xref: /titanic_51/usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_seq.c (revision 54925bf60766fbb4f1f2d7c843721406a7b7a3fb)
1 /*
2  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 #pragma ident	"%Z%%M%	%I%	%E% SMI"
7 
8 /*
9  * Copyright (C) 2002 by the Massachusetts Institute of Technology.
10  * All rights reserved.
11  *
12  * Export of this software from the United States of America may
13  *   require a specific license from the United States Government.
14  *   It is the responsibility of any person or organization contemplating
15  *   export to obtain such a license before exporting.
16  *
17  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
18  * distribute this software and its documentation for any purpose and
19  * without fee is hereby granted, provided that the above copyright
20  * notice appear in all copies and that both that copyright notice and
21  * this permission notice appear in supporting documentation, and that
22  * the name of M.I.T. not be used in advertising or publicity pertaining
23  * to distribution of the software without specific, written prior
24  * permission.  Furthermore if you modify this software you must label
25  * your software as modified software and not distribute it in such a
26  * fashion that it might be confused with the original M.I.T. software.
27  * M.I.T. makes no representations about the suitability of
28  * this software for any purpose.  It is provided "as is" without express
29  * or implied warranty.
30  */
31 
32 /*-
33  * Copyright (c) 1990, 1993, 1994
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software contributed to Berkeley by
37  * Mike Olson.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgement:
49  *	This product includes software developed by the University of
50  *	California, Berkeley and its contributors.
51  * 4. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  */
67 
68 #if defined(LIBC_SCCS) && !defined(lint)
69 static char sccsid[] = "@(#)bt_seq.c	8.9 (Berkeley) 6/20/95";
70 #endif /* LIBC_SCCS and not lint */
71 
72 #include <sys/types.h>
73 
74 #include <errno.h>
75 #include <stddef.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <string.h>
79 
80 #include "db-int.h"
81 #include "btree.h"
82 
83 static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
84 static int __bt_seqadv __P((BTREE *, EPG *, int));
85 static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));
86 
87 /*
88  * Sequential scan support.
89  *
90  * The tree can be scanned sequentially, starting from either end of the
91  * tree or from any specific key.  A scan request before any scanning is
92  * done is initialized as starting from the least node.
93  */
94 
95 /*
96  * __bt_seq --
97  *	Btree sequential scan interface.
98  *
99  * Parameters:
100  *	dbp:	pointer to access method
101  *	key:	key for positioning and return value
102  *	data:	data return value
103  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
104  *
105  * Returns:
106  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
107  */
108 int
109 __bt_seq(dbp, key, data, flags)
110 	const DB *dbp;
111 	DBT *key, *data;
112 	u_int flags;
113 {
114 	BTREE *t;
115 	EPG e;
116 	int status;
117 
118 	t = dbp->internal;
119 
120 	/* Toss any page pinned across calls. */
121 	if (t->bt_pinned != NULL) {
122 		mpool_put(t->bt_mp, t->bt_pinned, 0);
123 		t->bt_pinned = NULL;
124 	}
125 
126 	/*
127 	 * If scan unitialized as yet, or starting at a specific record, set
128 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
129 	 * the page the cursor references if they're successful.
130 	 */
131 	switch (flags) {
132 	case R_NEXT:
133 	case R_PREV:
134 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
135 			status = __bt_seqadv(t, &e, flags);
136 			break;
137 		}
138 		/* FALLTHROUGH */
139 	case R_FIRST:
140 	case R_LAST:
141 	case R_CURSOR:
142 		status = __bt_seqset(t, &e, key, flags);
143 		break;
144 	default:
145 		errno = EINVAL;
146 		return (RET_ERROR);
147 	}
148 
149 	if (status == RET_SUCCESS) {
150 		__bt_setcur(t, e.page->pgno, e.index);
151 
152 		status =
153 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
154 
155 		/*
156 		 * If the user is doing concurrent access, we copied the
157 		 * key/data, toss the page.
158 		 */
159 		if (F_ISSET(t, B_DB_LOCK))
160 			mpool_put(t->bt_mp, e.page, 0);
161 		else
162 			t->bt_pinned = e.page;
163 	}
164 	return (status);
165 }
166 
167 /*
168  * __bt_seqset --
169  *	Set the sequential scan to a specific key.
170  *
171  * Parameters:
172  *	t:	tree
173  *	ep:	storage for returned key
174  *	key:	key for initial scan position
175  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
176  *
177  * Side effects:
178  *	Pins the page the cursor references.
179  *
180  * Returns:
181  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
182  */
183 static int
184 __bt_seqset(t, ep, key, flags)
185 	BTREE *t;
186 	EPG *ep;
187 	DBT *key;
188 	int flags;
189 {
190 	PAGE *h;
191 	db_pgno_t pg;
192 	int exact;
193 
194 	/*
195 	 * Find the first, last or specific key in the tree and point the
196 	 * cursor at it.  The cursor may not be moved until a new key has
197 	 * been found.
198 	 */
199 	switch (flags) {
200 	case R_CURSOR:				/* Keyed scan. */
201 		/*
202 		 * Find the first instance of the key or the smallest key
203 		 * which is greater than or equal to the specified key.
204 		 */
205 		if (key->data == NULL || key->size == 0) {
206 			errno = EINVAL;
207 			return (RET_ERROR);
208 		}
209 		return (__bt_first(t, key, ep, &exact));
210 	case R_FIRST:				/* First record. */
211 	case R_NEXT:
212 		/* Walk down the left-hand side of the tree. */
213 		for (pg = P_ROOT;;) {
214 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
215 				return (RET_ERROR);
216 
217 			/* Check for an empty tree. */
218 			if (NEXTINDEX(h) == 0) {
219 				mpool_put(t->bt_mp, h, 0);
220 				return (RET_SPECIAL);
221 			}
222 
223 			if (h->flags & (P_BLEAF | P_RLEAF))
224 				break;
225 			pg = GETBINTERNAL(h, 0)->pgno;
226 			mpool_put(t->bt_mp, h, 0);
227 		}
228 		ep->page = h;
229 		ep->index = 0;
230 		break;
231 	case R_LAST:				/* Last record. */
232 	case R_PREV:
233 		/* Walk down the right-hand side of the tree. */
234 		for (pg = P_ROOT;;) {
235 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
236 				return (RET_ERROR);
237 
238 			/* Check for an empty tree. */
239 			if (NEXTINDEX(h) == 0) {
240 				mpool_put(t->bt_mp, h, 0);
241 				return (RET_SPECIAL);
242 			}
243 
244 			if (h->flags & (P_BLEAF | P_RLEAF))
245 				break;
246 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
247 			mpool_put(t->bt_mp, h, 0);
248 		}
249 
250 		ep->page = h;
251 		ep->index = NEXTINDEX(h) - 1;
252 		break;
253 	}
254 	return (RET_SUCCESS);
255 }
256 
257 /*
258  * __bt_seqadvance --
259  *	Advance the sequential scan.
260  *
261  * Parameters:
262  *	t:	tree
263  *	flags:	R_NEXT, R_PREV
264  *
265  * Side effects:
266  *	Pins the page the new key/data record is on.
267  *
268  * Returns:
269  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
270  */
271 static int
272 __bt_seqadv(t, ep, flags)
273 	BTREE *t;
274 	EPG *ep;
275 	int flags;
276 {
277 	CURSOR *c;
278 	PAGE *h;
279 	indx_t idx;
280 	db_pgno_t pg;
281 	int exact, rval;
282 
283 	/*
284 	 * There are a couple of states that we can be in.  The cursor has
285 	 * been initialized by the time we get here, but that's all we know.
286 	 */
287 	c = &t->bt_cursor;
288 
289 	/*
290 	 * The cursor was deleted and there weren't any duplicate records,
291 	 * so the cursor's key was saved.  Find out where that key would
292 	 * be in the current tree.  If the returned key is an exact match,
293 	 * it means that a key/data pair was inserted into the tree after
294 	 * the delete.  We could reasonably return the key, but the problem
295 	 * is that this is the access pattern we'll see if the user is
296 	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
297 	 * the cursor record and then replaces it, so the cursor was saved,
298 	 * and we'll simply return the same "new" record until the user
299 	 * notices and doesn't do a put() of it.  Since the key is an exact
300 	 * match, we could as easily put the new record before the cursor,
301 	 * and we've made no guarantee to return it.  So, move forward or
302 	 * back a record if it's an exact match.
303 	 *
304 	 * XXX
305 	 * In the current implementation, put's to the cursor are done with
306 	 * delete/add pairs.  This has two consequences.  First, it means
307 	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
308 	 * the same behavior as above.  Second, you can return the same key
309 	 * twice if you have duplicate records.  The scenario is that the
310 	 * cursor record is deleted, moving the cursor forward or backward
311 	 * to a duplicate.  The add then inserts the new record at a location
312 	 * ahead of the cursor because duplicates aren't sorted in any way,
313 	 * and the new record is later returned.  This has to be fixed at some
314 	 * point.
315 	 */
316 	if (F_ISSET(c, CURS_ACQUIRE)) {
317 		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
318 			return (RET_ERROR);
319 		if (!exact)
320 			return (rval);
321 		/*
322 		 * XXX
323 		 * Kluge -- get, release, get the page.
324 		 */
325 		c->pg.pgno = ep->page->pgno;
326 		c->pg.index = ep->index;
327 		mpool_put(t->bt_mp, ep->page, 0);
328 	}
329 
330 	/* Get the page referenced by the cursor. */
331 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
332 		return (RET_ERROR);
333 
334 	/*
335  	 * Find the next/previous record in the tree and point the cursor at
336 	 * it.  The cursor may not be moved until a new key has been found.
337 	 */
338 	switch (flags) {
339 	case R_NEXT:			/* Next record. */
340 		/*
341 		 * The cursor was deleted in duplicate records, and moved
342 		 * forward to a record that has yet to be returned.  Clear
343 		 * that flag, and return the record.
344 		 */
345 		if (F_ISSET(c, CURS_AFTER))
346 			goto usecurrent;
347 		idx = c->pg.index;
348 		if (++idx == NEXTINDEX(h)) {
349 			pg = h->nextpg;
350 			mpool_put(t->bt_mp, h, 0);
351 			if (pg == P_INVALID)
352 				return (RET_SPECIAL);
353 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
354 				return (RET_ERROR);
355 			idx = 0;
356 		}
357 		break;
358 	case R_PREV:			/* Previous record. */
359 		/*
360 		 * The cursor was deleted in duplicate records, and moved
361 		 * backward to a record that has yet to be returned.  Clear
362 		 * that flag, and return the record.
363 		 */
364 		if (F_ISSET(c, CURS_BEFORE)) {
365 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
366 			ep->page = h;
367 			ep->index = c->pg.index;
368 			return (RET_SUCCESS);
369 		}
370 		idx = c->pg.index;
371 		if (idx == 0) {
372 			pg = h->prevpg;
373 			mpool_put(t->bt_mp, h, 0);
374 			if (pg == P_INVALID)
375 				return (RET_SPECIAL);
376 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
377 				return (RET_ERROR);
378 			idx = NEXTINDEX(h) - 1;
379 		} else
380 			--idx;
381 		break;
382 	}
383 
384 	ep->page = h;
385 	ep->index = idx;
386 	return (RET_SUCCESS);
387 }
388 
389 /*
390  * __bt_first --
391  *	Find the first entry.
392  *
393  * Parameters:
394  *	t:	the tree
395  *    key:	the key
396  *  erval:	return EPG
397  * exactp:	pointer to exact match flag
398  *
399  * Returns:
400  *	The first entry in the tree greater than or equal to key,
401  *	or RET_SPECIAL if no such key exists.
402  */
403 static int
404 __bt_first(t, key, erval, exactp)
405 	BTREE *t;
406 	const DBT *key;
407 	EPG *erval;
408 	int *exactp;
409 {
410 	PAGE *h;
411 	EPG *ep, save;
412 	db_pgno_t pg;
413 
414 	/*
415 	 * Find any matching record; __bt_search pins the page.
416 	 *
417 	 * If it's an exact match and duplicates are possible, walk backwards
418 	 * in the tree until we find the first one.  Otherwise, make sure it's
419 	 * a valid key (__bt_search may return an index just past the end of a
420 	 * page) and return it.
421 	 */
422 	if ((ep = __bt_search(t, key, exactp)) == NULL)
423 		return (RET_SPECIAL);
424 	if (*exactp) {
425 		if (F_ISSET(t, B_NODUPS)) {
426 			*erval = *ep;
427 			return (RET_SUCCESS);
428 		}
429 
430 		/*
431 		 * Walk backwards, as long as the entry matches and there are
432 		 * keys left in the tree.  Save a copy of each match in case
433 		 * we go too far.
434 		 */
435 		save = *ep;
436 		h = ep->page;
437 		do {
438 			if (save.page->pgno != ep->page->pgno) {
439 				mpool_put(t->bt_mp, save.page, 0);
440 				save = *ep;
441 			} else
442 				save.index = ep->index;
443 
444 			/*
445 			 * Don't unpin the page the last (or original) match
446 			 * was on, but make sure it's unpinned if an error
447 			 * occurs.
448 			 */
449 			if (ep->index == 0) {
450 				if (h->prevpg == P_INVALID)
451 					break;
452 				if (h->pgno != save.page->pgno)
453 					mpool_put(t->bt_mp, h, 0);
454 				if ((h = mpool_get(t->bt_mp,
455 				    h->prevpg, 0)) == NULL) {
456 					if (h->pgno == save.page->pgno)
457 						mpool_put(t->bt_mp,
458 						    save.page, 0);
459 					return (RET_ERROR);
460 				}
461 				ep->page = h;
462 				ep->index = NEXTINDEX(h);
463 			}
464 			--ep->index;
465 		} while (__bt_cmp(t, key, ep) == 0);
466 
467 		/*
468 		 * Reach here with the last page that was looked at pinned,
469 		 * which may or may not be the same as the last (or original)
470 		 * match page.  If it's not useful, release it.
471 		 */
472 		if (h->pgno != save.page->pgno)
473 			mpool_put(t->bt_mp, h, 0);
474 
475 		*erval = save;
476 		return (RET_SUCCESS);
477 	}
478 
479 	/* If at the end of a page, find the next entry. */
480 	if (ep->index == NEXTINDEX(ep->page)) {
481 		h = ep->page;
482 		pg = h->nextpg;
483 		mpool_put(t->bt_mp, h, 0);
484 		if (pg == P_INVALID)
485 			return (RET_SPECIAL);
486 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
487 			return (RET_ERROR);
488 		ep->index = 0;
489 		ep->page = h;
490 	}
491 	*erval = *ep;
492 	return (RET_SUCCESS);
493 }
494 
495 /*
496  * __bt_setcur --
497  *	Set the cursor to an entry in the tree.
498  *
499  * Parameters:
500  *	t:	the tree
501  *   pgno:	page number
502  *  index:	page index
503  */
504 void
505 __bt_setcur(t, pgno, idx)
506 	BTREE *t;
507 	db_pgno_t pgno;
508 	u_int idx;
509 {
510 	/* Lose any already deleted key. */
511 	if (t->bt_cursor.key.data != NULL) {
512 		free(t->bt_cursor.key.data);
513 		t->bt_cursor.key.size = 0;
514 		t->bt_cursor.key.data = NULL;
515 	}
516 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
517 
518 	/* Update the cursor. */
519 	t->bt_cursor.pg.pgno = pgno;
520 	t->bt_cursor.pg.index = idx;
521 	F_SET(&t->bt_cursor, CURS_INIT);
522 }
523 
524 /* Recursive descent cursor. */
525 typedef struct rcursor_ {
526 	CURSOR	cursor;
527 	size_t	ssize;
528 	EPGNO	*stack;
529 	EPGNO	*sp;
530 } RCURSOR;
531 #define RCURSOR_MINSS	64
532 
533 static int	 bt_rcinit(void **);
534 static void	 bt_rcdestroy(void **);
535 static int	 bt_rcpush(RCURSOR *, db_pgno_t, u_int);
536 static EPGNO	*bt_rcpop(RCURSOR *);
537 static void	 bt_rcclr(RCURSOR *);
538 static int	 bt_rcgrowstk(RCURSOR *);
539 static int	 bt_rseqset(BTREE *, EPG *, DBT *, RCURSOR *, int);
540 static int	 bt_rseqadv(BTREE *, EPG *, RCURSOR *, int);
541 
542 static int
543 bt_rcinit(curs)
544 	void **curs;
545 {
546 	RCURSOR *rc;
547 
548 	rc = *curs = malloc(sizeof(RCURSOR));
549 	if (rc == NULL) {
550 		errno = ENOMEM;
551 		return RET_ERROR;
552 	}
553 	memset(rc, 0, sizeof(*rc));
554 
555 	rc->ssize = RCURSOR_MINSS;
556 	rc->stack = malloc(rc->ssize * sizeof(EPGNO));
557 	if (rc->stack == NULL) {
558 		free(rc);
559 		errno = ENOMEM;
560 		return RET_ERROR;
561 	}
562 	bt_rcclr(rc);
563 	return RET_SUCCESS;
564 }
565 
566 static void
567 bt_rcdestroy(curs)
568 	void **curs;
569 {
570 	RCURSOR *rc;
571 
572 	rc = *curs;
573 	free(rc->stack);
574 	free(rc);
575 	*curs = NULL;
576 }
577 
578 static int
579 bt_rcpush(rc, p, i)
580 	RCURSOR *rc;
581 	db_pgno_t p;
582 	u_int i;
583 {
584 	int status;
585 
586 	rc->sp->pgno = p;
587 	rc->sp->index = i;
588 	if (++rc->sp > rc->stack + rc->ssize) {
589 		status = bt_rcgrowstk(rc);
590 		if (status != RET_SUCCESS)
591 			return status;
592 	}
593 	return RET_SUCCESS;
594 }
595 
596 static EPGNO *
597 bt_rcpop(rc)
598 	RCURSOR *rc;
599 {
600 	return (rc->sp == rc->stack) ? NULL : --rc->sp;
601 }
602 
603 static void
604 bt_rcclr(rc)
605 	RCURSOR *rc;
606 {
607 	rc->sp = rc->stack;
608 }
609 
610 static int
611 bt_rcgrowstk(rc)
612 	RCURSOR *rc;
613 {
614 	size_t osize;
615 	EPGNO *e;
616 
617 	osize = rc->ssize;
618 	rc->ssize *= 2;
619 	e = realloc(rc->stack, rc->ssize * sizeof(EPGNO));
620 	if (e == NULL) {
621 		rc->ssize = osize;
622 		errno = ENOMEM;
623 		return RET_ERROR;
624 	}
625 	rc->stack = e;
626 	return RET_SUCCESS;
627 }
628 
629 /*
630  * bt_rseq --
631  *	Like __bt_seq but does recursive descent tree traversal
632  *	instead of using the prev/next pointers.
633  */
634 int
635 bt_rseq(dbp, key, data, curs, flags)
636 	const DB *dbp;
637 	DBT *key, *data;
638 	void **curs;
639 	u_int flags;
640 {
641 	RCURSOR *rc;
642 	BTREE *t;
643 	EPG e;
644 	int status;
645 
646 	t = dbp->internal;
647 
648 	/* Toss any page pinned across calls. */
649 	if (t->bt_pinned != NULL) {
650 		mpool_put(t->bt_mp, t->bt_pinned, 0);
651 		t->bt_pinned = NULL;
652 	}
653 
654 	if (curs == NULL) {
655 		errno = EINVAL;
656 		return RET_ERROR;
657 	}
658 	if (*curs == NULL) {
659 		status = bt_rcinit(curs);
660 		if (status != RET_SUCCESS)
661 			return RET_ERROR;
662 	}
663 	rc = *curs;
664 
665 	/*
666 	 * If scan unitialized as yet, or starting at a specific record, set
667 	 * the scan to a specific key.  Both bt_rseqset and bt_rseqadv pin
668 	 * the page the cursor references if they're successful.
669 	 */
670 	switch (flags) {
671 	case R_NEXT:
672 	case R_PREV:
673 		if (F_ISSET(&rc->cursor, CURS_INIT)) {
674 			status = bt_rseqadv(t, &e, rc, flags);
675 			break;
676 		}
677 		/* FALLTHROUGH */
678 	case R_FIRST:
679 	case R_LAST:
680 	case R_CURSOR:
681 		status = bt_rseqset(t, &e, key, rc, flags);
682 		break;
683 	default:
684 		errno = EINVAL;
685 		return (RET_ERROR);
686 	}
687 
688 	if (status == RET_SUCCESS) {
689 		status =
690 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
691 
692 		/*
693 		 * If the user is doing concurrent access, we copied the
694 		 * key/data, toss the page.
695 		 */
696 		if (F_ISSET(t, B_DB_LOCK))
697 			mpool_put(t->bt_mp, e.page, 0);
698 		else
699 			t->bt_pinned = e.page;
700 	} else if (status == RET_SPECIAL)
701 		bt_rcdestroy(curs);
702 	return (status);
703 }
704 
705 /*
706  * bt_rseqset --
707  *	Set the sequential scan to a specific key.
708  *
709  * Parameters:
710  *	t:	tree
711  *	ep:	storage for returned key
712  *	key:	key for initial scan position
713  *	rc:	recursion cursor
714  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
715  *
716  * Side effects:
717  *	Pins the page the cursor references.
718  *	Updates rc's stack and cursor.
719  *
720  * Returns:
721  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
722  */
723 static int
724 bt_rseqset(t, ep, key, rc, flags)
725 	BTREE *t;
726 	EPG *ep;
727 	DBT *key;
728 	RCURSOR *rc;
729 	int flags;
730 {
731 	PAGE *h;
732 	db_pgno_t pg;
733 	int status;
734 
735 	/*
736 	 * Find the first, last or specific key in the tree and point the
737 	 * cursor at it.  The cursor may not be moved until a new key has
738 	 * been found.
739 	 */
740 	switch (flags) {
741 	case R_CURSOR:		/* Not implemented. */
742 		errno = EINVAL;
743 		return RET_ERROR;
744 	case R_FIRST:				/* First record. */
745 	case R_NEXT:
746 		bt_rcclr(rc);
747 		/* Walk down the left-hand side of the tree. */
748 		for (pg = P_ROOT;;) {
749 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
750 				return (RET_ERROR);
751 
752 			/* Check for an empty tree. */
753 			if (NEXTINDEX(h) == 0) {
754 				mpool_put(t->bt_mp, h, 0);
755 				return (RET_SPECIAL);
756 			}
757 
758 			if (h->flags & (P_BLEAF | P_RLEAF))
759 				break;
760 			pg = GETBINTERNAL(h, 0)->pgno;
761 			status = bt_rcpush(rc, h->pgno, 0);
762 			mpool_put(t->bt_mp, h, 0);
763 			if (status != RET_SUCCESS)
764 				return status;
765 		}
766 		ep->page = h;
767 		ep->index = 0;
768 		break;
769 	case R_LAST:				/* Last record. */
770 	case R_PREV:
771 		bt_rcclr(rc);
772 		/* Walk down the right-hand side of the tree. */
773 		for (pg = P_ROOT;;) {
774 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
775 				return (RET_ERROR);
776 
777 			/* Check for an empty tree. */
778 			if (NEXTINDEX(h) == 0) {
779 				mpool_put(t->bt_mp, h, 0);
780 				return (RET_SPECIAL);
781 			}
782 
783 			if (h->flags & (P_BLEAF | P_RLEAF))
784 				break;
785 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
786 			status = bt_rcpush(rc, h->pgno, NEXTINDEX(h) - 1);
787 			mpool_put(t->bt_mp, h, 0);
788 			if (status != RET_SUCCESS)
789 				return status;
790 		}
791 		ep->page = h;
792 		ep->index = NEXTINDEX(h) - 1;
793 		break;
794 	}
795 	rc->cursor.pg.pgno = ep->page->pgno;
796 	rc->cursor.pg.index = ep->index;
797 	F_CLR(&rc->cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
798 	F_SET(&rc->cursor, CURS_INIT);
799 	return (RET_SUCCESS);
800 }
801 
802 /*
803  * bt_rseqadvance --
804  *	Advance the sequential scan.
805  *
806  * Parameters:
807  *	t:	tree
808  *	ep:	return page
809  *	rc:	recursion cursor
810  *	flags:	R_NEXT, R_PREV
811  *
812  * Side effects:
813  *	Pins the page the new key/data record is on.
814  *	Updates rc's stack and cursor.
815  *
816  * Returns:
817  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
818  */
819 static int
820 bt_rseqadv(t, ep, rc, flags)
821 	BTREE *t;
822 	EPG *ep;
823 	RCURSOR *rc;
824 	int flags;
825 {
826 	CURSOR *c;
827 	PAGE *h;
828 	indx_t idx;
829 	db_pgno_t pg;
830 	int status;
831 	EPGNO *e;
832 
833 	/*
834 	 * There are a couple of states that we can be in.  The cursor has
835 	 * been initialized by the time we get here, but that's all we know.
836 	 */
837 	c = &rc->cursor;
838 
839 	/* Get the page referenced by the cursor. */
840 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
841 		return (RET_ERROR);
842 
843 	/*
844  	 * Find the next/previous record in the tree and point the cursor at
845 	 * it.  The cursor may not be moved until a new key has been found.
846 	 */
847 	switch (flags) {
848 	case R_NEXT:			/* Next record. */
849 		idx = c->pg.index;
850 		while (++idx == NEXTINDEX(h)) {
851 			/* Crawl up if we hit the right edge. */
852 			e = bt_rcpop(rc);
853 			mpool_put(t->bt_mp, h, 0);
854 			if (e == NULL) /* Hit the right edge of root. */
855 				return RET_SPECIAL;
856 			idx = e->index;
857 			pg = e->pgno;
858 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
859 				return (RET_ERROR);
860 		}
861 		while (!(h->flags & (P_BLEAF | P_RLEAF))) {
862 			/* Crawl down the left until we hit a leaf. */
863 			status = bt_rcpush(rc, h->pgno, idx);
864 			pg = GETBINTERNAL(h, idx)->pgno;
865 			mpool_put(t->bt_mp, h, 0);
866 			if (status != RET_SUCCESS)
867 				return status;
868 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
869 				return (RET_ERROR);
870 			idx = 0;
871 		}
872 		break;
873 	case R_PREV:			/* Previous record. */
874 		idx = c->pg.index;
875 		while (!idx) {
876 			/* Crawl up if we hit the left edge. */
877 			e = bt_rcpop(rc);
878 			mpool_put(t->bt_mp, h, 0);
879 			if (e == NULL) /* Hit the left edge of root. */
880 				return RET_SPECIAL;
881 			idx = e->index;
882 			pg = e->pgno;
883 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
884 				return (RET_ERROR);
885 		}
886 		idx--;
887 		while (!(h->flags & (P_BLEAF | P_RLEAF))) {
888 			/* Crawl down the right until we hit a leaf. */
889 			status = bt_rcpush(rc, h->pgno, idx);
890 			pg = GETBINTERNAL(h, idx)->pgno;
891 			mpool_put(t->bt_mp, h, 0);
892 			if (status != RET_SUCCESS)
893 				return status;
894 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
895 				return (RET_ERROR);
896 			idx = NEXTINDEX(h) - 1;
897 		}
898 		break;
899 	}
900 
901 	ep->page = h;
902 	ep->index = idx;
903 	c->pg.pgno = h->pgno;
904 	c->pg.index = idx;
905 	F_CLR(c, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
906 	F_SET(c, CURS_INIT);
907 	return (RET_SUCCESS);
908 }
909