1 #pragma prototyped 2 3 /* 4 * SHA-1 in C 5 * By Steve Reid <steve@edmweb.com> 6 * 100% Public Domain 7 * 8 * Test Vectors (from FIPS PUB 180-1) 9 * "abc" 10 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D 11 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 12 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 13 * A million repetitions of "a" 14 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F 15 */ 16 17 #define sha1_description "FIPS 180-1 SHA-1 secure hash algorithm 1." 18 #define sha1_options "[+(version)?sha1 (FIPS 180-1) 1996-09-26]\ 19 [+(author)?Steve Reid <steve@edmweb.com>]" 20 #define sha1_match "sha1|SHA1|sha-1|SHA-1" 21 #define sha1_scale 0 22 23 #define sha1_padding md5_pad 24 25 typedef struct Sha1_s 26 { 27 _SUM_PUBLIC_ 28 _SUM_PRIVATE_ 29 uint32_t count[2]; 30 uint32_t state[5]; 31 uint8_t buffer[64]; 32 uint8_t digest[20]; 33 uint8_t digest_sum[20]; 34 } Sha1_t; 35 36 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) 37 38 /* 39 * blk0() and blk() perform the initial expand. 40 * I got the idea of expanding during the round function from SSLeay 41 */ 42 #if _ast_intswap 43 # define blk0(i) \ 44 (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) \ 45 | (rol(block->l[i], 8) & 0x00FF00FF)) 46 #else 47 # define blk0(i) block->l[i] 48 #endif 49 #define blk(i) \ 50 (block->l[i & 15] = rol(block->l[(i + 13) & 15] \ 51 ^ block->l[(i + 8) & 15] \ 52 ^ block->l[(i + 2) & 15] \ 53 ^ block->l[i & 15], 1)) 54 55 /* 56 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 57 */ 58 #define R0(v,w,x,y,z,i) \ 59 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \ 60 w = rol(w, 30); 61 #define R1(v,w,x,y,z,i) \ 62 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ 63 w = rol(w, 30); 64 #define R2(v,w,x,y,z,i) \ 65 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \ 66 w = rol(w, 30); 67 #define R3(v,w,x,y,z,i) \ 68 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ 69 w = rol(w, 30); 70 #define R4(v,w,x,y,z,i) \ 71 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ 72 w = rol(w, 30); 73 74 typedef union { 75 unsigned char c[64]; 76 unsigned int l[16]; 77 } CHAR64LONG16; 78 79 #ifdef __sparc_v9__ 80 static void do_R01(uint32_t *a, uint32_t *b, uint32_t *c, 81 uint32_t *d, uint32_t *e, CHAR64LONG16 *); 82 static void do_R2(uint32_t *a, uint32_t *b, uint32_t *c, 83 uint32_t *d, uint32_t *e, CHAR64LONG16 *); 84 static void do_R3(uint32_t *a, uint32_t *b, uint32_t *c, 85 uint32_t *d, uint32_t *e, CHAR64LONG16 *); 86 static void do_R4(uint32_t *a, uint32_t *b, uint32_t *c, 87 uint32_t *d, uint32_t *e, CHAR64LONG16 *); 88 89 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i) 90 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i) 91 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i) 92 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i) 93 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i) 94 95 static void 96 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, 97 uint32_t *e, CHAR64LONG16 *block) 98 { 99 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); 100 nR0(c,d,e,a,b, 3); nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); 101 nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); nR0(c,d,e,a,b, 8); 102 nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11); 103 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); 104 nR0(a,b,c,d,e,15); nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); 105 nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19); 106 } 107 108 static void 109 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, 110 uint32_t *e, CHAR64LONG16 *block) 111 { 112 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); 113 nR2(c,d,e,a,b,23); nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); 114 nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); nR2(c,d,e,a,b,28); 115 nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31); 116 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); 117 nR2(a,b,c,d,e,35); nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); 118 nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39); 119 } 120 121 static void 122 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, 123 uint32_t *e, CHAR64LONG16 *block) 124 { 125 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); 126 nR3(c,d,e,a,b,43); nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); 127 nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); nR3(c,d,e,a,b,48); 128 nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51); 129 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); 130 nR3(a,b,c,d,e,55); nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); 131 nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59); 132 } 133 134 static void 135 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, 136 uint32_t *e, CHAR64LONG16 *block) 137 { 138 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); 139 nR4(c,d,e,a,b,63); nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); 140 nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); nR4(c,d,e,a,b,68); 141 nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71); 142 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); 143 nR4(a,b,c,d,e,75); nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); 144 nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79); 145 } 146 #endif 147 148 /* 149 * Hash a single 512-bit block. This is the core of the algorithm. 150 */ 151 static void 152 sha1_transform(uint32_t state[5], const unsigned char buffer[64]) { 153 uint32_t a, b, c, d, e; 154 CHAR64LONG16 *block; 155 CHAR64LONG16 workspace; 156 157 block = &workspace; 158 (void)memcpy(block, buffer, 64); 159 160 /* Copy sha->state[] to working vars */ 161 a = state[0]; 162 b = state[1]; 163 c = state[2]; 164 d = state[3]; 165 e = state[4]; 166 167 #ifdef __sparc_v9__ 168 do_R01(&a, &b, &c, &d, &e, block); 169 do_R2(&a, &b, &c, &d, &e, block); 170 do_R3(&a, &b, &c, &d, &e, block); 171 do_R4(&a, &b, &c, &d, &e, block); 172 #else 173 /* 4 rounds of 20 operations each. Loop unrolled. */ 174 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); 175 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); 176 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); 177 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); 178 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); 179 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); 180 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); 181 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); 182 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); 183 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); 184 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); 185 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); 186 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); 187 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); 188 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); 189 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); 190 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); 191 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); 192 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); 193 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); 194 #endif 195 196 /* Add the working vars back into context.state[] */ 197 state[0] += a; 198 state[1] += b; 199 state[2] += c; 200 state[3] += d; 201 state[4] += e; 202 203 /* Wipe variables */ 204 a = b = c = d = e = 0; 205 } 206 207 static int 208 sha1_block(register Sum_t* p, const void* s, size_t len) 209 { 210 Sha1_t* sha = (Sha1_t*)p; 211 uint8_t* data = (uint8_t*)s; 212 unsigned int i, j; 213 214 if (len) { 215 j = sha->count[0]; 216 if ((sha->count[0] += len << 3) < j) 217 sha->count[1] += (len >> 29) + 1; 218 j = (j >> 3) & 63; 219 if ((j + len) > 63) { 220 (void)memcpy(&sha->buffer[j], data, (i = 64 - j)); 221 sha1_transform(sha->state, sha->buffer); 222 for ( ; i + 63 < len; i += 64) 223 sha1_transform(sha->state, &data[i]); 224 j = 0; 225 } else { 226 i = 0; 227 } 228 229 (void)memcpy(&sha->buffer[j], &data[i], len - i); 230 } 231 return 0; 232 } 233 234 static int 235 sha1_init(Sum_t* p) 236 { 237 register Sha1_t* sha = (Sha1_t*)p; 238 239 sha->count[0] = sha->count[1] = 0; 240 sha->state[0] = 0x67452301; 241 sha->state[1] = 0xEFCDAB89; 242 sha->state[2] = 0x98BADCFE; 243 sha->state[3] = 0x10325476; 244 sha->state[4] = 0xC3D2E1F0; 245 246 return 0; 247 } 248 249 static Sum_t* 250 sha1_open(const Method_t* method, const char* name) 251 { 252 Sha1_t* sha; 253 254 if (sha = newof(0, Sha1_t, 1, 0)) 255 { 256 sha->method = (Method_t*)method; 257 sha->name = name; 258 sha1_init((Sum_t*)sha); 259 } 260 return (Sum_t*)sha; 261 } 262 263 /* 264 * Add padding and return the message digest. 265 */ 266 267 static const unsigned char final_200 = 128; 268 static const unsigned char final_0 = 0; 269 270 static int 271 sha1_done(Sum_t* p) 272 { 273 Sha1_t* sha = (Sha1_t*)p; 274 unsigned int i; 275 unsigned char finalcount[8]; 276 277 for (i = 0; i < 8; i++) { 278 /* Endian independent */ 279 finalcount[i] = (unsigned char) 280 ((sha->count[(i >= 4 ? 0 : 1)] 281 >> ((3 - (i & 3)) * 8)) & 255); 282 } 283 284 sha1_block(p, &final_200, 1); 285 while ((sha->count[0] & 504) != 448) 286 sha1_block(p, &final_0, 1); 287 /* The next Update should cause a sha1_transform() */ 288 sha1_block(p, finalcount, 8); 289 290 for (i = 0; i < elementsof(sha->digest); i++) 291 { 292 sha->digest[i] = (unsigned char)((sha->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); 293 sha->digest_sum[i] ^= sha->digest[i]; 294 } 295 memset(sha->count, 0, sizeof(sha->count)); 296 memset(sha->state, 0, sizeof(sha->state)); 297 memset(sha->buffer, 0, sizeof(sha->buffer)); 298 return 0; 299 } 300 301 static int 302 sha1_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) 303 { 304 register Sha1_t* sha = (Sha1_t*)p; 305 register unsigned char* d; 306 register int n; 307 308 d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; 309 for (n = 0; n < elementsof(sha->digest); n++) 310 sfprintf(sp, "%02x", d[n]); 311 return 0; 312 } 313 314 static int 315 sha1_data(Sum_t* p, Sumdata_t* data) 316 { 317 register Sha1_t* sha = (Sha1_t*)p; 318 319 data->size = elementsof(sha->digest); 320 data->num = 0; 321 data->buf = sha->digest; 322 return 0; 323 } 324