1 /*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #include <sys/cdefs.h>
27 #include "opt_inet.h"
28 #include "opt_inet6.h"
29 #include "opt_rss.h"
30
31 /**
32 * Some notes about usage.
33 *
34 * The tcp_hpts system is designed to provide a high precision timer
35 * system for tcp. Its main purpose is to provide a mechanism for
36 * pacing packets out onto the wire. It can be used in two ways
37 * by a given TCP stack (and those two methods can be used simultaneously).
38 *
39 * First, and probably the main thing its used by Rack and BBR, it can
40 * be used to call tcp_output() of a transport stack at some time in the future.
41 * The normal way this is done is that tcp_output() of the stack schedules
42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
43 * slot is the time from now that the stack wants to be called but it
44 * must be converted to tcp_hpts's notion of slot. This is done with
45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
46 * call from the tcp_output() routine might look like:
47 *
48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
49 *
50 * The above would schedule tcp_output() to be called in 550 useconds.
51 * Note that if using this mechanism the stack will want to add near
52 * its top a check to prevent unwanted calls (from user land or the
53 * arrival of incoming ack's). So it would add something like:
54 *
55 * if (tcp_in_hpts(inp))
56 * return;
57 *
58 * to prevent output processing until the time alotted has gone by.
59 * Of course this is a bare bones example and the stack will probably
60 * have more consideration then just the above.
61 *
62 * In order to run input queued segments from the HPTS context the
63 * tcp stack must define an input function for
64 * tfb_do_queued_segments(). This function understands
65 * how to dequeue a array of packets that were input and
66 * knows how to call the correct processing routine.
67 *
68 * Locking in this is important as well so most likely the
69 * stack will need to define the tfb_do_segment_nounlock()
70 * splitting tfb_do_segment() into two parts. The main processing
71 * part that does not unlock the INP and returns a value of 1 or 0.
72 * It returns 0 if all is well and the lock was not released. It
73 * returns 1 if we had to destroy the TCB (a reset received etc).
74 * The remains of tfb_do_segment() then become just a simple call
75 * to the tfb_do_segment_nounlock() function and check the return
76 * code and possibly unlock.
77 *
78 * The stack must also set the flag on the INP that it supports this
79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
80 * this flag as well and will queue packets when it is set.
81 * There are other flags as well INP_MBUF_QUEUE_READY and
82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
83 * that we are in the pacer for output so there is no
84 * need to wake up the hpts system to get immediate
85 * input. The second tells the LRO code that its okay
86 * if a SACK arrives you can still defer input and let
87 * the current hpts timer run (this is usually set when
88 * a rack timer is up so we know SACK's are happening
89 * on the connection already and don't want to wakeup yet).
90 *
91 * There is a common functions within the rack_bbr_common code
92 * version i.e. ctf_do_queued_segments(). This function
93 * knows how to take the input queue of packets from tp->t_inqueue
94 * and process them digging out all the arguments, calling any bpf tap and
95 * calling into tfb_do_segment_nounlock(). The common
96 * function (ctf_do_queued_segments()) requires that
97 * you have defined the tfb_do_segment_nounlock() as
98 * described above.
99 */
100
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/interrupt.h>
104 #include <sys/module.h>
105 #include <sys/kernel.h>
106 #include <sys/hhook.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/proc.h> /* for proc0 declaration */
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/refcount.h>
115 #include <sys/sched.h>
116 #include <sys/queue.h>
117 #include <sys/smp.h>
118 #include <sys/counter.h>
119 #include <sys/time.h>
120 #include <sys/kthread.h>
121 #include <sys/kern_prefetch.h>
122
123 #include <vm/uma.h>
124 #include <vm/vm.h>
125
126 #include <net/route.h>
127 #include <net/vnet.h>
128
129 #ifdef RSS
130 #include <net/netisr.h>
131 #include <net/rss_config.h>
132 #endif
133
134 #define TCPSTATES /* for logging */
135
136 #include <netinet/in.h>
137 #include <netinet/in_kdtrace.h>
138 #include <netinet/in_pcb.h>
139 #include <netinet/ip.h>
140 #include <netinet/ip_var.h>
141 #include <netinet/ip6.h>
142 #include <netinet6/in6_pcb.h>
143 #include <netinet6/ip6_var.h>
144 #include <netinet/tcp.h>
145 #include <netinet/tcp_fsm.h>
146 #include <netinet/tcp_seq.h>
147 #include <netinet/tcp_timer.h>
148 #include <netinet/tcp_var.h>
149 #include <netinet/tcpip.h>
150 #include <netinet/cc/cc.h>
151 #include <netinet/tcp_hpts.h>
152 #include <netinet/tcp_log_buf.h>
153
154 #ifdef tcp_offload
155 #include <netinet/tcp_offload.h>
156 #endif
157
158 /*
159 * The hpts uses a 102400 wheel. The wheel
160 * defines the time in 10 usec increments (102400 x 10).
161 * This gives a range of 10usec - 1024ms to place
162 * an entry within. If the user requests more than
163 * 1.024 second, a remaineder is attached and the hpts
164 * when seeing the remainder will re-insert the
165 * inpcb forward in time from where it is until
166 * the remainder is zero.
167 */
168
169 #define NUM_OF_HPTSI_SLOTS 102400
170
171 /* The number of connections after which the dynamic sleep logic kicks in. */
172 #define DEFAULT_CONNECTION_THRESHOLD 100
173
174 /*
175 * When using the hpts, a TCP stack must make sure
176 * that once a INP_DROPPED flag is applied to a INP
177 * that it does not expect tcp_output() to ever be
178 * called by the hpts. The hpts will *not* call
179 * any output (or input) functions on a TCB that
180 * is in the DROPPED state.
181 *
182 * This implies final ACK's and RST's that might
183 * be sent when a TCB is still around must be
184 * sent from a routine like tcp_respond().
185 */
186 #define LOWEST_SLEEP_ALLOWED 50
187 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep
188 * this determines min granularity of the
189 * hpts. If 1, granularity is 10useconds at
190 * the cost of more CPU (context switching).
191 * Note do not set this to 0.
192 */
193 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP
194 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */
195
196 /* Thresholds for raising/lowering sleep */
197 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */
198 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */
199 /**
200 *
201 * Dynamic adjustment of sleeping times is done in "new" mode
202 * where we are depending on syscall returns and lro returns
203 * to push hpts forward mainly and the timer is only a backstop.
204 *
205 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh
206 * then we do a dynamic adjustment on the time we sleep.
207 * Our threshold is if the lateness of the first client served (in ticks) is
208 * greater than or equal too slots_indicate_more_sleep (10ms
209 * or 10000 ticks). If we were that late, the actual sleep time
210 * is adjusted down by 50%. If the ticks_ran is less than
211 * slots_indicate_more_sleep (100 ticks or 1000usecs).
212 *
213 */
214
215 /* Each hpts has its own p_mtx which is used for locking */
216 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED)
217 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx)
218 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx)
219 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx)
220 struct tcp_hpts_entry {
221 /* Cache line 0x00 */
222 struct mtx p_mtx; /* Mutex for hpts */
223 struct timeval p_mysleep; /* Our min sleep time */
224 uint64_t syscall_cnt;
225 uint64_t sleeping; /* What the actual sleep was (if sleeping) */
226 uint16_t p_hpts_active; /* Flag that says hpts is awake */
227 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
228 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */
229 uint32_t p_runningslot; /* Current tick we are at if we are running */
230 uint32_t p_prev_slot; /* Previous slot we were on */
231 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */
232 uint32_t p_nxt_slot; /* The next slot outside the current range of
233 * slots that the hpts is running on. */
234 int32_t p_on_queue_cnt; /* Count on queue in this hpts */
235 uint32_t p_lasttick; /* Last tick before the current one */
236 uint8_t p_direct_wake :1, /* boolean */
237 p_on_min_sleep:1, /* boolean */
238 p_hpts_wake_scheduled:1, /* boolean */
239 hit_callout_thresh:1,
240 p_avail:4;
241 uint8_t p_fill[3]; /* Fill to 32 bits */
242 /* Cache line 0x40 */
243 struct hptsh {
244 TAILQ_HEAD(, tcpcb) head;
245 uint32_t count;
246 uint32_t gencnt;
247 } *p_hptss; /* Hptsi wheel */
248 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max
249 * of 255ms */
250 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */
251 uint32_t saved_lasttick; /* for logging */
252 uint32_t saved_curtick; /* for logging */
253 uint32_t saved_curslot; /* for logging */
254 uint32_t saved_prev_slot; /* for logging */
255 uint32_t p_delayed_by; /* How much were we delayed by */
256 /* Cache line 0x80 */
257 struct sysctl_ctx_list hpts_ctx;
258 struct sysctl_oid *hpts_root;
259 struct intr_event *ie;
260 void *ie_cookie;
261 uint16_t p_num; /* The hpts number one per cpu */
262 uint16_t p_cpu; /* The hpts CPU */
263 /* There is extra space in here */
264 /* Cache line 0x100 */
265 struct callout co __aligned(CACHE_LINE_SIZE);
266 } __aligned(CACHE_LINE_SIZE);
267
268 static struct tcp_hptsi {
269 struct cpu_group **grps;
270 struct tcp_hpts_entry **rp_ent; /* Array of hptss */
271 uint32_t *cts_last_ran;
272 uint32_t grp_cnt;
273 uint32_t rp_num_hptss; /* Number of hpts threads */
274 } tcp_pace;
275
276 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
277 #ifdef RSS
278 static int tcp_bind_threads = 1;
279 #else
280 static int tcp_bind_threads = 2;
281 #endif
282 static int tcp_use_irq_cpu = 0;
283 static int hpts_does_tp_logging = 0;
284
285 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout);
286 static void tcp_hpts_thread(void *ctx);
287
288 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
289 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD;
290 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
291 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
292
293 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
294 "TCP Hpts controls");
295 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
296 "TCP Hpts statistics");
297
298 #define timersub(tvp, uvp, vvp) \
299 do { \
300 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
301 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
302 if ((vvp)->tv_usec < 0) { \
303 (vvp)->tv_sec--; \
304 (vvp)->tv_usec += 1000000; \
305 } \
306 } while (0)
307
308 static int32_t tcp_hpts_precision = 120;
309
310 static struct hpts_domain_info {
311 int count;
312 int cpu[MAXCPU];
313 } hpts_domains[MAXMEMDOM];
314
315 counter_u64_t hpts_hopelessly_behind;
316
317 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
318 &hpts_hopelessly_behind,
319 "Number of times hpts could not catch up and was behind hopelessly");
320
321 counter_u64_t hpts_loops;
322
323 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
324 &hpts_loops, "Number of times hpts had to loop to catch up");
325
326 counter_u64_t back_tosleep;
327
328 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
329 &back_tosleep, "Number of times hpts found no tcbs");
330
331 counter_u64_t combined_wheel_wrap;
332
333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
334 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
335
336 counter_u64_t wheel_wrap;
337
338 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
339 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
340
341 counter_u64_t hpts_direct_call;
342 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
343 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
344
345 counter_u64_t hpts_wake_timeout;
346
347 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
348 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
349
350 counter_u64_t hpts_direct_awakening;
351
352 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
353 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
354
355 counter_u64_t hpts_back_tosleep;
356
357 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
358 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
359
360 counter_u64_t cpu_uses_flowid;
361 counter_u64_t cpu_uses_random;
362
363 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
364 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
365 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
366 &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
367
368 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
369 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
370 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
371 &tcp_bind_threads, 2,
372 "Thread Binding tunable");
373 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
374 &tcp_use_irq_cpu, 0,
375 "Use of irq CPU tunable");
376 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
377 &tcp_hpts_precision, 120,
378 "Value for PRE() precision of callout");
379 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
380 &conn_cnt_thresh, 0,
381 "How many connections (below) make us use the callout based mechanism");
382 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
383 &hpts_does_tp_logging, 0,
384 "Do we add to any tp that has logging on pacer logs");
385 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
386 &dynamic_min_sleep, 250,
387 "What is the dynamic minsleep value?");
388 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
389 &dynamic_max_sleep, 5000,
390 "What is the dynamic maxsleep value?");
391
392 static int32_t max_pacer_loops = 10;
393 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
394 &max_pacer_loops, 10,
395 "What is the maximum number of times the pacer will loop trying to catch up");
396
397 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
398
399 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
400
401 static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)402 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
403 {
404 int error;
405 uint32_t new;
406
407 new = hpts_sleep_max;
408 error = sysctl_handle_int(oidp, &new, 0, req);
409 if (error == 0 && req->newptr) {
410 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) ||
411 (new > HPTS_MAX_SLEEP_ALLOWED))
412 error = EINVAL;
413 else
414 hpts_sleep_max = new;
415 }
416 return (error);
417 }
418
419 static int
sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)420 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
421 {
422 int error;
423 uint32_t new;
424
425 new = tcp_min_hptsi_time;
426 error = sysctl_handle_int(oidp, &new, 0, req);
427 if (error == 0 && req->newptr) {
428 if (new < LOWEST_SLEEP_ALLOWED)
429 error = EINVAL;
430 else
431 tcp_min_hptsi_time = new;
432 }
433 return (error);
434 }
435
436 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
437 CTLTYPE_UINT | CTLFLAG_RW,
438 &hpts_sleep_max, 0,
439 &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
440 "Maximum time hpts will sleep in slots");
441
442 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
443 CTLTYPE_UINT | CTLFLAG_RW,
444 &tcp_min_hptsi_time, 0,
445 &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
446 "The minimum time the hpts must sleep before processing more slots");
447
448 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP;
449 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP;
450 static int tcp_hpts_no_wake_over_thresh = 1;
451
452 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
453 &slots_indicate_more_sleep, 0,
454 "If we only process this many or less on a timeout, we need longer sleep on the next callout");
455 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
456 &slots_indicate_less_sleep, 0,
457 "If we process this many or more on a timeout, we need less sleep on the next callout");
458 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
459 &tcp_hpts_no_wake_over_thresh, 0,
460 "When we are over the threshold on the pacer do we prohibit wakeups?");
461
462 static uint16_t
hpts_random_cpu(void)463 hpts_random_cpu(void)
464 {
465 uint16_t cpuid;
466 uint32_t ran;
467
468 ran = arc4random();
469 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
470 return (cpuid);
471 }
472
473 static void
tcp_hpts_log(struct tcp_hpts_entry * hpts,struct tcpcb * tp,struct timeval * tv,int slots_to_run,int idx,bool from_callout)474 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
475 int slots_to_run, int idx, bool from_callout)
476 {
477 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
478 union tcp_log_stackspecific log;
479 /*
480 * Unused logs are
481 * 64 bit - delRate, rttProp, bw_inuse
482 * 16 bit - cwnd_gain
483 * 8 bit - bbr_state, bbr_substate, inhpts;
484 */
485 memset(&log, 0, sizeof(log));
486 log.u_bbr.flex1 = hpts->p_nxt_slot;
487 log.u_bbr.flex2 = hpts->p_cur_slot;
488 log.u_bbr.flex3 = hpts->p_prev_slot;
489 log.u_bbr.flex4 = idx;
490 log.u_bbr.flex5 = hpts->p_curtick;
491 log.u_bbr.flex6 = hpts->p_on_queue_cnt;
492 log.u_bbr.flex7 = hpts->p_cpu;
493 log.u_bbr.flex8 = (uint8_t)from_callout;
494 log.u_bbr.inflight = slots_to_run;
495 log.u_bbr.applimited = hpts->overidden_sleep;
496 log.u_bbr.delivered = hpts->saved_curtick;
497 log.u_bbr.timeStamp = tcp_tv_to_usec(tv);
498 log.u_bbr.epoch = hpts->saved_curslot;
499 log.u_bbr.lt_epoch = hpts->saved_prev_slot;
500 log.u_bbr.pkts_out = hpts->p_delayed_by;
501 log.u_bbr.lost = hpts->p_hpts_sleep_time;
502 log.u_bbr.pacing_gain = hpts->p_cpu;
503 log.u_bbr.pkt_epoch = hpts->p_runningslot;
504 log.u_bbr.use_lt_bw = 1;
505 TCP_LOG_EVENTP(tp, NULL,
506 &tptosocket(tp)->so_rcv,
507 &tptosocket(tp)->so_snd,
508 BBR_LOG_HPTSDIAG, 0,
509 0, &log, false, tv);
510 }
511 }
512
513 static void
tcp_wakehpts(struct tcp_hpts_entry * hpts)514 tcp_wakehpts(struct tcp_hpts_entry *hpts)
515 {
516 HPTS_MTX_ASSERT(hpts);
517
518 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
519 hpts->p_direct_wake = 0;
520 return;
521 }
522 if (hpts->p_hpts_wake_scheduled == 0) {
523 hpts->p_hpts_wake_scheduled = 1;
524 swi_sched(hpts->ie_cookie, 0);
525 }
526 }
527
528 static void
hpts_timeout_swi(void * arg)529 hpts_timeout_swi(void *arg)
530 {
531 struct tcp_hpts_entry *hpts;
532
533 hpts = (struct tcp_hpts_entry *)arg;
534 swi_sched(hpts->ie_cookie, 0);
535 }
536
537 static void
tcp_hpts_insert_internal(struct tcpcb * tp,struct tcp_hpts_entry * hpts)538 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
539 {
540 struct inpcb *inp = tptoinpcb(tp);
541 struct hptsh *hptsh;
542
543 INP_WLOCK_ASSERT(inp);
544 HPTS_MTX_ASSERT(hpts);
545 MPASS(hpts->p_cpu == tp->t_hpts_cpu);
546 MPASS(!(inp->inp_flags & INP_DROPPED));
547
548 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
549
550 if (tp->t_in_hpts == IHPTS_NONE) {
551 tp->t_in_hpts = IHPTS_ONQUEUE;
552 in_pcbref(inp);
553 } else if (tp->t_in_hpts == IHPTS_MOVING) {
554 tp->t_in_hpts = IHPTS_ONQUEUE;
555 } else
556 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
557 tp->t_hpts_gencnt = hptsh->gencnt;
558
559 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
560 hptsh->count++;
561 hpts->p_on_queue_cnt++;
562 }
563
564 static struct tcp_hpts_entry *
tcp_hpts_lock(struct tcpcb * tp)565 tcp_hpts_lock(struct tcpcb *tp)
566 {
567 struct tcp_hpts_entry *hpts;
568
569 INP_LOCK_ASSERT(tptoinpcb(tp));
570
571 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
572 HPTS_LOCK(hpts);
573
574 return (hpts);
575 }
576
577 static void
tcp_hpts_release(struct tcpcb * tp)578 tcp_hpts_release(struct tcpcb *tp)
579 {
580 bool released __diagused;
581
582 tp->t_in_hpts = IHPTS_NONE;
583 released = in_pcbrele_wlocked(tptoinpcb(tp));
584 MPASS(released == false);
585 }
586
587 /*
588 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU
589 * is preferred on the first incoming packet. Before that avoid crowding
590 * a single CPU with newborn connections and use a random one.
591 * This initialization is normally called on a newborn tcpcb, but potentially
592 * can be called once again if stack is switched. In that case we inherit CPU
593 * that the previous stack has set, be it random or not. In extreme cases,
594 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
595 * and has never received a first packet.
596 */
597 void
tcp_hpts_init(struct tcpcb * tp)598 tcp_hpts_init(struct tcpcb *tp)
599 {
600
601 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
602 tp->t_hpts_cpu = hpts_random_cpu();
603 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
604 }
605 }
606
607 /*
608 * Called normally with the INP_LOCKED but it
609 * does not matter, the hpts lock is the key
610 * but the lock order allows us to hold the
611 * INP lock and then get the hpts lock.
612 */
613 void
tcp_hpts_remove(struct tcpcb * tp)614 tcp_hpts_remove(struct tcpcb *tp)
615 {
616 struct tcp_hpts_entry *hpts;
617 struct hptsh *hptsh;
618
619 INP_WLOCK_ASSERT(tptoinpcb(tp));
620
621 hpts = tcp_hpts_lock(tp);
622 if (tp->t_in_hpts == IHPTS_ONQUEUE) {
623 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
624 tp->t_hpts_request = 0;
625 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
626 TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
627 MPASS(hptsh->count > 0);
628 hptsh->count--;
629 MPASS(hpts->p_on_queue_cnt > 0);
630 hpts->p_on_queue_cnt--;
631 tcp_hpts_release(tp);
632 } else {
633 /*
634 * tcp_hptsi() now owns the TAILQ head of this inp.
635 * Can't TAILQ_REMOVE, just mark it.
636 */
637 #ifdef INVARIANTS
638 struct tcpcb *tmp;
639
640 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
641 MPASS(tmp != tp);
642 #endif
643 tp->t_in_hpts = IHPTS_MOVING;
644 tp->t_hpts_slot = -1;
645 }
646 } else if (tp->t_in_hpts == IHPTS_MOVING) {
647 /*
648 * Handle a special race condition:
649 * tcp_hptsi() moves inpcb to detached tailq
650 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
651 * tcp_hpts_insert() sets slot to a meaningful value
652 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
653 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
654 */
655 tp->t_hpts_slot = -1;
656 }
657 HPTS_UNLOCK(hpts);
658 }
659
660 static inline int
hpts_slot(uint32_t wheel_slot,uint32_t plus)661 hpts_slot(uint32_t wheel_slot, uint32_t plus)
662 {
663 /*
664 * Given a slot on the wheel, what slot
665 * is that plus ticks out?
666 */
667 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
668 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
669 }
670
671 static inline int
tick_to_wheel(uint32_t cts_in_wticks)672 tick_to_wheel(uint32_t cts_in_wticks)
673 {
674 /*
675 * Given a timestamp in ticks (so by
676 * default to get it to a real time one
677 * would multiply by 10.. i.e the number
678 * of ticks in a slot) map it to our limited
679 * space wheel.
680 */
681 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
682 }
683
684 static inline int
hpts_slots_diff(int prev_slot,int slot_now)685 hpts_slots_diff(int prev_slot, int slot_now)
686 {
687 /*
688 * Given two slots that are someplace
689 * on our wheel. How far are they apart?
690 */
691 if (slot_now > prev_slot)
692 return (slot_now - prev_slot);
693 else if (slot_now == prev_slot)
694 /*
695 * Special case, same means we can go all of our
696 * wheel less one slot.
697 */
698 return (NUM_OF_HPTSI_SLOTS - 1);
699 else
700 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
701 }
702
703 /*
704 * Given a slot on the wheel that is the current time
705 * mapped to the wheel (wheel_slot), what is the maximum
706 * distance forward that can be obtained without
707 * wrapping past either prev_slot or running_slot
708 * depending on the htps state? Also if passed
709 * a uint32_t *, fill it with the slot location.
710 *
711 * Note if you do not give this function the current
712 * time (that you think it is) mapped to the wheel slot
713 * then the results will not be what you expect and
714 * could lead to invalid inserts.
715 */
716 static inline int32_t
max_slots_available(struct tcp_hpts_entry * hpts,uint32_t wheel_slot,uint32_t * target_slot)717 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
718 {
719 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
720
721 if ((hpts->p_hpts_active == 1) &&
722 (hpts->p_wheel_complete == 0)) {
723 end_slot = hpts->p_runningslot;
724 /* Back up one tick */
725 if (end_slot == 0)
726 end_slot = NUM_OF_HPTSI_SLOTS - 1;
727 else
728 end_slot--;
729 if (target_slot)
730 *target_slot = end_slot;
731 } else {
732 /*
733 * For the case where we are
734 * not active, or we have
735 * completed the pass over
736 * the wheel, we can use the
737 * prev tick and subtract one from it. This puts us
738 * as far out as possible on the wheel.
739 */
740 end_slot = hpts->p_prev_slot;
741 if (end_slot == 0)
742 end_slot = NUM_OF_HPTSI_SLOTS - 1;
743 else
744 end_slot--;
745 if (target_slot)
746 *target_slot = end_slot;
747 /*
748 * Now we have close to the full wheel left minus the
749 * time it has been since the pacer went to sleep. Note
750 * that wheel_tick, passed in, should be the current time
751 * from the perspective of the caller, mapped to the wheel.
752 */
753 if (hpts->p_prev_slot != wheel_slot)
754 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
755 else
756 dis_to_travel = 1;
757 /*
758 * dis_to_travel in this case is the space from when the
759 * pacer stopped (p_prev_slot) and where our wheel_slot
760 * is now. To know how many slots we can put it in we
761 * subtract from the wheel size. We would not want
762 * to place something after p_prev_slot or it will
763 * get ran too soon.
764 */
765 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
766 }
767 /*
768 * So how many slots are open between p_runningslot -> p_cur_slot
769 * that is what is currently un-available for insertion. Special
770 * case when we are at the last slot, this gets 1, so that
771 * the answer to how many slots are available is all but 1.
772 */
773 if (hpts->p_runningslot == hpts->p_cur_slot)
774 dis_to_travel = 1;
775 else
776 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
777 /*
778 * How long has the pacer been running?
779 */
780 if (hpts->p_cur_slot != wheel_slot) {
781 /* The pacer is a bit late */
782 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
783 } else {
784 /* The pacer is right on time, now == pacers start time */
785 pacer_to_now = 0;
786 }
787 /*
788 * To get the number left we can insert into we simply
789 * subtract the distance the pacer has to run from how
790 * many slots there are.
791 */
792 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
793 /*
794 * Now how many of those we will eat due to the pacer's
795 * time (p_cur_slot) of start being behind the
796 * real time (wheel_slot)?
797 */
798 if (avail_on_wheel <= pacer_to_now) {
799 /*
800 * Wheel wrap, we can't fit on the wheel, that
801 * is unusual the system must be way overloaded!
802 * Insert into the assured slot, and return special
803 * "0".
804 */
805 counter_u64_add(combined_wheel_wrap, 1);
806 if (target_slot)
807 *target_slot = hpts->p_nxt_slot;
808 return (0);
809 } else {
810 /*
811 * We know how many slots are open
812 * on the wheel (the reverse of what
813 * is left to run. Take away the time
814 * the pacer started to now (wheel_slot)
815 * and that tells you how many slots are
816 * open that can be inserted into that won't
817 * be touched by the pacer until later.
818 */
819 return (avail_on_wheel - pacer_to_now);
820 }
821 }
822
823
824 #ifdef INVARIANTS
825 static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry * hpts,struct tcpcb * tp,uint32_t hptsslot,int line)826 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
827 uint32_t hptsslot, int line)
828 {
829 /*
830 * Sanity checks for the pacer with invariants
831 * on insert.
832 */
833 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
834 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
835 if ((hpts->p_hpts_active) &&
836 (hpts->p_wheel_complete == 0)) {
837 /*
838 * If the pacer is processing a arc
839 * of the wheel, we need to make
840 * sure we are not inserting within
841 * that arc.
842 */
843 int distance, yet_to_run;
844
845 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
846 if (hpts->p_runningslot != hpts->p_cur_slot)
847 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
848 else
849 yet_to_run = 0; /* processing last slot */
850 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
851 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
852 hptsslot, distance, yet_to_run, hpts->p_runningslot,
853 hpts->p_cur_slot));
854 }
855 }
856 #endif
857
858 uint32_t
tcp_hpts_insert_diag(struct tcpcb * tp,uint32_t slot,int32_t line,struct hpts_diag * diag)859 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
860 {
861 struct tcp_hpts_entry *hpts;
862 struct timeval tv;
863 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
864 int32_t wheel_slot, maxslots;
865 bool need_wakeup = false;
866
867 INP_WLOCK_ASSERT(tptoinpcb(tp));
868 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
869 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE));
870
871 /*
872 * We now return the next-slot the hpts will be on, beyond its
873 * current run (if up) or where it was when it stopped if it is
874 * sleeping.
875 */
876 hpts = tcp_hpts_lock(tp);
877 microuptime(&tv);
878 if (diag) {
879 memset(diag, 0, sizeof(struct hpts_diag));
880 diag->p_hpts_active = hpts->p_hpts_active;
881 diag->p_prev_slot = hpts->p_prev_slot;
882 diag->p_runningslot = hpts->p_runningslot;
883 diag->p_nxt_slot = hpts->p_nxt_slot;
884 diag->p_cur_slot = hpts->p_cur_slot;
885 diag->p_curtick = hpts->p_curtick;
886 diag->p_lasttick = hpts->p_lasttick;
887 diag->slot_req = slot;
888 diag->p_on_min_sleep = hpts->p_on_min_sleep;
889 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
890 }
891 if (slot == 0) {
892 /* Ok we need to set it on the hpts in the current slot */
893 tp->t_hpts_request = 0;
894 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
895 /*
896 * A sleeping hpts we want in next slot to run
897 * note that in this state p_prev_slot == p_cur_slot
898 */
899 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
900 if ((hpts->p_on_min_sleep == 0) &&
901 (hpts->p_hpts_active == 0))
902 need_wakeup = true;
903 } else
904 tp->t_hpts_slot = hpts->p_runningslot;
905 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
906 tcp_hpts_insert_internal(tp, hpts);
907 if (need_wakeup) {
908 /*
909 * Activate the hpts if it is sleeping and its
910 * timeout is not 1.
911 */
912 hpts->p_direct_wake = 1;
913 tcp_wakehpts(hpts);
914 }
915 slot_on = hpts->p_nxt_slot;
916 HPTS_UNLOCK(hpts);
917
918 return (slot_on);
919 }
920 /* Get the current time relative to the wheel */
921 wheel_cts = tcp_tv_to_hpts_slot(&tv);
922 /* Map it onto the wheel */
923 wheel_slot = tick_to_wheel(wheel_cts);
924 /* Now what's the max we can place it at? */
925 maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
926 if (diag) {
927 diag->wheel_slot = wheel_slot;
928 diag->maxslots = maxslots;
929 diag->wheel_cts = wheel_cts;
930 }
931 if (maxslots == 0) {
932 /* The pacer is in a wheel wrap behind, yikes! */
933 if (slot > 1) {
934 /*
935 * Reduce by 1 to prevent a forever loop in
936 * case something else is wrong. Note this
937 * probably does not hurt because the pacer
938 * if its true is so far behind we will be
939 * > 1second late calling anyway.
940 */
941 slot--;
942 }
943 tp->t_hpts_slot = last_slot;
944 tp->t_hpts_request = slot;
945 } else if (maxslots >= slot) {
946 /* It all fits on the wheel */
947 tp->t_hpts_request = 0;
948 tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
949 } else {
950 /* It does not fit */
951 tp->t_hpts_request = slot - maxslots;
952 tp->t_hpts_slot = last_slot;
953 }
954 if (diag) {
955 diag->slot_remaining = tp->t_hpts_request;
956 diag->inp_hptsslot = tp->t_hpts_slot;
957 }
958 #ifdef INVARIANTS
959 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
960 #endif
961 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
962 tcp_hpts_insert_internal(tp, hpts);
963 if ((hpts->p_hpts_active == 0) &&
964 (tp->t_hpts_request == 0) &&
965 (hpts->p_on_min_sleep == 0)) {
966 /*
967 * The hpts is sleeping and NOT on a minimum
968 * sleep time, we need to figure out where
969 * it will wake up at and if we need to reschedule
970 * its time-out.
971 */
972 uint32_t have_slept, yet_to_sleep;
973
974 /* Now do we need to restart the hpts's timer? */
975 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
976 if (have_slept < hpts->p_hpts_sleep_time)
977 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
978 else {
979 /* We are over-due */
980 yet_to_sleep = 0;
981 need_wakeup = 1;
982 }
983 if (diag) {
984 diag->have_slept = have_slept;
985 diag->yet_to_sleep = yet_to_sleep;
986 }
987 if (yet_to_sleep &&
988 (yet_to_sleep > slot)) {
989 /*
990 * We need to reschedule the hpts's time-out.
991 */
992 hpts->p_hpts_sleep_time = slot;
993 need_new_to = slot * HPTS_USECS_PER_SLOT;
994 }
995 }
996 /*
997 * Now how far is the hpts sleeping to? if active is 1, its
998 * up and ticking we do nothing, otherwise we may need to
999 * reschedule its callout if need_new_to is set from above.
1000 */
1001 if (need_wakeup) {
1002 hpts->p_direct_wake = 1;
1003 tcp_wakehpts(hpts);
1004 if (diag) {
1005 diag->need_new_to = 0;
1006 diag->co_ret = 0xffff0000;
1007 }
1008 } else if (need_new_to) {
1009 int32_t co_ret;
1010 struct timeval tv;
1011 sbintime_t sb;
1012
1013 tv.tv_sec = 0;
1014 tv.tv_usec = 0;
1015 while (need_new_to > HPTS_USEC_IN_SEC) {
1016 tv.tv_sec++;
1017 need_new_to -= HPTS_USEC_IN_SEC;
1018 }
1019 tv.tv_usec = need_new_to;
1020 sb = tvtosbt(tv);
1021 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1022 hpts_timeout_swi, hpts, hpts->p_cpu,
1023 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1024 if (diag) {
1025 diag->need_new_to = need_new_to;
1026 diag->co_ret = co_ret;
1027 }
1028 }
1029 slot_on = hpts->p_nxt_slot;
1030 HPTS_UNLOCK(hpts);
1031
1032 return (slot_on);
1033 }
1034
1035 static uint16_t
hpts_cpuid(struct tcpcb * tp,int * failed)1036 hpts_cpuid(struct tcpcb *tp, int *failed)
1037 {
1038 struct inpcb *inp = tptoinpcb(tp);
1039 u_int cpuid;
1040 #ifdef NUMA
1041 struct hpts_domain_info *di;
1042 #endif
1043
1044 *failed = 0;
1045 if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1046 return (tp->t_hpts_cpu);
1047 }
1048 /*
1049 * If we are using the irq cpu set by LRO or
1050 * the driver then it overrides all other domains.
1051 */
1052 if (tcp_use_irq_cpu) {
1053 if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1054 *failed = 1;
1055 return (0);
1056 }
1057 return (tp->t_lro_cpu);
1058 }
1059 /* If one is set the other must be the same */
1060 #ifdef RSS
1061 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1062 if (cpuid == NETISR_CPUID_NONE)
1063 return (hpts_random_cpu());
1064 else
1065 return (cpuid);
1066 #endif
1067 /*
1068 * We don't have a flowid -> cpuid mapping, so cheat and just map
1069 * unknown cpuids to curcpu. Not the best, but apparently better
1070 * than defaulting to swi 0.
1071 */
1072 if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1073 counter_u64_add(cpu_uses_random, 1);
1074 return (hpts_random_cpu());
1075 }
1076 /*
1077 * Hash to a thread based on the flowid. If we are using numa,
1078 * then restrict the hash to the numa domain where the inp lives.
1079 */
1080
1081 #ifdef NUMA
1082 if ((vm_ndomains == 1) ||
1083 (inp->inp_numa_domain == M_NODOM)) {
1084 #endif
1085 cpuid = inp->inp_flowid % mp_ncpus;
1086 #ifdef NUMA
1087 } else {
1088 /* Hash into the cpu's that use that domain */
1089 di = &hpts_domains[inp->inp_numa_domain];
1090 cpuid = di->cpu[inp->inp_flowid % di->count];
1091 }
1092 #endif
1093 counter_u64_add(cpu_uses_flowid, 1);
1094 return (cpuid);
1095 }
1096
1097 static void
tcp_hpts_set_max_sleep(struct tcp_hpts_entry * hpts,int wrap_loop_cnt)1098 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1099 {
1100 uint32_t t = 0, i;
1101
1102 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1103 /*
1104 * Find next slot that is occupied and use that to
1105 * be the sleep time.
1106 */
1107 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1108 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1109 break;
1110 }
1111 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1112 }
1113 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1114 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1115 } else {
1116 /* No one on the wheel sleep for all but 400 slots or sleep max */
1117 hpts->p_hpts_sleep_time = hpts_sleep_max;
1118 }
1119 }
1120
1121 static int32_t
tcp_hptsi(struct tcp_hpts_entry * hpts,bool from_callout)1122 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout)
1123 {
1124 struct tcpcb *tp;
1125 struct timeval tv;
1126 int32_t slots_to_run, i, error;
1127 int32_t loop_cnt = 0;
1128 int32_t did_prefetch = 0;
1129 int32_t prefetch_tp = 0;
1130 int32_t wrap_loop_cnt = 0;
1131 int32_t slot_pos_of_endpoint = 0;
1132 int32_t orig_exit_slot;
1133 bool completed_measure, seen_endpoint;
1134
1135 completed_measure = false;
1136 seen_endpoint = false;
1137
1138 HPTS_MTX_ASSERT(hpts);
1139 NET_EPOCH_ASSERT();
1140 /* record previous info for any logging */
1141 hpts->saved_lasttick = hpts->p_lasttick;
1142 hpts->saved_curtick = hpts->p_curtick;
1143 hpts->saved_curslot = hpts->p_cur_slot;
1144 hpts->saved_prev_slot = hpts->p_prev_slot;
1145
1146 hpts->p_lasttick = hpts->p_curtick;
1147 hpts->p_curtick = tcp_gethptstick(&tv);
1148 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv);
1149 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1150 if ((hpts->p_on_queue_cnt == 0) ||
1151 (hpts->p_lasttick == hpts->p_curtick)) {
1152 /*
1153 * No time has yet passed,
1154 * or nothing to do.
1155 */
1156 hpts->p_prev_slot = hpts->p_cur_slot;
1157 hpts->p_lasttick = hpts->p_curtick;
1158 goto no_run;
1159 }
1160 again:
1161 hpts->p_wheel_complete = 0;
1162 HPTS_MTX_ASSERT(hpts);
1163 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1164 if (((hpts->p_curtick - hpts->p_lasttick) > (NUM_OF_HPTSI_SLOTS - 1)) &&
1165 (hpts->p_on_queue_cnt != 0)) {
1166 /*
1167 * Wheel wrap is occuring, basically we
1168 * are behind and the distance between
1169 * run's has spread so much it has exceeded
1170 * the time on the wheel (1.024 seconds). This
1171 * is ugly and should NOT be happening. We
1172 * need to run the entire wheel. We last processed
1173 * p_prev_slot, so that needs to be the last slot
1174 * we run. The next slot after that should be our
1175 * reserved first slot for new, and then starts
1176 * the running position. Now the problem is the
1177 * reserved "not to yet" place does not exist
1178 * and there may be inp's in there that need
1179 * running. We can merge those into the
1180 * first slot at the head.
1181 */
1182 wrap_loop_cnt++;
1183 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1184 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1185 /*
1186 * Adjust p_cur_slot to be where we are starting from
1187 * hopefully we will catch up (fat chance if something
1188 * is broken this bad :( )
1189 */
1190 hpts->p_cur_slot = hpts->p_prev_slot;
1191 /*
1192 * The next slot has guys to run too, and that would
1193 * be where we would normally start, lets move them into
1194 * the next slot (p_prev_slot + 2) so that we will
1195 * run them, the extra 10usecs of late (by being
1196 * put behind) does not really matter in this situation.
1197 */
1198 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1199 t_hpts) {
1200 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1201 MPASS(tp->t_hpts_gencnt ==
1202 hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1203 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1204
1205 /*
1206 * Update gencnt and nextslot accordingly to match
1207 * the new location. This is safe since it takes both
1208 * the INP lock and the pacer mutex to change the
1209 * t_hptsslot and t_hpts_gencnt.
1210 */
1211 tp->t_hpts_gencnt =
1212 hpts->p_hptss[hpts->p_runningslot].gencnt;
1213 tp->t_hpts_slot = hpts->p_runningslot;
1214 }
1215 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1216 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1217 hpts->p_hptss[hpts->p_runningslot].count +=
1218 hpts->p_hptss[hpts->p_nxt_slot].count;
1219 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1220 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1221 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1222 counter_u64_add(wheel_wrap, 1);
1223 } else {
1224 /*
1225 * Nxt slot is always one after p_runningslot though
1226 * its not used usually unless we are doing wheel wrap.
1227 */
1228 hpts->p_nxt_slot = hpts->p_prev_slot;
1229 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1230 }
1231 if (hpts->p_on_queue_cnt == 0) {
1232 goto no_one;
1233 }
1234 for (i = 0; i < slots_to_run; i++) {
1235 struct tcpcb *tp, *ntp;
1236 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1237 struct hptsh *hptsh;
1238 uint32_t runningslot;
1239
1240 /*
1241 * Calculate our delay, if there are no extra ticks there
1242 * was not any (i.e. if slots_to_run == 1, no delay).
1243 */
1244 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1245 HPTS_USECS_PER_SLOT;
1246
1247 runningslot = hpts->p_runningslot;
1248 hptsh = &hpts->p_hptss[runningslot];
1249 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1250 hpts->p_on_queue_cnt -= hptsh->count;
1251 hptsh->count = 0;
1252 hptsh->gencnt++;
1253
1254 HPTS_UNLOCK(hpts);
1255
1256 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1257 struct inpcb *inp = tptoinpcb(tp);
1258 bool set_cpu;
1259
1260 if (ntp != NULL) {
1261 /*
1262 * If we have a next tcpcb, see if we can
1263 * prefetch it. Note this may seem
1264 * "risky" since we have no locks (other
1265 * than the previous inp) and there no
1266 * assurance that ntp was not pulled while
1267 * we were processing tp and freed. If this
1268 * occurred it could mean that either:
1269 *
1270 * a) Its NULL (which is fine we won't go
1271 * here) <or> b) Its valid (which is cool we
1272 * will prefetch it) <or> c) The inp got
1273 * freed back to the slab which was
1274 * reallocated. Then the piece of memory was
1275 * re-used and something else (not an
1276 * address) is in inp_ppcb. If that occurs
1277 * we don't crash, but take a TLB shootdown
1278 * performance hit (same as if it was NULL
1279 * and we tried to pre-fetch it).
1280 *
1281 * Considering that the likelyhood of <c> is
1282 * quite rare we will take a risk on doing
1283 * this. If performance drops after testing
1284 * we can always take this out. NB: the
1285 * kern_prefetch on amd64 actually has
1286 * protection against a bad address now via
1287 * the DMAP_() tests. This will prevent the
1288 * TLB hit, and instead if <c> occurs just
1289 * cause us to load cache with a useless
1290 * address (to us).
1291 *
1292 * XXXGL: this comment and the prefetch action
1293 * could be outdated after tp == inp change.
1294 */
1295 kern_prefetch(ntp, &prefetch_tp);
1296 prefetch_tp = 1;
1297 }
1298
1299 /* For debugging */
1300 if (!seen_endpoint) {
1301 seen_endpoint = true;
1302 orig_exit_slot = slot_pos_of_endpoint =
1303 runningslot;
1304 } else if (!completed_measure) {
1305 /* Record the new position */
1306 orig_exit_slot = runningslot;
1307 }
1308
1309 INP_WLOCK(inp);
1310 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1311 set_cpu = true;
1312 } else {
1313 set_cpu = false;
1314 }
1315
1316 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1317 if (tp->t_hpts_slot == -1) {
1318 tp->t_in_hpts = IHPTS_NONE;
1319 if (in_pcbrele_wlocked(inp) == false)
1320 INP_WUNLOCK(inp);
1321 } else {
1322 HPTS_LOCK(hpts);
1323 tcp_hpts_insert_internal(tp, hpts);
1324 HPTS_UNLOCK(hpts);
1325 INP_WUNLOCK(inp);
1326 }
1327 continue;
1328 }
1329
1330 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1331 MPASS(!(inp->inp_flags & INP_DROPPED));
1332 KASSERT(runningslot == tp->t_hpts_slot,
1333 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1334 hpts, inp, runningslot, tp->t_hpts_slot));
1335
1336 if (tp->t_hpts_request) {
1337 /*
1338 * This guy is deferred out further in time
1339 * then our wheel had available on it.
1340 * Push him back on the wheel or run it
1341 * depending.
1342 */
1343 uint32_t maxslots, last_slot, remaining_slots;
1344
1345 remaining_slots = slots_to_run - (i + 1);
1346 if (tp->t_hpts_request > remaining_slots) {
1347 HPTS_LOCK(hpts);
1348 /*
1349 * How far out can we go?
1350 */
1351 maxslots = max_slots_available(hpts,
1352 hpts->p_cur_slot, &last_slot);
1353 if (maxslots >= tp->t_hpts_request) {
1354 /* We can place it finally to
1355 * be processed. */
1356 tp->t_hpts_slot = hpts_slot(
1357 hpts->p_runningslot,
1358 tp->t_hpts_request);
1359 tp->t_hpts_request = 0;
1360 } else {
1361 /* Work off some more time */
1362 tp->t_hpts_slot = last_slot;
1363 tp->t_hpts_request -=
1364 maxslots;
1365 }
1366 tcp_hpts_insert_internal(tp, hpts);
1367 HPTS_UNLOCK(hpts);
1368 INP_WUNLOCK(inp);
1369 continue;
1370 }
1371 tp->t_hpts_request = 0;
1372 /* Fall through we will so do it now */
1373 }
1374
1375 tcp_hpts_release(tp);
1376 if (set_cpu) {
1377 /*
1378 * Setup so the next time we will move to
1379 * the right CPU. This should be a rare
1380 * event. It will sometimes happens when we
1381 * are the client side (usually not the
1382 * server). Somehow tcp_output() gets called
1383 * before the tcp_do_segment() sets the
1384 * intial state. This means the r_cpu and
1385 * r_hpts_cpu is 0. We get on the hpts, and
1386 * then tcp_input() gets called setting up
1387 * the r_cpu to the correct value. The hpts
1388 * goes off and sees the mis-match. We
1389 * simply correct it here and the CPU will
1390 * switch to the new hpts nextime the tcb
1391 * gets added to the hpts (not this one)
1392 * :-)
1393 */
1394 tcp_set_hpts(tp);
1395 }
1396 CURVNET_SET(inp->inp_vnet);
1397 /* Lets do any logging that we might want to */
1398 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1399
1400 if (tp->t_fb_ptr != NULL) {
1401 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1402 did_prefetch = 1;
1403 }
1404 /*
1405 * We set TF2_HPTS_CALLS before any possible output.
1406 * The contract with the transport is that if it cares
1407 * about hpts calling it should clear the flag. That
1408 * way next time it is called it will know it is hpts.
1409 *
1410 * We also only call tfb_do_queued_segments() <or>
1411 * tcp_output(). It is expected that if segments are
1412 * queued and come in that the final input mbuf will
1413 * cause a call to output if it is needed so we do
1414 * not need a second call to tcp_output(). So we do
1415 * one or the other but not both.
1416 *
1417 * XXXGL: some KPI abuse here. tfb_do_queued_segments
1418 * returns unlocked with positive error (always 1) and
1419 * tcp_output returns unlocked with negative error.
1420 */
1421 tp->t_flags2 |= TF2_HPTS_CALLS;
1422 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1423 !STAILQ_EMPTY(&tp->t_inqueue))
1424 error = -(*tp->t_fb->tfb_do_queued_segments)(tp,
1425 0);
1426 else
1427 error = tcp_output(tp);
1428 if (__predict_true(error >= 0))
1429 INP_WUNLOCK(inp);
1430 CURVNET_RESTORE();
1431 }
1432 if (seen_endpoint) {
1433 /*
1434 * We now have a accurate distance between
1435 * slot_pos_of_endpoint <-> orig_exit_slot
1436 * to tell us how late we were, orig_exit_slot
1437 * is where we calculated the end of our cycle to
1438 * be when we first entered.
1439 */
1440 completed_measure = true;
1441 }
1442 HPTS_LOCK(hpts);
1443 hpts->p_runningslot++;
1444 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1445 hpts->p_runningslot = 0;
1446 }
1447 }
1448 no_one:
1449 HPTS_MTX_ASSERT(hpts);
1450 hpts->p_delayed_by = 0;
1451 /*
1452 * Check to see if we took an excess amount of time and need to run
1453 * more ticks (if we did not hit eno-bufs).
1454 */
1455 hpts->p_prev_slot = hpts->p_cur_slot;
1456 hpts->p_lasttick = hpts->p_curtick;
1457 if (!from_callout || (loop_cnt > max_pacer_loops)) {
1458 /*
1459 * Something is serious slow we have
1460 * looped through processing the wheel
1461 * and by the time we cleared the
1462 * needs to run max_pacer_loops time
1463 * we still needed to run. That means
1464 * the system is hopelessly behind and
1465 * can never catch up :(
1466 *
1467 * We will just lie to this thread
1468 * and let it thing p_curtick is
1469 * correct. When it next awakens
1470 * it will find itself further behind.
1471 */
1472 if (from_callout)
1473 counter_u64_add(hpts_hopelessly_behind, 1);
1474 goto no_run;
1475 }
1476 hpts->p_curtick = tcp_gethptstick(&tv);
1477 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1478 if (!seen_endpoint) {
1479 /* We saw no endpoint but we may be looping */
1480 orig_exit_slot = hpts->p_cur_slot;
1481 }
1482 if ((wrap_loop_cnt < 2) &&
1483 (hpts->p_lasttick != hpts->p_curtick)) {
1484 counter_u64_add(hpts_loops, 1);
1485 loop_cnt++;
1486 goto again;
1487 }
1488 no_run:
1489 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv);
1490 /*
1491 * Set flag to tell that we are done for
1492 * any slot input that happens during
1493 * input.
1494 */
1495 hpts->p_wheel_complete = 1;
1496 /*
1497 * Now did we spend too long running input and need to run more ticks?
1498 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1499 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1500 * is greater than 2, then the condtion most likely are *not* true.
1501 * Also if we are called not from the callout, we don't run the wheel
1502 * multiple times so the slots may not align either.
1503 */
1504 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1505 (wrap_loop_cnt >= 2) || !from_callout),
1506 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1507 hpts->p_prev_slot, hpts->p_cur_slot));
1508 KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1509 || (wrap_loop_cnt >= 2) || !from_callout),
1510 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1511 hpts->p_lasttick, hpts->p_curtick));
1512 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1513 hpts->p_curtick = tcp_gethptstick(&tv);
1514 counter_u64_add(hpts_loops, 1);
1515 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1516 goto again;
1517 }
1518
1519 if (from_callout) {
1520 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1521 }
1522 if (seen_endpoint)
1523 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1524 else
1525 return (0);
1526 }
1527
1528 void
tcp_set_hpts(struct tcpcb * tp)1529 tcp_set_hpts(struct tcpcb *tp)
1530 {
1531 struct tcp_hpts_entry *hpts;
1532 int failed;
1533
1534 INP_WLOCK_ASSERT(tptoinpcb(tp));
1535
1536 hpts = tcp_hpts_lock(tp);
1537 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1538 tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1539 if (failed == 0)
1540 tp->t_flags2 |= TF2_HPTS_CPU_SET;
1541 }
1542 HPTS_UNLOCK(hpts);
1543 }
1544
1545 static struct tcp_hpts_entry *
tcp_choose_hpts_to_run(void)1546 tcp_choose_hpts_to_run(void)
1547 {
1548 int i, oldest_idx, start, end;
1549 uint32_t cts, time_since_ran, calc;
1550
1551 cts = tcp_get_usecs(NULL);
1552 time_since_ran = 0;
1553 /* Default is all one group */
1554 start = 0;
1555 end = tcp_pace.rp_num_hptss;
1556 /*
1557 * If we have more than one L3 group figure out which one
1558 * this CPU is in.
1559 */
1560 if (tcp_pace.grp_cnt > 1) {
1561 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1562 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1563 start = tcp_pace.grps[i]->cg_first;
1564 end = (tcp_pace.grps[i]->cg_last + 1);
1565 break;
1566 }
1567 }
1568 }
1569 oldest_idx = -1;
1570 for (i = start; i < end; i++) {
1571 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i]))
1572 calc = cts - tcp_pace.cts_last_ran[i];
1573 else
1574 calc = 0;
1575 if (calc > time_since_ran) {
1576 oldest_idx = i;
1577 time_since_ran = calc;
1578 }
1579 }
1580 if (oldest_idx >= 0)
1581 return(tcp_pace.rp_ent[oldest_idx]);
1582 else
1583 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1584 }
1585
1586 static void
__tcp_run_hpts(void)1587 __tcp_run_hpts(void)
1588 {
1589 struct epoch_tracker et;
1590 struct tcp_hpts_entry *hpts;
1591 int ticks_ran;
1592
1593 hpts = tcp_choose_hpts_to_run();
1594
1595 if (hpts->p_hpts_active) {
1596 /* Already active */
1597 return;
1598 }
1599 if (!HPTS_TRYLOCK(hpts)) {
1600 /* Someone else got the lock */
1601 return;
1602 }
1603 NET_EPOCH_ENTER(et);
1604 if (hpts->p_hpts_active)
1605 goto out_with_mtx;
1606 hpts->syscall_cnt++;
1607 counter_u64_add(hpts_direct_call, 1);
1608 hpts->p_hpts_active = 1;
1609 ticks_ran = tcp_hptsi(hpts, false);
1610 /* We may want to adjust the sleep values here */
1611 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1612 if (ticks_ran > slots_indicate_less_sleep) {
1613 struct timeval tv;
1614 sbintime_t sb;
1615
1616 hpts->p_mysleep.tv_usec /= 2;
1617 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1618 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1619 /* Reschedule with new to value */
1620 tcp_hpts_set_max_sleep(hpts, 0);
1621 tv.tv_sec = 0;
1622 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1623 /* Validate its in the right ranges */
1624 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1625 hpts->overidden_sleep = tv.tv_usec;
1626 tv.tv_usec = hpts->p_mysleep.tv_usec;
1627 } else if (tv.tv_usec > dynamic_max_sleep) {
1628 /* Lets not let sleep get above this value */
1629 hpts->overidden_sleep = tv.tv_usec;
1630 tv.tv_usec = dynamic_max_sleep;
1631 }
1632 /*
1633 * In this mode the timer is a backstop to
1634 * all the userret/lro_flushes so we use
1635 * the dynamic value and set the on_min_sleep
1636 * flag so we will not be awoken.
1637 */
1638 sb = tvtosbt(tv);
1639 /* Store off to make visible the actual sleep time */
1640 hpts->sleeping = tv.tv_usec;
1641 callout_reset_sbt_on(&hpts->co, sb, 0,
1642 hpts_timeout_swi, hpts, hpts->p_cpu,
1643 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1644 } else if (ticks_ran < slots_indicate_more_sleep) {
1645 /* For the further sleep, don't reschedule hpts */
1646 hpts->p_mysleep.tv_usec *= 2;
1647 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1648 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1649 }
1650 hpts->p_on_min_sleep = 1;
1651 }
1652 hpts->p_hpts_active = 0;
1653 out_with_mtx:
1654 HPTS_UNLOCK(hpts);
1655 NET_EPOCH_EXIT(et);
1656 }
1657
1658 static void
tcp_hpts_thread(void * ctx)1659 tcp_hpts_thread(void *ctx)
1660 {
1661 struct tcp_hpts_entry *hpts;
1662 struct epoch_tracker et;
1663 struct timeval tv;
1664 sbintime_t sb;
1665 int ticks_ran;
1666
1667 hpts = (struct tcp_hpts_entry *)ctx;
1668 HPTS_LOCK(hpts);
1669 if (hpts->p_direct_wake) {
1670 /* Signaled by input or output with low occupancy count. */
1671 callout_stop(&hpts->co);
1672 counter_u64_add(hpts_direct_awakening, 1);
1673 } else {
1674 /* Timed out, the normal case. */
1675 counter_u64_add(hpts_wake_timeout, 1);
1676 if (callout_pending(&hpts->co) ||
1677 !callout_active(&hpts->co)) {
1678 HPTS_UNLOCK(hpts);
1679 return;
1680 }
1681 }
1682 callout_deactivate(&hpts->co);
1683 hpts->p_hpts_wake_scheduled = 0;
1684 NET_EPOCH_ENTER(et);
1685 if (hpts->p_hpts_active) {
1686 /*
1687 * We are active already. This means that a syscall
1688 * trap or LRO is running in behalf of hpts. In that case
1689 * we need to double our timeout since there seems to be
1690 * enough activity in the system that we don't need to
1691 * run as often (if we were not directly woken).
1692 */
1693 tv.tv_sec = 0;
1694 if (hpts->p_direct_wake == 0) {
1695 counter_u64_add(hpts_back_tosleep, 1);
1696 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1697 hpts->p_mysleep.tv_usec *= 2;
1698 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1699 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1700 tv.tv_usec = hpts->p_mysleep.tv_usec;
1701 hpts->p_on_min_sleep = 1;
1702 } else {
1703 /*
1704 * Here we have low count on the wheel, but
1705 * somehow we still collided with one of the
1706 * connections. Lets go back to sleep for a
1707 * min sleep time, but clear the flag so we
1708 * can be awoken by insert.
1709 */
1710 hpts->p_on_min_sleep = 0;
1711 tv.tv_usec = tcp_min_hptsi_time;
1712 }
1713 } else {
1714 /*
1715 * Directly woken most likely to reset the
1716 * callout time.
1717 */
1718 tv.tv_usec = hpts->p_mysleep.tv_usec;
1719 }
1720 goto back_to_sleep;
1721 }
1722 hpts->sleeping = 0;
1723 hpts->p_hpts_active = 1;
1724 ticks_ran = tcp_hptsi(hpts, true);
1725 tv.tv_sec = 0;
1726 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1727 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) {
1728 hpts->hit_callout_thresh = 1;
1729 atomic_add_int(&hpts_that_need_softclock, 1);
1730 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) {
1731 hpts->hit_callout_thresh = 0;
1732 atomic_subtract_int(&hpts_that_need_softclock, 1);
1733 }
1734 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1735 if(hpts->p_direct_wake == 0) {
1736 /*
1737 * Only adjust sleep time if we were
1738 * called from the callout i.e. direct_wake == 0.
1739 */
1740 if (ticks_ran < slots_indicate_more_sleep) {
1741 hpts->p_mysleep.tv_usec *= 2;
1742 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1743 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1744 } else if (ticks_ran > slots_indicate_less_sleep) {
1745 hpts->p_mysleep.tv_usec /= 2;
1746 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1747 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1748 }
1749 }
1750 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1751 hpts->overidden_sleep = tv.tv_usec;
1752 tv.tv_usec = hpts->p_mysleep.tv_usec;
1753 } else if (tv.tv_usec > dynamic_max_sleep) {
1754 /* Lets not let sleep get above this value */
1755 hpts->overidden_sleep = tv.tv_usec;
1756 tv.tv_usec = dynamic_max_sleep;
1757 }
1758 /*
1759 * In this mode the timer is a backstop to
1760 * all the userret/lro_flushes so we use
1761 * the dynamic value and set the on_min_sleep
1762 * flag so we will not be awoken.
1763 */
1764 hpts->p_on_min_sleep = 1;
1765 } else if (hpts->p_on_queue_cnt == 0) {
1766 /*
1767 * No one on the wheel, please wake us up
1768 * if you insert on the wheel.
1769 */
1770 hpts->p_on_min_sleep = 0;
1771 hpts->overidden_sleep = 0;
1772 } else {
1773 /*
1774 * We hit here when we have a low number of
1775 * clients on the wheel (our else clause).
1776 * We may need to go on min sleep, if we set
1777 * the flag we will not be awoken if someone
1778 * is inserted ahead of us. Clearing the flag
1779 * means we can be awoken. This is "old mode"
1780 * where the timer is what runs hpts mainly.
1781 */
1782 if (tv.tv_usec < tcp_min_hptsi_time) {
1783 /*
1784 * Yes on min sleep, which means
1785 * we cannot be awoken.
1786 */
1787 hpts->overidden_sleep = tv.tv_usec;
1788 tv.tv_usec = tcp_min_hptsi_time;
1789 hpts->p_on_min_sleep = 1;
1790 } else {
1791 /* Clear the min sleep flag */
1792 hpts->overidden_sleep = 0;
1793 hpts->p_on_min_sleep = 0;
1794 }
1795 }
1796 HPTS_MTX_ASSERT(hpts);
1797 hpts->p_hpts_active = 0;
1798 back_to_sleep:
1799 hpts->p_direct_wake = 0;
1800 sb = tvtosbt(tv);
1801 /* Store off to make visible the actual sleep time */
1802 hpts->sleeping = tv.tv_usec;
1803 callout_reset_sbt_on(&hpts->co, sb, 0,
1804 hpts_timeout_swi, hpts, hpts->p_cpu,
1805 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1806 NET_EPOCH_EXIT(et);
1807 HPTS_UNLOCK(hpts);
1808 }
1809
1810 #undef timersub
1811
1812 static int32_t
hpts_count_level(struct cpu_group * cg)1813 hpts_count_level(struct cpu_group *cg)
1814 {
1815 int32_t count_l3, i;
1816
1817 count_l3 = 0;
1818 if (cg->cg_level == CG_SHARE_L3)
1819 count_l3++;
1820 /* Walk all the children looking for L3 */
1821 for (i = 0; i < cg->cg_children; i++) {
1822 count_l3 += hpts_count_level(&cg->cg_child[i]);
1823 }
1824 return (count_l3);
1825 }
1826
1827 static void
hpts_gather_grps(struct cpu_group ** grps,int32_t * at,int32_t max,struct cpu_group * cg)1828 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1829 {
1830 int32_t idx, i;
1831
1832 idx = *at;
1833 if (cg->cg_level == CG_SHARE_L3) {
1834 grps[idx] = cg;
1835 idx++;
1836 if (idx == max) {
1837 *at = idx;
1838 return;
1839 }
1840 }
1841 *at = idx;
1842 /* Walk all the children looking for L3 */
1843 for (i = 0; i < cg->cg_children; i++) {
1844 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1845 }
1846 }
1847
1848 static void
tcp_hpts_mod_load(void)1849 tcp_hpts_mod_load(void)
1850 {
1851 struct cpu_group *cpu_top;
1852 int32_t error __diagused;
1853 int32_t i, j, bound = 0, created = 0;
1854 size_t sz, asz;
1855 struct timeval tv;
1856 sbintime_t sb;
1857 struct tcp_hpts_entry *hpts;
1858 struct pcpu *pc;
1859 char unit[16];
1860 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1861 int count, domain;
1862
1863 #ifdef SMP
1864 cpu_top = smp_topo();
1865 #else
1866 cpu_top = NULL;
1867 #endif
1868 tcp_pace.rp_num_hptss = ncpus;
1869 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1870 hpts_loops = counter_u64_alloc(M_WAITOK);
1871 back_tosleep = counter_u64_alloc(M_WAITOK);
1872 combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1873 wheel_wrap = counter_u64_alloc(M_WAITOK);
1874 hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1875 hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1876 hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1877 hpts_direct_call = counter_u64_alloc(M_WAITOK);
1878 cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1879 cpu_uses_random = counter_u64_alloc(M_WAITOK);
1880
1881 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1882 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1883 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1884 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1885 tcp_pace.grp_cnt = 0;
1886 if (cpu_top == NULL) {
1887 tcp_pace.grp_cnt = 1;
1888 } else {
1889 /* Find out how many cache level 3 domains we have */
1890 count = 0;
1891 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1892 if (tcp_pace.grp_cnt == 0) {
1893 tcp_pace.grp_cnt = 1;
1894 }
1895 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1896 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1897 /* Now populate the groups */
1898 if (tcp_pace.grp_cnt == 1) {
1899 /*
1900 * All we need is the top level all cpu's are in
1901 * the same cache so when we use grp[0]->cg_mask
1902 * with the cg_first <-> cg_last it will include
1903 * all cpu's in it. The level here is probably
1904 * zero which is ok.
1905 */
1906 tcp_pace.grps[0] = cpu_top;
1907 } else {
1908 /*
1909 * Here we must find all the level three cache domains
1910 * and setup our pointers to them.
1911 */
1912 count = 0;
1913 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1914 }
1915 }
1916 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1917 for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1918 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1919 M_TCPHPTS, M_WAITOK | M_ZERO);
1920 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1921 hpts = tcp_pace.rp_ent[i];
1922 /*
1923 * Init all the hpts structures that are not specifically
1924 * zero'd by the allocations. Also lets attach them to the
1925 * appropriate sysctl block as well.
1926 */
1927 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1928 "hpts", MTX_DEF | MTX_DUPOK);
1929 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1930 TAILQ_INIT(&hpts->p_hptss[j].head);
1931 hpts->p_hptss[j].count = 0;
1932 hpts->p_hptss[j].gencnt = 0;
1933 }
1934 sysctl_ctx_init(&hpts->hpts_ctx);
1935 sprintf(unit, "%d", i);
1936 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1937 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1938 OID_AUTO,
1939 unit,
1940 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1941 "");
1942 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1943 SYSCTL_CHILDREN(hpts->hpts_root),
1944 OID_AUTO, "out_qcnt", CTLFLAG_RD,
1945 &hpts->p_on_queue_cnt, 0,
1946 "Count TCB's awaiting output processing");
1947 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1948 SYSCTL_CHILDREN(hpts->hpts_root),
1949 OID_AUTO, "active", CTLFLAG_RD,
1950 &hpts->p_hpts_active, 0,
1951 "Is the hpts active");
1952 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1953 SYSCTL_CHILDREN(hpts->hpts_root),
1954 OID_AUTO, "curslot", CTLFLAG_RD,
1955 &hpts->p_cur_slot, 0,
1956 "What the current running pacers goal");
1957 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1958 SYSCTL_CHILDREN(hpts->hpts_root),
1959 OID_AUTO, "runtick", CTLFLAG_RD,
1960 &hpts->p_runningslot, 0,
1961 "What the running pacers current slot is");
1962 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1963 SYSCTL_CHILDREN(hpts->hpts_root),
1964 OID_AUTO, "curtick", CTLFLAG_RD,
1965 &hpts->p_curtick, 0,
1966 "What the running pacers last tick mapped to the wheel was");
1967 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1968 SYSCTL_CHILDREN(hpts->hpts_root),
1969 OID_AUTO, "lastran", CTLFLAG_RD,
1970 &tcp_pace.cts_last_ran[i], 0,
1971 "The last usec tick that this hpts ran");
1972 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1973 SYSCTL_CHILDREN(hpts->hpts_root),
1974 OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1975 &hpts->p_mysleep.tv_usec,
1976 "What the running pacers is using for p_mysleep.tv_usec");
1977 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1978 SYSCTL_CHILDREN(hpts->hpts_root),
1979 OID_AUTO, "now_sleeping", CTLFLAG_RD,
1980 &hpts->sleeping, 0,
1981 "What the running pacers is actually sleeping for");
1982 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1983 SYSCTL_CHILDREN(hpts->hpts_root),
1984 OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1985 &hpts->syscall_cnt, 0,
1986 "How many times we had syscalls on this hpts");
1987
1988 hpts->p_hpts_sleep_time = hpts_sleep_max;
1989 hpts->p_num = i;
1990 hpts->p_curtick = tcp_gethptstick(&tv);
1991 tcp_pace.cts_last_ran[i] = tcp_tv_to_usec(&tv);
1992 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1993 hpts->p_cpu = 0xffff;
1994 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1995 callout_init(&hpts->co, 1);
1996 }
1997 /* Don't try to bind to NUMA domains if we don't have any */
1998 if (vm_ndomains == 1 && tcp_bind_threads == 2)
1999 tcp_bind_threads = 0;
2000
2001 /*
2002 * Now lets start ithreads to handle the hptss.
2003 */
2004 for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
2005 hpts = tcp_pace.rp_ent[i];
2006 hpts->p_cpu = i;
2007
2008 error = swi_add(&hpts->ie, "hpts",
2009 tcp_hpts_thread, (void *)hpts,
2010 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
2011 KASSERT(error == 0,
2012 ("Can't add hpts:%p i:%d err:%d",
2013 hpts, i, error));
2014 created++;
2015 hpts->p_mysleep.tv_sec = 0;
2016 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2017 if (tcp_bind_threads == 1) {
2018 if (intr_event_bind(hpts->ie, i) == 0)
2019 bound++;
2020 } else if (tcp_bind_threads == 2) {
2021 /* Find the group for this CPU (i) and bind into it */
2022 for (j = 0; j < tcp_pace.grp_cnt; j++) {
2023 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
2024 if (intr_event_bind_ithread_cpuset(hpts->ie,
2025 &tcp_pace.grps[j]->cg_mask) == 0) {
2026 bound++;
2027 pc = pcpu_find(i);
2028 domain = pc->pc_domain;
2029 count = hpts_domains[domain].count;
2030 hpts_domains[domain].cpu[count] = i;
2031 hpts_domains[domain].count++;
2032 break;
2033 }
2034 }
2035 }
2036 }
2037 tv.tv_sec = 0;
2038 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
2039 hpts->sleeping = tv.tv_usec;
2040 sb = tvtosbt(tv);
2041 callout_reset_sbt_on(&hpts->co, sb, 0,
2042 hpts_timeout_swi, hpts, hpts->p_cpu,
2043 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2044 }
2045 /*
2046 * If we somehow have an empty domain, fall back to choosing
2047 * among all htps threads.
2048 */
2049 for (i = 0; i < vm_ndomains; i++) {
2050 if (hpts_domains[i].count == 0) {
2051 tcp_bind_threads = 0;
2052 break;
2053 }
2054 }
2055 tcp_hpts_softclock = __tcp_run_hpts;
2056 tcp_lro_hpts_init();
2057 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2058 created, bound,
2059 tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2060 }
2061
2062 static void
tcp_hpts_mod_unload(void)2063 tcp_hpts_mod_unload(void)
2064 {
2065 int rv __diagused;
2066
2067 tcp_lro_hpts_uninit();
2068 atomic_store_ptr(&tcp_hpts_softclock, NULL);
2069
2070 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) {
2071 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i];
2072
2073 rv = callout_drain(&hpts->co);
2074 MPASS(rv != 0);
2075
2076 rv = swi_remove(hpts->ie_cookie);
2077 MPASS(rv == 0);
2078
2079 rv = sysctl_ctx_free(&hpts->hpts_ctx);
2080 MPASS(rv == 0);
2081
2082 mtx_destroy(&hpts->p_mtx);
2083 free(hpts->p_hptss, M_TCPHPTS);
2084 free(hpts, M_TCPHPTS);
2085 }
2086
2087 free(tcp_pace.rp_ent, M_TCPHPTS);
2088 free(tcp_pace.cts_last_ran, M_TCPHPTS);
2089 #ifdef SMP
2090 free(tcp_pace.grps, M_TCPHPTS);
2091 #endif
2092
2093 counter_u64_free(hpts_hopelessly_behind);
2094 counter_u64_free(hpts_loops);
2095 counter_u64_free(back_tosleep);
2096 counter_u64_free(combined_wheel_wrap);
2097 counter_u64_free(wheel_wrap);
2098 counter_u64_free(hpts_wake_timeout);
2099 counter_u64_free(hpts_direct_awakening);
2100 counter_u64_free(hpts_back_tosleep);
2101 counter_u64_free(hpts_direct_call);
2102 counter_u64_free(cpu_uses_flowid);
2103 counter_u64_free(cpu_uses_random);
2104 }
2105
2106 static int
tcp_hpts_modevent(module_t mod,int what,void * arg)2107 tcp_hpts_modevent(module_t mod, int what, void *arg)
2108 {
2109
2110 switch (what) {
2111 case MOD_LOAD:
2112 tcp_hpts_mod_load();
2113 return (0);
2114 case MOD_QUIESCE:
2115 /*
2116 * Since we are a dependency of TCP stack modules, they should
2117 * already be unloaded, and the HPTS ring is empty. However,
2118 * function pointer manipulations aren't 100% safe. Although,
2119 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2120 * Thus, allow only forced unload of HPTS.
2121 */
2122 return (EBUSY);
2123 case MOD_UNLOAD:
2124 tcp_hpts_mod_unload();
2125 return (0);
2126 default:
2127 return (EINVAL);
2128 };
2129 }
2130
2131 static moduledata_t tcp_hpts_module = {
2132 .name = "tcphpts",
2133 .evhand = tcp_hpts_modevent,
2134 };
2135
2136 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2137 MODULE_VERSION(tcphpts, 1);
2138