1 #pragma prototyped
2
3 /*
4 * SHA-1 in C
5 * By Steve Reid <steve@edmweb.com>
6 * 100% Public Domain
7 *
8 * Test Vectors (from FIPS PUB 180-1)
9 * "abc"
10 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
11 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
12 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
13 * A million repetitions of "a"
14 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
15 */
16
17 #define sha1_description "FIPS 180-1 SHA-1 secure hash algorithm 1."
18 #define sha1_options "[+(version)?sha1 (FIPS 180-1) 1996-09-26]\
19 [+(author)?Steve Reid <steve@edmweb.com>]"
20 #define sha1_match "sha1|SHA1|sha-1|SHA-1"
21 #define sha1_scale 0
22
23 #define sha1_padding md5_pad
24
25 typedef struct Sha1_s
26 {
27 _SUM_PUBLIC_
28 _SUM_PRIVATE_
29 uint32_t count[2];
30 uint32_t state[5];
31 uint8_t buffer[64];
32 uint8_t digest[20];
33 uint8_t digest_sum[20];
34 } Sha1_t;
35
36 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
37
38 /*
39 * blk0() and blk() perform the initial expand.
40 * I got the idea of expanding during the round function from SSLeay
41 */
42 #if _ast_intswap
43 # define blk0(i) \
44 (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) \
45 | (rol(block->l[i], 8) & 0x00FF00FF))
46 #else
47 # define blk0(i) block->l[i]
48 #endif
49 #define blk(i) \
50 (block->l[i & 15] = rol(block->l[(i + 13) & 15] \
51 ^ block->l[(i + 8) & 15] \
52 ^ block->l[(i + 2) & 15] \
53 ^ block->l[i & 15], 1))
54
55 /*
56 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
57 */
58 #define R0(v,w,x,y,z,i) \
59 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
60 w = rol(w, 30);
61 #define R1(v,w,x,y,z,i) \
62 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
63 w = rol(w, 30);
64 #define R2(v,w,x,y,z,i) \
65 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
66 w = rol(w, 30);
67 #define R3(v,w,x,y,z,i) \
68 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
69 w = rol(w, 30);
70 #define R4(v,w,x,y,z,i) \
71 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
72 w = rol(w, 30);
73
74 typedef union {
75 unsigned char c[64];
76 unsigned int l[16];
77 } CHAR64LONG16;
78
79 #ifdef __sparc_v9__
80 static void do_R01(uint32_t *a, uint32_t *b, uint32_t *c,
81 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
82 static void do_R2(uint32_t *a, uint32_t *b, uint32_t *c,
83 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
84 static void do_R3(uint32_t *a, uint32_t *b, uint32_t *c,
85 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
86 static void do_R4(uint32_t *a, uint32_t *b, uint32_t *c,
87 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
88
89 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
90 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
91 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
92 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
93 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
94
95 static void
do_R01(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)96 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
97 uint32_t *e, CHAR64LONG16 *block)
98 {
99 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2);
100 nR0(c,d,e,a,b, 3); nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5);
101 nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); nR0(c,d,e,a,b, 8);
102 nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
103 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14);
104 nR0(a,b,c,d,e,15); nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17);
105 nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
106 }
107
108 static void
do_R2(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)109 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
110 uint32_t *e, CHAR64LONG16 *block)
111 {
112 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22);
113 nR2(c,d,e,a,b,23); nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25);
114 nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); nR2(c,d,e,a,b,28);
115 nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
116 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34);
117 nR2(a,b,c,d,e,35); nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37);
118 nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
119 }
120
121 static void
do_R3(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)122 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
123 uint32_t *e, CHAR64LONG16 *block)
124 {
125 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42);
126 nR3(c,d,e,a,b,43); nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45);
127 nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); nR3(c,d,e,a,b,48);
128 nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
129 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54);
130 nR3(a,b,c,d,e,55); nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57);
131 nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
132 }
133
134 static void
do_R4(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)135 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
136 uint32_t *e, CHAR64LONG16 *block)
137 {
138 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62);
139 nR4(c,d,e,a,b,63); nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65);
140 nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); nR4(c,d,e,a,b,68);
141 nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
142 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74);
143 nR4(a,b,c,d,e,75); nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77);
144 nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
145 }
146 #endif
147
148 /*
149 * Hash a single 512-bit block. This is the core of the algorithm.
150 */
151 static void
sha1_transform(uint32_t state[5],const unsigned char buffer[64])152 sha1_transform(uint32_t state[5], const unsigned char buffer[64]) {
153 uint32_t a, b, c, d, e;
154 CHAR64LONG16 *block;
155 CHAR64LONG16 workspace;
156
157 block = &workspace;
158 (void)memcpy(block, buffer, 64);
159
160 /* Copy sha->state[] to working vars */
161 a = state[0];
162 b = state[1];
163 c = state[2];
164 d = state[3];
165 e = state[4];
166
167 #ifdef __sparc_v9__
168 do_R01(&a, &b, &c, &d, &e, block);
169 do_R2(&a, &b, &c, &d, &e, block);
170 do_R3(&a, &b, &c, &d, &e, block);
171 do_R4(&a, &b, &c, &d, &e, block);
172 #else
173 /* 4 rounds of 20 operations each. Loop unrolled. */
174 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
175 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
176 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
177 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
178 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
179 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
180 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
181 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
182 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
183 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
184 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
185 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
186 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
187 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
188 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
189 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
190 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
191 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
192 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
193 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
194 #endif
195
196 /* Add the working vars back into context.state[] */
197 state[0] += a;
198 state[1] += b;
199 state[2] += c;
200 state[3] += d;
201 state[4] += e;
202
203 /* Wipe variables */
204 a = b = c = d = e = 0;
205 }
206
207 static int
sha1_block(register Sum_t * p,const void * s,size_t len)208 sha1_block(register Sum_t* p, const void* s, size_t len)
209 {
210 Sha1_t* sha = (Sha1_t*)p;
211 uint8_t* data = (uint8_t*)s;
212 unsigned int i, j;
213
214 if (len) {
215 j = sha->count[0];
216 if ((sha->count[0] += len << 3) < j)
217 sha->count[1] += (len >> 29) + 1;
218 j = (j >> 3) & 63;
219 if ((j + len) > 63) {
220 (void)memcpy(&sha->buffer[j], data, (i = 64 - j));
221 sha1_transform(sha->state, sha->buffer);
222 for ( ; i + 63 < len; i += 64)
223 sha1_transform(sha->state, &data[i]);
224 j = 0;
225 } else {
226 i = 0;
227 }
228
229 (void)memcpy(&sha->buffer[j], &data[i], len - i);
230 }
231 return 0;
232 }
233
234 static int
sha1_init(Sum_t * p)235 sha1_init(Sum_t* p)
236 {
237 register Sha1_t* sha = (Sha1_t*)p;
238
239 sha->count[0] = sha->count[1] = 0;
240 sha->state[0] = 0x67452301;
241 sha->state[1] = 0xEFCDAB89;
242 sha->state[2] = 0x98BADCFE;
243 sha->state[3] = 0x10325476;
244 sha->state[4] = 0xC3D2E1F0;
245
246 return 0;
247 }
248
249 static Sum_t*
sha1_open(const Method_t * method,const char * name)250 sha1_open(const Method_t* method, const char* name)
251 {
252 Sha1_t* sha;
253
254 if (sha = newof(0, Sha1_t, 1, 0))
255 {
256 sha->method = (Method_t*)method;
257 sha->name = name;
258 sha1_init((Sum_t*)sha);
259 }
260 return (Sum_t*)sha;
261 }
262
263 /*
264 * Add padding and return the message digest.
265 */
266
267 static const unsigned char final_200 = 128;
268 static const unsigned char final_0 = 0;
269
270 static int
sha1_done(Sum_t * p)271 sha1_done(Sum_t* p)
272 {
273 Sha1_t* sha = (Sha1_t*)p;
274 unsigned int i;
275 unsigned char finalcount[8];
276
277 for (i = 0; i < 8; i++) {
278 /* Endian independent */
279 finalcount[i] = (unsigned char)
280 ((sha->count[(i >= 4 ? 0 : 1)]
281 >> ((3 - (i & 3)) * 8)) & 255);
282 }
283
284 sha1_block(p, &final_200, 1);
285 while ((sha->count[0] & 504) != 448)
286 sha1_block(p, &final_0, 1);
287 /* The next Update should cause a sha1_transform() */
288 sha1_block(p, finalcount, 8);
289
290 for (i = 0; i < elementsof(sha->digest); i++)
291 {
292 sha->digest[i] = (unsigned char)((sha->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
293 sha->digest_sum[i] ^= sha->digest[i];
294 }
295 memset(sha->count, 0, sizeof(sha->count));
296 memset(sha->state, 0, sizeof(sha->state));
297 memset(sha->buffer, 0, sizeof(sha->buffer));
298 return 0;
299 }
300
301 static int
sha1_print(Sum_t * p,Sfio_t * sp,register int flags,size_t scale)302 sha1_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale)
303 {
304 register Sha1_t* sha = (Sha1_t*)p;
305 register unsigned char* d;
306 register int n;
307
308 d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest;
309 for (n = 0; n < elementsof(sha->digest); n++)
310 sfprintf(sp, "%02x", d[n]);
311 return 0;
312 }
313
314 static int
sha1_data(Sum_t * p,Sumdata_t * data)315 sha1_data(Sum_t* p, Sumdata_t* data)
316 {
317 register Sha1_t* sha = (Sha1_t*)p;
318
319 data->size = elementsof(sha->digest);
320 data->num = 0;
321 data->buf = sha->digest;
322 return 0;
323 }
324