1 /*-
2 * SPDX-License-Identifier: Beerware
3 *
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ----------------------------------------------------------------------------
10 *
11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Julien Ridoux at the University
14 * of Melbourne under sponsorship from the FreeBSD Foundation.
15 *
16 * Portions of this software were developed by Konstantin Belousov
17 * under sponsorship from the FreeBSD Foundation.
18 */
19
20 #include <sys/cdefs.h>
21 #include "opt_ntp.h"
22 #include "opt_ffclock.h"
23
24 #include <sys/param.h>
25 #include <sys/kernel.h>
26 #include <sys/limits.h>
27 #include <sys/lock.h>
28 #include <sys/mutex.h>
29 #include <sys/proc.h>
30 #include <sys/sbuf.h>
31 #include <sys/sleepqueue.h>
32 #include <sys/sysctl.h>
33 #include <sys/syslog.h>
34 #include <sys/systm.h>
35 #include <sys/timeffc.h>
36 #include <sys/timepps.h>
37 #include <sys/timerfd.h>
38 #include <sys/timetc.h>
39 #include <sys/timex.h>
40 #include <sys/vdso.h>
41
42 /*
43 * A large step happens on boot. This constant detects such steps.
44 * It is relatively small so that ntp_update_second gets called enough
45 * in the typical 'missed a couple of seconds' case, but doesn't loop
46 * forever when the time step is large.
47 */
48 #define LARGE_STEP 200
49
50 /*
51 * Implement a dummy timecounter which we can use until we get a real one
52 * in the air. This allows the console and other early stuff to use
53 * time services.
54 */
55
56 static u_int
dummy_get_timecount(struct timecounter * tc)57 dummy_get_timecount(struct timecounter *tc)
58 {
59 static u_int now;
60
61 return (++now);
62 }
63
64 static struct timecounter dummy_timecounter = {
65 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
66 };
67
68 struct timehands {
69 /* These fields must be initialized by the driver. */
70 struct timecounter *th_counter;
71 int64_t th_adjustment;
72 uint64_t th_scale;
73 u_int th_large_delta;
74 u_int th_offset_count;
75 long th_tai_offset;
76 struct bintime th_offset;
77 struct bintime th_bintime;
78 struct timeval th_microtime;
79 struct timespec th_nanotime;
80 struct bintime th_boottime;
81 /* Fields not to be copied in tc_windup start with th_generation. */
82 u_int th_generation;
83 struct timehands *th_next;
84 };
85
86 static struct timehands ths[16] = {
87 [0] = {
88 .th_counter = &dummy_timecounter,
89 .th_scale = (uint64_t)-1 / 1000000,
90 .th_large_delta = 1000000,
91 .th_offset = { .sec = 1 },
92 .th_generation = 1,
93 },
94 };
95
96 static struct timehands *volatile timehands = &ths[0];
97 struct timecounter *timecounter = &dummy_timecounter;
98 static struct timecounter *timecounters = &dummy_timecounter;
99
100 /* Mutex to protect the timecounter list. */
101 static struct mtx tc_lock;
102
103 int tc_min_ticktock_freq = 1;
104
105 volatile time_t time_second = 1;
106 volatile time_t time_uptime = 1;
107
108 /*
109 * The system time is always computed by summing the estimated boot time and the
110 * system uptime. The timehands track boot time, but it changes when the system
111 * time is set by the user, stepped by ntpd or adjusted when resuming. It
112 * is set to new_time - uptime.
113 */
114 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
115 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
116 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
117 sysctl_kern_boottime, "S,timeval",
118 "Estimated system boottime");
119
120 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
121 "");
122 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
123 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
124 "");
125
126 static int timestepwarnings;
127 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN,
128 ×tepwarnings, 0, "Log time steps");
129
130 static int timehands_count = 2;
131 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
132 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
133 &timehands_count, 0, "Count of timehands in rotation");
134
135 struct bintime bt_timethreshold;
136 struct bintime bt_tickthreshold;
137 sbintime_t sbt_timethreshold;
138 sbintime_t sbt_tickthreshold;
139 struct bintime tc_tick_bt;
140 sbintime_t tc_tick_sbt;
141 int tc_precexp;
142 int tc_timepercentage = TC_DEFAULTPERC;
143 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
144 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
145 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
146 sysctl_kern_timecounter_adjprecision, "I",
147 "Allowed time interval deviation in percents");
148
149 volatile int rtc_generation = 1;
150
151 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */
152 static char tc_from_tunable[16];
153
154 static void tc_windup(struct bintime *new_boottimebin);
155 static void cpu_tick_calibrate(int);
156
157 void dtrace_getnanotime(struct timespec *tsp);
158 void dtrace_getnanouptime(struct timespec *tsp);
159
160 static int
sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)161 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
162 {
163 struct timeval boottime;
164
165 getboottime(&boottime);
166
167 /* i386 is the only arch which uses a 32bits time_t */
168 #ifdef __amd64__
169 #ifdef SCTL_MASK32
170 int tv[2];
171
172 if (req->flags & SCTL_MASK32) {
173 tv[0] = boottime.tv_sec;
174 tv[1] = boottime.tv_usec;
175 return (SYSCTL_OUT(req, tv, sizeof(tv)));
176 }
177 #endif
178 #endif
179 return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
180 }
181
182 static int
sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)183 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
184 {
185 u_int ncount;
186 struct timecounter *tc = arg1;
187
188 ncount = tc->tc_get_timecount(tc);
189 return (sysctl_handle_int(oidp, &ncount, 0, req));
190 }
191
192 static int
sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)193 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
194 {
195 uint64_t freq;
196 struct timecounter *tc = arg1;
197
198 freq = tc->tc_frequency;
199 return (sysctl_handle_64(oidp, &freq, 0, req));
200 }
201
202 /*
203 * Return the difference between the timehands' counter value now and what
204 * was when we copied it to the timehands' offset_count.
205 */
206 static __inline u_int
tc_delta(struct timehands * th)207 tc_delta(struct timehands *th)
208 {
209 struct timecounter *tc;
210
211 tc = th->th_counter;
212 return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
213 tc->tc_counter_mask);
214 }
215
216 static __inline void
bintime_add_tc_delta(struct bintime * bt,uint64_t scale,uint64_t large_delta,uint64_t delta)217 bintime_add_tc_delta(struct bintime *bt, uint64_t scale,
218 uint64_t large_delta, uint64_t delta)
219 {
220 uint64_t x;
221
222 if (__predict_false(delta >= large_delta)) {
223 /* Avoid overflow for scale * delta. */
224 x = (scale >> 32) * delta;
225 bt->sec += x >> 32;
226 bintime_addx(bt, x << 32);
227 bintime_addx(bt, (scale & 0xffffffff) * delta);
228 } else {
229 bintime_addx(bt, scale * delta);
230 }
231 }
232
233 /*
234 * Functions for reading the time. We have to loop until we are sure that
235 * the timehands that we operated on was not updated under our feet. See
236 * the comment in <sys/time.h> for a description of these 12 functions.
237 */
238
239 static __inline void
bintime_off(struct bintime * bt,u_int off)240 bintime_off(struct bintime *bt, u_int off)
241 {
242 struct timehands *th;
243 struct bintime *btp;
244 uint64_t scale;
245 u_int delta, gen, large_delta;
246
247 do {
248 th = timehands;
249 gen = atomic_load_acq_int(&th->th_generation);
250 btp = (struct bintime *)((vm_offset_t)th + off);
251 *bt = *btp;
252 scale = th->th_scale;
253 delta = tc_delta(th);
254 large_delta = th->th_large_delta;
255 atomic_thread_fence_acq();
256 } while (gen == 0 || gen != th->th_generation);
257
258 bintime_add_tc_delta(bt, scale, large_delta, delta);
259 }
260 #define GETTHBINTIME(dst, member) \
261 do { \
262 _Static_assert(_Generic(((struct timehands *)NULL)->member, \
263 struct bintime: 1, default: 0) == 1, \
264 "struct timehands member is not of struct bintime type"); \
265 bintime_off(dst, __offsetof(struct timehands, member)); \
266 } while (0)
267
268 static __inline void
getthmember(void * out,size_t out_size,u_int off)269 getthmember(void *out, size_t out_size, u_int off)
270 {
271 struct timehands *th;
272 u_int gen;
273
274 do {
275 th = timehands;
276 gen = atomic_load_acq_int(&th->th_generation);
277 memcpy(out, (char *)th + off, out_size);
278 atomic_thread_fence_acq();
279 } while (gen == 0 || gen != th->th_generation);
280 }
281 #define GETTHMEMBER(dst, member) \
282 do { \
283 _Static_assert(_Generic(*dst, \
284 __typeof(((struct timehands *)NULL)->member): 1, \
285 default: 0) == 1, \
286 "*dst and struct timehands member have different types"); \
287 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \
288 member)); \
289 } while (0)
290
291 #ifdef FFCLOCK
292 void
fbclock_binuptime(struct bintime * bt)293 fbclock_binuptime(struct bintime *bt)
294 {
295
296 GETTHBINTIME(bt, th_offset);
297 }
298
299 void
fbclock_nanouptime(struct timespec * tsp)300 fbclock_nanouptime(struct timespec *tsp)
301 {
302 struct bintime bt;
303
304 fbclock_binuptime(&bt);
305 bintime2timespec(&bt, tsp);
306 }
307
308 void
fbclock_microuptime(struct timeval * tvp)309 fbclock_microuptime(struct timeval *tvp)
310 {
311 struct bintime bt;
312
313 fbclock_binuptime(&bt);
314 bintime2timeval(&bt, tvp);
315 }
316
317 void
fbclock_bintime(struct bintime * bt)318 fbclock_bintime(struct bintime *bt)
319 {
320
321 GETTHBINTIME(bt, th_bintime);
322 }
323
324 void
fbclock_nanotime(struct timespec * tsp)325 fbclock_nanotime(struct timespec *tsp)
326 {
327 struct bintime bt;
328
329 fbclock_bintime(&bt);
330 bintime2timespec(&bt, tsp);
331 }
332
333 void
fbclock_microtime(struct timeval * tvp)334 fbclock_microtime(struct timeval *tvp)
335 {
336 struct bintime bt;
337
338 fbclock_bintime(&bt);
339 bintime2timeval(&bt, tvp);
340 }
341
342 void
fbclock_getbinuptime(struct bintime * bt)343 fbclock_getbinuptime(struct bintime *bt)
344 {
345
346 GETTHMEMBER(bt, th_offset);
347 }
348
349 void
fbclock_getnanouptime(struct timespec * tsp)350 fbclock_getnanouptime(struct timespec *tsp)
351 {
352 struct bintime bt;
353
354 GETTHMEMBER(&bt, th_offset);
355 bintime2timespec(&bt, tsp);
356 }
357
358 void
fbclock_getmicrouptime(struct timeval * tvp)359 fbclock_getmicrouptime(struct timeval *tvp)
360 {
361 struct bintime bt;
362
363 GETTHMEMBER(&bt, th_offset);
364 bintime2timeval(&bt, tvp);
365 }
366
367 void
fbclock_getbintime(struct bintime * bt)368 fbclock_getbintime(struct bintime *bt)
369 {
370
371 GETTHMEMBER(bt, th_bintime);
372 }
373
374 void
fbclock_getnanotime(struct timespec * tsp)375 fbclock_getnanotime(struct timespec *tsp)
376 {
377
378 GETTHMEMBER(tsp, th_nanotime);
379 }
380
381 void
fbclock_getmicrotime(struct timeval * tvp)382 fbclock_getmicrotime(struct timeval *tvp)
383 {
384
385 GETTHMEMBER(tvp, th_microtime);
386 }
387 #else /* !FFCLOCK */
388
389 void
binuptime(struct bintime * bt)390 binuptime(struct bintime *bt)
391 {
392
393 GETTHBINTIME(bt, th_offset);
394 }
395
396 void
nanouptime(struct timespec * tsp)397 nanouptime(struct timespec *tsp)
398 {
399 struct bintime bt;
400
401 binuptime(&bt);
402 bintime2timespec(&bt, tsp);
403 }
404
405 void
microuptime(struct timeval * tvp)406 microuptime(struct timeval *tvp)
407 {
408 struct bintime bt;
409
410 binuptime(&bt);
411 bintime2timeval(&bt, tvp);
412 }
413
414 void
bintime(struct bintime * bt)415 bintime(struct bintime *bt)
416 {
417
418 GETTHBINTIME(bt, th_bintime);
419 }
420
421 void
nanotime(struct timespec * tsp)422 nanotime(struct timespec *tsp)
423 {
424 struct bintime bt;
425
426 bintime(&bt);
427 bintime2timespec(&bt, tsp);
428 }
429
430 void
microtime(struct timeval * tvp)431 microtime(struct timeval *tvp)
432 {
433 struct bintime bt;
434
435 bintime(&bt);
436 bintime2timeval(&bt, tvp);
437 }
438
439 void
getbinuptime(struct bintime * bt)440 getbinuptime(struct bintime *bt)
441 {
442
443 GETTHMEMBER(bt, th_offset);
444 }
445
446 void
getnanouptime(struct timespec * tsp)447 getnanouptime(struct timespec *tsp)
448 {
449 struct bintime bt;
450
451 GETTHMEMBER(&bt, th_offset);
452 bintime2timespec(&bt, tsp);
453 }
454
455 void
getmicrouptime(struct timeval * tvp)456 getmicrouptime(struct timeval *tvp)
457 {
458 struct bintime bt;
459
460 GETTHMEMBER(&bt, th_offset);
461 bintime2timeval(&bt, tvp);
462 }
463
464 void
getbintime(struct bintime * bt)465 getbintime(struct bintime *bt)
466 {
467
468 GETTHMEMBER(bt, th_bintime);
469 }
470
471 void
getnanotime(struct timespec * tsp)472 getnanotime(struct timespec *tsp)
473 {
474
475 GETTHMEMBER(tsp, th_nanotime);
476 }
477
478 void
getmicrotime(struct timeval * tvp)479 getmicrotime(struct timeval *tvp)
480 {
481
482 GETTHMEMBER(tvp, th_microtime);
483 }
484 #endif /* FFCLOCK */
485
486 void
getboottime(struct timeval * boottime)487 getboottime(struct timeval *boottime)
488 {
489 struct bintime boottimebin;
490
491 getboottimebin(&boottimebin);
492 bintime2timeval(&boottimebin, boottime);
493 }
494
495 void
getboottimebin(struct bintime * boottimebin)496 getboottimebin(struct bintime *boottimebin)
497 {
498
499 GETTHMEMBER(boottimebin, th_boottime);
500 }
501
502 #ifdef FFCLOCK
503 /*
504 * Support for feed-forward synchronization algorithms. This is heavily inspired
505 * by the timehands mechanism but kept independent from it. *_windup() functions
506 * have some connection to avoid accessing the timecounter hardware more than
507 * necessary.
508 */
509
510 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
511 struct ffclock_estimate ffclock_estimate;
512 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */
513 uint32_t ffclock_status; /* Feed-forward clock status. */
514 int8_t ffclock_updated; /* New estimates are available. */
515 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */
516
517 struct fftimehands {
518 struct ffclock_estimate cest;
519 struct bintime tick_time;
520 struct bintime tick_time_lerp;
521 ffcounter tick_ffcount;
522 uint64_t period_lerp;
523 volatile uint8_t gen;
524 struct fftimehands *next;
525 };
526
527 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
528
529 static struct fftimehands ffth[10];
530 static struct fftimehands *volatile fftimehands = ffth;
531
532 static void
ffclock_init(void)533 ffclock_init(void)
534 {
535 struct fftimehands *cur;
536 struct fftimehands *last;
537
538 memset(ffth, 0, sizeof(ffth));
539
540 last = ffth + NUM_ELEMENTS(ffth) - 1;
541 for (cur = ffth; cur < last; cur++)
542 cur->next = cur + 1;
543 last->next = ffth;
544
545 ffclock_updated = 0;
546 ffclock_status = FFCLOCK_STA_UNSYNC;
547 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
548 }
549
550 /*
551 * Reset the feed-forward clock estimates. Called from inittodr() to get things
552 * kick started and uses the timecounter nominal frequency as a first period
553 * estimate. Note: this function may be called several time just after boot.
554 * Note: this is the only function that sets the value of boot time for the
555 * monotonic (i.e. uptime) version of the feed-forward clock.
556 */
557 void
ffclock_reset_clock(struct timespec * ts)558 ffclock_reset_clock(struct timespec *ts)
559 {
560 struct timecounter *tc;
561 struct ffclock_estimate cest;
562
563 tc = timehands->th_counter;
564 memset(&cest, 0, sizeof(struct ffclock_estimate));
565
566 timespec2bintime(ts, &ffclock_boottime);
567 timespec2bintime(ts, &(cest.update_time));
568 ffclock_read_counter(&cest.update_ffcount);
569 cest.leapsec_next = 0;
570 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
571 cest.errb_abs = 0;
572 cest.errb_rate = 0;
573 cest.status = FFCLOCK_STA_UNSYNC;
574 cest.leapsec_total = 0;
575 cest.leapsec = 0;
576
577 mtx_lock(&ffclock_mtx);
578 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
579 ffclock_updated = INT8_MAX;
580 mtx_unlock(&ffclock_mtx);
581
582 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
583 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
584 (unsigned long)ts->tv_nsec);
585 }
586
587 /*
588 * Sub-routine to convert a time interval measured in RAW counter units to time
589 * in seconds stored in bintime format.
590 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
591 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
592 * extra cycles.
593 */
594 static void
ffclock_convert_delta(ffcounter ffdelta,uint64_t period,struct bintime * bt)595 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
596 {
597 struct bintime bt2;
598 ffcounter delta, delta_max;
599
600 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
601 bintime_clear(bt);
602 do {
603 if (ffdelta > delta_max)
604 delta = delta_max;
605 else
606 delta = ffdelta;
607 bt2.sec = 0;
608 bt2.frac = period;
609 bintime_mul(&bt2, (unsigned int)delta);
610 bintime_add(bt, &bt2);
611 ffdelta -= delta;
612 } while (ffdelta > 0);
613 }
614
615 /*
616 * Update the fftimehands.
617 * Push the tick ffcount and time(s) forward based on current clock estimate.
618 * The conversion from ffcounter to bintime relies on the difference clock
619 * principle, whose accuracy relies on computing small time intervals. If a new
620 * clock estimate has been passed by the synchronisation daemon, make it
621 * current, and compute the linear interpolation for monotonic time if needed.
622 */
623 static void
ffclock_windup(unsigned int delta)624 ffclock_windup(unsigned int delta)
625 {
626 struct ffclock_estimate *cest;
627 struct fftimehands *ffth;
628 struct bintime bt, gap_lerp;
629 ffcounter ffdelta;
630 uint64_t frac;
631 unsigned int polling;
632 uint8_t forward_jump, ogen;
633
634 /*
635 * Pick the next timehand, copy current ffclock estimates and move tick
636 * times and counter forward.
637 */
638 forward_jump = 0;
639 ffth = fftimehands->next;
640 ogen = ffth->gen;
641 ffth->gen = 0;
642 cest = &ffth->cest;
643 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
644 ffdelta = (ffcounter)delta;
645 ffth->period_lerp = fftimehands->period_lerp;
646
647 ffth->tick_time = fftimehands->tick_time;
648 ffclock_convert_delta(ffdelta, cest->period, &bt);
649 bintime_add(&ffth->tick_time, &bt);
650
651 ffth->tick_time_lerp = fftimehands->tick_time_lerp;
652 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
653 bintime_add(&ffth->tick_time_lerp, &bt);
654
655 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
656
657 /*
658 * Assess the status of the clock, if the last update is too old, it is
659 * likely the synchronisation daemon is dead and the clock is free
660 * running.
661 */
662 if (ffclock_updated == 0) {
663 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
664 ffclock_convert_delta(ffdelta, cest->period, &bt);
665 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
666 ffclock_status |= FFCLOCK_STA_UNSYNC;
667 }
668
669 /*
670 * If available, grab updated clock estimates and make them current.
671 * Recompute time at this tick using the updated estimates. The clock
672 * estimates passed the feed-forward synchronisation daemon may result
673 * in time conversion that is not monotonically increasing (just after
674 * the update). time_lerp is a particular linear interpolation over the
675 * synchronisation algo polling period that ensures monotonicity for the
676 * clock ids requesting it.
677 */
678 if (ffclock_updated > 0) {
679 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
680 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
681 ffth->tick_time = cest->update_time;
682 ffclock_convert_delta(ffdelta, cest->period, &bt);
683 bintime_add(&ffth->tick_time, &bt);
684
685 /* ffclock_reset sets ffclock_updated to INT8_MAX */
686 if (ffclock_updated == INT8_MAX)
687 ffth->tick_time_lerp = ffth->tick_time;
688
689 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
690 forward_jump = 1;
691 else
692 forward_jump = 0;
693
694 bintime_clear(&gap_lerp);
695 if (forward_jump) {
696 gap_lerp = ffth->tick_time;
697 bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
698 } else {
699 gap_lerp = ffth->tick_time_lerp;
700 bintime_sub(&gap_lerp, &ffth->tick_time);
701 }
702
703 /*
704 * The reset from the RTC clock may be far from accurate, and
705 * reducing the gap between real time and interpolated time
706 * could take a very long time if the interpolated clock insists
707 * on strict monotonicity. The clock is reset under very strict
708 * conditions (kernel time is known to be wrong and
709 * synchronization daemon has been restarted recently.
710 * ffclock_boottime absorbs the jump to ensure boot time is
711 * correct and uptime functions stay consistent.
712 */
713 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
714 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
715 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
716 if (forward_jump)
717 bintime_add(&ffclock_boottime, &gap_lerp);
718 else
719 bintime_sub(&ffclock_boottime, &gap_lerp);
720 ffth->tick_time_lerp = ffth->tick_time;
721 bintime_clear(&gap_lerp);
722 }
723
724 ffclock_status = cest->status;
725 ffth->period_lerp = cest->period;
726
727 /*
728 * Compute corrected period used for the linear interpolation of
729 * time. The rate of linear interpolation is capped to 5000PPM
730 * (5ms/s).
731 */
732 if (bintime_isset(&gap_lerp)) {
733 ffdelta = cest->update_ffcount;
734 ffdelta -= fftimehands->cest.update_ffcount;
735 ffclock_convert_delta(ffdelta, cest->period, &bt);
736 polling = bt.sec;
737 bt.sec = 0;
738 bt.frac = 5000000 * (uint64_t)18446744073LL;
739 bintime_mul(&bt, polling);
740 if (bintime_cmp(&gap_lerp, &bt, >))
741 gap_lerp = bt;
742
743 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
744 frac = 0;
745 if (gap_lerp.sec > 0) {
746 frac -= 1;
747 frac /= ffdelta / gap_lerp.sec;
748 }
749 frac += gap_lerp.frac / ffdelta;
750
751 if (forward_jump)
752 ffth->period_lerp += frac;
753 else
754 ffth->period_lerp -= frac;
755 }
756
757 ffclock_updated = 0;
758 }
759 if (++ogen == 0)
760 ogen = 1;
761 ffth->gen = ogen;
762 fftimehands = ffth;
763 }
764
765 /*
766 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
767 * the old and new hardware counter cannot be read simultaneously. tc_windup()
768 * does read the two counters 'back to back', but a few cycles are effectively
769 * lost, and not accumulated in tick_ffcount. This is a fairly radical
770 * operation for a feed-forward synchronization daemon, and it is its job to not
771 * pushing irrelevant data to the kernel. Because there is no locking here,
772 * simply force to ignore pending or next update to give daemon a chance to
773 * realize the counter has changed.
774 */
775 static void
ffclock_change_tc(struct timehands * th)776 ffclock_change_tc(struct timehands *th)
777 {
778 struct fftimehands *ffth;
779 struct ffclock_estimate *cest;
780 struct timecounter *tc;
781 uint8_t ogen;
782
783 tc = th->th_counter;
784 ffth = fftimehands->next;
785 ogen = ffth->gen;
786 ffth->gen = 0;
787
788 cest = &ffth->cest;
789 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
790 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
791 cest->errb_abs = 0;
792 cest->errb_rate = 0;
793 cest->status |= FFCLOCK_STA_UNSYNC;
794
795 ffth->tick_ffcount = fftimehands->tick_ffcount;
796 ffth->tick_time_lerp = fftimehands->tick_time_lerp;
797 ffth->tick_time = fftimehands->tick_time;
798 ffth->period_lerp = cest->period;
799
800 /* Do not lock but ignore next update from synchronization daemon. */
801 ffclock_updated--;
802
803 if (++ogen == 0)
804 ogen = 1;
805 ffth->gen = ogen;
806 fftimehands = ffth;
807 }
808
809 /*
810 * Retrieve feed-forward counter and time of last kernel tick.
811 */
812 void
ffclock_last_tick(ffcounter * ffcount,struct bintime * bt,uint32_t flags)813 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
814 {
815 struct fftimehands *ffth;
816 uint8_t gen;
817
818 /*
819 * No locking but check generation has not changed. Also need to make
820 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
821 */
822 do {
823 ffth = fftimehands;
824 gen = ffth->gen;
825 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
826 *bt = ffth->tick_time_lerp;
827 else
828 *bt = ffth->tick_time;
829 *ffcount = ffth->tick_ffcount;
830 } while (gen == 0 || gen != ffth->gen);
831 }
832
833 /*
834 * Absolute clock conversion. Low level function to convert ffcounter to
835 * bintime. The ffcounter is converted using the current ffclock period estimate
836 * or the "interpolated period" to ensure monotonicity.
837 * NOTE: this conversion may have been deferred, and the clock updated since the
838 * hardware counter has been read.
839 */
840 void
ffclock_convert_abs(ffcounter ffcount,struct bintime * bt,uint32_t flags)841 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
842 {
843 struct fftimehands *ffth;
844 struct bintime bt2;
845 ffcounter ffdelta;
846 uint8_t gen;
847
848 /*
849 * No locking but check generation has not changed. Also need to make
850 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
851 */
852 do {
853 ffth = fftimehands;
854 gen = ffth->gen;
855 if (ffcount > ffth->tick_ffcount)
856 ffdelta = ffcount - ffth->tick_ffcount;
857 else
858 ffdelta = ffth->tick_ffcount - ffcount;
859
860 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
861 *bt = ffth->tick_time_lerp;
862 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
863 } else {
864 *bt = ffth->tick_time;
865 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
866 }
867
868 if (ffcount > ffth->tick_ffcount)
869 bintime_add(bt, &bt2);
870 else
871 bintime_sub(bt, &bt2);
872 } while (gen == 0 || gen != ffth->gen);
873 }
874
875 /*
876 * Difference clock conversion.
877 * Low level function to Convert a time interval measured in RAW counter units
878 * into bintime. The difference clock allows measuring small intervals much more
879 * reliably than the absolute clock.
880 */
881 void
ffclock_convert_diff(ffcounter ffdelta,struct bintime * bt)882 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
883 {
884 struct fftimehands *ffth;
885 uint8_t gen;
886
887 /* No locking but check generation has not changed. */
888 do {
889 ffth = fftimehands;
890 gen = ffth->gen;
891 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
892 } while (gen == 0 || gen != ffth->gen);
893 }
894
895 /*
896 * Access to current ffcounter value.
897 */
898 void
ffclock_read_counter(ffcounter * ffcount)899 ffclock_read_counter(ffcounter *ffcount)
900 {
901 struct timehands *th;
902 struct fftimehands *ffth;
903 unsigned int gen, delta;
904
905 /*
906 * ffclock_windup() called from tc_windup(), safe to rely on
907 * th->th_generation only, for correct delta and ffcounter.
908 */
909 do {
910 th = timehands;
911 gen = atomic_load_acq_int(&th->th_generation);
912 ffth = fftimehands;
913 delta = tc_delta(th);
914 *ffcount = ffth->tick_ffcount;
915 atomic_thread_fence_acq();
916 } while (gen == 0 || gen != th->th_generation);
917
918 *ffcount += delta;
919 }
920
921 void
binuptime(struct bintime * bt)922 binuptime(struct bintime *bt)
923 {
924
925 binuptime_fromclock(bt, sysclock_active);
926 }
927
928 void
nanouptime(struct timespec * tsp)929 nanouptime(struct timespec *tsp)
930 {
931
932 nanouptime_fromclock(tsp, sysclock_active);
933 }
934
935 void
microuptime(struct timeval * tvp)936 microuptime(struct timeval *tvp)
937 {
938
939 microuptime_fromclock(tvp, sysclock_active);
940 }
941
942 void
bintime(struct bintime * bt)943 bintime(struct bintime *bt)
944 {
945
946 bintime_fromclock(bt, sysclock_active);
947 }
948
949 void
nanotime(struct timespec * tsp)950 nanotime(struct timespec *tsp)
951 {
952
953 nanotime_fromclock(tsp, sysclock_active);
954 }
955
956 void
microtime(struct timeval * tvp)957 microtime(struct timeval *tvp)
958 {
959
960 microtime_fromclock(tvp, sysclock_active);
961 }
962
963 void
getbinuptime(struct bintime * bt)964 getbinuptime(struct bintime *bt)
965 {
966
967 getbinuptime_fromclock(bt, sysclock_active);
968 }
969
970 void
getnanouptime(struct timespec * tsp)971 getnanouptime(struct timespec *tsp)
972 {
973
974 getnanouptime_fromclock(tsp, sysclock_active);
975 }
976
977 void
getmicrouptime(struct timeval * tvp)978 getmicrouptime(struct timeval *tvp)
979 {
980
981 getmicrouptime_fromclock(tvp, sysclock_active);
982 }
983
984 void
getbintime(struct bintime * bt)985 getbintime(struct bintime *bt)
986 {
987
988 getbintime_fromclock(bt, sysclock_active);
989 }
990
991 void
getnanotime(struct timespec * tsp)992 getnanotime(struct timespec *tsp)
993 {
994
995 getnanotime_fromclock(tsp, sysclock_active);
996 }
997
998 void
getmicrotime(struct timeval * tvp)999 getmicrotime(struct timeval *tvp)
1000 {
1001
1002 getmicrouptime_fromclock(tvp, sysclock_active);
1003 }
1004
1005 #endif /* FFCLOCK */
1006
1007 /*
1008 * This is a clone of getnanotime and used for walltimestamps.
1009 * The dtrace_ prefix prevents fbt from creating probes for
1010 * it so walltimestamp can be safely used in all fbt probes.
1011 */
1012 void
dtrace_getnanotime(struct timespec * tsp)1013 dtrace_getnanotime(struct timespec *tsp)
1014 {
1015
1016 GETTHMEMBER(tsp, th_nanotime);
1017 }
1018
1019 /*
1020 * This is a clone of getnanouptime used for time since boot.
1021 * The dtrace_ prefix prevents fbt from creating probes for
1022 * it so an uptime that can be safely used in all fbt probes.
1023 */
1024 void
dtrace_getnanouptime(struct timespec * tsp)1025 dtrace_getnanouptime(struct timespec *tsp)
1026 {
1027 struct bintime bt;
1028
1029 GETTHMEMBER(&bt, th_offset);
1030 bintime2timespec(&bt, tsp);
1031 }
1032
1033 /*
1034 * System clock currently providing time to the system. Modifiable via sysctl
1035 * when the FFCLOCK option is defined.
1036 */
1037 int sysclock_active = SYSCLOCK_FBCK;
1038
1039 /* Internal NTP status and error estimates. */
1040 extern int time_status;
1041 extern long time_esterror;
1042
1043 /*
1044 * Take a snapshot of sysclock data which can be used to compare system clocks
1045 * and generate timestamps after the fact.
1046 */
1047 void
sysclock_getsnapshot(struct sysclock_snap * clock_snap,int fast)1048 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1049 {
1050 struct fbclock_info *fbi;
1051 struct timehands *th;
1052 struct bintime bt;
1053 unsigned int delta, gen;
1054 #ifdef FFCLOCK
1055 ffcounter ffcount;
1056 struct fftimehands *ffth;
1057 struct ffclock_info *ffi;
1058 struct ffclock_estimate cest;
1059
1060 ffi = &clock_snap->ff_info;
1061 #endif
1062
1063 fbi = &clock_snap->fb_info;
1064 delta = 0;
1065
1066 do {
1067 th = timehands;
1068 gen = atomic_load_acq_int(&th->th_generation);
1069 fbi->th_scale = th->th_scale;
1070 fbi->th_tai_offset = th->th_tai_offset;
1071 fbi->tick_time = th->th_offset;
1072 #ifdef FFCLOCK
1073 ffth = fftimehands;
1074 ffi->tick_time = ffth->tick_time_lerp;
1075 ffi->tick_time_lerp = ffth->tick_time_lerp;
1076 ffi->period = ffth->cest.period;
1077 ffi->period_lerp = ffth->period_lerp;
1078 clock_snap->ffcount = ffth->tick_ffcount;
1079 cest = ffth->cest;
1080 #endif
1081 if (!fast)
1082 delta = tc_delta(th);
1083 atomic_thread_fence_acq();
1084 } while (gen == 0 || gen != th->th_generation);
1085
1086 clock_snap->delta = delta;
1087 clock_snap->sysclock_active = sysclock_active;
1088
1089 /* Record feedback clock status and error. */
1090 clock_snap->fb_info.status = time_status;
1091 /* XXX: Very crude estimate of feedback clock error. */
1092 bt.sec = time_esterror / 1000000;
1093 bt.frac = ((time_esterror - bt.sec) * 1000000) *
1094 (uint64_t)18446744073709ULL;
1095 clock_snap->fb_info.error = bt;
1096
1097 #ifdef FFCLOCK
1098 if (!fast)
1099 clock_snap->ffcount += delta;
1100
1101 /* Record feed-forward clock leap second adjustment. */
1102 ffi->leapsec_adjustment = cest.leapsec_total;
1103 if (clock_snap->ffcount > cest.leapsec_next)
1104 ffi->leapsec_adjustment -= cest.leapsec;
1105
1106 /* Record feed-forward clock status and error. */
1107 clock_snap->ff_info.status = cest.status;
1108 ffcount = clock_snap->ffcount - cest.update_ffcount;
1109 ffclock_convert_delta(ffcount, cest.period, &bt);
1110 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1111 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1112 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1113 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1114 clock_snap->ff_info.error = bt;
1115 #endif
1116 }
1117
1118 /*
1119 * Convert a sysclock snapshot into a struct bintime based on the specified
1120 * clock source and flags.
1121 */
1122 int
sysclock_snap2bintime(struct sysclock_snap * cs,struct bintime * bt,int whichclock,uint32_t flags)1123 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1124 int whichclock, uint32_t flags)
1125 {
1126 struct bintime boottimebin;
1127 #ifdef FFCLOCK
1128 struct bintime bt2;
1129 uint64_t period;
1130 #endif
1131
1132 switch (whichclock) {
1133 case SYSCLOCK_FBCK:
1134 *bt = cs->fb_info.tick_time;
1135
1136 /* If snapshot was created with !fast, delta will be >0. */
1137 if (cs->delta > 0)
1138 bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1139
1140 if ((flags & FBCLOCK_UPTIME) == 0) {
1141 getboottimebin(&boottimebin);
1142 bintime_add(bt, &boottimebin);
1143 }
1144 if (!(flags & FBCLOCK_LEAPSEC)) {
1145 if (cs->fb_info.th_tai_offset == 0)
1146 return (EINVAL);
1147 bt->sec += cs->fb_info.th_tai_offset;
1148 }
1149 break;
1150 #ifdef FFCLOCK
1151 case SYSCLOCK_FFWD:
1152 if (flags & FFCLOCK_LERP) {
1153 *bt = cs->ff_info.tick_time_lerp;
1154 period = cs->ff_info.period_lerp;
1155 } else {
1156 *bt = cs->ff_info.tick_time;
1157 period = cs->ff_info.period;
1158 }
1159
1160 /* If snapshot was created with !fast, delta will be >0. */
1161 if (cs->delta > 0) {
1162 ffclock_convert_delta(cs->delta, period, &bt2);
1163 bintime_add(bt, &bt2);
1164 }
1165
1166 /* Leap second adjustment. */
1167 if (flags & FFCLOCK_LEAPSEC)
1168 bt->sec -= cs->ff_info.leapsec_adjustment;
1169
1170 /* Boot time adjustment, for uptime/monotonic clocks. */
1171 if (flags & FFCLOCK_UPTIME)
1172 bintime_sub(bt, &ffclock_boottime);
1173 break;
1174 #endif
1175 default:
1176 return (EINVAL);
1177 break;
1178 }
1179
1180 return (0);
1181 }
1182
1183 /*
1184 * Initialize a new timecounter and possibly use it.
1185 */
1186 void
tc_init(struct timecounter * tc)1187 tc_init(struct timecounter *tc)
1188 {
1189 u_int u;
1190 struct sysctl_oid *tc_root;
1191
1192 u = tc->tc_frequency / tc->tc_counter_mask;
1193 /* XXX: We need some margin here, 10% is a guess */
1194 u *= 11;
1195 u /= 10;
1196 if (u > hz && tc->tc_quality >= 0) {
1197 tc->tc_quality = -2000;
1198 if (bootverbose) {
1199 printf("Timecounter \"%s\" frequency %ju Hz",
1200 tc->tc_name, (uintmax_t)tc->tc_frequency);
1201 printf(" -- Insufficient hz, needs at least %u\n", u);
1202 }
1203 } else if (tc->tc_quality >= 0 || bootverbose) {
1204 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1205 tc->tc_name, (uintmax_t)tc->tc_frequency,
1206 tc->tc_quality);
1207 }
1208
1209 /*
1210 * Set up sysctl tree for this counter.
1211 */
1212 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1213 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1214 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1215 "timecounter description", "timecounter");
1216 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1217 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1218 "mask for implemented bits");
1219 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1220 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1221 sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1222 "current timecounter value");
1223 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1224 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1225 sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1226 "timecounter frequency");
1227 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1228 "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1229 "goodness of time counter");
1230
1231 mtx_lock(&tc_lock);
1232 tc->tc_next = timecounters;
1233 timecounters = tc;
1234
1235 /*
1236 * Do not automatically switch if the current tc was specifically
1237 * chosen. Never automatically use a timecounter with negative quality.
1238 * Even though we run on the dummy counter, switching here may be
1239 * worse since this timecounter may not be monotonic.
1240 */
1241 if (tc_chosen)
1242 goto unlock;
1243 if (tc->tc_quality < 0)
1244 goto unlock;
1245 if (tc_from_tunable[0] != '\0' &&
1246 strcmp(tc->tc_name, tc_from_tunable) == 0) {
1247 tc_chosen = 1;
1248 tc_from_tunable[0] = '\0';
1249 } else {
1250 if (tc->tc_quality < timecounter->tc_quality)
1251 goto unlock;
1252 if (tc->tc_quality == timecounter->tc_quality &&
1253 tc->tc_frequency < timecounter->tc_frequency)
1254 goto unlock;
1255 }
1256 (void)tc->tc_get_timecount(tc);
1257 timecounter = tc;
1258 unlock:
1259 mtx_unlock(&tc_lock);
1260 }
1261
1262 /* Report the frequency of the current timecounter. */
1263 uint64_t
tc_getfrequency(void)1264 tc_getfrequency(void)
1265 {
1266
1267 return (timehands->th_counter->tc_frequency);
1268 }
1269
1270 static bool
sleeping_on_old_rtc(struct thread * td)1271 sleeping_on_old_rtc(struct thread *td)
1272 {
1273
1274 /*
1275 * td_rtcgen is modified by curthread when it is running,
1276 * and by other threads in this function. By finding the thread
1277 * on a sleepqueue and holding the lock on the sleepqueue
1278 * chain, we guarantee that the thread is not running and that
1279 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs
1280 * the thread that it was woken due to a real-time clock adjustment.
1281 * (The declaration of td_rtcgen refers to this comment.)
1282 */
1283 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1284 td->td_rtcgen = 0;
1285 return (true);
1286 }
1287 return (false);
1288 }
1289
1290 static struct mtx tc_setclock_mtx;
1291 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1292
1293 /*
1294 * Step our concept of UTC. This is done by modifying our estimate of
1295 * when we booted.
1296 */
1297 void
tc_setclock(struct timespec * ts)1298 tc_setclock(struct timespec *ts)
1299 {
1300 struct timespec tbef, taft;
1301 struct bintime bt, bt2;
1302
1303 timespec2bintime(ts, &bt);
1304 nanotime(&tbef);
1305 mtx_lock_spin(&tc_setclock_mtx);
1306 cpu_tick_calibrate(1);
1307 binuptime(&bt2);
1308 bintime_sub(&bt, &bt2);
1309
1310 /* XXX fiddle all the little crinkly bits around the fiords... */
1311 tc_windup(&bt);
1312 mtx_unlock_spin(&tc_setclock_mtx);
1313
1314 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1315 atomic_add_rel_int(&rtc_generation, 2);
1316 timerfd_jumped();
1317 sleepq_chains_remove_matching(sleeping_on_old_rtc);
1318 if (timestepwarnings) {
1319 nanotime(&taft);
1320 log(LOG_INFO,
1321 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1322 (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1323 (intmax_t)taft.tv_sec, taft.tv_nsec,
1324 (intmax_t)ts->tv_sec, ts->tv_nsec);
1325 }
1326 }
1327
1328 /*
1329 * Recalculate the scaling factor. We want the number of 1/2^64
1330 * fractions of a second per period of the hardware counter, taking
1331 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1332 * processing provides us with.
1333 *
1334 * The th_adjustment is nanoseconds per second with 32 bit binary
1335 * fraction and we want 64 bit binary fraction of second:
1336 *
1337 * x = a * 2^32 / 10^9 = a * 4.294967296
1338 *
1339 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1340 * we can only multiply by about 850 without overflowing, that
1341 * leaves no suitably precise fractions for multiply before divide.
1342 *
1343 * Divide before multiply with a fraction of 2199/512 results in a
1344 * systematic undercompensation of 10PPM of th_adjustment. On a
1345 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
1346 *
1347 * We happily sacrifice the lowest of the 64 bits of our result
1348 * to the goddess of code clarity.
1349 */
1350 static void
recalculate_scaling_factor_and_large_delta(struct timehands * th)1351 recalculate_scaling_factor_and_large_delta(struct timehands *th)
1352 {
1353 uint64_t scale;
1354
1355 scale = (uint64_t)1 << 63;
1356 scale += (th->th_adjustment / 1024) * 2199;
1357 scale /= th->th_counter->tc_frequency;
1358 th->th_scale = scale * 2;
1359 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1360 }
1361
1362 /*
1363 * Initialize the next struct timehands in the ring and make
1364 * it the active timehands. Along the way we might switch to a different
1365 * timecounter and/or do seconds processing in NTP. Slightly magic.
1366 */
1367 static void
tc_windup(struct bintime * new_boottimebin)1368 tc_windup(struct bintime *new_boottimebin)
1369 {
1370 struct bintime bt;
1371 struct timecounter *tc;
1372 struct timehands *th, *tho;
1373 u_int delta, ncount, ogen;
1374 int i;
1375 time_t t;
1376
1377 /*
1378 * Make the next timehands a copy of the current one, but do
1379 * not overwrite the generation or next pointer. While we
1380 * update the contents, the generation must be zero. We need
1381 * to ensure that the zero generation is visible before the
1382 * data updates become visible, which requires release fence.
1383 * For similar reasons, re-reading of the generation after the
1384 * data is read should use acquire fence.
1385 */
1386 tho = timehands;
1387 th = tho->th_next;
1388 ogen = th->th_generation;
1389 th->th_generation = 0;
1390 atomic_thread_fence_rel();
1391 memcpy(th, tho, offsetof(struct timehands, th_generation));
1392 if (new_boottimebin != NULL)
1393 th->th_boottime = *new_boottimebin;
1394
1395 /*
1396 * Capture a timecounter delta on the current timecounter and if
1397 * changing timecounters, a counter value from the new timecounter.
1398 * Update the offset fields accordingly.
1399 */
1400 tc = atomic_load_ptr(&timecounter);
1401 delta = tc_delta(th);
1402 if (th->th_counter != tc)
1403 ncount = tc->tc_get_timecount(tc);
1404 else
1405 ncount = 0;
1406 #ifdef FFCLOCK
1407 ffclock_windup(delta);
1408 #endif
1409 th->th_offset_count += delta;
1410 th->th_offset_count &= th->th_counter->tc_counter_mask;
1411 bintime_add_tc_delta(&th->th_offset, th->th_scale,
1412 th->th_large_delta, delta);
1413
1414 /*
1415 * Hardware latching timecounters may not generate interrupts on
1416 * PPS events, so instead we poll them. There is a finite risk that
1417 * the hardware might capture a count which is later than the one we
1418 * got above, and therefore possibly in the next NTP second which might
1419 * have a different rate than the current NTP second. It doesn't
1420 * matter in practice.
1421 */
1422 if (tho->th_counter->tc_poll_pps)
1423 tho->th_counter->tc_poll_pps(tho->th_counter);
1424
1425 /*
1426 * Deal with NTP second processing. The loop normally
1427 * iterates at most once, but in extreme situations it might
1428 * keep NTP sane if timeouts are not run for several seconds.
1429 * At boot, the time step can be large when the TOD hardware
1430 * has been read, so on really large steps, we call
1431 * ntp_update_second only twice. We need to call it twice in
1432 * case we missed a leap second.
1433 */
1434 bt = th->th_offset;
1435 bintime_add(&bt, &th->th_boottime);
1436 i = bt.sec - tho->th_microtime.tv_sec;
1437 if (i > 0) {
1438 if (i > LARGE_STEP)
1439 i = 2;
1440
1441 do {
1442 t = bt.sec;
1443 ntp_update_second(&th->th_adjustment, &bt.sec,
1444 &th->th_tai_offset);
1445 if (bt.sec != t)
1446 th->th_boottime.sec += bt.sec - t;
1447 --i;
1448 } while (i > 0);
1449
1450 recalculate_scaling_factor_and_large_delta(th);
1451 }
1452
1453 /* Update the UTC timestamps used by the get*() functions. */
1454 th->th_bintime = bt;
1455 bintime2timeval(&bt, &th->th_microtime);
1456 bintime2timespec(&bt, &th->th_nanotime);
1457
1458 /* Now is a good time to change timecounters. */
1459 if (th->th_counter != tc) {
1460 #ifndef __arm__
1461 if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0)
1462 cpu_disable_c2_sleep++;
1463 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1464 cpu_disable_c2_sleep--;
1465 #endif
1466 th->th_counter = tc;
1467 th->th_offset_count = ncount;
1468 tc_min_ticktock_freq = max(1, tc->tc_frequency /
1469 (((uint64_t)tc->tc_counter_mask + 1) / 3));
1470 recalculate_scaling_factor_and_large_delta(th);
1471 #ifdef FFCLOCK
1472 ffclock_change_tc(th);
1473 #endif
1474 }
1475
1476 /*
1477 * Now that the struct timehands is again consistent, set the new
1478 * generation number, making sure to not make it zero.
1479 */
1480 if (++ogen == 0)
1481 ogen = 1;
1482 atomic_store_rel_int(&th->th_generation, ogen);
1483
1484 /* Go live with the new struct timehands. */
1485 #ifdef FFCLOCK
1486 switch (sysclock_active) {
1487 case SYSCLOCK_FBCK:
1488 #endif
1489 time_second = th->th_microtime.tv_sec;
1490 time_uptime = th->th_offset.sec;
1491 #ifdef FFCLOCK
1492 break;
1493 case SYSCLOCK_FFWD:
1494 time_second = fftimehands->tick_time_lerp.sec;
1495 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1496 break;
1497 }
1498 #endif
1499
1500 timehands = th;
1501 timekeep_push_vdso();
1502 }
1503
1504 /* Report or change the active timecounter hardware. */
1505 static int
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)1506 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1507 {
1508 char newname[32];
1509 struct timecounter *newtc, *tc;
1510 int error;
1511
1512 mtx_lock(&tc_lock);
1513 tc = timecounter;
1514 strlcpy(newname, tc->tc_name, sizeof(newname));
1515 mtx_unlock(&tc_lock);
1516
1517 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1518 if (error != 0 || req->newptr == NULL)
1519 return (error);
1520
1521 mtx_lock(&tc_lock);
1522 /* Record that the tc in use now was specifically chosen. */
1523 tc_chosen = 1;
1524 if (strcmp(newname, tc->tc_name) == 0) {
1525 mtx_unlock(&tc_lock);
1526 return (0);
1527 }
1528 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1529 if (strcmp(newname, newtc->tc_name) != 0)
1530 continue;
1531
1532 /* Warm up new timecounter. */
1533 (void)newtc->tc_get_timecount(newtc);
1534
1535 timecounter = newtc;
1536
1537 /*
1538 * The vdso timehands update is deferred until the next
1539 * 'tc_windup()'.
1540 *
1541 * This is prudent given that 'timekeep_push_vdso()' does not
1542 * use any locking and that it can be called in hard interrupt
1543 * context via 'tc_windup()'.
1544 */
1545 break;
1546 }
1547 mtx_unlock(&tc_lock);
1548 return (newtc != NULL ? 0 : EINVAL);
1549 }
1550 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1551 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0,
1552 sysctl_kern_timecounter_hardware, "A",
1553 "Timecounter hardware selected");
1554
1555 /* Report the available timecounter hardware. */
1556 static int
sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)1557 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1558 {
1559 struct sbuf sb;
1560 struct timecounter *tc;
1561 int error;
1562
1563 error = sysctl_wire_old_buffer(req, 0);
1564 if (error != 0)
1565 return (error);
1566 sbuf_new_for_sysctl(&sb, NULL, 0, req);
1567 mtx_lock(&tc_lock);
1568 for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1569 if (tc != timecounters)
1570 sbuf_putc(&sb, ' ');
1571 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1572 }
1573 mtx_unlock(&tc_lock);
1574 error = sbuf_finish(&sb);
1575 sbuf_delete(&sb);
1576 return (error);
1577 }
1578
1579 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1581 sysctl_kern_timecounter_choice, "A",
1582 "Timecounter hardware detected");
1583
1584 /*
1585 * RFC 2783 PPS-API implementation.
1586 */
1587
1588 /*
1589 * Return true if the driver is aware of the abi version extensions in the
1590 * pps_state structure, and it supports at least the given abi version number.
1591 */
1592 static inline int
abi_aware(struct pps_state * pps,int vers)1593 abi_aware(struct pps_state *pps, int vers)
1594 {
1595
1596 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1597 }
1598
1599 static int
pps_fetch(struct pps_fetch_args * fapi,struct pps_state * pps)1600 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1601 {
1602 int err, timo;
1603 pps_seq_t aseq, cseq;
1604 struct timeval tv;
1605
1606 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1607 return (EINVAL);
1608
1609 /*
1610 * If no timeout is requested, immediately return whatever values were
1611 * most recently captured. If timeout seconds is -1, that's a request
1612 * to block without a timeout. WITNESS won't let us sleep forever
1613 * without a lock (we really don't need a lock), so just repeatedly
1614 * sleep a long time.
1615 */
1616 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1617 if (fapi->timeout.tv_sec == -1)
1618 timo = 0x7fffffff;
1619 else {
1620 tv.tv_sec = fapi->timeout.tv_sec;
1621 tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1622 timo = tvtohz(&tv);
1623 }
1624 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1625 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1626 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1627 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1628 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1629 if (pps->flags & PPSFLAG_MTX_SPIN) {
1630 err = msleep_spin(pps, pps->driver_mtx,
1631 "ppsfch", timo);
1632 } else {
1633 err = msleep(pps, pps->driver_mtx, PCATCH,
1634 "ppsfch", timo);
1635 }
1636 } else {
1637 err = tsleep(pps, PCATCH, "ppsfch", timo);
1638 }
1639 if (err == EWOULDBLOCK) {
1640 if (fapi->timeout.tv_sec == -1) {
1641 continue;
1642 } else {
1643 return (ETIMEDOUT);
1644 }
1645 } else if (err != 0) {
1646 return (err);
1647 }
1648 }
1649 }
1650
1651 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1652 fapi->pps_info_buf = pps->ppsinfo;
1653
1654 return (0);
1655 }
1656
1657 int
pps_ioctl(u_long cmd,caddr_t data,struct pps_state * pps)1658 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1659 {
1660 pps_params_t *app;
1661 struct pps_fetch_args *fapi;
1662 #ifdef FFCLOCK
1663 struct pps_fetch_ffc_args *fapi_ffc;
1664 #endif
1665 #ifdef PPS_SYNC
1666 struct pps_kcbind_args *kapi;
1667 #endif
1668
1669 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1670 switch (cmd) {
1671 case PPS_IOC_CREATE:
1672 return (0);
1673 case PPS_IOC_DESTROY:
1674 return (0);
1675 case PPS_IOC_SETPARAMS:
1676 app = (pps_params_t *)data;
1677 if (app->mode & ~pps->ppscap)
1678 return (EINVAL);
1679 #ifdef FFCLOCK
1680 /* Ensure only a single clock is selected for ffc timestamp. */
1681 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1682 return (EINVAL);
1683 #endif
1684 pps->ppsparam = *app;
1685 return (0);
1686 case PPS_IOC_GETPARAMS:
1687 app = (pps_params_t *)data;
1688 *app = pps->ppsparam;
1689 app->api_version = PPS_API_VERS_1;
1690 return (0);
1691 case PPS_IOC_GETCAP:
1692 *(int*)data = pps->ppscap;
1693 return (0);
1694 case PPS_IOC_FETCH:
1695 fapi = (struct pps_fetch_args *)data;
1696 return (pps_fetch(fapi, pps));
1697 #ifdef FFCLOCK
1698 case PPS_IOC_FETCH_FFCOUNTER:
1699 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1700 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1701 PPS_TSFMT_TSPEC)
1702 return (EINVAL);
1703 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1704 return (EOPNOTSUPP);
1705 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1706 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1707 /* Overwrite timestamps if feedback clock selected. */
1708 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1709 case PPS_TSCLK_FBCK:
1710 fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1711 pps->ppsinfo.assert_timestamp;
1712 fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1713 pps->ppsinfo.clear_timestamp;
1714 break;
1715 case PPS_TSCLK_FFWD:
1716 break;
1717 default:
1718 break;
1719 }
1720 return (0);
1721 #endif /* FFCLOCK */
1722 case PPS_IOC_KCBIND:
1723 #ifdef PPS_SYNC
1724 kapi = (struct pps_kcbind_args *)data;
1725 /* XXX Only root should be able to do this */
1726 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1727 return (EINVAL);
1728 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1729 return (EINVAL);
1730 if (kapi->edge & ~pps->ppscap)
1731 return (EINVAL);
1732 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1733 (pps->kcmode & KCMODE_ABIFLAG);
1734 return (0);
1735 #else
1736 return (EOPNOTSUPP);
1737 #endif
1738 default:
1739 return (ENOIOCTL);
1740 }
1741 }
1742
1743 void
pps_init(struct pps_state * pps)1744 pps_init(struct pps_state *pps)
1745 {
1746 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1747 if (pps->ppscap & PPS_CAPTUREASSERT)
1748 pps->ppscap |= PPS_OFFSETASSERT;
1749 if (pps->ppscap & PPS_CAPTURECLEAR)
1750 pps->ppscap |= PPS_OFFSETCLEAR;
1751 #ifdef FFCLOCK
1752 pps->ppscap |= PPS_TSCLK_MASK;
1753 #endif
1754 pps->kcmode &= ~KCMODE_ABIFLAG;
1755 }
1756
1757 void
pps_init_abi(struct pps_state * pps)1758 pps_init_abi(struct pps_state *pps)
1759 {
1760
1761 pps_init(pps);
1762 if (pps->driver_abi > 0) {
1763 pps->kcmode |= KCMODE_ABIFLAG;
1764 pps->kernel_abi = PPS_ABI_VERSION;
1765 }
1766 }
1767
1768 void
pps_capture(struct pps_state * pps)1769 pps_capture(struct pps_state *pps)
1770 {
1771 struct timehands *th;
1772 struct timecounter *tc;
1773
1774 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1775 th = timehands;
1776 pps->capgen = atomic_load_acq_int(&th->th_generation);
1777 pps->capth = th;
1778 #ifdef FFCLOCK
1779 pps->capffth = fftimehands;
1780 #endif
1781 tc = th->th_counter;
1782 pps->capcount = tc->tc_get_timecount(tc);
1783 }
1784
1785 void
pps_event(struct pps_state * pps,int event)1786 pps_event(struct pps_state *pps, int event)
1787 {
1788 struct timehands *capth;
1789 struct timecounter *captc;
1790 uint64_t capth_scale;
1791 struct bintime bt;
1792 struct timespec *tsp, *osp;
1793 u_int tcount, *pcount;
1794 int foff;
1795 pps_seq_t *pseq;
1796 #ifdef FFCLOCK
1797 struct timespec *tsp_ffc;
1798 pps_seq_t *pseq_ffc;
1799 ffcounter *ffcount;
1800 #endif
1801 #ifdef PPS_SYNC
1802 int fhard;
1803 #endif
1804
1805 KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1806 /* Nothing to do if not currently set to capture this event type. */
1807 if ((event & pps->ppsparam.mode) == 0)
1808 return;
1809
1810 /* Make a snapshot of the captured timehand */
1811 capth = pps->capth;
1812 captc = capth->th_counter;
1813 capth_scale = capth->th_scale;
1814 tcount = capth->th_offset_count;
1815 bt = capth->th_bintime;
1816
1817 /* If the timecounter was wound up underneath us, bail out. */
1818 atomic_thread_fence_acq();
1819 if (pps->capgen == 0 || pps->capgen != capth->th_generation)
1820 return;
1821
1822 /* Things would be easier with arrays. */
1823 if (event == PPS_CAPTUREASSERT) {
1824 tsp = &pps->ppsinfo.assert_timestamp;
1825 osp = &pps->ppsparam.assert_offset;
1826 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1827 #ifdef PPS_SYNC
1828 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1829 #endif
1830 pcount = &pps->ppscount[0];
1831 pseq = &pps->ppsinfo.assert_sequence;
1832 #ifdef FFCLOCK
1833 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1834 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1835 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1836 #endif
1837 } else {
1838 tsp = &pps->ppsinfo.clear_timestamp;
1839 osp = &pps->ppsparam.clear_offset;
1840 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1841 #ifdef PPS_SYNC
1842 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1843 #endif
1844 pcount = &pps->ppscount[1];
1845 pseq = &pps->ppsinfo.clear_sequence;
1846 #ifdef FFCLOCK
1847 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1848 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1849 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1850 #endif
1851 }
1852
1853 *pcount = pps->capcount;
1854
1855 /*
1856 * If the timecounter changed, we cannot compare the count values, so
1857 * we have to drop the rest of the PPS-stuff until the next event.
1858 */
1859 if (__predict_false(pps->ppstc != captc)) {
1860 pps->ppstc = captc;
1861 pps->ppscount[2] = pps->capcount;
1862 return;
1863 }
1864
1865 (*pseq)++;
1866
1867 /* Convert the count to a timespec. */
1868 tcount = pps->capcount - tcount;
1869 tcount &= captc->tc_counter_mask;
1870 bintime_addx(&bt, capth_scale * tcount);
1871 bintime2timespec(&bt, tsp);
1872
1873 if (foff) {
1874 timespecadd(tsp, osp, tsp);
1875 if (tsp->tv_nsec < 0) {
1876 tsp->tv_nsec += 1000000000;
1877 tsp->tv_sec -= 1;
1878 }
1879 }
1880
1881 #ifdef FFCLOCK
1882 *ffcount = pps->capffth->tick_ffcount + tcount;
1883 bt = pps->capffth->tick_time;
1884 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1885 bintime_add(&bt, &pps->capffth->tick_time);
1886 (*pseq_ffc)++;
1887 bintime2timespec(&bt, tsp_ffc);
1888 #endif
1889
1890 #ifdef PPS_SYNC
1891 if (fhard) {
1892 uint64_t delta_nsec;
1893 uint64_t freq;
1894
1895 /*
1896 * Feed the NTP PLL/FLL.
1897 * The FLL wants to know how many (hardware) nanoseconds
1898 * elapsed since the previous event.
1899 */
1900 tcount = pps->capcount - pps->ppscount[2];
1901 pps->ppscount[2] = pps->capcount;
1902 tcount &= captc->tc_counter_mask;
1903 delta_nsec = 1000000000;
1904 delta_nsec *= tcount;
1905 freq = captc->tc_frequency;
1906 delta_nsec = (delta_nsec + freq / 2) / freq;
1907 hardpps(tsp, (long)delta_nsec);
1908 }
1909 #endif
1910
1911 /* Wakeup anyone sleeping in pps_fetch(). */
1912 wakeup(pps);
1913 }
1914
1915 /*
1916 * Timecounters need to be updated every so often to prevent the hardware
1917 * counter from overflowing. Updating also recalculates the cached values
1918 * used by the get*() family of functions, so their precision depends on
1919 * the update frequency.
1920 */
1921
1922 static int tc_tick;
1923 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1924 "Approximate number of hardclock ticks in a millisecond");
1925
1926 void
tc_ticktock(long cnt)1927 tc_ticktock(long cnt)
1928 {
1929 static long count;
1930
1931 if (mtx_trylock_spin(&tc_setclock_mtx)) {
1932 count += cnt;
1933 if (count >= tc_tick) {
1934 count = 0;
1935 tc_windup(NULL);
1936 }
1937 mtx_unlock_spin(&tc_setclock_mtx);
1938 }
1939 }
1940
1941 static void __inline
tc_adjprecision(void)1942 tc_adjprecision(void)
1943 {
1944 int t;
1945
1946 if (tc_timepercentage > 0) {
1947 t = (99 + tc_timepercentage) / tc_timepercentage;
1948 tc_precexp = fls(t + (t >> 1)) - 1;
1949 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1950 FREQ2BT(hz, &bt_tickthreshold);
1951 bintime_shift(&bt_timethreshold, tc_precexp);
1952 bintime_shift(&bt_tickthreshold, tc_precexp);
1953 } else {
1954 tc_precexp = 31;
1955 bt_timethreshold.sec = INT_MAX;
1956 bt_timethreshold.frac = ~(uint64_t)0;
1957 bt_tickthreshold = bt_timethreshold;
1958 }
1959 sbt_timethreshold = bttosbt(bt_timethreshold);
1960 sbt_tickthreshold = bttosbt(bt_tickthreshold);
1961 }
1962
1963 static int
sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)1964 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1965 {
1966 int error, val;
1967
1968 val = tc_timepercentage;
1969 error = sysctl_handle_int(oidp, &val, 0, req);
1970 if (error != 0 || req->newptr == NULL)
1971 return (error);
1972 tc_timepercentage = val;
1973 if (cold)
1974 goto done;
1975 tc_adjprecision();
1976 done:
1977 return (0);
1978 }
1979
1980 /* Set up the requested number of timehands. */
1981 static void
inittimehands(void * dummy)1982 inittimehands(void *dummy)
1983 {
1984 struct timehands *thp;
1985 int i;
1986
1987 TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1988 &timehands_count);
1989 if (timehands_count < 1)
1990 timehands_count = 1;
1991 if (timehands_count > nitems(ths))
1992 timehands_count = nitems(ths);
1993 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++])
1994 thp->th_next = &ths[i];
1995 thp->th_next = &ths[0];
1996
1997 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable,
1998 sizeof(tc_from_tunable));
1999
2000 mtx_init(&tc_lock, "tc", NULL, MTX_DEF);
2001 }
2002 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
2003
2004 static void
inittimecounter(void * dummy)2005 inittimecounter(void *dummy)
2006 {
2007 u_int p;
2008 int tick_rate;
2009
2010 /*
2011 * Set the initial timeout to
2012 * max(1, <approx. number of hardclock ticks in a millisecond>).
2013 * People should probably not use the sysctl to set the timeout
2014 * to smaller than its initial value, since that value is the
2015 * smallest reasonable one. If they want better timestamps they
2016 * should use the non-"get"* functions.
2017 */
2018 if (hz > 1000)
2019 tc_tick = (hz + 500) / 1000;
2020 else
2021 tc_tick = 1;
2022 tc_adjprecision();
2023 FREQ2BT(hz, &tick_bt);
2024 tick_sbt = bttosbt(tick_bt);
2025 tick_rate = hz / tc_tick;
2026 FREQ2BT(tick_rate, &tc_tick_bt);
2027 tc_tick_sbt = bttosbt(tc_tick_bt);
2028 p = (tc_tick * 1000000) / hz;
2029 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2030
2031 #ifdef FFCLOCK
2032 ffclock_init();
2033 #endif
2034
2035 /* warm up new timecounter (again) and get rolling. */
2036 (void)timecounter->tc_get_timecount(timecounter);
2037 mtx_lock_spin(&tc_setclock_mtx);
2038 tc_windup(NULL);
2039 mtx_unlock_spin(&tc_setclock_mtx);
2040 }
2041
2042 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2043
2044 /* Cpu tick handling -------------------------------------------------*/
2045
2046 static bool cpu_tick_variable;
2047 static uint64_t cpu_tick_frequency;
2048
2049 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2050 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2051
2052 static uint64_t
tc_cpu_ticks(void)2053 tc_cpu_ticks(void)
2054 {
2055 struct timecounter *tc;
2056 uint64_t res, *base;
2057 unsigned u, *last;
2058
2059 critical_enter();
2060 base = DPCPU_PTR(tc_cpu_ticks_base);
2061 last = DPCPU_PTR(tc_cpu_ticks_last);
2062 tc = timehands->th_counter;
2063 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2064 if (u < *last)
2065 *base += (uint64_t)tc->tc_counter_mask + 1;
2066 *last = u;
2067 res = u + *base;
2068 critical_exit();
2069 return (res);
2070 }
2071
2072 void
cpu_tick_calibration(void)2073 cpu_tick_calibration(void)
2074 {
2075 static time_t last_calib;
2076
2077 if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2078 cpu_tick_calibrate(0);
2079 last_calib = time_uptime;
2080 }
2081 }
2082
2083 /*
2084 * This function gets called every 16 seconds on only one designated
2085 * CPU in the system from hardclock() via cpu_tick_calibration()().
2086 *
2087 * Whenever the real time clock is stepped we get called with reset=1
2088 * to make sure we handle suspend/resume and similar events correctly.
2089 */
2090
2091 static void
cpu_tick_calibrate(int reset)2092 cpu_tick_calibrate(int reset)
2093 {
2094 static uint64_t c_last;
2095 uint64_t c_this, c_delta;
2096 static struct bintime t_last;
2097 struct bintime t_this, t_delta;
2098 uint32_t divi;
2099
2100 if (reset) {
2101 /* The clock was stepped, abort & reset */
2102 t_last.sec = 0;
2103 return;
2104 }
2105
2106 /* we don't calibrate fixed rate cputicks */
2107 if (!cpu_tick_variable)
2108 return;
2109
2110 getbinuptime(&t_this);
2111 c_this = cpu_ticks();
2112 if (t_last.sec != 0) {
2113 c_delta = c_this - c_last;
2114 t_delta = t_this;
2115 bintime_sub(&t_delta, &t_last);
2116 /*
2117 * Headroom:
2118 * 2^(64-20) / 16[s] =
2119 * 2^(44) / 16[s] =
2120 * 17.592.186.044.416 / 16 =
2121 * 1.099.511.627.776 [Hz]
2122 */
2123 divi = t_delta.sec << 20;
2124 divi |= t_delta.frac >> (64 - 20);
2125 c_delta <<= 20;
2126 c_delta /= divi;
2127 if (c_delta > cpu_tick_frequency) {
2128 if (0 && bootverbose)
2129 printf("cpu_tick increased to %ju Hz\n",
2130 c_delta);
2131 cpu_tick_frequency = c_delta;
2132 }
2133 }
2134 c_last = c_this;
2135 t_last = t_this;
2136 }
2137
2138 void
set_cputicker(cpu_tick_f * func,uint64_t freq,bool isvariable)2139 set_cputicker(cpu_tick_f *func, uint64_t freq, bool isvariable)
2140 {
2141
2142 if (func == NULL) {
2143 cpu_ticks = tc_cpu_ticks;
2144 } else {
2145 cpu_tick_frequency = freq;
2146 cpu_tick_variable = isvariable;
2147 cpu_ticks = func;
2148 }
2149 }
2150
2151 uint64_t
cpu_tickrate(void)2152 cpu_tickrate(void)
2153 {
2154
2155 if (cpu_ticks == tc_cpu_ticks)
2156 return (tc_getfrequency());
2157 return (cpu_tick_frequency);
2158 }
2159
2160 /*
2161 * We need to be slightly careful converting cputicks to microseconds.
2162 * There is plenty of margin in 64 bits of microseconds (half a million
2163 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2164 * before divide conversion (to retain precision) we find that the
2165 * margin shrinks to 1.5 hours (one millionth of 146y).
2166 */
2167
2168 uint64_t
cputick2usec(uint64_t tick)2169 cputick2usec(uint64_t tick)
2170 {
2171 uint64_t tr;
2172 tr = cpu_tickrate();
2173 return ((tick / tr) * 1000000ULL) + ((tick % tr) * 1000000ULL) / tr;
2174 }
2175
2176 cpu_tick_f *cpu_ticks = tc_cpu_ticks;
2177
2178 static int vdso_th_enable = 1;
2179 static int
sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)2180 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2181 {
2182 int old_vdso_th_enable, error;
2183
2184 old_vdso_th_enable = vdso_th_enable;
2185 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2186 if (error != 0)
2187 return (error);
2188 vdso_th_enable = old_vdso_th_enable;
2189 return (0);
2190 }
2191 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2192 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2193 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2194
2195 uint32_t
tc_fill_vdso_timehands(struct vdso_timehands * vdso_th)2196 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2197 {
2198 struct timehands *th;
2199 uint32_t enabled;
2200
2201 th = timehands;
2202 vdso_th->th_scale = th->th_scale;
2203 vdso_th->th_offset_count = th->th_offset_count;
2204 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2205 vdso_th->th_offset = th->th_offset;
2206 vdso_th->th_boottime = th->th_boottime;
2207 if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2208 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2209 th->th_counter);
2210 } else
2211 enabled = 0;
2212 if (!vdso_th_enable)
2213 enabled = 0;
2214 return (enabled);
2215 }
2216
2217 #ifdef COMPAT_FREEBSD32
2218 uint32_t
tc_fill_vdso_timehands32(struct vdso_timehands32 * vdso_th32)2219 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2220 {
2221 struct timehands *th;
2222 uint32_t enabled;
2223
2224 th = timehands;
2225 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2226 vdso_th32->th_offset_count = th->th_offset_count;
2227 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2228 vdso_th32->th_offset.sec = th->th_offset.sec;
2229 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2230 vdso_th32->th_boottime.sec = th->th_boottime.sec;
2231 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2232 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2233 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2234 th->th_counter);
2235 } else
2236 enabled = 0;
2237 if (!vdso_th_enable)
2238 enabled = 0;
2239 return (enabled);
2240 }
2241 #endif
2242
2243 #include "opt_ddb.h"
2244 #ifdef DDB
2245 #include <ddb/ddb.h>
2246
DB_SHOW_COMMAND(timecounter,db_show_timecounter)2247 DB_SHOW_COMMAND(timecounter, db_show_timecounter)
2248 {
2249 struct timehands *th;
2250 struct timecounter *tc;
2251 u_int val1, val2;
2252
2253 th = timehands;
2254 tc = th->th_counter;
2255 val1 = tc->tc_get_timecount(tc);
2256 __compiler_membar();
2257 val2 = tc->tc_get_timecount(tc);
2258
2259 db_printf("timecounter %p %s\n", tc, tc->tc_name);
2260 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n",
2261 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality,
2262 tc->tc_flags, tc->tc_priv);
2263 db_printf(" val %#x %#x\n", val1, val2);
2264 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n",
2265 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale,
2266 th->th_large_delta, th->th_offset_count, th->th_generation);
2267 db_printf(" offset %jd %jd boottime %jd %jd\n",
2268 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac,
2269 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac);
2270 }
2271 #endif
2272