1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 #include "internal/comp.h"
25 #include "internal/ssl_unwrap.h"
26
27 /* NB: make sure indices in these tables match values above */
28
29 typedef struct {
30 uint32_t mask;
31 int nid;
32 } ssl_cipher_table;
33
34 /* Table of NIDs for each cipher */
35 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
36 { SSL_DES, NID_des_cbc }, /* SSL_ENC_DES_IDX 0 */
37 { SSL_3DES, NID_des_ede3_cbc }, /* SSL_ENC_3DES_IDX 1 */
38 { SSL_RC4, NID_rc4 }, /* SSL_ENC_RC4_IDX 2 */
39 { SSL_RC2, NID_rc2_cbc }, /* SSL_ENC_RC2_IDX 3 */
40 { SSL_IDEA, NID_idea_cbc }, /* SSL_ENC_IDEA_IDX 4 */
41 { SSL_eNULL, NID_undef }, /* SSL_ENC_NULL_IDX 5 */
42 { SSL_AES128, NID_aes_128_cbc }, /* SSL_ENC_AES128_IDX 6 */
43 { SSL_AES256, NID_aes_256_cbc }, /* SSL_ENC_AES256_IDX 7 */
44 { SSL_CAMELLIA128, NID_camellia_128_cbc }, /* SSL_ENC_CAMELLIA128_IDX 8 */
45 { SSL_CAMELLIA256, NID_camellia_256_cbc }, /* SSL_ENC_CAMELLIA256_IDX 9 */
46 { SSL_eGOST2814789CNT, NID_gost89_cnt }, /* SSL_ENC_GOST89_IDX 10 */
47 { SSL_SEED, NID_seed_cbc }, /* SSL_ENC_SEED_IDX 11 */
48 { SSL_AES128GCM, NID_aes_128_gcm }, /* SSL_ENC_AES128GCM_IDX 12 */
49 { SSL_AES256GCM, NID_aes_256_gcm }, /* SSL_ENC_AES256GCM_IDX 13 */
50 { SSL_AES128CCM, NID_aes_128_ccm }, /* SSL_ENC_AES128CCM_IDX 14 */
51 { SSL_AES256CCM, NID_aes_256_ccm }, /* SSL_ENC_AES256CCM_IDX 15 */
52 { SSL_AES128CCM8, NID_aes_128_ccm }, /* SSL_ENC_AES128CCM8_IDX 16 */
53 { SSL_AES256CCM8, NID_aes_256_ccm }, /* SSL_ENC_AES256CCM8_IDX 17 */
54 { SSL_eGOST2814789CNT12, NID_gost89_cnt_12 }, /* SSL_ENC_GOST8912_IDX 18 */
55 { SSL_CHACHA20POLY1305, NID_chacha20_poly1305 }, /* SSL_ENC_CHACHA_IDX 19 */
56 { SSL_ARIA128GCM, NID_aria_128_gcm }, /* SSL_ENC_ARIA128GCM_IDX 20 */
57 { SSL_ARIA256GCM, NID_aria_256_gcm }, /* SSL_ENC_ARIA256GCM_IDX 21 */
58 { SSL_MAGMA, NID_magma_ctr_acpkm }, /* SSL_ENC_MAGMA_IDX */
59 { SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm }, /* SSL_ENC_KUZNYECHIK_IDX */
60 };
61
62 /* NB: make sure indices in this table matches values above */
63 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
64 { SSL_MD5, NID_md5 }, /* SSL_MD_MD5_IDX 0 */
65 { SSL_SHA1, NID_sha1 }, /* SSL_MD_SHA1_IDX 1 */
66 { SSL_GOST94, NID_id_GostR3411_94 }, /* SSL_MD_GOST94_IDX 2 */
67 { SSL_GOST89MAC, NID_id_Gost28147_89_MAC }, /* SSL_MD_GOST89MAC_IDX 3 */
68 { SSL_SHA256, NID_sha256 }, /* SSL_MD_SHA256_IDX 4 */
69 { SSL_SHA384, NID_sha384 }, /* SSL_MD_SHA384_IDX 5 */
70 { SSL_GOST12_256, NID_id_GostR3411_2012_256 }, /* SSL_MD_GOST12_256_IDX 6 */
71 { SSL_GOST89MAC12, NID_gost_mac_12 }, /* SSL_MD_GOST89MAC12_IDX 7 */
72 { SSL_GOST12_512, NID_id_GostR3411_2012_512 }, /* SSL_MD_GOST12_512_IDX 8 */
73 { 0, NID_md5_sha1 }, /* SSL_MD_MD5_SHA1_IDX 9 */
74 { 0, NID_sha224 }, /* SSL_MD_SHA224_IDX 10 */
75 { 0, NID_sha512 }, /* SSL_MD_SHA512_IDX 11 */
76 { SSL_MAGMAOMAC, NID_magma_mac }, /* sSL_MD_MAGMAOMAC_IDX */
77 { SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac } /* SSL_MD_KUZNYECHIKOMAC_IDX */
78 };
79
80 /* *INDENT-OFF* */
81 static const ssl_cipher_table ssl_cipher_table_kx[] = {
82 { SSL_kRSA, NID_kx_rsa },
83 { SSL_kECDHE, NID_kx_ecdhe },
84 { SSL_kDHE, NID_kx_dhe },
85 { SSL_kECDHEPSK, NID_kx_ecdhe_psk },
86 { SSL_kDHEPSK, NID_kx_dhe_psk },
87 { SSL_kRSAPSK, NID_kx_rsa_psk },
88 { SSL_kPSK, NID_kx_psk },
89 { SSL_kSRP, NID_kx_srp },
90 { SSL_kGOST, NID_kx_gost },
91 { SSL_kGOST18, NID_kx_gost18 },
92 { SSL_kANY, NID_kx_any }
93 };
94
95 static const ssl_cipher_table ssl_cipher_table_auth[] = {
96 { SSL_aRSA, NID_auth_rsa },
97 { SSL_aECDSA, NID_auth_ecdsa },
98 { SSL_aPSK, NID_auth_psk },
99 { SSL_aDSS, NID_auth_dss },
100 { SSL_aGOST01, NID_auth_gost01 },
101 { SSL_aGOST12, NID_auth_gost12 },
102 { SSL_aSRP, NID_auth_srp },
103 { SSL_aNULL, NID_auth_null },
104 { SSL_aANY, NID_auth_any }
105 };
106 /* *INDENT-ON* */
107
108 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)109 static int ssl_cipher_info_find(const ssl_cipher_table *table,
110 size_t table_cnt, uint32_t mask)
111 {
112 size_t i;
113 for (i = 0; i < table_cnt; i++, table++) {
114 if (table->mask == mask)
115 return (int)i;
116 }
117 return -1;
118 }
119
120 #define ssl_cipher_info_lookup(table, x) \
121 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
122
123 /*
124 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
125 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
126 * found
127 */
128 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
129 /* MD5, SHA, GOST94, MAC89 */
130 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
131 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
132 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
133 /* GOST2012_512 */
134 EVP_PKEY_HMAC,
135 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
136 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
137 };
138
139 #define CIPHER_ADD 1
140 #define CIPHER_KILL 2
141 #define CIPHER_DEL 3
142 #define CIPHER_ORD 4
143 #define CIPHER_SPECIAL 5
144 /*
145 * Bump the ciphers to the top of the list.
146 * This rule isn't currently supported by the public cipherstring API.
147 */
148 #define CIPHER_BUMP 6
149
150 typedef struct cipher_order_st {
151 const SSL_CIPHER *cipher;
152 int active;
153 int dead;
154 struct cipher_order_st *next, *prev;
155 } CIPHER_ORDER;
156
157 static const SSL_CIPHER cipher_aliases[] = {
158 /* "ALL" doesn't include eNULL (must be specifically enabled) */
159 { 0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL },
160 /* "COMPLEMENTOFALL" */
161 { 0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL },
162
163 /*
164 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
165 * ALL!)
166 */
167 { 0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT },
168
169 /*
170 * key exchange aliases (some of those using only a single bit here
171 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
172 * combines DHE_DSS and DHE_RSA)
173 */
174 { 0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA },
175
176 { 0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE },
177 { 0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE },
178 { 0, SSL_TXT_DH, NULL, 0, SSL_kDHE },
179
180 { 0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE },
181 { 0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE },
182 { 0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE },
183
184 { 0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK },
185 { 0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK },
186 { 0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK },
187 { 0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK },
188 { 0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP },
189 { 0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST },
190 { 0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18 },
191
192 /* server authentication aliases */
193 { 0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA },
194 { 0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS },
195 { 0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS },
196 { 0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL },
197 { 0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA },
198 { 0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA },
199 { 0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK },
200 { 0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01 },
201 { 0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12 },
202 { 0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12 },
203 { 0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP },
204
205 /* aliases combining key exchange and server authentication */
206 { 0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL },
207 { 0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL },
208 { 0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL },
209 { 0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL },
210 { 0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL },
211 { 0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA },
212 { 0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL },
213 { 0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL },
214 { 0, SSL_TXT_PSK, NULL, 0, SSL_PSK },
215 { 0, SSL_TXT_SRP, NULL, 0, SSL_kSRP },
216
217 /* symmetric encryption aliases */
218 { 0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES },
219 { 0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4 },
220 { 0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2 },
221 { 0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA },
222 { 0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED },
223 { 0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL },
224 { 0, SSL_TXT_GOST, NULL, 0, 0, 0,
225 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK },
226 { 0, SSL_TXT_AES128, NULL, 0, 0, 0,
227 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8 },
228 { 0, SSL_TXT_AES256, NULL, 0, 0, 0,
229 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8 },
230 { 0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES },
231 { 0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM },
232 { 0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
233 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8 },
234 { 0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8 },
235 { 0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128 },
236 { 0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256 },
237 { 0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA },
238 { 0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20 },
239 { 0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12 },
240
241 { 0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA },
242 { 0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM },
243 { 0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM },
244 { 0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM },
245 { 0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC },
246
247 /* MAC aliases */
248 { 0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5 },
249 { 0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1 },
250 { 0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1 },
251 { 0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94 },
252 { 0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12 },
253 { 0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256 },
254 { 0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384 },
255 { 0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256 },
256
257 /* protocol version aliases */
258 { 0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION },
259 { 0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION },
260 { 0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION },
261 { 0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION },
262
263 /* strength classes */
264 { 0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW },
265 { 0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM },
266 { 0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH },
267 /* FIPS 140-2 approved ciphersuite */
268 { 0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS },
269
270 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
271 { 0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
272 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS },
273 { 0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
274 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS },
275
276 };
277
278 /*
279 * Search for public key algorithm with given name and return its pkey_id if
280 * it is available. Otherwise return 0
281 */
282 #ifdef OPENSSL_NO_ENGINE
283
get_optional_pkey_id(const char * pkey_name)284 static int get_optional_pkey_id(const char *pkey_name)
285 {
286 const EVP_PKEY_ASN1_METHOD *ameth;
287 int pkey_id = 0;
288 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
289 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth) > 0)
290 return pkey_id;
291 return 0;
292 }
293
294 #else
295
get_optional_pkey_id(const char * pkey_name)296 static int get_optional_pkey_id(const char *pkey_name)
297 {
298 const EVP_PKEY_ASN1_METHOD *ameth;
299 ENGINE *tmpeng = NULL;
300 int pkey_id = 0;
301 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
302 if (ameth) {
303 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
304 ameth)
305 <= 0)
306 pkey_id = 0;
307 }
308 tls_engine_finish(tmpeng);
309 return pkey_id;
310 }
311
312 #endif
313
ssl_load_ciphers(SSL_CTX * ctx)314 int ssl_load_ciphers(SSL_CTX *ctx)
315 {
316 size_t i;
317 const ssl_cipher_table *t;
318 EVP_KEYEXCH *kex = NULL;
319 EVP_SIGNATURE *sig = NULL;
320
321 ctx->disabled_enc_mask = 0;
322 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
323 if (t->nid != NID_undef) {
324 const EVP_CIPHER *cipher
325 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
326
327 ctx->ssl_cipher_methods[i] = cipher;
328 if (cipher == NULL)
329 ctx->disabled_enc_mask |= t->mask;
330 }
331 }
332 ctx->disabled_mac_mask = 0;
333 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
334 const EVP_MD *md
335 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
336
337 ctx->ssl_digest_methods[i] = md;
338 if (md == NULL) {
339 ctx->disabled_mac_mask |= t->mask;
340 } else {
341 int tmpsize = EVP_MD_get_size(md);
342
343 if (!ossl_assert(tmpsize > 0))
344 return 0;
345 ctx->ssl_mac_secret_size[i] = tmpsize;
346 }
347 }
348
349 ctx->disabled_mkey_mask = 0;
350 ctx->disabled_auth_mask = 0;
351
352 /*
353 * We ignore any errors from the fetches below. They are expected to fail
354 * if these algorithms are not available.
355 */
356 ERR_set_mark();
357 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
358 if (sig == NULL)
359 ctx->disabled_auth_mask |= SSL_aDSS;
360 else
361 EVP_SIGNATURE_free(sig);
362 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
363 if (kex == NULL)
364 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
365 else
366 EVP_KEYEXCH_free(kex);
367 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
368 if (kex == NULL)
369 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
370 else
371 EVP_KEYEXCH_free(kex);
372 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
373 if (sig == NULL)
374 ctx->disabled_auth_mask |= SSL_aECDSA;
375 else
376 EVP_SIGNATURE_free(sig);
377 ERR_pop_to_mark();
378
379 #ifdef OPENSSL_NO_PSK
380 ctx->disabled_mkey_mask |= SSL_PSK;
381 ctx->disabled_auth_mask |= SSL_aPSK;
382 #endif
383 #ifdef OPENSSL_NO_SRP
384 ctx->disabled_mkey_mask |= SSL_kSRP;
385 #endif
386
387 /*
388 * Check for presence of GOST 34.10 algorithms, and if they are not
389 * present, disable appropriate auth and key exchange
390 */
391 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
392 sizeof(ctx->ssl_mac_pkey_id));
393
394 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id(SN_id_Gost28147_89_MAC);
395 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
396 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
397 else
398 ctx->disabled_mac_mask |= SSL_GOST89MAC;
399
400 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = get_optional_pkey_id(SN_gost_mac_12);
401 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
402 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
403 else
404 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
405
406 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] = get_optional_pkey_id(SN_magma_mac);
407 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
408 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
409 else
410 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
411
412 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] = get_optional_pkey_id(SN_kuznyechik_mac);
413 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
414 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
415 else
416 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
417
418 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
419 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
420 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
421 ctx->disabled_auth_mask |= SSL_aGOST12;
422 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
423 ctx->disabled_auth_mask |= SSL_aGOST12;
424 /*
425 * Disable GOST key exchange if no GOST signature algs are available *
426 */
427 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == (SSL_aGOST01 | SSL_aGOST12))
428 ctx->disabled_mkey_mask |= SSL_kGOST;
429
430 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
431 ctx->disabled_mkey_mask |= SSL_kGOST18;
432
433 return 1;
434 }
435
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)436 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
437 const EVP_CIPHER **enc)
438 {
439 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
440 sslc->algorithm_enc);
441
442 if (i == -1) {
443 *enc = NULL;
444 } else {
445 if (i == SSL_ENC_NULL_IDX) {
446 /*
447 * We assume we don't care about this coming from an ENGINE so
448 * just do a normal EVP_CIPHER_fetch instead of
449 * ssl_evp_cipher_fetch()
450 */
451 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
452 if (*enc == NULL)
453 return 0;
454 } else {
455 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
456
457 if (cipher == NULL
458 || !ssl_evp_cipher_up_ref(cipher))
459 return 0;
460 *enc = ctx->ssl_cipher_methods[i];
461 }
462 }
463 return 1;
464 }
465
ssl_cipher_get_evp_md_mac(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size)466 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
467 const EVP_MD **md,
468 int *mac_pkey_type, size_t *mac_secret_size)
469 {
470 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
471
472 if (i == -1) {
473 *md = NULL;
474 if (mac_pkey_type != NULL)
475 *mac_pkey_type = NID_undef;
476 if (mac_secret_size != NULL)
477 *mac_secret_size = 0;
478 } else {
479 const EVP_MD *digest = ctx->ssl_digest_methods[i];
480
481 if (digest == NULL || !ssl_evp_md_up_ref(digest))
482 return 0;
483
484 *md = digest;
485 if (mac_pkey_type != NULL)
486 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
487 if (mac_secret_size != NULL)
488 *mac_secret_size = ctx->ssl_mac_secret_size[i];
489 }
490 return 1;
491 }
492
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)493 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
494 const EVP_CIPHER **enc, const EVP_MD **md,
495 int *mac_pkey_type, size_t *mac_secret_size,
496 SSL_COMP **comp, int use_etm)
497 {
498 int i;
499 const SSL_CIPHER *c;
500
501 c = s->cipher;
502 if (c == NULL)
503 return 0;
504 if (comp != NULL) {
505 SSL_COMP ctmp;
506 STACK_OF(SSL_COMP) *comp_methods;
507
508 *comp = NULL;
509 ctmp.id = s->compress_meth;
510 comp_methods = SSL_COMP_get_compression_methods();
511 if (comp_methods != NULL) {
512 i = sk_SSL_COMP_find(comp_methods, &ctmp);
513 if (i >= 0)
514 *comp = sk_SSL_COMP_value(comp_methods, i);
515 }
516 /* If were only interested in comp then return success */
517 if ((enc == NULL) && (md == NULL))
518 return 1;
519 }
520
521 if ((enc == NULL) || (md == NULL))
522 return 0;
523
524 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
525 return 0;
526
527 if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
528 mac_secret_size)) {
529 ssl_evp_cipher_free(*enc);
530 return 0;
531 }
532
533 if ((*enc != NULL)
534 && (*md != NULL
535 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
536 && (c->algorithm_mac == SSL_AEAD
537 || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
538 const EVP_CIPHER *evp = NULL;
539
540 if (use_etm
541 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
542 || s->ssl_version < TLS1_VERSION)
543 return 1;
544
545 if (c->algorithm_enc == SSL_RC4
546 && c->algorithm_mac == SSL_MD5)
547 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
548 ctx->propq);
549 else if (c->algorithm_enc == SSL_AES128
550 && c->algorithm_mac == SSL_SHA1)
551 evp = ssl_evp_cipher_fetch(ctx->libctx,
552 NID_aes_128_cbc_hmac_sha1,
553 ctx->propq);
554 else if (c->algorithm_enc == SSL_AES256
555 && c->algorithm_mac == SSL_SHA1)
556 evp = ssl_evp_cipher_fetch(ctx->libctx,
557 NID_aes_256_cbc_hmac_sha1,
558 ctx->propq);
559 else if (c->algorithm_enc == SSL_AES128
560 && c->algorithm_mac == SSL_SHA256)
561 evp = ssl_evp_cipher_fetch(ctx->libctx,
562 NID_aes_128_cbc_hmac_sha256,
563 ctx->propq);
564 else if (c->algorithm_enc == SSL_AES256
565 && c->algorithm_mac == SSL_SHA256)
566 evp = ssl_evp_cipher_fetch(ctx->libctx,
567 NID_aes_256_cbc_hmac_sha256,
568 ctx->propq);
569
570 if (evp != NULL) {
571 ssl_evp_cipher_free(*enc);
572 ssl_evp_md_free(*md);
573 *enc = evp;
574 *md = NULL;
575 }
576 return 1;
577 }
578
579 return 0;
580 }
581
ssl_md(SSL_CTX * ctx,int idx)582 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
583 {
584 idx &= SSL_HANDSHAKE_MAC_MASK;
585 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
586 return NULL;
587 return ctx->ssl_digest_methods[idx];
588 }
589
ssl_handshake_md(SSL_CONNECTION * s)590 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
591 {
592 return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
593 }
594
ssl_prf_md(SSL_CONNECTION * s)595 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
596 {
597 return ssl_md(SSL_CONNECTION_GET_CTX(s),
598 ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
599 }
600
601 #define ITEM_SEP(a) \
602 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
603
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)604 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
605 CIPHER_ORDER **tail)
606 {
607 if (curr == *tail)
608 return;
609 if (curr == *head)
610 *head = curr->next;
611 if (curr->prev != NULL)
612 curr->prev->next = curr->next;
613 if (curr->next != NULL)
614 curr->next->prev = curr->prev;
615 (*tail)->next = curr;
616 curr->prev = *tail;
617 curr->next = NULL;
618 *tail = curr;
619 }
620
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)621 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
622 CIPHER_ORDER **tail)
623 {
624 if (curr == *head)
625 return;
626 if (curr == *tail)
627 *tail = curr->prev;
628 if (curr->next != NULL)
629 curr->next->prev = curr->prev;
630 if (curr->prev != NULL)
631 curr->prev->next = curr->next;
632 (*head)->prev = curr;
633 curr->next = *head;
634 curr->prev = NULL;
635 *head = curr;
636 }
637
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)638 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
639 int num_of_ciphers,
640 uint32_t disabled_mkey,
641 uint32_t disabled_auth,
642 uint32_t disabled_enc,
643 uint32_t disabled_mac,
644 CIPHER_ORDER *co_list,
645 CIPHER_ORDER **head_p,
646 CIPHER_ORDER **tail_p)
647 {
648 int i, co_list_num;
649 const SSL_CIPHER *c;
650
651 /*
652 * We have num_of_ciphers descriptions compiled in, depending on the
653 * method selected (SSLv3, TLSv1 etc).
654 * These will later be sorted in a linked list with at most num
655 * entries.
656 */
657
658 /* Get the initial list of ciphers */
659 co_list_num = 0; /* actual count of ciphers */
660 for (i = 0; i < num_of_ciphers; i++) {
661 c = ssl_method->get_cipher(i);
662 /* drop those that use any of that is not available */
663 if (c == NULL || !c->valid)
664 continue;
665 if ((c->algorithm_mkey & disabled_mkey) || (c->algorithm_auth & disabled_auth) || (c->algorithm_enc & disabled_enc) || (c->algorithm_mac & disabled_mac))
666 continue;
667 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) && c->min_tls == 0)
668 continue;
669 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) && c->min_dtls == 0)
670 continue;
671
672 co_list[co_list_num].cipher = c;
673 co_list[co_list_num].next = NULL;
674 co_list[co_list_num].prev = NULL;
675 co_list[co_list_num].active = 0;
676 co_list_num++;
677 }
678
679 /*
680 * Prepare linked list from list entries
681 */
682 if (co_list_num > 0) {
683 co_list[0].prev = NULL;
684
685 if (co_list_num > 1) {
686 co_list[0].next = &co_list[1];
687
688 for (i = 1; i < co_list_num - 1; i++) {
689 co_list[i].prev = &co_list[i - 1];
690 co_list[i].next = &co_list[i + 1];
691 }
692
693 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
694 }
695
696 co_list[co_list_num - 1].next = NULL;
697
698 *head_p = &co_list[0];
699 *tail_p = &co_list[co_list_num - 1];
700 }
701 }
702
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)703 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
704 int num_of_group_aliases,
705 uint32_t disabled_mkey,
706 uint32_t disabled_auth,
707 uint32_t disabled_enc,
708 uint32_t disabled_mac,
709 CIPHER_ORDER *head)
710 {
711 CIPHER_ORDER *ciph_curr;
712 const SSL_CIPHER **ca_curr;
713 int i;
714 uint32_t mask_mkey = ~disabled_mkey;
715 uint32_t mask_auth = ~disabled_auth;
716 uint32_t mask_enc = ~disabled_enc;
717 uint32_t mask_mac = ~disabled_mac;
718
719 /*
720 * First, add the real ciphers as already collected
721 */
722 ciph_curr = head;
723 ca_curr = ca_list;
724 while (ciph_curr != NULL) {
725 *ca_curr = ciph_curr->cipher;
726 ca_curr++;
727 ciph_curr = ciph_curr->next;
728 }
729
730 /*
731 * Now we add the available ones from the cipher_aliases[] table.
732 * They represent either one or more algorithms, some of which
733 * in any affected category must be supported (set in enabled_mask),
734 * or represent a cipher strength value (will be added in any case because algorithms=0).
735 */
736 for (i = 0; i < num_of_group_aliases; i++) {
737 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
738 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
739 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
740 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
741
742 if (algorithm_mkey)
743 if ((algorithm_mkey & mask_mkey) == 0)
744 continue;
745
746 if (algorithm_auth)
747 if ((algorithm_auth & mask_auth) == 0)
748 continue;
749
750 if (algorithm_enc)
751 if ((algorithm_enc & mask_enc) == 0)
752 continue;
753
754 if (algorithm_mac)
755 if ((algorithm_mac & mask_mac) == 0)
756 continue;
757
758 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
759 ca_curr++;
760 }
761
762 *ca_curr = NULL; /* end of list */
763 }
764
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)765 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
766 uint32_t alg_auth, uint32_t alg_enc,
767 uint32_t alg_mac, int min_tls,
768 uint32_t algo_strength, int rule,
769 int32_t strength_bits, CIPHER_ORDER **head_p,
770 CIPHER_ORDER **tail_p)
771 {
772 CIPHER_ORDER *head, *tail, *curr, *next, *last;
773 const SSL_CIPHER *cp;
774 int reverse = 0;
775
776 OSSL_TRACE_BEGIN(TLS_CIPHER)
777 {
778 BIO_printf(trc_out,
779 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
780 rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
781 (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
782 (unsigned int)algo_strength, (int)strength_bits);
783 }
784
785 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
786 reverse = 1; /* needed to maintain sorting between currently
787 * deleted ciphers */
788
789 head = *head_p;
790 tail = *tail_p;
791
792 if (reverse) {
793 next = tail;
794 last = head;
795 } else {
796 next = head;
797 last = tail;
798 }
799
800 curr = NULL;
801 for (;;) {
802 if (curr == last)
803 break;
804
805 curr = next;
806
807 if (curr == NULL)
808 break;
809
810 next = reverse ? curr->prev : curr->next;
811
812 cp = curr->cipher;
813
814 /*
815 * Selection criteria is either the value of strength_bits
816 * or the algorithms used.
817 */
818 if (strength_bits >= 0) {
819 if (strength_bits != cp->strength_bits)
820 continue;
821 } else {
822 if (trc_out != NULL) {
823 BIO_printf(trc_out,
824 "\nName: %s:"
825 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
826 cp->name,
827 (unsigned int)cp->algorithm_mkey,
828 (unsigned int)cp->algorithm_auth,
829 (unsigned int)cp->algorithm_enc,
830 (unsigned int)cp->algorithm_mac,
831 cp->min_tls,
832 (unsigned int)cp->algo_strength);
833 }
834 if (cipher_id != 0 && (cipher_id != cp->id))
835 continue;
836 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
837 continue;
838 if (alg_auth && !(alg_auth & cp->algorithm_auth))
839 continue;
840 if (alg_enc && !(alg_enc & cp->algorithm_enc))
841 continue;
842 if (alg_mac && !(alg_mac & cp->algorithm_mac))
843 continue;
844 if (min_tls && (min_tls != cp->min_tls))
845 continue;
846 if ((algo_strength & SSL_STRONG_MASK)
847 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
848 continue;
849 if ((algo_strength & SSL_DEFAULT_MASK)
850 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
851 continue;
852 }
853
854 if (trc_out != NULL)
855 BIO_printf(trc_out, "Action = %d\n", rule);
856
857 /* add the cipher if it has not been added yet. */
858 if (rule == CIPHER_ADD) {
859 /* reverse == 0 */
860 if (!curr->active) {
861 ll_append_tail(&head, curr, &tail);
862 curr->active = 1;
863 }
864 }
865 /* Move the added cipher to this location */
866 else if (rule == CIPHER_ORD) {
867 /* reverse == 0 */
868 if (curr->active) {
869 ll_append_tail(&head, curr, &tail);
870 }
871 } else if (rule == CIPHER_DEL) {
872 /* reverse == 1 */
873 if (curr->active) {
874 /*
875 * most recently deleted ciphersuites get best positions for
876 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
877 * in reverse to maintain the order)
878 */
879 ll_append_head(&head, curr, &tail);
880 curr->active = 0;
881 }
882 } else if (rule == CIPHER_BUMP) {
883 if (curr->active)
884 ll_append_head(&head, curr, &tail);
885 } else if (rule == CIPHER_KILL) {
886 /* reverse == 0 */
887 if (head == curr)
888 head = curr->next;
889 else
890 curr->prev->next = curr->next;
891 if (tail == curr)
892 tail = curr->prev;
893 curr->active = 0;
894 if (curr->next != NULL)
895 curr->next->prev = curr->prev;
896 if (curr->prev != NULL)
897 curr->prev->next = curr->next;
898 curr->next = NULL;
899 curr->prev = NULL;
900 }
901 }
902
903 *head_p = head;
904 *tail_p = tail;
905
906 OSSL_TRACE_END(TLS_CIPHER);
907 }
908
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)909 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
910 CIPHER_ORDER **tail_p)
911 {
912 int32_t max_strength_bits;
913 int i, *number_uses;
914 CIPHER_ORDER *curr;
915
916 /*
917 * This routine sorts the ciphers with descending strength. The sorting
918 * must keep the pre-sorted sequence, so we apply the normal sorting
919 * routine as '+' movement to the end of the list.
920 */
921 max_strength_bits = 0;
922 curr = *head_p;
923 while (curr != NULL) {
924 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
925 max_strength_bits = curr->cipher->strength_bits;
926 curr = curr->next;
927 }
928
929 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
930 if (number_uses == NULL)
931 return 0;
932
933 /*
934 * Now find the strength_bits values actually used
935 */
936 curr = *head_p;
937 while (curr != NULL) {
938 if (curr->active)
939 number_uses[curr->cipher->strength_bits]++;
940 curr = curr->next;
941 }
942 /*
943 * Go through the list of used strength_bits values in descending
944 * order.
945 */
946 for (i = max_strength_bits; i >= 0; i--)
947 if (number_uses[i] > 0)
948 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
949 tail_p);
950
951 OPENSSL_free(number_uses);
952 return 1;
953 }
954
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)955 static int ssl_cipher_process_rulestr(const char *rule_str,
956 CIPHER_ORDER **head_p,
957 CIPHER_ORDER **tail_p,
958 const SSL_CIPHER **ca_list, CERT *c)
959 {
960 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
961 int min_tls;
962 const char *l, *buf;
963 int j, multi, found, rule, retval, ok, buflen;
964 uint32_t cipher_id = 0;
965 char ch;
966
967 retval = 1;
968 l = rule_str;
969 for (;;) {
970 ch = *l;
971
972 if (ch == '\0')
973 break; /* done */
974 if (ch == '-') {
975 rule = CIPHER_DEL;
976 l++;
977 } else if (ch == '+') {
978 rule = CIPHER_ORD;
979 l++;
980 } else if (ch == '!') {
981 rule = CIPHER_KILL;
982 l++;
983 } else if (ch == '@') {
984 rule = CIPHER_SPECIAL;
985 l++;
986 } else {
987 rule = CIPHER_ADD;
988 }
989
990 if (ITEM_SEP(ch)) {
991 l++;
992 continue;
993 }
994
995 alg_mkey = 0;
996 alg_auth = 0;
997 alg_enc = 0;
998 alg_mac = 0;
999 min_tls = 0;
1000 algo_strength = 0;
1001
1002 for (;;) {
1003 ch = *l;
1004 buf = l;
1005 buflen = 0;
1006 #ifndef CHARSET_EBCDIC
1007 while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1008 #else
1009 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1010 || (ch == '='))
1011 #endif
1012 {
1013 ch = *(++l);
1014 buflen++;
1015 }
1016
1017 if (buflen == 0) {
1018 /*
1019 * We hit something we cannot deal with,
1020 * it is no command or separator nor
1021 * alphanumeric, so we call this an error.
1022 */
1023 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1024 return 0;
1025 }
1026
1027 if (rule == CIPHER_SPECIAL) {
1028 found = 0; /* unused -- avoid compiler warning */
1029 break; /* special treatment */
1030 }
1031
1032 /* check for multi-part specification */
1033 if (ch == '+') {
1034 multi = 1;
1035 l++;
1036 } else {
1037 multi = 0;
1038 }
1039
1040 /*
1041 * Now search for the cipher alias in the ca_list. Be careful
1042 * with the strncmp, because the "buflen" limitation
1043 * will make the rule "ADH:SOME" and the cipher
1044 * "ADH-MY-CIPHER" look like a match for buflen=3.
1045 * So additionally check whether the cipher name found
1046 * has the correct length. We can save a strlen() call:
1047 * just checking for the '\0' at the right place is
1048 * sufficient, we have to strncmp() anyway. (We cannot
1049 * use strcmp(), because buf is not '\0' terminated.)
1050 */
1051 j = found = 0;
1052 cipher_id = 0;
1053 while (ca_list[j]) {
1054 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1055 && (ca_list[j]->name[buflen] == '\0')) {
1056 found = 1;
1057 break;
1058 } else if (ca_list[j]->stdname != NULL
1059 && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1060 && ca_list[j]->stdname[buflen] == '\0') {
1061 found = 1;
1062 break;
1063 } else
1064 j++;
1065 }
1066
1067 if (!found)
1068 break; /* ignore this entry */
1069
1070 if (ca_list[j]->algorithm_mkey) {
1071 if (alg_mkey) {
1072 alg_mkey &= ca_list[j]->algorithm_mkey;
1073 if (!alg_mkey) {
1074 found = 0;
1075 break;
1076 }
1077 } else {
1078 alg_mkey = ca_list[j]->algorithm_mkey;
1079 }
1080 }
1081
1082 if (ca_list[j]->algorithm_auth) {
1083 if (alg_auth) {
1084 alg_auth &= ca_list[j]->algorithm_auth;
1085 if (!alg_auth) {
1086 found = 0;
1087 break;
1088 }
1089 } else {
1090 alg_auth = ca_list[j]->algorithm_auth;
1091 }
1092 }
1093
1094 if (ca_list[j]->algorithm_enc) {
1095 if (alg_enc) {
1096 alg_enc &= ca_list[j]->algorithm_enc;
1097 if (!alg_enc) {
1098 found = 0;
1099 break;
1100 }
1101 } else {
1102 alg_enc = ca_list[j]->algorithm_enc;
1103 }
1104 }
1105
1106 if (ca_list[j]->algorithm_mac) {
1107 if (alg_mac) {
1108 alg_mac &= ca_list[j]->algorithm_mac;
1109 if (!alg_mac) {
1110 found = 0;
1111 break;
1112 }
1113 } else {
1114 alg_mac = ca_list[j]->algorithm_mac;
1115 }
1116 }
1117
1118 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1119 if (algo_strength & SSL_STRONG_MASK) {
1120 algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK;
1121 if (!(algo_strength & SSL_STRONG_MASK)) {
1122 found = 0;
1123 break;
1124 }
1125 } else {
1126 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1127 }
1128 }
1129
1130 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1131 if (algo_strength & SSL_DEFAULT_MASK) {
1132 algo_strength &= (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | ~SSL_DEFAULT_MASK;
1133 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1134 found = 0;
1135 break;
1136 }
1137 } else {
1138 algo_strength |= ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1139 }
1140 }
1141
1142 if (ca_list[j]->valid) {
1143 /*
1144 * explicit ciphersuite found; its protocol version does not
1145 * become part of the search pattern!
1146 */
1147
1148 cipher_id = ca_list[j]->id;
1149 } else {
1150 /*
1151 * not an explicit ciphersuite; only in this case, the
1152 * protocol version is considered part of the search pattern
1153 */
1154
1155 if (ca_list[j]->min_tls) {
1156 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1157 found = 0;
1158 break;
1159 } else {
1160 min_tls = ca_list[j]->min_tls;
1161 }
1162 }
1163 }
1164
1165 if (!multi)
1166 break;
1167 }
1168
1169 /*
1170 * Ok, we have the rule, now apply it
1171 */
1172 if (rule == CIPHER_SPECIAL) { /* special command */
1173 ok = 0;
1174 if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1175 ok = ssl_cipher_strength_sort(head_p, tail_p);
1176 } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1177 int level = *buf - '0';
1178 if (level < 0 || level > 5) {
1179 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1180 } else {
1181 c->sec_level = level;
1182 ok = 1;
1183 }
1184 } else {
1185 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1186 }
1187 if (ok == 0)
1188 retval = 0;
1189 /*
1190 * We do not support any "multi" options
1191 * together with "@", so throw away the
1192 * rest of the command, if any left, until
1193 * end or ':' is found.
1194 */
1195 while ((*l != '\0') && !ITEM_SEP(*l))
1196 l++;
1197 } else if (found) {
1198 ssl_cipher_apply_rule(cipher_id,
1199 alg_mkey, alg_auth, alg_enc, alg_mac,
1200 min_tls, algo_strength, rule, -1, head_p,
1201 tail_p);
1202 } else {
1203 while ((*l != '\0') && !ITEM_SEP(*l))
1204 l++;
1205 }
1206 if (*l == '\0')
1207 break; /* done */
1208 }
1209
1210 return retval;
1211 }
1212
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1213 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1214 const char **prule_str)
1215 {
1216 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1217 if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1218 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1219 } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1220 suiteb_comb2 = 1;
1221 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1222 } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1223 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1224 } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1225 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1226 }
1227
1228 if (suiteb_flags) {
1229 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1230 c->cert_flags |= suiteb_flags;
1231 } else {
1232 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1233 }
1234
1235 if (!suiteb_flags)
1236 return 1;
1237 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1238
1239 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1240 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1241 return 0;
1242 }
1243
1244 switch (suiteb_flags) {
1245 case SSL_CERT_FLAG_SUITEB_128_LOS:
1246 if (suiteb_comb2)
1247 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1248 else
1249 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1250 break;
1251 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1252 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1253 break;
1254 case SSL_CERT_FLAG_SUITEB_192_LOS:
1255 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1256 break;
1257 }
1258 return 1;
1259 }
1260
ciphersuite_cb(const char * elem,int len,void * arg)1261 static int ciphersuite_cb(const char *elem, int len, void *arg)
1262 {
1263 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1264 const SSL_CIPHER *cipher;
1265 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1266 char name[80];
1267
1268 if (len > (int)(sizeof(name) - 1))
1269 /* Anyway return 1 so we can parse rest of the list */
1270 return 1;
1271
1272 memcpy(name, elem, len);
1273 name[len] = '\0';
1274
1275 cipher = ssl3_get_cipher_by_std_name(name);
1276 if (cipher == NULL)
1277 /* Ciphersuite not found but return 1 to parse rest of the list */
1278 return 1;
1279
1280 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1281 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1282 return 0;
1283 }
1284
1285 return 1;
1286 }
1287
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1288 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1289 {
1290 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1291
1292 if (newciphers == NULL)
1293 return 0;
1294
1295 /* Parse the list. We explicitly allow an empty list */
1296 if (*str != '\0'
1297 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1298 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1299 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1300 sk_SSL_CIPHER_free(newciphers);
1301 return 0;
1302 }
1303 sk_SSL_CIPHER_free(*currciphers);
1304 *currciphers = newciphers;
1305
1306 return 1;
1307 }
1308
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1309 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1310 STACK_OF(SSL_CIPHER) *cipherstack)
1311 {
1312 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1313
1314 if (tmp_cipher_list == NULL) {
1315 return 0;
1316 }
1317
1318 sk_SSL_CIPHER_free(*cipher_list_by_id);
1319 *cipher_list_by_id = tmp_cipher_list;
1320
1321 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1322 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1323
1324 return 1;
1325 }
1326
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1327 static int update_cipher_list(SSL_CTX *ctx,
1328 STACK_OF(SSL_CIPHER) **cipher_list,
1329 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1330 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1331 {
1332 int i;
1333 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1334
1335 if (tmp_cipher_list == NULL)
1336 return 0;
1337
1338 /*
1339 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1340 * list.
1341 */
1342 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1343 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1344 == TLS1_3_VERSION)
1345 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1346
1347 /* Insert the new TLSv1.3 ciphersuites */
1348 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1349 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1350
1351 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1352 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1353 && (ssl_cipher_table_mac[sslc->algorithm2
1354 & SSL_HANDSHAKE_MAC_MASK]
1355 .mask
1356 & ctx->disabled_mac_mask)
1357 == 0) {
1358 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1359 }
1360 }
1361
1362 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1363 sk_SSL_CIPHER_free(tmp_cipher_list);
1364 return 0;
1365 }
1366
1367 sk_SSL_CIPHER_free(*cipher_list);
1368 *cipher_list = tmp_cipher_list;
1369
1370 return 1;
1371 }
1372
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1373 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1374 {
1375 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1376
1377 if (ret && ctx->cipher_list != NULL)
1378 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1379 ctx->tls13_ciphersuites);
1380
1381 return ret;
1382 }
1383
SSL_set_ciphersuites(SSL * s,const char * str)1384 int SSL_set_ciphersuites(SSL *s, const char *str)
1385 {
1386 STACK_OF(SSL_CIPHER) *cipher_list;
1387 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1388 int ret;
1389
1390 if (sc == NULL)
1391 return 0;
1392
1393 ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1394
1395 if (sc->cipher_list == NULL) {
1396 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1397 sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1398 }
1399 if (ret && sc->cipher_list != NULL)
1400 return update_cipher_list(s->ctx, &sc->cipher_list,
1401 &sc->cipher_list_by_id,
1402 sc->tls13_ciphersuites);
1403
1404 return ret;
1405 }
1406
STACK_OF(SSL_CIPHER)1407 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1408 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1409 STACK_OF(SSL_CIPHER) **cipher_list,
1410 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1411 const char *rule_str,
1412 CERT *c)
1413 {
1414 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1415 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1416 STACK_OF(SSL_CIPHER) *cipherstack;
1417 const char *rule_p;
1418 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1419 const SSL_CIPHER **ca_list = NULL;
1420 const SSL_METHOD *ssl_method = ctx->method;
1421
1422 /*
1423 * Return with error if nothing to do.
1424 */
1425 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1426 return NULL;
1427
1428 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1429 return NULL;
1430
1431 /*
1432 * To reduce the work to do we only want to process the compiled
1433 * in algorithms, so we first get the mask of disabled ciphers.
1434 */
1435
1436 disabled_mkey = ctx->disabled_mkey_mask;
1437 disabled_auth = ctx->disabled_auth_mask;
1438 disabled_enc = ctx->disabled_enc_mask;
1439 disabled_mac = ctx->disabled_mac_mask;
1440
1441 /*
1442 * Now we have to collect the available ciphers from the compiled
1443 * in ciphers. We cannot get more than the number compiled in, so
1444 * it is used for allocation.
1445 */
1446 num_of_ciphers = ssl_method->num_ciphers();
1447
1448 if (num_of_ciphers > 0) {
1449 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1450 if (co_list == NULL)
1451 return NULL; /* Failure */
1452 }
1453
1454 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1455 disabled_mkey, disabled_auth, disabled_enc,
1456 disabled_mac, co_list, &head, &tail);
1457
1458 /* Now arrange all ciphers by preference. */
1459
1460 /*
1461 * Everything else being equal, prefer ephemeral ECDH over other key
1462 * exchange mechanisms.
1463 * For consistency, prefer ECDSA over RSA (though this only matters if the
1464 * server has both certificates, and is using the DEFAULT, or a client
1465 * preference).
1466 */
1467 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1468 -1, &head, &tail);
1469 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1470 &tail);
1471 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1472 &tail);
1473
1474 /* Within each strength group, we prefer GCM over CHACHA... */
1475 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1476 &head, &tail);
1477 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1478 &head, &tail);
1479
1480 /*
1481 * ...and generally, our preferred cipher is AES.
1482 * Note that AEADs will be bumped to take preference after sorting by
1483 * strength.
1484 */
1485 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1486 -1, &head, &tail);
1487
1488 /* Temporarily enable everything else for sorting */
1489 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1490
1491 /* Low priority for MD5 */
1492 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1493 &tail);
1494
1495 /*
1496 * Move anonymous ciphers to the end. Usually, these will remain
1497 * disabled. (For applications that allow them, they aren't too bad, but
1498 * we prefer authenticated ciphers.)
1499 */
1500 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1501 &tail);
1502
1503 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1504 &tail);
1505 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1506 &tail);
1507
1508 /* RC4 is sort-of broken -- move to the end */
1509 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1510 &tail);
1511
1512 /*
1513 * Now sort by symmetric encryption strength. The above ordering remains
1514 * in force within each class
1515 */
1516 if (!ssl_cipher_strength_sort(&head, &tail)) {
1517 OPENSSL_free(co_list);
1518 return NULL;
1519 }
1520
1521 /*
1522 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1523 */
1524 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1525 &head, &tail);
1526
1527 /*
1528 * Irrespective of strength, enforce the following order:
1529 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1530 * Within each group, ciphers remain sorted by strength and previous
1531 * preference, i.e.,
1532 * 1) ECDHE > DHE
1533 * 2) GCM > CHACHA
1534 * 3) AES > rest
1535 * 4) TLS 1.2 > legacy
1536 *
1537 * Because we now bump ciphers to the top of the list, we proceed in
1538 * reverse order of preference.
1539 */
1540 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1541 &head, &tail);
1542 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1543 CIPHER_BUMP, -1, &head, &tail);
1544 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1545 CIPHER_BUMP, -1, &head, &tail);
1546
1547 /* Now disable everything (maintaining the ordering!) */
1548 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1549
1550 /*
1551 * We also need cipher aliases for selecting based on the rule_str.
1552 * There might be two types of entries in the rule_str: 1) names
1553 * of ciphers themselves 2) aliases for groups of ciphers.
1554 * For 1) we need the available ciphers and for 2) the cipher
1555 * groups of cipher_aliases added together in one list (otherwise
1556 * we would be happy with just the cipher_aliases table).
1557 */
1558 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1559 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1560 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1561 if (ca_list == NULL) {
1562 OPENSSL_free(co_list);
1563 return NULL; /* Failure */
1564 }
1565 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1566 disabled_mkey, disabled_auth, disabled_enc,
1567 disabled_mac, head);
1568
1569 /*
1570 * If the rule_string begins with DEFAULT, apply the default rule
1571 * before using the (possibly available) additional rules.
1572 */
1573 ok = 1;
1574 rule_p = rule_str;
1575 if (HAS_PREFIX(rule_str, "DEFAULT")) {
1576 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1577 &head, &tail, ca_list, c);
1578 rule_p += 7;
1579 if (*rule_p == ':')
1580 rule_p++;
1581 }
1582
1583 if (ok && (rule_p[0] != '\0'))
1584 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1585
1586 OPENSSL_free(ca_list); /* Not needed anymore */
1587
1588 if (!ok) { /* Rule processing failure */
1589 OPENSSL_free(co_list);
1590 return NULL;
1591 }
1592
1593 /*
1594 * Allocate new "cipherstack" for the result, return with error
1595 * if we cannot get one.
1596 */
1597 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1598 OPENSSL_free(co_list);
1599 return NULL;
1600 }
1601
1602 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1603 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1604 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1605
1606 /* Don't include any TLSv1.3 ciphers that are disabled */
1607 if ((sslc->algorithm_enc & disabled_enc) != 0
1608 || (ssl_cipher_table_mac[sslc->algorithm2
1609 & SSL_HANDSHAKE_MAC_MASK]
1610 .mask
1611 & ctx->disabled_mac_mask)
1612 != 0) {
1613 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1614 i--;
1615 continue;
1616 }
1617
1618 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1619 OPENSSL_free(co_list);
1620 sk_SSL_CIPHER_free(cipherstack);
1621 return NULL;
1622 }
1623 }
1624
1625 OSSL_TRACE_BEGIN(TLS_CIPHER)
1626 {
1627 BIO_printf(trc_out, "cipher selection:\n");
1628 }
1629 /*
1630 * The cipher selection for the list is done. The ciphers are added
1631 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1632 */
1633 for (curr = head; curr != NULL; curr = curr->next) {
1634 if (curr->active) {
1635 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1636 OPENSSL_free(co_list);
1637 sk_SSL_CIPHER_free(cipherstack);
1638 OSSL_TRACE_CANCEL(TLS_CIPHER);
1639 return NULL;
1640 }
1641 if (trc_out != NULL)
1642 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1643 }
1644 }
1645 OPENSSL_free(co_list); /* Not needed any longer */
1646 OSSL_TRACE_END(TLS_CIPHER);
1647
1648 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1649 sk_SSL_CIPHER_free(cipherstack);
1650 return NULL;
1651 }
1652 sk_SSL_CIPHER_free(*cipher_list);
1653 *cipher_list = cipherstack;
1654
1655 return cipherstack;
1656 }
1657
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1658 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1659 {
1660 const char *ver;
1661 const char *kx, *au, *enc, *mac;
1662 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1663 static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1664
1665 if (buf == NULL) {
1666 len = 128;
1667 if ((buf = OPENSSL_malloc(len)) == NULL)
1668 return NULL;
1669 } else if (len < 128) {
1670 return NULL;
1671 }
1672
1673 alg_mkey = cipher->algorithm_mkey;
1674 alg_auth = cipher->algorithm_auth;
1675 alg_enc = cipher->algorithm_enc;
1676 alg_mac = cipher->algorithm_mac;
1677
1678 ver = ssl_protocol_to_string(cipher->min_tls);
1679
1680 switch (alg_mkey) {
1681 case SSL_kRSA:
1682 kx = "RSA";
1683 break;
1684 case SSL_kDHE:
1685 kx = "DH";
1686 break;
1687 case SSL_kECDHE:
1688 kx = "ECDH";
1689 break;
1690 case SSL_kPSK:
1691 kx = "PSK";
1692 break;
1693 case SSL_kRSAPSK:
1694 kx = "RSAPSK";
1695 break;
1696 case SSL_kECDHEPSK:
1697 kx = "ECDHEPSK";
1698 break;
1699 case SSL_kDHEPSK:
1700 kx = "DHEPSK";
1701 break;
1702 case SSL_kSRP:
1703 kx = "SRP";
1704 break;
1705 case SSL_kGOST:
1706 kx = "GOST";
1707 break;
1708 case SSL_kGOST18:
1709 kx = "GOST18";
1710 break;
1711 case SSL_kANY:
1712 kx = "any";
1713 break;
1714 default:
1715 kx = "unknown";
1716 }
1717
1718 switch (alg_auth) {
1719 case SSL_aRSA:
1720 au = "RSA";
1721 break;
1722 case SSL_aDSS:
1723 au = "DSS";
1724 break;
1725 case SSL_aNULL:
1726 au = "None";
1727 break;
1728 case SSL_aECDSA:
1729 au = "ECDSA";
1730 break;
1731 case SSL_aPSK:
1732 au = "PSK";
1733 break;
1734 case SSL_aSRP:
1735 au = "SRP";
1736 break;
1737 case SSL_aGOST01:
1738 au = "GOST01";
1739 break;
1740 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1741 case (SSL_aGOST12 | SSL_aGOST01):
1742 au = "GOST12";
1743 break;
1744 case SSL_aANY:
1745 au = "any";
1746 break;
1747 default:
1748 au = "unknown";
1749 break;
1750 }
1751
1752 switch (alg_enc) {
1753 case SSL_DES:
1754 enc = "DES(56)";
1755 break;
1756 case SSL_3DES:
1757 enc = "3DES(168)";
1758 break;
1759 case SSL_RC4:
1760 enc = "RC4(128)";
1761 break;
1762 case SSL_RC2:
1763 enc = "RC2(128)";
1764 break;
1765 case SSL_IDEA:
1766 enc = "IDEA(128)";
1767 break;
1768 case SSL_eNULL:
1769 enc = "None";
1770 break;
1771 case SSL_AES128:
1772 enc = "AES(128)";
1773 break;
1774 case SSL_AES256:
1775 enc = "AES(256)";
1776 break;
1777 case SSL_AES128GCM:
1778 enc = "AESGCM(128)";
1779 break;
1780 case SSL_AES256GCM:
1781 enc = "AESGCM(256)";
1782 break;
1783 case SSL_AES128CCM:
1784 enc = "AESCCM(128)";
1785 break;
1786 case SSL_AES256CCM:
1787 enc = "AESCCM(256)";
1788 break;
1789 case SSL_AES128CCM8:
1790 enc = "AESCCM8(128)";
1791 break;
1792 case SSL_AES256CCM8:
1793 enc = "AESCCM8(256)";
1794 break;
1795 case SSL_CAMELLIA128:
1796 enc = "Camellia(128)";
1797 break;
1798 case SSL_CAMELLIA256:
1799 enc = "Camellia(256)";
1800 break;
1801 case SSL_ARIA128GCM:
1802 enc = "ARIAGCM(128)";
1803 break;
1804 case SSL_ARIA256GCM:
1805 enc = "ARIAGCM(256)";
1806 break;
1807 case SSL_SEED:
1808 enc = "SEED(128)";
1809 break;
1810 case SSL_eGOST2814789CNT:
1811 case SSL_eGOST2814789CNT12:
1812 enc = "GOST89(256)";
1813 break;
1814 case SSL_MAGMA:
1815 enc = "MAGMA";
1816 break;
1817 case SSL_KUZNYECHIK:
1818 enc = "KUZNYECHIK";
1819 break;
1820 case SSL_CHACHA20POLY1305:
1821 enc = "CHACHA20/POLY1305(256)";
1822 break;
1823 default:
1824 enc = "unknown";
1825 break;
1826 }
1827
1828 switch (alg_mac) {
1829 case SSL_MD5:
1830 mac = "MD5";
1831 break;
1832 case SSL_SHA1:
1833 mac = "SHA1";
1834 break;
1835 case SSL_SHA256:
1836 mac = "SHA256";
1837 break;
1838 case SSL_SHA384:
1839 mac = "SHA384";
1840 break;
1841 case SSL_AEAD:
1842 mac = "AEAD";
1843 break;
1844 case SSL_GOST89MAC:
1845 case SSL_GOST89MAC12:
1846 mac = "GOST89";
1847 break;
1848 case SSL_GOST94:
1849 mac = "GOST94";
1850 break;
1851 case SSL_GOST12_256:
1852 case SSL_GOST12_512:
1853 mac = "GOST2012";
1854 break;
1855 default:
1856 mac = "unknown";
1857 break;
1858 }
1859
1860 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1861
1862 return buf;
1863 }
1864
SSL_CIPHER_get_version(const SSL_CIPHER * c)1865 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1866 {
1867 if (c == NULL)
1868 return "(NONE)";
1869
1870 /*
1871 * Backwards-compatibility crutch. In almost all contexts we report TLS
1872 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1873 */
1874 if (c->min_tls == TLS1_VERSION)
1875 return "TLSv1.0";
1876 return ssl_protocol_to_string(c->min_tls);
1877 }
1878
1879 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1880 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1881 {
1882 if (c != NULL)
1883 return c->name;
1884 return "(NONE)";
1885 }
1886
1887 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1888 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1889 {
1890 if (c != NULL)
1891 return c->stdname;
1892 return "(NONE)";
1893 }
1894
1895 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1896 const char *OPENSSL_cipher_name(const char *stdname)
1897 {
1898 const SSL_CIPHER *c;
1899
1900 if (stdname == NULL)
1901 return "(NONE)";
1902 c = ssl3_get_cipher_by_std_name(stdname);
1903 return SSL_CIPHER_get_name(c);
1904 }
1905
1906 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1907 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1908 {
1909 int ret = 0;
1910
1911 if (c != NULL) {
1912 if (alg_bits != NULL)
1913 *alg_bits = (int)c->alg_bits;
1914 ret = (int)c->strength_bits;
1915 }
1916 return ret;
1917 }
1918
SSL_CIPHER_get_id(const SSL_CIPHER * c)1919 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1920 {
1921 return c->id;
1922 }
1923
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1924 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1925 {
1926 return c->id & 0xFFFF;
1927 }
1928
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1929 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1930 {
1931 SSL_COMP *ctmp;
1932 SSL_COMP srch_key;
1933 int i;
1934
1935 if ((n == 0) || (sk == NULL))
1936 return NULL;
1937 srch_key.id = n;
1938 i = sk_SSL_COMP_find(sk, &srch_key);
1939 if (i >= 0)
1940 ctmp = sk_SSL_COMP_value(sk, i);
1941 else
1942 ctmp = NULL;
1943
1944 return ctmp;
1945 }
1946
1947 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1948 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1949 {
1950 return NULL;
1951 }
1952
STACK_OF(SSL_COMP)1953 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1954 *meths)
1955 {
1956 return meths;
1957 }
1958
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1959 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1960 {
1961 return 1;
1962 }
1963
1964 #else
STACK_OF(SSL_COMP)1965 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1966 {
1967 STACK_OF(SSL_COMP) **rv;
1968
1969 rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1970 OSSL_LIB_CTX_COMP_METHODS);
1971 if (rv != NULL)
1972 return *rv;
1973 else
1974 return NULL;
1975 }
1976
STACK_OF(SSL_COMP)1977 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1978 *meths)
1979 {
1980 STACK_OF(SSL_COMP) **comp_methods;
1981 STACK_OF(SSL_COMP) *old_meths;
1982
1983 comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1984 OSSL_LIB_CTX_COMP_METHODS);
1985 if (comp_methods == NULL) {
1986 old_meths = meths;
1987 } else {
1988 old_meths = *comp_methods;
1989 *comp_methods = meths;
1990 }
1991
1992 return old_meths;
1993 }
1994
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1995 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1996 {
1997 STACK_OF(SSL_COMP) *comp_methods;
1998 SSL_COMP *comp;
1999
2000 comp_methods = SSL_COMP_get_compression_methods();
2001
2002 if (comp_methods == NULL)
2003 return 1;
2004
2005 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2006 return 1;
2007
2008 /*-
2009 * According to draft-ietf-tls-compression-04.txt, the
2010 * compression number ranges should be the following:
2011 *
2012 * 0 to 63: methods defined by the IETF
2013 * 64 to 192: external party methods assigned by IANA
2014 * 193 to 255: reserved for private use
2015 */
2016 if (id < 193 || id > 255) {
2017 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2018 return 1;
2019 }
2020
2021 comp = OPENSSL_malloc(sizeof(*comp));
2022 if (comp == NULL)
2023 return 1;
2024
2025 comp->id = id;
2026 if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2027 OPENSSL_free(comp);
2028 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2029 return 1;
2030 }
2031 if (!sk_SSL_COMP_push(comp_methods, comp)) {
2032 OPENSSL_free(comp);
2033 ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2034 return 1;
2035 }
2036
2037 return 0;
2038 }
2039 #endif
2040
SSL_COMP_get_name(const COMP_METHOD * comp)2041 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2042 {
2043 #ifndef OPENSSL_NO_COMP
2044 return comp ? COMP_get_name(comp) : NULL;
2045 #else
2046 return NULL;
2047 #endif
2048 }
2049
SSL_COMP_get0_name(const SSL_COMP * comp)2050 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2051 {
2052 #ifndef OPENSSL_NO_COMP
2053 return comp->name;
2054 #else
2055 return NULL;
2056 #endif
2057 }
2058
SSL_COMP_get_id(const SSL_COMP * comp)2059 int SSL_COMP_get_id(const SSL_COMP *comp)
2060 {
2061 #ifndef OPENSSL_NO_COMP
2062 return comp->id;
2063 #else
2064 return -1;
2065 #endif
2066 }
2067
ssl_get_cipher_by_char(SSL_CONNECTION * s,const unsigned char * ptr,int all)2068 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2069 const unsigned char *ptr,
2070 int all)
2071 {
2072 const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2073
2074 if (c == NULL || (!all && c->valid == 0))
2075 return NULL;
2076 return c;
2077 }
2078
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2079 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2080 {
2081 return ssl->method->get_cipher_by_char(ptr);
2082 }
2083
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2084 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2085 {
2086 int i;
2087 if (c == NULL)
2088 return NID_undef;
2089 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2090 if (i == -1)
2091 return NID_undef;
2092 return ssl_cipher_table_cipher[i].nid;
2093 }
2094
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2095 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2096 {
2097 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2098
2099 if (i == -1)
2100 return NID_undef;
2101 return ssl_cipher_table_mac[i].nid;
2102 }
2103
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2104 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2105 {
2106 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2107
2108 if (i == -1)
2109 return NID_undef;
2110 return ssl_cipher_table_kx[i].nid;
2111 }
2112
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2113 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2114 {
2115 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2116
2117 if (i == -1)
2118 return NID_undef;
2119 return ssl_cipher_table_auth[i].nid;
2120 }
2121
ssl_get_md_idx(int md_nid)2122 int ssl_get_md_idx(int md_nid)
2123 {
2124 int i;
2125
2126 for (i = 0; i < SSL_MD_NUM_IDX; i++) {
2127 if (md_nid == ssl_cipher_table_mac[i].nid)
2128 return i;
2129 }
2130 return -1;
2131 }
2132
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2133 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2134 {
2135 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2136
2137 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2138 return NULL;
2139 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2140 }
2141
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2142 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2143 {
2144 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2145 }
2146
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2147 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2148 size_t *int_overhead, size_t *blocksize,
2149 size_t *ext_overhead)
2150 {
2151 int mac = 0, in = 0, blk = 0, out = 0;
2152
2153 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2154 * because there are no handy #defines for those. */
2155 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2156 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2157 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2158 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2159 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2160 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2161 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2162 out = 16;
2163 } else if (c->algorithm_mac & SSL_AEAD) {
2164 /* We're supposed to have handled all the AEAD modes above */
2165 return 0;
2166 } else {
2167 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2168 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2169 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2170
2171 if (e_md == NULL)
2172 return 0;
2173
2174 mac = EVP_MD_get_size(e_md);
2175 if (mac <= 0)
2176 return 0;
2177 if (c->algorithm_enc != SSL_eNULL) {
2178 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2179 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2180
2181 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2182 known CBC cipher. */
2183 if (e_ciph == NULL || EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2184 return 0;
2185
2186 in = 1; /* padding length byte */
2187 out = EVP_CIPHER_get_iv_length(e_ciph);
2188 if (out < 0)
2189 return 0;
2190 blk = EVP_CIPHER_get_block_size(e_ciph);
2191 if (blk <= 0)
2192 return 0;
2193 }
2194 }
2195
2196 *mac_overhead = (size_t)mac;
2197 *int_overhead = (size_t)in;
2198 *blocksize = (size_t)blk;
2199 *ext_overhead = (size_t)out;
2200
2201 return 1;
2202 }
2203
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2204 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2205 {
2206 const SSL_CERT_LOOKUP *cl;
2207
2208 /* A provider-loaded key type is always enabled */
2209 if (idx >= SSL_PKEY_NUM)
2210 return 0;
2211
2212 cl = ssl_cert_lookup_by_idx(idx, ctx);
2213 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2214 return 1;
2215 return 0;
2216 }
2217
2218 /*
2219 * Default list of TLSv1.2 (and earlier) ciphers
2220 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2221 * Update both macro and function simultaneously
2222 */
OSSL_default_cipher_list(void)2223 const char *OSSL_default_cipher_list(void)
2224 {
2225 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2226 }
2227
2228 /*
2229 * Default list of TLSv1.3 (and later) ciphers
2230 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2231 * Update both macro and function simultaneously
2232 */
OSSL_default_ciphersuites(void)2233 const char *OSSL_default_ciphersuites(void)
2234 {
2235 return "TLS_AES_256_GCM_SHA384:"
2236 "TLS_CHACHA20_POLY1305_SHA256:"
2237 "TLS_AES_128_GCM_SHA256";
2238 }
2239