1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2007-2008,2010
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9 * Copyright (c) 2010 The FreeBSD Foundation
10 * Copyright (c) 2010-2011 Juniper Networks, Inc.
11 * All rights reserved.
12 *
13 * Portions of this software were developed at the Centre for Advanced Internet
14 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15 * James Healy and David Hayes, made possible in part by a grant from the Cisco
16 * University Research Program Fund at Community Foundation Silicon Valley.
17 *
18 * Portions of this software were developed at the Centre for Advanced
19 * Internet Architectures, Swinburne University of Technology, Melbourne,
20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21 *
22 * Portions of this software were developed by Robert N. M. Watson under
23 * contract to Juniper Networks, Inc.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. Neither the name of the University nor the names of its contributors
34 * may be used to endorse or promote products derived from this software
35 * without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */
49
50 #include <sys/cdefs.h>
51 #include "opt_inet.h"
52 #include "opt_inet6.h"
53 #include "opt_ipsec.h"
54 #include "opt_rss.h"
55
56 #include <sys/param.h>
57 #include <sys/arb.h>
58 #include <sys/kernel.h>
59 #ifdef TCP_HHOOK
60 #include <sys/hhook.h>
61 #endif
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h> /* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/qmath.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 #include <sys/stats.h>
75
76 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
77
78 #include <vm/uma.h>
79
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #define TCPSTATES /* for logging */
87
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_rss.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
95 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
96 #include <netinet/ip_var.h>
97 #include <netinet/ip_options.h>
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_rss.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #include <netinet6/nd6.h>
105 #include <netinet/tcp.h>
106 #include <netinet/tcp_fsm.h>
107 #include <netinet/tcp_seq.h>
108 #include <netinet/tcp_timer.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet/tcp_log_buf.h>
111 #include <netinet6/tcp6_var.h>
112 #include <netinet/tcpip.h>
113 #include <netinet/cc/cc.h>
114 #include <netinet/tcp_fastopen.h>
115 #ifdef TCPPCAP
116 #include <netinet/tcp_pcap.h>
117 #endif
118 #include <netinet/tcp_syncache.h>
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 #include <netinet/tcp_ecn.h>
123 #include <netinet/udp.h>
124
125 #include <netipsec/ipsec_support.h>
126
127 #include <machine/in_cksum.h>
128
129 #include <security/mac/mac_framework.h>
130
131 const int tcprexmtthresh = 3;
132
133 VNET_DEFINE(int, tcp_log_in_vain) = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
135 &VNET_NAME(tcp_log_in_vain), 0,
136 "Log all incoming TCP segments to closed ports");
137
138 VNET_DEFINE(int, tcp_bind_all_fibs) = 1;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
140 &VNET_NAME(tcp_bind_all_fibs), 0,
141 "Bound sockets receive traffic from all FIBs");
142
143 VNET_DEFINE(int, blackhole) = 0;
144 #define V_blackhole VNET(blackhole)
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
146 &VNET_NAME(blackhole), 0,
147 "Do not send RST on segments to closed ports");
148
149 VNET_DEFINE(bool, blackhole_local) = false;
150 #define V_blackhole_local VNET(blackhole_local)
151 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
152 CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
153 "Enforce net.inet.tcp.blackhole for locally originated packets");
154
155 VNET_DEFINE(int, tcp_delack_enabled) = 1;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
157 &VNET_NAME(tcp_delack_enabled), 0,
158 "Delay ACK to try and piggyback it onto a data packet");
159
160 VNET_DEFINE(int, drop_synfin) = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
162 &VNET_NAME(drop_synfin), 0,
163 "Drop TCP packets with SYN+FIN set");
164
165 VNET_DEFINE(int, tcp_do_prr) = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
167 &VNET_NAME(tcp_do_prr), 1,
168 "Enable Proportional Rate Reduction per RFC 6937");
169
170 VNET_DEFINE(int, tcp_do_newcwv) = 0;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
172 &VNET_NAME(tcp_do_newcwv), 0,
173 "Enable New Congestion Window Validation per RFC7661");
174
175 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
177 &VNET_NAME(tcp_do_rfc3042), 0,
178 "Enable RFC 3042 (Limited Transmit)");
179
180 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
182 &VNET_NAME(tcp_do_rfc3390), 0,
183 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
184
185 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
187 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
188 "Slow-start flight size (initial congestion window) in number of segments");
189
190 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
192 &VNET_NAME(tcp_do_rfc3465), 0,
193 "Enable RFC 3465 (Appropriate Byte Counting)");
194
195 VNET_DEFINE(int, tcp_abc_l_var) = 2;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
197 &VNET_NAME(tcp_abc_l_var), 2,
198 "Cap the max cwnd increment during slow-start to this number of segments");
199
200 VNET_DEFINE(int, tcp_insecure_syn) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(tcp_insecure_syn), 0,
203 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
204
205 VNET_DEFINE(int, tcp_insecure_rst) = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
207 &VNET_NAME(tcp_insecure_rst), 0,
208 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
209
210 VNET_DEFINE(int, tcp_insecure_ack) = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_ack, CTLFLAG_VNET | CTLFLAG_RW,
212 &VNET_NAME(tcp_insecure_ack), 0,
213 "Follow RFC793 criteria for validating SEG.ACK");
214
215 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
216 #define V_tcp_recvspace VNET(tcp_recvspace)
217 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
218 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
219
220 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
222 &VNET_NAME(tcp_do_autorcvbuf), 0,
223 "Enable automatic receive buffer sizing");
224
225 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
227 &VNET_NAME(tcp_autorcvbuf_max), 0,
228 "Max size of automatic receive buffer");
229
230 VNET_DEFINE(struct inpcbinfo, tcbinfo);
231
232 /*
233 * TCP statistics are stored in an array of counter(9)s, which size matches
234 * size of struct tcpstat. TCP running connection count is a regular array.
235 */
236 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
237 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
238 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
239 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
240 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
241 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
242 "TCP connection counts by TCP state");
243
244 /*
245 * Kernel module interface for updating tcpstat. The first argument is an index
246 * into tcpstat treated as an array.
247 */
248 void
kmod_tcpstat_add(int statnum,int val)249 kmod_tcpstat_add(int statnum, int val)
250 {
251
252 counter_u64_add(VNET(tcpstat)[statnum], val);
253 }
254
255 /*
256 * Make sure that we only start a SACK loss recovery when
257 * receiving a duplicate ACK with a SACK block, and also
258 * complete SACK loss recovery in case the other end
259 * reneges.
260 */
261 static bool inline
tcp_is_sack_recovery(struct tcpcb * tp,struct tcpopt * to)262 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
263 {
264 return ((tp->t_flags & TF_SACK_PERMIT) &&
265 ((to->to_flags & TOF_SACK) ||
266 (!TAILQ_EMPTY(&tp->snd_holes))));
267 }
268
269 #ifdef TCP_HHOOK
270 /*
271 * Wrapper for the TCP established input helper hook.
272 */
273 void
hhook_run_tcp_est_in(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to)274 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
275 {
276 struct tcp_hhook_data hhook_data;
277
278 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
279 hhook_data.tp = tp;
280 hhook_data.th = th;
281 hhook_data.to = to;
282
283 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
284 &tp->t_osd);
285 }
286 }
287 #endif
288
289 /*
290 * CC wrapper hook functions
291 */
292 void
cc_ack_received(struct tcpcb * tp,struct tcphdr * th,uint16_t nsegs,uint16_t type)293 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
294 uint16_t type)
295 {
296 #ifdef STATS
297 int32_t gput;
298 #endif
299
300 INP_WLOCK_ASSERT(tptoinpcb(tp));
301
302 tp->t_ccv.nsegs = nsegs;
303 tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
304 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
305 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
306 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
307 tp->t_ccv.flags |= CCF_CWND_LIMITED;
308 else
309 tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
310
311 if (type == CC_ACK) {
312 #ifdef STATS
313 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
314 ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
315 if (!IN_RECOVERY(tp->t_flags))
316 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
317 tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
318 if ((tp->t_flags & TF_GPUTINPROG) &&
319 SEQ_GEQ(th->th_ack, tp->gput_ack)) {
320 /*
321 * Compute goodput in bits per millisecond.
322 */
323 gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
324 max(1, tcp_ts_getticks() - tp->gput_ts);
325 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
326 gput);
327 /*
328 * XXXLAS: This is a temporary hack, and should be
329 * chained off VOI_TCP_GPUT when stats(9) grows an API
330 * to deal with chained VOIs.
331 */
332 if (tp->t_stats_gput_prev > 0)
333 stats_voi_update_abs_s32(tp->t_stats,
334 VOI_TCP_GPUT_ND,
335 ((gput - tp->t_stats_gput_prev) * 100) /
336 tp->t_stats_gput_prev);
337 tp->t_flags &= ~TF_GPUTINPROG;
338 tp->t_stats_gput_prev = gput;
339 }
340 #endif /* STATS */
341 if (tp->snd_cwnd > tp->snd_ssthresh) {
342 tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
343 if (tp->t_bytes_acked >= tp->snd_cwnd) {
344 tp->t_bytes_acked -= tp->snd_cwnd;
345 tp->t_ccv.flags |= CCF_ABC_SENTAWND;
346 }
347 } else {
348 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
349 tp->t_bytes_acked = 0;
350 }
351 }
352
353 if (CC_ALGO(tp)->ack_received != NULL) {
354 /* XXXLAS: Find a way to live without this */
355 tp->t_ccv.curack = th->th_ack;
356 CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
357 }
358 #ifdef STATS
359 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
360 #endif
361 }
362
363 void
cc_conn_init(struct tcpcb * tp)364 cc_conn_init(struct tcpcb *tp)
365 {
366 struct hc_metrics_lite metrics;
367 struct inpcb *inp = tptoinpcb(tp);
368 u_int maxseg;
369 int rtt;
370
371 INP_WLOCK_ASSERT(inp);
372
373 tcp_hc_get(&inp->inp_inc, &metrics);
374 maxseg = tcp_maxseg(tp);
375
376 if (tp->t_srtt == 0 && (rtt = metrics.hc_rtt)) {
377 tp->t_srtt = rtt;
378 TCPSTAT_INC(tcps_usedrtt);
379 if (metrics.hc_rttvar) {
380 tp->t_rttvar = metrics.hc_rttvar;
381 TCPSTAT_INC(tcps_usedrttvar);
382 } else {
383 /* default variation is +- 1 rtt */
384 tp->t_rttvar =
385 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
386 }
387 TCPT_RANGESET(tp->t_rxtcur,
388 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
389 tp->t_rttmin, TCPTV_REXMTMAX);
390 }
391 if (metrics.hc_ssthresh) {
392 /*
393 * There's some sort of gateway or interface
394 * buffer limit on the path. Use this to set
395 * the slow start threshold, but set the
396 * threshold to no less than 2*mss.
397 */
398 tp->snd_ssthresh = max(2 * maxseg, metrics.hc_ssthresh);
399 TCPSTAT_INC(tcps_usedssthresh);
400 }
401
402 /*
403 * Set the initial slow-start flight size.
404 *
405 * If a SYN or SYN/ACK was lost and retransmitted, we have to
406 * reduce the initial CWND to one segment as congestion is likely
407 * requiring us to be cautious.
408 */
409 if (tp->snd_cwnd == 1)
410 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
411 else
412 tp->snd_cwnd = tcp_compute_initwnd(maxseg);
413
414 if (CC_ALGO(tp)->conn_init != NULL)
415 CC_ALGO(tp)->conn_init(&tp->t_ccv);
416 }
417
418 void inline
cc_cong_signal(struct tcpcb * tp,struct tcphdr * th,uint32_t type)419 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
420 {
421 INP_WLOCK_ASSERT(tptoinpcb(tp));
422
423 #ifdef STATS
424 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
425 #endif
426
427 switch(type) {
428 case CC_NDUPACK:
429 if (!IN_FASTRECOVERY(tp->t_flags)) {
430 tp->snd_recover = tp->snd_max;
431 if (tp->t_flags2 & TF2_ECN_PERMIT)
432 tp->t_flags2 |= TF2_ECN_SND_CWR;
433 }
434 break;
435 case CC_ECN:
436 if (!IN_CONGRECOVERY(tp->t_flags) ||
437 /*
438 * Allow ECN reaction on ACK to CWR, if
439 * that data segment was also CE marked.
440 */
441 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
442 EXIT_CONGRECOVERY(tp->t_flags);
443 TCPSTAT_INC(tcps_ecn_rcwnd);
444 tp->snd_recover = tp->snd_max + 1;
445 if (tp->t_flags2 & TF2_ECN_PERMIT)
446 tp->t_flags2 |= TF2_ECN_SND_CWR;
447 }
448 break;
449 case CC_RTO:
450 tp->t_dupacks = 0;
451 tp->t_bytes_acked = 0;
452 EXIT_RECOVERY(tp->t_flags);
453 if (tp->t_flags2 & TF2_ECN_PERMIT)
454 tp->t_flags2 |= TF2_ECN_SND_CWR;
455 break;
456 case CC_RTO_ERR:
457 TCPSTAT_INC(tcps_sndrexmitbad);
458 /* RTO was unnecessary, so reset everything. */
459 tp->snd_cwnd = tp->snd_cwnd_prev;
460 tp->snd_ssthresh = tp->snd_ssthresh_prev;
461 tp->snd_recover = tp->snd_recover_prev;
462 if (tp->t_flags & TF_WASFRECOVERY)
463 ENTER_FASTRECOVERY(tp->t_flags);
464 if (tp->t_flags & TF_WASCRECOVERY)
465 ENTER_CONGRECOVERY(tp->t_flags);
466 tp->snd_nxt = tp->snd_max;
467 tp->t_flags &= ~TF_PREVVALID;
468 tp->t_rxtshift = 0;
469 tp->t_badrxtwin = 0;
470 break;
471 }
472 if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
473 SEQ_GT(tp->snd_fack, tp->snd_max)) {
474 tp->snd_fack = tp->snd_una;
475 }
476
477 if (CC_ALGO(tp)->cong_signal != NULL) {
478 if (th != NULL)
479 tp->t_ccv.curack = th->th_ack;
480 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
481 }
482 }
483
484 void inline
cc_post_recovery(struct tcpcb * tp,struct tcphdr * th)485 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
486 {
487 INP_WLOCK_ASSERT(tptoinpcb(tp));
488
489 if (CC_ALGO(tp)->post_recovery != NULL) {
490 if (SEQ_LT(tp->snd_fack, th->th_ack) ||
491 SEQ_GT(tp->snd_fack, tp->snd_max)) {
492 tp->snd_fack = th->th_ack;
493 }
494 tp->t_ccv.curack = th->th_ack;
495 CC_ALGO(tp)->post_recovery(&tp->t_ccv);
496 }
497 EXIT_RECOVERY(tp->t_flags);
498
499 tp->t_bytes_acked = 0;
500 tp->sackhint.delivered_data = 0;
501 tp->sackhint.prr_delivered = 0;
502 tp->sackhint.prr_out = 0;
503 }
504
505 /*
506 * Indicate whether this ack should be delayed. We can delay the ack if
507 * following conditions are met:
508 * - There is no delayed ack timer in progress.
509 * - Our last ack wasn't a 0-sized window. We never want to delay
510 * the ack that opens up a 0-sized window.
511 * - LRO wasn't used for this segment. We make sure by checking that the
512 * segment size is not larger than the MSS.
513 */
514 #define DELAY_ACK(tp, tlen) \
515 ((!tcp_timer_active(tp, TT_DELACK) && \
516 (tp->t_flags & TF_RXWIN0SENT) == 0) && \
517 (tlen <= tp->t_maxseg) && \
518 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
519
520 void inline
cc_ecnpkt_handler_flags(struct tcpcb * tp,uint16_t flags,uint8_t iptos)521 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
522 {
523 INP_WLOCK_ASSERT(tptoinpcb(tp));
524
525 if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
526 switch (iptos & IPTOS_ECN_MASK) {
527 case IPTOS_ECN_CE:
528 tp->t_ccv.flags |= CCF_IPHDR_CE;
529 break;
530 case IPTOS_ECN_ECT0:
531 /* FALLTHROUGH */
532 case IPTOS_ECN_ECT1:
533 /* FALLTHROUGH */
534 case IPTOS_ECN_NOTECT:
535 tp->t_ccv.flags &= ~CCF_IPHDR_CE;
536 break;
537 }
538
539 if (flags & TH_CWR)
540 tp->t_ccv.flags |= CCF_TCPHDR_CWR;
541 else
542 tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
543
544 CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
545
546 if (tp->t_ccv.flags & CCF_ACKNOW) {
547 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
548 tp->t_flags |= TF_ACKNOW;
549 }
550 }
551 }
552
553 void inline
cc_ecnpkt_handler(struct tcpcb * tp,struct tcphdr * th,uint8_t iptos)554 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
555 {
556 cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
557 }
558
559 /*
560 * TCP input handling is split into multiple parts:
561 * tcp6_input is a thin wrapper around tcp_input for the extended
562 * ip6_protox[] call format in ip6_input
563 * tcp_input handles primary segment validation, inpcb lookup and
564 * SYN processing on listen sockets
565 * tcp_do_segment processes the ACK and text of the segment for
566 * establishing, established and closing connections
567 */
568 #ifdef INET6
569 int
tcp6_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)570 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
571 {
572 struct mbuf *m;
573 struct in6_ifaddr *ia6;
574 struct ip6_hdr *ip6;
575
576 m = *mp;
577 if (m->m_len < *offp + sizeof(struct tcphdr)) {
578 m = m_pullup(m, *offp + sizeof(struct tcphdr));
579 if (m == NULL) {
580 *mp = m;
581 TCPSTAT_INC(tcps_rcvshort);
582 return (IPPROTO_DONE);
583 }
584 }
585
586 /*
587 * draft-itojun-ipv6-tcp-to-anycast
588 * better place to put this in?
589 */
590 ip6 = mtod(m, struct ip6_hdr *);
591 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
592 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
593 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
594 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
595 *mp = NULL;
596 return (IPPROTO_DONE);
597 }
598
599 *mp = m;
600 return (tcp_input_with_port(mp, offp, proto, port));
601 }
602
603 int
tcp6_input(struct mbuf ** mp,int * offp,int proto)604 tcp6_input(struct mbuf **mp, int *offp, int proto)
605 {
606
607 return(tcp6_input_with_port(mp, offp, proto, 0));
608 }
609 #endif /* INET6 */
610
611 int
tcp_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)612 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
613 {
614 struct mbuf *m = *mp;
615 struct tcphdr *th = NULL;
616 struct ip *ip = NULL;
617 struct inpcb *inp = NULL;
618 struct tcpcb *tp = NULL;
619 struct socket *so = NULL;
620 u_char *optp = NULL;
621 int off0;
622 int optlen = 0;
623 #ifdef INET
624 int len;
625 uint8_t ipttl;
626 #endif
627 int tlen = 0, off;
628 int drop_hdrlen;
629 int thflags;
630 int rstreason = 0; /* For badport_bandlim accounting purposes */
631 int lookupflag;
632 uint8_t iptos;
633 struct m_tag *fwd_tag = NULL;
634 #ifdef INET6
635 struct ip6_hdr *ip6 = NULL;
636 int isipv6;
637 #else
638 const void *ip6 = NULL;
639 #endif /* INET6 */
640 struct tcpopt to; /* options in this segment */
641 char *s = NULL; /* address and port logging */
642
643 NET_EPOCH_ASSERT();
644
645 #ifdef INET6
646 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
647 #endif
648
649 off0 = *offp;
650 m = *mp;
651 *mp = NULL;
652 to.to_flags = 0;
653 TCPSTAT_INC(tcps_rcvtotal);
654
655 m->m_pkthdr.tcp_tun_port = port;
656 #ifdef INET6
657 if (isipv6) {
658 ip6 = mtod(m, struct ip6_hdr *);
659 th = (struct tcphdr *)((caddr_t)ip6 + off0);
660 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
661 if (port)
662 goto skip6_csum;
663 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
664 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
665 th->th_sum = m->m_pkthdr.csum_data;
666 else
667 th->th_sum = in6_cksum_pseudo(ip6, tlen,
668 IPPROTO_TCP, m->m_pkthdr.csum_data);
669 th->th_sum ^= 0xffff;
670 } else
671 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
672 if (th->th_sum) {
673 TCPSTAT_INC(tcps_rcvbadsum);
674 goto drop;
675 }
676 skip6_csum:
677 /*
678 * Be proactive about unspecified IPv6 address in source.
679 * As we use all-zero to indicate unbounded/unconnected pcb,
680 * unspecified IPv6 address can be used to confuse us.
681 *
682 * Note that packets with unspecified IPv6 destination is
683 * already dropped in ip6_input.
684 */
685 KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
686 ("%s: unspecified destination v6 address", __func__));
687 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
688 IP6STAT_INC(ip6s_badscope); /* XXX */
689 goto drop;
690 }
691 iptos = IPV6_TRAFFIC_CLASS(ip6);
692 }
693 #endif
694 #if defined(INET) && defined(INET6)
695 else
696 #endif
697 #ifdef INET
698 {
699 /*
700 * Get IP and TCP header together in first mbuf.
701 * Note: IP leaves IP header in first mbuf.
702 */
703 if (off0 > sizeof (struct ip)) {
704 ip_stripoptions(m);
705 off0 = sizeof(struct ip);
706 }
707 if (m->m_len < sizeof (struct tcpiphdr)) {
708 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
709 == NULL) {
710 TCPSTAT_INC(tcps_rcvshort);
711 return (IPPROTO_DONE);
712 }
713 }
714 ip = mtod(m, struct ip *);
715 th = (struct tcphdr *)((caddr_t)ip + off0);
716 tlen = ntohs(ip->ip_len) - off0;
717
718 iptos = ip->ip_tos;
719 if (port)
720 goto skip_csum;
721 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
722 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
723 th->th_sum = m->m_pkthdr.csum_data;
724 else
725 th->th_sum = in_pseudo(ip->ip_src.s_addr,
726 ip->ip_dst.s_addr,
727 htonl(m->m_pkthdr.csum_data + tlen +
728 IPPROTO_TCP));
729 th->th_sum ^= 0xffff;
730 } else {
731 struct ipovly *ipov = (struct ipovly *)ip;
732
733 /*
734 * Checksum extended TCP header and data.
735 */
736 len = off0 + tlen;
737 ipttl = ip->ip_ttl;
738 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
739 ipov->ih_len = htons(tlen);
740 th->th_sum = in_cksum(m, len);
741 /* Reset length for SDT probes. */
742 ip->ip_len = htons(len);
743 /* Reset TOS bits */
744 ip->ip_tos = iptos;
745 /* Re-initialization for later version check */
746 ip->ip_ttl = ipttl;
747 ip->ip_v = IPVERSION;
748 ip->ip_hl = off0 >> 2;
749 }
750 skip_csum:
751 if (th->th_sum && (port == 0)) {
752 TCPSTAT_INC(tcps_rcvbadsum);
753 goto drop;
754 }
755 KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
756 ("%s: unspecified destination v4 address", __func__));
757 if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
758 IPSTAT_INC(ips_badaddr);
759 goto drop;
760 }
761 }
762 #endif /* INET */
763
764 /*
765 * Check that TCP offset makes sense,
766 * pull out TCP options and adjust length. XXX
767 */
768 off = th->th_off << 2;
769 if (off < sizeof (struct tcphdr) || off > tlen) {
770 TCPSTAT_INC(tcps_rcvbadoff);
771 goto drop;
772 }
773 tlen -= off; /* tlen is used instead of ti->ti_len */
774 if (off > sizeof (struct tcphdr)) {
775 #ifdef INET6
776 if (isipv6) {
777 if (m->m_len < off0 + off) {
778 m = m_pullup(m, off0 + off);
779 if (m == NULL) {
780 TCPSTAT_INC(tcps_rcvshort);
781 return (IPPROTO_DONE);
782 }
783 }
784 ip6 = mtod(m, struct ip6_hdr *);
785 th = (struct tcphdr *)((caddr_t)ip6 + off0);
786 }
787 #endif
788 #if defined(INET) && defined(INET6)
789 else
790 #endif
791 #ifdef INET
792 {
793 if (m->m_len < sizeof(struct ip) + off) {
794 if ((m = m_pullup(m, sizeof (struct ip) + off))
795 == NULL) {
796 TCPSTAT_INC(tcps_rcvshort);
797 return (IPPROTO_DONE);
798 }
799 ip = mtod(m, struct ip *);
800 th = (struct tcphdr *)((caddr_t)ip + off0);
801 }
802 }
803 #endif
804 optlen = off - sizeof (struct tcphdr);
805 optp = (u_char *)(th + 1);
806 }
807 thflags = tcp_get_flags(th);
808
809 /*
810 * Convert TCP protocol specific fields to host format.
811 */
812 tcp_fields_to_host(th);
813
814 /*
815 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
816 */
817 drop_hdrlen = off0 + off;
818
819 /*
820 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
821 */
822 if (
823 #ifdef INET6
824 (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
825 #ifdef INET
826 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
827 #endif
828 #endif
829 #if defined(INET) && !defined(INET6)
830 (m->m_flags & M_IP_NEXTHOP)
831 #endif
832 )
833 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
834
835 /*
836 * For initial SYN packets we don't need write lock on matching
837 * PCB, be it a listening one or a synchronized one. The packet
838 * shall not modify its state.
839 */
840 lookupflag = INPLOOKUP_WILDCARD |
841 ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
842 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB) |
843 (V_tcp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
844 findpcb:
845 tp = NULL;
846 #ifdef INET6
847 if (isipv6 && fwd_tag != NULL) {
848 struct sockaddr_in6 *next_hop6;
849
850 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
851 /*
852 * Transparently forwarded. Pretend to be the destination.
853 * Already got one like this?
854 */
855 inp = in6_pcblookup_mbuf(&V_tcbinfo,
856 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
857 lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
858 if (!inp) {
859 /*
860 * It's new. Try to find the ambushing socket.
861 * Because we've rewritten the destination address,
862 * any hardware-generated hash is ignored.
863 */
864 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
865 th->th_sport, &next_hop6->sin6_addr,
866 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
867 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
868 }
869 } else if (isipv6) {
870 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
871 th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
872 m->m_pkthdr.rcvif, m);
873 }
874 #endif /* INET6 */
875 #if defined(INET6) && defined(INET)
876 else
877 #endif
878 #ifdef INET
879 if (fwd_tag != NULL) {
880 struct sockaddr_in *next_hop;
881
882 next_hop = (struct sockaddr_in *)(fwd_tag+1);
883 /*
884 * Transparently forwarded. Pretend to be the destination.
885 * already got one like this?
886 */
887 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
888 ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
889 m->m_pkthdr.rcvif, m);
890 if (!inp) {
891 /*
892 * It's new. Try to find the ambushing socket.
893 * Because we've rewritten the destination address,
894 * any hardware-generated hash is ignored.
895 */
896 inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
897 th->th_sport, next_hop->sin_addr,
898 next_hop->sin_port ? ntohs(next_hop->sin_port) :
899 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
900 }
901 } else
902 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
903 th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
904 m->m_pkthdr.rcvif, m);
905 #endif /* INET */
906
907 /*
908 * If the INPCB does not exist then all data in the incoming
909 * segment is discarded and an appropriate RST is sent back.
910 * XXX MRT Send RST using which routing table?
911 */
912 if (inp == NULL) {
913 if (rstreason != 0) {
914 /* We came here after second (safety) lookup. */
915 MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0);
916 goto dropwithreset;
917 }
918 /*
919 * Log communication attempts to ports that are not
920 * in use.
921 */
922 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
923 V_tcp_log_in_vain == 2) {
924 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
925 log(LOG_INFO, "%s; %s: Connection attempt "
926 "to closed port\n", s, __func__);
927 }
928 rstreason = BANDLIM_RST_CLOSEDPORT;
929 goto dropwithreset;
930 }
931 INP_LOCK_ASSERT(inp);
932
933 if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
934 !SOLISTENING(inp->inp_socket)) {
935 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
936 inp->inp_flowid = m->m_pkthdr.flowid;
937 inp->inp_flowtype = M_HASHTYPE_GET(m);
938 #ifdef RSS
939 } else {
940 /* assign flowid by software RSS hash */
941 #ifdef INET6
942 if (isipv6) {
943 rss_proto_software_hash_v6(&inp->in6p_faddr,
944 &inp->in6p_laddr,
945 inp->inp_fport,
946 inp->inp_lport,
947 IPPROTO_TCP,
948 &inp->inp_flowid,
949 &inp->inp_flowtype);
950 } else
951 #endif /* INET6 */
952 {
953 rss_proto_software_hash_v4(inp->inp_faddr,
954 inp->inp_laddr,
955 inp->inp_fport,
956 inp->inp_lport,
957 IPPROTO_TCP,
958 &inp->inp_flowid,
959 &inp->inp_flowtype);
960 }
961 #endif /* RSS */
962 }
963 }
964 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
965 #ifdef INET6
966 if (isipv6 && IPSEC_ENABLED(ipv6) &&
967 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
968 goto dropunlock;
969 }
970 #ifdef INET
971 else
972 #endif
973 #endif /* INET6 */
974 #ifdef INET
975 if (IPSEC_ENABLED(ipv4) &&
976 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
977 goto dropunlock;
978 }
979 #endif /* INET */
980 #endif /* IPSEC */
981
982 /*
983 * Check the minimum TTL for socket.
984 */
985 if (inp->inp_ip_minttl != 0) {
986 #ifdef INET6
987 if (isipv6) {
988 if (inp->inp_ip_minttl > ip6->ip6_hlim)
989 goto dropunlock;
990 } else
991 #endif
992 if (inp->inp_ip_minttl > ip->ip_ttl)
993 goto dropunlock;
994 }
995
996 tp = intotcpcb(inp);
997 switch (tp->t_state) {
998 case TCPS_TIME_WAIT:
999 /*
1000 * A previous connection in TIMEWAIT state is supposed to catch
1001 * stray or duplicate segments arriving late. If this segment
1002 * was a legitimate new connection attempt, the old INPCB gets
1003 * removed and we can try again to find a listening socket.
1004 */
1005 tcp_dooptions(&to, optp, optlen,
1006 (thflags & TH_SYN) ? TO_SYN : 0);
1007 /*
1008 * tcp_twcheck unlocks the inp always, and frees the m if fails.
1009 */
1010 if (tcp_twcheck(inp, &to, th, m, tlen))
1011 goto findpcb;
1012 return (IPPROTO_DONE);
1013 case TCPS_CLOSED:
1014 /*
1015 * The TCPCB may no longer exist if the connection is winding
1016 * down or it is in the CLOSED state. Either way we drop the
1017 * segment and send an appropriate response.
1018 */
1019 rstreason = BANDLIM_RST_CLOSEDPORT;
1020 goto dropwithreset;
1021 }
1022
1023 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
1024 rstreason = BANDLIM_RST_CLOSEDPORT;
1025 goto dropwithreset;
1026 }
1027
1028 #ifdef TCP_OFFLOAD
1029 if (tp->t_flags & TF_TOE) {
1030 tcp_offload_input(tp, m);
1031 m = NULL; /* consumed by the TOE driver */
1032 goto dropunlock;
1033 }
1034 #endif
1035
1036 #ifdef MAC
1037 if (mac_inpcb_check_deliver(inp, m))
1038 goto dropunlock;
1039 #endif
1040 so = inp->inp_socket;
1041 KASSERT(so != NULL, ("%s: so == NULL", __func__));
1042 /*
1043 * When the socket is accepting connections (the INPCB is in LISTEN
1044 * state) we look into the SYN cache if this is a new connection
1045 * attempt or the completion of a previous one.
1046 */
1047 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
1048 ("%s: so accepting but tp %p not listening", __func__, tp));
1049 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
1050 struct in_conninfo inc;
1051
1052 bzero(&inc, sizeof(inc));
1053 #ifdef INET6
1054 if (isipv6) {
1055 inc.inc_flags |= INC_ISIPV6;
1056 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1057 inc.inc_flags |= INC_IPV6MINMTU;
1058 inc.inc6_faddr = ip6->ip6_src;
1059 inc.inc6_laddr = ip6->ip6_dst;
1060 } else
1061 #endif
1062 {
1063 inc.inc_faddr = ip->ip_src;
1064 inc.inc_laddr = ip->ip_dst;
1065 }
1066 inc.inc_fport = th->th_sport;
1067 inc.inc_lport = th->th_dport;
1068 inc.inc_fibnum = so->so_fibnum;
1069
1070 /*
1071 * Check for an existing connection attempt in syncache if
1072 * the flag is only ACK. A successful lookup creates a new
1073 * socket appended to the listen queue in SYN_RECEIVED state.
1074 */
1075 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1076 /*
1077 * Parse the TCP options here because
1078 * syncookies need access to the reflected
1079 * timestamp.
1080 */
1081 tcp_dooptions(&to, optp, optlen, 0);
1082 /*
1083 * NB: syncache_expand() doesn't unlock inp.
1084 */
1085 rstreason = syncache_expand(&inc, &to, th, &so, m, port);
1086 if (rstreason < 0) {
1087 /*
1088 * A failing TCP MD5 signature comparison
1089 * must result in the segment being dropped
1090 * and must not produce any response back
1091 * to the sender.
1092 */
1093 goto dropunlock;
1094 } else if (rstreason == 0) {
1095 /*
1096 * No syncache entry, or ACK was not for our
1097 * SYN/ACK. Do our protection against double
1098 * ACK. If peer sent us 2 ACKs, then for the
1099 * first one syncache_expand() successfully
1100 * converted syncache entry into a socket,
1101 * while we were waiting on the inpcb lock. We
1102 * don't want to sent RST for the second ACK,
1103 * so we perform second lookup without wildcard
1104 * match, hoping to find the new socket. If
1105 * the ACK is stray indeed, rstreason would
1106 * hint the above code that the lookup was a
1107 * second attempt.
1108 *
1109 * NB: syncache did its own logging
1110 * of the failure cause.
1111 */
1112 INP_WUNLOCK(inp);
1113 rstreason = BANDLIM_RST_OPENPORT;
1114 lookupflag &= ~INPLOOKUP_WILDCARD;
1115 goto findpcb;
1116 }
1117 tfo_socket_result:
1118 if (so == NULL) {
1119 /*
1120 * We completed the 3-way handshake
1121 * but could not allocate a socket
1122 * either due to memory shortage,
1123 * listen queue length limits or
1124 * global socket limits. Send RST
1125 * or wait and have the remote end
1126 * retransmit the ACK for another
1127 * try.
1128 */
1129 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1130 log(LOG_DEBUG, "%s; %s: Listen socket: "
1131 "Socket allocation failed due to "
1132 "limits or memory shortage, %s\n",
1133 s, __func__,
1134 V_tcp_sc_rst_sock_fail ?
1135 "sending RST" : "try again");
1136 if (V_tcp_sc_rst_sock_fail) {
1137 rstreason = BANDLIM_UNLIMITED;
1138 goto dropwithreset;
1139 } else
1140 goto dropunlock;
1141 }
1142 /*
1143 * Socket is created in state SYN_RECEIVED.
1144 * Unlock the listen socket, lock the newly
1145 * created socket and update the tp variable.
1146 * If we came here via jump to tfo_socket_result,
1147 * then listening socket is read-locked.
1148 */
1149 INP_UNLOCK(inp); /* listen socket */
1150 inp = sotoinpcb(so);
1151 /*
1152 * New connection inpcb is already locked by
1153 * syncache_expand().
1154 */
1155 INP_WLOCK_ASSERT(inp);
1156 tp = intotcpcb(inp);
1157 KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1158 ("%s: ", __func__));
1159 /*
1160 * Process the segment and the data it
1161 * contains. tcp_do_segment() consumes
1162 * the mbuf chain and unlocks the inpcb.
1163 */
1164 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1165 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
1166 tlen, iptos);
1167 return (IPPROTO_DONE);
1168 }
1169 /*
1170 * Segment flag validation for new connection attempts:
1171 *
1172 * Our (SYN|ACK) response was rejected.
1173 * Check with syncache and remove entry to prevent
1174 * retransmits.
1175 *
1176 * NB: syncache_chkrst does its own logging of failure
1177 * causes.
1178 */
1179 if (thflags & TH_RST) {
1180 syncache_chkrst(&inc, th, m, port);
1181 goto dropunlock;
1182 }
1183 /*
1184 * We can't do anything without SYN.
1185 */
1186 if ((thflags & TH_SYN) == 0) {
1187 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1188 log(LOG_DEBUG, "%s; %s: Listen socket: "
1189 "SYN is missing, segment ignored\n",
1190 s, __func__);
1191 TCPSTAT_INC(tcps_badsyn);
1192 goto dropunlock;
1193 }
1194 /*
1195 * (SYN|ACK) is bogus on a listen socket.
1196 */
1197 if (thflags & TH_ACK) {
1198 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1199 log(LOG_DEBUG, "%s; %s: Listen socket: "
1200 "SYN|ACK invalid, segment rejected\n",
1201 s, __func__);
1202 syncache_badack(&inc, port); /* XXX: Not needed! */
1203 TCPSTAT_INC(tcps_badsyn);
1204 rstreason = BANDLIM_RST_OPENPORT;
1205 goto dropwithreset;
1206 }
1207 /*
1208 * If the drop_synfin option is enabled, drop all
1209 * segments with both the SYN and FIN bits set.
1210 * This prevents e.g. nmap from identifying the
1211 * TCP/IP stack.
1212 * XXX: Poor reasoning. nmap has other methods
1213 * and is constantly refining its stack detection
1214 * strategies.
1215 * XXX: This is a violation of the TCP specification
1216 * and was used by RFC1644.
1217 */
1218 if ((thflags & TH_FIN) && V_drop_synfin) {
1219 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1220 log(LOG_DEBUG, "%s; %s: Listen socket: "
1221 "SYN|FIN segment ignored (based on "
1222 "sysctl setting)\n", s, __func__);
1223 TCPSTAT_INC(tcps_badsyn);
1224 goto dropunlock;
1225 }
1226 /*
1227 * Segment's flags are (SYN) or (SYN|FIN).
1228 *
1229 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1230 * as they do not affect the state of the TCP FSM.
1231 * The data pointed to by TH_URG and th_urp is ignored.
1232 */
1233 KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1234 ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1235 KASSERT(thflags & (TH_SYN),
1236 ("%s: Listen socket: TH_SYN not set", __func__));
1237 INP_RLOCK_ASSERT(inp);
1238 #ifdef INET6
1239 /*
1240 * If deprecated address is forbidden,
1241 * we do not accept SYN to deprecated interface
1242 * address to prevent any new inbound connection from
1243 * getting established.
1244 * When we do not accept SYN, we send a TCP RST,
1245 * with deprecated source address (instead of dropping
1246 * it). We compromise it as it is much better for peer
1247 * to send a RST, and RST will be the final packet
1248 * for the exchange.
1249 *
1250 * If we do not forbid deprecated addresses, we accept
1251 * the SYN packet. RFC2462 does not suggest dropping
1252 * SYN in this case.
1253 * If we decipher RFC2462 5.5.4, it says like this:
1254 * 1. use of deprecated addr with existing
1255 * communication is okay - "SHOULD continue to be
1256 * used"
1257 * 2. use of it with new communication:
1258 * (2a) "SHOULD NOT be used if alternate address
1259 * with sufficient scope is available"
1260 * (2b) nothing mentioned otherwise.
1261 * Here we fall into (2b) case as we have no choice in
1262 * our source address selection - we must obey the peer.
1263 *
1264 * The wording in RFC2462 is confusing, and there are
1265 * multiple description text for deprecated address
1266 * handling - worse, they are not exactly the same.
1267 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1268 */
1269 if (isipv6 && !V_ip6_use_deprecated) {
1270 struct in6_ifaddr *ia6;
1271
1272 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1273 if (ia6 != NULL &&
1274 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1275 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1276 log(LOG_DEBUG, "%s; %s: Listen socket: "
1277 "Connection attempt to deprecated "
1278 "IPv6 address rejected\n",
1279 s, __func__);
1280 rstreason = BANDLIM_RST_OPENPORT;
1281 goto dropwithreset;
1282 }
1283 }
1284 #endif /* INET6 */
1285 /*
1286 * Basic sanity checks on incoming SYN requests:
1287 * Don't respond if the destination is a link layer
1288 * broadcast according to RFC1122 4.2.3.10, p. 104.
1289 * If it is from this socket it must be forged.
1290 * Don't respond if the source or destination is a
1291 * global or subnet broad- or multicast address.
1292 * Note that it is quite possible to receive unicast
1293 * link-layer packets with a broadcast IP address. Use
1294 * in_ifnet_broadcast() to find them.
1295 */
1296 if (m->m_flags & (M_BCAST|M_MCAST)) {
1297 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1298 log(LOG_DEBUG, "%s; %s: Listen socket: "
1299 "Connection attempt from broad- or multicast "
1300 "link layer address ignored\n", s, __func__);
1301 goto dropunlock;
1302 }
1303 #ifdef INET6
1304 if (isipv6) {
1305 if (th->th_dport == th->th_sport &&
1306 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1307 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1308 log(LOG_DEBUG, "%s; %s: Listen socket: "
1309 "Connection attempt to/from self "
1310 "ignored\n", s, __func__);
1311 goto dropunlock;
1312 }
1313 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1314 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1315 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316 log(LOG_DEBUG, "%s; %s: Listen socket: "
1317 "Connection attempt from/to multicast "
1318 "address ignored\n", s, __func__);
1319 goto dropunlock;
1320 }
1321 }
1322 #endif
1323 #if defined(INET) && defined(INET6)
1324 else
1325 #endif
1326 #ifdef INET
1327 {
1328 if (th->th_dport == th->th_sport &&
1329 ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1330 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1331 log(LOG_DEBUG, "%s; %s: Listen socket: "
1332 "Connection attempt from/to self "
1333 "ignored\n", s, __func__);
1334 goto dropunlock;
1335 }
1336 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1337 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1338 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1339 in_ifnet_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1340 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1341 log(LOG_DEBUG, "%s; %s: Listen socket: "
1342 "Connection attempt from/to broad- "
1343 "or multicast address ignored\n",
1344 s, __func__);
1345 goto dropunlock;
1346 }
1347 }
1348 #endif
1349 /*
1350 * SYN appears to be valid. Create compressed TCP state
1351 * for syncache.
1352 */
1353 TCP_PROBE3(debug__input, tp, th, m);
1354 tcp_dooptions(&to, optp, optlen, TO_SYN);
1355 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
1356 iptos, port)) != NULL)
1357 goto tfo_socket_result;
1358
1359 /*
1360 * Entry added to syncache and mbuf consumed.
1361 * Only the listen socket is unlocked by syncache_add().
1362 */
1363 return (IPPROTO_DONE);
1364 }
1365 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1366 if (tp->t_flags & TF_SIGNATURE) {
1367 tcp_dooptions(&to, optp, optlen, thflags);
1368 if ((to.to_flags & TOF_SIGNATURE) == 0) {
1369 TCPSTAT_INC(tcps_sig_err_nosigopt);
1370 goto dropunlock;
1371 }
1372 if (!TCPMD5_ENABLED() ||
1373 TCPMD5_INPUT(m, th, to.to_signature) != 0)
1374 goto dropunlock;
1375 }
1376 #endif
1377 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1378
1379 /*
1380 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1381 * state. tcp_do_segment() always consumes the mbuf chain, unlocks
1382 * the inpcb, and unlocks pcbinfo.
1383 *
1384 * XXXGL: in case of a pure SYN arriving on existing connection
1385 * TCP stacks won't need to modify the PCB, they would either drop
1386 * the segment silently, or send a challenge ACK. However, we try
1387 * to upgrade the lock, because calling convention for stacks is
1388 * write-lock on PCB. If upgrade fails, drop the SYN.
1389 */
1390 if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
1391 goto dropunlock;
1392
1393 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
1394 return (IPPROTO_DONE);
1395
1396 dropwithreset:
1397 /*
1398 * When blackholing do not respond with a RST but
1399 * completely ignore the segment and drop it.
1400 */
1401 if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) ||
1402 (rstreason == BANDLIM_RST_CLOSEDPORT &&
1403 ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
1404 (V_blackhole_local || (
1405 #ifdef INET6
1406 isipv6 ? !in6_localaddr(&ip6->ip6_src) :
1407 #endif
1408 #ifdef INET
1409 !in_localip(ip->ip_src)
1410 #else
1411 true
1412 #endif
1413 )))
1414 goto dropunlock;
1415 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1416 tcp_dropwithreset(m, th, tp, tlen, rstreason);
1417 m = NULL; /* mbuf chain got consumed. */
1418
1419 dropunlock:
1420 if (m != NULL)
1421 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1422
1423 if (inp != NULL)
1424 INP_UNLOCK(inp);
1425
1426 drop:
1427 if (s != NULL)
1428 free(s, M_TCPLOG);
1429 if (m != NULL)
1430 m_freem(m);
1431 return (IPPROTO_DONE);
1432 }
1433
1434 /*
1435 * Automatic sizing of receive socket buffer. Often the send
1436 * buffer size is not optimally adjusted to the actual network
1437 * conditions at hand (delay bandwidth product). Setting the
1438 * buffer size too small limits throughput on links with high
1439 * bandwidth and high delay (eg. trans-continental/oceanic links).
1440 *
1441 * On the receive side the socket buffer memory is only rarely
1442 * used to any significant extent. This allows us to be much
1443 * more aggressive in scaling the receive socket buffer. For
1444 * the case that the buffer space is actually used to a large
1445 * extent and we run out of kernel memory we can simply drop
1446 * the new segments; TCP on the sender will just retransmit it
1447 * later. Setting the buffer size too big may only consume too
1448 * much kernel memory if the application doesn't read() from
1449 * the socket or packet loss or reordering makes use of the
1450 * reassembly queue.
1451 *
1452 * The criteria to step up the receive buffer one notch are:
1453 * 1. Application has not set receive buffer size with
1454 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1455 * 2. the number of bytes received during 1/2 of an sRTT
1456 * is at least 3/8 of the current socket buffer size.
1457 * 3. receive buffer size has not hit maximal automatic size;
1458 *
1459 * If all of the criteria are met we increaset the socket buffer
1460 * by a 1/2 (bounded by the max). This allows us to keep ahead
1461 * of slow-start but also makes it so our peer never gets limited
1462 * by our rwnd which we then open up causing a burst.
1463 *
1464 * This algorithm does two steps per RTT at most and only if
1465 * we receive a bulk stream w/o packet losses or reorderings.
1466 * Shrinking the buffer during idle times is not necessary as
1467 * it doesn't consume any memory when idle.
1468 *
1469 * TODO: Only step up if the application is actually serving
1470 * the buffer to better manage the socket buffer resources.
1471 */
1472 int
tcp_autorcvbuf(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int tlen)1473 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1474 struct tcpcb *tp, int tlen)
1475 {
1476 int newsize = 0;
1477
1478 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1479 tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1480 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1481 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1482 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1483 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1484 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1485 }
1486 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1487
1488 /* Start over with next RTT. */
1489 tp->rfbuf_ts = 0;
1490 tp->rfbuf_cnt = 0;
1491 } else {
1492 tp->rfbuf_cnt += tlen; /* add up */
1493 }
1494 return (newsize);
1495 }
1496
1497 int
tcp_input(struct mbuf ** mp,int * offp,int proto)1498 tcp_input(struct mbuf **mp, int *offp, int proto)
1499 {
1500 return(tcp_input_with_port(mp, offp, proto, 0));
1501 }
1502
1503 static void
tcp_handle_wakeup(struct tcpcb * tp)1504 tcp_handle_wakeup(struct tcpcb *tp)
1505 {
1506
1507 INP_WLOCK_ASSERT(tptoinpcb(tp));
1508
1509 if (tp->t_flags & TF_WAKESOR) {
1510 struct socket *so = tptosocket(tp);
1511
1512 tp->t_flags &= ~TF_WAKESOR;
1513 SOCK_RECVBUF_LOCK_ASSERT(so);
1514 sorwakeup_locked(so);
1515 }
1516 }
1517
1518 void
tcp_do_segment(struct tcpcb * tp,struct mbuf * m,struct tcphdr * th,int drop_hdrlen,int tlen,uint8_t iptos)1519 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1520 int drop_hdrlen, int tlen, uint8_t iptos)
1521 {
1522 uint16_t thflags;
1523 int acked, ourfinisacked, needoutput = 0;
1524 sackstatus_t sack_changed;
1525 int rstreason, todrop, win, incforsyn = 0;
1526 uint32_t tiwin;
1527 uint16_t nsegs;
1528 char *s;
1529 struct inpcb *inp = tptoinpcb(tp);
1530 struct socket *so = tptosocket(tp);
1531 struct in_conninfo *inc = &inp->inp_inc;
1532 struct mbuf *mfree;
1533 struct tcpopt to;
1534 int tfo_syn;
1535 u_int maxseg = 0;
1536
1537 thflags = tcp_get_flags(th);
1538 tp->sackhint.last_sack_ack = 0;
1539 sack_changed = SACK_NOCHANGE;
1540 nsegs = max(1, m->m_pkthdr.lro_nsegs);
1541
1542 NET_EPOCH_ASSERT();
1543 INP_WLOCK_ASSERT(inp);
1544 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1545 __func__));
1546 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1547 __func__));
1548
1549 #ifdef TCPPCAP
1550 /* Save segment, if requested. */
1551 tcp_pcap_add(th, m, &(tp->t_inpkts));
1552 #endif
1553 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1554 tlen, NULL, true);
1555
1556 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1557 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1558 log(LOG_DEBUG, "%s; %s: "
1559 "SYN|FIN segment ignored (based on "
1560 "sysctl setting)\n", s, __func__);
1561 free(s, M_TCPLOG);
1562 }
1563 goto drop;
1564 }
1565
1566 /*
1567 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1568 * check SEQ.ACK first.
1569 */
1570 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1571 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1572 rstreason = BANDLIM_UNLIMITED;
1573 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1574 goto dropwithreset;
1575 }
1576
1577 /*
1578 * Segment received on connection.
1579 * Reset idle time and keep-alive timer.
1580 * XXX: This should be done after segment
1581 * validation to ignore broken/spoofed segs.
1582 */
1583 if (tp->t_idle_reduce &&
1584 (tp->snd_max == tp->snd_una) &&
1585 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
1586 cc_after_idle(tp);
1587 tp->t_rcvtime = ticks;
1588
1589 if (thflags & TH_FIN)
1590 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
1591 /*
1592 * Scale up the window into a 32-bit value.
1593 * For the SYN_SENT state the scale is zero.
1594 */
1595 tiwin = th->th_win << tp->snd_scale;
1596 #ifdef STATS
1597 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1598 #endif
1599
1600 /*
1601 * TCP ECN processing.
1602 */
1603 if (tcp_ecn_input_segment(tp, thflags, tlen,
1604 tcp_packets_this_ack(tp, th->th_ack),
1605 iptos))
1606 cc_cong_signal(tp, th, CC_ECN);
1607
1608 /*
1609 * Parse options on any incoming segment.
1610 */
1611 tcp_dooptions(&to, (u_char *)(th + 1),
1612 (th->th_off << 2) - sizeof(struct tcphdr),
1613 (thflags & TH_SYN) ? TO_SYN : 0);
1614 if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
1615 /*
1616 * We don't look at sack's from the
1617 * peer because the MSS is too small which
1618 * can subject us to an attack.
1619 */
1620 to.to_flags &= ~TOF_SACK;
1621 }
1622 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1623 if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1624 (to.to_flags & TOF_SIGNATURE) == 0) {
1625 TCPSTAT_INC(tcps_sig_err_sigopt);
1626 /* XXX: should drop? */
1627 }
1628 #endif
1629 /*
1630 * If echoed timestamp is later than the current time,
1631 * fall back to non RFC1323 RTT calculation. Normalize
1632 * timestamp if syncookies were used when this connection
1633 * was established.
1634 */
1635 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1636 to.to_tsecr -= tp->ts_offset;
1637 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
1638 to.to_tsecr = 0;
1639 }
1640 }
1641 /*
1642 * Process options only when we get SYN/ACK back. The SYN case
1643 * for incoming connections is handled in tcp_syncache.
1644 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1645 * or <SYN,ACK>) segment itself is never scaled.
1646 * XXX this is traditional behavior, may need to be cleaned up.
1647 */
1648 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1649 /* Handle parallel SYN for ECN */
1650 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
1651 if ((to.to_flags & TOF_SCALE) &&
1652 (tp->t_flags & TF_REQ_SCALE) &&
1653 !(tp->t_flags & TF_NOOPT)) {
1654 tp->t_flags |= TF_RCVD_SCALE;
1655 tp->snd_scale = to.to_wscale;
1656 } else {
1657 tp->t_flags &= ~TF_REQ_SCALE;
1658 }
1659 /*
1660 * Initial send window. It will be updated with
1661 * the next incoming segment to the scaled value.
1662 */
1663 tp->snd_wnd = th->th_win;
1664 if ((to.to_flags & TOF_TS) &&
1665 (tp->t_flags & TF_REQ_TSTMP) &&
1666 !(tp->t_flags & TF_NOOPT)) {
1667 tp->t_flags |= TF_RCVD_TSTMP;
1668 tp->ts_recent = to.to_tsval;
1669 tp->ts_recent_age = tcp_ts_getticks();
1670 } else {
1671 tp->t_flags &= ~TF_REQ_TSTMP;
1672 }
1673 if (to.to_flags & TOF_MSS) {
1674 tcp_mss(tp, to.to_mss);
1675 }
1676 if ((tp->t_flags & TF_SACK_PERMIT) &&
1677 (!(to.to_flags & TOF_SACKPERM) ||
1678 (tp->t_flags & TF_NOOPT))) {
1679 tp->t_flags &= ~TF_SACK_PERMIT;
1680 }
1681 if (tp->t_flags & TF_FASTOPEN) {
1682 if ((to.to_flags & TOF_FASTOPEN) &&
1683 !(tp->t_flags & TF_NOOPT)) {
1684 uint16_t mss;
1685
1686 if (to.to_flags & TOF_MSS) {
1687 mss = to.to_mss;
1688 } else {
1689 if ((inp->inp_vflag & INP_IPV6) != 0) {
1690 mss = TCP6_MSS;
1691 } else {
1692 mss = TCP_MSS;
1693 }
1694 }
1695 tcp_fastopen_update_cache(tp, mss,
1696 to.to_tfo_len, to.to_tfo_cookie);
1697 } else {
1698 tcp_fastopen_disable_path(tp);
1699 }
1700 }
1701 }
1702
1703 /*
1704 * If timestamps were negotiated during SYN/ACK and a
1705 * segment without a timestamp is received, silently drop
1706 * the segment, unless it is a RST segment or missing timestamps are
1707 * tolerated.
1708 * See section 3.2 of RFC 7323.
1709 */
1710 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1711 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1712 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1713 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1714 "segment processed normally\n",
1715 s, __func__);
1716 free(s, M_TCPLOG);
1717 }
1718 } else {
1719 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1720 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1721 "segment silently dropped\n", s, __func__);
1722 free(s, M_TCPLOG);
1723 }
1724 goto drop;
1725 }
1726 }
1727 /*
1728 * If timestamps were not negotiated during SYN/ACK and a
1729 * segment with a timestamp is received, ignore the
1730 * timestamp and process the packet normally.
1731 * See section 3.2 of RFC 7323.
1732 */
1733 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1734 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1735 log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1736 "segment processed normally\n", s, __func__);
1737 free(s, M_TCPLOG);
1738 }
1739 }
1740
1741 /*
1742 * Header prediction: check for the two common cases
1743 * of a uni-directional data xfer. If the packet has
1744 * no control flags, is in-sequence, the window didn't
1745 * change and we're not retransmitting, it's a
1746 * candidate. If the length is zero and the ack moved
1747 * forward, we're the sender side of the xfer. Just
1748 * free the data acked & wake any higher level process
1749 * that was blocked waiting for space. If the length
1750 * is non-zero and the ack didn't move, we're the
1751 * receiver side. If we're getting packets in-order
1752 * (the reassembly queue is empty), add the data to
1753 * the socket buffer and note that we need a delayed ack.
1754 * Make sure that the hidden state-flags are also off.
1755 * Since we check for TCPS_ESTABLISHED first, it can only
1756 * be TH_NEEDSYN.
1757 */
1758 if (tp->t_state == TCPS_ESTABLISHED &&
1759 th->th_seq == tp->rcv_nxt &&
1760 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1761 tp->snd_nxt == tp->snd_max &&
1762 tiwin && tiwin == tp->snd_wnd &&
1763 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1764 SEGQ_EMPTY(tp) &&
1765 ((to.to_flags & TOF_TS) == 0 ||
1766 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1767 /*
1768 * If last ACK falls within this segment's sequence numbers,
1769 * record the timestamp.
1770 * NOTE that the test is modified according to the latest
1771 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1772 */
1773 if ((to.to_flags & TOF_TS) != 0 &&
1774 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1775 tp->ts_recent_age = tcp_ts_getticks();
1776 tp->ts_recent = to.to_tsval;
1777 }
1778
1779 if (tlen == 0) {
1780 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1781 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1782 !IN_RECOVERY(tp->t_flags) &&
1783 (to.to_flags & TOF_SACK) == 0 &&
1784 TAILQ_EMPTY(&tp->snd_holes)) {
1785 /*
1786 * This is a pure ack for outstanding data.
1787 */
1788 TCPSTAT_INC(tcps_predack);
1789
1790 /*
1791 * "bad retransmit" recovery.
1792 */
1793 if (tp->t_rxtshift == 1 &&
1794 tp->t_flags & TF_PREVVALID &&
1795 tp->t_badrxtwin != 0 &&
1796 (((to.to_flags & TOF_TS) != 0 &&
1797 to.to_tsecr != 0 &&
1798 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) ||
1799 ((to.to_flags & TOF_TS) == 0 &&
1800 TSTMP_LT(ticks, tp->t_badrxtwin))))
1801 cc_cong_signal(tp, th, CC_RTO_ERR);
1802
1803 /*
1804 * Recalculate the transmit timer / rtt.
1805 *
1806 * Some boxes send broken timestamp replies
1807 * during the SYN+ACK phase, ignore
1808 * timestamps of 0 or we could calculate a
1809 * huge RTT and blow up the retransmit timer.
1810 */
1811 if ((to.to_flags & TOF_TS) != 0 &&
1812 to.to_tsecr) {
1813 uint32_t t;
1814
1815 t = tcp_ts_getticks() - to.to_tsecr;
1816 if (!tp->t_rttlow || tp->t_rttlow > t)
1817 tp->t_rttlow = t;
1818 tcp_xmit_timer(tp,
1819 TCP_TS_TO_TICKS(t) + 1);
1820 } else if (tp->t_rtttime &&
1821 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1822 if (!tp->t_rttlow ||
1823 tp->t_rttlow > ticks - tp->t_rtttime)
1824 tp->t_rttlow = ticks - tp->t_rtttime;
1825 tcp_xmit_timer(tp,
1826 ticks - tp->t_rtttime);
1827 }
1828 acked = BYTES_THIS_ACK(tp, th);
1829
1830 #ifdef TCP_HHOOK
1831 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1832 hhook_run_tcp_est_in(tp, th, &to);
1833 #endif
1834
1835 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1836 TCPSTAT_ADD(tcps_rcvackbyte, acked);
1837 sbdrop(&so->so_snd, acked);
1838 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1839 SEQ_LEQ(th->th_ack, tp->snd_recover))
1840 tp->snd_recover = th->th_ack - 1;
1841
1842 /*
1843 * Let the congestion control algorithm update
1844 * congestion control related information. This
1845 * typically means increasing the congestion
1846 * window.
1847 */
1848 cc_ack_received(tp, th, nsegs, CC_ACK);
1849
1850 tp->snd_una = th->th_ack;
1851 /*
1852 * Pull snd_wl2 up to prevent seq wrap relative
1853 * to th_ack.
1854 */
1855 tp->snd_wl2 = th->th_ack;
1856 tp->t_dupacks = 0;
1857 m_freem(m);
1858
1859 /*
1860 * If all outstanding data are acked, stop
1861 * retransmit timer, otherwise restart timer
1862 * using current (possibly backed-off) value.
1863 * If process is waiting for space,
1864 * wakeup/selwakeup/signal. If data
1865 * are ready to send, let tcp_output
1866 * decide between more output or persist.
1867 */
1868 TCP_PROBE3(debug__input, tp, th, m);
1869 /*
1870 * Clear t_acktime if remote side has ACKd
1871 * all data in the socket buffer.
1872 * Otherwise, update t_acktime if we received
1873 * a sufficiently large ACK.
1874 */
1875 if (sbavail(&so->so_snd) == 0)
1876 tp->t_acktime = 0;
1877 else if (acked > 1)
1878 tp->t_acktime = ticks;
1879 if (tp->snd_una == tp->snd_max)
1880 tcp_timer_activate(tp, TT_REXMT, 0);
1881 else if (!tcp_timer_active(tp, TT_PERSIST))
1882 tcp_timer_activate(tp, TT_REXMT,
1883 TP_RXTCUR(tp));
1884 sowwakeup(so);
1885 /*
1886 * Only call tcp_output when there
1887 * is new data available to be sent
1888 * or we need to send an ACK.
1889 */
1890 if ((tp->t_flags & TF_ACKNOW) ||
1891 (sbavail(&so->so_snd) >=
1892 SEQ_SUB(tp->snd_max, tp->snd_una))) {
1893 (void) tcp_output(tp);
1894 }
1895 goto check_delack;
1896 }
1897 } else if (th->th_ack == tp->snd_una &&
1898 tlen <= sbspace(&so->so_rcv)) {
1899 int newsize = 0; /* automatic sockbuf scaling */
1900
1901 /*
1902 * This is a pure, in-sequence data packet with
1903 * nothing on the reassembly queue and we have enough
1904 * buffer space to take it.
1905 */
1906 /* Clean receiver SACK report if present */
1907 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1908 tcp_clean_sackreport(tp);
1909 TCPSTAT_INC(tcps_preddat);
1910 tp->rcv_nxt += tlen;
1911 if (tlen &&
1912 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1913 (tp->t_fbyte_in == 0)) {
1914 tp->t_fbyte_in = ticks;
1915 if (tp->t_fbyte_in == 0)
1916 tp->t_fbyte_in = 1;
1917 if (tp->t_fbyte_out && tp->t_fbyte_in)
1918 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1919 }
1920 /*
1921 * Pull snd_wl1 up to prevent seq wrap relative to
1922 * th_seq.
1923 */
1924 tp->snd_wl1 = th->th_seq;
1925 /*
1926 * Pull rcv_up up to prevent seq wrap relative to
1927 * rcv_nxt.
1928 */
1929 tp->rcv_up = tp->rcv_nxt;
1930 TCPSTAT_ADD(tcps_rcvpack, nsegs);
1931 TCPSTAT_ADD(tcps_rcvbyte, tlen);
1932 TCP_PROBE3(debug__input, tp, th, m);
1933
1934 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1935
1936 /* Add data to socket buffer. */
1937 SOCK_RECVBUF_LOCK(so);
1938 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1939 m_freem(m);
1940 } else {
1941 /*
1942 * Set new socket buffer size.
1943 * Give up when limit is reached.
1944 */
1945 if (newsize)
1946 if (!sbreserve_locked(so, SO_RCV,
1947 newsize, NULL))
1948 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1949 m_adj(m, drop_hdrlen); /* delayed header drop */
1950 sbappendstream_locked(&so->so_rcv, m, 0);
1951 }
1952 /* NB: sorwakeup_locked() does an implicit unlock. */
1953 sorwakeup_locked(so);
1954 if (DELAY_ACK(tp, tlen)) {
1955 tp->t_flags |= TF_DELACK;
1956 } else {
1957 tp->t_flags |= TF_ACKNOW;
1958 (void) tcp_output(tp);
1959 }
1960 goto check_delack;
1961 }
1962 }
1963
1964 /*
1965 * Calculate amount of space in receive window,
1966 * and then do TCP input processing.
1967 * Receive window is amount of space in rcv queue,
1968 * but not less than advertised window.
1969 */
1970 win = sbspace(&so->so_rcv);
1971 if (win < 0)
1972 win = 0;
1973 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1974
1975 switch (tp->t_state) {
1976 /*
1977 * If the state is SYN_RECEIVED:
1978 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1979 */
1980 case TCPS_SYN_RECEIVED:
1981 if (thflags & TH_RST) {
1982 /* Handle RST segments later. */
1983 break;
1984 }
1985 if ((thflags & TH_ACK) &&
1986 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1987 SEQ_GT(th->th_ack, tp->snd_max))) {
1988 rstreason = BANDLIM_RST_OPENPORT;
1989 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1990 goto dropwithreset;
1991 }
1992 if (tp->t_flags & TF_FASTOPEN) {
1993 /*
1994 * When a TFO connection is in SYN_RECEIVED, the
1995 * only valid packets are the initial SYN, a
1996 * retransmit/copy of the initial SYN (possibly with
1997 * a subset of the original data), a valid ACK, a
1998 * FIN, or a RST.
1999 */
2000 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
2001 rstreason = BANDLIM_RST_OPENPORT;
2002 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2003 goto dropwithreset;
2004 } else if (thflags & TH_SYN) {
2005 /* non-initial SYN is ignored */
2006 if ((tcp_timer_active(tp, TT_DELACK) ||
2007 tcp_timer_active(tp, TT_REXMT)))
2008 goto drop;
2009 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2010 goto drop;
2011 }
2012 }
2013 break;
2014
2015 /*
2016 * If the state is SYN_SENT:
2017 * if seg contains a RST with valid ACK (SEQ.ACK has already
2018 * been verified), then drop the connection.
2019 * if seg contains a RST without an ACK, drop the seg.
2020 * if seg does not contain SYN, then drop the seg.
2021 * Otherwise this is an acceptable SYN segment
2022 * initialize tp->rcv_nxt and tp->irs
2023 * if seg contains ack then advance tp->snd_una
2024 * if seg contains an ECE and ECN support is enabled, the stream
2025 * is ECN capable.
2026 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2027 * arrange for segment to be acked (eventually)
2028 * continue processing rest of data/controls, beginning with URG
2029 */
2030 case TCPS_SYN_SENT:
2031 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2032 TCP_PROBE5(connect__refused, NULL, tp,
2033 m, tp, th);
2034 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2035 tp = tcp_drop(tp, ECONNREFUSED);
2036 }
2037 if (thflags & TH_RST)
2038 goto drop;
2039 if (!(thflags & TH_SYN))
2040 goto drop;
2041
2042 tp->irs = th->th_seq;
2043 tcp_rcvseqinit(tp);
2044 if (thflags & TH_ACK) {
2045 int tfo_partial_ack = 0;
2046
2047 TCPSTAT_INC(tcps_connects);
2048 soisconnected(so);
2049 #ifdef MAC
2050 mac_socketpeer_set_from_mbuf(m, so);
2051 #endif
2052 /* Do window scaling on this connection? */
2053 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2054 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2055 tp->rcv_scale = tp->request_r_scale;
2056 }
2057 tp->rcv_adv += min(tp->rcv_wnd,
2058 TCP_MAXWIN << tp->rcv_scale);
2059 tp->snd_una++; /* SYN is acked */
2060 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2061 tp->snd_nxt = tp->snd_una;
2062 /*
2063 * If not all the data that was sent in the TFO SYN
2064 * has been acked, resend the remainder right away.
2065 */
2066 if ((tp->t_flags & TF_FASTOPEN) &&
2067 (tp->snd_una != tp->snd_max)) {
2068 tp->snd_nxt = th->th_ack;
2069 tfo_partial_ack = 1;
2070 }
2071 /*
2072 * If there's data, delay ACK; if there's also a FIN
2073 * ACKNOW will be turned on later.
2074 */
2075 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2076 tcp_timer_activate(tp, TT_DELACK,
2077 tcp_delacktime);
2078 else
2079 tp->t_flags |= TF_ACKNOW;
2080
2081 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2082
2083 /*
2084 * Received <SYN,ACK> in SYN_SENT[*] state.
2085 * Transitions:
2086 * SYN_SENT --> ESTABLISHED
2087 * SYN_SENT* --> FIN_WAIT_1
2088 */
2089 tp->t_starttime = ticks;
2090 if (tp->t_flags & TF_NEEDFIN) {
2091 tp->t_acktime = ticks;
2092 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2093 tp->t_flags &= ~TF_NEEDFIN;
2094 thflags &= ~TH_SYN;
2095 } else {
2096 tcp_state_change(tp, TCPS_ESTABLISHED);
2097 TCP_PROBE5(connect__established, NULL, tp,
2098 m, tp, th);
2099 cc_conn_init(tp);
2100 tcp_timer_activate(tp, TT_KEEP,
2101 TP_KEEPIDLE(tp));
2102 }
2103 } else {
2104 /*
2105 * Received initial SYN in SYN-SENT[*] state =>
2106 * simultaneous open.
2107 * If it succeeds, connection is * half-synchronized.
2108 * Otherwise, do 3-way handshake:
2109 * SYN-SENT -> SYN-RECEIVED
2110 * SYN-SENT* -> SYN-RECEIVED*
2111 */
2112 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
2113 tcp_timer_activate(tp, TT_REXMT, 0);
2114 tcp_state_change(tp, TCPS_SYN_RECEIVED);
2115 }
2116
2117 /*
2118 * Advance th->th_seq to correspond to first data byte.
2119 * If data, trim to stay within window,
2120 * dropping FIN if necessary.
2121 */
2122 th->th_seq++;
2123 if (tlen > tp->rcv_wnd) {
2124 todrop = tlen - tp->rcv_wnd;
2125 m_adj(m, -todrop);
2126 tlen = tp->rcv_wnd;
2127 thflags &= ~TH_FIN;
2128 TCPSTAT_INC(tcps_rcvpackafterwin);
2129 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2130 }
2131 tp->snd_wl1 = th->th_seq - 1;
2132 tp->rcv_up = th->th_seq;
2133 /*
2134 * Client side of transaction: already sent SYN and data.
2135 * If the remote host used T/TCP to validate the SYN,
2136 * our data will be ACK'd; if so, enter normal data segment
2137 * processing in the middle of step 5, ack processing.
2138 * Otherwise, goto step 6.
2139 */
2140 if (thflags & TH_ACK)
2141 goto process_ACK;
2142
2143 goto step6;
2144 }
2145
2146 /*
2147 * States other than LISTEN or SYN_SENT.
2148 * First check the RST flag and sequence number since reset segments
2149 * are exempt from the timestamp and connection count tests. This
2150 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2151 * below which allowed reset segments in half the sequence space
2152 * to fall though and be processed (which gives forged reset
2153 * segments with a random sequence number a 50 percent chance of
2154 * killing a connection).
2155 * Then check timestamp, if present.
2156 * Then check the connection count, if present.
2157 * Then check that at least some bytes of segment are within
2158 * receive window. If segment begins before rcv_nxt,
2159 * drop leading data (and SYN); if nothing left, just ack.
2160 */
2161 if (thflags & TH_RST) {
2162 /*
2163 * RFC5961 Section 3.2
2164 *
2165 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2166 * - If RST is in window, we send challenge ACK.
2167 *
2168 * Note: to take into account delayed ACKs, we should
2169 * test against last_ack_sent instead of rcv_nxt.
2170 * Note 2: we handle special case of closed window, not
2171 * covered by the RFC.
2172 */
2173 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2174 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2175 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2176 KASSERT(tp->t_state != TCPS_SYN_SENT,
2177 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2178 __func__, th, tp));
2179
2180 if (V_tcp_insecure_rst ||
2181 tp->last_ack_sent == th->th_seq) {
2182 TCPSTAT_INC(tcps_drops);
2183 /* Drop the connection. */
2184 switch (tp->t_state) {
2185 case TCPS_SYN_RECEIVED:
2186 so->so_error = ECONNREFUSED;
2187 goto close;
2188 case TCPS_ESTABLISHED:
2189 case TCPS_FIN_WAIT_1:
2190 case TCPS_FIN_WAIT_2:
2191 case TCPS_CLOSE_WAIT:
2192 case TCPS_CLOSING:
2193 case TCPS_LAST_ACK:
2194 so->so_error = ECONNRESET;
2195 close:
2196 /* FALLTHROUGH */
2197 default:
2198 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
2199 tp = tcp_close(tp);
2200 }
2201 } else {
2202 TCPSTAT_INC(tcps_badrst);
2203 tcp_send_challenge_ack(tp, th, m);
2204 m = NULL;
2205 }
2206 }
2207 goto drop;
2208 }
2209
2210 /*
2211 * RFC5961 Section 4.2
2212 * Send challenge ACK for any SYN in synchronized state.
2213 */
2214 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2215 tp->t_state != TCPS_SYN_RECEIVED) {
2216 TCPSTAT_INC(tcps_badsyn);
2217 if (V_tcp_insecure_syn &&
2218 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2219 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2220 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2221 tp = tcp_drop(tp, ECONNRESET);
2222 rstreason = BANDLIM_UNLIMITED;
2223 } else {
2224 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2225 tcp_send_challenge_ack(tp, th, m);
2226 m = NULL;
2227 }
2228 goto drop;
2229 }
2230
2231 /*
2232 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2233 * and it's less than ts_recent, drop it.
2234 */
2235 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2236 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2237 /* Check to see if ts_recent is over 24 days old. */
2238 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2239 /*
2240 * Invalidate ts_recent. If this segment updates
2241 * ts_recent, the age will be reset later and ts_recent
2242 * will get a valid value. If it does not, setting
2243 * ts_recent to zero will at least satisfy the
2244 * requirement that zero be placed in the timestamp
2245 * echo reply when ts_recent isn't valid. The
2246 * age isn't reset until we get a valid ts_recent
2247 * because we don't want out-of-order segments to be
2248 * dropped when ts_recent is old.
2249 */
2250 tp->ts_recent = 0;
2251 } else {
2252 TCPSTAT_INC(tcps_rcvduppack);
2253 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2254 TCPSTAT_INC(tcps_pawsdrop);
2255 if (tlen)
2256 goto dropafterack;
2257 goto drop;
2258 }
2259 }
2260
2261 /*
2262 * In the SYN-RECEIVED state, validate that the packet belongs to
2263 * this connection before trimming the data to fit the receive
2264 * window. Check the sequence number versus IRS since we know
2265 * the sequence numbers haven't wrapped. This is a partial fix
2266 * for the "LAND" DoS attack.
2267 */
2268 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2269 rstreason = BANDLIM_RST_OPENPORT;
2270 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2271 goto dropwithreset;
2272 }
2273
2274 todrop = tp->rcv_nxt - th->th_seq;
2275 if (todrop > 0) {
2276 if (thflags & TH_SYN) {
2277 thflags &= ~TH_SYN;
2278 th->th_seq++;
2279 if (th->th_urp > 1)
2280 th->th_urp--;
2281 else
2282 thflags &= ~TH_URG;
2283 todrop--;
2284 }
2285 /*
2286 * Following if statement from Stevens, vol. 2, p. 960.
2287 */
2288 if (todrop > tlen
2289 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2290 /*
2291 * Any valid FIN must be to the left of the window.
2292 * At this point the FIN must be a duplicate or out
2293 * of sequence; drop it.
2294 */
2295 thflags &= ~TH_FIN;
2296
2297 /*
2298 * Send an ACK to resynchronize and drop any data.
2299 * But keep on processing for RST or ACK.
2300 */
2301 tp->t_flags |= TF_ACKNOW;
2302 todrop = tlen;
2303 TCPSTAT_INC(tcps_rcvduppack);
2304 TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2305 } else {
2306 TCPSTAT_INC(tcps_rcvpartduppack);
2307 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2308 }
2309 /*
2310 * DSACK - add SACK block for dropped range
2311 */
2312 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2313 tcp_update_sack_list(tp, th->th_seq,
2314 th->th_seq + todrop);
2315 /*
2316 * ACK now, as the next in-sequence segment
2317 * will clear the DSACK block again
2318 */
2319 tp->t_flags |= TF_ACKNOW;
2320 }
2321 drop_hdrlen += todrop; /* drop from the top afterwards */
2322 th->th_seq += todrop;
2323 tlen -= todrop;
2324 if (th->th_urp > todrop)
2325 th->th_urp -= todrop;
2326 else {
2327 thflags &= ~TH_URG;
2328 th->th_urp = 0;
2329 }
2330 }
2331
2332 /*
2333 * If new data are received on a connection after the
2334 * user processes are gone, then RST the other end if
2335 * no FIN has been processed.
2336 */
2337 if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
2338 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2339 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2340 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2341 "after socket was closed, "
2342 "sending RST and removing tcpcb\n",
2343 s, __func__, tcpstates[tp->t_state], tlen);
2344 free(s, M_TCPLOG);
2345 }
2346 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
2347 /* tcp_close will kill the inp pre-log the Reset */
2348 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2349 tp = tcp_close(tp);
2350 TCPSTAT_INC(tcps_rcvafterclose);
2351 rstreason = BANDLIM_UNLIMITED;
2352 goto dropwithreset;
2353 }
2354
2355 /*
2356 * If segment ends after window, drop trailing data
2357 * (and PUSH and FIN); if nothing left, just ACK.
2358 */
2359 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2360 if (todrop > 0) {
2361 TCPSTAT_INC(tcps_rcvpackafterwin);
2362 if (todrop >= tlen) {
2363 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2364 /*
2365 * If window is closed can only take segments at
2366 * window edge, and have to drop data and PUSH from
2367 * incoming segments. Continue processing, but
2368 * remember to ack. Otherwise, drop segment
2369 * and ack.
2370 */
2371 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2372 tp->t_flags |= TF_ACKNOW;
2373 TCPSTAT_INC(tcps_rcvwinprobe);
2374 } else
2375 goto dropafterack;
2376 } else
2377 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2378 m_adj(m, -todrop);
2379 tlen -= todrop;
2380 thflags &= ~(TH_PUSH|TH_FIN);
2381 }
2382
2383 /*
2384 * If last ACK falls within this segment's sequence numbers,
2385 * record its timestamp.
2386 * NOTE:
2387 * 1) That the test incorporates suggestions from the latest
2388 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2389 * 2) That updating only on newer timestamps interferes with
2390 * our earlier PAWS tests, so this check should be solely
2391 * predicated on the sequence space of this segment.
2392 * 3) That we modify the segment boundary check to be
2393 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2394 * instead of RFC1323's
2395 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2396 * This modified check allows us to overcome RFC1323's
2397 * limitations as described in Stevens TCP/IP Illustrated
2398 * Vol. 2 p.869. In such cases, we can still calculate the
2399 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2400 */
2401 if ((to.to_flags & TOF_TS) != 0 &&
2402 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2403 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2404 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2405 tp->ts_recent_age = tcp_ts_getticks();
2406 tp->ts_recent = to.to_tsval;
2407 }
2408
2409 /*
2410 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2411 * flag is on (half-synchronized state), then queue data for
2412 * later processing; else drop segment and return.
2413 */
2414 if ((thflags & TH_ACK) == 0) {
2415 if (tp->t_state == TCPS_SYN_RECEIVED ||
2416 (tp->t_flags & TF_NEEDSYN)) {
2417 if (tp->t_state == TCPS_SYN_RECEIVED &&
2418 (tp->t_flags & TF_FASTOPEN)) {
2419 tp->snd_wnd = tiwin;
2420 cc_conn_init(tp);
2421 }
2422 goto step6;
2423 } else if (tp->t_flags & TF_ACKNOW)
2424 goto dropafterack;
2425 else
2426 goto drop;
2427 }
2428
2429 /*
2430 * Ack processing.
2431 */
2432 if (SEQ_GEQ(tp->snd_una, tp->iss + (TCP_MAXWIN << tp->snd_scale))) {
2433 /* Checking SEG.ACK against ISS is definitely redundant. */
2434 tp->t_flags2 |= TF2_NO_ISS_CHECK;
2435 }
2436 if (!V_tcp_insecure_ack) {
2437 tcp_seq seq_min;
2438 bool ghost_ack_check;
2439
2440 if (tp->t_flags2 & TF2_NO_ISS_CHECK) {
2441 /* Check for too old ACKs (RFC 5961, Section 5.2). */
2442 seq_min = tp->snd_una - tp->max_sndwnd;
2443 ghost_ack_check = false;
2444 } else {
2445 if (SEQ_GT(tp->iss + 1, tp->snd_una - tp->max_sndwnd)) {
2446 /* Checking for ghost ACKs is stricter. */
2447 seq_min = tp->iss + 1;
2448 ghost_ack_check = true;
2449 } else {
2450 /*
2451 * Checking for too old ACKs (RFC 5961,
2452 * Section 5.2) is stricter.
2453 */
2454 seq_min = tp->snd_una - tp->max_sndwnd;
2455 ghost_ack_check = false;
2456 }
2457 }
2458 if (SEQ_LT(th->th_ack, seq_min)) {
2459 if (ghost_ack_check)
2460 TCPSTAT_INC(tcps_rcvghostack);
2461 else
2462 TCPSTAT_INC(tcps_rcvacktooold);
2463 tcp_send_challenge_ack(tp, th, m);
2464 m = NULL;
2465 goto drop;
2466 }
2467 }
2468 switch (tp->t_state) {
2469 /*
2470 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2471 * ESTABLISHED state and continue processing.
2472 * The ACK was checked above.
2473 */
2474 case TCPS_SYN_RECEIVED:
2475
2476 TCPSTAT_INC(tcps_connects);
2477 if (tp->t_flags & TF_SONOTCONN) {
2478 /*
2479 * Usually SYN_RECEIVED had been created from a LISTEN,
2480 * and solisten_enqueue() has already marked the socket
2481 * layer as connected. If it didn't, which can happen
2482 * only with an accept_filter(9), then the tp is marked
2483 * with TF_SONOTCONN. The other reason for this mark
2484 * to be set is a simultaneous open, a SYN_RECEIVED
2485 * that had been created from SYN_SENT.
2486 */
2487 tp->t_flags &= ~TF_SONOTCONN;
2488 soisconnected(so);
2489 }
2490 /* Do window scaling? */
2491 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2492 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2493 tp->rcv_scale = tp->request_r_scale;
2494 }
2495 tp->snd_wnd = tiwin;
2496 /*
2497 * Make transitions:
2498 * SYN-RECEIVED -> ESTABLISHED
2499 * SYN-RECEIVED* -> FIN-WAIT-1
2500 */
2501 tp->t_starttime = ticks;
2502 if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
2503 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2504 tp->t_tfo_pending = NULL;
2505 }
2506 if (tp->t_flags & TF_NEEDFIN) {
2507 tp->t_acktime = ticks;
2508 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2509 tp->t_flags &= ~TF_NEEDFIN;
2510 } else {
2511 tcp_state_change(tp, TCPS_ESTABLISHED);
2512 TCP_PROBE5(accept__established, NULL, tp,
2513 m, tp, th);
2514 /*
2515 * TFO connections call cc_conn_init() during SYN
2516 * processing. Calling it again here for such
2517 * connections is not harmless as it would undo the
2518 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2519 * is retransmitted.
2520 */
2521 if (!(tp->t_flags & TF_FASTOPEN))
2522 cc_conn_init(tp);
2523 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2524 }
2525 /*
2526 * Account for the ACK of our SYN prior to
2527 * regular ACK processing below, except for
2528 * simultaneous SYN, which is handled later.
2529 */
2530 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2531 incforsyn = 1;
2532 /*
2533 * If segment contains data or ACK, will call tcp_reass()
2534 * later; if not, do so now to pass queued data to user.
2535 */
2536 if (tlen == 0 && (thflags & TH_FIN) == 0) {
2537 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2538 (struct mbuf *)0);
2539 tcp_handle_wakeup(tp);
2540 }
2541 tp->snd_wl1 = th->th_seq - 1;
2542 /* FALLTHROUGH */
2543
2544 /*
2545 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2546 * ACKs. If the ack is in the range
2547 * tp->snd_una < th->th_ack <= tp->snd_max
2548 * then advance tp->snd_una to th->th_ack and drop
2549 * data from the retransmission queue. If this ACK reflects
2550 * more up to date window information we update our window information.
2551 */
2552 case TCPS_ESTABLISHED:
2553 case TCPS_FIN_WAIT_1:
2554 case TCPS_FIN_WAIT_2:
2555 case TCPS_CLOSE_WAIT:
2556 case TCPS_CLOSING:
2557 case TCPS_LAST_ACK:
2558 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2559 TCPSTAT_INC(tcps_rcvacktoomuch);
2560 goto dropafterack;
2561 }
2562 if (tcp_is_sack_recovery(tp, &to)) {
2563 sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2564 if ((sack_changed != SACK_NOCHANGE) &&
2565 (tp->t_flags & TF_LRD)) {
2566 tcp_sack_lost_retransmission(tp, th);
2567 }
2568 } else
2569 /*
2570 * Reset the value so that previous (valid) value
2571 * from the last ack with SACK doesn't get used.
2572 */
2573 tp->sackhint.sacked_bytes = 0;
2574
2575 #ifdef TCP_HHOOK
2576 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2577 hhook_run_tcp_est_in(tp, th, &to);
2578 #endif
2579
2580 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2581 maxseg = tcp_maxseg(tp);
2582 if (tlen == 0 &&
2583 (tiwin == tp->snd_wnd ||
2584 (tp->t_flags & TF_SACK_PERMIT))) {
2585 /*
2586 * If this is the first time we've seen a
2587 * FIN from the remote, this is not a
2588 * duplicate and it needs to be processed
2589 * normally. This happens during a
2590 * simultaneous close.
2591 */
2592 if ((thflags & TH_FIN) &&
2593 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2594 tp->t_dupacks = 0;
2595 break;
2596 }
2597 TCPSTAT_INC(tcps_rcvdupack);
2598 /*
2599 * If we have outstanding data (other than
2600 * a window probe), this is a completely
2601 * duplicate ack (ie, window info didn't
2602 * change and FIN isn't set),
2603 * the ack is the biggest we've
2604 * seen and we've seen exactly our rexmt
2605 * threshold of them, assume a packet
2606 * has been dropped and retransmit it.
2607 * Kludge snd_nxt & the congestion
2608 * window so we send only this one
2609 * packet.
2610 *
2611 * We know we're losing at the current
2612 * window size so do congestion avoidance
2613 * (set ssthresh to half the current window
2614 * and pull our congestion window back to
2615 * the new ssthresh).
2616 *
2617 * Dup acks mean that packets have left the
2618 * network (they're now cached at the receiver)
2619 * so bump cwnd by the amount in the receiver
2620 * to keep a constant cwnd packets in the
2621 * network.
2622 *
2623 * When using TCP ECN, notify the peer that
2624 * we reduced the cwnd.
2625 */
2626 /*
2627 * Following 2 kinds of acks should not affect
2628 * dupack counting:
2629 * 1) Old acks
2630 * 2) Acks with SACK but without any new SACK
2631 * information in them. These could result from
2632 * any anomaly in the network like a switch
2633 * duplicating packets or a possible DoS attack.
2634 */
2635 if (th->th_ack != tp->snd_una ||
2636 (tcp_is_sack_recovery(tp, &to) &&
2637 (sack_changed == SACK_NOCHANGE))) {
2638 break;
2639 } else if (!tcp_timer_active(tp, TT_REXMT)) {
2640 tp->t_dupacks = 0;
2641 } else if (++tp->t_dupacks > tcprexmtthresh ||
2642 IN_FASTRECOVERY(tp->t_flags)) {
2643 cc_ack_received(tp, th, nsegs,
2644 CC_DUPACK);
2645 if (V_tcp_do_prr &&
2646 IN_FASTRECOVERY(tp->t_flags) &&
2647 (tp->t_flags & TF_SACK_PERMIT)) {
2648 tcp_do_prr_ack(tp, th, &to,
2649 sack_changed, &maxseg);
2650 } else if (tcp_is_sack_recovery(tp, &to) &&
2651 IN_FASTRECOVERY(tp->t_flags) &&
2652 (tp->snd_nxt == tp->snd_max)) {
2653 int awnd;
2654
2655 /*
2656 * Compute the amount of data in flight first.
2657 * We can inject new data into the pipe iff
2658 * we have less than ssthresh
2659 * worth of data in flight.
2660 */
2661 awnd = tcp_compute_pipe(tp);
2662 if (awnd < tp->snd_ssthresh) {
2663 tp->snd_cwnd += imax(maxseg,
2664 imin(2 * maxseg,
2665 tp->sackhint.delivered_data));
2666 if (tp->snd_cwnd > tp->snd_ssthresh)
2667 tp->snd_cwnd = tp->snd_ssthresh;
2668 }
2669 } else if (tcp_is_sack_recovery(tp, &to) &&
2670 IN_FASTRECOVERY(tp->t_flags) &&
2671 SEQ_LT(tp->snd_nxt, tp->snd_max)) {
2672 tp->snd_cwnd += imax(maxseg,
2673 imin(2 * maxseg,
2674 tp->sackhint.delivered_data));
2675 } else {
2676 tp->snd_cwnd += maxseg;
2677 }
2678 (void) tcp_output(tp);
2679 goto drop;
2680 } else if (tp->t_dupacks == tcprexmtthresh ||
2681 (tp->t_flags & TF_SACK_PERMIT &&
2682 V_tcp_do_newsack &&
2683 tp->sackhint.sacked_bytes >
2684 (tcprexmtthresh - 1) * maxseg)) {
2685 enter_recovery:
2686 /*
2687 * Above is the RFC6675 trigger condition of
2688 * more than (dupthresh-1)*maxseg sacked data.
2689 * If the count of holes in the
2690 * scoreboard is >= dupthresh, we could
2691 * also enter loss recovery, but don't
2692 * have that value readily available.
2693 */
2694 tp->t_dupacks = tcprexmtthresh;
2695 tcp_seq onxt = tp->snd_nxt;
2696
2697 /*
2698 * If we're doing sack, check to
2699 * see if we're already in sack
2700 * recovery. If we're not doing sack,
2701 * check to see if we're in newreno
2702 * recovery.
2703 */
2704 if (tcp_is_sack_recovery(tp, &to)) {
2705 if (IN_FASTRECOVERY(tp->t_flags)) {
2706 tp->t_dupacks = 0;
2707 break;
2708 }
2709 } else {
2710 if (SEQ_LEQ(th->th_ack,
2711 tp->snd_recover)) {
2712 tp->t_dupacks = 0;
2713 break;
2714 }
2715 }
2716 /* Congestion signal before ack. */
2717 cc_cong_signal(tp, th, CC_NDUPACK);
2718 cc_ack_received(tp, th, nsegs,
2719 CC_DUPACK);
2720 tcp_timer_activate(tp, TT_REXMT, 0);
2721 tp->t_rtttime = 0;
2722 if (V_tcp_do_prr) {
2723 /*
2724 * snd_ssthresh and snd_recover are
2725 * already updated by cc_cong_signal.
2726 */
2727 if (tcp_is_sack_recovery(tp, &to)) {
2728 /*
2729 * Include Limited Transmit
2730 * segments here
2731 */
2732 tp->sackhint.prr_delivered =
2733 imin(tp->snd_max - th->th_ack,
2734 (tp->snd_limited + 1) * maxseg);
2735 } else {
2736 tp->sackhint.prr_delivered =
2737 maxseg;
2738 }
2739 tp->sackhint.recover_fs = max(1,
2740 tp->snd_nxt - tp->snd_una);
2741 }
2742 tp->snd_limited = 0;
2743 if (tcp_is_sack_recovery(tp, &to)) {
2744 TCPSTAT_INC(tcps_sack_recovery_episode);
2745 /*
2746 * When entering LR after RTO due to
2747 * Duplicate ACKs, retransmit existing
2748 * holes from the scoreboard.
2749 */
2750 tcp_resend_sackholes(tp);
2751 /* Avoid inflating cwnd in tcp_output */
2752 tp->snd_nxt = tp->snd_max;
2753 tp->snd_cwnd = tcp_compute_pipe(tp) +
2754 maxseg;
2755 (void) tcp_output(tp);
2756 /* Set cwnd to the expected flightsize */
2757 tp->snd_cwnd = tp->snd_ssthresh;
2758 if (SEQ_GT(th->th_ack, tp->snd_una)) {
2759 goto resume_partialack;
2760 }
2761 goto drop;
2762 }
2763 tp->snd_nxt = th->th_ack;
2764 tp->snd_cwnd = maxseg;
2765 (void) tcp_output(tp);
2766 KASSERT(tp->snd_limited <= 2,
2767 ("%s: tp->snd_limited too big",
2768 __func__));
2769 tp->snd_cwnd = tp->snd_ssthresh +
2770 maxseg *
2771 (tp->t_dupacks - tp->snd_limited);
2772 if (SEQ_GT(onxt, tp->snd_nxt))
2773 tp->snd_nxt = onxt;
2774 goto drop;
2775 } else if (V_tcp_do_rfc3042) {
2776 /*
2777 * Process first and second duplicate
2778 * ACKs. Each indicates a segment
2779 * leaving the network, creating room
2780 * for more. Make sure we can send a
2781 * packet on reception of each duplicate
2782 * ACK by increasing snd_cwnd by one
2783 * segment. Restore the original
2784 * snd_cwnd after packet transmission.
2785 */
2786 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2787 uint32_t oldcwnd = tp->snd_cwnd;
2788 tcp_seq oldsndmax = tp->snd_max;
2789 u_int sent;
2790 int avail;
2791
2792 KASSERT(tp->t_dupacks == 1 ||
2793 tp->t_dupacks == 2,
2794 ("%s: dupacks not 1 or 2",
2795 __func__));
2796 if (tp->t_dupacks == 1)
2797 tp->snd_limited = 0;
2798 if ((tp->snd_nxt == tp->snd_max) &&
2799 (tp->t_rxtshift == 0))
2800 tp->snd_cwnd =
2801 SEQ_SUB(tp->snd_nxt,
2802 tp->snd_una) -
2803 tcp_sack_adjust(tp);
2804 tp->snd_cwnd +=
2805 (tp->t_dupacks - tp->snd_limited) *
2806 maxseg - tcp_sack_adjust(tp);
2807 /*
2808 * Only call tcp_output when there
2809 * is new data available to be sent
2810 * or we need to send an ACK.
2811 */
2812 SOCK_SENDBUF_LOCK(so);
2813 avail = sbavail(&so->so_snd);
2814 SOCK_SENDBUF_UNLOCK(so);
2815 if (tp->t_flags & TF_ACKNOW ||
2816 (avail >=
2817 SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
2818 (void) tcp_output(tp);
2819 }
2820 sent = SEQ_SUB(tp->snd_max, oldsndmax);
2821 if (sent > maxseg) {
2822 KASSERT((tp->t_dupacks == 2 &&
2823 tp->snd_limited == 0) ||
2824 (sent == maxseg + 1 &&
2825 tp->t_flags & TF_SENTFIN),
2826 ("%s: sent too much",
2827 __func__));
2828 tp->snd_limited = 2;
2829 } else if (sent > 0) {
2830 ++tp->snd_limited;
2831 }
2832 tp->snd_cwnd = oldcwnd;
2833 goto drop;
2834 }
2835 }
2836 break;
2837 } else {
2838 /*
2839 * This ack is advancing the left edge, reset the
2840 * counter.
2841 */
2842 tp->t_dupacks = 0;
2843 /*
2844 * If this ack also has new SACK info, increment the
2845 * counter as per rfc6675. The variable
2846 * sack_changed tracks all changes to the SACK
2847 * scoreboard, including when partial ACKs without
2848 * SACK options are received, and clear the scoreboard
2849 * from the left side. Such partial ACKs should not be
2850 * counted as dupacks here.
2851 */
2852 if (tcp_is_sack_recovery(tp, &to) &&
2853 (((tp->t_rxtshift == 0) && (sack_changed != SACK_NOCHANGE)) ||
2854 ((tp->t_rxtshift > 0) && (sack_changed == SACK_NEWLOSS))) &&
2855 (tp->snd_nxt == tp->snd_max)) {
2856 tp->t_dupacks++;
2857 /* limit overhead by setting maxseg last */
2858 if (!IN_FASTRECOVERY(tp->t_flags) &&
2859 (tp->sackhint.sacked_bytes >
2860 ((tcprexmtthresh - 1) *
2861 (maxseg = tcp_maxseg(tp))))) {
2862 goto enter_recovery;
2863 }
2864 }
2865 }
2866
2867 resume_partialack:
2868 KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2869 ("%s: th_ack <= snd_una", __func__));
2870
2871 /*
2872 * If the congestion window was inflated to account
2873 * for the other side's cached packets, retract it.
2874 */
2875 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2876 if (IN_FASTRECOVERY(tp->t_flags)) {
2877 if (tp->t_flags & TF_SACK_PERMIT) {
2878 if (V_tcp_do_prr &&
2879 (to.to_flags & TOF_SACK)) {
2880 tcp_timer_activate(tp,
2881 TT_REXMT, 0);
2882 tp->t_rtttime = 0;
2883 tcp_do_prr_ack(tp, th, &to,
2884 sack_changed, &maxseg);
2885 tp->t_flags |= TF_ACKNOW;
2886 (void) tcp_output(tp);
2887 } else {
2888 tcp_sack_partialack(tp, th,
2889 &maxseg);
2890 }
2891 } else {
2892 tcp_newreno_partial_ack(tp, th);
2893 }
2894 } else if (IN_CONGRECOVERY(tp->t_flags) &&
2895 (V_tcp_do_prr)) {
2896 tp->sackhint.delivered_data =
2897 BYTES_THIS_ACK(tp, th);
2898 tp->snd_fack = th->th_ack;
2899 /*
2900 * During ECN cwnd reduction
2901 * always use PRR-SSRB
2902 */
2903 tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
2904 &maxseg);
2905 (void) tcp_output(tp);
2906 }
2907 }
2908 /*
2909 * If we reach this point, ACK is not a duplicate,
2910 * i.e., it ACKs something we sent.
2911 */
2912 if (tp->t_flags & TF_NEEDSYN) {
2913 /*
2914 * T/TCP: Connection was half-synchronized, and our
2915 * SYN has been ACK'd (so connection is now fully
2916 * synchronized). Go to non-starred state,
2917 * increment snd_una for ACK of SYN, and check if
2918 * we can do window scaling.
2919 */
2920 tp->t_flags &= ~TF_NEEDSYN;
2921 tp->snd_una++;
2922 /* Do window scaling? */
2923 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2924 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2925 tp->rcv_scale = tp->request_r_scale;
2926 /* Send window already scaled. */
2927 }
2928 }
2929
2930 process_ACK:
2931 INP_WLOCK_ASSERT(inp);
2932
2933 /*
2934 * Adjust for the SYN bit in sequence space,
2935 * but don't account for it in cwnd calculations.
2936 * This is for the SYN_RECEIVED, non-simultaneous
2937 * SYN case. SYN_SENT and simultaneous SYN are
2938 * treated elsewhere.
2939 */
2940 if (incforsyn)
2941 tp->snd_una++;
2942 acked = BYTES_THIS_ACK(tp, th);
2943 KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2944 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2945 tp->snd_una, th->th_ack, tp, m));
2946 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2947 TCPSTAT_ADD(tcps_rcvackbyte, acked);
2948
2949 /*
2950 * If we just performed our first retransmit, and the ACK
2951 * arrives within our recovery window, then it was a mistake
2952 * to do the retransmit in the first place. Recover our
2953 * original cwnd and ssthresh, and proceed to transmit where
2954 * we left off.
2955 */
2956 if (tp->t_rxtshift == 1 &&
2957 tp->t_flags & TF_PREVVALID &&
2958 tp->t_badrxtwin != 0 &&
2959 to.to_flags & TOF_TS &&
2960 to.to_tsecr != 0 &&
2961 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
2962 cc_cong_signal(tp, th, CC_RTO_ERR);
2963
2964 /*
2965 * If we have a timestamp reply, update smoothed
2966 * round trip time. If no timestamp is present but
2967 * transmit timer is running and timed sequence
2968 * number was acked, update smoothed round trip time.
2969 * Since we now have an rtt measurement, cancel the
2970 * timer backoff (cf., Phil Karn's retransmit alg.).
2971 * Recompute the initial retransmit timer.
2972 *
2973 * Some boxes send broken timestamp replies
2974 * during the SYN+ACK phase, ignore
2975 * timestamps of 0 or we could calculate a
2976 * huge RTT and blow up the retransmit timer.
2977 */
2978 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2979 uint32_t t;
2980
2981 t = tcp_ts_getticks() - to.to_tsecr;
2982 if (!tp->t_rttlow || tp->t_rttlow > t)
2983 tp->t_rttlow = t;
2984 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2985 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2986 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2987 tp->t_rttlow = ticks - tp->t_rtttime;
2988 tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2989 }
2990
2991 SOCK_SENDBUF_LOCK(so);
2992 /*
2993 * Clear t_acktime if remote side has ACKd all data in the
2994 * socket buffer and FIN (if applicable).
2995 * Otherwise, update t_acktime if we received a sufficiently
2996 * large ACK.
2997 */
2998 if ((tp->t_state <= TCPS_CLOSE_WAIT &&
2999 acked == sbavail(&so->so_snd)) ||
3000 acked > sbavail(&so->so_snd))
3001 tp->t_acktime = 0;
3002 else if (acked > 1)
3003 tp->t_acktime = ticks;
3004
3005 /*
3006 * If all outstanding data is acked, stop retransmit
3007 * timer and remember to restart (more output or persist).
3008 * If there is more data to be acked, restart retransmit
3009 * timer, using current (possibly backed-off) value.
3010 */
3011 if (th->th_ack == tp->snd_max) {
3012 tcp_timer_activate(tp, TT_REXMT, 0);
3013 needoutput = 1;
3014 } else if (!tcp_timer_active(tp, TT_PERSIST))
3015 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
3016
3017 /*
3018 * If no data (only SYN) was ACK'd,
3019 * skip rest of ACK processing.
3020 */
3021 if (acked == 0) {
3022 SOCK_SENDBUF_UNLOCK(so);
3023 goto step6;
3024 }
3025
3026 /*
3027 * Let the congestion control algorithm update congestion
3028 * control related information. This typically means increasing
3029 * the congestion window.
3030 */
3031 cc_ack_received(tp, th, nsegs, CC_ACK);
3032
3033 if (acked > sbavail(&so->so_snd)) {
3034 if (tp->snd_wnd >= sbavail(&so->so_snd))
3035 tp->snd_wnd -= sbavail(&so->so_snd);
3036 else
3037 tp->snd_wnd = 0;
3038 mfree = sbcut_locked(&so->so_snd,
3039 (int)sbavail(&so->so_snd));
3040 ourfinisacked = 1;
3041 } else {
3042 mfree = sbcut_locked(&so->so_snd, acked);
3043 if (tp->snd_wnd >= (uint32_t) acked)
3044 tp->snd_wnd -= acked;
3045 else
3046 tp->snd_wnd = 0;
3047 ourfinisacked = 0;
3048 }
3049 /* NB: sowwakeup_locked() does an implicit unlock. */
3050 sowwakeup_locked(so);
3051 m_freem(mfree);
3052 /* Detect una wraparound. */
3053 if (!IN_RECOVERY(tp->t_flags) &&
3054 SEQ_GT(tp->snd_una, tp->snd_recover) &&
3055 SEQ_LEQ(th->th_ack, tp->snd_recover))
3056 tp->snd_recover = th->th_ack - 1;
3057 tp->snd_una = th->th_ack;
3058 if (IN_RECOVERY(tp->t_flags) &&
3059 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3060 cc_post_recovery(tp, th);
3061 }
3062 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
3063 tp->snd_recover = tp->snd_una;
3064 }
3065 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3066 tp->snd_nxt = tp->snd_una;
3067
3068 switch (tp->t_state) {
3069 /*
3070 * In FIN_WAIT_1 STATE in addition to the processing
3071 * for the ESTABLISHED state if our FIN is now acknowledged
3072 * then enter FIN_WAIT_2.
3073 */
3074 case TCPS_FIN_WAIT_1:
3075 if (ourfinisacked) {
3076 /*
3077 * If we can't receive any more
3078 * data, then closing user can proceed.
3079 * Starting the timer is contrary to the
3080 * specification, but if we don't get a FIN
3081 * we'll hang forever.
3082 */
3083 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3084 tcp_free_sackholes(tp);
3085 soisdisconnected(so);
3086 tcp_timer_activate(tp, TT_2MSL,
3087 (tcp_fast_finwait2_recycle ?
3088 tcp_finwait2_timeout :
3089 TP_MAXIDLE(tp)));
3090 }
3091 tcp_state_change(tp, TCPS_FIN_WAIT_2);
3092 }
3093 break;
3094
3095 /*
3096 * In CLOSING STATE in addition to the processing for
3097 * the ESTABLISHED state if the ACK acknowledges our FIN
3098 * then enter the TIME-WAIT state, otherwise ignore
3099 * the segment.
3100 */
3101 case TCPS_CLOSING:
3102 if (ourfinisacked) {
3103 tcp_twstart(tp);
3104 m_freem(m);
3105 return;
3106 }
3107 break;
3108
3109 /*
3110 * In LAST_ACK, we may still be waiting for data to drain
3111 * and/or to be acked, as well as for the ack of our FIN.
3112 * If our FIN is now acknowledged, delete the TCB,
3113 * enter the closed state and return.
3114 */
3115 case TCPS_LAST_ACK:
3116 if (ourfinisacked) {
3117 tp = tcp_close(tp);
3118 goto drop;
3119 }
3120 break;
3121 }
3122 }
3123
3124 step6:
3125 INP_WLOCK_ASSERT(inp);
3126
3127 /*
3128 * Update window information.
3129 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3130 */
3131 if ((thflags & TH_ACK) &&
3132 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3133 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3134 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3135 /* keep track of pure window updates */
3136 if (tlen == 0 &&
3137 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3138 TCPSTAT_INC(tcps_rcvwinupd);
3139 tp->snd_wnd = tiwin;
3140 tp->snd_wl1 = th->th_seq;
3141 tp->snd_wl2 = th->th_ack;
3142 if (tp->snd_wnd > tp->max_sndwnd)
3143 tp->max_sndwnd = tp->snd_wnd;
3144 needoutput = 1;
3145 }
3146
3147 /*
3148 * Process segments with URG.
3149 */
3150 if ((thflags & TH_URG) && th->th_urp &&
3151 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3152 /*
3153 * This is a kludge, but if we receive and accept
3154 * random urgent pointers, we'll crash in
3155 * soreceive. It's hard to imagine someone
3156 * actually wanting to send this much urgent data.
3157 */
3158 SOCK_RECVBUF_LOCK(so);
3159 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3160 th->th_urp = 0; /* XXX */
3161 thflags &= ~TH_URG; /* XXX */
3162 SOCK_RECVBUF_UNLOCK(so); /* XXX */
3163 goto dodata; /* XXX */
3164 }
3165 /*
3166 * If this segment advances the known urgent pointer,
3167 * then mark the data stream. This should not happen
3168 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3169 * a FIN has been received from the remote side.
3170 * In these states we ignore the URG.
3171 *
3172 * According to RFC961 (Assigned Protocols),
3173 * the urgent pointer points to the last octet
3174 * of urgent data. We continue, however,
3175 * to consider it to indicate the first octet
3176 * of data past the urgent section as the original
3177 * spec states (in one of two places).
3178 */
3179 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3180 tp->rcv_up = th->th_seq + th->th_urp;
3181 so->so_oobmark = sbavail(&so->so_rcv) +
3182 (tp->rcv_up - tp->rcv_nxt) - 1;
3183 if (so->so_oobmark == 0)
3184 so->so_rcv.sb_state |= SBS_RCVATMARK;
3185 sohasoutofband(so);
3186 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3187 }
3188 SOCK_RECVBUF_UNLOCK(so);
3189 /*
3190 * Remove out of band data so doesn't get presented to user.
3191 * This can happen independent of advancing the URG pointer,
3192 * but if two URG's are pending at once, some out-of-band
3193 * data may creep in... ick.
3194 */
3195 if (th->th_urp <= (uint32_t)tlen &&
3196 !(so->so_options & SO_OOBINLINE)) {
3197 /* hdr drop is delayed */
3198 tcp_pulloutofband(so, th, m, drop_hdrlen);
3199 }
3200 } else {
3201 /*
3202 * If no out of band data is expected,
3203 * pull receive urgent pointer along
3204 * with the receive window.
3205 */
3206 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3207 tp->rcv_up = tp->rcv_nxt;
3208 }
3209 dodata: /* XXX */
3210 INP_WLOCK_ASSERT(inp);
3211
3212 /*
3213 * Process the segment text, merging it into the TCP sequencing queue,
3214 * and arranging for acknowledgment of receipt if necessary.
3215 * This process logically involves adjusting tp->rcv_wnd as data
3216 * is presented to the user (this happens in tcp_usrreq.c,
3217 * case PRU_RCVD). If a FIN has already been received on this
3218 * connection then we just ignore the text.
3219 */
3220 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3221 (tp->t_flags & TF_FASTOPEN));
3222 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3223 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3224 tcp_seq save_start = th->th_seq;
3225 tcp_seq save_rnxt = tp->rcv_nxt;
3226 int save_tlen = tlen;
3227 m_adj(m, drop_hdrlen); /* delayed header drop */
3228 /*
3229 * Insert segment which includes th into TCP reassembly queue
3230 * with control block tp. Set thflags to whether reassembly now
3231 * includes a segment with FIN. This handles the common case
3232 * inline (segment is the next to be received on an established
3233 * connection, and the queue is empty), avoiding linkage into
3234 * and removal from the queue and repetition of various
3235 * conversions.
3236 * Set DELACK for segments received in order, but ack
3237 * immediately when segments are out of order (so
3238 * fast retransmit can work).
3239 */
3240 if (th->th_seq == tp->rcv_nxt &&
3241 SEGQ_EMPTY(tp) &&
3242 (TCPS_HAVEESTABLISHED(tp->t_state) ||
3243 tfo_syn)) {
3244 if (DELAY_ACK(tp, tlen) || tfo_syn)
3245 tp->t_flags |= TF_DELACK;
3246 else
3247 tp->t_flags |= TF_ACKNOW;
3248 tp->rcv_nxt += tlen;
3249 if (tlen &&
3250 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3251 (tp->t_fbyte_in == 0)) {
3252 tp->t_fbyte_in = ticks;
3253 if (tp->t_fbyte_in == 0)
3254 tp->t_fbyte_in = 1;
3255 if (tp->t_fbyte_out && tp->t_fbyte_in)
3256 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3257 }
3258 thflags = tcp_get_flags(th) & TH_FIN;
3259 TCPSTAT_INC(tcps_rcvpack);
3260 TCPSTAT_ADD(tcps_rcvbyte, tlen);
3261 SOCK_RECVBUF_LOCK(so);
3262 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3263 m_freem(m);
3264 else
3265 sbappendstream_locked(&so->so_rcv, m, 0);
3266 tp->t_flags |= TF_WAKESOR;
3267 } else {
3268 /*
3269 * XXX: Due to the header drop above "th" is
3270 * theoretically invalid by now. Fortunately
3271 * m_adj() doesn't actually frees any mbufs
3272 * when trimming from the head.
3273 */
3274 tcp_seq temp = save_start;
3275
3276 thflags = tcp_reass(tp, th, &temp, &tlen, m);
3277 tp->t_flags |= TF_ACKNOW;
3278 }
3279 if ((tp->t_flags & TF_SACK_PERMIT) &&
3280 (save_tlen > 0) &&
3281 TCPS_HAVEESTABLISHED(tp->t_state)) {
3282 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3283 /*
3284 * DSACK actually handled in the fastpath
3285 * above.
3286 */
3287 tcp_update_sack_list(tp, save_start,
3288 save_start + save_tlen);
3289 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3290 if ((tp->rcv_numsacks >= 1) &&
3291 (tp->sackblks[0].end == save_start)) {
3292 /*
3293 * Partial overlap, recorded at todrop
3294 * above.
3295 */
3296 tcp_update_sack_list(tp,
3297 tp->sackblks[0].start,
3298 tp->sackblks[0].end);
3299 } else {
3300 tcp_update_dsack_list(tp, save_start,
3301 save_start + save_tlen);
3302 }
3303 } else if (tlen >= save_tlen) {
3304 /* Update of sackblks. */
3305 tcp_update_dsack_list(tp, save_start,
3306 save_start + save_tlen);
3307 } else if (tlen > 0) {
3308 tcp_update_dsack_list(tp, save_start,
3309 save_start + tlen);
3310 }
3311 }
3312 tcp_handle_wakeup(tp);
3313 #if 0
3314 /*
3315 * Note the amount of data that peer has sent into
3316 * our window, in order to estimate the sender's
3317 * buffer size.
3318 * XXX: Unused.
3319 */
3320 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3321 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3322 else
3323 len = so->so_rcv.sb_hiwat;
3324 #endif
3325 } else {
3326 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
3327 if (tlen > 0) {
3328 if ((thflags & TH_FIN) != 0) {
3329 log(LOG_DEBUG, "%s; %s: %s: "
3330 "Received %d bytes of data and FIN "
3331 "after having received a FIN, "
3332 "just dropping both\n",
3333 s, __func__,
3334 tcpstates[tp->t_state], tlen);
3335 } else {
3336 log(LOG_DEBUG, "%s; %s: %s: "
3337 "Received %d bytes of data "
3338 "after having received a FIN, "
3339 "just dropping it\n",
3340 s, __func__,
3341 tcpstates[tp->t_state], tlen);
3342 }
3343 } else {
3344 if ((thflags & TH_FIN) != 0) {
3345 log(LOG_DEBUG, "%s; %s: %s: "
3346 "Received FIN "
3347 "after having received a FIN, "
3348 "just dropping it\n",
3349 s, __func__,
3350 tcpstates[tp->t_state]);
3351 }
3352 }
3353 free(s, M_TCPLOG);
3354 }
3355 m_freem(m);
3356 thflags &= ~TH_FIN;
3357 }
3358
3359 /*
3360 * If FIN is received ACK the FIN and let the user know
3361 * that the connection is closing.
3362 */
3363 if (thflags & TH_FIN) {
3364 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3365 /* The socket upcall is handled by socantrcvmore. */
3366 socantrcvmore(so);
3367 /*
3368 * If connection is half-synchronized
3369 * (ie NEEDSYN flag on) then delay ACK,
3370 * so it may be piggybacked when SYN is sent.
3371 * Otherwise, since we received a FIN then no
3372 * more input can be expected, send ACK now.
3373 */
3374 if (tp->t_flags & TF_NEEDSYN)
3375 tp->t_flags |= TF_DELACK;
3376 else
3377 tp->t_flags |= TF_ACKNOW;
3378 tp->rcv_nxt++;
3379 }
3380 switch (tp->t_state) {
3381 /*
3382 * In SYN_RECEIVED and ESTABLISHED STATES
3383 * enter the CLOSE_WAIT state.
3384 */
3385 case TCPS_SYN_RECEIVED:
3386 tp->t_starttime = ticks;
3387 /* FALLTHROUGH */
3388 case TCPS_ESTABLISHED:
3389 tcp_state_change(tp, TCPS_CLOSE_WAIT);
3390 break;
3391
3392 /*
3393 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3394 * enter the CLOSING state.
3395 */
3396 case TCPS_FIN_WAIT_1:
3397 tcp_state_change(tp, TCPS_CLOSING);
3398 break;
3399
3400 /*
3401 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3402 * starting the time-wait timer, turning off the other
3403 * standard timers.
3404 */
3405 case TCPS_FIN_WAIT_2:
3406 tcp_twstart(tp);
3407 return;
3408 }
3409 }
3410 TCP_PROBE3(debug__input, tp, th, m);
3411
3412 /*
3413 * Return any desired output.
3414 */
3415 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3416 (void) tcp_output(tp);
3417 }
3418 check_delack:
3419 INP_WLOCK_ASSERT(inp);
3420
3421 if (tp->t_flags & TF_DELACK) {
3422 tp->t_flags &= ~TF_DELACK;
3423 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3424 }
3425 INP_WUNLOCK(inp);
3426 return;
3427
3428 dropafterack:
3429 /*
3430 * Generate an ACK dropping incoming segment if it occupies
3431 * sequence space, where the ACK reflects our state.
3432 *
3433 * We can now skip the test for the RST flag since all
3434 * paths to this code happen after packets containing
3435 * RST have been dropped.
3436 *
3437 * In the SYN-RECEIVED state, don't send an ACK unless the
3438 * segment we received passes the SYN-RECEIVED ACK test.
3439 * If it fails send a RST. This breaks the loop in the
3440 * "LAND" DoS attack, and also prevents an ACK storm
3441 * between two listening ports that have been sent forged
3442 * SYN segments, each with the source address of the other.
3443 */
3444 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3445 (SEQ_GT(tp->snd_una, th->th_ack) ||
3446 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3447 rstreason = BANDLIM_RST_OPENPORT;
3448 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
3449 goto dropwithreset;
3450 }
3451 TCP_PROBE3(debug__input, tp, th, m);
3452 tp->t_flags |= TF_ACKNOW;
3453 (void) tcp_output(tp);
3454 INP_WUNLOCK(inp);
3455 m_freem(m);
3456 return;
3457
3458 dropwithreset:
3459 if (tp != NULL) {
3460 tcp_dropwithreset(m, th, tp, tlen, rstreason);
3461 INP_WUNLOCK(inp);
3462 } else
3463 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3464 return;
3465
3466 drop:
3467 /*
3468 * Drop space held by incoming segment and return.
3469 */
3470 TCP_PROBE3(debug__input, tp, th, m);
3471 if (tp != NULL) {
3472 INP_WUNLOCK(inp);
3473 }
3474 m_freem(m);
3475 }
3476
3477 /*
3478 * Issue RST and make ACK acceptable to originator of segment.
3479 * The mbuf must still include the original packet header.
3480 * tp may be NULL.
3481 */
3482 void
tcp_dropwithreset(struct mbuf * m,struct tcphdr * th,struct tcpcb * tp,int tlen,int rstreason)3483 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3484 int tlen, int rstreason)
3485 {
3486 #ifdef INET
3487 struct ip *ip;
3488 #endif
3489 #ifdef INET6
3490 struct ip6_hdr *ip6;
3491 #endif
3492
3493 if (tp != NULL) {
3494 INP_LOCK_ASSERT(tptoinpcb(tp));
3495 }
3496
3497 /* Don't bother if destination was broadcast/multicast. */
3498 if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3499 goto drop;
3500 #ifdef INET6
3501 if (mtod(m, struct ip *)->ip_v == 6) {
3502 ip6 = mtod(m, struct ip6_hdr *);
3503 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3504 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3505 goto drop;
3506 /* IPv6 anycast check is done at tcp6_input() */
3507 }
3508 #endif
3509 #if defined(INET) && defined(INET6)
3510 else
3511 #endif
3512 #ifdef INET
3513 {
3514 ip = mtod(m, struct ip *);
3515 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3516 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3517 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3518 in_ifnet_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3519 goto drop;
3520 }
3521 #endif
3522
3523 /* Perform bandwidth limiting. */
3524 if (badport_bandlim(rstreason) < 0)
3525 goto drop;
3526
3527 /* tcp_respond consumes the mbuf chain. */
3528 if (tcp_get_flags(th) & TH_ACK) {
3529 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3530 th->th_ack, TH_RST);
3531 } else {
3532 if (tcp_get_flags(th) & TH_SYN)
3533 tlen++;
3534 if (tcp_get_flags(th) & TH_FIN)
3535 tlen++;
3536 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3537 (tcp_seq)0, TH_RST|TH_ACK);
3538 }
3539 return;
3540 drop:
3541 m_freem(m);
3542 }
3543
3544 /*
3545 * Parse TCP options and place in tcpopt.
3546 */
3547 void
tcp_dooptions(struct tcpopt * to,u_char * cp,int cnt,int flags)3548 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3549 {
3550 int opt, optlen;
3551
3552 to->to_flags = 0;
3553 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3554 opt = cp[0];
3555 if (opt == TCPOPT_EOL)
3556 break;
3557 if (opt == TCPOPT_NOP)
3558 optlen = 1;
3559 else {
3560 if (cnt < 2)
3561 break;
3562 optlen = cp[1];
3563 if (optlen < 2 || optlen > cnt)
3564 break;
3565 }
3566 switch (opt) {
3567 case TCPOPT_MAXSEG:
3568 if (optlen != TCPOLEN_MAXSEG)
3569 continue;
3570 if (!(flags & TO_SYN))
3571 continue;
3572 to->to_flags |= TOF_MSS;
3573 bcopy((char *)cp + 2,
3574 (char *)&to->to_mss, sizeof(to->to_mss));
3575 to->to_mss = ntohs(to->to_mss);
3576 break;
3577 case TCPOPT_WINDOW:
3578 if (optlen != TCPOLEN_WINDOW)
3579 continue;
3580 if (!(flags & TO_SYN))
3581 continue;
3582 to->to_flags |= TOF_SCALE;
3583 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3584 break;
3585 case TCPOPT_TIMESTAMP:
3586 if (optlen != TCPOLEN_TIMESTAMP)
3587 continue;
3588 to->to_flags |= TOF_TS;
3589 bcopy((char *)cp + 2,
3590 (char *)&to->to_tsval, sizeof(to->to_tsval));
3591 to->to_tsval = ntohl(to->to_tsval);
3592 bcopy((char *)cp + 6,
3593 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3594 to->to_tsecr = ntohl(to->to_tsecr);
3595 break;
3596 case TCPOPT_SIGNATURE:
3597 /*
3598 * In order to reply to a host which has set the
3599 * TCP_SIGNATURE option in its initial SYN, we have
3600 * to record the fact that the option was observed
3601 * here for the syncache code to perform the correct
3602 * response.
3603 */
3604 if (optlen != TCPOLEN_SIGNATURE)
3605 continue;
3606 to->to_flags |= TOF_SIGNATURE;
3607 to->to_signature = cp + 2;
3608 break;
3609 case TCPOPT_SACK_PERMITTED:
3610 if (optlen != TCPOLEN_SACK_PERMITTED)
3611 continue;
3612 if (!(flags & TO_SYN))
3613 continue;
3614 if (!V_tcp_do_sack)
3615 continue;
3616 to->to_flags |= TOF_SACKPERM;
3617 break;
3618 case TCPOPT_SACK:
3619 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3620 continue;
3621 if (flags & TO_SYN)
3622 continue;
3623 to->to_flags |= TOF_SACK;
3624 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3625 to->to_sacks = cp + 2;
3626 TCPSTAT_INC(tcps_sack_rcv_blocks);
3627 break;
3628 case TCPOPT_FAST_OPEN:
3629 /*
3630 * Cookie length validation is performed by the
3631 * server side cookie checking code or the client
3632 * side cookie cache update code.
3633 */
3634 if (!(flags & TO_SYN))
3635 continue;
3636 if (!V_tcp_fastopen_client_enable &&
3637 !V_tcp_fastopen_server_enable)
3638 continue;
3639 to->to_flags |= TOF_FASTOPEN;
3640 to->to_tfo_len = optlen - 2;
3641 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3642 break;
3643 default:
3644 continue;
3645 }
3646 }
3647 }
3648
3649 /*
3650 * Pull out of band byte out of a segment so
3651 * it doesn't appear in the user's data queue.
3652 * It is still reflected in the segment length for
3653 * sequencing purposes.
3654 */
3655 void
tcp_pulloutofband(struct socket * so,struct tcphdr * th,struct mbuf * m,int off)3656 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3657 int off)
3658 {
3659 int cnt = off + th->th_urp - 1;
3660
3661 while (cnt >= 0) {
3662 if (m->m_len > cnt) {
3663 char *cp = mtod(m, caddr_t) + cnt;
3664 struct tcpcb *tp = sototcpcb(so);
3665
3666 INP_WLOCK_ASSERT(tptoinpcb(tp));
3667
3668 tp->t_iobc = *cp;
3669 tp->t_oobflags |= TCPOOB_HAVEDATA;
3670 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3671 m->m_len--;
3672 if (m->m_flags & M_PKTHDR)
3673 m->m_pkthdr.len--;
3674 return;
3675 }
3676 cnt -= m->m_len;
3677 m = m->m_next;
3678 if (m == NULL)
3679 break;
3680 }
3681 panic("tcp_pulloutofband");
3682 }
3683
3684 /*
3685 * Collect new round-trip time estimate
3686 * and update averages and current timeout.
3687 */
3688 void
tcp_xmit_timer(struct tcpcb * tp,int rtt)3689 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3690 {
3691 int delta;
3692
3693 INP_WLOCK_ASSERT(tptoinpcb(tp));
3694
3695 TCPSTAT_INC(tcps_rttupdated);
3696 if (tp->t_rttupdated < UCHAR_MAX)
3697 tp->t_rttupdated++;
3698 #ifdef STATS
3699 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3700 imax(0, rtt * 1000 / hz));
3701 #endif
3702 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3703 /*
3704 * srtt is stored as fixed point with 5 bits after the
3705 * binary point (i.e., scaled by 8). The following magic
3706 * is equivalent to the smoothing algorithm in rfc793 with
3707 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3708 * point). Adjust rtt to origin 0.
3709 */
3710 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3711 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3712
3713 if ((tp->t_srtt += delta) <= 0)
3714 tp->t_srtt = 1;
3715
3716 /*
3717 * We accumulate a smoothed rtt variance (actually, a
3718 * smoothed mean difference), then set the retransmit
3719 * timer to smoothed rtt + 4 times the smoothed variance.
3720 * rttvar is stored as fixed point with 4 bits after the
3721 * binary point (scaled by 16). The following is
3722 * equivalent to rfc793 smoothing with an alpha of .75
3723 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3724 * rfc793's wired-in beta.
3725 */
3726 if (delta < 0)
3727 delta = -delta;
3728 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3729 if ((tp->t_rttvar += delta) <= 0)
3730 tp->t_rttvar = 1;
3731 } else {
3732 /*
3733 * No rtt measurement yet - use the unsmoothed rtt.
3734 * Set the variance to half the rtt (so our first
3735 * retransmit happens at 3*rtt).
3736 */
3737 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3738 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3739 }
3740 tp->t_rtttime = 0;
3741 tp->t_rxtshift = 0;
3742
3743 /*
3744 * the retransmit should happen at rtt + 4 * rttvar.
3745 * Because of the way we do the smoothing, srtt and rttvar
3746 * will each average +1/2 tick of bias. When we compute
3747 * the retransmit timer, we want 1/2 tick of rounding and
3748 * 1 extra tick because of +-1/2 tick uncertainty in the
3749 * firing of the timer. The bias will give us exactly the
3750 * 1.5 tick we need. But, because the bias is
3751 * statistical, we have to test that we don't drop below
3752 * the minimum feasible timer (which is 2 ticks).
3753 */
3754 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3755 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3756
3757 /*
3758 * We received an ack for a packet that wasn't retransmitted;
3759 * it is probably safe to discard any error indications we've
3760 * received recently. This isn't quite right, but close enough
3761 * for now (a route might have failed after we sent a segment,
3762 * and the return path might not be symmetrical).
3763 */
3764 tp->t_softerror = 0;
3765 }
3766
3767 /*
3768 * Determine a reasonable value for maxseg size.
3769 * If the route is known, check route for mtu.
3770 * If none, use an mss that can be handled on the outgoing interface
3771 * without forcing IP to fragment. If no route is found, route has no mtu,
3772 * or the destination isn't local, use a default, hopefully conservative
3773 * size (usually 512 or the default IP max size, but no more than the mtu
3774 * of the interface), as we can't discover anything about intervening
3775 * gateways or networks. We also initialize the congestion/slow start
3776 * window to be a single segment if the destination isn't local.
3777 * While looking at the routing entry, we also initialize other path-dependent
3778 * parameters from pre-set or cached values in the routing entry.
3779 *
3780 * NOTE that resulting t_maxseg doesn't include space for TCP options or
3781 * IP options, e.g. IPSEC data, since length of this data may vary, and
3782 * thus it is calculated for every segment separately in tcp_output().
3783 *
3784 * NOTE that this routine is only called when we process an incoming
3785 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3786 * settings are handled in tcp_mssopt().
3787 */
3788 void
tcp_mss_update(struct tcpcb * tp,int offer,int mtuoffer,struct hc_metrics_lite * metricptr,struct tcp_ifcap * cap)3789 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3790 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3791 {
3792 int mss = 0;
3793 uint32_t maxmtu = 0;
3794 struct inpcb *inp = tptoinpcb(tp);
3795 struct hc_metrics_lite metrics;
3796 #ifdef INET6
3797 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3798 size_t min_protoh = isipv6 ?
3799 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3800 sizeof (struct tcpiphdr);
3801 #else
3802 size_t min_protoh = sizeof(struct tcpiphdr);
3803 #endif
3804
3805 INP_WLOCK_ASSERT(inp);
3806
3807 if (tp->t_port)
3808 min_protoh += V_tcp_udp_tunneling_overhead;
3809 if (mtuoffer != -1) {
3810 KASSERT(offer == -1, ("%s: conflict", __func__));
3811 offer = mtuoffer - min_protoh;
3812 }
3813
3814 /* Initialize. */
3815 #ifdef INET6
3816 if (isipv6) {
3817 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3818 tp->t_maxseg = V_tcp_v6mssdflt;
3819 }
3820 #endif
3821 #if defined(INET) && defined(INET6)
3822 else
3823 #endif
3824 #ifdef INET
3825 {
3826 maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3827 tp->t_maxseg = V_tcp_mssdflt;
3828 }
3829 #endif
3830
3831 /*
3832 * No route to sender, stay with default mss and return.
3833 */
3834 if (maxmtu == 0) {
3835 /*
3836 * In case we return early we need to initialize metrics
3837 * to a defined state as tcp_hc_get() would do for us
3838 * if there was no cache hit.
3839 */
3840 if (metricptr != NULL)
3841 bzero(metricptr, sizeof(struct hc_metrics_lite));
3842 return;
3843 }
3844
3845 /* What have we got? */
3846 switch (offer) {
3847 case 0:
3848 /*
3849 * Offer == 0 means that there was no MSS on the SYN
3850 * segment, in this case we use tcp_mssdflt as
3851 * already assigned to t_maxseg above.
3852 */
3853 offer = tp->t_maxseg;
3854 break;
3855
3856 case -1:
3857 /*
3858 * Offer == -1 means that we didn't receive SYN yet.
3859 */
3860 /* FALLTHROUGH */
3861
3862 default:
3863 /*
3864 * Prevent DoS attack with too small MSS. Round up
3865 * to at least minmss.
3866 */
3867 offer = max(offer, V_tcp_minmss);
3868 }
3869
3870 if (metricptr == NULL)
3871 metricptr = &metrics;
3872 tcp_hc_get(&inp->inp_inc, metricptr);
3873
3874 /*
3875 * If there's a discovered mtu in tcp hostcache, use it.
3876 * Else, use the link mtu.
3877 */
3878 if (metricptr->hc_mtu)
3879 mss = min(metricptr->hc_mtu, maxmtu) - min_protoh;
3880 else {
3881 #ifdef INET6
3882 if (isipv6) {
3883 mss = maxmtu - min_protoh;
3884 if (!V_path_mtu_discovery &&
3885 !in6_localaddr(&inp->in6p_faddr))
3886 mss = min(mss, V_tcp_v6mssdflt);
3887 }
3888 #endif
3889 #if defined(INET) && defined(INET6)
3890 else
3891 #endif
3892 #ifdef INET
3893 {
3894 mss = maxmtu - min_protoh;
3895 if (!V_path_mtu_discovery &&
3896 !in_localaddr(inp->inp_faddr))
3897 mss = min(mss, V_tcp_mssdflt);
3898 }
3899 #endif
3900 /*
3901 * XXX - The above conditional (mss = maxmtu - min_protoh)
3902 * probably violates the TCP spec.
3903 * The problem is that, since we don't know the
3904 * other end's MSS, we are supposed to use a conservative
3905 * default. But, if we do that, then MTU discovery will
3906 * never actually take place, because the conservative
3907 * default is much less than the MTUs typically seen
3908 * on the Internet today. For the moment, we'll sweep
3909 * this under the carpet.
3910 *
3911 * The conservative default might not actually be a problem
3912 * if the only case this occurs is when sending an initial
3913 * SYN with options and data to a host we've never talked
3914 * to before. Then, they will reply with an MSS value which
3915 * will get recorded and the new parameters should get
3916 * recomputed. For Further Study.
3917 */
3918 }
3919 mss = min(mss, offer);
3920
3921 /*
3922 * Sanity check: make sure that maxseg will be large
3923 * enough to allow some data on segments even if the
3924 * all the option space is used (40bytes). Otherwise
3925 * funny things may happen in tcp_output.
3926 *
3927 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3928 */
3929 mss = max(mss, 64);
3930
3931 tp->t_maxseg = mss;
3932 if (tp->t_maxseg < V_tcp_mssdflt) {
3933 /*
3934 * The MSS is so small we should not process incoming
3935 * SACK's since we are subject to attack in such a
3936 * case.
3937 */
3938 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3939 } else {
3940 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3941 }
3942
3943 }
3944
3945 void
tcp_mss(struct tcpcb * tp,int offer)3946 tcp_mss(struct tcpcb *tp, int offer)
3947 {
3948 int mss;
3949 uint32_t bufsize;
3950 struct inpcb *inp = tptoinpcb(tp);
3951 struct socket *so;
3952 struct hc_metrics_lite metrics;
3953 struct tcp_ifcap cap;
3954
3955 KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3956
3957 bzero(&cap, sizeof(cap));
3958 tcp_mss_update(tp, offer, -1, &metrics, &cap);
3959
3960 mss = tp->t_maxseg;
3961
3962 /*
3963 * If there's a pipesize, change the socket buffer to that size,
3964 * don't change if sb_hiwat is different than default (then it
3965 * has been changed on purpose with setsockopt).
3966 * Make the socket buffers an integral number of mss units;
3967 * if the mss is larger than the socket buffer, decrease the mss.
3968 */
3969 so = inp->inp_socket;
3970 SOCK_SENDBUF_LOCK(so);
3971 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.hc_sendpipe)
3972 bufsize = metrics.hc_sendpipe;
3973 else
3974 bufsize = so->so_snd.sb_hiwat;
3975 if (bufsize < mss)
3976 mss = bufsize;
3977 else {
3978 bufsize = roundup(bufsize, mss);
3979 if (bufsize > sb_max)
3980 bufsize = sb_max;
3981 if (bufsize > so->so_snd.sb_hiwat)
3982 (void)sbreserve_locked(so, SO_SND, bufsize, NULL);
3983 }
3984 SOCK_SENDBUF_UNLOCK(so);
3985 /*
3986 * Sanity check: make sure that maxseg will be large
3987 * enough to allow some data on segments even if the
3988 * all the option space is used (40bytes). Otherwise
3989 * funny things may happen in tcp_output.
3990 *
3991 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3992 */
3993 tp->t_maxseg = max(mss, 64);
3994 if (tp->t_maxseg < V_tcp_mssdflt) {
3995 /*
3996 * The MSS is so small we should not process incoming
3997 * SACK's since we are subject to attack in such a
3998 * case.
3999 */
4000 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
4001 } else {
4002 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
4003 }
4004
4005 SOCK_RECVBUF_LOCK(so);
4006 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.hc_recvpipe)
4007 bufsize = metrics.hc_recvpipe;
4008 else
4009 bufsize = so->so_rcv.sb_hiwat;
4010 if (bufsize > mss) {
4011 bufsize = roundup(bufsize, mss);
4012 if (bufsize > sb_max)
4013 bufsize = sb_max;
4014 if (bufsize > so->so_rcv.sb_hiwat)
4015 (void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
4016 }
4017 SOCK_RECVBUF_UNLOCK(so);
4018
4019 /* Check the interface for TSO capabilities. */
4020 if (cap.ifcap & CSUM_TSO) {
4021 tp->t_flags |= TF_TSO;
4022 tp->t_tsomax = cap.tsomax;
4023 tp->t_tsomaxsegcount = cap.tsomaxsegcount;
4024 tp->t_tsomaxsegsize = cap.tsomaxsegsize;
4025 if (cap.ipsec_tso)
4026 tp->t_flags2 |= TF2_IPSEC_TSO;
4027 }
4028 }
4029
4030 /*
4031 * Determine the MSS option to send on an outgoing SYN.
4032 */
4033 int
tcp_mssopt(struct in_conninfo * inc)4034 tcp_mssopt(struct in_conninfo *inc)
4035 {
4036 int mss = 0;
4037 uint32_t thcmtu = 0;
4038 uint32_t maxmtu = 0;
4039 size_t min_protoh;
4040
4041 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
4042
4043 #ifdef INET6
4044 if (inc->inc_flags & INC_ISIPV6) {
4045 mss = V_tcp_v6mssdflt;
4046 maxmtu = tcp_maxmtu6(inc, NULL);
4047 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
4048 }
4049 #endif
4050 #if defined(INET) && defined(INET6)
4051 else
4052 #endif
4053 #ifdef INET
4054 {
4055 mss = V_tcp_mssdflt;
4056 maxmtu = tcp_maxmtu(inc, NULL);
4057 min_protoh = sizeof(struct tcpiphdr);
4058 }
4059 #endif
4060 #if defined(INET6) || defined(INET)
4061 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
4062 #endif
4063
4064 if (maxmtu && thcmtu)
4065 mss = min(maxmtu, thcmtu) - min_protoh;
4066 else if (maxmtu || thcmtu)
4067 mss = max(maxmtu, thcmtu) - min_protoh;
4068
4069 return (mss);
4070 }
4071
4072 void
tcp_do_prr_ack(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,sackstatus_t sack_changed,u_int * maxsegp)4073 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
4074 sackstatus_t sack_changed, u_int *maxsegp)
4075 {
4076 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
4077 u_int maxseg;
4078
4079 INP_WLOCK_ASSERT(tptoinpcb(tp));
4080
4081 if (*maxsegp == 0) {
4082 *maxsegp = tcp_maxseg(tp);
4083 }
4084 maxseg = *maxsegp;
4085 /*
4086 * Compute the amount of data that this ACK is indicating
4087 * (del_data) and an estimate of how many bytes are in the
4088 * network.
4089 */
4090 if (tcp_is_sack_recovery(tp, to) ||
4091 (IN_CONGRECOVERY(tp->t_flags) &&
4092 !IN_FASTRECOVERY(tp->t_flags))) {
4093 del_data = tp->sackhint.delivered_data;
4094 pipe = tcp_compute_pipe(tp);
4095 } else {
4096 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
4097 tp->snd_recover - tp->snd_una)) {
4098 del_data = maxseg;
4099 }
4100 pipe = imax(0, tp->snd_max - tp->snd_una -
4101 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
4102 }
4103 tp->sackhint.prr_delivered += del_data;
4104 /*
4105 * Proportional Rate Reduction
4106 */
4107 if (pipe >= tp->snd_ssthresh) {
4108 if (tp->sackhint.recover_fs == 0)
4109 tp->sackhint.recover_fs =
4110 imax(1, tp->snd_nxt - tp->snd_una);
4111 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
4112 tp->snd_ssthresh, tp->sackhint.recover_fs) -
4113 tp->sackhint.prr_out + maxseg - 1;
4114 } else {
4115 /*
4116 * PRR 6937bis heuristic:
4117 * - A partial ack without SACK block beneath snd_recover
4118 * indicates further loss.
4119 * - An SACK scoreboard update adding a new hole indicates
4120 * further loss, so be conservative and send at most one
4121 * segment.
4122 * - Prevent ACK splitting attacks, by being conservative
4123 * when no new data is acked.
4124 */
4125 if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
4126 limit = tp->sackhint.prr_delivered -
4127 tp->sackhint.prr_out;
4128 } else {
4129 limit = imax(tp->sackhint.prr_delivered -
4130 tp->sackhint.prr_out, del_data) +
4131 maxseg;
4132 }
4133 snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
4134 }
4135 snd_cnt = imax(snd_cnt, 0) / maxseg;
4136 /*
4137 * Send snd_cnt new data into the network in response to this ack.
4138 * If there is going to be a SACK retransmission, adjust snd_cwnd
4139 * accordingly.
4140 */
4141 if (IN_FASTRECOVERY(tp->t_flags)) {
4142 if (tcp_is_sack_recovery(tp, to)) {
4143 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4144 } else {
4145 tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
4146 (snd_cnt * maxseg);
4147 }
4148 } else if (IN_CONGRECOVERY(tp->t_flags)) {
4149 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4150 }
4151 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
4152 }
4153
4154 /*
4155 * On a partial ack arrives, force the retransmission of the
4156 * next unacknowledged segment. Do not clear tp->t_dupacks.
4157 * By setting snd_nxt to ti_ack, this forces retransmission timer to
4158 * be started again.
4159 */
4160 void
tcp_newreno_partial_ack(struct tcpcb * tp,struct tcphdr * th)4161 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
4162 {
4163 tcp_seq onxt = tp->snd_nxt;
4164 uint32_t ocwnd = tp->snd_cwnd;
4165 u_int maxseg = tcp_maxseg(tp);
4166
4167 INP_WLOCK_ASSERT(tptoinpcb(tp));
4168
4169 tcp_timer_activate(tp, TT_REXMT, 0);
4170 tp->t_rtttime = 0;
4171 if (IN_FASTRECOVERY(tp->t_flags)) {
4172 tp->snd_nxt = th->th_ack;
4173 /*
4174 * Set snd_cwnd to one segment beyond acknowledged offset.
4175 * (tp->snd_una has not yet been updated when this function is called.)
4176 */
4177 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
4178 tp->t_flags |= TF_ACKNOW;
4179 (void) tcp_output(tp);
4180 tp->snd_cwnd = ocwnd;
4181 if (SEQ_GT(onxt, tp->snd_nxt))
4182 tp->snd_nxt = onxt;
4183 }
4184 /*
4185 * Partial window deflation. Relies on fact that tp->snd_una
4186 * not updated yet.
4187 */
4188 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4189 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4190 else
4191 tp->snd_cwnd = 0;
4192 tp->snd_cwnd += maxseg;
4193 }
4194
4195 int
tcp_compute_pipe(struct tcpcb * tp)4196 tcp_compute_pipe(struct tcpcb *tp)
4197 {
4198 int pipe;
4199
4200 if (tp->t_fb->tfb_compute_pipe != NULL) {
4201 pipe = (*tp->t_fb->tfb_compute_pipe)(tp);
4202 } else if (V_tcp_do_newsack) {
4203 pipe = tp->snd_max - tp->snd_una +
4204 tp->sackhint.sack_bytes_rexmit -
4205 tp->sackhint.sacked_bytes -
4206 tp->sackhint.lost_bytes;
4207 } else {
4208 pipe = tp->snd_nxt - tp->snd_fack + tp->sackhint.sack_bytes_rexmit;
4209 }
4210 return (imax(pipe, 0));
4211 }
4212
4213 uint32_t
tcp_compute_initwnd(uint32_t maxseg)4214 tcp_compute_initwnd(uint32_t maxseg)
4215 {
4216 /*
4217 * Calculate the Initial Window, also used as Restart Window
4218 *
4219 * RFC5681 Section 3.1 specifies the default conservative values.
4220 * RFC3390 specifies slightly more aggressive values.
4221 * RFC6928 increases it to ten segments.
4222 * Support for user specified value for initial flight size.
4223 */
4224 if (V_tcp_initcwnd_segments)
4225 return min(V_tcp_initcwnd_segments * maxseg,
4226 max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4227 else if (V_tcp_do_rfc3390)
4228 return min(4 * maxseg, max(2 * maxseg, 4380));
4229 else {
4230 /* Per RFC5681 Section 3.1 */
4231 if (maxseg > 2190)
4232 return (2 * maxseg);
4233 else if (maxseg > 1095)
4234 return (3 * maxseg);
4235 else
4236 return (4 * maxseg);
4237 }
4238 }
4239