xref: /freebsd/sys/kern/kern_timeout.c (revision efcb2ec8cb81ea44c58e41082c6d965f9493099f)
1  /*-
2   * SPDX-License-Identifier: BSD-3-Clause
3   *
4   * Copyright (c) 1982, 1986, 1991, 1993
5   *	The Regents of the University of California.  All rights reserved.
6   * (c) UNIX System Laboratories, Inc.
7   * All or some portions of this file are derived from material licensed
8   * to the University of California by American Telephone and Telegraph
9   * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10   * the permission of UNIX System Laboratories, Inc.
11   *
12   * Redistribution and use in source and binary forms, with or without
13   * modification, are permitted provided that the following conditions
14   * are met:
15   * 1. Redistributions of source code must retain the above copyright
16   *    notice, this list of conditions and the following disclaimer.
17   * 2. Redistributions in binary form must reproduce the above copyright
18   *    notice, this list of conditions and the following disclaimer in the
19   *    documentation and/or other materials provided with the distribution.
20   * 3. Neither the name of the University nor the names of its contributors
21   *    may be used to endorse or promote products derived from this software
22   *    without specific prior written permission.
23   *
24   * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27   * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34   * SUCH DAMAGE.
35   */
36  
37  #include <sys/cdefs.h>
38  #include "opt_callout_profiling.h"
39  #include "opt_ddb.h"
40  #include "opt_rss.h"
41  
42  #include <sys/param.h>
43  #include <sys/systm.h>
44  #include <sys/bus.h>
45  #include <sys/callout.h>
46  #include <sys/domainset.h>
47  #include <sys/file.h>
48  #include <sys/interrupt.h>
49  #include <sys/kernel.h>
50  #include <sys/ktr.h>
51  #include <sys/kthread.h>
52  #include <sys/lock.h>
53  #include <sys/malloc.h>
54  #include <sys/mutex.h>
55  #include <sys/proc.h>
56  #include <sys/random.h>
57  #include <sys/sched.h>
58  #include <sys/sdt.h>
59  #include <sys/sleepqueue.h>
60  #include <sys/sysctl.h>
61  #include <sys/smp.h>
62  #include <sys/unistd.h>
63  
64  #ifdef DDB
65  #include <ddb/ddb.h>
66  #include <ddb/db_sym.h>
67  #include <machine/_inttypes.h>
68  #endif
69  
70  #ifdef SMP
71  #include <machine/cpu.h>
72  #endif
73  
74  DPCPU_DECLARE(sbintime_t, hardclocktime);
75  
76  SDT_PROVIDER_DEFINE(callout_execute);
77  SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
78  SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
79  
80  static void	softclock_thread(void *arg);
81  
82  #ifdef CALLOUT_PROFILING
83  static int avg_depth;
84  SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
85      "Average number of items examined per softclock call. Units = 1/1000");
86  static int avg_gcalls;
87  SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
88      "Average number of Giant callouts made per softclock call. Units = 1/1000");
89  static int avg_lockcalls;
90  SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
91      "Average number of lock callouts made per softclock call. Units = 1/1000");
92  static int avg_mpcalls;
93  SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
94      "Average number of MP callouts made per softclock call. Units = 1/1000");
95  static int avg_depth_dir;
96  SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
97      "Average number of direct callouts examined per callout_process call. "
98      "Units = 1/1000");
99  static int avg_lockcalls_dir;
100  SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
101      &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
102      "callout_process call. Units = 1/1000");
103  static int avg_mpcalls_dir;
104  SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
105      0, "Average number of MP direct callouts made per callout_process call. "
106      "Units = 1/1000");
107  #endif
108  
109  static int ncallout;
110  SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
111      "Number of entries in callwheel and size of timeout() preallocation");
112  
113  #ifdef	RSS
114  static int pin_default_swi = 1;
115  static int pin_pcpu_swi = 1;
116  #else
117  static int pin_default_swi = 0;
118  static int pin_pcpu_swi = 0;
119  #endif
120  
121  SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
122      0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
123  SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
124      0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
125  
126  /*
127   * TODO:
128   *	allocate more timeout table slots when table overflows.
129   */
130  static u_int __read_mostly callwheelsize;
131  static u_int __read_mostly callwheelmask;
132  
133  /*
134   * The callout cpu exec entities represent informations necessary for
135   * describing the state of callouts currently running on the CPU and the ones
136   * necessary for migrating callouts to the new callout cpu. In particular,
137   * the first entry of the array cc_exec_entity holds informations for callout
138   * running in SWI thread context, while the second one holds informations
139   * for callout running directly from hardware interrupt context.
140   * The cached informations are very important for deferring migration when
141   * the migrating callout is already running.
142   */
143  struct cc_exec {
144  	struct callout		*cc_curr;
145  	void			*cc_last_func;
146  	void			*cc_last_arg;
147  #ifdef SMP
148  	callout_func_t		*ce_migration_func;
149  	void			*ce_migration_arg;
150  	sbintime_t		ce_migration_time;
151  	sbintime_t		ce_migration_prec;
152  	int			ce_migration_cpu;
153  #endif
154  	bool			cc_cancel;
155  	bool			cc_waiting;
156  };
157  
158  /*
159   * There is one struct callout_cpu per cpu, holding all relevant
160   * state for the callout processing thread on the individual CPU.
161   */
162  struct callout_cpu {
163  	struct mtx_padalign	cc_lock;
164  	struct cc_exec 		cc_exec_entity[2];
165  	struct callout		*cc_next;
166  	struct callout_list	*cc_callwheel;
167  	struct callout_tailq	cc_expireq;
168  	sbintime_t		cc_firstevent;
169  	sbintime_t		cc_lastscan;
170  	struct thread		*cc_thread;
171  	u_int			cc_bucket;
172  #ifdef KTR
173  	char			cc_ktr_event_name[20];
174  #endif
175  };
176  
177  #define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
178  
179  #define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
180  #define	cc_exec_last_func(cc, dir)	cc->cc_exec_entity[dir].cc_last_func
181  #define	cc_exec_last_arg(cc, dir)	cc->cc_exec_entity[dir].cc_last_arg
182  #define	cc_exec_next(cc)		cc->cc_next
183  #define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
184  #define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
185  #ifdef SMP
186  #define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
187  #define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
188  #define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
189  #define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
190  #define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
191  
192  DPCPU_DEFINE_STATIC(struct callout_cpu, cc_cpu);
193  #define	CPUBLOCK	MAXCPU
194  #define	CC_CPU(cpu)	DPCPU_ID_PTR(cpu, cc_cpu)
195  #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
196  #else
197  static struct callout_cpu cc_cpu;
198  #define	CC_CPU(cpu)	(&cc_cpu)
199  #define	CC_SELF()	(&cc_cpu)
200  #endif
201  #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
202  #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
203  #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
204  
205  static int __read_mostly cc_default_cpu;
206  
207  static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
208  static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
209  #ifdef CALLOUT_PROFILING
210  		    int *mpcalls, int *lockcalls, int *gcalls,
211  #endif
212  		    int direct);
213  
214  static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
215  
216  /**
217   * Locked by cc_lock:
218   *   cc_curr         - If a callout is in progress, it is cc_curr.
219   *                     If cc_curr is non-NULL, threads waiting in
220   *                     callout_drain() will be woken up as soon as the
221   *                     relevant callout completes.
222   *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
223   *                     guarantees that the current callout will not run.
224   *                     The softclock_call_cc() function sets this to 0 before it
225   *                     drops callout_lock to acquire c_lock, and it calls
226   *                     the handler only if curr_cancelled is still 0 after
227   *                     cc_lock is successfully acquired.
228   *   cc_waiting      - If a thread is waiting in callout_drain(), then
229   *                     callout_wait is nonzero.  Set only when
230   *                     cc_curr is non-NULL.
231   */
232  
233  /*
234   * Resets the execution entity tied to a specific callout cpu.
235   */
236  static void
cc_cce_cleanup(struct callout_cpu * cc,int direct)237  cc_cce_cleanup(struct callout_cpu *cc, int direct)
238  {
239  
240  	cc_exec_curr(cc, direct) = NULL;
241  	cc_exec_cancel(cc, direct) = false;
242  	cc_exec_waiting(cc, direct) = false;
243  #ifdef SMP
244  	cc_migration_cpu(cc, direct) = CPUBLOCK;
245  	cc_migration_time(cc, direct) = 0;
246  	cc_migration_prec(cc, direct) = 0;
247  	cc_migration_func(cc, direct) = NULL;
248  	cc_migration_arg(cc, direct) = NULL;
249  #endif
250  }
251  
252  /*
253   * Checks if migration is requested by a specific callout cpu.
254   */
255  static int
cc_cce_migrating(struct callout_cpu * cc,int direct)256  cc_cce_migrating(struct callout_cpu *cc, int direct)
257  {
258  
259  #ifdef SMP
260  	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
261  #else
262  	return (0);
263  #endif
264  }
265  
266  /*
267   * Kernel low level callwheel initialization
268   * called on the BSP during kernel startup.
269   */
270  static void
callout_callwheel_init(void * dummy)271  callout_callwheel_init(void *dummy)
272  {
273  	struct callout_cpu *cc;
274  	int cpu;
275  
276  	/*
277  	 * Calculate the size of the callout wheel and the preallocated
278  	 * timeout() structures.
279  	 * XXX: Clip callout to result of previous function of maxusers
280  	 * maximum 384.  This is still huge, but acceptable.
281  	 */
282  	ncallout = imin(16 + maxproc + maxfiles, 18508);
283  	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
284  
285  	/*
286  	 * Calculate callout wheel size, should be next power of two higher
287  	 * than 'ncallout'.
288  	 */
289  	callwheelsize = 1 << fls(ncallout);
290  	callwheelmask = callwheelsize - 1;
291  
292  	/*
293  	 * Fetch whether we're pinning the swi's or not.
294  	 */
295  	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
296  	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
297  
298  	/*
299  	 * Initialize callout wheels.  The software interrupt threads
300  	 * are created later.
301  	 */
302  	cc_default_cpu = PCPU_GET(cpuid);
303  	CPU_FOREACH(cpu) {
304  		cc = CC_CPU(cpu);
305  		callout_cpu_init(cc, cpu);
306  	}
307  }
308  SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
309  
310  /*
311   * Initialize the per-cpu callout structures.
312   */
313  static void
callout_cpu_init(struct callout_cpu * cc,int cpu)314  callout_cpu_init(struct callout_cpu *cc, int cpu)
315  {
316  	int i;
317  
318  	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
319  	cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
320  	    callwheelsize, M_CALLOUT,
321  	    DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
322  	for (i = 0; i < callwheelsize; i++)
323  		LIST_INIT(&cc->cc_callwheel[i]);
324  	TAILQ_INIT(&cc->cc_expireq);
325  	cc->cc_firstevent = SBT_MAX;
326  	for (i = 0; i < 2; i++)
327  		cc_cce_cleanup(cc, i);
328  #ifdef KTR
329  	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
330  	    "callwheel cpu %d", cpu);
331  #endif
332  }
333  
334  #ifdef SMP
335  /*
336   * Switches the cpu tied to a specific callout.
337   * The function expects a locked incoming callout cpu and returns with
338   * locked outcoming callout cpu.
339   */
340  static struct callout_cpu *
callout_cpu_switch(struct callout * c,struct callout_cpu * cc,int new_cpu)341  callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
342  {
343  	struct callout_cpu *new_cc;
344  
345  	MPASS(c != NULL && cc != NULL);
346  	CC_LOCK_ASSERT(cc);
347  
348  	/*
349  	 * Avoid interrupts and preemption firing after the callout cpu
350  	 * is blocked in order to avoid deadlocks as the new thread
351  	 * may be willing to acquire the callout cpu lock.
352  	 */
353  	c->c_cpu = CPUBLOCK;
354  	spinlock_enter();
355  	CC_UNLOCK(cc);
356  	new_cc = CC_CPU(new_cpu);
357  	CC_LOCK(new_cc);
358  	spinlock_exit();
359  	c->c_cpu = new_cpu;
360  	return (new_cc);
361  }
362  #endif
363  
364  /*
365   * Start softclock threads.
366   */
367  static void
start_softclock(void * dummy)368  start_softclock(void *dummy)
369  {
370  	struct proc *p;
371  	struct thread *td;
372  	struct callout_cpu *cc;
373  	int cpu, error;
374  	bool pin_swi;
375  
376  	p = NULL;
377  	CPU_FOREACH(cpu) {
378  		cc = CC_CPU(cpu);
379  		error = kproc_kthread_add(softclock_thread, cc, &p, &td,
380  		    RFSTOPPED, 0, "clock", "clock (%d)", cpu);
381  		if (error != 0)
382  			panic("failed to create softclock thread for cpu %d: %d",
383  			    cpu, error);
384  		CC_LOCK(cc);
385  		cc->cc_thread = td;
386  		thread_lock(td);
387  		sched_class(td, PRI_ITHD);
388  		sched_ithread_prio(td, PI_SOFTCLOCK);
389  		TD_SET_IWAIT(td);
390  		thread_lock_set(td, (struct mtx *)&cc->cc_lock);
391  		thread_unlock(td);
392  		if (cpu == cc_default_cpu)
393  			pin_swi = pin_default_swi;
394  		else
395  			pin_swi = pin_pcpu_swi;
396  		if (pin_swi) {
397  			error = cpuset_setithread(td->td_tid, cpu);
398  			if (error != 0)
399  				printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
400  				    __func__, cpu == cc_default_cpu ?
401  				    "default" : "per-cpu", cpu, error);
402  		}
403  	}
404  }
405  SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
406  
407  #define	CC_HASH_SHIFT	8
408  
409  static inline u_int
callout_hash(sbintime_t sbt)410  callout_hash(sbintime_t sbt)
411  {
412  
413  	return (sbt >> (32 - CC_HASH_SHIFT));
414  }
415  
416  static inline u_int
callout_get_bucket(sbintime_t sbt)417  callout_get_bucket(sbintime_t sbt)
418  {
419  
420  	return (callout_hash(sbt) & callwheelmask);
421  }
422  
423  void
callout_process(sbintime_t now)424  callout_process(sbintime_t now)
425  {
426  	struct callout_entropy {
427  		struct callout_cpu *cc;
428  		struct thread *td;
429  		sbintime_t now;
430  	} entropy;
431  	struct callout *c, *next;
432  	struct callout_cpu *cc;
433  	struct callout_list *sc;
434  	struct thread *td;
435  	sbintime_t first, last, lookahead, max, tmp_max;
436  	u_int firstb, lastb, nowb;
437  #ifdef CALLOUT_PROFILING
438  	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
439  #endif
440  
441  	cc = CC_SELF();
442  	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
443  
444  	/* Compute the buckets of the last scan and present times. */
445  	firstb = callout_hash(cc->cc_lastscan);
446  	cc->cc_lastscan = now;
447  	nowb = callout_hash(now);
448  
449  	/* Compute the last bucket and minimum time of the bucket after it. */
450  	if (nowb == firstb)
451  		lookahead = (SBT_1S / 16);
452  	else if (nowb - firstb == 1)
453  		lookahead = (SBT_1S / 8);
454  	else
455  		lookahead = SBT_1S;
456  	first = last = now;
457  	first += (lookahead / 2);
458  	last += lookahead;
459  	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
460  	lastb = callout_hash(last) - 1;
461  	max = last;
462  
463  	/*
464  	 * Check if we wrapped around the entire wheel from the last scan.
465  	 * In case, we need to scan entirely the wheel for pending callouts.
466  	 */
467  	if (lastb - firstb >= callwheelsize) {
468  		lastb = firstb + callwheelsize - 1;
469  		if (nowb - firstb >= callwheelsize)
470  			nowb = lastb;
471  	}
472  
473  	/* Iterate callwheel from firstb to nowb and then up to lastb. */
474  	do {
475  		sc = &cc->cc_callwheel[firstb & callwheelmask];
476  		LIST_FOREACH_SAFE(c, sc, c_links.le, next) {
477  			/* Run the callout if present time within allowed. */
478  			if (c->c_time <= now) {
479  				/*
480  				 * Consumer told us the callout may be run
481  				 * directly from hardware interrupt context.
482  				 */
483  				if (c->c_iflags & CALLOUT_DIRECT) {
484  #ifdef CALLOUT_PROFILING
485  					++depth_dir;
486  #endif
487  					cc_exec_next(cc) = next;
488  					cc->cc_bucket = firstb & callwheelmask;
489  					LIST_REMOVE(c, c_links.le);
490  					softclock_call_cc(c, cc,
491  #ifdef CALLOUT_PROFILING
492  					    &mpcalls_dir, &lockcalls_dir, NULL,
493  #endif
494  					    1);
495  					next = cc_exec_next(cc);
496  					cc_exec_next(cc) = NULL;
497  				} else {
498  					LIST_REMOVE(c, c_links.le);
499  					TAILQ_INSERT_TAIL(&cc->cc_expireq,
500  					    c, c_links.tqe);
501  					c->c_iflags |= CALLOUT_PROCESSED;
502  				}
503  			} else if (c->c_time >= max) {
504  				/*
505  				 * Skip events in the distant future.
506  				 */
507  				;
508  			} else if (c->c_time > last) {
509  				/*
510  				 * Event minimal time is bigger than present
511  				 * maximal time, so it cannot be aggregated.
512  				 */
513  				lastb = nowb;
514  			} else {
515  				/*
516  				 * Update first and last time, respecting this
517  				 * event.
518  				 */
519  				if (c->c_time < first)
520  					first = c->c_time;
521  				tmp_max = c->c_time + c->c_precision;
522  				if (tmp_max < last)
523  					last = tmp_max;
524  			}
525  		}
526  		/* Proceed with the next bucket. */
527  		firstb++;
528  		/*
529  		 * Stop if we looked after present time and found
530  		 * some event we can't execute at now.
531  		 * Stop if we looked far enough into the future.
532  		 */
533  	} while (((int)(firstb - lastb)) <= 0);
534  	cc->cc_firstevent = last;
535  	cpu_new_callout(curcpu, last, first);
536  
537  #ifdef CALLOUT_PROFILING
538  	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
539  	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
540  	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
541  #endif
542  	if (!TAILQ_EMPTY(&cc->cc_expireq)) {
543  		entropy.cc = cc;
544  		entropy.td = curthread;
545  		entropy.now = now;
546  		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_CALLOUT);
547  
548  		td = cc->cc_thread;
549  		if (TD_AWAITING_INTR(td)) {
550  			thread_lock_block_wait(td);
551  			THREAD_LOCK_ASSERT(td, MA_OWNED);
552  			TD_CLR_IWAIT(td);
553  			sched_wakeup(td, SRQ_INTR);
554  		} else
555  			mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
556  	} else
557  		mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
558  }
559  
560  static struct callout_cpu *
callout_lock(struct callout * c)561  callout_lock(struct callout *c)
562  {
563  	struct callout_cpu *cc;
564  	int cpu;
565  
566  	for (;;) {
567  		cpu = c->c_cpu;
568  #ifdef SMP
569  		if (cpu == CPUBLOCK) {
570  			while (c->c_cpu == CPUBLOCK)
571  				cpu_spinwait();
572  			continue;
573  		}
574  #endif
575  		cc = CC_CPU(cpu);
576  		CC_LOCK(cc);
577  		if (cpu == c->c_cpu)
578  			break;
579  		CC_UNLOCK(cc);
580  	}
581  	return (cc);
582  }
583  
584  static void
callout_cc_add(struct callout * c,struct callout_cpu * cc,sbintime_t sbt,sbintime_t precision,void (* func)(void *),void * arg,int flags)585  callout_cc_add(struct callout *c, struct callout_cpu *cc,
586      sbintime_t sbt, sbintime_t precision, void (*func)(void *),
587      void *arg, int flags)
588  {
589  	int bucket;
590  
591  	CC_LOCK_ASSERT(cc);
592  	if (sbt < cc->cc_lastscan)
593  		sbt = cc->cc_lastscan;
594  	c->c_arg = arg;
595  	c->c_iflags |= CALLOUT_PENDING;
596  	c->c_iflags &= ~CALLOUT_PROCESSED;
597  	c->c_flags |= CALLOUT_ACTIVE;
598  	if (flags & C_DIRECT_EXEC)
599  		c->c_iflags |= CALLOUT_DIRECT;
600  	c->c_func = func;
601  	c->c_time = sbt;
602  	c->c_precision = precision;
603  	bucket = callout_get_bucket(c->c_time);
604  	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
605  	    c, (int)(c->c_precision >> 32),
606  	    (u_int)(c->c_precision & 0xffffffff));
607  	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
608  	if (cc->cc_bucket == bucket)
609  		cc_exec_next(cc) = c;
610  
611  	/*
612  	 * Inform the eventtimers(4) subsystem there's a new callout
613  	 * that has been inserted, but only if really required.
614  	 */
615  	if (SBT_MAX - c->c_time < c->c_precision)
616  		c->c_precision = SBT_MAX - c->c_time;
617  	sbt = c->c_time + c->c_precision;
618  	if (sbt < cc->cc_firstevent) {
619  		cc->cc_firstevent = sbt;
620  		cpu_new_callout(c->c_cpu, sbt, c->c_time);
621  	}
622  }
623  
624  static void
softclock_call_cc(struct callout * c,struct callout_cpu * cc,int * mpcalls,int * lockcalls,int * gcalls,int direct)625  softclock_call_cc(struct callout *c, struct callout_cpu *cc,
626  #ifdef CALLOUT_PROFILING
627      int *mpcalls, int *lockcalls, int *gcalls,
628  #endif
629      int direct)
630  {
631  	struct rm_priotracker tracker;
632  	callout_func_t *c_func;
633  	void *c_arg;
634  	struct lock_class *class;
635  	struct lock_object *c_lock;
636  	uintptr_t lock_status;
637  	int c_iflags;
638  #ifdef SMP
639  	struct callout_cpu *new_cc;
640  	callout_func_t *new_func;
641  	void *new_arg;
642  	int flags, new_cpu;
643  	sbintime_t new_prec, new_time;
644  #endif
645  #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
646  	sbintime_t sbt1, sbt2;
647  	struct timespec ts2;
648  	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
649  	static callout_func_t *lastfunc;
650  #endif
651  
652  	CC_LOCK_ASSERT(cc);
653  	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
654  	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
655  	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
656  	    ("softclock_call_cc: act %p %x", c, c->c_flags));
657  	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
658  	lock_status = 0;
659  	if (c->c_iflags & CALLOUT_SHAREDLOCK) {
660  		if (class == &lock_class_rm)
661  			lock_status = (uintptr_t)&tracker;
662  		else
663  			lock_status = 1;
664  	}
665  	c_lock = c->c_lock;
666  	c_func = c->c_func;
667  	c_arg = c->c_arg;
668  	c_iflags = c->c_iflags;
669  	c->c_iflags &= ~CALLOUT_PENDING;
670  
671  	cc_exec_curr(cc, direct) = c;
672  	cc_exec_last_func(cc, direct) = c_func;
673  	cc_exec_last_arg(cc, direct) = c_arg;
674  	cc_exec_cancel(cc, direct) = false;
675  	if (c_lock != NULL) {
676  		if (c_iflags & CALLOUT_TRYLOCK) {
677  			if (__predict_false(class->lc_trylock(c_lock,
678  			    lock_status) == 0)) {
679  				cc_exec_curr(cc, direct) = NULL;
680  				callout_cc_add(c, cc,
681  				    cc->cc_lastscan + c->c_precision / 2,
682  				    qmax(c->c_precision / 2, 1), c_func, c_arg,
683  				    (direct) ? C_DIRECT_EXEC : 0);
684  				return;
685  			}
686  			CC_UNLOCK(cc);
687  		} else {
688  			CC_UNLOCK(cc);
689  			class->lc_lock(c_lock, lock_status);
690  			/*
691  			 * The callout may have been cancelled
692  			 * while we switched locks.
693  			 */
694  			if (cc_exec_cancel(cc, direct)) {
695  				class->lc_unlock(c_lock);
696  				goto skip;
697  			}
698  		}
699  		/* The callout cannot be stopped now. */
700  		cc_exec_cancel(cc, direct) = true;
701  		if (c_lock == &Giant.lock_object) {
702  #ifdef CALLOUT_PROFILING
703  			(*gcalls)++;
704  #endif
705  			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
706  			    c, c_func, c_arg);
707  		} else {
708  #ifdef CALLOUT_PROFILING
709  			(*lockcalls)++;
710  #endif
711  			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
712  			    c, c_func, c_arg);
713  		}
714  	} else {
715  		CC_UNLOCK(cc);
716  #ifdef CALLOUT_PROFILING
717  		(*mpcalls)++;
718  #endif
719  		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
720  		    c, c_func, c_arg);
721  	}
722  	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
723  	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
724  #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
725  	sbt1 = sbinuptime();
726  #endif
727  	THREAD_NO_SLEEPING();
728  	SDT_PROBE1(callout_execute, , , callout__start, c);
729  	c_func(c_arg);
730  	SDT_PROBE1(callout_execute, , , callout__end, c);
731  	THREAD_SLEEPING_OK();
732  #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
733  	sbt2 = sbinuptime();
734  	sbt2 -= sbt1;
735  	if (sbt2 > maxdt) {
736  		if (lastfunc != c_func || sbt2 > maxdt * 2) {
737  			ts2 = sbttots(sbt2);
738  			printf(
739  		"Expensive callout(9) function: %p(%p) %jd.%09ld s\n",
740  			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
741  		}
742  		maxdt = sbt2;
743  		lastfunc = c_func;
744  	}
745  #endif
746  	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
747  	CTR1(KTR_CALLOUT, "callout %p finished", c);
748  	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
749  		class->lc_unlock(c_lock);
750  skip:
751  	CC_LOCK(cc);
752  	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
753  	cc_exec_curr(cc, direct) = NULL;
754  	if (cc_exec_waiting(cc, direct)) {
755  		/*
756  		 * There is someone waiting for the
757  		 * callout to complete.
758  		 * If the callout was scheduled for
759  		 * migration just cancel it.
760  		 */
761  		if (cc_cce_migrating(cc, direct)) {
762  			cc_cce_cleanup(cc, direct);
763  
764  			/*
765  			 * It should be assert here that the callout is not
766  			 * destroyed but that is not easy.
767  			 */
768  			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
769  		}
770  		cc_exec_waiting(cc, direct) = false;
771  		CC_UNLOCK(cc);
772  		wakeup(&cc_exec_waiting(cc, direct));
773  		CC_LOCK(cc);
774  	} else if (cc_cce_migrating(cc, direct)) {
775  #ifdef SMP
776  		/*
777  		 * If the callout was scheduled for
778  		 * migration just perform it now.
779  		 */
780  		new_cpu = cc_migration_cpu(cc, direct);
781  		new_time = cc_migration_time(cc, direct);
782  		new_prec = cc_migration_prec(cc, direct);
783  		new_func = cc_migration_func(cc, direct);
784  		new_arg = cc_migration_arg(cc, direct);
785  		cc_cce_cleanup(cc, direct);
786  
787  		/*
788  		 * It should be assert here that the callout is not destroyed
789  		 * but that is not easy.
790  		 *
791  		 * As first thing, handle deferred callout stops.
792  		 */
793  		if (!callout_migrating(c)) {
794  			CTR3(KTR_CALLOUT,
795  			     "deferred cancelled %p func %p arg %p",
796  			     c, new_func, new_arg);
797  			return;
798  		}
799  		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
800  
801  		new_cc = callout_cpu_switch(c, cc, new_cpu);
802  		flags = (direct) ? C_DIRECT_EXEC : 0;
803  		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
804  		    new_arg, flags);
805  		CC_UNLOCK(new_cc);
806  		CC_LOCK(cc);
807  #else
808  		panic("migration should not happen");
809  #endif
810  	}
811  }
812  
813  /*
814   * The callout mechanism is based on the work of Adam M. Costello and
815   * George Varghese, published in a technical report entitled "Redesigning
816   * the BSD Callout and Timer Facilities" and modified slightly for inclusion
817   * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
818   * used in this implementation was published by G. Varghese and T. Lauck in
819   * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
820   * the Efficient Implementation of a Timer Facility" in the Proceedings of
821   * the 11th ACM Annual Symposium on Operating Systems Principles,
822   * Austin, Texas Nov 1987.
823   */
824  
825  /*
826   * Software (low priority) clock interrupt thread handler.
827   * Run periodic events from timeout queue.
828   */
829  static void
softclock_thread(void * arg)830  softclock_thread(void *arg)
831  {
832  	struct thread *td = curthread;
833  	struct callout_cpu *cc;
834  	struct callout *c;
835  #ifdef CALLOUT_PROFILING
836  	int depth, gcalls, lockcalls, mpcalls;
837  #endif
838  
839  	cc = (struct callout_cpu *)arg;
840  	CC_LOCK(cc);
841  	for (;;) {
842  		while (TAILQ_EMPTY(&cc->cc_expireq)) {
843  			/*
844  			 * Use CC_LOCK(cc) as the thread_lock while
845  			 * idle.
846  			 */
847  			thread_lock(td);
848  			thread_lock_set(td, (struct mtx *)&cc->cc_lock);
849  			TD_SET_IWAIT(td);
850  			mi_switch(SW_VOL | SWT_IWAIT);
851  
852  			/* mi_switch() drops thread_lock(). */
853  			CC_LOCK(cc);
854  		}
855  
856  #ifdef CALLOUT_PROFILING
857  		depth = gcalls = lockcalls = mpcalls = 0;
858  #endif
859  		while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
860  			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
861  			softclock_call_cc(c, cc,
862  #ifdef CALLOUT_PROFILING
863  			    &mpcalls, &lockcalls, &gcalls,
864  #endif
865  			    0);
866  #ifdef CALLOUT_PROFILING
867  			++depth;
868  #endif
869  		}
870  #ifdef CALLOUT_PROFILING
871  		avg_depth += (depth * 1000 - avg_depth) >> 8;
872  		avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
873  		avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
874  		avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
875  #endif
876  	}
877  }
878  
879  void
callout_when(sbintime_t sbt,sbintime_t precision,int flags,sbintime_t * res,sbintime_t * prec_res)880  callout_when(sbintime_t sbt, sbintime_t precision, int flags,
881      sbintime_t *res, sbintime_t *prec_res)
882  {
883  	sbintime_t to_sbt, to_pr;
884  
885  	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
886  		*res = sbt;
887  		*prec_res = precision;
888  		return;
889  	}
890  	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
891  		sbt = tick_sbt;
892  	if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
893  		/*
894  		 * Obtain the time of the last hardclock() call on
895  		 * this CPU directly from the kern_clocksource.c.
896  		 * This value is per-CPU, but it is equal for all
897  		 * active ones.
898  		 */
899  #ifdef __LP64__
900  		to_sbt = DPCPU_GET(hardclocktime);
901  #else
902  		spinlock_enter();
903  		to_sbt = DPCPU_GET(hardclocktime);
904  		spinlock_exit();
905  #endif
906  		if (cold && to_sbt == 0)
907  			to_sbt = sbinuptime();
908  		if ((flags & C_HARDCLOCK) == 0)
909  			to_sbt += tick_sbt;
910  	} else
911  		to_sbt = sbinuptime();
912  	if (SBT_MAX - to_sbt < sbt)
913  		to_sbt = SBT_MAX;
914  	else
915  		to_sbt += sbt;
916  	*res = to_sbt;
917  	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
918  	    sbt >> C_PRELGET(flags));
919  	*prec_res = to_pr > precision ? to_pr : precision;
920  }
921  
922  /*
923   * New interface; clients allocate their own callout structures.
924   *
925   * callout_reset() - establish or change a timeout
926   * callout_stop() - disestablish a timeout
927   * callout_init() - initialize a callout structure so that it can
928   *	safely be passed to callout_reset() and callout_stop()
929   *
930   * <sys/callout.h> defines three convenience macros:
931   *
932   * callout_active() - returns truth if callout has not been stopped,
933   *	drained, or deactivated since the last time the callout was
934   *	reset.
935   * callout_pending() - returns truth if callout is still waiting for timeout
936   * callout_deactivate() - marks the callout as having been serviced
937   */
938  int
callout_reset_sbt_on(struct callout * c,sbintime_t sbt,sbintime_t prec,callout_func_t * ftn,void * arg,int cpu,int flags)939  callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
940      callout_func_t *ftn, void *arg, int cpu, int flags)
941  {
942  	sbintime_t to_sbt, precision;
943  	struct callout_cpu *cc;
944  	int cancelled, direct;
945  
946  	cancelled = 0;
947  	callout_when(sbt, prec, flags, &to_sbt, &precision);
948  
949  	/*
950  	 * This flag used to be added by callout_cc_add, but the
951  	 * first time you call this we could end up with the
952  	 * wrong direct flag if we don't do it before we add.
953  	 */
954  	if (flags & C_DIRECT_EXEC) {
955  		direct = 1;
956  	} else {
957  		direct = 0;
958  	}
959  	KASSERT(!direct || c->c_lock == NULL ||
960  	    (LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
961  	    ("%s: direct callout %p has non-spin lock", __func__, c));
962  
963  	cc = callout_lock(c);
964  	if (cpu == -1)
965  		cpu = c->c_cpu;
966  	KASSERT(cpu >= 0 && cpu <= mp_maxid && !CPU_ABSENT(cpu),
967  	    ("%s: invalid cpu %d", __func__, cpu));
968  
969  	if (cc_exec_curr(cc, direct) == c) {
970  		/*
971  		 * We're being asked to reschedule a callout which is
972  		 * currently in progress.  If there is a lock then we
973  		 * can cancel the callout if it has not really started.
974  		 */
975  		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
976  			cancelled = cc_exec_cancel(cc, direct) = true;
977  		if (cc_exec_waiting(cc, direct)) {
978  			/*
979  			 * Someone has called callout_drain to kill this
980  			 * callout.  Don't reschedule.
981  			 */
982  			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
983  			    cancelled ? "cancelled" : "failed to cancel",
984  			    c, c->c_func, c->c_arg);
985  			CC_UNLOCK(cc);
986  			return (cancelled);
987  		}
988  #ifdef SMP
989  		if (callout_migrating(c)) {
990  			/*
991  			 * This only occurs when a second callout_reset_sbt_on
992  			 * is made after a previous one moved it into
993  			 * deferred migration (below). Note we do *not* change
994  			 * the prev_cpu even though the previous target may
995  			 * be different.
996  			 */
997  			cc_migration_cpu(cc, direct) = cpu;
998  			cc_migration_time(cc, direct) = to_sbt;
999  			cc_migration_prec(cc, direct) = precision;
1000  			cc_migration_func(cc, direct) = ftn;
1001  			cc_migration_arg(cc, direct) = arg;
1002  			cancelled = 1;
1003  			CC_UNLOCK(cc);
1004  			return (cancelled);
1005  		}
1006  #endif
1007  	}
1008  	if (c->c_iflags & CALLOUT_PENDING) {
1009  		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1010  			if (cc_exec_next(cc) == c)
1011  				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1012  			LIST_REMOVE(c, c_links.le);
1013  		} else {
1014  			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1015  		}
1016  		cancelled = 1;
1017  		c->c_iflags &= ~ CALLOUT_PENDING;
1018  		c->c_flags &= ~ CALLOUT_ACTIVE;
1019  	}
1020  
1021  #ifdef SMP
1022  	/*
1023  	 * If the callout must migrate try to perform it immediately.
1024  	 * If the callout is currently running, just defer the migration
1025  	 * to a more appropriate moment.
1026  	 */
1027  	if (c->c_cpu != cpu) {
1028  		if (cc_exec_curr(cc, direct) == c) {
1029  			/*
1030  			 * Pending will have been removed since we are
1031  			 * actually executing the callout on another
1032  			 * CPU. That callout should be waiting on the
1033  			 * lock the caller holds. If we set both
1034  			 * active/and/pending after we return and the
1035  			 * lock on the executing callout proceeds, it
1036  			 * will then see pending is true and return.
1037  			 * At the return from the actual callout execution
1038  			 * the migration will occur in softclock_call_cc
1039  			 * and this new callout will be placed on the
1040  			 * new CPU via a call to callout_cpu_switch() which
1041  			 * will get the lock on the right CPU followed
1042  			 * by a call callout_cc_add() which will add it there.
1043  			 * (see above in softclock_call_cc()).
1044  			 */
1045  			cc_migration_cpu(cc, direct) = cpu;
1046  			cc_migration_time(cc, direct) = to_sbt;
1047  			cc_migration_prec(cc, direct) = precision;
1048  			cc_migration_func(cc, direct) = ftn;
1049  			cc_migration_arg(cc, direct) = arg;
1050  			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1051  			c->c_flags |= CALLOUT_ACTIVE;
1052  			CTR6(KTR_CALLOUT,
1053  		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1054  			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1055  			    (u_int)(to_sbt & 0xffffffff), cpu);
1056  			CC_UNLOCK(cc);
1057  			return (cancelled);
1058  		}
1059  		cc = callout_cpu_switch(c, cc, cpu);
1060  	}
1061  #endif
1062  
1063  	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, flags);
1064  	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1065  	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1066  	    (u_int)(to_sbt & 0xffffffff));
1067  	CC_UNLOCK(cc);
1068  
1069  	return (cancelled);
1070  }
1071  
1072  /*
1073   * Common idioms that can be optimized in the future.
1074   */
1075  int
callout_schedule_on(struct callout * c,int to_ticks,int cpu)1076  callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1077  {
1078  	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1079  }
1080  
1081  int
callout_schedule(struct callout * c,int to_ticks)1082  callout_schedule(struct callout *c, int to_ticks)
1083  {
1084  	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1085  }
1086  
1087  int
_callout_stop_safe(struct callout * c,int flags)1088  _callout_stop_safe(struct callout *c, int flags)
1089  {
1090  	struct callout_cpu *cc, *old_cc;
1091  	struct lock_class *class;
1092  	int direct, sq_locked, use_lock;
1093  	int cancelled, not_on_a_list;
1094  
1095  	if ((flags & CS_DRAIN) != 0)
1096  		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1097  		    "calling %s", __func__);
1098  
1099  	/*
1100  	 * Some old subsystems don't hold Giant while running a callout_stop(),
1101  	 * so just discard this check for the moment.
1102  	 */
1103  	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1104  		if (c->c_lock == &Giant.lock_object)
1105  			use_lock = mtx_owned(&Giant);
1106  		else {
1107  			use_lock = 1;
1108  			class = LOCK_CLASS(c->c_lock);
1109  			class->lc_assert(c->c_lock, LA_XLOCKED);
1110  		}
1111  	} else
1112  		use_lock = 0;
1113  	if (c->c_iflags & CALLOUT_DIRECT) {
1114  		direct = 1;
1115  	} else {
1116  		direct = 0;
1117  	}
1118  	sq_locked = 0;
1119  	old_cc = NULL;
1120  again:
1121  	cc = callout_lock(c);
1122  
1123  	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1124  	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1125  	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1126  		/*
1127  		 * Special case where this slipped in while we
1128  		 * were migrating *as* the callout is about to
1129  		 * execute. The caller probably holds the lock
1130  		 * the callout wants.
1131  		 *
1132  		 * Get rid of the migration first. Then set
1133  		 * the flag that tells this code *not* to
1134  		 * try to remove it from any lists (its not
1135  		 * on one yet). When the callout wheel runs,
1136  		 * it will ignore this callout.
1137  		 */
1138  		c->c_iflags &= ~CALLOUT_PENDING;
1139  		c->c_flags &= ~CALLOUT_ACTIVE;
1140  		not_on_a_list = 1;
1141  	} else {
1142  		not_on_a_list = 0;
1143  	}
1144  
1145  	/*
1146  	 * If the callout was migrating while the callout cpu lock was
1147  	 * dropped,  just drop the sleepqueue lock and check the states
1148  	 * again.
1149  	 */
1150  	if (sq_locked != 0 && cc != old_cc) {
1151  #ifdef SMP
1152  		CC_UNLOCK(cc);
1153  		sleepq_release(&cc_exec_waiting(old_cc, direct));
1154  		sq_locked = 0;
1155  		old_cc = NULL;
1156  		goto again;
1157  #else
1158  		panic("migration should not happen");
1159  #endif
1160  	}
1161  
1162  	/*
1163  	 * If the callout is running, try to stop it or drain it.
1164  	 */
1165  	if (cc_exec_curr(cc, direct) == c) {
1166  		/*
1167  		 * Succeed we to stop it or not, we must clear the
1168  		 * active flag - this is what API users expect.  If we're
1169  		 * draining and the callout is currently executing, first wait
1170  		 * until it finishes.
1171  		 */
1172  		if ((flags & CS_DRAIN) == 0)
1173  			c->c_flags &= ~CALLOUT_ACTIVE;
1174  
1175  		if ((flags & CS_DRAIN) != 0) {
1176  			/*
1177  			 * The current callout is running (or just
1178  			 * about to run) and blocking is allowed, so
1179  			 * just wait for the current invocation to
1180  			 * finish.
1181  			 */
1182  			if (cc_exec_curr(cc, direct) == c) {
1183  				/*
1184  				 * Use direct calls to sleepqueue interface
1185  				 * instead of cv/msleep in order to avoid
1186  				 * a LOR between cc_lock and sleepqueue
1187  				 * chain spinlocks.  This piece of code
1188  				 * emulates a msleep_spin() call actually.
1189  				 *
1190  				 * If we already have the sleepqueue chain
1191  				 * locked, then we can safely block.  If we
1192  				 * don't already have it locked, however,
1193  				 * we have to drop the cc_lock to lock
1194  				 * it.  This opens several races, so we
1195  				 * restart at the beginning once we have
1196  				 * both locks.  If nothing has changed, then
1197  				 * we will end up back here with sq_locked
1198  				 * set.
1199  				 */
1200  				if (!sq_locked) {
1201  					CC_UNLOCK(cc);
1202  					sleepq_lock(
1203  					    &cc_exec_waiting(cc, direct));
1204  					sq_locked = 1;
1205  					old_cc = cc;
1206  					goto again;
1207  				}
1208  
1209  				/*
1210  				 * Migration could be cancelled here, but
1211  				 * as long as it is still not sure when it
1212  				 * will be packed up, just let softclock()
1213  				 * take care of it.
1214  				 */
1215  				cc_exec_waiting(cc, direct) = true;
1216  				DROP_GIANT();
1217  				CC_UNLOCK(cc);
1218  				sleepq_add(
1219  				    &cc_exec_waiting(cc, direct),
1220  				    &cc->cc_lock.lock_object, "codrain",
1221  				    SLEEPQ_SLEEP, 0);
1222  				sleepq_wait(
1223  				    &cc_exec_waiting(cc, direct),
1224  					     0);
1225  				sq_locked = 0;
1226  				old_cc = NULL;
1227  
1228  				/* Reacquire locks previously released. */
1229  				PICKUP_GIANT();
1230  				goto again;
1231  			}
1232  			c->c_flags &= ~CALLOUT_ACTIVE;
1233  		} else if (use_lock && !cc_exec_cancel(cc, direct)) {
1234  
1235  			/*
1236  			 * The current callout is waiting for its
1237  			 * lock which we hold.  Cancel the callout
1238  			 * and return.  After our caller drops the
1239  			 * lock, the callout will be skipped in
1240  			 * softclock(). This *only* works with a
1241  			 * callout_stop() *not* with callout_drain().
1242  			 */
1243  			cc_exec_cancel(cc, direct) = true;
1244  			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1245  			    c, c->c_func, c->c_arg);
1246  			KASSERT(!cc_cce_migrating(cc, direct),
1247  			    ("callout wrongly scheduled for migration"));
1248  			if (callout_migrating(c)) {
1249  				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1250  #ifdef SMP
1251  				cc_migration_cpu(cc, direct) = CPUBLOCK;
1252  				cc_migration_time(cc, direct) = 0;
1253  				cc_migration_prec(cc, direct) = 0;
1254  				cc_migration_func(cc, direct) = NULL;
1255  				cc_migration_arg(cc, direct) = NULL;
1256  #endif
1257  			}
1258  			CC_UNLOCK(cc);
1259  			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1260  			return (1);
1261  		} else if (callout_migrating(c)) {
1262  			/*
1263  			 * The callout is currently being serviced
1264  			 * and the "next" callout is scheduled at
1265  			 * its completion with a migration. We remove
1266  			 * the migration flag so it *won't* get rescheduled,
1267  			 * but we can't stop the one thats running so
1268  			 * we return 0.
1269  			 */
1270  			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1271  #ifdef SMP
1272  			/*
1273  			 * We can't call cc_cce_cleanup here since
1274  			 * if we do it will remove .ce_curr and
1275  			 * its still running. This will prevent a
1276  			 * reschedule of the callout when the
1277  			 * execution completes.
1278  			 */
1279  			cc_migration_cpu(cc, direct) = CPUBLOCK;
1280  			cc_migration_time(cc, direct) = 0;
1281  			cc_migration_prec(cc, direct) = 0;
1282  			cc_migration_func(cc, direct) = NULL;
1283  			cc_migration_arg(cc, direct) = NULL;
1284  #endif
1285  			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1286  			    c, c->c_func, c->c_arg);
1287  			CC_UNLOCK(cc);
1288  			return (0);
1289  		} else {
1290  			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1291  			    c, c->c_func, c->c_arg);
1292  		}
1293  		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1294  		cancelled = 0;
1295  	} else
1296  		cancelled = 1;
1297  
1298  	if (sq_locked)
1299  		sleepq_release(&cc_exec_waiting(cc, direct));
1300  
1301  	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1302  		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1303  		    c, c->c_func, c->c_arg);
1304  		/*
1305  		 * For not scheduled and not executing callout return
1306  		 * negative value.
1307  		 */
1308  		if (cc_exec_curr(cc, direct) != c)
1309  			cancelled = -1;
1310  		CC_UNLOCK(cc);
1311  		return (cancelled);
1312  	}
1313  
1314  	c->c_iflags &= ~CALLOUT_PENDING;
1315  	c->c_flags &= ~CALLOUT_ACTIVE;
1316  
1317  	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1318  	    c, c->c_func, c->c_arg);
1319  	if (not_on_a_list == 0) {
1320  		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1321  			if (cc_exec_next(cc) == c)
1322  				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1323  			LIST_REMOVE(c, c_links.le);
1324  		} else {
1325  			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1326  		}
1327  	}
1328  	CC_UNLOCK(cc);
1329  	return (cancelled);
1330  }
1331  
1332  void
callout_init(struct callout * c,int mpsafe)1333  callout_init(struct callout *c, int mpsafe)
1334  {
1335  	bzero(c, sizeof *c);
1336  	if (mpsafe) {
1337  		c->c_lock = NULL;
1338  		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1339  	} else {
1340  		c->c_lock = &Giant.lock_object;
1341  		c->c_iflags = 0;
1342  	}
1343  	c->c_cpu = cc_default_cpu;
1344  }
1345  
1346  void
_callout_init_lock(struct callout * c,struct lock_object * lock,int flags)1347  _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1348  {
1349  	KASSERT(lock != NULL, ("%s: no lock", __func__));
1350  	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK |
1351  	    CALLOUT_TRYLOCK)) == 0,
1352  	    ("%s: bad flags %d", __func__, flags));
1353  	KASSERT(!(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
1354  	    ("%s: callout %p has sleepable lock", __func__, c));
1355  	KASSERT(!(flags & CALLOUT_TRYLOCK) ||
1356  	    (LOCK_CLASS(lock)->lc_trylock != NULL),
1357  	    ("%s: CALLOUT_TRYLOCK requested for %s",
1358  	    __func__, LOCK_CLASS(lock)->lc_name));
1359  
1360  	*c = (struct callout ){
1361  		.c_lock = lock,
1362  		.c_iflags = flags,
1363  		.c_cpu = cc_default_cpu,
1364  	};
1365  }
1366  
1367  static int
flssbt(sbintime_t sbt)1368  flssbt(sbintime_t sbt)
1369  {
1370  
1371  	sbt += (uint64_t)sbt >> 1;
1372  	if (sizeof(long) >= sizeof(sbintime_t))
1373  		return (flsl(sbt));
1374  	if (sbt >= SBT_1S)
1375  		return (flsl(((uint64_t)sbt) >> 32) + 32);
1376  	return (flsl(sbt));
1377  }
1378  
1379  /*
1380   * Dump immediate statistic snapshot of the scheduled callouts.
1381   */
1382  static int
sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)1383  sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1384  {
1385  	struct callout *tmp;
1386  	struct callout_cpu *cc;
1387  	struct callout_list *sc;
1388  	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1389  	int ct[64], cpr[64], ccpbk[32];
1390  	int error, val, i, count, tcum, pcum, maxc, c, medc;
1391  	int cpu;
1392  
1393  	val = 0;
1394  	error = sysctl_handle_int(oidp, &val, 0, req);
1395  	if (error != 0 || req->newptr == NULL)
1396  		return (error);
1397  	count = maxc = 0;
1398  	st = spr = maxt = maxpr = 0;
1399  	bzero(ccpbk, sizeof(ccpbk));
1400  	bzero(ct, sizeof(ct));
1401  	bzero(cpr, sizeof(cpr));
1402  	now = sbinuptime();
1403  	CPU_FOREACH(cpu) {
1404  		cc = CC_CPU(cpu);
1405  		CC_LOCK(cc);
1406  		for (i = 0; i < callwheelsize; i++) {
1407  			sc = &cc->cc_callwheel[i];
1408  			c = 0;
1409  			LIST_FOREACH(tmp, sc, c_links.le) {
1410  				c++;
1411  				t = tmp->c_time - now;
1412  				if (t < 0)
1413  					t = 0;
1414  				st += t / SBT_1US;
1415  				spr += tmp->c_precision / SBT_1US;
1416  				if (t > maxt)
1417  					maxt = t;
1418  				if (tmp->c_precision > maxpr)
1419  					maxpr = tmp->c_precision;
1420  				ct[flssbt(t)]++;
1421  				cpr[flssbt(tmp->c_precision)]++;
1422  			}
1423  			if (c > maxc)
1424  				maxc = c;
1425  			ccpbk[fls(c + c / 2)]++;
1426  			count += c;
1427  		}
1428  		CC_UNLOCK(cc);
1429  	}
1430  
1431  	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1432  		tcum += ct[i];
1433  	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1434  	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1435  		pcum += cpr[i];
1436  	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1437  	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1438  		c += ccpbk[i];
1439  	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1440  
1441  	printf("Scheduled callouts statistic snapshot:\n");
1442  	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1443  	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1444  	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1445  	    medc,
1446  	    count / callwheelsize / mp_ncpus,
1447  	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1448  	    maxc);
1449  	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1450  	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1451  	    (st / count) / 1000000, (st / count) % 1000000,
1452  	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1453  	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1454  	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1455  	    (spr / count) / 1000000, (spr / count) % 1000000,
1456  	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1457  	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1458  	    "   prec\t   pcum\n");
1459  	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1460  		if (ct[i] == 0 && cpr[i] == 0)
1461  			continue;
1462  		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1463  		tcum += ct[i];
1464  		pcum += cpr[i];
1465  		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1466  		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1467  		    i - 1 - (32 - CC_HASH_SHIFT),
1468  		    ct[i], tcum, cpr[i], pcum);
1469  	}
1470  	return (error);
1471  }
1472  SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1473      CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1474      0, 0, sysctl_kern_callout_stat, "I",
1475      "Dump immediate statistic snapshot of the scheduled callouts");
1476  
1477  #ifdef DDB
1478  static void
_show_callout(struct callout * c)1479  _show_callout(struct callout *c)
1480  {
1481  
1482  	db_printf("callout %p\n", c);
1483  #define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1484  	db_printf("   &c_links = %p\n", &(c->c_links));
1485  	C_DB_PRINTF("%" PRId64,	c_time);
1486  	C_DB_PRINTF("%" PRId64,	c_precision);
1487  	C_DB_PRINTF("%p",	c_arg);
1488  	C_DB_PRINTF("%p",	c_func);
1489  	C_DB_PRINTF("%p",	c_lock);
1490  	C_DB_PRINTF("%#x",	c_flags);
1491  	C_DB_PRINTF("%#x",	c_iflags);
1492  	C_DB_PRINTF("%d",	c_cpu);
1493  #undef	C_DB_PRINTF
1494  }
1495  
DB_SHOW_COMMAND(callout,db_show_callout)1496  DB_SHOW_COMMAND(callout, db_show_callout)
1497  {
1498  
1499  	if (!have_addr) {
1500  		db_printf("usage: show callout <struct callout *>\n");
1501  		return;
1502  	}
1503  
1504  	_show_callout((struct callout *)addr);
1505  }
1506  
1507  static void
_show_last_callout(int cpu,int direct,const char * dirstr)1508  _show_last_callout(int cpu, int direct, const char *dirstr)
1509  {
1510  	struct callout_cpu *cc;
1511  	void *func, *arg;
1512  
1513  	cc = CC_CPU(cpu);
1514  	func = cc_exec_last_func(cc, direct);
1515  	arg = cc_exec_last_arg(cc, direct);
1516  	db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1517  	db_printsym((db_expr_t)func, DB_STGY_ANY);
1518  	db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1519  }
1520  
DB_SHOW_COMMAND_FLAGS(callout_last,db_show_callout_last,DB_CMD_MEMSAFE)1521  DB_SHOW_COMMAND_FLAGS(callout_last, db_show_callout_last, DB_CMD_MEMSAFE)
1522  {
1523  	int cpu, last;
1524  
1525  	if (have_addr) {
1526  		if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1527  			db_printf("no such cpu: %d\n", (int)addr);
1528  			return;
1529  		}
1530  		cpu = last = addr;
1531  	} else {
1532  		cpu = 0;
1533  		last = mp_maxid;
1534  	}
1535  
1536  	while (cpu <= last) {
1537  		if (!CPU_ABSENT(cpu)) {
1538  			_show_last_callout(cpu, 0, "");
1539  			_show_last_callout(cpu, 1, " direct");
1540  		}
1541  		cpu++;
1542  	}
1543  }
1544  #endif /* DDB */
1545