
2136 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 	if (mp == NULL && vops != &dead_vnodeops)
2139 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 	mac_vnode_init(vp);
2143 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 		mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 	if (mp != NULL) {
2147 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 	}
2149 
2150 	/*
2151 	 * For the filesystems which do not use vfs_hash_insert(),
2152 	 * still initialize v_hash to have vfs_hash_index() useful.
2153 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 	 * its own hashing.
2155 	 */
2156 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157 
2158 	*vpp = vp;
2159 	return (0);
2160 }
2161 
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 	struct thread *td;
2166 
2167 	td = curthread;
2168 	MPASS(td->td_vp_reserved == NULL);
2169 	td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171 
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 	struct thread *td;
2176 
2177 	td = curthread;
2178 	if (td->td_vp_reserved != NULL) {
2179 		vn_free(td->td_vp_reserved);
2180 		td->td_vp_reserved = NULL;
2181 	}
2182 }
2183 
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 	struct bufobj *bo;
2188 
2189 	ASSERT_VOP_UNLOCKED(vp, __func__);
2190 
2191 	/*
2192 	 * The vnode has been marked for destruction, so free it.
2193 	 *
2194 	 * The vnode will be returned to the zone where it will
2195 	 * normally remain until it is needed for another vnode. We
2196 	 * need to cleanup (or verify that the cleanup has already
2197 	 * been done) any residual data left from its current use
2198 	 * so as not to contaminate the freshly allocated vnode.
2199 	 */
2200 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2201 	/*
2202 	 * Paired with vgone.
2203 	 */
2204 	vn_seqc_write_end_free(vp);
2205 
2206 	bo = &vp->v_bufobj;
2207 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2208 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2209 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2210 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2211 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2212 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2213 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2214 	    ("clean blk trie not empty"));
2215 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2216 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2217 	    ("dirty blk trie not empty"));
2218 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2219 	    ("Leaked inactivation"));
2220 	VI_UNLOCK(vp);
2221 	cache_assert_no_entries(vp);
2222 
2223 #ifdef MAC
2224 	mac_vnode_destroy(vp);
2225 #endif
2226 	if (vp->v_pollinfo != NULL) {
2227 		int error __diagused;
2228 
2229 		/*
2230 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 		 * here while having another vnode locked when trying to
2232 		 * satisfy a lookup and needing to recycle.
2233 		 */
2234 		error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 		VNASSERT(error == 0, vp,
2236 		    ("freevnode: cannot lock vp %p for pollinfo destroy", vp));
2237 		destroy_vpollinfo(vp->v_pollinfo);
2238 		VOP_UNLOCK(vp);
2239 		vp->v_pollinfo = NULL;
2240 	}
2241 	vp->v_mountedhere = NULL;
2242 	vp->v_unpcb = NULL;
2243 	vp->v_rdev = NULL;
2244 	vp->v_fifoinfo = NULL;
2245 	vp->v_iflag = 0;
2246 	vp->v_vflag = 0;
2247 	bo->bo_flag = 0;
2248 	vn_free(vp);
2249 }
2250 
2251 /*
2252  * Delete from old mount point vnode list, if on one.
2253  */
2254 static void
delmntque(struct vnode * vp)2255 delmntque(struct vnode *vp)
2256 {
2257 	struct mount *mp;
2258 
2259 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2260 
2261 	mp = vp->v_mount;
2262 	MNT_ILOCK(mp);
2263 	VI_LOCK(vp);
2264 	vp->v_mount = NULL;
2265 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2266 		("bad mount point vnode list size"));
2267 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2268 	mp->mnt_nvnodelistsize--;
2269 	MNT_REL(mp);
2270 	MNT_IUNLOCK(mp);
2271 	/*
2272 	 * The caller expects the interlock to be still held.
2273 	 */
2274 	ASSERT_VI_LOCKED(vp, __func__);
2275 }
2276 
2277 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2278 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2279 {
2280 
2281 	KASSERT(vp->v_mount == NULL,
2282 		("insmntque: vnode already on per mount vnode list"));
2283 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2284 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2285 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2286 	} else {
2287 		KASSERT(!dtr,
2288 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2289 		    __func__));
2290 	}
2291 
2292 	/*
2293 	 * We acquire the vnode interlock early to ensure that the
2294 	 * vnode cannot be recycled by another process releasing a
2295 	 * holdcnt on it before we get it on both the vnode list
2296 	 * and the active vnode list. The mount mutex protects only
2297 	 * manipulation of the vnode list and the vnode freelist
2298 	 * mutex protects only manipulation of the active vnode list.
2299 	 * Hence the need to hold the vnode interlock throughout.
2300 	 */
2301 	MNT_ILOCK(mp);
2302 	VI_LOCK(vp);
2303 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2304 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2305 	    mp->mnt_nvnodelistsize == 0)) &&
2306 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2307 		VI_UNLOCK(vp);
2308 		MNT_IUNLOCK(mp);
2309 		if (dtr) {
2310 			vp->v_data = NULL;
2311 			vp->v_op = &dead_vnodeops;
2312 			vgone(vp);
2313 			vput(vp);
2314 		}
2315 		return (EBUSY);
2316 	}
2317 	vp->v_mount = mp;
2318 	MNT_REF(mp);
2319 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2320 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2321 		("neg mount point vnode list size"));
2322 	mp->mnt_nvnodelistsize++;
2323 	VI_UNLOCK(vp);
2324 	MNT_IUNLOCK(mp);
2325 	return (0);
2326 }
2327 
2328 /*
2329  * Insert into list of vnodes for the new mount point, if available.
2330  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2331  * leaves handling of the vnode to the caller.
2332  */
2333 int
insmntque(struct vnode * vp,struct mount * mp)2334 insmntque(struct vnode *vp, struct mount *mp)
2335 {
2336 	return (insmntque1_int(vp, mp, true));
2337 }
2338 
2339 int
insmntque1(struct vnode * vp,struct mount * mp)2340 insmntque1(struct vnode *vp, struct mount *mp)
2341 {
2342 	return (insmntque1_int(vp, mp, false));
2343 }
2344 
2345 /*
2346  * Flush out and invalidate all buffers associated with a bufobj
2347  * Called with the underlying object locked.
2348  */
2349 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2350 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2351 {
2352 	int error;
2353 
2354 	BO_LOCK(bo);
2355 	if (flags & V_SAVE) {
2356 		error = bufobj_wwait(bo, slpflag, slptimeo);
2357 		if (error) {
2358 			BO_UNLOCK(bo);
2359 			return (error);
2360 		}
2361 		if (bo->bo_dirty.bv_cnt > 0) {
2362 			BO_UNLOCK(bo);
2363 			do {
2364 				error = BO_SYNC(bo, MNT_WAIT);
2365 			} while (error == ERELOOKUP);
2366 			if (error != 0)
2367 				return (error);
2368 			BO_LOCK(bo);
2369 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2370 				BO_UNLOCK(bo);
2371 				return (EBUSY);
2372 			}
2373 		}
2374 	}
2375 	/*
2376 	 * If you alter this loop please notice that interlock is dropped and
2377 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2378 	 * no race conditions occur from this.
2379 	 */
2380 	do {
2381 		error = flushbuflist(&bo->bo_clean,
2382 		    flags, bo, slpflag, slptimeo);
2383 		if (error == 0 && !(flags & V_CLEANONLY))
2384 			error = flushbuflist(&bo->bo_dirty,
2385 			    flags, bo, slpflag, slptimeo);
2386 		if (error != 0 && error != EAGAIN) {
2387 			BO_UNLOCK(bo);
2388 			return (error);
2389 		}
2390 	} while (error != 0);
2391 
2392 	/*
2393 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2394 	 * have write I/O in-progress but if there is a VM object then the
2395 	 * VM object can also have read-I/O in-progress.
2396 	 */
2397 	do {
2398 		bufobj_wwait(bo, 0, 0);
2399 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2400 			BO_UNLOCK(bo);
2401 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2402 			BO_LOCK(bo);
2403 		}
2404 	} while (bo->bo_numoutput > 0);
2405 	BO_UNLOCK(bo);
2406 
2407 	/*
2408 	 * Destroy the copy in the VM cache, too.
2409 	 */
2410 	if (bo->bo_object != NULL &&
2411 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2412 		VM_OBJECT_WLOCK(bo->bo_object);
2413 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2414 		    OBJPR_CLEANONLY : 0);
2415 		VM_OBJECT_WUNLOCK(bo->bo_object);
2416 	}
2417 
2418 #ifdef INVARIANTS
2419 	BO_LOCK(bo);
2420 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2421 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2422 	    bo->bo_clean.bv_cnt > 0))
2423 		panic("vinvalbuf: flush failed");
2424 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2425 	    bo->bo_dirty.bv_cnt > 0)
2426 		panic("vinvalbuf: flush dirty failed");
2427 	BO_UNLOCK(bo);
2428 #endif
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Flush out and invalidate all buffers associated with a vnode.
2434  * Called with the underlying object locked.
2435  */
2436 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2437 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2438 {
2439 
2440 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2441 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2442 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2443 		return (0);
2444 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2445 }
2446 
2447 /*
2448  * Flush out buffers on the specified list.
2449  *
2450  */
2451 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2452 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2453     int slptimeo)
2454 {
2455 	struct buf *bp, *nbp;
2456 	int retval, error;
2457 	daddr_t lblkno;
2458 	b_xflags_t xflags;
2459 
2460 	ASSERT_BO_WLOCKED(bo);
2461 
2462 	retval = 0;
2463 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2464 		/*
2465 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2466 		 * do not skip any buffers. If we are flushing only V_NORMAL
2467 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2468 		 * flushing only V_ALT buffers then skip buffers not marked
2469 		 * as BX_ALTDATA.
2470 		 */
2471 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2472 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2473 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2474 			continue;
2475 		}
2476 		if (nbp != NULL) {
2477 			lblkno = nbp->b_lblkno;
2478 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2479 		}
2480 		retval = EAGAIN;
2481 		error = BUF_TIMELOCK(bp,
2482 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2483 		    "flushbuf", slpflag, slptimeo);
2484 		if (error) {
2485 			BO_LOCK(bo);
2486 			return (error != ENOLCK ? error : EAGAIN);
2487 		}
2488 		KASSERT(bp->b_bufobj == bo,
2489 		    ("bp %p wrong b_bufobj %p should be %p",
2490 		    bp, bp->b_bufobj, bo));
2491 		/*
2492 		 * XXX Since there are no node locks for NFS, I
2493 		 * believe there is a slight chance that a delayed
2494 		 * write will occur while sleeping just above, so
2495 		 * check for it.
2496 		 */
2497 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2498 		    (flags & V_SAVE)) {
2499 			bremfree(bp);
2500 			bp->b_flags |= B_ASYNC;
2501 			bwrite(bp);
2502 			BO_LOCK(bo);
2503 			return (EAGAIN);	/* XXX: why not loop ? */
2504 		}
2505 		bremfree(bp);
2506 		bp->b_flags |= (B_INVAL | B_RELBUF);
2507 		bp->b_flags &= ~B_ASYNC;
2508 		brelse(bp);
2509 		BO_LOCK(bo);
2510 		if (nbp == NULL)
2511 			break;
2512 		nbp = gbincore(bo, lblkno);
2513 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2514 		    != xflags)
2515 			break;			/* nbp invalid */
2516 	}
2517 	return (retval);
2518 }
2519 
2520 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2521 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2522 {
2523 	struct buf *bp;
2524 	int error;
2525 	daddr_t lblkno;
2526 
2527 	ASSERT_BO_LOCKED(bo);
2528 
2529 	for (lblkno = startn;;) {
2530 again:
2531 		bp = buf_lookup_ge(bufv, lblkno);
2532 		if (bp == NULL || bp->b_lblkno >= endn)
2533 			break;
2534 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2535 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2536 		if (error != 0) {
2537 			BO_RLOCK(bo);
2538 			if (error == ENOLCK)
2539 				goto again;
2540 			return (error);
2541 		}
2542 		KASSERT(bp->b_bufobj == bo,
2543 		    ("bp %p wrong b_bufobj %p should be %p",
2544 		    bp, bp->b_bufobj, bo));
2545 		lblkno = bp->b_lblkno + 1;
2546 		if ((bp->b_flags & B_MANAGED) == 0)
2547 			bremfree(bp);
2548 		bp->b_flags |= B_RELBUF;
2549 		/*
2550 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2551 		 * pages backing each buffer in the range are unlikely to be
2552 		 * reused.  Dirty buffers will have the hint applied once
2553 		 * they've been written.
2554 		 */
2555 		if ((bp->b_flags & B_VMIO) != 0)
2556 			bp->b_flags |= B_NOREUSE;
2557 		brelse(bp);
2558 		BO_RLOCK(bo);
2559 	}
2560 	return (0);
2561 }
2562 
2563 /*
2564  * Truncate a file's buffer and pages to a specified length.  This
2565  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2566  * sync activity.
2567  */
2568 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2569 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2570 {
2571 	struct buf *bp, *nbp;
2572 	struct bufobj *bo;
2573 	daddr_t startlbn;
2574 
2575 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2576 	    vp, blksize, (uintmax_t)length);
2577 
2578 	/*
2579 	 * Round up to the *next* lbn.
2580 	 */
2581 	startlbn = howmany(length, blksize);
2582 
2583 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2584 
2585 	bo = &vp->v_bufobj;
2586 restart_unlocked:
2587 	BO_LOCK(bo);
2588 
2589 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2590 		;
2591 
2592 	if (length > 0) {
2593 		/*
2594 		 * Write out vnode metadata, e.g. indirect blocks.
2595 		 */
2596 restartsync:
2597 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2598 			if (bp->b_lblkno >= 0)
2599 				continue;
2600 			/*
2601 			 * Since we hold the vnode lock this should only
2602 			 * fail if we're racing with the buf daemon.
2603 			 */
2604 			if (BUF_LOCK(bp,
2605 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2606 			    BO_LOCKPTR(bo)) == ENOLCK)
2607 				goto restart_unlocked;
2608 
2609 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2610 			    ("buf(%p) on dirty queue without DELWRI", bp));
2611 
2612 			bremfree(bp);
2613 			bawrite(bp);
2614 			BO_LOCK(bo);
2615 			goto restartsync;
2616 		}
2617 	}
2618 
2619 	bufobj_wwait(bo, 0, 0);
2620 	BO_UNLOCK(bo);
2621 	vnode_pager_setsize(vp, length);
2622 
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Invalidate the cached pages of a file's buffer within the range of block
2628  * numbers [startlbn, endlbn).
2629  */
2630 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2631 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2632     int blksize)
2633 {
2634 	struct bufobj *bo;
2635 	off_t start, end;
2636 
2637 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2638 
2639 	start = blksize * startlbn;
2640 	end = blksize * endlbn;
2641 
2642 	bo = &vp->v_bufobj;
2643 	BO_LOCK(bo);
2644 	MPASS(blksize == bo->bo_bsize);
2645 
2646 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2647 		;
2648 
2649 	BO_UNLOCK(bo);
2650 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2651 }
2652 
2653 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2654 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2655     daddr_t startlbn, daddr_t endlbn)
2656 {
2657 	struct bufv *bv;
2658 	struct buf *bp, *nbp;
2659 	uint8_t anyfreed;
2660 	bool clean;
2661 
2662 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2663 	ASSERT_BO_LOCKED(bo);
2664 
2665 	anyfreed = 1;
2666 	clean = true;
2667 	do {
2668 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2669 		bp = buf_lookup_ge(bv, startlbn);
2670 		if (bp == NULL)
2671 			continue;
2672 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2673 			if (bp->b_lblkno >= endlbn)
2674 				break;
2675 			if (BUF_LOCK(bp,
2676 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2677 			    BO_LOCKPTR(bo)) == ENOLCK) {
2678 				BO_LOCK(bo);
2679 				return (EAGAIN);
2680 			}
2681 
2682 			bremfree(bp);
2683 			bp->b_flags |= B_INVAL | B_RELBUF;
2684 			bp->b_flags &= ~B_ASYNC;
2685 			brelse(bp);
2686 			anyfreed = 2;
2687 
2688 			BO_LOCK(bo);
2689 			if (nbp != NULL &&
2690 			    (((nbp->b_xflags &
2691 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2692 			    nbp->b_vp != vp ||
2693 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2694 				return (EAGAIN);
2695 		}
2696 	} while (clean = !clean, anyfreed-- > 0);
2697 	return (0);
2698 }
2699 
2700 static void
buf_vlist_remove(struct buf * bp)2701 buf_vlist_remove(struct buf *bp)
2702 {
2703 	struct bufv *bv;
2704 	b_xflags_t flags;
2705 
2706 	flags = bp->b_xflags;
2707 
2708 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2709 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2710 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2711 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2712 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2713 
2714 	if ((flags & BX_VNDIRTY) != 0)
2715 		bv = &bp->b_bufobj->bo_dirty;
2716 	else
2717 		bv = &bp->b_bufobj->bo_clean;
2718 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2719 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2720 	bv->bv_cnt--;
2721 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2722 }
2723 
2724 /*
2725  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2726  * success, EEXIST if a buffer with this identity already exists, or another
2727  * error on allocation failure.
2728  */
2729 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2730 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2731 {
2732 	struct bufv *bv;
2733 	struct buf *n;
2734 	int error;
2735 
2736 	ASSERT_BO_WLOCKED(bo);
2737 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2738 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2739 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2740 	    ("dead bo %p", bo));
2741 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2742 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2743 
2744 	if (xflags & BX_VNDIRTY)
2745 		bv = &bo->bo_dirty;
2746 	else
2747 		bv = &bo->bo_clean;
2748 
2749 	error = buf_insert_lookup_le(bv, bp, &n);
2750 	if (n == NULL) {
2751 		KASSERT(error != EEXIST,
2752 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2753 		    bp));
2754 	} else {
2755 		KASSERT(n->b_lblkno <= bp->b_lblkno,
2756 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2757 		    bp, n));
2758 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2759 		    ("buf_vlist_add: inconsistent result for existing buf: "
2760 		    "error %d bp %p n %p", error, bp, n));
2761 	}
2762 	if (error != 0)
2763 		return (error);
2764 
2765 	/* Keep the list ordered. */
2766 	if (n == NULL) {
2767 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2768 		    bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2769 		    ("buf_vlist_add: queue order: "
2770 		    "%p should be before first %p",
2771 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2772 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2773 	} else {
2774 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2775 		    bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2776 		    ("buf_vlist_add: queue order: "
2777 		    "%p should be before next %p",
2778 		    bp, TAILQ_NEXT(n, b_bobufs)));
2779 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2780 	}
2781 
2782 	bv->bv_cnt++;
2783 	return (0);
2784 }
2785 
2786 /*
2787  * Add the buffer to the sorted clean or dirty block list.
2788  *
2789  * NOTE: xflags is passed as a constant, optimizing this inline function!
2790  */
2791 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2792 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2793 {
2794 	int error;
2795 
2796 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2797 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2798 	bp->b_xflags |= xflags;
2799 	error = buf_vlist_find_or_add(bp, bo, xflags);
2800 	if (error)
2801 		panic("buf_vlist_add: error=%d", error);
2802 }
2803 
2804 /*
2805  * Look up a buffer using the buffer tries.
2806  */
2807 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2808 gbincore(struct bufobj *bo, daddr_t lblkno)
2809 {
2810 	struct buf *bp;
2811 
2812 	ASSERT_BO_LOCKED(bo);
2813 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2814 	if (bp != NULL)
2815 		return (bp);
2816 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2817 }
2818 
2819 /*
2820  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2821  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2822  * stability of the result.  Like other lockless lookups, the found buf may
2823  * already be invalid by the time this function returns.
2824  */
2825 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2826 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2827 {
2828 	struct buf *bp;
2829 
2830 	ASSERT_BO_UNLOCKED(bo);
2831 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2832 	if (bp != NULL)
2833 		return (bp);
2834 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2835 }
2836 
2837 /*
2838  * Associate a buffer with a vnode.
2839  */
2840 int
bgetvp(struct vnode * vp,struct buf * bp)2841 bgetvp(struct vnode *vp, struct buf *bp)
2842 {
2843 	struct bufobj *bo;
2844 	int error;
2845 
2846 	bo = &vp->v_bufobj;
2847 	ASSERT_BO_UNLOCKED(bo);
2848 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2849 
2850 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2851 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2852 	    ("bgetvp: bp already attached! %p", bp));
2853 
2854 	/*
2855 	 * Add the buf to the vnode's clean list unless we lost a race and find
2856 	 * an existing buf in either dirty or clean.
2857 	 */
2858 	bp->b_vp = vp;
2859 	bp->b_bufobj = bo;
2860 	bp->b_xflags |= BX_VNCLEAN;
2861 	error = EEXIST;
2862 	BO_LOCK(bo);
2863 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2864 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2865 	BO_UNLOCK(bo);
2866 	if (__predict_true(error == 0)) {
2867 		vhold(vp);
2868 		return (0);
2869 	}
2870 	if (error != EEXIST)
2871 		panic("bgetvp: buf_vlist_add error: %d", error);
2872 	bp->b_vp = NULL;
2873 	bp->b_bufobj = NULL;
2874 	bp->b_xflags &= ~BX_VNCLEAN;
2875 	return (error);
2876 }
2877 
2878 /*
2879  * Disassociate a buffer from a vnode.
2880  */
2881 void
brelvp(struct buf * bp)2882 brelvp(struct buf *bp)
2883 {
2884 	struct bufobj *bo;
2885 	struct vnode *vp;
2886 
2887 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2888 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2889 
2890 	/*
2891 	 * Delete from old vnode list, if on one.
2892 	 */
2893 	vp = bp->b_vp;		/* XXX */
2894 	bo = bp->b_bufobj;
2895 	BO_LOCK(bo);
2896 	buf_vlist_remove(bp);
2897 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2898 		bo->bo_flag &= ~BO_ONWORKLST;
2899 		mtx_lock(&sync_mtx);
2900 		LIST_REMOVE(bo, bo_synclist);
2901 		syncer_worklist_len--;
2902 		mtx_unlock(&sync_mtx);
2903 	}
2904 	bp->b_vp = NULL;
2905 	bp->b_bufobj = NULL;
2906 	BO_UNLOCK(bo);
2907 	vdrop(vp);
2908 }
2909 
2910 /*
2911  * Add an item to the syncer work queue.
2912  */
2913 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2914 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2915 {
2916 	int slot;
2917 
2918 	ASSERT_BO_WLOCKED(bo);
2919 
2920 	mtx_lock(&sync_mtx);
2921 	if (bo->bo_flag & BO_ONWORKLST)
2922 		LIST_REMOVE(bo, bo_synclist);
2923 	else {
2924 		bo->bo_flag |= BO_ONWORKLST;
2925 		syncer_worklist_len++;
2926 	}
2927 
2928 	if (delay > syncer_maxdelay - 2)
2929 		delay = syncer_maxdelay - 2;
2930 	slot = (syncer_delayno + delay) & syncer_mask;
2931 
2932 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2933 	mtx_unlock(&sync_mtx);
2934 }
2935 
2936 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2937 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2938 {
2939 	int error, len;
2940 
2941 	mtx_lock(&sync_mtx);
2942 	len = syncer_worklist_len - sync_vnode_count;
2943 	mtx_unlock(&sync_mtx);
2944 	error = SYSCTL_OUT(req, &len, sizeof(len));
2945 	return (error);
2946 }
2947 
2948 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2949     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2950     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2951 
2952 static struct proc *updateproc;
2953 static void sched_sync(void);
2954 static struct kproc_desc up_kp = {
2955 	"syncer",
2956 	sched_sync,
2957 	&updateproc
2958 };
2959 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2960 
2961 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2962 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2963 {
2964 	struct vnode *vp;
2965 	struct mount *mp;
2966 
2967 	*bo = LIST_FIRST(slp);
2968 	if (*bo == NULL)
2969 		return (0);
2970 	vp = bo2vnode(*bo);
2971 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2972 		return (1);
2973 	/*
2974 	 * We use vhold in case the vnode does not
2975 	 * successfully sync.  vhold prevents the vnode from
2976 	 * going away when we unlock the sync_mtx so that
2977 	 * we can acquire the vnode interlock.
2978 	 */
2979 	vholdl(vp);
2980 	mtx_unlock(&sync_mtx);
2981 	VI_UNLOCK(vp);
2982 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2983 		vdrop(vp);
2984 		mtx_lock(&sync_mtx);
2985 		return (*bo == LIST_FIRST(slp));
2986 	}
2987 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2988 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2989 	    ("suspended mp syncing vp %p", vp));
2990 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2991 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2992 	VOP_UNLOCK(vp);
2993 	vn_finished_write(mp);
2994 	BO_LOCK(*bo);
2995 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2996 		/*
2997 		 * Put us back on the worklist.  The worklist
2998 		 * routine will remove us from our current
2999 		 * position and then add us back in at a later
3000 		 * position.
3001 		 */
3002 		vn_syncer_add_to_worklist(*bo, syncdelay);
3003 	}
3004 	BO_UNLOCK(*bo);
3005 	vdrop(vp);
3006 	mtx_lock(&sync_mtx);
3007 	return (0);
3008 }
3009 
3010 static int first_printf = 1;
3011 
3012 /*
3013  * System filesystem synchronizer daemon.
3014  */
3015 static void
sched_sync(void)3016 sched_sync(void)
3017 {
3018 	struct synclist *next, *slp;
3019 	struct bufobj *bo;
3020 	long starttime;
3021 	struct thread *td = curthread;
3022 	int last_work_seen;
3023 	int net_worklist_len;
3024 	int syncer_final_iter;
3025 	int error;
3026 
3027 	last_work_seen = 0;
3028 	syncer_final_iter = 0;
3029 	syncer_state = SYNCER_RUNNING;
3030 	starttime = time_uptime;
3031 	td->td_pflags |= TDP_NORUNNINGBUF;
3032 
3033 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3034 	    SHUTDOWN_PRI_LAST);
3035 
3036 	mtx_lock(&sync_mtx);
3037 	for (;;) {
3038 		if (syncer_state == SYNCER_FINAL_DELAY &&
3039 		    syncer_final_iter == 0) {
3040 			mtx_unlock(&sync_mtx);
3041 			kproc_suspend_check(td->td_proc);
3042 			mtx_lock(&sync_mtx);
3043 		}
3044 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3045 		if (syncer_state != SYNCER_RUNNING &&
3046 		    starttime != time_uptime) {
3047 			if (first_printf) {
3048 				printf("\nSyncing disks, vnodes remaining... ");
3049 				first_printf = 0;
3050 			}
3051 			printf("%d ", net_worklist_len);
3052 		}
3053 		starttime = time_uptime;
3054 
3055 		/*
3056 		 * Push files whose dirty time has expired.  Be careful
3057 		 * of interrupt race on slp queue.
3058 		 *
3059 		 * Skip over empty worklist slots when shutting down.
3060 		 */
3061 		do {
3062 			slp = &syncer_workitem_pending[syncer_delayno];
3063 			syncer_delayno += 1;
3064 			if (syncer_delayno == syncer_maxdelay)
3065 				syncer_delayno = 0;
3066 			next = &syncer_workitem_pending[syncer_delayno];
3067 			/*
3068 			 * If the worklist has wrapped since the
3069 			 * it was emptied of all but syncer vnodes,
3070 			 * switch to the FINAL_DELAY state and run
3071 			 * for one more second.
3072 			 */
3073 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3074 			    net_worklist_len == 0 &&
3075 			    last_work_seen == syncer_delayno) {
3076 				syncer_state = SYNCER_FINAL_DELAY;
3077 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3078 			}
3079 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3080 		    syncer_worklist_len > 0);
3081 
3082 		/*
3083 		 * Keep track of the last time there was anything
3084 		 * on the worklist other than syncer vnodes.
3085 		 * Return to the SHUTTING_DOWN state if any
3086 		 * new work appears.
3087 		 */
3088 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3089 			last_work_seen = syncer_delayno;
3090 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3091 			syncer_state = SYNCER_SHUTTING_DOWN;
3092 		while (!LIST_EMPTY(slp)) {
3093 			error = sync_vnode(slp, &bo, td);
3094 			if (error == 1) {
3095 				LIST_REMOVE(bo, bo_synclist);
3096 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3097 				continue;
3098 			}
3099 
3100 			if (first_printf == 0) {
3101 				/*
3102 				 * Drop the sync mutex, because some watchdog
3103 				 * drivers need to sleep while patting
3104 				 */
3105 				mtx_unlock(&sync_mtx);
3106 				wdog_kern_pat(WD_LASTVAL);
3107 				mtx_lock(&sync_mtx);
3108 			}
3109 		}
3110 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3111 			syncer_final_iter--;
3112 		/*
3113 		 * The variable rushjob allows the kernel to speed up the
3114 		 * processing of the filesystem syncer process. A rushjob
3115 		 * value of N tells the filesystem syncer to process the next
3116 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3117 		 * is used by the soft update code to speed up the filesystem
3118 		 * syncer process when the incore state is getting so far
3119 		 * ahead of the disk that the kernel memory pool is being
3120 		 * threatened with exhaustion.
3121 		 */
3122 		if (rushjob > 0) {
3123 			rushjob -= 1;
3124 			continue;
3125 		}
3126 		/*
3127 		 * Just sleep for a short period of time between
3128 		 * iterations when shutting down to allow some I/O
3129 		 * to happen.
3130 		 *
3131 		 * If it has taken us less than a second to process the
3132 		 * current work, then wait. Otherwise start right over
3133 		 * again. We can still lose time if any single round
3134 		 * takes more than two seconds, but it does not really
3135 		 * matter as we are just trying to generally pace the
3136 		 * filesystem activity.
3137 		 */
3138 		if (syncer_state != SYNCER_RUNNING ||
3139 		    time_uptime == starttime) {
3140 			thread_lock(td);
3141 			sched_prio(td, PPAUSE);
3142 			thread_unlock(td);
3143 		}
3144 		if (syncer_state != SYNCER_RUNNING)
3145 			cv_timedwait(&sync_wakeup, &sync_mtx,
3146 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3147 		else if (time_uptime == starttime)
3148 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3149 	}
3150 }
3151 
3152 /*
3153  * Request the syncer daemon to speed up its work.
3154  * We never push it to speed up more than half of its
3155  * normal turn time, otherwise it could take over the cpu.
3156  */
3157 int
speedup_syncer(void)3158 speedup_syncer(void)
3159 {
3160 	int ret = 0;
3161 
3162 	mtx_lock(&sync_mtx);
3163 	if (rushjob < syncdelay / 2) {
3164 		rushjob += 1;
3165 		stat_rush_requests += 1;
3166 		ret = 1;
3167 	}
3168 	mtx_unlock(&sync_mtx);
3169 	cv_broadcast(&sync_wakeup);
3170 	return (ret);
3171 }
3172 
3173 /*
3174  * Tell the syncer to speed up its work and run though its work
3175  * list several times, then tell it to shut down.
3176  */
3177 static void
syncer_shutdown(void * arg,int howto)3178 syncer_shutdown(void *arg, int howto)
3179 {
3180 
3181 	if (howto & RB_NOSYNC)
3182 		return;
3183 	mtx_lock(&sync_mtx);
3184 	syncer_state = SYNCER_SHUTTING_DOWN;
3185 	rushjob = 0;
3186 	mtx_unlock(&sync_mtx);
3187 	cv_broadcast(&sync_wakeup);
3188 	kproc_shutdown(arg, howto);
3189 }
3190 
3191 void
syncer_suspend(void)3192 syncer_suspend(void)
3193 {
3194 
3195 	syncer_shutdown(updateproc, 0);
3196 }
3197 
3198 void
syncer_resume(void)3199 syncer_resume(void)
3200 {
3201 
3202 	mtx_lock(&sync_mtx);
3203 	first_printf = 1;
3204 	syncer_state = SYNCER_RUNNING;
3205 	mtx_unlock(&sync_mtx);
3206 	cv_broadcast(&sync_wakeup);
3207 	kproc_resume(updateproc);
3208 }
3209 
3210 /*
3211  * Move the buffer between the clean and dirty lists of its vnode.
3212  */
3213 void
reassignbuf(struct buf * bp)3214 reassignbuf(struct buf *bp)
3215 {
3216 	struct vnode *vp;
3217 	struct bufobj *bo;
3218 	int delay;
3219 #ifdef INVARIANTS
3220 	struct bufv *bv;
3221 #endif
3222 
3223 	vp = bp->b_vp;
3224 	bo = bp->b_bufobj;
3225 
3226 	KASSERT((bp->b_flags & B_PAGING) == 0,
3227 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3228 
3229 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3230 	    bp, bp->b_vp, bp->b_flags);
3231 
3232 	BO_LOCK(bo);
3233 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3234 		/*
3235 		 * Coordinate with getblk's unlocked lookup.  Make
3236 		 * BO_NONSTERILE visible before the first reassignbuf produces
3237 		 * any side effect.  This could be outside the bo lock if we
3238 		 * used a separate atomic flag field.
3239 		 */
3240 		bo->bo_flag |= BO_NONSTERILE;
3241 		atomic_thread_fence_rel();
3242 	}
3243 	buf_vlist_remove(bp);
3244 
3245 	/*
3246 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3247 	 * of clean buffers.
3248 	 */
3249 	if (bp->b_flags & B_DELWRI) {
3250 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3251 			switch (vp->v_type) {
3252 			case VDIR:
3253 				delay = dirdelay;
3254 				break;
3255 			case VCHR:
3256 				delay = metadelay;
3257 				break;
3258 			default:
3259 				delay = filedelay;
3260 			}
3261 			vn_syncer_add_to_worklist(bo, delay);
3262 		}
3263 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3264 	} else {
3265 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3266 
3267 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3268 			mtx_lock(&sync_mtx);
3269 			LIST_REMOVE(bo, bo_synclist);
3270 			syncer_worklist_len--;
3271 			mtx_unlock(&sync_mtx);
3272 			bo->bo_flag &= ~BO_ONWORKLST;
3273 		}
3274 	}
3275 #ifdef INVARIANTS
3276 	bv = &bo->bo_clean;
3277 	bp = TAILQ_FIRST(&bv->bv_hd);
3278 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3281 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3282 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3283 	bv = &bo->bo_dirty;
3284 	bp = TAILQ_FIRST(&bv->bv_hd);
3285 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3288 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3289 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3290 #endif
3291 	BO_UNLOCK(bo);
3292 }
3293 
3294 static void
v_init_counters(struct vnode * vp)3295 v_init_counters(struct vnode *vp)
3296 {
3297 
3298 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3299 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3300 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3301 
3302 	refcount_init(&vp->v_holdcnt, 1);
3303 	refcount_init(&vp->v_usecount, 1);
3304 }
3305 
3306 /*
3307  * Get a usecount on a vnode.
3308  *
3309  * vget and vget_finish may fail to lock the vnode if they lose a race against
3310  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3311  *
3312  * Consumers which don't guarantee liveness of the vnode can use SMR to
3313  * try to get a reference. Note this operation can fail since the vnode
3314  * may be awaiting getting freed by the time they get to it.
3315  */
3316 enum vgetstate
vget_prep_smr(struct vnode * vp)3317 vget_prep_smr(struct vnode *vp)
3318 {
3319 	enum vgetstate vs;
3320 
3321 	VFS_SMR_ASSERT_ENTERED();
3322 
3323 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 		vs = VGET_USECOUNT;
3325 	} else {
3326 		if (vhold_smr(vp))
3327 			vs = VGET_HOLDCNT;
3328 		else
3329 			vs = VGET_NONE;
3330 	}
3331 	return (vs);
3332 }
3333 
3334 enum vgetstate
vget_prep(struct vnode * vp)3335 vget_prep(struct vnode *vp)
3336 {
3337 	enum vgetstate vs;
3338 
3339 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3340 		vs = VGET_USECOUNT;
3341 	} else {
3342 		vhold(vp);
3343 		vs = VGET_HOLDCNT;
3344 	}
3345 	return (vs);
3346 }
3347 
3348 void
vget_abort(struct vnode * vp,enum vgetstate vs)3349 vget_abort(struct vnode *vp, enum vgetstate vs)
3350 {
3351 
3352 	switch (vs) {
3353 	case VGET_USECOUNT:
3354 		vrele(vp);
3355 		break;
3356 	case VGET_HOLDCNT:
3357 		vdrop(vp);
3358 		break;
3359 	default:
3360 		__assert_unreachable();
3361 	}
3362 }
3363 
3364 int
vget(struct vnode * vp,int flags)3365 vget(struct vnode *vp, int flags)
3366 {
3367 	enum vgetstate vs;
3368 
3369 	vs = vget_prep(vp);
3370 	return (vget_finish(vp, flags, vs));
3371 }
3372 
3373 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3374 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3375 {
3376 	int error;
3377 
3378 	if ((flags & LK_INTERLOCK) != 0)
3379 		ASSERT_VI_LOCKED(vp, __func__);
3380 	else
3381 		ASSERT_VI_UNLOCKED(vp, __func__);
3382 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3383 	VNPASS(vp->v_holdcnt > 0, vp);
3384 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3385 
3386 	error = vn_lock(vp, flags);
3387 	if (__predict_false(error != 0)) {
3388 		vget_abort(vp, vs);
3389 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3390 		    vp);
3391 		return (error);
3392 	}
3393 
3394 	vget_finish_ref(vp, vs);
3395 	return (0);
3396 }
3397 
3398 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3399 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3400 {
3401 	int old;
3402 
3403 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3404 	VNPASS(vp->v_holdcnt > 0, vp);
3405 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3406 
3407 	if (vs == VGET_USECOUNT)
3408 		return;
3409 
3410 	/*
3411 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3412 	 * the vnode around. Otherwise someone else lended their hold count and
3413 	 * we have to drop ours.
3414 	 */
3415 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3416 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3417 	if (old != 0) {
3418 #ifdef INVARIANTS
3419 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3420 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3421 #else
3422 		refcount_release(&vp->v_holdcnt);
3423 #endif
3424 	}
3425 }
3426 
3427 void
vref(struct vnode * vp)3428 vref(struct vnode *vp)
3429 {
3430 	enum vgetstate vs;
3431 
3432 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3433 	vs = vget_prep(vp);
3434 	vget_finish_ref(vp, vs);
3435 }
3436 
3437 void
vrefact(struct vnode * vp)3438 vrefact(struct vnode *vp)
3439 {
3440 	int old __diagused;
3441 
3442 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3443 	old = refcount_acquire(&vp->v_usecount);
3444 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3445 }
3446 
3447 void
vlazy(struct vnode * vp)3448 vlazy(struct vnode *vp)
3449 {
3450 	struct mount *mp;
3451 
3452 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3453 
3454 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3455 		return;
3456 	/*
3457 	 * We may get here for inactive routines after the vnode got doomed.
3458 	 */
3459 	if (VN_IS_DOOMED(vp))
3460 		return;
3461 	mp = vp->v_mount;
3462 	mtx_lock(&mp->mnt_listmtx);
3463 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3464 		vp->v_mflag |= VMP_LAZYLIST;
3465 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3466 		mp->mnt_lazyvnodelistsize++;
3467 	}
3468 	mtx_unlock(&mp->mnt_listmtx);
3469 }
3470 
3471 static void
vunlazy(struct vnode * vp)3472 vunlazy(struct vnode *vp)
3473 {
3474 	struct mount *mp;
3475 
3476 	ASSERT_VI_LOCKED(vp, __func__);
3477 	VNPASS(!VN_IS_DOOMED(vp), vp);
3478 
3479 	mp = vp->v_mount;
3480 	mtx_lock(&mp->mnt_listmtx);
3481 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3482 	/*
3483 	 * Don't remove the vnode from the lazy list if another thread
3484 	 * has increased the hold count. It may have re-enqueued the
3485 	 * vnode to the lazy list and is now responsible for its
3486 	 * removal.
3487 	 */
3488 	if (vp->v_holdcnt == 0) {
3489 		vp->v_mflag &= ~VMP_LAZYLIST;
3490 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3491 		mp->mnt_lazyvnodelistsize--;
3492 	}
3493 	mtx_unlock(&mp->mnt_listmtx);
3494 }
3495 
3496 /*
3497  * This routine is only meant to be called from vgonel prior to dooming
3498  * the vnode.
3499  */
3500 static void
vunlazy_gone(struct vnode * vp)3501 vunlazy_gone(struct vnode *vp)
3502 {
3503 	struct mount *mp;
3504 
3505 	ASSERT_VOP_ELOCKED(vp, __func__);
3506 	ASSERT_VI_LOCKED(vp, __func__);
3507 	VNPASS(!VN_IS_DOOMED(vp), vp);
3508 
3509 	if (vp->v_mflag & VMP_LAZYLIST) {
3510 		mp = vp->v_mount;
3511 		mtx_lock(&mp->mnt_listmtx);
3512 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3513 		vp->v_mflag &= ~VMP_LAZYLIST;
3514 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3515 		mp->mnt_lazyvnodelistsize--;
3516 		mtx_unlock(&mp->mnt_listmtx);
3517 	}
3518 }
3519 
3520 static void
vdefer_inactive(struct vnode * vp)3521 vdefer_inactive(struct vnode *vp)
3522 {
3523 
3524 	ASSERT_VI_LOCKED(vp, __func__);
3525 	VNPASS(vp->v_holdcnt > 0, vp);
3526 	if (VN_IS_DOOMED(vp)) {
3527 		vdropl(vp);
3528 		return;
3529 	}
3530 	if (vp->v_iflag & VI_DEFINACT) {
3531 		VNPASS(vp->v_holdcnt > 1, vp);
3532 		vdropl(vp);
3533 		return;
3534 	}
3535 	if (vp->v_usecount > 0) {
3536 		vp->v_iflag &= ~VI_OWEINACT;
3537 		vdropl(vp);
3538 		return;
3539 	}
3540 	vlazy(vp);
3541 	vp->v_iflag |= VI_DEFINACT;
3542 	VI_UNLOCK(vp);
3543 	atomic_add_long(&deferred_inact, 1);
3544 }
3545 
3546 static void
vdefer_inactive_unlocked(struct vnode * vp)3547 vdefer_inactive_unlocked(struct vnode *vp)
3548 {
3549 
3550 	VI_LOCK(vp);
3551 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3552 		vdropl(vp);
3553 		return;
3554 	}
3555 	vdefer_inactive(vp);
3556 }
3557 
3558 enum vput_op { VRELE, VPUT, VUNREF };
3559 
3560 /*
3561  * Handle ->v_usecount transitioning to 0.
3562  *
3563  * By releasing the last usecount we take ownership of the hold count which
3564  * provides liveness of the vnode, meaning we have to vdrop.
3565  *
3566  * For all vnodes we may need to perform inactive processing. It requires an
3567  * exclusive lock on the vnode, while it is legal to call here with only a
3568  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3569  * inactive processing gets deferred to the syncer.
3570  *
3571  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3572  * on the lock being held all the way until VOP_INACTIVE. This in particular
3573  * happens with UFS which adds half-constructed vnodes to the hash, where they
3574  * can be found by other code.
3575  */
3576 static void
vput_final(struct vnode * vp,enum vput_op func)3577 vput_final(struct vnode *vp, enum vput_op func)
3578 {
3579 	int error;
3580 	bool want_unlock;
3581 
3582 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3583 	VNPASS(vp->v_holdcnt > 0, vp);
3584 
3585 	VI_LOCK(vp);
3586 
3587 	/*
3588 	 * By the time we got here someone else might have transitioned
3589 	 * the count back to > 0.
3590 	 */
3591 	if (vp->v_usecount > 0)
3592 		goto out;
3593 
3594 	/*
3595 	 * If the vnode is doomed vgone already performed inactive processing
3596 	 * (if needed).
3597 	 */
3598 	if (VN_IS_DOOMED(vp))
3599 		goto out;
3600 
3601 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3602 		goto out;
3603 
3604 	if (vp->v_iflag & VI_DOINGINACT)
3605 		goto out;
3606 
3607 	/*
3608 	 * Locking operations here will drop the interlock and possibly the
3609 	 * vnode lock, opening a window where the vnode can get doomed all the
3610 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3611 	 * perform inactive.
3612 	 */
3613 	vp->v_iflag |= VI_OWEINACT;
3614 	want_unlock = false;
3615 	error = 0;
3616 	switch (func) {
3617 	case VRELE:
3618 		switch (VOP_ISLOCKED(vp)) {
3619 		case LK_EXCLUSIVE:
3620 			break;
3621 		case LK_EXCLOTHER:
3622 		case 0:
3623 			want_unlock = true;
3624 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3625 			VI_LOCK(vp);
3626 			break;
3627 		default:
3628 			/*
3629 			 * The lock has at least one sharer, but we have no way
3630 			 * to conclude whether this is us. Play it safe and
3631 			 * defer processing.
3632 			 */
3633 			error = EAGAIN;
3634 			break;
3635 		}
3636 		break;
3637 	case VPUT:
3638 		want_unlock = true;
3639 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3640 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3641 			    LK_NOWAIT);
3642 			VI_LOCK(vp);
3643 		}
3644 		break;
3645 	case VUNREF:
3646 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3647 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3648 			VI_LOCK(vp);
3649 		}
3650 		break;
3651 	}
3652 	if (error == 0) {
3653 		if (func == VUNREF) {
3654 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3655 			    ("recursive vunref"));
3656 			vp->v_vflag |= VV_UNREF;
3657 		}
3658 		for (;;) {
3659 			error = vinactive(vp);
3660 			if (want_unlock)
3661 				VOP_UNLOCK(vp);
3662 			if (error != ERELOOKUP || !want_unlock)
3663 				break;
3664 			VOP_LOCK(vp, LK_EXCLUSIVE);
3665 		}
3666 		if (func == VUNREF)
3667 			vp->v_vflag &= ~VV_UNREF;
3668 		vdropl(vp);
3669 	} else {
3670 		vdefer_inactive(vp);
3671 	}
3672 	return;
3673 out:
3674 	if (func == VPUT)
3675 		VOP_UNLOCK(vp);
3676 	vdropl(vp);
3677 }
3678 
3679 /*
3680  * Decrement ->v_usecount for a vnode.
3681  *
3682  * Releasing the last use count requires additional processing, see vput_final
3683  * above for details.
3684  *
3685  * Comment above each variant denotes lock state on entry and exit.
3686  */
3687 
3688 /*
3689  * in: any
3690  * out: same as passed in
3691  */
3692 void
vrele(struct vnode * vp)3693 vrele(struct vnode *vp)
3694 {
3695 
3696 	ASSERT_VI_UNLOCKED(vp, __func__);
3697 	if (!refcount_release(&vp->v_usecount))
3698 		return;
3699 	vput_final(vp, VRELE);
3700 }
3701 
3702 /*
3703  * in: locked
3704  * out: unlocked
3705  */
3706 void
vput(struct vnode * vp)3707 vput(struct vnode *vp)
3708 {
3709 
3710 	ASSERT_VOP_LOCKED(vp, __func__);
3711 	ASSERT_VI_UNLOCKED(vp, __func__);
3712 	if (!refcount_release(&vp->v_usecount)) {
3713 		VOP_UNLOCK(vp);
3714 		return;
3715 	}
3716 	vput_final(vp, VPUT);
3717 }
3718 
3719 /*
3720  * in: locked
3721  * out: locked
3722  */
3723 void
vunref(struct vnode * vp)3724 vunref(struct vnode *vp)
3725 {
3726 
3727 	ASSERT_VOP_LOCKED(vp, __func__);
3728 	ASSERT_VI_UNLOCKED(vp, __func__);
3729 	if (!refcount_release(&vp->v_usecount))
3730 		return;
3731 	vput_final(vp, VUNREF);
3732 }
3733 
3734 void
vhold(struct vnode * vp)3735 vhold(struct vnode *vp)
3736 {
3737 	int old;
3738 
3739 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3740 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3741 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3742 	    ("%s: wrong hold count %d", __func__, old));
3743 	if (old == 0)
3744 		vfs_freevnodes_dec();
3745 }
3746 
3747 void
vholdnz(struct vnode * vp)3748 vholdnz(struct vnode *vp)
3749 {
3750 
3751 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3752 #ifdef INVARIANTS
3753 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3754 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3755 	    ("%s: wrong hold count %d", __func__, old));
3756 #else
3757 	atomic_add_int(&vp->v_holdcnt, 1);
3758 #endif
3759 }
3760 
3761 /*
3762  * Grab a hold count unless the vnode is freed.
3763  *
3764  * Only use this routine if vfs smr is the only protection you have against
3765  * freeing the vnode.
3766  *
3767  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3768  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3769  * the thread which managed to set the flag.
3770  *
3771  * It may be tempting to replace the loop with:
3772  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3773  * if (count & VHOLD_NO_SMR) {
3774  *     backpedal and error out;
3775  * }
3776  *
3777  * However, while this is more performant, it hinders debugging by eliminating
3778  * the previously mentioned invariant.
3779  */
3780 bool
vhold_smr(struct vnode * vp)3781 vhold_smr(struct vnode *vp)
3782 {
3783 	int count;
3784 
3785 	VFS_SMR_ASSERT_ENTERED();
3786 
3787 	count = atomic_load_int(&vp->v_holdcnt);
3788 	for (;;) {
3789 		if (count & VHOLD_NO_SMR) {
3790 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3791 			    ("non-zero hold count with flags %d\n", count));
3792 			return (false);
3793 		}
3794 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3795 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3796 			if (count == 0)
3797 				vfs_freevnodes_dec();
3798 			return (true);
3799 		}
3800 	}
3801 }
3802 
3803 /*
3804  * Hold a free vnode for recycling.
3805  *
3806  * Note: vnode_init references this comment.
3807  *
3808  * Attempts to recycle only need the global vnode list lock and have no use for
3809  * SMR.
3810  *
3811  * However, vnodes get inserted into the global list before they get fully
3812  * initialized and stay there until UMA decides to free the memory. This in
3813  * particular means the target can be found before it becomes usable and after
3814  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3815  * VHOLD_NO_SMR.
3816  *
3817  * Note: the vnode may gain more references after we transition the count 0->1.
3818  */
3819 static bool
vhold_recycle_free(struct vnode * vp)3820 vhold_recycle_free(struct vnode *vp)
3821 {
3822 	int count;
3823 
3824 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3825 
3826 	count = atomic_load_int(&vp->v_holdcnt);
3827 	for (;;) {
3828 		if (count & VHOLD_NO_SMR) {
3829 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3830 			    ("non-zero hold count with flags %d\n", count));
3831 			return (false);
3832 		}
3833 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3834 		if (count > 0) {
3835 			return (false);
3836 		}
3837 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3838 			vfs_freevnodes_dec();
3839 			return (true);
3840 		}
3841 	}
3842 }
3843 
3844 static void __noinline
vdbatch_process(struct vdbatch * vd)3845 vdbatch_process(struct vdbatch *vd)
3846 {
3847 	struct vnode *vp;
3848 	int i;
3849 
3850 	mtx_assert(&vd->lock, MA_OWNED);
3851 	MPASS(curthread->td_pinned > 0);
3852 	MPASS(vd->index == VDBATCH_SIZE);
3853 
3854 	/*
3855 	 * Attempt to requeue the passed batch, but give up easily.
3856 	 *
3857 	 * Despite batching the mechanism is prone to transient *significant*
3858 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3859 	 * if multiple CPUs get here (one real-world example is highly parallel
3860 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3861 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3862 	 * option to just dodge the problem. Parties which don't like it are
3863 	 * welcome to implement something better.
3864 	 */
3865 	if (vnode_can_skip_requeue) {
3866 		if (!mtx_trylock(&vnode_list_mtx)) {
3867 			counter_u64_add(vnode_skipped_requeues, 1);
3868 			critical_enter();
3869 			for (i = 0; i < VDBATCH_SIZE; i++) {
3870 				vp = vd->tab[i];
3871 				vd->tab[i] = NULL;
3872 				MPASS(vp->v_dbatchcpu != NOCPU);
3873 				vp->v_dbatchcpu = NOCPU;
3874 			}
3875 			vd->index = 0;
3876 			critical_exit();
3877 			return;
3878 
3879 		}
3880 		/* fallthrough to locked processing */
3881 	} else {
3882 		mtx_lock(&vnode_list_mtx);
3883 	}
3884 
3885 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3886 	critical_enter();
3887 	for (i = 0; i < VDBATCH_SIZE; i++) {
3888 		vp = vd->tab[i];
3889 		vd->tab[i] = NULL;
3890 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3891 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3892 		MPASS(vp->v_dbatchcpu != NOCPU);
3893 		vp->v_dbatchcpu = NOCPU;
3894 	}
3895 	mtx_unlock(&vnode_list_mtx);
3896 	vd->index = 0;
3897 	critical_exit();
3898 }
3899 
3900 static void
vdbatch_enqueue(struct vnode * vp)3901 vdbatch_enqueue(struct vnode *vp)
3902 {
3903 	struct vdbatch *vd;
3904 
3905 	ASSERT_VI_LOCKED(vp, __func__);
3906 	VNPASS(!VN_IS_DOOMED(vp), vp);
3907 
3908 	if (vp->v_dbatchcpu != NOCPU) {
3909 		VI_UNLOCK(vp);
3910 		return;
3911 	}
3912 
3913 	sched_pin();
3914 	vd = DPCPU_PTR(vd);
3915 	mtx_lock(&vd->lock);
3916 	MPASS(vd->index < VDBATCH_SIZE);
3917 	MPASS(vd->tab[vd->index] == NULL);
3918 	/*
3919 	 * A hack: we depend on being pinned so that we know what to put in
3920 	 * ->v_dbatchcpu.
3921 	 */
3922 	vp->v_dbatchcpu = curcpu;
3923 	vd->tab[vd->index] = vp;
3924 	vd->index++;
3925 	VI_UNLOCK(vp);
3926 	if (vd->index == VDBATCH_SIZE)
3927 		vdbatch_process(vd);
3928 	mtx_unlock(&vd->lock);
3929 	sched_unpin();
3930 }
3931 
3932 /*
3933  * This routine must only be called for vnodes which are about to be
3934  * deallocated. Supporting dequeue for arbitrary vndoes would require
3935  * validating that the locked batch matches.
3936  */
3937 static void
vdbatch_dequeue(struct vnode * vp)3938 vdbatch_dequeue(struct vnode *vp)
3939 {
3940 	struct vdbatch *vd;
3941 	int i;
3942 	short cpu;
3943 
3944 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3945 
3946 	cpu = vp->v_dbatchcpu;
3947 	if (cpu == NOCPU)
3948 		return;
3949 
3950 	vd = DPCPU_ID_PTR(cpu, vd);
3951 	mtx_lock(&vd->lock);
3952 	for (i = 0; i < vd->index; i++) {
3953 		if (vd->tab[i] != vp)
3954 			continue;
3955 		vp->v_dbatchcpu = NOCPU;
3956 		vd->index--;
3957 		vd->tab[i] = vd->tab[vd->index];
3958 		vd->tab[vd->index] = NULL;
3959 		break;
3960 	}
3961 	mtx_unlock(&vd->lock);
3962 	/*
3963 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3964 	 */
3965 	MPASS(vp->v_dbatchcpu == NOCPU);
3966 }
3967 
3968 /*
3969  * Drop the hold count of the vnode.
3970  *
3971  * It will only get freed if this is the last hold *and* it has been vgone'd.
3972  *
3973  * Because the vnode vm object keeps a hold reference on the vnode if
3974  * there is at least one resident non-cached page, the vnode cannot
3975  * leave the active list without the page cleanup done.
3976  */
3977 static void __noinline
vdropl_final(struct vnode * vp)3978 vdropl_final(struct vnode *vp)
3979 {
3980 
3981 	ASSERT_VI_LOCKED(vp, __func__);
3982 	VNPASS(VN_IS_DOOMED(vp), vp);
3983 	/*
3984 	 * Set the VHOLD_NO_SMR flag.
3985 	 *
3986 	 * We may be racing against vhold_smr. If they win we can just pretend
3987 	 * we never got this far, they will vdrop later.
3988 	 */
3989 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3990 		vfs_freevnodes_inc();
3991 		VI_UNLOCK(vp);
3992 		/*
3993 		 * We lost the aforementioned race. Any subsequent access is
3994 		 * invalid as they might have managed to vdropl on their own.
3995 		 */
3996 		return;
3997 	}
3998 	/*
3999 	 * Don't bump freevnodes as this one is going away.
4000 	 */
4001 	freevnode(vp);
4002 }
4003 
4004 void
vdrop(struct vnode * vp)4005 vdrop(struct vnode *vp)
4006 {
4007 
4008 	ASSERT_VI_UNLOCKED(vp, __func__);
4009 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4010 	if (refcount_release_if_not_last(&vp->v_holdcnt))
4011 		return;
4012 	VI_LOCK(vp);
4013 	vdropl(vp);
4014 }
4015 
4016 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4017 vdropl_impl(struct vnode *vp, bool enqueue)
4018 {
4019 
4020 	ASSERT_VI_LOCKED(vp, __func__);
4021 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4022 	if (!refcount_release(&vp->v_holdcnt)) {
4023 		VI_UNLOCK(vp);
4024 		return;
4025 	}
4026 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4027 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4028 	if (VN_IS_DOOMED(vp)) {
4029 		vdropl_final(vp);
4030 		return;
4031 	}
4032 
4033 	vfs_freevnodes_inc();
4034 	if (vp->v_mflag & VMP_LAZYLIST) {
4035 		vunlazy(vp);
4036 	}
4037 
4038 	if (!enqueue) {
4039 		VI_UNLOCK(vp);
4040 		return;
4041 	}
4042 
4043 	/*
4044 	 * Also unlocks the interlock. We can't assert on it as we
4045 	 * released our hold and by now the vnode might have been
4046 	 * freed.
4047 	 */
4048 	vdbatch_enqueue(vp);
4049 }
4050 
4051 void
vdropl(struct vnode * vp)4052 vdropl(struct vnode *vp)
4053 {
4054 
4055 	vdropl_impl(vp, true);
4056 }
4057 
4058 /*
4059  * vdrop a vnode when recycling
4060  *
4061  * This is a special case routine only to be used when recycling, differs from
4062  * regular vdrop by not requeieing the vnode on LRU.
4063  *
4064  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4065  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4066  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4067  * loop which can last for as long as writes are frozen.
4068  */
4069 static void
vdropl_recycle(struct vnode * vp)4070 vdropl_recycle(struct vnode *vp)
4071 {
4072 
4073 	vdropl_impl(vp, false);
4074 }
4075 
4076 static void
vdrop_recycle(struct vnode * vp)4077 vdrop_recycle(struct vnode *vp)
4078 {
4079 
4080 	VI_LOCK(vp);
4081 	vdropl_recycle(vp);
4082 }
4083 
4084 /*
4085  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4086  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4087  */
4088 static int
vinactivef(struct vnode * vp)4089 vinactivef(struct vnode *vp)
4090 {
4091 	int error;
4092 
4093 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4094 	ASSERT_VI_LOCKED(vp, "vinactive");
4095 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4096 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4097 	vp->v_iflag |= VI_DOINGINACT;
4098 	vp->v_iflag &= ~VI_OWEINACT;
4099 	VI_UNLOCK(vp);
4100 
4101 	/*
4102 	 * Before moving off the active list, we must be sure that any
4103 	 * modified pages are converted into the vnode's dirty
4104 	 * buffers, since these will no longer be checked once the
4105 	 * vnode is on the inactive list.
4106 	 *
4107 	 * The write-out of the dirty pages is asynchronous.  At the
4108 	 * point that VOP_INACTIVE() is called, there could still be
4109 	 * pending I/O and dirty pages in the object.
4110 	 */
4111 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4112 		vnode_pager_clean_async(vp);
4113 
4114 	error = VOP_INACTIVE(vp);
4115 	VI_LOCK(vp);
4116 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4117 	vp->v_iflag &= ~VI_DOINGINACT;
4118 	return (error);
4119 }
4120 
4121 int
vinactive(struct vnode * vp)4122 vinactive(struct vnode *vp)
4123 {
4124 
4125 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4126 	ASSERT_VI_LOCKED(vp, "vinactive");
4127 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4128 
4129 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4130 		return (0);
4131 	if (vp->v_iflag & VI_DOINGINACT)
4132 		return (0);
4133 	if (vp->v_usecount > 0) {
4134 		vp->v_iflag &= ~VI_OWEINACT;
4135 		return (0);
4136 	}
4137 	return (vinactivef(vp));
4138 }
4139 
4140 /*
4141  * Remove any vnodes in the vnode table belonging to mount point mp.
4142  *
4143  * If FORCECLOSE is not specified, there should not be any active ones,
4144  * return error if any are found (nb: this is a user error, not a
4145  * system error). If FORCECLOSE is specified, detach any active vnodes
4146  * that are found.
4147  *
4148  * If WRITECLOSE is set, only flush out regular file vnodes open for
4149  * writing.
4150  *
4151  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4152  *
4153  * `rootrefs' specifies the base reference count for the root vnode
4154  * of this filesystem. The root vnode is considered busy if its
4155  * v_usecount exceeds this value. On a successful return, vflush(, td)
4156  * will call vrele() on the root vnode exactly rootrefs times.
4157  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4158  * be zero.
4159  */
4160 #ifdef DIAGNOSTIC
4161 static int busyprt = 0;		/* print out busy vnodes */
4162 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4163 #endif
4164 
4165 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4166 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4167 {
4168 	struct vnode *vp, *mvp, *rootvp = NULL;
4169 	struct vattr vattr;
4170 	int busy = 0, error;
4171 
4172 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4173 	    rootrefs, flags);
4174 	if (rootrefs > 0) {
4175 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4176 		    ("vflush: bad args"));
4177 		/*
4178 		 * Get the filesystem root vnode. We can vput() it
4179 		 * immediately, since with rootrefs > 0, it won't go away.
4180 		 */
4181 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4182 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4183 			    __func__, error);
4184 			return (error);
4185 		}
4186 		vput(rootvp);
4187 	}
4188 loop:
4189 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4190 		vholdl(vp);
4191 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4192 		if (error) {
4193 			vdrop(vp);
4194 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4195 			goto loop;
4196 		}
4197 		/*
4198 		 * Skip over a vnodes marked VV_SYSTEM.
4199 		 */
4200 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4201 			VOP_UNLOCK(vp);
4202 			vdrop(vp);
4203 			continue;
4204 		}
4205 		/*
4206 		 * If WRITECLOSE is set, flush out unlinked but still open
4207 		 * files (even if open only for reading) and regular file
4208 		 * vnodes open for writing.
4209 		 */
4210 		if (flags & WRITECLOSE) {
4211 			vnode_pager_clean_async(vp);
4212 			do {
4213 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4214 			} while (error == ERELOOKUP);
4215 			if (error != 0) {
4216 				VOP_UNLOCK(vp);
4217 				vdrop(vp);
4218 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4219 				return (error);
4220 			}
4221 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4222 			VI_LOCK(vp);
4223 
4224 			if ((vp->v_type == VNON ||
4225 			    (error == 0 && vattr.va_nlink > 0)) &&
4226 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4227 				VOP_UNLOCK(vp);
4228 				vdropl(vp);
4229 				continue;
4230 			}
4231 		} else
4232 			VI_LOCK(vp);
4233 		/*
4234 		 * With v_usecount == 0, all we need to do is clear out the
4235 		 * vnode data structures and we are done.
4236 		 *
4237 		 * If FORCECLOSE is set, forcibly close the vnode.
4238 		 */
4239 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4240 			vgonel(vp);
4241 		} else {
4242 			busy++;
4243 #ifdef DIAGNOSTIC
4244 			if (busyprt)
4245 				vn_printf(vp, "vflush: busy vnode ");
4246 #endif
4247 		}
4248 		VOP_UNLOCK(vp);
4249 		vdropl(vp);
4250 	}
4251 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4252 		/*
4253 		 * If just the root vnode is busy, and if its refcount
4254 		 * is equal to `rootrefs', then go ahead and kill it.
4255 		 */
4256 		VI_LOCK(rootvp);
4257 		KASSERT(busy > 0, ("vflush: not busy"));
4258 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4259 		    ("vflush: usecount %d < rootrefs %d",
4260 		     rootvp->v_usecount, rootrefs));
4261 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4262 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4263 			vgone(rootvp);
4264 			VOP_UNLOCK(rootvp);
4265 			busy = 0;
4266 		} else
4267 			VI_UNLOCK(rootvp);
4268 	}
4269 	if (busy) {
4270 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4271 		    busy);
4272 		return (EBUSY);
4273 	}
4274 	for (; rootrefs > 0; rootrefs--)
4275 		vrele(rootvp);
4276 	return (0);
4277 }
4278 
4279 /*
4280  * Recycle an unused vnode.
4281  */
4282 int
vrecycle(struct vnode * vp)4283 vrecycle(struct vnode *vp)
4284 {
4285 	int recycled;
4286 
4287 	VI_LOCK(vp);
4288 	recycled = vrecyclel(vp);
4289 	VI_UNLOCK(vp);
4290 	return (recycled);
4291 }
4292 
4293 /*
4294  * vrecycle, with the vp interlock held.
4295  */
4296 int
vrecyclel(struct vnode * vp)4297 vrecyclel(struct vnode *vp)
4298 {
4299 	int recycled;
4300 
4301 	ASSERT_VOP_ELOCKED(vp, __func__);
4302 	ASSERT_VI_LOCKED(vp, __func__);
4303 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4304 	recycled = 0;
4305 	if (vp->v_usecount == 0) {
4306 		recycled = 1;
4307 		vgonel(vp);
4308 	}
4309 	return (recycled);
4310 }
4311 
4312 /*
4313  * Eliminate all activity associated with a vnode
4314  * in preparation for reuse.
4315  */
4316 void
vgone(struct vnode * vp)4317 vgone(struct vnode *vp)
4318 {
4319 	VI_LOCK(vp);
4320 	vgonel(vp);
4321 	VI_UNLOCK(vp);
4322 }
4323 
4324 /*
4325  * Notify upper mounts about reclaimed or unlinked vnode.
4326  */
4327 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4328 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4329 {
4330 	struct mount *mp;
4331 	struct mount_upper_node *ump;
4332 
4333 	mp = atomic_load_ptr(&vp->v_mount);
4334 	if (mp == NULL)
4335 		return;
4336 	if (TAILQ_EMPTY(&mp->mnt_notify))
4337 		return;
4338 
4339 	MNT_ILOCK(mp);
4340 	mp->mnt_upper_pending++;
4341 	KASSERT(mp->mnt_upper_pending > 0,
4342 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4343 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4344 		MNT_IUNLOCK(mp);
4345 		switch (event) {
4346 		case VFS_NOTIFY_UPPER_RECLAIM:
4347 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4348 			break;
4349 		case VFS_NOTIFY_UPPER_UNLINK:
4350 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4351 			break;
4352 		}
4353 		MNT_ILOCK(mp);
4354 	}
4355 	mp->mnt_upper_pending--;
4356 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4357 	    mp->mnt_upper_pending == 0) {
4358 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4359 		wakeup(&mp->mnt_uppers);
4360 	}
4361 	MNT_IUNLOCK(mp);
4362 }
4363 
4364 /*
4365  * vgone, with the vp interlock held.
4366  */
4367 static void
vgonel(struct vnode * vp)4368 vgonel(struct vnode *vp)
4369 {
4370 	struct thread *td;
4371 	struct mount *mp;
4372 	vm_object_t object;
4373 	bool active, doinginact, oweinact;
4374 
4375 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4376 	ASSERT_VI_LOCKED(vp, "vgonel");
4377 	VNASSERT(vp->v_holdcnt, vp,
4378 	    ("vgonel: vp %p has no reference.", vp));
4379 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4380 	td = curthread;
4381 
4382 	/*
4383 	 * Don't vgonel if we're already doomed.
4384 	 */
4385 	if (VN_IS_DOOMED(vp)) {
4386 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4387 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4388 		return;
4389 	}
4390 	/*
4391 	 * Paired with freevnode.
4392 	 */
4393 	vn_seqc_write_begin_locked(vp);
4394 	vunlazy_gone(vp);
4395 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4396 	vn_set_state(vp, VSTATE_DESTROYING);
4397 
4398 	/*
4399 	 * Check to see if the vnode is in use.  If so, we have to
4400 	 * call VOP_CLOSE() and VOP_INACTIVE().
4401 	 *
4402 	 * It could be that VOP_INACTIVE() requested reclamation, in
4403 	 * which case we should avoid recursion, so check
4404 	 * VI_DOINGINACT.  This is not precise but good enough.
4405 	 */
4406 	active = vp->v_usecount > 0;
4407 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4408 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4409 
4410 	/*
4411 	 * If we need to do inactive VI_OWEINACT will be set.
4412 	 */
4413 	if (vp->v_iflag & VI_DEFINACT) {
4414 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4415 		vp->v_iflag &= ~VI_DEFINACT;
4416 		vdropl(vp);
4417 	} else {
4418 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4419 		VI_UNLOCK(vp);
4420 	}
4421 	cache_purge_vgone(vp);
4422 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4423 
4424 	/*
4425 	 * If purging an active vnode, it must be closed and
4426 	 * deactivated before being reclaimed.
4427 	 */
4428 	if (active)
4429 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4430 	if (!doinginact) {
4431 		do {
4432 			if (oweinact || active) {
4433 				VI_LOCK(vp);
4434 				vinactivef(vp);
4435 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4436 				VI_UNLOCK(vp);
4437 			}
4438 		} while (oweinact);
4439 	}
4440 	if (vp->v_type == VSOCK)
4441 		vfs_unp_reclaim(vp);
4442 
4443 	/*
4444 	 * Clean out any buffers associated with the vnode.
4445 	 * If the flush fails, just toss the buffers.
4446 	 */
4447 	mp = NULL;
4448 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4449 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4450 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4451 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4452 			;
4453 	}
4454 
4455 	BO_LOCK(&vp->v_bufobj);
4456 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4457 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4458 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4459 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4460 	    ("vp %p bufobj not invalidated", vp));
4461 
4462 	/*
4463 	 * For VMIO bufobj, BO_DEAD is set later, or in
4464 	 * vm_object_terminate() after the object's page queue is
4465 	 * flushed.
4466 	 */
4467 	object = vp->v_bufobj.bo_object;
4468 	if (object == NULL)
4469 		vp->v_bufobj.bo_flag |= BO_DEAD;
4470 	BO_UNLOCK(&vp->v_bufobj);
4471 
4472 	/*
4473 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4474 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4475 	 * should not touch the object borrowed from the lower vnode
4476 	 * (the handle check).
4477 	 */
4478 	if (object != NULL && object->type == OBJT_VNODE &&
4479 	    object->handle == vp)
4480 		vnode_destroy_vobject(vp);
4481 
4482 	/*
4483 	 * Reclaim the vnode.
4484 	 */
4485 	if (VOP_RECLAIM(vp))
4486 		panic("vgone: cannot reclaim");
4487 	if (mp != NULL)
4488 		vn_finished_secondary_write(mp);
4489 	VNASSERT(vp->v_object == NULL, vp,
4490 	    ("vop_reclaim left v_object vp=%p", vp));
4491 	/*
4492 	 * Clear the advisory locks and wake up waiting threads.
4493 	 */
4494 	if (vp->v_lockf != NULL) {
4495 		(void)VOP_ADVLOCKPURGE(vp);
4496 		vp->v_lockf = NULL;
4497 	}
4498 	/*
4499 	 * Delete from old mount point vnode list.
4500 	 */
4501 	if (vp->v_mount == NULL) {
4502 		VI_LOCK(vp);
4503 	} else {
4504 		delmntque(vp);
4505 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4506 	}
4507 	/*
4508 	 * Done with purge, reset to the standard lock and invalidate
4509 	 * the vnode.
4510 	 */
4511 	vp->v_vnlock = &vp->v_lock;
4512 	vp->v_op = &dead_vnodeops;
4513 	vp->v_type = VBAD;
4514 	vn_set_state(vp, VSTATE_DEAD);
4515 }
4516 
4517 /*
4518  * Print out a description of a vnode.
4519  */
4520 static const char *const vtypename[] = {
4521 	[VNON] = "VNON",
4522 	[VREG] = "VREG",
4523 	[VDIR] = "VDIR",
4524 	[VBLK] = "VBLK",
4525 	[VCHR] = "VCHR",
4526 	[VLNK] = "VLNK",
4527 	[VSOCK] = "VSOCK",
4528 	[VFIFO] = "VFIFO",
4529 	[VBAD] = "VBAD",
4530 	[VMARKER] = "VMARKER",
4531 };
4532 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4533     "vnode type name not added to vtypename");
4534 
4535 static const char *const vstatename[] = {
4536 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4537 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4538 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4539 	[VSTATE_DEAD] = "VSTATE_DEAD",
4540 };
4541 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4542     "vnode state name not added to vstatename");
4543 
4544 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4545     "new hold count flag not added to vn_printf");
4546 
4547 void
vn_printf(struct vnode * vp,const char * fmt,...)4548 vn_printf(struct vnode *vp, const char *fmt, ...)
4549 {
4550 	va_list ap;
4551 	char buf[256], buf2[16];
4552 	u_long flags;
4553 	u_int holdcnt;
4554 	short irflag;
4555 
4556 	va_start(ap, fmt);
4557 	vprintf(fmt, ap);
4558 	va_end(ap);
4559 	printf("%p: ", (void *)vp);
4560 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4561 	    vstatename[vp->v_state], vp->v_op);
4562 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4563 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4564 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4565 	    vp->v_seqc_users);
4566 	switch (vp->v_type) {
4567 	case VDIR:
4568 		printf(" mountedhere %p\n", vp->v_mountedhere);
4569 		break;
4570 	case VCHR:
4571 		printf(" rdev %p\n", vp->v_rdev);
4572 		break;
4573 	case VSOCK:
4574 		printf(" socket %p\n", vp->v_unpcb);
4575 		break;
4576 	case VFIFO:
4577 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4578 		break;
4579 	default:
4580 		printf("\n");
4581 		break;
4582 	}
4583 	buf[0] = '\0';
4584 	buf[1] = '\0';
4585 	if (holdcnt & VHOLD_NO_SMR)
4586 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4587 	printf("    hold count flags (%s)\n", buf + 1);
4588 
4589 	buf[0] = '\0';
4590 	buf[1] = '\0';
4591 	irflag = vn_irflag_read(vp);
4592 	if (irflag & VIRF_DOOMED)
4593 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4594 	if (irflag & VIRF_PGREAD)
4595 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4596 	if (irflag & VIRF_MOUNTPOINT)
4597 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4598 	if (irflag & VIRF_TEXT_REF)
4599 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4600 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4601 	if (flags != 0) {
4602 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4603 		strlcat(buf, buf2, sizeof(buf));
4604 	}
4605 	if (vp->v_vflag & VV_ROOT)
4606 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4607 	if (vp->v_vflag & VV_ISTTY)
4608 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4609 	if (vp->v_vflag & VV_NOSYNC)
4610 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4611 	if (vp->v_vflag & VV_ETERNALDEV)
4612 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4613 	if (vp->v_vflag & VV_CACHEDLABEL)
4614 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4615 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4616 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4617 	if (vp->v_vflag & VV_COPYONWRITE)
4618 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4619 	if (vp->v_vflag & VV_SYSTEM)
4620 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4621 	if (vp->v_vflag & VV_PROCDEP)
4622 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4623 	if (vp->v_vflag & VV_DELETED)
4624 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4625 	if (vp->v_vflag & VV_MD)
4626 		strlcat(buf, "|VV_MD", sizeof(buf));
4627 	if (vp->v_vflag & VV_FORCEINSMQ)
4628 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4629 	if (vp->v_vflag & VV_READLINK)
4630 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4631 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4632 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4633 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4634 	if (flags != 0) {
4635 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4636 		strlcat(buf, buf2, sizeof(buf));
4637 	}
4638 	if (vp->v_iflag & VI_MOUNT)
4639 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4640 	if (vp->v_iflag & VI_DOINGINACT)
4641 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4642 	if (vp->v_iflag & VI_OWEINACT)
4643 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4644 	if (vp->v_iflag & VI_DEFINACT)
4645 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4646 	if (vp->v_iflag & VI_FOPENING)
4647 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4648 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4649 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4650 	if (flags != 0) {
4651 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4652 		strlcat(buf, buf2, sizeof(buf));
4653 	}
4654 	if (vp->v_mflag & VMP_LAZYLIST)
4655 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4656 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4657 	if (flags != 0) {
4658 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4659 		strlcat(buf, buf2, sizeof(buf));
4660 	}
4661 	printf("    flags (%s)", buf + 1);
4662 	if (mtx_owned(VI_MTX(vp)))
4663 		printf(" VI_LOCKed");
4664 	printf("\n");
4665 	if (vp->v_object != NULL)
4666 		printf("    v_object %p ref %d pages %d "
4667 		    "cleanbuf %d dirtybuf %d\n",
4668 		    vp->v_object, vp->v_object->ref_count,
4669 		    vp->v_object->resident_page_count,
4670 		    vp->v_bufobj.bo_clean.bv_cnt,
4671 		    vp->v_bufobj.bo_dirty.bv_cnt);
4672 	printf("    ");
4673 	lockmgr_printinfo(vp->v_vnlock);
4674 	if (vp->v_data != NULL)
4675 		VOP_PRINT(vp);
4676 }
4677 
4678 #ifdef DDB
4679 /*
4680  * List all of the locked vnodes in the system.
4681  * Called when debugging the kernel.
4682  */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4683 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4684 {
4685 	struct mount *mp;
4686 	struct vnode *vp;
4687 
4688 	/*
4689 	 * Note: because this is DDB, we can't obey the locking semantics
4690 	 * for these structures, which means we could catch an inconsistent
4691 	 * state and dereference a nasty pointer.  Not much to be done
4692 	 * about that.
4693 	 */
4694 	db_printf("Locked vnodes\n");
4695 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4696 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4697 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4698 				vn_printf(vp, "vnode ");
4699 		}
4700 	}
4701 }
4702 
4703 /*
4704  * Show details about the given vnode.
4705  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4706 DB_SHOW_COMMAND(vnode, db_show_vnode)
4707 {
4708 	struct vnode *vp;
4709 
4710 	if (!have_addr)
4711 		return;
4712 	vp = (struct vnode *)addr;
4713 	vn_printf(vp, "vnode ");
4714 }
4715 
4716 /*
4717  * Show details about the given mount point.
4718  */
DB_SHOW_COMMAND(mount,db_show_mount)4719 DB_SHOW_COMMAND(mount, db_show_mount)
4720 {
4721 	struct mount *mp;
4722 	struct vfsopt *opt;
4723 	struct statfs *sp;
4724 	struct vnode *vp;
4725 	char buf[512];
4726 	uint64_t mflags;
4727 	u_int flags;
4728 
4729 	if (!have_addr) {
4730 		/* No address given, print short info about all mount points. */
4731 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4732 			db_printf("%p %s on %s (%s)\n", mp,
4733 			    mp->mnt_stat.f_mntfromname,
4734 			    mp->mnt_stat.f_mntonname,
4735 			    mp->mnt_stat.f_fstypename);
4736 			if (db_pager_quit)
4737 				break;
4738 		}
4739 		db_printf("\nMore info: show mount <addr>\n");
4740 		return;
4741 	}
4742 
4743 	mp = (struct mount *)addr;
4744 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4745 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4746 
4747 	buf[0] = '\0';
4748 	mflags = mp->mnt_flag;
4749 #define	MNT_FLAG(flag)	do {						\
4750 	if (mflags & (flag)) {						\
4751 		if (buf[0] != '\0')					\
4752 			strlcat(buf, ", ", sizeof(buf));		\
4753 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4754 		mflags &= ~(flag);					\
4755 	}								\
4756 } while (0)
4757 	MNT_FLAG(MNT_RDONLY);
4758 	MNT_FLAG(MNT_SYNCHRONOUS);
4759 	MNT_FLAG(MNT_NOEXEC);
4760 	MNT_FLAG(MNT_NOSUID);
4761 	MNT_FLAG(MNT_NFS4ACLS);
4762 	MNT_FLAG(MNT_UNION);
4763 	MNT_FLAG(MNT_ASYNC);
4764 	MNT_FLAG(MNT_SUIDDIR);
4765 	MNT_FLAG(MNT_SOFTDEP);
4766 	MNT_FLAG(MNT_NOSYMFOLLOW);
4767 	MNT_FLAG(MNT_GJOURNAL);
4768 	MNT_FLAG(MNT_MULTILABEL);
4769 	MNT_FLAG(MNT_ACLS);
4770 	MNT_FLAG(MNT_NOATIME);
4771 	MNT_FLAG(MNT_NOCLUSTERR);
4772 	MNT_FLAG(MNT_NOCLUSTERW);
4773 	MNT_FLAG(MNT_SUJ);
4774 	MNT_FLAG(MNT_EXRDONLY);
4775 	MNT_FLAG(MNT_EXPORTED);
4776 	MNT_FLAG(MNT_DEFEXPORTED);
4777 	MNT_FLAG(MNT_EXPORTANON);
4778 	MNT_FLAG(MNT_EXKERB);
4779 	MNT_FLAG(MNT_EXPUBLIC);
4780 	MNT_FLAG(MNT_LOCAL);
4781 	MNT_FLAG(MNT_QUOTA);
4782 	MNT_FLAG(MNT_ROOTFS);
4783 	MNT_FLAG(MNT_USER);
4784 	MNT_FLAG(MNT_IGNORE);
4785 	MNT_FLAG(MNT_UPDATE);
4786 	MNT_FLAG(MNT_DELEXPORT);
4787 	MNT_FLAG(MNT_RELOAD);
4788 	MNT_FLAG(MNT_FORCE);
4789 	MNT_FLAG(MNT_SNAPSHOT);
4790 	MNT_FLAG(MNT_BYFSID);
4791 	MNT_FLAG(MNT_NAMEDATTR);
4792 #undef MNT_FLAG
4793 	if (mflags != 0) {
4794 		if (buf[0] != '\0')
4795 			strlcat(buf, ", ", sizeof(buf));
4796 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4797 		    "0x%016jx", mflags);
4798 	}
4799 	db_printf("    mnt_flag = %s\n", buf);
4800 
4801 	buf[0] = '\0';
4802 	flags = mp->mnt_kern_flag;
4803 #define	MNT_KERN_FLAG(flag)	do {					\
4804 	if (flags & (flag)) {						\
4805 		if (buf[0] != '\0')					\
4806 			strlcat(buf, ", ", sizeof(buf));		\
4807 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4808 		flags &= ~(flag);					\
4809 	}								\
4810 } while (0)
4811 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4812 	MNT_KERN_FLAG(MNTK_ASYNC);
4813 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4814 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4815 	MNT_KERN_FLAG(MNTK_DRAINING);
4816 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4817 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4818 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4819 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4820 	MNT_KERN_FLAG(MNTK_RECURSE);
4821 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4822 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4823 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4824 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4825 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4826 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4827 	MNT_KERN_FLAG(MNTK_NOASYNC);
4828 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4829 	MNT_KERN_FLAG(MNTK_MWAIT);
4830 	MNT_KERN_FLAG(MNTK_SUSPEND);
4831 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4832 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4833 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4834 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4835 #undef MNT_KERN_FLAG
4836 	if (flags != 0) {
4837 		if (buf[0] != '\0')
4838 			strlcat(buf, ", ", sizeof(buf));
4839 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4840 		    "0x%08x", flags);
4841 	}
4842 	db_printf("    mnt_kern_flag = %s\n", buf);
4843 
4844 	db_printf("    mnt_opt = ");
4845 	opt = TAILQ_FIRST(mp->mnt_opt);
4846 	if (opt != NULL) {
4847 		db_printf("%s", opt->name);
4848 		opt = TAILQ_NEXT(opt, link);
4849 		while (opt != NULL) {
4850 			db_printf(", %s", opt->name);
4851 			opt = TAILQ_NEXT(opt, link);
4852 		}
4853 	}
4854 	db_printf("\n");
4855 
4856 	sp = &mp->mnt_stat;
4857 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4858 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4859 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4860 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4861 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4862 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4863 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4864 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4865 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4866 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4867 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4868 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4869 
4870 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4871 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4872 	if (jailed(mp->mnt_cred))
4873 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4874 	db_printf(" }\n");
4875 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4876 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4877 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4878 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4879 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4880 	    mp->mnt_lazyvnodelistsize);
4881 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4882 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4883 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4884 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4885 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4886 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4887 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4888 	db_printf("    mnt_secondary_accwrites = %d\n",
4889 	    mp->mnt_secondary_accwrites);
4890 	db_printf("    mnt_gjprovider = %s\n",
4891 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4892 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4893 
4894 	db_printf("\n\nList of active vnodes\n");
4895 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4896 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4897 			vn_printf(vp, "vnode ");
4898 			if (db_pager_quit)
4899 				break;
4900 		}
4901 	}
4902 	db_printf("\n\nList of inactive vnodes\n");
4903 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4904 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4905 			vn_printf(vp, "vnode ");
4906 			if (db_pager_quit)
4907 				break;
4908 		}
4909 	}
4910 }
4911 #endif	/* DDB */
4912 
4913 /*
4914  * Fill in a struct xvfsconf based on a struct vfsconf.
4915  */
4916 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4917 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4918 {
4919 	struct xvfsconf xvfsp;
4920 
4921 	bzero(&xvfsp, sizeof(xvfsp));
4922 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4923 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4924 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4925 	xvfsp.vfc_flags = vfsp->vfc_flags;
4926 	/*
4927 	 * These are unused in userland, we keep them
4928 	 * to not break binary compatibility.
4929 	 */
4930 	xvfsp.vfc_vfsops = NULL;
4931 	xvfsp.vfc_next = NULL;
4932 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4933 }
4934 
4935 #ifdef COMPAT_FREEBSD32
4936 struct xvfsconf32 {
4937 	uint32_t	vfc_vfsops;
4938 	char		vfc_name[MFSNAMELEN];
4939 	int32_t		vfc_typenum;
4940 	int32_t		vfc_refcount;
4941 	int32_t		vfc_flags;
4942 	uint32_t	vfc_next;
4943 };
4944 
4945 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4946 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4947 {
4948 	struct xvfsconf32 xvfsp;
4949 
4950 	bzero(&xvfsp, sizeof(xvfsp));
4951 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4952 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4953 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4954 	xvfsp.vfc_flags = vfsp->vfc_flags;
4955 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4956 }
4957 #endif
4958 
4959 /*
4960  * Top level filesystem related information gathering.
4961  */
4962 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4963 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4964 {
4965 	struct vfsconf *vfsp;
4966 	int error;
4967 
4968 	error = 0;
4969 	vfsconf_slock();
4970 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4971 #ifdef COMPAT_FREEBSD32
4972 		if (req->flags & SCTL_MASK32)
4973 			error = vfsconf2x32(req, vfsp);
4974 		else
4975 #endif
4976 			error = vfsconf2x(req, vfsp);
4977 		if (error)
4978 			break;
4979 	}
4980 	vfsconf_sunlock();
4981 	return (error);
4982 }
4983 
4984 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4985     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4986     "S,xvfsconf", "List of all configured filesystems");
4987 
4988 #ifndef BURN_BRIDGES
4989 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4990 
4991 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4992 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4993 {
4994 	int *name = (int *)arg1 - 1;	/* XXX */
4995 	u_int namelen = arg2 + 1;	/* XXX */
4996 	struct vfsconf *vfsp;
4997 
4998 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4999 	    "please rebuild world\n");
5000 
5001 #if 1 || defined(COMPAT_PRELITE2)
5002 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5003 	if (namelen == 1)
5004 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5005 #endif
5006 
5007 	switch (name[1]) {
5008 	case VFS_MAXTYPENUM:
5009 		if (namelen != 2)
5010 			return (ENOTDIR);
5011 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5012 	case VFS_CONF:
5013 		if (namelen != 3)
5014 			return (ENOTDIR);	/* overloaded */
5015 		vfsconf_slock();
5016 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5017 			if (vfsp->vfc_typenum == name[2])
5018 				break;
5019 		}
5020 		vfsconf_sunlock();
5021 		if (vfsp == NULL)
5022 			return (EOPNOTSUPP);
5023 #ifdef COMPAT_FREEBSD32
5024 		if (req->flags & SCTL_MASK32)
5025 			return (vfsconf2x32(req, vfsp));
5026 		else
5027 #endif
5028 			return (vfsconf2x(req, vfsp));
5029 	}
5030 	return (EOPNOTSUPP);
5031 }
5032 
5033 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5034     CTLFLAG_MPSAFE, vfs_sysctl,
5035     "Generic filesystem");
5036 
5037 #if 1 || defined(COMPAT_PRELITE2)
5038 
5039 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5040 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5041 {
5042 	int error;
5043 	struct vfsconf *vfsp;
5044 	struct ovfsconf ovfs;
5045 
5046 	vfsconf_slock();
5047 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5048 		bzero(&ovfs, sizeof(ovfs));
5049 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5050 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5051 		ovfs.vfc_index = vfsp->vfc_typenum;
5052 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5053 		ovfs.vfc_flags = vfsp->vfc_flags;
5054 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5055 		if (error != 0) {
5056 			vfsconf_sunlock();
5057 			return (error);
5058 		}
5059 	}
5060 	vfsconf_sunlock();
5061 	return (0);
5062 }
5063 
5064 #endif /* 1 || COMPAT_PRELITE2 */
5065 #endif /* !BURN_BRIDGES */
5066 
5067 static void
unmount_or_warn(struct mount * mp)5068 unmount_or_warn(struct mount *mp)
5069 {
5070 	int error;
5071 
5072 	error = dounmount(mp, MNT_FORCE, curthread);
5073 	if (error != 0) {
5074 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5075 		if (error == EBUSY)
5076 			printf("BUSY)\n");
5077 		else
5078 			printf("%d)\n", error);
5079 	}
5080 }
5081 
5082 /*
5083  * Unmount all filesystems. The list is traversed in reverse order
5084  * of mounting to avoid dependencies.
5085  */
5086 void
vfs_unmountall(void)5087 vfs_unmountall(void)
5088 {
5089 	struct mount *mp, *tmp;
5090 
5091 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5092 
5093 	/*
5094 	 * Since this only runs when rebooting, it is not interlocked.
5095 	 */
5096 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5097 		vfs_ref(mp);
5098 
5099 		/*
5100 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5101 		 * unmount of the latter.
5102 		 */
5103 		if (mp == rootdevmp)
5104 			continue;
5105 
5106 		unmount_or_warn(mp);
5107 	}
5108 
5109 	if (rootdevmp != NULL)
5110 		unmount_or_warn(rootdevmp);
5111 }
5112 
5113 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5114 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5115 {
5116 
5117 	ASSERT_VI_LOCKED(vp, __func__);
5118 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5119 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5120 		vdropl(vp);
5121 		return;
5122 	}
5123 	if (vn_lock(vp, lkflags) == 0) {
5124 		VI_LOCK(vp);
5125 		vinactive(vp);
5126 		VOP_UNLOCK(vp);
5127 		vdropl(vp);
5128 		return;
5129 	}
5130 	vdefer_inactive_unlocked(vp);
5131 }
5132 
5133 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5134 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5135 {
5136 
5137 	return (vp->v_iflag & VI_DEFINACT);
5138 }
5139 
5140 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5141 vfs_periodic_inactive(struct mount *mp, int flags)
5142 {
5143 	struct vnode *vp, *mvp;
5144 	int lkflags;
5145 
5146 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5147 	if (flags != MNT_WAIT)
5148 		lkflags |= LK_NOWAIT;
5149 
5150 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5151 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5152 			VI_UNLOCK(vp);
5153 			continue;
5154 		}
5155 		vp->v_iflag &= ~VI_DEFINACT;
5156 		vfs_deferred_inactive(vp, lkflags);
5157 	}
5158 }
5159 
5160 static inline bool
vfs_want_msync(struct vnode * vp)5161 vfs_want_msync(struct vnode *vp)
5162 {
5163 	struct vm_object *obj;
5164 
5165 	/*
5166 	 * This test may be performed without any locks held.
5167 	 * We rely on vm_object's type stability.
5168 	 */
5169 	if (vp->v_vflag & VV_NOSYNC)
5170 		return (false);
5171 	obj = vp->v_object;
5172 	return (obj != NULL && vm_object_mightbedirty(obj));
5173 }
5174 
5175 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5176 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5177 {
5178 
5179 	if (vp->v_vflag & VV_NOSYNC)
5180 		return (false);
5181 	if (vp->v_iflag & VI_DEFINACT)
5182 		return (true);
5183 	return (vfs_want_msync(vp));
5184 }
5185 
5186 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5187 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5188 {
5189 	struct vnode *vp, *mvp;
5190 	int lkflags;
5191 	bool seen_defer;
5192 
5193 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5194 	if (flags != MNT_WAIT)
5195 		lkflags |= LK_NOWAIT;
5196 
5197 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5198 		seen_defer = false;
5199 		if (vp->v_iflag & VI_DEFINACT) {
5200 			vp->v_iflag &= ~VI_DEFINACT;
5201 			seen_defer = true;
5202 		}
5203 		if (!vfs_want_msync(vp)) {
5204 			if (seen_defer)
5205 				vfs_deferred_inactive(vp, lkflags);
5206 			else
5207 				VI_UNLOCK(vp);
5208 			continue;
5209 		}
5210 		if (vget(vp, lkflags) == 0) {
5211 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5212 				if (flags == MNT_WAIT)
5213 					vnode_pager_clean_sync(vp);
5214 				else
5215 					vnode_pager_clean_async(vp);
5216 			}
5217 			vput(vp);
5218 			if (seen_defer)
5219 				vdrop(vp);
5220 		} else {
5221 			if (seen_defer)
5222 				vdefer_inactive_unlocked(vp);
5223 		}
5224 	}
5225 }
5226 
5227 void
vfs_periodic(struct mount * mp,int flags)5228 vfs_periodic(struct mount *mp, int flags)
5229 {
5230 
5231 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5232 
5233 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5234 		vfs_periodic_inactive(mp, flags);
5235 	else
5236 		vfs_periodic_msync_inactive(mp, flags);
5237 }
5238 
5239 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5240 destroy_vpollinfo_free(struct vpollinfo *vi)
5241 {
5242 
5243 	knlist_destroy(&vi->vpi_selinfo.si_note);
5244 	mtx_destroy(&vi->vpi_lock);
5245 	free(vi, M_VNODEPOLL);
5246 }
5247 
5248 static void
destroy_vpollinfo(struct vpollinfo * vi)5249 destroy_vpollinfo(struct vpollinfo *vi)
5250 {
5251 	KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5252 	    ("%s: pollinfo %p has lingering watches", __func__, vi));
5253 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5254 	seldrain(&vi->vpi_selinfo);
5255 	destroy_vpollinfo_free(vi);
5256 }
5257 
5258 /*
5259  * Initialize per-vnode helper structure to hold poll-related state.
5260  */
5261 void
v_addpollinfo(struct vnode * vp)5262 v_addpollinfo(struct vnode *vp)
5263 {
5264 	struct vpollinfo *vi;
5265 
5266 	if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5267 		return;
5268 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5269 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5270 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5271 	    vfs_knlunlock, vfs_knl_assert_lock);
5272 	TAILQ_INIT(&vi->vpi_inotify);
5273 	VI_LOCK(vp);
5274 	if (vp->v_pollinfo != NULL) {
5275 		VI_UNLOCK(vp);
5276 		destroy_vpollinfo_free(vi);
5277 		return;
5278 	}
5279 	vp->v_pollinfo = vi;
5280 	VI_UNLOCK(vp);
5281 }
5282 
5283 /*
5284  * Record a process's interest in events which might happen to
5285  * a vnode.  Because poll uses the historic select-style interface
5286  * internally, this routine serves as both the ``check for any
5287  * pending events'' and the ``record my interest in future events''
5288  * functions.  (These are done together, while the lock is held,
5289  * to avoid race conditions.)
5290  */
5291 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5292 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5293 {
5294 
5295 	v_addpollinfo(vp);
5296 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5297 	if (vp->v_pollinfo->vpi_revents & events) {
5298 		/*
5299 		 * This leaves events we are not interested
5300 		 * in available for the other process which
5301 		 * which presumably had requested them
5302 		 * (otherwise they would never have been
5303 		 * recorded).
5304 		 */
5305 		events &= vp->v_pollinfo->vpi_revents;
5306 		vp->v_pollinfo->vpi_revents &= ~events;
5307 
5308 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5309 		return (events);
5310 	}
5311 	vp->v_pollinfo->vpi_events |= events;
5312 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5313 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5314 	return (0);
5315 }
5316 
5317 /*
5318  * Routine to create and manage a filesystem syncer vnode.
5319  */
5320 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5321 static int	sync_fsync(struct  vop_fsync_args *);
5322 static int	sync_inactive(struct  vop_inactive_args *);
5323 static int	sync_reclaim(struct  vop_reclaim_args *);
5324 
5325 static struct vop_vector sync_vnodeops = {
5326 	.vop_bypass =	VOP_EOPNOTSUPP,
5327 	.vop_close =	sync_close,
5328 	.vop_fsync =	sync_fsync,
5329 	.vop_getwritemount = vop_stdgetwritemount,
5330 	.vop_inactive =	sync_inactive,
5331 	.vop_need_inactive = vop_stdneed_inactive,
5332 	.vop_reclaim =	sync_reclaim,
5333 	.vop_lock1 =	vop_stdlock,
5334 	.vop_unlock =	vop_stdunlock,
5335 	.vop_islocked =	vop_stdislocked,
5336 	.vop_fplookup_vexec = VOP_EAGAIN,
5337 	.vop_fplookup_symlink = VOP_EAGAIN,
5338 };
5339 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5340 
5341 /*
5342  * Create a new filesystem syncer vnode for the specified mount point.
5343  */
5344 void
vfs_allocate_syncvnode(struct mount * mp)5345 vfs_allocate_syncvnode(struct mount *mp)
5346 {
5347 	struct vnode *vp;
5348 	struct bufobj *bo;
5349 	static long start, incr, next;
5350 	int error;
5351 
5352 	/* Allocate a new vnode */
5353 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5354 	if (error != 0)
5355 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5356 	vp->v_type = VNON;
5357 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5358 	vp->v_vflag |= VV_FORCEINSMQ;
5359 	error = insmntque1(vp, mp);
5360 	if (error != 0)
5361 		panic("vfs_allocate_syncvnode: insmntque() failed");
5362 	vp->v_vflag &= ~VV_FORCEINSMQ;
5363 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5364 	VOP_UNLOCK(vp);
5365 	/*
5366 	 * Place the vnode onto the syncer worklist. We attempt to
5367 	 * scatter them about on the list so that they will go off
5368 	 * at evenly distributed times even if all the filesystems
5369 	 * are mounted at once.
5370 	 */
5371 	next += incr;
5372 	if (next == 0 || next > syncer_maxdelay) {
5373 		start /= 2;
5374 		incr /= 2;
5375 		if (start == 0) {
5376 			start = syncer_maxdelay / 2;
5377 			incr = syncer_maxdelay;
5378 		}
5379 		next = start;
5380 	}
5381 	bo = &vp->v_bufobj;
5382 	BO_LOCK(bo);
5383 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5384 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5385 	mtx_lock(&sync_mtx);
5386 	sync_vnode_count++;
5387 	if (mp->mnt_syncer == NULL) {
5388 		mp->mnt_syncer = vp;
5389 		vp = NULL;
5390 	}
5391 	mtx_unlock(&sync_mtx);
5392 	BO_UNLOCK(bo);
5393 	if (vp != NULL) {
5394 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5395 		vgone(vp);
5396 		vput(vp);
5397 	}
5398 }
5399 
5400 void
vfs_deallocate_syncvnode(struct mount * mp)5401 vfs_deallocate_syncvnode(struct mount *mp)
5402 {
5403 	struct vnode *vp;
5404 
5405 	mtx_lock(&sync_mtx);
5406 	vp = mp->mnt_syncer;
5407 	if (vp != NULL)
5408 		mp->mnt_syncer = NULL;
5409 	mtx_unlock(&sync_mtx);
5410 	if (vp != NULL)
5411 		vrele(vp);
5412 }
5413 
5414 /*
5415  * Do a lazy sync of the filesystem.
5416  */
5417 static int
sync_fsync(struct vop_fsync_args * ap)5418 sync_fsync(struct vop_fsync_args *ap)
5419 {
5420 	struct vnode *syncvp = ap->a_vp;
5421 	struct mount *mp = syncvp->v_mount;
5422 	int error, save;
5423 	struct bufobj *bo;
5424 
5425 	/*
5426 	 * We only need to do something if this is a lazy evaluation.
5427 	 */
5428 	if (ap->a_waitfor != MNT_LAZY)
5429 		return (0);
5430 
5431 	/*
5432 	 * Move ourselves to the back of the sync list.
5433 	 */
5434 	bo = &syncvp->v_bufobj;
5435 	BO_LOCK(bo);
5436 	vn_syncer_add_to_worklist(bo, syncdelay);
5437 	BO_UNLOCK(bo);
5438 
5439 	/*
5440 	 * Walk the list of vnodes pushing all that are dirty and
5441 	 * not already on the sync list.
5442 	 */
5443 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5444 		return (0);
5445 	VOP_UNLOCK(syncvp);
5446 	save = curthread_pflags_set(TDP_SYNCIO);
5447 	/*
5448 	 * The filesystem at hand may be idle with free vnodes stored in the
5449 	 * batch.  Return them instead of letting them stay there indefinitely.
5450 	 */
5451 	vfs_periodic(mp, MNT_NOWAIT);
5452 	error = VFS_SYNC(mp, MNT_LAZY);
5453 	curthread_pflags_restore(save);
5454 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5455 	vfs_unbusy(mp);
5456 	return (error);
5457 }
5458 
5459 /*
5460  * The syncer vnode is no referenced.
5461  */
5462 static int
sync_inactive(struct vop_inactive_args * ap)5463 sync_inactive(struct vop_inactive_args *ap)
5464 {
5465 
5466 	vgone(ap->a_vp);
5467 	return (0);
5468 }
5469 
5470 /*
5471  * The syncer vnode is no longer needed and is being decommissioned.
5472  *
5473  * Modifications to the worklist must be protected by sync_mtx.
5474  */
5475 static int
sync_reclaim(struct vop_reclaim_args * ap)5476 sync_reclaim(struct vop_reclaim_args *ap)
5477 {
5478 	struct vnode *vp = ap->a_vp;
5479 	struct bufobj *bo;
5480 
5481 	bo = &vp->v_bufobj;
5482 	BO_LOCK(bo);
5483 	mtx_lock(&sync_mtx);
5484 	if (vp->v_mount->mnt_syncer == vp)
5485 		vp->v_mount->mnt_syncer = NULL;
5486 	if (bo->bo_flag & BO_ONWORKLST) {
5487 		LIST_REMOVE(bo, bo_synclist);
5488 		syncer_worklist_len--;
5489 		sync_vnode_count--;
5490 		bo->bo_flag &= ~BO_ONWORKLST;
5491 	}
5492 	mtx_unlock(&sync_mtx);
5493 	BO_UNLOCK(bo);
5494 
5495 	return (0);
5496 }
5497 
5498 int
vn_need_pageq_flush(struct vnode * vp)5499 vn_need_pageq_flush(struct vnode *vp)
5500 {
5501 	struct vm_object *obj;
5502 
5503 	obj = vp->v_object;
5504 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5505 	    vm_object_mightbedirty(obj));
5506 }
5507 
5508 /*
5509  * Check if vnode represents a disk device
5510  */
5511 bool
vn_isdisk_error(struct vnode * vp,int * errp)5512 vn_isdisk_error(struct vnode *vp, int *errp)
5513 {
5514 	int error;
5515 
5516 	if (vp->v_type != VCHR) {
5517 		error = ENOTBLK;
5518 		goto out;
5519 	}
5520 	error = 0;
5521 	dev_lock();
5522 	if (vp->v_rdev == NULL)
5523 		error = ENXIO;
5524 	else if (vp->v_rdev->si_devsw == NULL)
5525 		error = ENXIO;
5526 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5527 		error = ENOTBLK;
5528 	dev_unlock();
5529 out:
5530 	*errp = error;
5531 	return (error == 0);
5532 }
5533 
5534 bool
vn_isdisk(struct vnode * vp)5535 vn_isdisk(struct vnode *vp)
5536 {
5537 	int error;
5538 
5539 	return (vn_isdisk_error(vp, &error));
5540 }
5541 
5542 /*
5543  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5544  * the comment above cache_fplookup for details.
5545  */
5546 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5547 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5548 {
5549 	int error;
5550 
5551 	VFS_SMR_ASSERT_ENTERED();
5552 
5553 	/* Check the owner. */
5554 	if (cred->cr_uid == file_uid) {
5555 		if (file_mode & S_IXUSR)
5556 			return (0);
5557 		goto out_error;
5558 	}
5559 
5560 	/* Otherwise, check the groups (first match) */
5561 	if (groupmember(file_gid, cred)) {
5562 		if (file_mode & S_IXGRP)
5563 			return (0);
5564 		goto out_error;
5565 	}
5566 
5567 	/* Otherwise, check everyone else. */
5568 	if (file_mode & S_IXOTH)
5569 		return (0);
5570 out_error:
5571 	/*
5572 	 * Permission check failed, but it is possible denial will get overwritten
5573 	 * (e.g., when root is traversing through a 700 directory owned by someone
5574 	 * else).
5575 	 *
5576 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5577 	 * modules overriding this result. It's quite unclear what semantics
5578 	 * are allowed for them to operate, thus for safety we don't call them
5579 	 * from within the SMR section. This also means if any such modules
5580 	 * are present, we have to let the regular lookup decide.
5581 	 */
5582 	error = priv_check_cred_vfs_lookup_nomac(cred);
5583 	switch (error) {
5584 	case 0:
5585 		return (0);
5586 	case EAGAIN:
5587 		/*
5588 		 * MAC modules present.
5589 		 */
5590 		return (EAGAIN);
5591 	case EPERM:
5592 		return (EACCES);
5593 	default:
5594 		return (error);
5595 	}
5596 }
5597 
5598 /*
5599  * Common filesystem object access control check routine.  Accepts a
5600  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5601  * Returns 0 on success, or an errno on failure.
5602  */
5603 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5604 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5605     accmode_t accmode, struct ucred *cred)
5606 {
5607 	accmode_t dac_granted;
5608 	accmode_t priv_granted;
5609 
5610 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5611 	    ("invalid bit in accmode"));
5612 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5613 	    ("VAPPEND without VWRITE"));
5614 
5615 	/*
5616 	 * Look for a normal, non-privileged way to access the file/directory
5617 	 * as requested.  If it exists, go with that.
5618 	 */
5619 
5620 	dac_granted = 0;
5621 
5622 	/* Check the owner. */
5623 	if (cred->cr_uid == file_uid) {
5624 		dac_granted |= VADMIN;
5625 		if (file_mode & S_IXUSR)
5626 			dac_granted |= VEXEC;
5627 		if (file_mode & S_IRUSR)
5628 			dac_granted |= VREAD;
5629 		if (file_mode & S_IWUSR)
5630 			dac_granted |= (VWRITE | VAPPEND);
5631 
5632 		if ((accmode & dac_granted) == accmode)
5633 			return (0);
5634 
5635 		goto privcheck;
5636 	}
5637 
5638 	/* Otherwise, check the groups (first match) */
5639 	if (groupmember(file_gid, cred)) {
5640 		if (file_mode & S_IXGRP)
5641 			dac_granted |= VEXEC;
5642 		if (file_mode & S_IRGRP)
5643 			dac_granted |= VREAD;
5644 		if (file_mode & S_IWGRP)
5645 			dac_granted |= (VWRITE | VAPPEND);
5646 
5647 		if ((accmode & dac_granted) == accmode)
5648 			return (0);
5649 
5650 		goto privcheck;
5651 	}
5652 
5653 	/* Otherwise, check everyone else. */
5654 	if (file_mode & S_IXOTH)
5655 		dac_granted |= VEXEC;
5656 	if (file_mode & S_IROTH)
5657 		dac_granted |= VREAD;
5658 	if (file_mode & S_IWOTH)
5659 		dac_granted |= (VWRITE | VAPPEND);
5660 	if ((accmode & dac_granted) == accmode)
5661 		return (0);
5662 
5663 privcheck:
5664 	/*
5665 	 * Build a privilege mask to determine if the set of privileges
5666 	 * satisfies the requirements when combined with the granted mask
5667 	 * from above.  For each privilege, if the privilege is required,
5668 	 * bitwise or the request type onto the priv_granted mask.
5669 	 */
5670 	priv_granted = 0;
5671 
5672 	if (type == VDIR) {
5673 		/*
5674 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5675 		 * requests, instead of PRIV_VFS_EXEC.
5676 		 */
5677 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5678 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5679 			priv_granted |= VEXEC;
5680 	} else {
5681 		/*
5682 		 * Ensure that at least one execute bit is on. Otherwise,
5683 		 * a privileged user will always succeed, and we don't want
5684 		 * this to happen unless the file really is executable.
5685 		 */
5686 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5687 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5688 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5689 			priv_granted |= VEXEC;
5690 	}
5691 
5692 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5693 	    !priv_check_cred(cred, PRIV_VFS_READ))
5694 		priv_granted |= VREAD;
5695 
5696 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5697 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5698 		priv_granted |= (VWRITE | VAPPEND);
5699 
5700 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5701 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5702 		priv_granted |= VADMIN;
5703 
5704 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5705 		return (0);
5706 	}
5707 
5708 	return ((accmode & VADMIN) ? EPERM : EACCES);
5709 }
5710 
5711 /*
5712  * Credential check based on process requesting service, and per-attribute
5713  * permissions.
5714  */
5715 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5716 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5717     struct thread *td, accmode_t accmode)
5718 {
5719 
5720 	/*
5721 	 * Kernel-invoked always succeeds.
5722 	 */
5723 	if (cred == NOCRED)
5724 		return (0);
5725 
5726 	/*
5727 	 * Do not allow privileged processes in jail to directly manipulate
5728 	 * system attributes.
5729 	 */
5730 	switch (attrnamespace) {
5731 	case EXTATTR_NAMESPACE_SYSTEM:
5732 		/* Potentially should be: return (EPERM); */
5733 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5734 	case EXTATTR_NAMESPACE_USER:
5735 		return (VOP_ACCESS(vp, accmode, cred, td));
5736 	default:
5737 		return (EPERM);
5738 	}
5739 }
5740 
5741 #ifdef INVARIANTS
5742 void
assert_vi_locked(struct vnode * vp,const char * str)5743 assert_vi_locked(struct vnode *vp, const char *str)
5744 {
5745 	VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5746 	    ("%s: vnode interlock is not locked but should be", str));
5747 }
5748 
5749 void
assert_vi_unlocked(struct vnode * vp,const char * str)5750 assert_vi_unlocked(struct vnode *vp, const char *str)
5751 {
5752 	VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5753 	    ("%s: vnode interlock is locked but should not be", str));
5754 }
5755 
5756 void
assert_vop_locked(struct vnode * vp,const char * str)5757 assert_vop_locked(struct vnode *vp, const char *str)
5758 {
5759 	bool locked;
5760 
5761 	if (KERNEL_PANICKED() || vp == NULL)
5762 		return;
5763 
5764 #ifdef WITNESS
5765 	locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5766 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5767 #else
5768 	int state = VOP_ISLOCKED(vp);
5769 	locked = state != 0 && state != LK_EXCLOTHER;
5770 #endif
5771 	VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5772 }
5773 
5774 void
assert_vop_unlocked(struct vnode * vp,const char * str)5775 assert_vop_unlocked(struct vnode *vp, const char *str)
5776 {
5777 	bool locked;
5778 
5779 	if (KERNEL_PANICKED() || vp == NULL)
5780 		return;
5781 
5782 #ifdef WITNESS
5783 	locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5784 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5785 #else
5786 	locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5787 #endif
5788 	VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5789 }
5790 
5791 void
assert_vop_elocked(struct vnode * vp,const char * str)5792 assert_vop_elocked(struct vnode *vp, const char *str)
5793 {
5794 	bool locked;
5795 
5796 	if (KERNEL_PANICKED() || vp == NULL)
5797 		return;
5798 
5799 	locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5800 	VNASSERT(locked, vp,
5801 	    ("%s: vnode is not exclusive locked but should be", str));
5802 }
5803 #endif /* INVARIANTS */
5804 
5805 void
vop_rename_fail(struct vop_rename_args * ap)5806 vop_rename_fail(struct vop_rename_args *ap)
5807 {
5808 
5809 	if (ap->a_tvp != NULL)
5810 		vput(ap->a_tvp);
5811 	if (ap->a_tdvp == ap->a_tvp)
5812 		vrele(ap->a_tdvp);
5813 	else
5814 		vput(ap->a_tdvp);
5815 	vrele(ap->a_fdvp);
5816 	vrele(ap->a_fvp);
5817 }
5818 
5819 void
vop_rename_pre(void * ap)5820 vop_rename_pre(void *ap)
5821 {
5822 	struct vop_rename_args *a = ap;
5823 
5824 #ifdef INVARIANTS
5825 	struct mount *tmp;
5826 
5827 	if (a->a_tvp)
5828 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5829 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5830 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5831 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5832 
5833 	/* Check the source (from). */
5834 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5835 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5836 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5837 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5838 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5839 
5840 	/* Check the target. */
5841 	if (a->a_tvp)
5842 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5843 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5844 
5845 	tmp = NULL;
5846 	VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5847 	lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5848 	vfs_rel(tmp);
5849 #endif
5850 	/*
5851 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5852 	 * in vop_rename_post but that's not going to work out since some
5853 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5854 	 *
5855 	 * For now filesystems are expected to do the relevant calls after they
5856 	 * decide what vnodes to operate on.
5857 	 */
5858 	if (a->a_tdvp != a->a_fdvp)
5859 		vhold(a->a_fdvp);
5860 	if (a->a_tvp != a->a_fvp)
5861 		vhold(a->a_fvp);
5862 	vhold(a->a_tdvp);
5863 	if (a->a_tvp)
5864 		vhold(a->a_tvp);
5865 }
5866 
5867 #ifdef INVARIANTS
5868 void
vop_fplookup_vexec_debugpre(void * ap __unused)5869 vop_fplookup_vexec_debugpre(void *ap __unused)
5870 {
5871 
5872 	VFS_SMR_ASSERT_ENTERED();
5873 }
5874 
5875 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5876 vop_fplookup_vexec_debugpost(void *ap, int rc)
5877 {
5878 	struct vop_fplookup_vexec_args *a;
5879 	struct vnode *vp;
5880 
5881 	a = ap;
5882 	vp = a->a_vp;
5883 
5884 	VFS_SMR_ASSERT_ENTERED();
5885 	if (rc == EOPNOTSUPP)
5886 		VNPASS(VN_IS_DOOMED(vp), vp);
5887 }
5888 
5889 void
vop_fplookup_symlink_debugpre(void * ap __unused)5890 vop_fplookup_symlink_debugpre(void *ap __unused)
5891 {
5892 
5893 	VFS_SMR_ASSERT_ENTERED();
5894 }
5895 
5896 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5897 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5898 {
5899 
5900 	VFS_SMR_ASSERT_ENTERED();
5901 }
5902 
5903 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5904 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5905 {
5906 	struct mount *mp;
5907 
5908 	if (vp->v_type == VCHR)
5909 		;
5910 	/*
5911 	 * The shared vs. exclusive locking policy for fsync()
5912 	 * is actually determined by vp's write mount as indicated
5913 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5914 	 * may not be the same as vp->v_mount.  However, if the
5915 	 * underlying filesystem which really handles the fsync()
5916 	 * supports shared locking, the stacked filesystem must also
5917 	 * be prepared for its VOP_FSYNC() operation to be called
5918 	 * with only a shared lock.  On the other hand, if the
5919 	 * stacked filesystem claims support for shared write
5920 	 * locking but the underlying filesystem does not, and the
5921 	 * caller incorrectly uses a shared lock, this condition
5922 	 * should still be caught when the stacked filesystem
5923 	 * invokes VOP_FSYNC() on the underlying filesystem.
5924 	 */
5925 	else {
5926 		mp = NULL;
5927 		VOP_GETWRITEMOUNT(vp, &mp);
5928 		if (vn_lktype_write(mp, vp) == LK_SHARED)
5929 			ASSERT_VOP_LOCKED(vp, name);
5930 		else
5931 			ASSERT_VOP_ELOCKED(vp, name);
5932 		if (mp != NULL)
5933 			vfs_rel(mp);
5934 	}
5935 }
5936 
5937 void
vop_fsync_debugpre(void * a)5938 vop_fsync_debugpre(void *a)
5939 {
5940 	struct vop_fsync_args *ap;
5941 
5942 	ap = a;
5943 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5944 }
5945 
5946 void
vop_fsync_debugpost(void * a,int rc __unused)5947 vop_fsync_debugpost(void *a, int rc __unused)
5948 {
5949 	struct vop_fsync_args *ap;
5950 
5951 	ap = a;
5952 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5953 }
5954 
5955 void
vop_fdatasync_debugpre(void * a)5956 vop_fdatasync_debugpre(void *a)
5957 {
5958 	struct vop_fdatasync_args *ap;
5959 
5960 	ap = a;
5961 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5962 }
5963 
5964 void
vop_fdatasync_debugpost(void * a,int rc __unused)5965 vop_fdatasync_debugpost(void *a, int rc __unused)
5966 {
5967 	struct vop_fdatasync_args *ap;
5968 
5969 	ap = a;
5970 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5971 }
5972 
5973 void
vop_strategy_debugpre(void * ap)5974 vop_strategy_debugpre(void *ap)
5975 {
5976 	struct vop_strategy_args *a;
5977 	struct buf *bp;
5978 
5979 	a = ap;
5980 	bp = a->a_bp;
5981 
5982 	/*
5983 	 * Cluster ops lock their component buffers but not the IO container.
5984 	 */
5985 	if ((bp->b_flags & B_CLUSTER) != 0)
5986 		return;
5987 
5988 	BUF_ASSERT_LOCKED(bp);
5989 }
5990 
5991 void
vop_lock_debugpre(void * ap)5992 vop_lock_debugpre(void *ap)
5993 {
5994 	struct vop_lock1_args *a = ap;
5995 
5996 	if ((a->a_flags & LK_INTERLOCK) == 0)
5997 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5998 	else
5999 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6000 }
6001 
6002 void
vop_lock_debugpost(void * ap,int rc)6003 vop_lock_debugpost(void *ap, int rc)
6004 {
6005 	struct vop_lock1_args *a = ap;
6006 
6007 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6008 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6009 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6010 }
6011 
6012 void
vop_unlock_debugpre(void * ap)6013 vop_unlock_debugpre(void *ap)
6014 {
6015 	struct vop_unlock_args *a = ap;
6016 	struct vnode *vp = a->a_vp;
6017 
6018 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6019 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6020 }
6021 
6022 void
vop_need_inactive_debugpre(void * ap)6023 vop_need_inactive_debugpre(void *ap)
6024 {
6025 	struct vop_need_inactive_args *a = ap;
6026 
6027 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6028 }
6029 
6030 void
vop_need_inactive_debugpost(void * ap,int rc)6031 vop_need_inactive_debugpost(void *ap, int rc)
6032 {
6033 	struct vop_need_inactive_args *a = ap;
6034 
6035 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6036 }
6037 #endif /* INVARIANTS */
6038 
6039 void
vop_allocate_post(void * ap,int rc)6040 vop_allocate_post(void *ap, int rc)
6041 {
6042 	struct vop_allocate_args *a;
6043 
6044 	a = ap;
6045 	if (rc == 0)
6046 		INOTIFY(a->a_vp, IN_MODIFY);
6047 }
6048 
6049 void
vop_copy_file_range_post(void * ap,int rc)6050 vop_copy_file_range_post(void *ap, int rc)
6051 {
6052 	struct vop_copy_file_range_args *a;
6053 
6054 	a = ap;
6055 	if (rc == 0) {
6056 		INOTIFY(a->a_invp, IN_ACCESS);
6057 		INOTIFY(a->a_outvp, IN_MODIFY);
6058 	}
6059 }
6060 
6061 void
vop_create_pre(void * ap)6062 vop_create_pre(void *ap)
6063 {
6064 	struct vop_create_args *a;
6065 	struct vnode *dvp;
6066 
6067 	a = ap;
6068 	dvp = a->a_dvp;
6069 	vn_seqc_write_begin(dvp);
6070 }
6071 
6072 void
vop_create_post(void * ap,int rc)6073 vop_create_post(void *ap, int rc)
6074 {
6075 	struct vop_create_args *a;
6076 	struct vnode *dvp;
6077 
6078 	a = ap;
6079 	dvp = a->a_dvp;
6080 	vn_seqc_write_end(dvp);
6081 	if (!rc) {
6082 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6083 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6084 	}
6085 }
6086 
6087 void
vop_deallocate_post(void * ap,int rc)6088 vop_deallocate_post(void *ap, int rc)
6089 {
6090 	struct vop_deallocate_args *a;
6091 
6092 	a = ap;
6093 	if (rc == 0)
6094 		INOTIFY(a->a_vp, IN_MODIFY);
6095 }
6096 
6097 void
vop_whiteout_pre(void * ap)6098 vop_whiteout_pre(void *ap)
6099 {
6100 	struct vop_whiteout_args *a;
6101 	struct vnode *dvp;
6102 
6103 	a = ap;
6104 	dvp = a->a_dvp;
6105 	vn_seqc_write_begin(dvp);
6106 }
6107 
6108 void
vop_whiteout_post(void * ap,int rc)6109 vop_whiteout_post(void *ap, int rc)
6110 {
6111 	struct vop_whiteout_args *a;
6112 	struct vnode *dvp;
6113 
6114 	a = ap;
6115 	dvp = a->a_dvp;
6116 	vn_seqc_write_end(dvp);
6117 }
6118 
6119 void
vop_deleteextattr_pre(void * ap)6120 vop_deleteextattr_pre(void *ap)
6121 {
6122 	struct vop_deleteextattr_args *a;
6123 	struct vnode *vp;
6124 
6125 	a = ap;
6126 	vp = a->a_vp;
6127 	vn_seqc_write_begin(vp);
6128 }
6129 
6130 void
vop_deleteextattr_post(void * ap,int rc)6131 vop_deleteextattr_post(void *ap, int rc)
6132 {
6133 	struct vop_deleteextattr_args *a;
6134 	struct vnode *vp;
6135 
6136 	a = ap;
6137 	vp = a->a_vp;
6138 	vn_seqc_write_end(vp);
6139 	if (!rc) {
6140 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6141 		INOTIFY(vp, IN_ATTRIB);
6142 	}
6143 }
6144 
6145 void
vop_link_pre(void * ap)6146 vop_link_pre(void *ap)
6147 {
6148 	struct vop_link_args *a;
6149 	struct vnode *vp, *tdvp;
6150 
6151 	a = ap;
6152 	vp = a->a_vp;
6153 	tdvp = a->a_tdvp;
6154 	vn_seqc_write_begin(vp);
6155 	vn_seqc_write_begin(tdvp);
6156 }
6157 
6158 void
vop_link_post(void * ap,int rc)6159 vop_link_post(void *ap, int rc)
6160 {
6161 	struct vop_link_args *a;
6162 	struct vnode *vp, *tdvp;
6163 
6164 	a = ap;
6165 	vp = a->a_vp;
6166 	tdvp = a->a_tdvp;
6167 	vn_seqc_write_end(vp);
6168 	vn_seqc_write_end(tdvp);
6169 	if (!rc) {
6170 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6171 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6172 		INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6173 		INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6174 	}
6175 }
6176 
6177 void
vop_mkdir_pre(void * ap)6178 vop_mkdir_pre(void *ap)
6179 {
6180 	struct vop_mkdir_args *a;
6181 	struct vnode *dvp;
6182 
6183 	a = ap;
6184 	dvp = a->a_dvp;
6185 	vn_seqc_write_begin(dvp);
6186 }
6187 
6188 void
vop_mkdir_post(void * ap,int rc)6189 vop_mkdir_post(void *ap, int rc)
6190 {
6191 	struct vop_mkdir_args *a;
6192 	struct vnode *dvp;
6193 
6194 	a = ap;
6195 	dvp = a->a_dvp;
6196 	vn_seqc_write_end(dvp);
6197 	if (!rc) {
6198 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6199 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6200 	}
6201 }
6202 
6203 #ifdef INVARIANTS
6204 void
vop_mkdir_debugpost(void * ap,int rc)6205 vop_mkdir_debugpost(void *ap, int rc)
6206 {
6207 	struct vop_mkdir_args *a;
6208 
6209 	a = ap;
6210 	if (!rc)
6211 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6212 }
6213 #endif
6214 
6215 void
vop_mknod_pre(void * ap)6216 vop_mknod_pre(void *ap)
6217 {
6218 	struct vop_mknod_args *a;
6219 	struct vnode *dvp;
6220 
6221 	a = ap;
6222 	dvp = a->a_dvp;
6223 	vn_seqc_write_begin(dvp);
6224 }
6225 
6226 void
vop_mknod_post(void * ap,int rc)6227 vop_mknod_post(void *ap, int rc)
6228 {
6229 	struct vop_mknod_args *a;
6230 	struct vnode *dvp;
6231 
6232 	a = ap;
6233 	dvp = a->a_dvp;
6234 	vn_seqc_write_end(dvp);
6235 	if (!rc) {
6236 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6237 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6238 	}
6239 }
6240 
6241 void
vop_reclaim_post(void * ap,int rc)6242 vop_reclaim_post(void *ap, int rc)
6243 {
6244 	struct vop_reclaim_args *a;
6245 	struct vnode *vp;
6246 
6247 	a = ap;
6248 	vp = a->a_vp;
6249 	ASSERT_VOP_IN_SEQC(vp);
6250 	if (!rc) {
6251 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6252 		INOTIFY_REVOKE(vp);
6253 	}
6254 }
6255 
6256 void
vop_remove_pre(void * ap)6257 vop_remove_pre(void *ap)
6258 {
6259 	struct vop_remove_args *a;
6260 	struct vnode *dvp, *vp;
6261 
6262 	a = ap;
6263 	dvp = a->a_dvp;
6264 	vp = a->a_vp;
6265 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6266 	vn_seqc_write_begin(dvp);
6267 	vn_seqc_write_begin(vp);
6268 }
6269 
6270 void
vop_remove_post(void * ap,int rc)6271 vop_remove_post(void *ap, int rc)
6272 {
6273 	struct vop_remove_args *a;
6274 	struct vnode *dvp, *vp;
6275 
6276 	a = ap;
6277 	dvp = a->a_dvp;
6278 	vp = a->a_vp;
6279 	vn_seqc_write_end(dvp);
6280 	vn_seqc_write_end(vp);
6281 	if (!rc) {
6282 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6283 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6284 		INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6285 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6286 	}
6287 }
6288 
6289 void
vop_rename_post(void * ap,int rc)6290 vop_rename_post(void *ap, int rc)
6291 {
6292 	struct vop_rename_args *a = ap;
6293 	long hint;
6294 
6295 	if (!rc) {
6296 		hint = NOTE_WRITE;
6297 		if (a->a_fdvp == a->a_tdvp) {
6298 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6299 				hint |= NOTE_LINK;
6300 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6301 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6302 		} else {
6303 			hint |= NOTE_EXTEND;
6304 			if (a->a_fvp->v_type == VDIR)
6305 				hint |= NOTE_LINK;
6306 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6307 
6308 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6309 			    a->a_tvp->v_type == VDIR)
6310 				hint &= ~NOTE_LINK;
6311 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6312 		}
6313 
6314 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6315 		if (a->a_tvp)
6316 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6317 		INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6318 		    a->a_tdvp, a->a_tcnp);
6319 	}
6320 	if (a->a_tdvp != a->a_fdvp)
6321 		vdrop(a->a_fdvp);
6322 	if (a->a_tvp != a->a_fvp)
6323 		vdrop(a->a_fvp);
6324 	vdrop(a->a_tdvp);
6325 	if (a->a_tvp)
6326 		vdrop(a->a_tvp);
6327 }
6328 
6329 void
vop_rmdir_pre(void * ap)6330 vop_rmdir_pre(void *ap)
6331 {
6332 	struct vop_rmdir_args *a;
6333 	struct vnode *dvp, *vp;
6334 
6335 	a = ap;
6336 	dvp = a->a_dvp;
6337 	vp = a->a_vp;
6338 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6339 	vn_seqc_write_begin(dvp);
6340 	vn_seqc_write_begin(vp);
6341 }
6342 
6343 void
vop_rmdir_post(void * ap,int rc)6344 vop_rmdir_post(void *ap, int rc)
6345 {
6346 	struct vop_rmdir_args *a;
6347 	struct vnode *dvp, *vp;
6348 
6349 	a = ap;
6350 	dvp = a->a_dvp;
6351 	vp = a->a_vp;
6352 	vn_seqc_write_end(dvp);
6353 	vn_seqc_write_end(vp);
6354 	if (!rc) {
6355 		vp->v_vflag |= VV_UNLINKED;
6356 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6357 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6358 		INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6359 	}
6360 }
6361 
6362 void
vop_setattr_pre(void * ap)6363 vop_setattr_pre(void *ap)
6364 {
6365 	struct vop_setattr_args *a;
6366 	struct vnode *vp;
6367 
6368 	a = ap;
6369 	vp = a->a_vp;
6370 	vn_seqc_write_begin(vp);
6371 }
6372 
6373 void
vop_setattr_post(void * ap,int rc)6374 vop_setattr_post(void *ap, int rc)
6375 {
6376 	struct vop_setattr_args *a;
6377 	struct vnode *vp;
6378 
6379 	a = ap;
6380 	vp = a->a_vp;
6381 	vn_seqc_write_end(vp);
6382 	if (!rc) {
6383 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6384 		INOTIFY(vp, IN_ATTRIB);
6385 	}
6386 }
6387 
6388 void
vop_setacl_pre(void * ap)6389 vop_setacl_pre(void *ap)
6390 {
6391 	struct vop_setacl_args *a;
6392 	struct vnode *vp;
6393 
6394 	a = ap;
6395 	vp = a->a_vp;
6396 	vn_seqc_write_begin(vp);
6397 }
6398 
6399 void
vop_setacl_post(void * ap,int rc __unused)6400 vop_setacl_post(void *ap, int rc __unused)
6401 {
6402 	struct vop_setacl_args *a;
6403 	struct vnode *vp;
6404 
6405 	a = ap;
6406 	vp = a->a_vp;
6407 	vn_seqc_write_end(vp);
6408 }
6409 
6410 void
vop_setextattr_pre(void * ap)6411 vop_setextattr_pre(void *ap)
6412 {
6413 	struct vop_setextattr_args *a;
6414 	struct vnode *vp;
6415 
6416 	a = ap;
6417 	vp = a->a_vp;
6418 	vn_seqc_write_begin(vp);
6419 }
6420 
6421 void
vop_setextattr_post(void * ap,int rc)6422 vop_setextattr_post(void *ap, int rc)
6423 {
6424 	struct vop_setextattr_args *a;
6425 	struct vnode *vp;
6426 
6427 	a = ap;
6428 	vp = a->a_vp;
6429 	vn_seqc_write_end(vp);
6430 	if (!rc) {
6431 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6432 		INOTIFY(vp, IN_ATTRIB);
6433 	}
6434 }
6435 
6436 void
vop_symlink_pre(void * ap)6437 vop_symlink_pre(void *ap)
6438 {
6439 	struct vop_symlink_args *a;
6440 	struct vnode *dvp;
6441 
6442 	a = ap;
6443 	dvp = a->a_dvp;
6444 	vn_seqc_write_begin(dvp);
6445 }
6446 
6447 void
vop_symlink_post(void * ap,int rc)6448 vop_symlink_post(void *ap, int rc)
6449 {
6450 	struct vop_symlink_args *a;
6451 	struct vnode *dvp;
6452 
6453 	a = ap;
6454 	dvp = a->a_dvp;
6455 	vn_seqc_write_end(dvp);
6456 	if (!rc) {
6457 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6458 		INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6459 	}
6460 }
6461 
6462 void
vop_open_post(void * ap,int rc)6463 vop_open_post(void *ap, int rc)
6464 {
6465 	struct vop_open_args *a = ap;
6466 
6467 	if (!rc) {
6468 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6469 		INOTIFY(a->a_vp, IN_OPEN);
6470 	}
6471 }
6472 
6473 void
vop_close_post(void * ap,int rc)6474 vop_close_post(void *ap, int rc)
6475 {
6476 	struct vop_close_args *a = ap;
6477 
6478 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6479 	    !VN_IS_DOOMED(a->a_vp))) {
6480 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6481 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6482 		INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6483 		    IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6484 	}
6485 }
6486 
6487 void
vop_read_post(void * ap,int rc)6488 vop_read_post(void *ap, int rc)
6489 {
6490 	struct vop_read_args *a = ap;
6491 
6492 	if (!rc) {
6493 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6494 		INOTIFY(a->a_vp, IN_ACCESS);
6495 	}
6496 }
6497 
6498 void
vop_read_pgcache_post(void * ap,int rc)6499 vop_read_pgcache_post(void *ap, int rc)
6500 {
6501 	struct vop_read_pgcache_args *a = ap;
6502 
6503 	if (!rc)
6504 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6505 }
6506 
6507 static struct knlist fs_knlist;
6508 
6509 static void
vfs_event_init(void * arg)6510 vfs_event_init(void *arg)
6511 {
6512 	knlist_init_mtx(&fs_knlist, NULL);
6513 }
6514 /* XXX - correct order? */
6515 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6516 
6517 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6518 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6519 {
6520 
6521 	KNOTE_UNLOCKED(&fs_knlist, event);
6522 }
6523 
6524 static int	filt_fsattach(struct knote *kn);
6525 static void	filt_fsdetach(struct knote *kn);
6526 static int	filt_fsevent(struct knote *kn, long hint);
6527 
6528 const struct filterops fs_filtops = {
6529 	.f_isfd = 0,
6530 	.f_attach = filt_fsattach,
6531 	.f_detach = filt_fsdetach,
6532 	.f_event = filt_fsevent,
6533 };
6534 
6535 static int
filt_fsattach(struct knote * kn)6536 filt_fsattach(struct knote *kn)
6537 {
6538 
6539 	kn->kn_flags |= EV_CLEAR;
6540 	knlist_add(&fs_knlist, kn, 0);
6541 	return (0);
6542 }
6543 
6544 static void
filt_fsdetach(struct knote * kn)6545 filt_fsdetach(struct knote *kn)
6546 {
6547 
6548 	knlist_remove(&fs_knlist, kn, 0);
6549 }
6550 
6551 static int
filt_fsevent(struct knote * kn,long hint)6552 filt_fsevent(struct knote *kn, long hint)
6553 {
6554 
6555 	kn->kn_fflags |= kn->kn_sfflags & hint;
6556 
6557 	return (kn->kn_fflags != 0);
6558 }
6559 
6560 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6561 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6562 {
6563 	struct vfsidctl vc;
6564 	int error;
6565 	struct mount *mp;
6566 
6567 	if (req->newptr == NULL)
6568 		return (EINVAL);
6569 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6570 	if (error)
6571 		return (error);
6572 	if (vc.vc_vers != VFS_CTL_VERS1)
6573 		return (EINVAL);
6574 	mp = vfs_getvfs(&vc.vc_fsid);
6575 	if (mp == NULL)
6576 		return (ENOENT);
6577 	/* ensure that a specific sysctl goes to the right filesystem. */
6578 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6579 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6580 		vfs_rel(mp);
6581 		return (EINVAL);
6582 	}
6583 	VCTLTOREQ(&vc, req);
6584 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6585 	vfs_rel(mp);
6586 	return (error);
6587 }
6588 
6589 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6590     NULL, 0, sysctl_vfs_ctl, "",
6591     "Sysctl by fsid");
6592 
6593 /*
6594  * Function to initialize a va_filerev field sensibly.
6595  * XXX: Wouldn't a random number make a lot more sense ??
6596  */
6597 u_quad_t
init_va_filerev(void)6598 init_va_filerev(void)
6599 {
6600 	struct bintime bt;
6601 
6602 	getbinuptime(&bt);
6603 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6604 }
6605 
6606 static int	filt_vfsread(struct knote *kn, long hint);
6607 static int	filt_vfswrite(struct knote *kn, long hint);
6608 static int	filt_vfsvnode(struct knote *kn, long hint);
6609 static void	filt_vfsdetach(struct knote *kn);
6610 static int	filt_vfsdump(struct proc *p, struct knote *kn,
6611 		    struct kinfo_knote *kin);
6612 
6613 static const struct filterops vfsread_filtops = {
6614 	.f_isfd = 1,
6615 	.f_detach = filt_vfsdetach,
6616 	.f_event = filt_vfsread,
6617 	.f_userdump = filt_vfsdump,
6618 };
6619 static const struct filterops vfswrite_filtops = {
6620 	.f_isfd = 1,
6621 	.f_detach = filt_vfsdetach,
6622 	.f_event = filt_vfswrite,
6623 	.f_userdump = filt_vfsdump,
6624 };
6625 static const struct filterops vfsvnode_filtops = {
6626 	.f_isfd = 1,
6627 	.f_detach = filt_vfsdetach,
6628 	.f_event = filt_vfsvnode,
6629 	.f_userdump = filt_vfsdump,
6630 };
6631 
6632 static void
vfs_knllock(void * arg)6633 vfs_knllock(void *arg)
6634 {
6635 	struct vnode *vp = arg;
6636 
6637 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6638 }
6639 
6640 static void
vfs_knlunlock(void * arg)6641 vfs_knlunlock(void *arg)
6642 {
6643 	struct vnode *vp = arg;
6644 
6645 	VOP_UNLOCK(vp);
6646 }
6647 
6648 static void
vfs_knl_assert_lock(void * arg,int what)6649 vfs_knl_assert_lock(void *arg, int what)
6650 {
6651 #ifdef INVARIANTS
6652 	struct vnode *vp = arg;
6653 
6654 	if (what == LA_LOCKED)
6655 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6656 	else
6657 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6658 #endif
6659 }
6660 
6661 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6662 vfs_kqfilter(struct vop_kqfilter_args *ap)
6663 {
6664 	struct vnode *vp = ap->a_vp;
6665 	struct knote *kn = ap->a_kn;
6666 	struct knlist *knl;
6667 
6668 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6669 	    kn->kn_filter != EVFILT_WRITE),
6670 	    ("READ/WRITE filter on a FIFO leaked through"));
6671 	switch (kn->kn_filter) {
6672 	case EVFILT_READ:
6673 		kn->kn_fop = &vfsread_filtops;
6674 		break;
6675 	case EVFILT_WRITE:
6676 		kn->kn_fop = &vfswrite_filtops;
6677 		break;
6678 	case EVFILT_VNODE:
6679 		kn->kn_fop = &vfsvnode_filtops;
6680 		break;
6681 	default:
6682 		return (EINVAL);
6683 	}
6684 
6685 	kn->kn_hook = (caddr_t)vp;
6686 
6687 	v_addpollinfo(vp);
6688 	if (vp->v_pollinfo == NULL)
6689 		return (ENOMEM);
6690 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6691 	vhold(vp);
6692 	knlist_add(knl, kn, 0);
6693 
6694 	return (0);
6695 }
6696 
6697 /*
6698  * Detach knote from vnode
6699  */
6700 static void
filt_vfsdetach(struct knote * kn)6701 filt_vfsdetach(struct knote *kn)
6702 {
6703 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6704 
6705 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6706 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6707 	vdrop(vp);
6708 }
6709 
6710 /*ARGSUSED*/
6711 static int
filt_vfsread(struct knote * kn,long hint)6712 filt_vfsread(struct knote *kn, long hint)
6713 {
6714 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6715 	off_t size;
6716 	int res;
6717 
6718 	/*
6719 	 * filesystem is gone, so set the EOF flag and schedule
6720 	 * the knote for deletion.
6721 	 */
6722 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6723 		VI_LOCK(vp);
6724 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6725 		VI_UNLOCK(vp);
6726 		return (1);
6727 	}
6728 
6729 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6730 		return (0);
6731 
6732 	VI_LOCK(vp);
6733 	kn->kn_data = size - kn->kn_fp->f_offset;
6734 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6735 	VI_UNLOCK(vp);
6736 	return (res);
6737 }
6738 
6739 /*ARGSUSED*/
6740 static int
filt_vfswrite(struct knote * kn,long hint)6741 filt_vfswrite(struct knote *kn, long hint)
6742 {
6743 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6744 
6745 	VI_LOCK(vp);
6746 
6747 	/*
6748 	 * filesystem is gone, so set the EOF flag and schedule
6749 	 * the knote for deletion.
6750 	 */
6751 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6752 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6753 
6754 	kn->kn_data = 0;
6755 	VI_UNLOCK(vp);
6756 	return (1);
6757 }
6758 
6759 static int
filt_vfsvnode(struct knote * kn,long hint)6760 filt_vfsvnode(struct knote *kn, long hint)
6761 {
6762 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6763 	int res;
6764 
6765 	VI_LOCK(vp);
6766 	if (kn->kn_sfflags & hint)
6767 		kn->kn_fflags |= hint;
6768 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6769 		kn->kn_flags |= EV_EOF;
6770 		VI_UNLOCK(vp);
6771 		return (1);
6772 	}
6773 	res = (kn->kn_fflags != 0);
6774 	VI_UNLOCK(vp);
6775 	return (res);
6776 }
6777 
6778 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6779 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6780 {
6781 	struct vattr va;
6782 	struct vnode *vp;
6783 	char *fullpath, *freepath;
6784 	int error;
6785 
6786 	kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6787 
6788 	vp = kn->kn_fp->f_vnode;
6789 	kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6790 
6791 	va.va_fsid = VNOVAL;
6792 	vn_lock(vp, LK_SHARED | LK_RETRY);
6793 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6794 	VOP_UNLOCK(vp);
6795 	if (error != 0)
6796 		return (error);
6797 	kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6798 	kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6799 
6800 	freepath = NULL;
6801 	fullpath = "-";
6802 	error = vn_fullpath(vp, &fullpath, &freepath);
6803 	if (error == 0) {
6804 		strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6805 		    sizeof(kin->knt_vnode.knt_vnode_fullpath));
6806 	}
6807 	if (freepath != NULL)
6808 		free(freepath, M_TEMP);
6809 
6810 	return (0);
6811 }
6812 
6813 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6814 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6815 {
6816 	int error;
6817 
6818 	if (dp->d_reclen > ap->a_uio->uio_resid)
6819 		return (ENAMETOOLONG);
6820 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6821 	if (error) {
6822 		if (ap->a_ncookies != NULL) {
6823 			if (ap->a_cookies != NULL)
6824 				free(ap->a_cookies, M_TEMP);
6825 			ap->a_cookies = NULL;
6826 			*ap->a_ncookies = 0;
6827 		}
6828 		return (error);
6829 	}
6830 	if (ap->a_ncookies == NULL)
6831 		return (0);
6832 
6833 	KASSERT(ap->a_cookies,
6834 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6835 
6836 	*ap->a_cookies = realloc(*ap->a_cookies,
6837 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6838 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6839 	*ap->a_ncookies += 1;
6840 	return (0);
6841 }
6842 
6843 /*
6844  * The purpose of this routine is to remove granularity from accmode_t,
6845  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6846  * VADMIN and VAPPEND.
6847  *
6848  * If it returns 0, the caller is supposed to continue with the usual
6849  * access checks using 'accmode' as modified by this routine.  If it
6850  * returns nonzero value, the caller is supposed to return that value
6851  * as errno.
6852  *
6853  * Note that after this routine runs, accmode may be zero.
6854  */
6855 int
vfs_unixify_accmode(accmode_t * accmode)6856 vfs_unixify_accmode(accmode_t *accmode)
6857 {
6858 	/*
6859 	 * There is no way to specify explicit "deny" rule using
6860 	 * file mode or POSIX.1e ACLs.
6861 	 */
6862 	if (*accmode & VEXPLICIT_DENY) {
6863 		*accmode = 0;
6864 		return (0);
6865 	}
6866 
6867 	/*
6868 	 * None of these can be translated into usual access bits.
6869 	 * Also, the common case for NFSv4 ACLs is to not contain
6870 	 * either of these bits. Caller should check for VWRITE
6871 	 * on the containing directory instead.
6872 	 */
6873 	if (*accmode & (VDELETE_CHILD | VDELETE))
6874 		return (EPERM);
6875 
6876 	if (*accmode & VADMIN_PERMS) {
6877 		*accmode &= ~VADMIN_PERMS;
6878 		*accmode |= VADMIN;
6879 	}
6880 
6881 	/*
6882 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6883 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6884 	 */
6885 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6886 
6887 	return (0);
6888 }
6889 
6890 /*
6891  * Clear out a doomed vnode (if any) and replace it with a new one as long
6892  * as the fs is not being unmounted. Return the root vnode to the caller.
6893  */
6894 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6895 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6896 {
6897 	struct vnode *vp;
6898 	int error;
6899 
6900 restart:
6901 	if (mp->mnt_rootvnode != NULL) {
6902 		MNT_ILOCK(mp);
6903 		vp = mp->mnt_rootvnode;
6904 		if (vp != NULL) {
6905 			if (!VN_IS_DOOMED(vp)) {
6906 				vrefact(vp);
6907 				MNT_IUNLOCK(mp);
6908 				error = vn_lock(vp, flags);
6909 				if (error == 0) {
6910 					*vpp = vp;
6911 					return (0);
6912 				}
6913 				vrele(vp);
6914 				goto restart;
6915 			}
6916 			/*
6917 			 * Clear the old one.
6918 			 */
6919 			mp->mnt_rootvnode = NULL;
6920 		}
6921 		MNT_IUNLOCK(mp);
6922 		if (vp != NULL) {
6923 			vfs_op_barrier_wait(mp);
6924 			vrele(vp);
6925 		}
6926 	}
6927 	error = VFS_CACHEDROOT(mp, flags, vpp);
6928 	if (error != 0)
6929 		return (error);
6930 	if (mp->mnt_vfs_ops == 0) {
6931 		MNT_ILOCK(mp);
6932 		if (mp->mnt_vfs_ops != 0) {
6933 			MNT_IUNLOCK(mp);
6934 			return (0);
6935 		}
6936 		if (mp->mnt_rootvnode == NULL) {
6937 			vrefact(*vpp);
6938 			mp->mnt_rootvnode = *vpp;
6939 		} else {
6940 			if (mp->mnt_rootvnode != *vpp) {
6941 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6942 					panic("%s: mismatch between vnode returned "
6943 					    " by VFS_CACHEDROOT and the one cached "
6944 					    " (%p != %p)",
6945 					    __func__, *vpp, mp->mnt_rootvnode);
6946 				}
6947 			}
6948 		}
6949 		MNT_IUNLOCK(mp);
6950 	}
6951 	return (0);
6952 }
6953 
6954 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6955 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6956 {
6957 	struct mount_pcpu *mpcpu;
6958 	struct vnode *vp;
6959 	int error;
6960 
6961 	if (!vfs_op_thread_enter(mp, mpcpu))
6962 		return (vfs_cache_root_fallback(mp, flags, vpp));
6963 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6964 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6965 		vfs_op_thread_exit(mp, mpcpu);
6966 		return (vfs_cache_root_fallback(mp, flags, vpp));
6967 	}
6968 	vrefact(vp);
6969 	vfs_op_thread_exit(mp, mpcpu);
6970 	error = vn_lock(vp, flags);
6971 	if (error != 0) {
6972 		vrele(vp);
6973 		return (vfs_cache_root_fallback(mp, flags, vpp));
6974 	}
6975 	*vpp = vp;
6976 	return (0);
6977 }
6978 
6979 struct vnode *
vfs_cache_root_clear(struct mount * mp)6980 vfs_cache_root_clear(struct mount *mp)
6981 {
6982 	struct vnode *vp;
6983 
6984 	/*
6985 	 * ops > 0 guarantees there is nobody who can see this vnode
6986 	 */
6987 	MPASS(mp->mnt_vfs_ops > 0);
6988 	vp = mp->mnt_rootvnode;
6989 	if (vp != NULL)
6990 		vn_seqc_write_begin(vp);
6991 	mp->mnt_rootvnode = NULL;
6992 	return (vp);
6993 }
6994 
6995 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6996 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6997 {
6998 
6999 	MPASS(mp->mnt_vfs_ops > 0);
7000 	vrefact(vp);
7001 	mp->mnt_rootvnode = vp;
7002 }
7003 
7004 /*
7005  * These are helper functions for filesystems to traverse all
7006  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7007  *
7008  * This interface replaces MNT_VNODE_FOREACH.
7009  */
7010 
7011 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7012 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7013 {
7014 	struct vnode *vp;
7015 
7016 	maybe_yield();
7017 	MNT_ILOCK(mp);
7018 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7019 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7020 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7021 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7022 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7023 			continue;
7024 		VI_LOCK(vp);
7025 		if (VN_IS_DOOMED(vp)) {
7026 			VI_UNLOCK(vp);
7027 			continue;
7028 		}
7029 		break;
7030 	}
7031 	if (vp == NULL) {
7032 		__mnt_vnode_markerfree_all(mvp, mp);
7033 		/* MNT_IUNLOCK(mp); -- done in above function */
7034 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7035 		return (NULL);
7036 	}
7037 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7038 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7039 	MNT_IUNLOCK(mp);
7040 	return (vp);
7041 }
7042 
7043 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7044 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7045 {
7046 	struct vnode *vp;
7047 
7048 	*mvp = vn_alloc_marker(mp);
7049 	MNT_ILOCK(mp);
7050 	MNT_REF(mp);
7051 
7052 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7053 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7054 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7055 			continue;
7056 		VI_LOCK(vp);
7057 		if (VN_IS_DOOMED(vp)) {
7058 			VI_UNLOCK(vp);
7059 			continue;
7060 		}
7061 		break;
7062 	}
7063 	if (vp == NULL) {
7064 		MNT_REL(mp);
7065 		MNT_IUNLOCK(mp);
7066 		vn_free_marker(*mvp);
7067 		*mvp = NULL;
7068 		return (NULL);
7069 	}
7070 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7071 	MNT_IUNLOCK(mp);
7072 	return (vp);
7073 }
7074 
7075 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7076 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7077 {
7078 
7079 	if (*mvp == NULL) {
7080 		MNT_IUNLOCK(mp);
7081 		return;
7082 	}
7083 
7084 	mtx_assert(MNT_MTX(mp), MA_OWNED);
7085 
7086 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7087 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7088 	MNT_REL(mp);
7089 	MNT_IUNLOCK(mp);
7090 	vn_free_marker(*mvp);
7091 	*mvp = NULL;
7092 }
7093 
7094 /*
7095  * These are helper functions for filesystems to traverse their
7096  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7097  */
7098 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7099 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7100 {
7101 
7102 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7103 
7104 	MNT_ILOCK(mp);
7105 	MNT_REL(mp);
7106 	MNT_IUNLOCK(mp);
7107 	vn_free_marker(*mvp);
7108 	*mvp = NULL;
7109 }
7110 
7111 /*
7112  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7113  * conventional lock order during mnt_vnode_next_lazy iteration.
7114  *
7115  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7116  * The list lock is dropped and reacquired.  On success, both locks are held.
7117  * On failure, the mount vnode list lock is held but the vnode interlock is
7118  * not, and the procedure may have yielded.
7119  */
7120 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7121 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7122     struct vnode *vp)
7123 {
7124 
7125 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7126 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7127 	    ("%s: bad marker", __func__));
7128 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7129 	    ("%s: inappropriate vnode", __func__));
7130 	ASSERT_VI_UNLOCKED(vp, __func__);
7131 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7132 
7133 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7134 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7135 
7136 	/*
7137 	 * Note we may be racing against vdrop which transitioned the hold
7138 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7139 	 * if we are the only user after we get the interlock we will just
7140 	 * vdrop.
7141 	 */
7142 	vhold(vp);
7143 	mtx_unlock(&mp->mnt_listmtx);
7144 	VI_LOCK(vp);
7145 	if (VN_IS_DOOMED(vp)) {
7146 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7147 		goto out_lost;
7148 	}
7149 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7150 	/*
7151 	 * There is nothing to do if we are the last user.
7152 	 */
7153 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7154 		goto out_lost;
7155 	mtx_lock(&mp->mnt_listmtx);
7156 	return (true);
7157 out_lost:
7158 	vdropl(vp);
7159 	maybe_yield();
7160 	mtx_lock(&mp->mnt_listmtx);
7161 	return (false);
7162 }
7163 
7164 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7165 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7166     void *cbarg)
7167 {
7168 	struct vnode *vp;
7169 
7170 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7171 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7172 restart:
7173 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7174 	while (vp != NULL) {
7175 		if (vp->v_type == VMARKER) {
7176 			vp = TAILQ_NEXT(vp, v_lazylist);
7177 			continue;
7178 		}
7179 		/*
7180 		 * See if we want to process the vnode. Note we may encounter a
7181 		 * long string of vnodes we don't care about and hog the list
7182 		 * as a result. Check for it and requeue the marker.
7183 		 */
7184 		VNPASS(!VN_IS_DOOMED(vp), vp);
7185 		if (!cb(vp, cbarg)) {
7186 			if (!should_yield()) {
7187 				vp = TAILQ_NEXT(vp, v_lazylist);
7188 				continue;
7189 			}
7190 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7191 			    v_lazylist);
7192 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7193 			    v_lazylist);
7194 			mtx_unlock(&mp->mnt_listmtx);
7195 			kern_yield(PRI_USER);
7196 			mtx_lock(&mp->mnt_listmtx);
7197 			goto restart;
7198 		}
7199 		/*
7200 		 * Try-lock because this is the wrong lock order.
7201 		 */
7202 		if (!VI_TRYLOCK(vp) &&
7203 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7204 			goto restart;
7205 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7206 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7207 		    ("alien vnode on the lazy list %p %p", vp, mp));
7208 		VNPASS(vp->v_mount == mp, vp);
7209 		VNPASS(!VN_IS_DOOMED(vp), vp);
7210 		break;
7211 	}
7212 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7213 
7214 	/* Check if we are done */
7215 	if (vp == NULL) {
7216 		mtx_unlock(&mp->mnt_listmtx);
7217 		mnt_vnode_markerfree_lazy(mvp, mp);
7218 		return (NULL);
7219 	}
7220 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7221 	mtx_unlock(&mp->mnt_listmtx);
7222 	ASSERT_VI_LOCKED(vp, "lazy iter");
7223 	return (vp);
7224 }
7225 
7226 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7227 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7228     void *cbarg)
7229 {
7230 
7231 	maybe_yield();
7232 	mtx_lock(&mp->mnt_listmtx);
7233 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7234 }
7235 
7236 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7237 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7238     void *cbarg)
7239 {
7240 	struct vnode *vp;
7241 
7242 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7243 		return (NULL);
7244 
7245 	*mvp = vn_alloc_marker(mp);
7246 	MNT_ILOCK(mp);
7247 	MNT_REF(mp);
7248 	MNT_IUNLOCK(mp);
7249 
7250 	mtx_lock(&mp->mnt_listmtx);
7251 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7252 	if (vp == NULL) {
7253 		mtx_unlock(&mp->mnt_listmtx);
7254 		mnt_vnode_markerfree_lazy(mvp, mp);
7255 		return (NULL);
7256 	}
7257 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7258 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7259 }
7260 
7261 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7262 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7263 {
7264 
7265 	if (*mvp == NULL)
7266 		return;
7267 
7268 	mtx_lock(&mp->mnt_listmtx);
7269 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7270 	mtx_unlock(&mp->mnt_listmtx);
7271 	mnt_vnode_markerfree_lazy(mvp, mp);
7272 }
7273 
7274 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7275 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7276 {
7277 
7278 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7279 		cnp->cn_flags &= ~NOEXECCHECK;
7280 		return (0);
7281 	}
7282 
7283 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7284 }
7285 
7286 /*
7287  * Do not use this variant unless you have means other than the hold count
7288  * to prevent the vnode from getting freed.
7289  */
7290 void
vn_seqc_write_begin_locked(struct vnode * vp)7291 vn_seqc_write_begin_locked(struct vnode *vp)
7292 {
7293 
7294 	ASSERT_VI_LOCKED(vp, __func__);
7295 	VNPASS(vp->v_holdcnt > 0, vp);
7296 	VNPASS(vp->v_seqc_users >= 0, vp);
7297 	vp->v_seqc_users++;
7298 	if (vp->v_seqc_users == 1)
7299 		seqc_sleepable_write_begin(&vp->v_seqc);
7300 }
7301 
7302 void
vn_seqc_write_begin(struct vnode * vp)7303 vn_seqc_write_begin(struct vnode *vp)
7304 {
7305 
7306 	VI_LOCK(vp);
7307 	vn_seqc_write_begin_locked(vp);
7308 	VI_UNLOCK(vp);
7309 }
7310 
7311 void
vn_seqc_write_end_locked(struct vnode * vp)7312 vn_seqc_write_end_locked(struct vnode *vp)
7313 {
7314 
7315 	ASSERT_VI_LOCKED(vp, __func__);
7316 	VNPASS(vp->v_seqc_users > 0, vp);
7317 	vp->v_seqc_users--;
7318 	if (vp->v_seqc_users == 0)
7319 		seqc_sleepable_write_end(&vp->v_seqc);
7320 }
7321 
7322 void
vn_seqc_write_end(struct vnode * vp)7323 vn_seqc_write_end(struct vnode *vp)
7324 {
7325 
7326 	VI_LOCK(vp);
7327 	vn_seqc_write_end_locked(vp);
7328 	VI_UNLOCK(vp);
7329 }
7330 
7331 /*
7332  * Special case handling for allocating and freeing vnodes.
7333  *
7334  * The counter remains unchanged on free so that a doomed vnode will
7335  * keep testing as in modify as long as it is accessible with SMR.
7336  */
7337 static void
vn_seqc_init(struct vnode * vp)7338 vn_seqc_init(struct vnode *vp)
7339 {
7340 
7341 	vp->v_seqc = 0;
7342 	vp->v_seqc_users = 0;
7343 }
7344 
7345 static void
vn_seqc_write_end_free(struct vnode * vp)7346 vn_seqc_write_end_free(struct vnode *vp)
7347 {
7348 
7349 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7350 	VNPASS(vp->v_seqc_users == 1, vp);
7351 }
7352 
7353 void
vn_irflag_set_locked(struct vnode * vp,short toset)7354 vn_irflag_set_locked(struct vnode *vp, short toset)
7355 {
7356 	short flags;
7357 
7358 	ASSERT_VI_LOCKED(vp, __func__);
7359 	flags = vn_irflag_read(vp);
7360 	VNASSERT((flags & toset) == 0, vp,
7361 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7362 	    __func__, flags, toset));
7363 	atomic_store_short(&vp->v_irflag, flags | toset);
7364 }
7365 
7366 void
vn_irflag_set(struct vnode * vp,short toset)7367 vn_irflag_set(struct vnode *vp, short toset)
7368 {
7369 
7370 	VI_LOCK(vp);
7371 	vn_irflag_set_locked(vp, toset);
7372 	VI_UNLOCK(vp);
7373 }
7374 
7375 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7376 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7377 {
7378 	short flags;
7379 
7380 	ASSERT_VI_LOCKED(vp, __func__);
7381 	flags = vn_irflag_read(vp);
7382 	atomic_store_short(&vp->v_irflag, flags | toset);
7383 }
7384 
7385 void
vn_irflag_set_cond(struct vnode * vp,short toset)7386 vn_irflag_set_cond(struct vnode *vp, short toset)
7387 {
7388 
7389 	VI_LOCK(vp);
7390 	vn_irflag_set_cond_locked(vp, toset);
7391 	VI_UNLOCK(vp);
7392 }
7393 
7394 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7395 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7396 {
7397 	short flags;
7398 
7399 	ASSERT_VI_LOCKED(vp, __func__);
7400 	flags = vn_irflag_read(vp);
7401 	VNASSERT((flags & tounset) == tounset, vp,
7402 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7403 	    __func__, flags, tounset));
7404 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7405 }
7406 
7407 void
vn_irflag_unset(struct vnode * vp,short tounset)7408 vn_irflag_unset(struct vnode *vp, short tounset)
7409 {
7410 
7411 	VI_LOCK(vp);
7412 	vn_irflag_unset_locked(vp, tounset);
7413 	VI_UNLOCK(vp);
7414 }
7415 
7416 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7417 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7418 {
7419 	struct vattr vattr;
7420 	int error;
7421 
7422 	ASSERT_VOP_LOCKED(vp, __func__);
7423 	error = VOP_GETATTR(vp, &vattr, cred);
7424 	if (__predict_true(error == 0)) {
7425 		if (vattr.va_size <= OFF_MAX)
7426 			*size = vattr.va_size;
7427 		else
7428 			error = EFBIG;
7429 	}
7430 	return (error);
7431 }
7432 
7433 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7434 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7435 {
7436 	int error;
7437 
7438 	VOP_LOCK(vp, LK_SHARED);
7439 	error = vn_getsize_locked(vp, size, cred);
7440 	VOP_UNLOCK(vp);
7441 	return (error);
7442 }
7443 
7444 #ifdef INVARIANTS
7445 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7446 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7447 {
7448 
7449 	switch (vp->v_state) {
7450 	case VSTATE_UNINITIALIZED:
7451 		switch (state) {
7452 		case VSTATE_CONSTRUCTED:
7453 		case VSTATE_DESTROYING:
7454 			return;
7455 		default:
7456 			break;
7457 		}
7458 		break;
7459 	case VSTATE_CONSTRUCTED:
7460 		ASSERT_VOP_ELOCKED(vp, __func__);
7461 		switch (state) {
7462 		case VSTATE_DESTROYING:
7463 			return;
7464 		default:
7465 			break;
7466 		}
7467 		break;
7468 	case VSTATE_DESTROYING:
7469 		ASSERT_VOP_ELOCKED(vp, __func__);
7470 		switch (state) {
7471 		case VSTATE_DEAD:
7472 			return;
7473 		default:
7474 			break;
7475 		}
7476 		break;
7477 	case VSTATE_DEAD:
7478 		switch (state) {
7479 		case VSTATE_UNINITIALIZED:
7480 			return;
7481 		default:
7482 			break;
7483 		}
7484 		break;
7485 	}
7486 
7487 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7488 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7489 }
7490 #endif
7491