xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 3a8960711f4319f9b894ea2453c89065ee1b3a10)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32  * Copyright 2018 Joyent, Inc.
33  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34  * Copyright 2017 Joyent, Inc.
35  * Copyright (c) 2017, Intel Corporation.
36  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38  * Copyright (c) 2023, 2024, Klara Inc.
39  */
40 
41 /*
42  * SPA: Storage Pool Allocator
43  *
44  * This file contains all the routines used when modifying on-disk SPA state.
45  * This includes opening, importing, destroying, exporting a pool, and syncing a
46  * pool.
47  */
48 
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94 
95 #ifdef	_KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif	/* _KERNEL */
102 
103 #include "zfs_prop.h"
104 #include "zfs_comutil.h"
105 #include <cityhash.h>
106 
107 /*
108  * spa_thread() existed on Illumos as a parent thread for the various worker
109  * threads that actually run the pool, as a way to both reference the entire
110  * pool work as a single object, and to share properties like scheduling
111  * options. It has not yet been adapted to Linux or FreeBSD. This define is
112  * used to mark related parts of the code to make things easier for the reader,
113  * and to compile this code out. It can be removed when someone implements it,
114  * moves it to some Illumos-specific place, or removes it entirely.
115  */
116 #undef HAVE_SPA_THREAD
117 
118 /*
119  * The "System Duty Cycle" scheduling class is an Illumos feature to help
120  * prevent CPU-intensive kernel threads from affecting latency on interactive
121  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
122  * gated behind a define. On Illumos SDC depends on spa_thread(), but
123  * spa_thread() also has other uses, so this is a separate define.
124  */
125 #undef HAVE_SYSDC
126 
127 /*
128  * The interval, in seconds, at which failed configuration cache file writes
129  * should be retried.
130  */
131 int zfs_ccw_retry_interval = 300;
132 
133 typedef enum zti_modes {
134 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
135 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
136 	ZTI_MODE_SYNC,			/* sync thread assigned */
137 	ZTI_MODE_NULL,			/* don't create a taskq */
138 	ZTI_NMODES
139 } zti_modes_t;
140 
141 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
142 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
143 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
144 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
145 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
146 
147 #define	ZTI_N(n)	ZTI_P(n, 1)
148 #define	ZTI_ONE		ZTI_N(1)
149 
150 typedef struct zio_taskq_info {
151 	zti_modes_t zti_mode;
152 	uint_t zti_value;
153 	uint_t zti_count;
154 } zio_taskq_info_t;
155 
156 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
157 	"iss", "iss_h", "int", "int_h"
158 };
159 
160 /*
161  * This table defines the taskq settings for each ZFS I/O type. When
162  * initializing a pool, we use this table to create an appropriately sized
163  * taskq. Some operations are low volume and therefore have a small, static
164  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
165  * macros. Other operations process a large amount of data; the ZTI_SCALE
166  * macro causes us to create a taskq oriented for throughput. Some operations
167  * are so high frequency and short-lived that the taskq itself can become a
168  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
169  * additional degree of parallelism specified by the number of threads per-
170  * taskq and the number of taskqs; when dispatching an event in this case, the
171  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
172  * that scales with the number of CPUs.
173  *
174  * The different taskq priorities are to handle the different contexts (issue
175  * and interrupt) and then to reserve threads for high priority I/Os that
176  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
177  * implementation, so separate high priority threads are used there.
178  */
179 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
180 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
181 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
182 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
183 #ifdef illumos
184 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
185 #else
186 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
187 #endif
188 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
190 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
191 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
192 };
193 
194 static void spa_sync_version(void *arg, dmu_tx_t *tx);
195 static void spa_sync_props(void *arg, dmu_tx_t *tx);
196 static boolean_t spa_has_active_shared_spare(spa_t *spa);
197 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
198     const char **ereport);
199 static void spa_vdev_resilver_done(spa_t *spa);
200 
201 /*
202  * Percentage of all CPUs that can be used by the metaslab preload taskq.
203  */
204 static uint_t metaslab_preload_pct = 50;
205 
206 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
207 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
208 
209 #ifdef HAVE_SYSDC
210 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
211 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
212 #endif
213 
214 #ifdef HAVE_SPA_THREAD
215 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
216 #endif
217 
218 static uint_t	zio_taskq_write_tpq = 16;
219 
220 /*
221  * Report any spa_load_verify errors found, but do not fail spa_load.
222  * This is used by zdb to analyze non-idle pools.
223  */
224 boolean_t	spa_load_verify_dryrun = B_FALSE;
225 
226 /*
227  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
228  * This is used by zdb for spacemaps verification.
229  */
230 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
231 
232 /*
233  * This (illegal) pool name is used when temporarily importing a spa_t in order
234  * to get the vdev stats associated with the imported devices.
235  */
236 #define	TRYIMPORT_NAME	"$import"
237 
238 /*
239  * For debugging purposes: print out vdev tree during pool import.
240  */
241 static int		spa_load_print_vdev_tree = B_FALSE;
242 
243 /*
244  * A non-zero value for zfs_max_missing_tvds means that we allow importing
245  * pools with missing top-level vdevs. This is strictly intended for advanced
246  * pool recovery cases since missing data is almost inevitable. Pools with
247  * missing devices can only be imported read-only for safety reasons, and their
248  * fail-mode will be automatically set to "continue".
249  *
250  * With 1 missing vdev we should be able to import the pool and mount all
251  * datasets. User data that was not modified after the missing device has been
252  * added should be recoverable. This means that snapshots created prior to the
253  * addition of that device should be completely intact.
254  *
255  * With 2 missing vdevs, some datasets may fail to mount since there are
256  * dataset statistics that are stored as regular metadata. Some data might be
257  * recoverable if those vdevs were added recently.
258  *
259  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
260  * may be missing entirely. Chances of data recovery are very low. Note that
261  * there are also risks of performing an inadvertent rewind as we might be
262  * missing all the vdevs with the latest uberblocks.
263  */
264 uint64_t	zfs_max_missing_tvds = 0;
265 
266 /*
267  * The parameters below are similar to zfs_max_missing_tvds but are only
268  * intended for a preliminary open of the pool with an untrusted config which
269  * might be incomplete or out-dated.
270  *
271  * We are more tolerant for pools opened from a cachefile since we could have
272  * an out-dated cachefile where a device removal was not registered.
273  * We could have set the limit arbitrarily high but in the case where devices
274  * are really missing we would want to return the proper error codes; we chose
275  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
276  * and we get a chance to retrieve the trusted config.
277  */
278 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
279 
280 /*
281  * In the case where config was assembled by scanning device paths (/dev/dsks
282  * by default) we are less tolerant since all the existing devices should have
283  * been detected and we want spa_load to return the right error codes.
284  */
285 uint64_t	zfs_max_missing_tvds_scan = 0;
286 
287 /*
288  * Debugging aid that pauses spa_sync() towards the end.
289  */
290 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
291 
292 /*
293  * Variables to indicate the livelist condense zthr func should wait at certain
294  * points for the livelist to be removed - used to test condense/destroy races
295  */
296 static int zfs_livelist_condense_zthr_pause = 0;
297 static int zfs_livelist_condense_sync_pause = 0;
298 
299 /*
300  * Variables to track whether or not condense cancellation has been
301  * triggered in testing.
302  */
303 static int zfs_livelist_condense_sync_cancel = 0;
304 static int zfs_livelist_condense_zthr_cancel = 0;
305 
306 /*
307  * Variable to track whether or not extra ALLOC blkptrs were added to a
308  * livelist entry while it was being condensed (caused by the way we track
309  * remapped blkptrs in dbuf_remap_impl)
310  */
311 static int zfs_livelist_condense_new_alloc = 0;
312 
313 /*
314  * ==========================================================================
315  * SPA properties routines
316  * ==========================================================================
317  */
318 
319 /*
320  * Add a (source=src, propname=propval) list to an nvlist.
321  */
322 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)323 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
324     uint64_t intval, zprop_source_t src)
325 {
326 	const char *propname = zpool_prop_to_name(prop);
327 	nvlist_t *propval;
328 
329 	propval = fnvlist_alloc();
330 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
331 
332 	if (strval != NULL)
333 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
334 	else
335 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
336 
337 	fnvlist_add_nvlist(nvl, propname, propval);
338 	nvlist_free(propval);
339 }
340 
341 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)342 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
343 {
344 	zpool_prop_t prop = zpool_name_to_prop(propname);
345 	zprop_source_t src = ZPROP_SRC_NONE;
346 	uint64_t intval;
347 	int err;
348 
349 	/*
350 	 * NB: Not all properties lookups via this API require
351 	 * the spa props lock, so they must explicitly grab it here.
352 	 */
353 	switch (prop) {
354 	case ZPOOL_PROP_DEDUPCACHED:
355 		err = ddt_get_pool_dedup_cached(spa, &intval);
356 		if (err != 0)
357 			return (SET_ERROR(err));
358 		break;
359 	default:
360 		return (SET_ERROR(EINVAL));
361 	}
362 
363 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
364 
365 	return (0);
366 }
367 
368 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)369 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
370     nvlist_t *outnvl)
371 {
372 	int err = 0;
373 
374 	if (props == NULL)
375 		return (0);
376 
377 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
378 		err = spa_prop_add(spa, props[i], outnvl);
379 	}
380 
381 	return (err);
382 }
383 
384 /*
385  * Add a user property (source=src, propname=propval) to an nvlist.
386  */
387 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)388 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
389     zprop_source_t src)
390 {
391 	nvlist_t *propval;
392 
393 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
394 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
395 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
396 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
397 	nvlist_free(propval);
398 }
399 
400 /*
401  * Get property values from the spa configuration.
402  */
403 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)404 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
405 {
406 	vdev_t *rvd = spa->spa_root_vdev;
407 	dsl_pool_t *pool = spa->spa_dsl_pool;
408 	uint64_t size, alloc, cap, version;
409 	const zprop_source_t src = ZPROP_SRC_NONE;
410 	spa_config_dirent_t *dp;
411 	metaslab_class_t *mc = spa_normal_class(spa);
412 
413 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
414 
415 	if (rvd != NULL) {
416 		alloc = metaslab_class_get_alloc(mc);
417 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
419 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
420 
421 		size = metaslab_class_get_space(mc);
422 		size += metaslab_class_get_space(spa_special_class(spa));
423 		size += metaslab_class_get_space(spa_dedup_class(spa));
424 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
425 
426 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
429 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
430 		    size - alloc, src);
431 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
432 		    spa->spa_checkpoint_info.sci_dspace, src);
433 
434 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
435 		    metaslab_class_fragmentation(mc), src);
436 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
437 		    metaslab_class_expandable_space(mc), src);
438 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
439 		    (spa_mode(spa) == SPA_MODE_READ), src);
440 
441 		cap = (size == 0) ? 0 : (alloc * 100 / size);
442 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
443 
444 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
445 		    ddt_get_pool_dedup_ratio(spa), src);
446 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
447 		    brt_get_used(spa), src);
448 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
449 		    brt_get_saved(spa), src);
450 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
451 		    brt_get_ratio(spa), src);
452 
453 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
454 		    ddt_get_ddt_dsize(spa), src);
455 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 		    rvd->vdev_state, src);
457 		spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
458 		    spa_get_last_scrubbed_txg(spa), src);
459 
460 		version = spa_version(spa);
461 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
462 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
463 			    version, ZPROP_SRC_DEFAULT);
464 		} else {
465 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
466 			    version, ZPROP_SRC_LOCAL);
467 		}
468 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
469 		    NULL, spa_load_guid(spa), src);
470 	}
471 
472 	if (pool != NULL) {
473 		/*
474 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
475 		 * when opening pools before this version freedir will be NULL.
476 		 */
477 		if (pool->dp_free_dir != NULL) {
478 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
479 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
480 			    src);
481 		} else {
482 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
483 			    NULL, 0, src);
484 		}
485 
486 		if (pool->dp_leak_dir != NULL) {
487 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
488 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
489 			    src);
490 		} else {
491 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
492 			    NULL, 0, src);
493 		}
494 	}
495 
496 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
497 
498 	if (spa->spa_comment != NULL) {
499 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
500 		    0, ZPROP_SRC_LOCAL);
501 	}
502 
503 	if (spa->spa_compatibility != NULL) {
504 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
505 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
506 	}
507 
508 	if (spa->spa_root != NULL)
509 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
510 		    0, ZPROP_SRC_LOCAL);
511 
512 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
513 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
514 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
515 	} else {
516 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
517 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
518 	}
519 
520 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
521 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
522 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
523 	} else {
524 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
525 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
526 	}
527 
528 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
529 		if (dp->scd_path == NULL) {
530 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
531 			    "none", 0, ZPROP_SRC_LOCAL);
532 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
533 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
534 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
535 		}
536 	}
537 }
538 
539 /*
540  * Get zpool property values.
541  */
542 int
spa_prop_get(spa_t * spa,nvlist_t * nv)543 spa_prop_get(spa_t *spa, nvlist_t *nv)
544 {
545 	objset_t *mos = spa->spa_meta_objset;
546 	zap_cursor_t zc;
547 	zap_attribute_t *za;
548 	dsl_pool_t *dp;
549 	int err = 0;
550 
551 	dp = spa_get_dsl(spa);
552 	dsl_pool_config_enter(dp, FTAG);
553 	za = zap_attribute_alloc();
554 	mutex_enter(&spa->spa_props_lock);
555 
556 	/*
557 	 * Get properties from the spa config.
558 	 */
559 	spa_prop_get_config(spa, nv);
560 
561 	/* If no pool property object, no more prop to get. */
562 	if (mos == NULL || spa->spa_pool_props_object == 0)
563 		goto out;
564 
565 	/*
566 	 * Get properties from the MOS pool property object.
567 	 */
568 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
569 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
570 	    zap_cursor_advance(&zc)) {
571 		uint64_t intval = 0;
572 		char *strval = NULL;
573 		zprop_source_t src = ZPROP_SRC_DEFAULT;
574 		zpool_prop_t prop;
575 
576 		if ((prop = zpool_name_to_prop(za->za_name)) ==
577 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
578 			continue;
579 
580 		switch (za->za_integer_length) {
581 		case 8:
582 			/* integer property */
583 			if (za->za_first_integer !=
584 			    zpool_prop_default_numeric(prop))
585 				src = ZPROP_SRC_LOCAL;
586 
587 			if (prop == ZPOOL_PROP_BOOTFS) {
588 				dsl_dataset_t *ds = NULL;
589 
590 				err = dsl_dataset_hold_obj(dp,
591 				    za->za_first_integer, FTAG, &ds);
592 				if (err != 0)
593 					break;
594 
595 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
596 				    KM_SLEEP);
597 				dsl_dataset_name(ds, strval);
598 				dsl_dataset_rele(ds, FTAG);
599 			} else {
600 				strval = NULL;
601 				intval = za->za_first_integer;
602 			}
603 
604 			spa_prop_add_list(nv, prop, strval, intval, src);
605 
606 			if (strval != NULL)
607 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
608 
609 			break;
610 
611 		case 1:
612 			/* string property */
613 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
614 			err = zap_lookup(mos, spa->spa_pool_props_object,
615 			    za->za_name, 1, za->za_num_integers, strval);
616 			if (err) {
617 				kmem_free(strval, za->za_num_integers);
618 				break;
619 			}
620 			if (prop != ZPOOL_PROP_INVAL) {
621 				spa_prop_add_list(nv, prop, strval, 0, src);
622 			} else {
623 				src = ZPROP_SRC_LOCAL;
624 				spa_prop_add_user(nv, za->za_name, strval,
625 				    src);
626 			}
627 			kmem_free(strval, za->za_num_integers);
628 			break;
629 
630 		default:
631 			break;
632 		}
633 	}
634 	zap_cursor_fini(&zc);
635 out:
636 	mutex_exit(&spa->spa_props_lock);
637 	dsl_pool_config_exit(dp, FTAG);
638 	zap_attribute_free(za);
639 
640 	if (err && err != ENOENT)
641 		return (err);
642 
643 	return (0);
644 }
645 
646 /*
647  * Validate the given pool properties nvlist and modify the list
648  * for the property values to be set.
649  */
650 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)651 spa_prop_validate(spa_t *spa, nvlist_t *props)
652 {
653 	nvpair_t *elem;
654 	int error = 0, reset_bootfs = 0;
655 	uint64_t objnum = 0;
656 	boolean_t has_feature = B_FALSE;
657 
658 	elem = NULL;
659 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
660 		uint64_t intval;
661 		const char *strval, *slash, *check, *fname;
662 		const char *propname = nvpair_name(elem);
663 		zpool_prop_t prop = zpool_name_to_prop(propname);
664 
665 		switch (prop) {
666 		case ZPOOL_PROP_INVAL:
667 			/*
668 			 * Sanitize the input.
669 			 */
670 			if (zfs_prop_user(propname)) {
671 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
672 					error = SET_ERROR(ENAMETOOLONG);
673 					break;
674 				}
675 
676 				if (strlen(fnvpair_value_string(elem)) >=
677 				    ZAP_MAXVALUELEN) {
678 					error = SET_ERROR(E2BIG);
679 					break;
680 				}
681 			} else if (zpool_prop_feature(propname)) {
682 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
683 					error = SET_ERROR(EINVAL);
684 					break;
685 				}
686 
687 				if (nvpair_value_uint64(elem, &intval) != 0) {
688 					error = SET_ERROR(EINVAL);
689 					break;
690 				}
691 
692 				if (intval != 0) {
693 					error = SET_ERROR(EINVAL);
694 					break;
695 				}
696 
697 				fname = strchr(propname, '@') + 1;
698 				if (zfeature_lookup_name(fname, NULL) != 0) {
699 					error = SET_ERROR(EINVAL);
700 					break;
701 				}
702 
703 				has_feature = B_TRUE;
704 			} else {
705 				error = SET_ERROR(EINVAL);
706 				break;
707 			}
708 			break;
709 
710 		case ZPOOL_PROP_VERSION:
711 			error = nvpair_value_uint64(elem, &intval);
712 			if (!error &&
713 			    (intval < spa_version(spa) ||
714 			    intval > SPA_VERSION_BEFORE_FEATURES ||
715 			    has_feature))
716 				error = SET_ERROR(EINVAL);
717 			break;
718 
719 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
720 			error = nvpair_value_uint64(elem, &intval);
721 			break;
722 
723 		case ZPOOL_PROP_DELEGATION:
724 		case ZPOOL_PROP_AUTOREPLACE:
725 		case ZPOOL_PROP_LISTSNAPS:
726 		case ZPOOL_PROP_AUTOEXPAND:
727 		case ZPOOL_PROP_AUTOTRIM:
728 			error = nvpair_value_uint64(elem, &intval);
729 			if (!error && intval > 1)
730 				error = SET_ERROR(EINVAL);
731 			break;
732 
733 		case ZPOOL_PROP_MULTIHOST:
734 			error = nvpair_value_uint64(elem, &intval);
735 			if (!error && intval > 1)
736 				error = SET_ERROR(EINVAL);
737 
738 			if (!error) {
739 				uint32_t hostid = zone_get_hostid(NULL);
740 				if (hostid)
741 					spa->spa_hostid = hostid;
742 				else
743 					error = SET_ERROR(ENOTSUP);
744 			}
745 
746 			break;
747 
748 		case ZPOOL_PROP_BOOTFS:
749 			/*
750 			 * If the pool version is less than SPA_VERSION_BOOTFS,
751 			 * or the pool is still being created (version == 0),
752 			 * the bootfs property cannot be set.
753 			 */
754 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
755 				error = SET_ERROR(ENOTSUP);
756 				break;
757 			}
758 
759 			/*
760 			 * Make sure the vdev config is bootable
761 			 */
762 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
763 				error = SET_ERROR(ENOTSUP);
764 				break;
765 			}
766 
767 			reset_bootfs = 1;
768 
769 			error = nvpair_value_string(elem, &strval);
770 
771 			if (!error) {
772 				objset_t *os;
773 
774 				if (strval == NULL || strval[0] == '\0') {
775 					objnum = zpool_prop_default_numeric(
776 					    ZPOOL_PROP_BOOTFS);
777 					break;
778 				}
779 
780 				error = dmu_objset_hold(strval, FTAG, &os);
781 				if (error != 0)
782 					break;
783 
784 				/* Must be ZPL. */
785 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
786 					error = SET_ERROR(ENOTSUP);
787 				} else {
788 					objnum = dmu_objset_id(os);
789 				}
790 				dmu_objset_rele(os, FTAG);
791 			}
792 			break;
793 
794 		case ZPOOL_PROP_FAILUREMODE:
795 			error = nvpair_value_uint64(elem, &intval);
796 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
797 				error = SET_ERROR(EINVAL);
798 
799 			/*
800 			 * This is a special case which only occurs when
801 			 * the pool has completely failed. This allows
802 			 * the user to change the in-core failmode property
803 			 * without syncing it out to disk (I/Os might
804 			 * currently be blocked). We do this by returning
805 			 * EIO to the caller (spa_prop_set) to trick it
806 			 * into thinking we encountered a property validation
807 			 * error.
808 			 */
809 			if (!error && spa_suspended(spa)) {
810 				spa->spa_failmode = intval;
811 				error = SET_ERROR(EIO);
812 			}
813 			break;
814 
815 		case ZPOOL_PROP_CACHEFILE:
816 			if ((error = nvpair_value_string(elem, &strval)) != 0)
817 				break;
818 
819 			if (strval[0] == '\0')
820 				break;
821 
822 			if (strcmp(strval, "none") == 0)
823 				break;
824 
825 			if (strval[0] != '/') {
826 				error = SET_ERROR(EINVAL);
827 				break;
828 			}
829 
830 			slash = strrchr(strval, '/');
831 			ASSERT(slash != NULL);
832 
833 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
834 			    strcmp(slash, "/..") == 0)
835 				error = SET_ERROR(EINVAL);
836 			break;
837 
838 		case ZPOOL_PROP_COMMENT:
839 			if ((error = nvpair_value_string(elem, &strval)) != 0)
840 				break;
841 			for (check = strval; *check != '\0'; check++) {
842 				if (!isprint(*check)) {
843 					error = SET_ERROR(EINVAL);
844 					break;
845 				}
846 			}
847 			if (strlen(strval) > ZPROP_MAX_COMMENT)
848 				error = SET_ERROR(E2BIG);
849 			break;
850 
851 		default:
852 			break;
853 		}
854 
855 		if (error)
856 			break;
857 	}
858 
859 	(void) nvlist_remove_all(props,
860 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
861 
862 	if (!error && reset_bootfs) {
863 		error = nvlist_remove(props,
864 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
865 
866 		if (!error) {
867 			error = nvlist_add_uint64(props,
868 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
869 		}
870 	}
871 
872 	return (error);
873 }
874 
875 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)876 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
877 {
878 	const char *cachefile;
879 	spa_config_dirent_t *dp;
880 
881 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
882 	    &cachefile) != 0)
883 		return;
884 
885 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
886 	    KM_SLEEP);
887 
888 	if (cachefile[0] == '\0')
889 		dp->scd_path = spa_strdup(spa_config_path);
890 	else if (strcmp(cachefile, "none") == 0)
891 		dp->scd_path = NULL;
892 	else
893 		dp->scd_path = spa_strdup(cachefile);
894 
895 	list_insert_head(&spa->spa_config_list, dp);
896 	if (need_sync)
897 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
898 }
899 
900 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)901 spa_prop_set(spa_t *spa, nvlist_t *nvp)
902 {
903 	int error;
904 	nvpair_t *elem = NULL;
905 	boolean_t need_sync = B_FALSE;
906 
907 	if ((error = spa_prop_validate(spa, nvp)) != 0)
908 		return (error);
909 
910 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
911 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
912 
913 		if (prop == ZPOOL_PROP_CACHEFILE ||
914 		    prop == ZPOOL_PROP_ALTROOT ||
915 		    prop == ZPOOL_PROP_READONLY)
916 			continue;
917 
918 		if (prop == ZPOOL_PROP_INVAL &&
919 		    zfs_prop_user(nvpair_name(elem))) {
920 			need_sync = B_TRUE;
921 			break;
922 		}
923 
924 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
925 			uint64_t ver = 0;
926 
927 			if (prop == ZPOOL_PROP_VERSION) {
928 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
929 			} else {
930 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
931 				ver = SPA_VERSION_FEATURES;
932 				need_sync = B_TRUE;
933 			}
934 
935 			/* Save time if the version is already set. */
936 			if (ver == spa_version(spa))
937 				continue;
938 
939 			/*
940 			 * In addition to the pool directory object, we might
941 			 * create the pool properties object, the features for
942 			 * read object, the features for write object, or the
943 			 * feature descriptions object.
944 			 */
945 			error = dsl_sync_task(spa->spa_name, NULL,
946 			    spa_sync_version, &ver,
947 			    6, ZFS_SPACE_CHECK_RESERVED);
948 			if (error)
949 				return (error);
950 			continue;
951 		}
952 
953 		need_sync = B_TRUE;
954 		break;
955 	}
956 
957 	if (need_sync) {
958 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
959 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
960 	}
961 
962 	return (0);
963 }
964 
965 /*
966  * If the bootfs property value is dsobj, clear it.
967  */
968 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)969 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
970 {
971 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
972 		VERIFY(zap_remove(spa->spa_meta_objset,
973 		    spa->spa_pool_props_object,
974 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
975 		spa->spa_bootfs = 0;
976 	}
977 }
978 
979 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)980 spa_change_guid_check(void *arg, dmu_tx_t *tx)
981 {
982 	uint64_t *newguid __maybe_unused = arg;
983 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
984 	vdev_t *rvd = spa->spa_root_vdev;
985 	uint64_t vdev_state;
986 
987 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
988 		int error = (spa_has_checkpoint(spa)) ?
989 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
990 		return (SET_ERROR(error));
991 	}
992 
993 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
994 	vdev_state = rvd->vdev_state;
995 	spa_config_exit(spa, SCL_STATE, FTAG);
996 
997 	if (vdev_state != VDEV_STATE_HEALTHY)
998 		return (SET_ERROR(ENXIO));
999 
1000 	ASSERT3U(spa_guid(spa), !=, *newguid);
1001 
1002 	return (0);
1003 }
1004 
1005 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1006 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1007 {
1008 	uint64_t *newguid = arg;
1009 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1010 	uint64_t oldguid;
1011 	vdev_t *rvd = spa->spa_root_vdev;
1012 
1013 	oldguid = spa_guid(spa);
1014 
1015 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1016 	rvd->vdev_guid = *newguid;
1017 	rvd->vdev_guid_sum += (*newguid - oldguid);
1018 	vdev_config_dirty(rvd);
1019 	spa_config_exit(spa, SCL_STATE, FTAG);
1020 
1021 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1022 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1023 }
1024 
1025 /*
1026  * Change the GUID for the pool.  This is done so that we can later
1027  * re-import a pool built from a clone of our own vdevs.  We will modify
1028  * the root vdev's guid, our own pool guid, and then mark all of our
1029  * vdevs dirty.  Note that we must make sure that all our vdevs are
1030  * online when we do this, or else any vdevs that weren't present
1031  * would be orphaned from our pool.  We are also going to issue a
1032  * sysevent to update any watchers.
1033  *
1034  * The GUID of the pool will be changed to the value pointed to by guidp.
1035  * The GUID may not be set to the reserverd value of 0.
1036  * The new GUID will be generated if guidp is NULL.
1037  */
1038 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1039 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1040 {
1041 	uint64_t guid;
1042 	int error;
1043 
1044 	mutex_enter(&spa->spa_vdev_top_lock);
1045 	mutex_enter(&spa_namespace_lock);
1046 
1047 	if (guidp != NULL) {
1048 		guid = *guidp;
1049 		if (guid == 0) {
1050 			error = SET_ERROR(EINVAL);
1051 			goto out;
1052 		}
1053 
1054 		if (spa_guid_exists(guid, 0)) {
1055 			error = SET_ERROR(EEXIST);
1056 			goto out;
1057 		}
1058 	} else {
1059 		guid = spa_generate_guid(NULL);
1060 	}
1061 
1062 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1063 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1064 
1065 	if (error == 0) {
1066 		/*
1067 		 * Clear the kobj flag from all the vdevs to allow
1068 		 * vdev_cache_process_kobj_evt() to post events to all the
1069 		 * vdevs since GUID is updated.
1070 		 */
1071 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1072 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1073 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1074 
1075 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1076 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1077 	}
1078 
1079 out:
1080 	mutex_exit(&spa_namespace_lock);
1081 	mutex_exit(&spa->spa_vdev_top_lock);
1082 
1083 	return (error);
1084 }
1085 
1086 /*
1087  * ==========================================================================
1088  * SPA state manipulation (open/create/destroy/import/export)
1089  * ==========================================================================
1090  */
1091 
1092 static int
spa_error_entry_compare(const void * a,const void * b)1093 spa_error_entry_compare(const void *a, const void *b)
1094 {
1095 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1096 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1097 	int ret;
1098 
1099 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1100 	    sizeof (zbookmark_phys_t));
1101 
1102 	return (TREE_ISIGN(ret));
1103 }
1104 
1105 /*
1106  * Utility function which retrieves copies of the current logs and
1107  * re-initializes them in the process.
1108  */
1109 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1110 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1111 {
1112 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1113 
1114 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1115 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1116 
1117 	avl_create(&spa->spa_errlist_scrub,
1118 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1119 	    offsetof(spa_error_entry_t, se_avl));
1120 	avl_create(&spa->spa_errlist_last,
1121 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1122 	    offsetof(spa_error_entry_t, se_avl));
1123 }
1124 
1125 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1126 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1127 {
1128 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1129 	enum zti_modes mode = ztip->zti_mode;
1130 	uint_t value = ztip->zti_value;
1131 	uint_t count = ztip->zti_count;
1132 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1133 	uint_t cpus, flags = TASKQ_DYNAMIC;
1134 
1135 	switch (mode) {
1136 	case ZTI_MODE_FIXED:
1137 		ASSERT3U(value, >, 0);
1138 		break;
1139 
1140 	case ZTI_MODE_SYNC:
1141 
1142 		/*
1143 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1144 		 * not to exceed the number of spa allocators, and align to it.
1145 		 */
1146 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1147 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1148 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1149 		count = MIN(count, spa->spa_alloc_count);
1150 		while (spa->spa_alloc_count % count != 0 &&
1151 		    spa->spa_alloc_count < count * 2)
1152 			count--;
1153 
1154 		/*
1155 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1156 		 * single taskq may have more threads than 100% of online cpus.
1157 		 */
1158 		value = (zio_taskq_batch_pct + count / 2) / count;
1159 		value = MIN(value, 100);
1160 		flags |= TASKQ_THREADS_CPU_PCT;
1161 		break;
1162 
1163 	case ZTI_MODE_SCALE:
1164 		flags |= TASKQ_THREADS_CPU_PCT;
1165 		/*
1166 		 * We want more taskqs to reduce lock contention, but we want
1167 		 * less for better request ordering and CPU utilization.
1168 		 */
1169 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1170 		if (zio_taskq_batch_tpq > 0) {
1171 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1172 			    zio_taskq_batch_tpq);
1173 		} else {
1174 			/*
1175 			 * Prefer 6 threads per taskq, but no more taskqs
1176 			 * than threads in them on large systems. For 80%:
1177 			 *
1178 			 *                 taskq   taskq   total
1179 			 * cpus    taskqs  percent threads threads
1180 			 * ------- ------- ------- ------- -------
1181 			 * 1       1       80%     1       1
1182 			 * 2       1       80%     1       1
1183 			 * 4       1       80%     3       3
1184 			 * 8       2       40%     3       6
1185 			 * 16      3       27%     4       12
1186 			 * 32      5       16%     5       25
1187 			 * 64      7       11%     7       49
1188 			 * 128     10      8%      10      100
1189 			 * 256     14      6%      15      210
1190 			 */
1191 			count = 1 + cpus / 6;
1192 			while (count * count > cpus)
1193 				count--;
1194 		}
1195 		/* Limit each taskq within 100% to not trigger assertion. */
1196 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1197 		value = (zio_taskq_batch_pct + count / 2) / count;
1198 		break;
1199 
1200 	case ZTI_MODE_NULL:
1201 		tqs->stqs_count = 0;
1202 		tqs->stqs_taskq = NULL;
1203 		return;
1204 
1205 	default:
1206 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1207 		    "spa_taskqs_init()",
1208 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1209 		break;
1210 	}
1211 
1212 	ASSERT3U(count, >, 0);
1213 	tqs->stqs_count = count;
1214 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1215 
1216 	for (uint_t i = 0; i < count; i++) {
1217 		taskq_t *tq;
1218 		char name[32];
1219 
1220 		if (count > 1)
1221 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1222 			    zio_type_name[t], zio_taskq_types[q], i);
1223 		else
1224 			(void) snprintf(name, sizeof (name), "%s_%s",
1225 			    zio_type_name[t], zio_taskq_types[q]);
1226 
1227 #ifdef HAVE_SYSDC
1228 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1229 			(void) zio_taskq_basedc;
1230 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1231 			    spa->spa_proc, zio_taskq_basedc, flags);
1232 		} else {
1233 #endif
1234 			/*
1235 			 * The write issue taskq can be extremely CPU
1236 			 * intensive.  Run it at slightly less important
1237 			 * priority than the other taskqs.
1238 			 */
1239 			const pri_t pri = (t == ZIO_TYPE_WRITE &&
1240 			    q == ZIO_TASKQ_ISSUE) ?
1241 			    wtqclsyspri : maxclsyspri;
1242 			tq = taskq_create_proc(name, value, pri, 50,
1243 			    INT_MAX, spa->spa_proc, flags);
1244 #ifdef HAVE_SYSDC
1245 		}
1246 #endif
1247 
1248 		tqs->stqs_taskq[i] = tq;
1249 	}
1250 }
1251 
1252 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1253 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1254 {
1255 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1256 
1257 	if (tqs->stqs_taskq == NULL) {
1258 		ASSERT3U(tqs->stqs_count, ==, 0);
1259 		return;
1260 	}
1261 
1262 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1263 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1264 		taskq_destroy(tqs->stqs_taskq[i]);
1265 	}
1266 
1267 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1268 	tqs->stqs_taskq = NULL;
1269 }
1270 
1271 #ifdef _KERNEL
1272 /*
1273  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1274  * by setting zio_taskq_read or zio_taskq_write.
1275  *
1276  * Example (the defaults for READ and WRITE)
1277  *   zio_taskq_read='fixed,1,8 null scale null'
1278  *   zio_taskq_write='sync null scale null'
1279  *
1280  * Each sets the entire row at a time.
1281  *
1282  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1283  * of threads per taskq.
1284  *
1285  * 'null' can only be set on the high-priority queues (queue selection for
1286  * high-priority queues will fall back to the regular queue if the high-pri
1287  * is NULL.
1288  */
1289 static const char *const modes[ZTI_NMODES] = {
1290 	"fixed", "scale", "sync", "null"
1291 };
1292 
1293 /* Parse the incoming config string. Modifies cfg */
1294 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1295 spa_taskq_param_set(zio_type_t t, char *cfg)
1296 {
1297 	int err = 0;
1298 
1299 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1300 
1301 	char *next = cfg, *tok, *c;
1302 
1303 	/*
1304 	 * Parse out each element from the string and fill `row`. The entire
1305 	 * row has to be set at once, so any errors are flagged by just
1306 	 * breaking out of this loop early.
1307 	 */
1308 	uint_t q;
1309 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1310 		/* `next` is the start of the config */
1311 		if (next == NULL)
1312 			break;
1313 
1314 		/* Eat up leading space */
1315 		while (isspace(*next))
1316 			next++;
1317 		if (*next == '\0')
1318 			break;
1319 
1320 		/* Mode ends at space or end of string */
1321 		tok = next;
1322 		next = strchr(tok, ' ');
1323 		if (next != NULL) *next++ = '\0';
1324 
1325 		/* Parameters start after a comma */
1326 		c = strchr(tok, ',');
1327 		if (c != NULL) *c++ = '\0';
1328 
1329 		/* Match mode string */
1330 		uint_t mode;
1331 		for (mode = 0; mode < ZTI_NMODES; mode++)
1332 			if (strcmp(tok, modes[mode]) == 0)
1333 				break;
1334 		if (mode == ZTI_NMODES)
1335 			break;
1336 
1337 		/* Invalid canary */
1338 		row[q].zti_mode = ZTI_NMODES;
1339 
1340 		/* Per-mode setup */
1341 		switch (mode) {
1342 
1343 		/*
1344 		 * FIXED is parameterised: number of queues, and number of
1345 		 * threads per queue.
1346 		 */
1347 		case ZTI_MODE_FIXED: {
1348 			/* No parameters? */
1349 			if (c == NULL || *c == '\0')
1350 				break;
1351 
1352 			/* Find next parameter */
1353 			tok = c;
1354 			c = strchr(tok, ',');
1355 			if (c == NULL)
1356 				break;
1357 
1358 			/* Take digits and convert */
1359 			unsigned long long nq;
1360 			if (!(isdigit(*tok)))
1361 				break;
1362 			err = ddi_strtoull(tok, &tok, 10, &nq);
1363 			/* Must succeed and also end at the next param sep */
1364 			if (err != 0 || tok != c)
1365 				break;
1366 
1367 			/* Move past the comma */
1368 			tok++;
1369 			/* Need another number */
1370 			if (!(isdigit(*tok)))
1371 				break;
1372 			/* Remember start to make sure we moved */
1373 			c = tok;
1374 
1375 			/* Take digits */
1376 			unsigned long long ntpq;
1377 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1378 			/* Must succeed, and moved forward */
1379 			if (err != 0 || tok == c || *tok != '\0')
1380 				break;
1381 
1382 			/*
1383 			 * sanity; zero queues/threads make no sense, and
1384 			 * 16K is almost certainly more than anyone will ever
1385 			 * need and avoids silly numbers like UINT32_MAX
1386 			 */
1387 			if (nq == 0 || nq >= 16384 ||
1388 			    ntpq == 0 || ntpq >= 16384)
1389 				break;
1390 
1391 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1392 			row[q] = zti;
1393 			break;
1394 		}
1395 
1396 		case ZTI_MODE_SCALE: {
1397 			const zio_taskq_info_t zti = ZTI_SCALE;
1398 			row[q] = zti;
1399 			break;
1400 		}
1401 
1402 		case ZTI_MODE_SYNC: {
1403 			const zio_taskq_info_t zti = ZTI_SYNC;
1404 			row[q] = zti;
1405 			break;
1406 		}
1407 
1408 		case ZTI_MODE_NULL: {
1409 			/*
1410 			 * Can only null the high-priority queues; the general-
1411 			 * purpose ones have to exist.
1412 			 */
1413 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1414 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1415 				break;
1416 
1417 			const zio_taskq_info_t zti = ZTI_NULL;
1418 			row[q] = zti;
1419 			break;
1420 		}
1421 
1422 		default:
1423 			break;
1424 		}
1425 
1426 		/* Ensure we set a mode */
1427 		if (row[q].zti_mode == ZTI_NMODES)
1428 			break;
1429 	}
1430 
1431 	/* Didn't get a full row, fail */
1432 	if (q < ZIO_TASKQ_TYPES)
1433 		return (SET_ERROR(EINVAL));
1434 
1435 	/* Eat trailing space */
1436 	if (next != NULL)
1437 		while (isspace(*next))
1438 			next++;
1439 
1440 	/* If there's anything left over then fail */
1441 	if (next != NULL && *next != '\0')
1442 		return (SET_ERROR(EINVAL));
1443 
1444 	/* Success! Copy it into the real config */
1445 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1446 		zio_taskqs[t][q] = row[q];
1447 
1448 	return (0);
1449 }
1450 
1451 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1452 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1453 {
1454 	int pos = 0;
1455 
1456 	/* Build paramater string from live config */
1457 	const char *sep = "";
1458 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1459 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1460 		if (zti->zti_mode == ZTI_MODE_FIXED)
1461 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1462 			    modes[zti->zti_mode], zti->zti_count,
1463 			    zti->zti_value);
1464 		else
1465 			pos += sprintf(&buf[pos], "%s%s", sep,
1466 			    modes[zti->zti_mode]);
1467 		sep = " ";
1468 	}
1469 
1470 	if (add_newline)
1471 		buf[pos++] = '\n';
1472 	buf[pos] = '\0';
1473 
1474 	return (pos);
1475 }
1476 
1477 #ifdef __linux__
1478 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1479 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1480 {
1481 	char *cfg = kmem_strdup(val);
1482 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1483 	kmem_free(cfg, strlen(val)+1);
1484 	return (-err);
1485 }
1486 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1487 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1488 {
1489 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1490 }
1491 
1492 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1493 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1494 {
1495 	char *cfg = kmem_strdup(val);
1496 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1497 	kmem_free(cfg, strlen(val)+1);
1498 	return (-err);
1499 }
1500 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1501 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1502 {
1503 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1504 }
1505 #else
1506 /*
1507  * On FreeBSD load-time parameters can be set up before malloc() is available,
1508  * so we have to do all the parsing work on the stack.
1509  */
1510 #define	SPA_TASKQ_PARAM_MAX	(128)
1511 
1512 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1513 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1514 {
1515 	char buf[SPA_TASKQ_PARAM_MAX];
1516 	int err;
1517 
1518 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1519 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1520 	if (err || req->newptr == NULL)
1521 		return (err);
1522 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1523 }
1524 
1525 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1526 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1527 {
1528 	char buf[SPA_TASKQ_PARAM_MAX];
1529 	int err;
1530 
1531 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1532 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1533 	if (err || req->newptr == NULL)
1534 		return (err);
1535 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1536 }
1537 #endif
1538 #endif /* _KERNEL */
1539 
1540 /*
1541  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1542  * Note that a type may have multiple discrete taskqs to avoid lock contention
1543  * on the taskq itself.
1544  */
1545 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1546 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1547     task_func_t *func, zio_t *zio, boolean_t cutinline)
1548 {
1549 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1550 	taskq_t *tq;
1551 
1552 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1553 	ASSERT3U(tqs->stqs_count, !=, 0);
1554 
1555 	/*
1556 	 * NB: We are assuming that the zio can only be dispatched
1557 	 * to a single taskq at a time.  It would be a grievous error
1558 	 * to dispatch the zio to another taskq at the same time.
1559 	 */
1560 	ASSERT(zio);
1561 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1562 
1563 	if (tqs->stqs_count == 1) {
1564 		tq = tqs->stqs_taskq[0];
1565 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1566 	    ZIO_HAS_ALLOCATOR(zio)) {
1567 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1568 	} else {
1569 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1570 	}
1571 
1572 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1573 	    &zio->io_tqent);
1574 }
1575 
1576 static void
spa_create_zio_taskqs(spa_t * spa)1577 spa_create_zio_taskqs(spa_t *spa)
1578 {
1579 	for (int t = 0; t < ZIO_TYPES; t++) {
1580 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1581 			spa_taskqs_init(spa, t, q);
1582 		}
1583 	}
1584 }
1585 
1586 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1587 static void
spa_thread(void * arg)1588 spa_thread(void *arg)
1589 {
1590 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1591 	callb_cpr_t cprinfo;
1592 
1593 	spa_t *spa = arg;
1594 	user_t *pu = PTOU(curproc);
1595 
1596 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1597 	    spa->spa_name);
1598 
1599 	ASSERT(curproc != &p0);
1600 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1601 	    "zpool-%s", spa->spa_name);
1602 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1603 
1604 	/* bind this thread to the requested psrset */
1605 	if (zio_taskq_psrset_bind != PS_NONE) {
1606 		pool_lock();
1607 		mutex_enter(&cpu_lock);
1608 		mutex_enter(&pidlock);
1609 		mutex_enter(&curproc->p_lock);
1610 
1611 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1612 		    0, NULL, NULL) == 0)  {
1613 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1614 		} else {
1615 			cmn_err(CE_WARN,
1616 			    "Couldn't bind process for zfs pool \"%s\" to "
1617 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1618 		}
1619 
1620 		mutex_exit(&curproc->p_lock);
1621 		mutex_exit(&pidlock);
1622 		mutex_exit(&cpu_lock);
1623 		pool_unlock();
1624 	}
1625 
1626 #ifdef HAVE_SYSDC
1627 	if (zio_taskq_sysdc) {
1628 		sysdc_thread_enter(curthread, 100, 0);
1629 	}
1630 #endif
1631 
1632 	spa->spa_proc = curproc;
1633 	spa->spa_did = curthread->t_did;
1634 
1635 	spa_create_zio_taskqs(spa);
1636 
1637 	mutex_enter(&spa->spa_proc_lock);
1638 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1639 
1640 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1641 	cv_broadcast(&spa->spa_proc_cv);
1642 
1643 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1644 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1645 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1646 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1647 
1648 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1649 	spa->spa_proc_state = SPA_PROC_GONE;
1650 	spa->spa_proc = &p0;
1651 	cv_broadcast(&spa->spa_proc_cv);
1652 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1653 
1654 	mutex_enter(&curproc->p_lock);
1655 	lwp_exit();
1656 }
1657 #endif
1658 
1659 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1660 
1661 /*
1662  * Activate an uninitialized pool.
1663  */
1664 static void
spa_activate(spa_t * spa,spa_mode_t mode)1665 spa_activate(spa_t *spa, spa_mode_t mode)
1666 {
1667 	metaslab_ops_t *msp = metaslab_allocator(spa);
1668 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1669 
1670 	spa->spa_state = POOL_STATE_ACTIVE;
1671 	spa->spa_final_txg = UINT64_MAX;
1672 	spa->spa_mode = mode;
1673 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1674 
1675 	spa->spa_normal_class = metaslab_class_create(spa, "normal",
1676 	    msp, B_FALSE);
1677 	spa->spa_log_class = metaslab_class_create(spa, "log", msp, B_TRUE);
1678 	spa->spa_embedded_log_class = metaslab_class_create(spa,
1679 	    "embedded_log", msp, B_TRUE);
1680 	spa->spa_special_class = metaslab_class_create(spa, "special",
1681 	    msp, B_FALSE);
1682 	spa->spa_dedup_class = metaslab_class_create(spa, "dedup",
1683 	    msp, B_FALSE);
1684 
1685 	/* Try to create a covering process */
1686 	mutex_enter(&spa->spa_proc_lock);
1687 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1688 	ASSERT(spa->spa_proc == &p0);
1689 	spa->spa_did = 0;
1690 
1691 #ifdef HAVE_SPA_THREAD
1692 	/* Only create a process if we're going to be around a while. */
1693 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1694 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1695 		    NULL, 0) == 0) {
1696 			spa->spa_proc_state = SPA_PROC_CREATED;
1697 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1698 				cv_wait(&spa->spa_proc_cv,
1699 				    &spa->spa_proc_lock);
1700 			}
1701 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1702 			ASSERT(spa->spa_proc != &p0);
1703 			ASSERT(spa->spa_did != 0);
1704 		} else {
1705 #ifdef _KERNEL
1706 			cmn_err(CE_WARN,
1707 			    "Couldn't create process for zfs pool \"%s\"\n",
1708 			    spa->spa_name);
1709 #endif
1710 		}
1711 	}
1712 #endif /* HAVE_SPA_THREAD */
1713 	mutex_exit(&spa->spa_proc_lock);
1714 
1715 	/* If we didn't create a process, we need to create our taskqs. */
1716 	if (spa->spa_proc == &p0) {
1717 		spa_create_zio_taskqs(spa);
1718 	}
1719 
1720 	for (size_t i = 0; i < TXG_SIZE; i++) {
1721 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1722 		    ZIO_FLAG_CANFAIL);
1723 	}
1724 
1725 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1726 	    offsetof(vdev_t, vdev_config_dirty_node));
1727 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1728 	    offsetof(objset_t, os_evicting_node));
1729 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1730 	    offsetof(vdev_t, vdev_state_dirty_node));
1731 
1732 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1733 	    offsetof(struct vdev, vdev_txg_node));
1734 
1735 	avl_create(&spa->spa_errlist_scrub,
1736 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1737 	    offsetof(spa_error_entry_t, se_avl));
1738 	avl_create(&spa->spa_errlist_last,
1739 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1740 	    offsetof(spa_error_entry_t, se_avl));
1741 	avl_create(&spa->spa_errlist_healed,
1742 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1743 	    offsetof(spa_error_entry_t, se_avl));
1744 
1745 	spa_activate_os(spa);
1746 
1747 	spa_keystore_init(&spa->spa_keystore);
1748 
1749 	/*
1750 	 * This taskq is used to perform zvol-minor-related tasks
1751 	 * asynchronously. This has several advantages, including easy
1752 	 * resolution of various deadlocks.
1753 	 *
1754 	 * The taskq must be single threaded to ensure tasks are always
1755 	 * processed in the order in which they were dispatched.
1756 	 *
1757 	 * A taskq per pool allows one to keep the pools independent.
1758 	 * This way if one pool is suspended, it will not impact another.
1759 	 *
1760 	 * The preferred location to dispatch a zvol minor task is a sync
1761 	 * task. In this context, there is easy access to the spa_t and minimal
1762 	 * error handling is required because the sync task must succeed.
1763 	 */
1764 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1765 	    1, INT_MAX, 0);
1766 
1767 	/*
1768 	 * The taskq to preload metaslabs.
1769 	 */
1770 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1771 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1772 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1773 
1774 	/*
1775 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1776 	 * pool traverse code from monopolizing the global (and limited)
1777 	 * system_taskq by inappropriately scheduling long running tasks on it.
1778 	 */
1779 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1780 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1781 
1782 	/*
1783 	 * The taskq to upgrade datasets in this pool. Currently used by
1784 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1785 	 */
1786 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1787 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1788 }
1789 
1790 /*
1791  * Opposite of spa_activate().
1792  */
1793 static void
spa_deactivate(spa_t * spa)1794 spa_deactivate(spa_t *spa)
1795 {
1796 	ASSERT(spa->spa_sync_on == B_FALSE);
1797 	ASSERT(spa->spa_dsl_pool == NULL);
1798 	ASSERT(spa->spa_root_vdev == NULL);
1799 	ASSERT(spa->spa_async_zio_root == NULL);
1800 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1801 
1802 	spa_evicting_os_wait(spa);
1803 
1804 	if (spa->spa_zvol_taskq) {
1805 		taskq_destroy(spa->spa_zvol_taskq);
1806 		spa->spa_zvol_taskq = NULL;
1807 	}
1808 
1809 	if (spa->spa_metaslab_taskq) {
1810 		taskq_destroy(spa->spa_metaslab_taskq);
1811 		spa->spa_metaslab_taskq = NULL;
1812 	}
1813 
1814 	if (spa->spa_prefetch_taskq) {
1815 		taskq_destroy(spa->spa_prefetch_taskq);
1816 		spa->spa_prefetch_taskq = NULL;
1817 	}
1818 
1819 	if (spa->spa_upgrade_taskq) {
1820 		taskq_destroy(spa->spa_upgrade_taskq);
1821 		spa->spa_upgrade_taskq = NULL;
1822 	}
1823 
1824 	txg_list_destroy(&spa->spa_vdev_txg_list);
1825 
1826 	list_destroy(&spa->spa_config_dirty_list);
1827 	list_destroy(&spa->spa_evicting_os_list);
1828 	list_destroy(&spa->spa_state_dirty_list);
1829 
1830 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1831 
1832 	for (int t = 0; t < ZIO_TYPES; t++) {
1833 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1834 			spa_taskqs_fini(spa, t, q);
1835 		}
1836 	}
1837 
1838 	for (size_t i = 0; i < TXG_SIZE; i++) {
1839 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1840 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1841 		spa->spa_txg_zio[i] = NULL;
1842 	}
1843 
1844 	metaslab_class_destroy(spa->spa_normal_class);
1845 	spa->spa_normal_class = NULL;
1846 
1847 	metaslab_class_destroy(spa->spa_log_class);
1848 	spa->spa_log_class = NULL;
1849 
1850 	metaslab_class_destroy(spa->spa_embedded_log_class);
1851 	spa->spa_embedded_log_class = NULL;
1852 
1853 	metaslab_class_destroy(spa->spa_special_class);
1854 	spa->spa_special_class = NULL;
1855 
1856 	metaslab_class_destroy(spa->spa_dedup_class);
1857 	spa->spa_dedup_class = NULL;
1858 
1859 	/*
1860 	 * If this was part of an import or the open otherwise failed, we may
1861 	 * still have errors left in the queues.  Empty them just in case.
1862 	 */
1863 	spa_errlog_drain(spa);
1864 	avl_destroy(&spa->spa_errlist_scrub);
1865 	avl_destroy(&spa->spa_errlist_last);
1866 	avl_destroy(&spa->spa_errlist_healed);
1867 
1868 	spa_keystore_fini(&spa->spa_keystore);
1869 
1870 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1871 
1872 	mutex_enter(&spa->spa_proc_lock);
1873 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1874 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1875 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1876 		cv_broadcast(&spa->spa_proc_cv);
1877 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1878 			ASSERT(spa->spa_proc != &p0);
1879 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1880 		}
1881 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1882 		spa->spa_proc_state = SPA_PROC_NONE;
1883 	}
1884 	ASSERT(spa->spa_proc == &p0);
1885 	mutex_exit(&spa->spa_proc_lock);
1886 
1887 	/*
1888 	 * We want to make sure spa_thread() has actually exited the ZFS
1889 	 * module, so that the module can't be unloaded out from underneath
1890 	 * it.
1891 	 */
1892 	if (spa->spa_did != 0) {
1893 		thread_join(spa->spa_did);
1894 		spa->spa_did = 0;
1895 	}
1896 
1897 	spa_deactivate_os(spa);
1898 
1899 }
1900 
1901 /*
1902  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1903  * will create all the necessary vdevs in the appropriate layout, with each vdev
1904  * in the CLOSED state.  This will prep the pool before open/creation/import.
1905  * All vdev validation is done by the vdev_alloc() routine.
1906  */
1907 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1908 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1909     uint_t id, int atype)
1910 {
1911 	nvlist_t **child;
1912 	uint_t children;
1913 	int error;
1914 
1915 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1916 		return (error);
1917 
1918 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1919 		return (0);
1920 
1921 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1922 	    &child, &children);
1923 
1924 	if (error == ENOENT)
1925 		return (0);
1926 
1927 	if (error) {
1928 		vdev_free(*vdp);
1929 		*vdp = NULL;
1930 		return (SET_ERROR(EINVAL));
1931 	}
1932 
1933 	for (int c = 0; c < children; c++) {
1934 		vdev_t *vd;
1935 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1936 		    atype)) != 0) {
1937 			vdev_free(*vdp);
1938 			*vdp = NULL;
1939 			return (error);
1940 		}
1941 	}
1942 
1943 	ASSERT(*vdp != NULL);
1944 
1945 	return (0);
1946 }
1947 
1948 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1949 spa_should_flush_logs_on_unload(spa_t *spa)
1950 {
1951 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1952 		return (B_FALSE);
1953 
1954 	if (!spa_writeable(spa))
1955 		return (B_FALSE);
1956 
1957 	if (!spa->spa_sync_on)
1958 		return (B_FALSE);
1959 
1960 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1961 		return (B_FALSE);
1962 
1963 	if (zfs_keep_log_spacemaps_at_export)
1964 		return (B_FALSE);
1965 
1966 	return (B_TRUE);
1967 }
1968 
1969 /*
1970  * Opens a transaction that will set the flag that will instruct
1971  * spa_sync to attempt to flush all the metaslabs for that txg.
1972  */
1973 static void
spa_unload_log_sm_flush_all(spa_t * spa)1974 spa_unload_log_sm_flush_all(spa_t *spa)
1975 {
1976 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1977 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1978 
1979 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1980 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1981 
1982 	dmu_tx_commit(tx);
1983 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1984 }
1985 
1986 static void
spa_unload_log_sm_metadata(spa_t * spa)1987 spa_unload_log_sm_metadata(spa_t *spa)
1988 {
1989 	void *cookie = NULL;
1990 	spa_log_sm_t *sls;
1991 	log_summary_entry_t *e;
1992 
1993 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1994 	    &cookie)) != NULL) {
1995 		VERIFY0(sls->sls_mscount);
1996 		kmem_free(sls, sizeof (spa_log_sm_t));
1997 	}
1998 
1999 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2000 		VERIFY0(e->lse_mscount);
2001 		kmem_free(e, sizeof (log_summary_entry_t));
2002 	}
2003 
2004 	spa->spa_unflushed_stats.sus_nblocks = 0;
2005 	spa->spa_unflushed_stats.sus_memused = 0;
2006 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2007 }
2008 
2009 static void
spa_destroy_aux_threads(spa_t * spa)2010 spa_destroy_aux_threads(spa_t *spa)
2011 {
2012 	if (spa->spa_condense_zthr != NULL) {
2013 		zthr_destroy(spa->spa_condense_zthr);
2014 		spa->spa_condense_zthr = NULL;
2015 	}
2016 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2017 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2018 		spa->spa_checkpoint_discard_zthr = NULL;
2019 	}
2020 	if (spa->spa_livelist_delete_zthr != NULL) {
2021 		zthr_destroy(spa->spa_livelist_delete_zthr);
2022 		spa->spa_livelist_delete_zthr = NULL;
2023 	}
2024 	if (spa->spa_livelist_condense_zthr != NULL) {
2025 		zthr_destroy(spa->spa_livelist_condense_zthr);
2026 		spa->spa_livelist_condense_zthr = NULL;
2027 	}
2028 	if (spa->spa_raidz_expand_zthr != NULL) {
2029 		zthr_destroy(spa->spa_raidz_expand_zthr);
2030 		spa->spa_raidz_expand_zthr = NULL;
2031 	}
2032 }
2033 
2034 /*
2035  * Opposite of spa_load().
2036  */
2037 static void
spa_unload(spa_t * spa)2038 spa_unload(spa_t *spa)
2039 {
2040 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2041 	    spa->spa_export_thread == curthread);
2042 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2043 
2044 	spa_import_progress_remove(spa_guid(spa));
2045 	spa_load_note(spa, "UNLOADING");
2046 
2047 	spa_wake_waiters(spa);
2048 
2049 	/*
2050 	 * If we have set the spa_final_txg, we have already performed the
2051 	 * tasks below in spa_export_common(). We should not redo it here since
2052 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2053 	 */
2054 	if (spa->spa_final_txg == UINT64_MAX) {
2055 		/*
2056 		 * If the log space map feature is enabled and the pool is
2057 		 * getting exported (but not destroyed), we want to spend some
2058 		 * time flushing as many metaslabs as we can in an attempt to
2059 		 * destroy log space maps and save import time.
2060 		 */
2061 		if (spa_should_flush_logs_on_unload(spa))
2062 			spa_unload_log_sm_flush_all(spa);
2063 
2064 		/*
2065 		 * Stop async tasks.
2066 		 */
2067 		spa_async_suspend(spa);
2068 
2069 		if (spa->spa_root_vdev) {
2070 			vdev_t *root_vdev = spa->spa_root_vdev;
2071 			vdev_initialize_stop_all(root_vdev,
2072 			    VDEV_INITIALIZE_ACTIVE);
2073 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2074 			vdev_autotrim_stop_all(spa);
2075 			vdev_rebuild_stop_all(spa);
2076 			l2arc_spa_rebuild_stop(spa);
2077 		}
2078 
2079 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2080 		spa->spa_final_txg = spa_last_synced_txg(spa) +
2081 		    TXG_DEFER_SIZE + 1;
2082 		spa_config_exit(spa, SCL_ALL, FTAG);
2083 	}
2084 
2085 	/*
2086 	 * Stop syncing.
2087 	 */
2088 	if (spa->spa_sync_on) {
2089 		txg_sync_stop(spa->spa_dsl_pool);
2090 		spa->spa_sync_on = B_FALSE;
2091 	}
2092 
2093 	/*
2094 	 * This ensures that there is no async metaslab prefetching
2095 	 * while we attempt to unload the spa.
2096 	 */
2097 	taskq_wait(spa->spa_metaslab_taskq);
2098 
2099 	if (spa->spa_mmp.mmp_thread)
2100 		mmp_thread_stop(spa);
2101 
2102 	/*
2103 	 * Wait for any outstanding async I/O to complete.
2104 	 */
2105 	if (spa->spa_async_zio_root != NULL) {
2106 		for (int i = 0; i < max_ncpus; i++)
2107 			(void) zio_wait(spa->spa_async_zio_root[i]);
2108 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2109 		spa->spa_async_zio_root = NULL;
2110 	}
2111 
2112 	if (spa->spa_vdev_removal != NULL) {
2113 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2114 		spa->spa_vdev_removal = NULL;
2115 	}
2116 
2117 	spa_destroy_aux_threads(spa);
2118 
2119 	spa_condense_fini(spa);
2120 
2121 	bpobj_close(&spa->spa_deferred_bpobj);
2122 
2123 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2124 
2125 	/*
2126 	 * Close all vdevs.
2127 	 */
2128 	if (spa->spa_root_vdev)
2129 		vdev_free(spa->spa_root_vdev);
2130 	ASSERT(spa->spa_root_vdev == NULL);
2131 
2132 	/*
2133 	 * Close the dsl pool.
2134 	 */
2135 	if (spa->spa_dsl_pool) {
2136 		dsl_pool_close(spa->spa_dsl_pool);
2137 		spa->spa_dsl_pool = NULL;
2138 		spa->spa_meta_objset = NULL;
2139 	}
2140 
2141 	ddt_unload(spa);
2142 	brt_unload(spa);
2143 	spa_unload_log_sm_metadata(spa);
2144 
2145 	/*
2146 	 * Drop and purge level 2 cache
2147 	 */
2148 	spa_l2cache_drop(spa);
2149 
2150 	if (spa->spa_spares.sav_vdevs) {
2151 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2152 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2153 		kmem_free(spa->spa_spares.sav_vdevs,
2154 		    spa->spa_spares.sav_count * sizeof (void *));
2155 		spa->spa_spares.sav_vdevs = NULL;
2156 	}
2157 	if (spa->spa_spares.sav_config) {
2158 		nvlist_free(spa->spa_spares.sav_config);
2159 		spa->spa_spares.sav_config = NULL;
2160 	}
2161 	spa->spa_spares.sav_count = 0;
2162 
2163 	if (spa->spa_l2cache.sav_vdevs) {
2164 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2165 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2166 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2167 		}
2168 		kmem_free(spa->spa_l2cache.sav_vdevs,
2169 		    spa->spa_l2cache.sav_count * sizeof (void *));
2170 		spa->spa_l2cache.sav_vdevs = NULL;
2171 	}
2172 	if (spa->spa_l2cache.sav_config) {
2173 		nvlist_free(spa->spa_l2cache.sav_config);
2174 		spa->spa_l2cache.sav_config = NULL;
2175 	}
2176 	spa->spa_l2cache.sav_count = 0;
2177 
2178 	spa->spa_async_suspended = 0;
2179 
2180 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2181 
2182 	if (spa->spa_comment != NULL) {
2183 		spa_strfree(spa->spa_comment);
2184 		spa->spa_comment = NULL;
2185 	}
2186 	if (spa->spa_compatibility != NULL) {
2187 		spa_strfree(spa->spa_compatibility);
2188 		spa->spa_compatibility = NULL;
2189 	}
2190 
2191 	spa->spa_raidz_expand = NULL;
2192 	spa->spa_checkpoint_txg = 0;
2193 
2194 	spa_config_exit(spa, SCL_ALL, spa);
2195 }
2196 
2197 /*
2198  * Load (or re-load) the current list of vdevs describing the active spares for
2199  * this pool.  When this is called, we have some form of basic information in
2200  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2201  * then re-generate a more complete list including status information.
2202  */
2203 void
spa_load_spares(spa_t * spa)2204 spa_load_spares(spa_t *spa)
2205 {
2206 	nvlist_t **spares;
2207 	uint_t nspares;
2208 	int i;
2209 	vdev_t *vd, *tvd;
2210 
2211 #ifndef _KERNEL
2212 	/*
2213 	 * zdb opens both the current state of the pool and the
2214 	 * checkpointed state (if present), with a different spa_t.
2215 	 *
2216 	 * As spare vdevs are shared among open pools, we skip loading
2217 	 * them when we load the checkpointed state of the pool.
2218 	 */
2219 	if (!spa_writeable(spa))
2220 		return;
2221 #endif
2222 
2223 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2224 
2225 	/*
2226 	 * First, close and free any existing spare vdevs.
2227 	 */
2228 	if (spa->spa_spares.sav_vdevs) {
2229 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2230 			vd = spa->spa_spares.sav_vdevs[i];
2231 
2232 			/* Undo the call to spa_activate() below */
2233 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2234 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2235 				spa_spare_remove(tvd);
2236 			vdev_close(vd);
2237 			vdev_free(vd);
2238 		}
2239 
2240 		kmem_free(spa->spa_spares.sav_vdevs,
2241 		    spa->spa_spares.sav_count * sizeof (void *));
2242 	}
2243 
2244 	if (spa->spa_spares.sav_config == NULL)
2245 		nspares = 0;
2246 	else
2247 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2248 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2249 
2250 	spa->spa_spares.sav_count = (int)nspares;
2251 	spa->spa_spares.sav_vdevs = NULL;
2252 
2253 	if (nspares == 0)
2254 		return;
2255 
2256 	/*
2257 	 * Construct the array of vdevs, opening them to get status in the
2258 	 * process.   For each spare, there is potentially two different vdev_t
2259 	 * structures associated with it: one in the list of spares (used only
2260 	 * for basic validation purposes) and one in the active vdev
2261 	 * configuration (if it's spared in).  During this phase we open and
2262 	 * validate each vdev on the spare list.  If the vdev also exists in the
2263 	 * active configuration, then we also mark this vdev as an active spare.
2264 	 */
2265 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2266 	    KM_SLEEP);
2267 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2268 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2269 		    VDEV_ALLOC_SPARE) == 0);
2270 		ASSERT(vd != NULL);
2271 
2272 		spa->spa_spares.sav_vdevs[i] = vd;
2273 
2274 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2275 		    B_FALSE)) != NULL) {
2276 			if (!tvd->vdev_isspare)
2277 				spa_spare_add(tvd);
2278 
2279 			/*
2280 			 * We only mark the spare active if we were successfully
2281 			 * able to load the vdev.  Otherwise, importing a pool
2282 			 * with a bad active spare would result in strange
2283 			 * behavior, because multiple pool would think the spare
2284 			 * is actively in use.
2285 			 *
2286 			 * There is a vulnerability here to an equally bizarre
2287 			 * circumstance, where a dead active spare is later
2288 			 * brought back to life (onlined or otherwise).  Given
2289 			 * the rarity of this scenario, and the extra complexity
2290 			 * it adds, we ignore the possibility.
2291 			 */
2292 			if (!vdev_is_dead(tvd))
2293 				spa_spare_activate(tvd);
2294 		}
2295 
2296 		vd->vdev_top = vd;
2297 		vd->vdev_aux = &spa->spa_spares;
2298 
2299 		if (vdev_open(vd) != 0)
2300 			continue;
2301 
2302 		if (vdev_validate_aux(vd) == 0)
2303 			spa_spare_add(vd);
2304 	}
2305 
2306 	/*
2307 	 * Recompute the stashed list of spares, with status information
2308 	 * this time.
2309 	 */
2310 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2311 
2312 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2313 	    KM_SLEEP);
2314 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2315 		spares[i] = vdev_config_generate(spa,
2316 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2317 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2318 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2319 	    spa->spa_spares.sav_count);
2320 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2321 		nvlist_free(spares[i]);
2322 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2323 }
2324 
2325 /*
2326  * Load (or re-load) the current list of vdevs describing the active l2cache for
2327  * this pool.  When this is called, we have some form of basic information in
2328  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2329  * then re-generate a more complete list including status information.
2330  * Devices which are already active have their details maintained, and are
2331  * not re-opened.
2332  */
2333 void
spa_load_l2cache(spa_t * spa)2334 spa_load_l2cache(spa_t *spa)
2335 {
2336 	nvlist_t **l2cache = NULL;
2337 	uint_t nl2cache;
2338 	int i, j, oldnvdevs;
2339 	uint64_t guid;
2340 	vdev_t *vd, **oldvdevs, **newvdevs;
2341 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2342 
2343 #ifndef _KERNEL
2344 	/*
2345 	 * zdb opens both the current state of the pool and the
2346 	 * checkpointed state (if present), with a different spa_t.
2347 	 *
2348 	 * As L2 caches are part of the ARC which is shared among open
2349 	 * pools, we skip loading them when we load the checkpointed
2350 	 * state of the pool.
2351 	 */
2352 	if (!spa_writeable(spa))
2353 		return;
2354 #endif
2355 
2356 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2357 
2358 	oldvdevs = sav->sav_vdevs;
2359 	oldnvdevs = sav->sav_count;
2360 	sav->sav_vdevs = NULL;
2361 	sav->sav_count = 0;
2362 
2363 	if (sav->sav_config == NULL) {
2364 		nl2cache = 0;
2365 		newvdevs = NULL;
2366 		goto out;
2367 	}
2368 
2369 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2370 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2371 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2372 
2373 	/*
2374 	 * Process new nvlist of vdevs.
2375 	 */
2376 	for (i = 0; i < nl2cache; i++) {
2377 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2378 
2379 		newvdevs[i] = NULL;
2380 		for (j = 0; j < oldnvdevs; j++) {
2381 			vd = oldvdevs[j];
2382 			if (vd != NULL && guid == vd->vdev_guid) {
2383 				/*
2384 				 * Retain previous vdev for add/remove ops.
2385 				 */
2386 				newvdevs[i] = vd;
2387 				oldvdevs[j] = NULL;
2388 				break;
2389 			}
2390 		}
2391 
2392 		if (newvdevs[i] == NULL) {
2393 			/*
2394 			 * Create new vdev
2395 			 */
2396 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2397 			    VDEV_ALLOC_L2CACHE) == 0);
2398 			ASSERT(vd != NULL);
2399 			newvdevs[i] = vd;
2400 
2401 			/*
2402 			 * Commit this vdev as an l2cache device,
2403 			 * even if it fails to open.
2404 			 */
2405 			spa_l2cache_add(vd);
2406 
2407 			vd->vdev_top = vd;
2408 			vd->vdev_aux = sav;
2409 
2410 			spa_l2cache_activate(vd);
2411 
2412 			if (vdev_open(vd) != 0)
2413 				continue;
2414 
2415 			(void) vdev_validate_aux(vd);
2416 
2417 			if (!vdev_is_dead(vd))
2418 				l2arc_add_vdev(spa, vd);
2419 
2420 			/*
2421 			 * Upon cache device addition to a pool or pool
2422 			 * creation with a cache device or if the header
2423 			 * of the device is invalid we issue an async
2424 			 * TRIM command for the whole device which will
2425 			 * execute if l2arc_trim_ahead > 0.
2426 			 */
2427 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2428 		}
2429 	}
2430 
2431 	sav->sav_vdevs = newvdevs;
2432 	sav->sav_count = (int)nl2cache;
2433 
2434 	/*
2435 	 * Recompute the stashed list of l2cache devices, with status
2436 	 * information this time.
2437 	 */
2438 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2439 
2440 	if (sav->sav_count > 0)
2441 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2442 		    KM_SLEEP);
2443 	for (i = 0; i < sav->sav_count; i++)
2444 		l2cache[i] = vdev_config_generate(spa,
2445 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2446 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2447 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2448 
2449 out:
2450 	/*
2451 	 * Purge vdevs that were dropped
2452 	 */
2453 	if (oldvdevs) {
2454 		for (i = 0; i < oldnvdevs; i++) {
2455 			uint64_t pool;
2456 
2457 			vd = oldvdevs[i];
2458 			if (vd != NULL) {
2459 				ASSERT(vd->vdev_isl2cache);
2460 
2461 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2462 				    pool != 0ULL && l2arc_vdev_present(vd))
2463 					l2arc_remove_vdev(vd);
2464 				vdev_clear_stats(vd);
2465 				vdev_free(vd);
2466 			}
2467 		}
2468 
2469 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2470 	}
2471 
2472 	for (i = 0; i < sav->sav_count; i++)
2473 		nvlist_free(l2cache[i]);
2474 	if (sav->sav_count)
2475 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2476 }
2477 
2478 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2479 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2480 {
2481 	dmu_buf_t *db;
2482 	char *packed = NULL;
2483 	size_t nvsize = 0;
2484 	int error;
2485 	*value = NULL;
2486 
2487 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2488 	if (error)
2489 		return (error);
2490 
2491 	nvsize = *(uint64_t *)db->db_data;
2492 	dmu_buf_rele(db, FTAG);
2493 
2494 	packed = vmem_alloc(nvsize, KM_SLEEP);
2495 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2496 	    DMU_READ_PREFETCH);
2497 	if (error == 0)
2498 		error = nvlist_unpack(packed, nvsize, value, 0);
2499 	vmem_free(packed, nvsize);
2500 
2501 	return (error);
2502 }
2503 
2504 /*
2505  * Concrete top-level vdevs that are not missing and are not logs. At every
2506  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2507  */
2508 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2509 spa_healthy_core_tvds(spa_t *spa)
2510 {
2511 	vdev_t *rvd = spa->spa_root_vdev;
2512 	uint64_t tvds = 0;
2513 
2514 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2515 		vdev_t *vd = rvd->vdev_child[i];
2516 		if (vd->vdev_islog)
2517 			continue;
2518 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2519 			tvds++;
2520 	}
2521 
2522 	return (tvds);
2523 }
2524 
2525 /*
2526  * Checks to see if the given vdev could not be opened, in which case we post a
2527  * sysevent to notify the autoreplace code that the device has been removed.
2528  */
2529 static void
spa_check_removed(vdev_t * vd)2530 spa_check_removed(vdev_t *vd)
2531 {
2532 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2533 		spa_check_removed(vd->vdev_child[c]);
2534 
2535 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2536 	    vdev_is_concrete(vd)) {
2537 		zfs_post_autoreplace(vd->vdev_spa, vd);
2538 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2539 	}
2540 }
2541 
2542 static int
spa_check_for_missing_logs(spa_t * spa)2543 spa_check_for_missing_logs(spa_t *spa)
2544 {
2545 	vdev_t *rvd = spa->spa_root_vdev;
2546 
2547 	/*
2548 	 * If we're doing a normal import, then build up any additional
2549 	 * diagnostic information about missing log devices.
2550 	 * We'll pass this up to the user for further processing.
2551 	 */
2552 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2553 		nvlist_t **child, *nv;
2554 		uint64_t idx = 0;
2555 
2556 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2557 		    KM_SLEEP);
2558 		nv = fnvlist_alloc();
2559 
2560 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2561 			vdev_t *tvd = rvd->vdev_child[c];
2562 
2563 			/*
2564 			 * We consider a device as missing only if it failed
2565 			 * to open (i.e. offline or faulted is not considered
2566 			 * as missing).
2567 			 */
2568 			if (tvd->vdev_islog &&
2569 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2570 				child[idx++] = vdev_config_generate(spa, tvd,
2571 				    B_FALSE, VDEV_CONFIG_MISSING);
2572 			}
2573 		}
2574 
2575 		if (idx > 0) {
2576 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2577 			    (const nvlist_t * const *)child, idx);
2578 			fnvlist_add_nvlist(spa->spa_load_info,
2579 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2580 
2581 			for (uint64_t i = 0; i < idx; i++)
2582 				nvlist_free(child[i]);
2583 		}
2584 		nvlist_free(nv);
2585 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2586 
2587 		if (idx > 0) {
2588 			spa_load_failed(spa, "some log devices are missing");
2589 			vdev_dbgmsg_print_tree(rvd, 2);
2590 			return (SET_ERROR(ENXIO));
2591 		}
2592 	} else {
2593 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2594 			vdev_t *tvd = rvd->vdev_child[c];
2595 
2596 			if (tvd->vdev_islog &&
2597 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2598 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2599 				spa_load_note(spa, "some log devices are "
2600 				    "missing, ZIL is dropped.");
2601 				vdev_dbgmsg_print_tree(rvd, 2);
2602 				break;
2603 			}
2604 		}
2605 	}
2606 
2607 	return (0);
2608 }
2609 
2610 /*
2611  * Check for missing log devices
2612  */
2613 static boolean_t
spa_check_logs(spa_t * spa)2614 spa_check_logs(spa_t *spa)
2615 {
2616 	boolean_t rv = B_FALSE;
2617 	dsl_pool_t *dp = spa_get_dsl(spa);
2618 
2619 	switch (spa->spa_log_state) {
2620 	default:
2621 		break;
2622 	case SPA_LOG_MISSING:
2623 		/* need to recheck in case slog has been restored */
2624 	case SPA_LOG_UNKNOWN:
2625 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2626 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2627 		if (rv)
2628 			spa_set_log_state(spa, SPA_LOG_MISSING);
2629 		break;
2630 	}
2631 	return (rv);
2632 }
2633 
2634 /*
2635  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2636  */
2637 static boolean_t
spa_passivate_log(spa_t * spa)2638 spa_passivate_log(spa_t *spa)
2639 {
2640 	vdev_t *rvd = spa->spa_root_vdev;
2641 	boolean_t slog_found = B_FALSE;
2642 
2643 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2644 
2645 	for (int c = 0; c < rvd->vdev_children; c++) {
2646 		vdev_t *tvd = rvd->vdev_child[c];
2647 
2648 		if (tvd->vdev_islog) {
2649 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2650 			metaslab_group_passivate(tvd->vdev_mg);
2651 			slog_found = B_TRUE;
2652 		}
2653 	}
2654 
2655 	return (slog_found);
2656 }
2657 
2658 /*
2659  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2660  */
2661 static void
spa_activate_log(spa_t * spa)2662 spa_activate_log(spa_t *spa)
2663 {
2664 	vdev_t *rvd = spa->spa_root_vdev;
2665 
2666 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2667 
2668 	for (int c = 0; c < rvd->vdev_children; c++) {
2669 		vdev_t *tvd = rvd->vdev_child[c];
2670 
2671 		if (tvd->vdev_islog) {
2672 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2673 			metaslab_group_activate(tvd->vdev_mg);
2674 		}
2675 	}
2676 }
2677 
2678 int
spa_reset_logs(spa_t * spa)2679 spa_reset_logs(spa_t *spa)
2680 {
2681 	int error;
2682 
2683 	error = dmu_objset_find(spa_name(spa), zil_reset,
2684 	    NULL, DS_FIND_CHILDREN);
2685 	if (error == 0) {
2686 		/*
2687 		 * We successfully offlined the log device, sync out the
2688 		 * current txg so that the "stubby" block can be removed
2689 		 * by zil_sync().
2690 		 */
2691 		txg_wait_synced(spa->spa_dsl_pool, 0);
2692 	}
2693 	return (error);
2694 }
2695 
2696 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2697 spa_aux_check_removed(spa_aux_vdev_t *sav)
2698 {
2699 	for (int i = 0; i < sav->sav_count; i++)
2700 		spa_check_removed(sav->sav_vdevs[i]);
2701 }
2702 
2703 void
spa_claim_notify(zio_t * zio)2704 spa_claim_notify(zio_t *zio)
2705 {
2706 	spa_t *spa = zio->io_spa;
2707 
2708 	if (zio->io_error)
2709 		return;
2710 
2711 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2712 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2713 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2714 	mutex_exit(&spa->spa_props_lock);
2715 }
2716 
2717 typedef struct spa_load_error {
2718 	boolean_t	sle_verify_data;
2719 	uint64_t	sle_meta_count;
2720 	uint64_t	sle_data_count;
2721 } spa_load_error_t;
2722 
2723 static void
spa_load_verify_done(zio_t * zio)2724 spa_load_verify_done(zio_t *zio)
2725 {
2726 	blkptr_t *bp = zio->io_bp;
2727 	spa_load_error_t *sle = zio->io_private;
2728 	dmu_object_type_t type = BP_GET_TYPE(bp);
2729 	int error = zio->io_error;
2730 	spa_t *spa = zio->io_spa;
2731 
2732 	abd_free(zio->io_abd);
2733 	if (error) {
2734 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2735 		    type != DMU_OT_INTENT_LOG)
2736 			atomic_inc_64(&sle->sle_meta_count);
2737 		else
2738 			atomic_inc_64(&sle->sle_data_count);
2739 	}
2740 
2741 	mutex_enter(&spa->spa_scrub_lock);
2742 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2743 	cv_broadcast(&spa->spa_scrub_io_cv);
2744 	mutex_exit(&spa->spa_scrub_lock);
2745 }
2746 
2747 /*
2748  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2749  * By default, we set it to 1/16th of the arc.
2750  */
2751 static uint_t spa_load_verify_shift = 4;
2752 static int spa_load_verify_metadata = B_TRUE;
2753 static int spa_load_verify_data = B_TRUE;
2754 
2755 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2756 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2757     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2758 {
2759 	zio_t *rio = arg;
2760 	spa_load_error_t *sle = rio->io_private;
2761 
2762 	(void) zilog, (void) dnp;
2763 
2764 	/*
2765 	 * Note: normally this routine will not be called if
2766 	 * spa_load_verify_metadata is not set.  However, it may be useful
2767 	 * to manually set the flag after the traversal has begun.
2768 	 */
2769 	if (!spa_load_verify_metadata)
2770 		return (0);
2771 
2772 	/*
2773 	 * Sanity check the block pointer in order to detect obvious damage
2774 	 * before using the contents in subsequent checks or in zio_read().
2775 	 * When damaged consider it to be a metadata error since we cannot
2776 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2777 	 */
2778 	if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2779 		atomic_inc_64(&sle->sle_meta_count);
2780 		return (0);
2781 	}
2782 
2783 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2784 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2785 		return (0);
2786 
2787 	if (!BP_IS_METADATA(bp) &&
2788 	    (!spa_load_verify_data || !sle->sle_verify_data))
2789 		return (0);
2790 
2791 	uint64_t maxinflight_bytes =
2792 	    arc_target_bytes() >> spa_load_verify_shift;
2793 	size_t size = BP_GET_PSIZE(bp);
2794 
2795 	mutex_enter(&spa->spa_scrub_lock);
2796 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2797 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2798 	spa->spa_load_verify_bytes += size;
2799 	mutex_exit(&spa->spa_scrub_lock);
2800 
2801 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2802 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2803 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2804 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2805 	return (0);
2806 }
2807 
2808 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2809 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2810 {
2811 	(void) dp, (void) arg;
2812 
2813 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2814 		return (SET_ERROR(ENAMETOOLONG));
2815 
2816 	return (0);
2817 }
2818 
2819 static int
spa_load_verify(spa_t * spa)2820 spa_load_verify(spa_t *spa)
2821 {
2822 	zio_t *rio;
2823 	spa_load_error_t sle = { 0 };
2824 	zpool_load_policy_t policy;
2825 	boolean_t verify_ok = B_FALSE;
2826 	int error = 0;
2827 
2828 	zpool_get_load_policy(spa->spa_config, &policy);
2829 
2830 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2831 	    policy.zlp_maxmeta == UINT64_MAX)
2832 		return (0);
2833 
2834 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2835 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2836 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2837 	    DS_FIND_CHILDREN);
2838 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2839 	if (error != 0)
2840 		return (error);
2841 
2842 	/*
2843 	 * Verify data only if we are rewinding or error limit was set.
2844 	 * Otherwise nothing except dbgmsg care about it to waste time.
2845 	 */
2846 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2847 	    (policy.zlp_maxdata < UINT64_MAX);
2848 
2849 	rio = zio_root(spa, NULL, &sle,
2850 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2851 
2852 	if (spa_load_verify_metadata) {
2853 		if (spa->spa_extreme_rewind) {
2854 			spa_load_note(spa, "performing a complete scan of the "
2855 			    "pool since extreme rewind is on. This may take "
2856 			    "a very long time.\n  (spa_load_verify_data=%u, "
2857 			    "spa_load_verify_metadata=%u)",
2858 			    spa_load_verify_data, spa_load_verify_metadata);
2859 		}
2860 
2861 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2862 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2863 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2864 	}
2865 
2866 	(void) zio_wait(rio);
2867 	ASSERT0(spa->spa_load_verify_bytes);
2868 
2869 	spa->spa_load_meta_errors = sle.sle_meta_count;
2870 	spa->spa_load_data_errors = sle.sle_data_count;
2871 
2872 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2873 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2874 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2875 		    (u_longlong_t)sle.sle_data_count);
2876 	}
2877 
2878 	if (spa_load_verify_dryrun ||
2879 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2880 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2881 		int64_t loss = 0;
2882 
2883 		verify_ok = B_TRUE;
2884 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2885 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2886 
2887 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2888 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2889 		    spa->spa_load_txg_ts);
2890 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2891 		    loss);
2892 		fnvlist_add_uint64(spa->spa_load_info,
2893 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2894 		fnvlist_add_uint64(spa->spa_load_info,
2895 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2896 	} else {
2897 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2898 	}
2899 
2900 	if (spa_load_verify_dryrun)
2901 		return (0);
2902 
2903 	if (error) {
2904 		if (error != ENXIO && error != EIO)
2905 			error = SET_ERROR(EIO);
2906 		return (error);
2907 	}
2908 
2909 	return (verify_ok ? 0 : EIO);
2910 }
2911 
2912 /*
2913  * Find a value in the pool props object.
2914  */
2915 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2916 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2917 {
2918 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2919 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2920 }
2921 
2922 /*
2923  * Find a value in the pool directory object.
2924  */
2925 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2926 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2927 {
2928 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2929 	    name, sizeof (uint64_t), 1, val);
2930 
2931 	if (error != 0 && (error != ENOENT || log_enoent)) {
2932 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2933 		    "[error=%d]", name, error);
2934 	}
2935 
2936 	return (error);
2937 }
2938 
2939 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2940 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2941 {
2942 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2943 	return (SET_ERROR(err));
2944 }
2945 
2946 boolean_t
spa_livelist_delete_check(spa_t * spa)2947 spa_livelist_delete_check(spa_t *spa)
2948 {
2949 	return (spa->spa_livelists_to_delete != 0);
2950 }
2951 
2952 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2953 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2954 {
2955 	(void) z;
2956 	spa_t *spa = arg;
2957 	return (spa_livelist_delete_check(spa));
2958 }
2959 
2960 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2961 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2962 {
2963 	spa_t *spa = arg;
2964 	zio_free(spa, tx->tx_txg, bp);
2965 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2966 	    -bp_get_dsize_sync(spa, bp),
2967 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2968 	return (0);
2969 }
2970 
2971 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2972 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2973 {
2974 	int err;
2975 	zap_cursor_t zc;
2976 	zap_attribute_t *za = zap_attribute_alloc();
2977 	zap_cursor_init(&zc, os, zap_obj);
2978 	err = zap_cursor_retrieve(&zc, za);
2979 	zap_cursor_fini(&zc);
2980 	if (err == 0)
2981 		*llp = za->za_first_integer;
2982 	zap_attribute_free(za);
2983 	return (err);
2984 }
2985 
2986 /*
2987  * Components of livelist deletion that must be performed in syncing
2988  * context: freeing block pointers and updating the pool-wide data
2989  * structures to indicate how much work is left to do
2990  */
2991 typedef struct sublist_delete_arg {
2992 	spa_t *spa;
2993 	dsl_deadlist_t *ll;
2994 	uint64_t key;
2995 	bplist_t *to_free;
2996 } sublist_delete_arg_t;
2997 
2998 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)2999 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3000 {
3001 	sublist_delete_arg_t *sda = arg;
3002 	spa_t *spa = sda->spa;
3003 	dsl_deadlist_t *ll = sda->ll;
3004 	uint64_t key = sda->key;
3005 	bplist_t *to_free = sda->to_free;
3006 
3007 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3008 	dsl_deadlist_remove_entry(ll, key, tx);
3009 }
3010 
3011 typedef struct livelist_delete_arg {
3012 	spa_t *spa;
3013 	uint64_t ll_obj;
3014 	uint64_t zap_obj;
3015 } livelist_delete_arg_t;
3016 
3017 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3018 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3019 {
3020 	livelist_delete_arg_t *lda = arg;
3021 	spa_t *spa = lda->spa;
3022 	uint64_t ll_obj = lda->ll_obj;
3023 	uint64_t zap_obj = lda->zap_obj;
3024 	objset_t *mos = spa->spa_meta_objset;
3025 	uint64_t count;
3026 
3027 	/* free the livelist and decrement the feature count */
3028 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3029 	dsl_deadlist_free(mos, ll_obj, tx);
3030 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3031 	VERIFY0(zap_count(mos, zap_obj, &count));
3032 	if (count == 0) {
3033 		/* no more livelists to delete */
3034 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3035 		    DMU_POOL_DELETED_CLONES, tx));
3036 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3037 		spa->spa_livelists_to_delete = 0;
3038 		spa_notify_waiters(spa);
3039 	}
3040 }
3041 
3042 /*
3043  * Load in the value for the livelist to be removed and open it. Then,
3044  * load its first sublist and determine which block pointers should actually
3045  * be freed. Then, call a synctask which performs the actual frees and updates
3046  * the pool-wide livelist data.
3047  */
3048 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3049 spa_livelist_delete_cb(void *arg, zthr_t *z)
3050 {
3051 	spa_t *spa = arg;
3052 	uint64_t ll_obj = 0, count;
3053 	objset_t *mos = spa->spa_meta_objset;
3054 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3055 	/*
3056 	 * Determine the next livelist to delete. This function should only
3057 	 * be called if there is at least one deleted clone.
3058 	 */
3059 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3060 	VERIFY0(zap_count(mos, ll_obj, &count));
3061 	if (count > 0) {
3062 		dsl_deadlist_t *ll;
3063 		dsl_deadlist_entry_t *dle;
3064 		bplist_t to_free;
3065 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3066 		VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3067 		dle = dsl_deadlist_first(ll);
3068 		ASSERT3P(dle, !=, NULL);
3069 		bplist_create(&to_free);
3070 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3071 		    z, NULL);
3072 		if (err == 0) {
3073 			sublist_delete_arg_t sync_arg = {
3074 			    .spa = spa,
3075 			    .ll = ll,
3076 			    .key = dle->dle_mintxg,
3077 			    .to_free = &to_free
3078 			};
3079 			zfs_dbgmsg("deleting sublist (id %llu) from"
3080 			    " livelist %llu, %lld remaining",
3081 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3082 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3083 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3084 			    sublist_delete_sync, &sync_arg, 0,
3085 			    ZFS_SPACE_CHECK_DESTROY));
3086 		} else {
3087 			VERIFY3U(err, ==, EINTR);
3088 		}
3089 		bplist_clear(&to_free);
3090 		bplist_destroy(&to_free);
3091 		dsl_deadlist_close(ll);
3092 		kmem_free(ll, sizeof (dsl_deadlist_t));
3093 	} else {
3094 		livelist_delete_arg_t sync_arg = {
3095 		    .spa = spa,
3096 		    .ll_obj = ll_obj,
3097 		    .zap_obj = zap_obj
3098 		};
3099 		zfs_dbgmsg("deletion of livelist %llu completed",
3100 		    (u_longlong_t)ll_obj);
3101 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3102 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3103 	}
3104 }
3105 
3106 static void
spa_start_livelist_destroy_thread(spa_t * spa)3107 spa_start_livelist_destroy_thread(spa_t *spa)
3108 {
3109 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3110 	spa->spa_livelist_delete_zthr =
3111 	    zthr_create("z_livelist_destroy",
3112 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3113 	    minclsyspri);
3114 }
3115 
3116 typedef struct livelist_new_arg {
3117 	bplist_t *allocs;
3118 	bplist_t *frees;
3119 } livelist_new_arg_t;
3120 
3121 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3122 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3123     dmu_tx_t *tx)
3124 {
3125 	ASSERT(tx == NULL);
3126 	livelist_new_arg_t *lna = arg;
3127 	if (bp_freed) {
3128 		bplist_append(lna->frees, bp);
3129 	} else {
3130 		bplist_append(lna->allocs, bp);
3131 		zfs_livelist_condense_new_alloc++;
3132 	}
3133 	return (0);
3134 }
3135 
3136 typedef struct livelist_condense_arg {
3137 	spa_t *spa;
3138 	bplist_t to_keep;
3139 	uint64_t first_size;
3140 	uint64_t next_size;
3141 } livelist_condense_arg_t;
3142 
3143 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3144 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3145 {
3146 	livelist_condense_arg_t *lca = arg;
3147 	spa_t *spa = lca->spa;
3148 	bplist_t new_frees;
3149 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3150 
3151 	/* Have we been cancelled? */
3152 	if (spa->spa_to_condense.cancelled) {
3153 		zfs_livelist_condense_sync_cancel++;
3154 		goto out;
3155 	}
3156 
3157 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3158 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3159 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3160 
3161 	/*
3162 	 * It's possible that the livelist was changed while the zthr was
3163 	 * running. Therefore, we need to check for new blkptrs in the two
3164 	 * entries being condensed and continue to track them in the livelist.
3165 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3166 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3167 	 * we need to sort them into two different bplists.
3168 	 */
3169 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3170 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3171 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3172 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3173 
3174 	bplist_create(&new_frees);
3175 	livelist_new_arg_t new_bps = {
3176 	    .allocs = &lca->to_keep,
3177 	    .frees = &new_frees,
3178 	};
3179 
3180 	if (cur_first_size > lca->first_size) {
3181 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3182 		    livelist_track_new_cb, &new_bps, lca->first_size));
3183 	}
3184 	if (cur_next_size > lca->next_size) {
3185 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3186 		    livelist_track_new_cb, &new_bps, lca->next_size));
3187 	}
3188 
3189 	dsl_deadlist_clear_entry(first, ll, tx);
3190 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3191 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3192 
3193 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3194 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3195 	bplist_destroy(&new_frees);
3196 
3197 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3198 	dsl_dataset_name(ds, dsname);
3199 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3200 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3201 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3202 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3203 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3204 	    (u_longlong_t)cur_next_size,
3205 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3206 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3207 out:
3208 	dmu_buf_rele(ds->ds_dbuf, spa);
3209 	spa->spa_to_condense.ds = NULL;
3210 	bplist_clear(&lca->to_keep);
3211 	bplist_destroy(&lca->to_keep);
3212 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3213 	spa->spa_to_condense.syncing = B_FALSE;
3214 }
3215 
3216 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3217 spa_livelist_condense_cb(void *arg, zthr_t *t)
3218 {
3219 	while (zfs_livelist_condense_zthr_pause &&
3220 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3221 		delay(1);
3222 
3223 	spa_t *spa = arg;
3224 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3225 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3226 	uint64_t first_size, next_size;
3227 
3228 	livelist_condense_arg_t *lca =
3229 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3230 	bplist_create(&lca->to_keep);
3231 
3232 	/*
3233 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3234 	 * so we have minimal work in syncing context to condense.
3235 	 *
3236 	 * We save bpobj sizes (first_size and next_size) to use later in
3237 	 * syncing context to determine if entries were added to these sublists
3238 	 * while in open context. This is possible because the clone is still
3239 	 * active and open for normal writes and we want to make sure the new,
3240 	 * unprocessed blockpointers are inserted into the livelist normally.
3241 	 *
3242 	 * Note that dsl_process_sub_livelist() both stores the size number of
3243 	 * blockpointers and iterates over them while the bpobj's lock held, so
3244 	 * the sizes returned to us are consistent which what was actually
3245 	 * processed.
3246 	 */
3247 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3248 	    &first_size);
3249 	if (err == 0)
3250 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3251 		    t, &next_size);
3252 
3253 	if (err == 0) {
3254 		while (zfs_livelist_condense_sync_pause &&
3255 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3256 			delay(1);
3257 
3258 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3259 		dmu_tx_mark_netfree(tx);
3260 		dmu_tx_hold_space(tx, 1);
3261 		err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3262 		if (err == 0) {
3263 			/*
3264 			 * Prevent the condense zthr restarting before
3265 			 * the synctask completes.
3266 			 */
3267 			spa->spa_to_condense.syncing = B_TRUE;
3268 			lca->spa = spa;
3269 			lca->first_size = first_size;
3270 			lca->next_size = next_size;
3271 			dsl_sync_task_nowait(spa_get_dsl(spa),
3272 			    spa_livelist_condense_sync, lca, tx);
3273 			dmu_tx_commit(tx);
3274 			return;
3275 		}
3276 	}
3277 	/*
3278 	 * Condensing can not continue: either it was externally stopped or
3279 	 * we were unable to assign to a tx because the pool has run out of
3280 	 * space. In the second case, we'll just end up trying to condense
3281 	 * again in a later txg.
3282 	 */
3283 	ASSERT(err != 0);
3284 	bplist_clear(&lca->to_keep);
3285 	bplist_destroy(&lca->to_keep);
3286 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3287 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3288 	spa->spa_to_condense.ds = NULL;
3289 	if (err == EINTR)
3290 		zfs_livelist_condense_zthr_cancel++;
3291 }
3292 
3293 /*
3294  * Check that there is something to condense but that a condense is not
3295  * already in progress and that condensing has not been cancelled.
3296  */
3297 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3298 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3299 {
3300 	(void) z;
3301 	spa_t *spa = arg;
3302 	if ((spa->spa_to_condense.ds != NULL) &&
3303 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3304 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3305 		return (B_TRUE);
3306 	}
3307 	return (B_FALSE);
3308 }
3309 
3310 static void
spa_start_livelist_condensing_thread(spa_t * spa)3311 spa_start_livelist_condensing_thread(spa_t *spa)
3312 {
3313 	spa->spa_to_condense.ds = NULL;
3314 	spa->spa_to_condense.first = NULL;
3315 	spa->spa_to_condense.next = NULL;
3316 	spa->spa_to_condense.syncing = B_FALSE;
3317 	spa->spa_to_condense.cancelled = B_FALSE;
3318 
3319 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3320 	spa->spa_livelist_condense_zthr =
3321 	    zthr_create("z_livelist_condense",
3322 	    spa_livelist_condense_cb_check,
3323 	    spa_livelist_condense_cb, spa, minclsyspri);
3324 }
3325 
3326 static void
spa_spawn_aux_threads(spa_t * spa)3327 spa_spawn_aux_threads(spa_t *spa)
3328 {
3329 	ASSERT(spa_writeable(spa));
3330 
3331 	spa_start_raidz_expansion_thread(spa);
3332 	spa_start_indirect_condensing_thread(spa);
3333 	spa_start_livelist_destroy_thread(spa);
3334 	spa_start_livelist_condensing_thread(spa);
3335 
3336 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3337 	spa->spa_checkpoint_discard_zthr =
3338 	    zthr_create("z_checkpoint_discard",
3339 	    spa_checkpoint_discard_thread_check,
3340 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3341 }
3342 
3343 /*
3344  * Fix up config after a partly-completed split.  This is done with the
3345  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3346  * pool have that entry in their config, but only the splitting one contains
3347  * a list of all the guids of the vdevs that are being split off.
3348  *
3349  * This function determines what to do with that list: either rejoin
3350  * all the disks to the pool, or complete the splitting process.  To attempt
3351  * the rejoin, each disk that is offlined is marked online again, and
3352  * we do a reopen() call.  If the vdev label for every disk that was
3353  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3354  * then we call vdev_split() on each disk, and complete the split.
3355  *
3356  * Otherwise we leave the config alone, with all the vdevs in place in
3357  * the original pool.
3358  */
3359 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3360 spa_try_repair(spa_t *spa, nvlist_t *config)
3361 {
3362 	uint_t extracted;
3363 	uint64_t *glist;
3364 	uint_t i, gcount;
3365 	nvlist_t *nvl;
3366 	vdev_t **vd;
3367 	boolean_t attempt_reopen;
3368 
3369 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3370 		return;
3371 
3372 	/* check that the config is complete */
3373 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3374 	    &glist, &gcount) != 0)
3375 		return;
3376 
3377 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3378 
3379 	/* attempt to online all the vdevs & validate */
3380 	attempt_reopen = B_TRUE;
3381 	for (i = 0; i < gcount; i++) {
3382 		if (glist[i] == 0)	/* vdev is hole */
3383 			continue;
3384 
3385 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3386 		if (vd[i] == NULL) {
3387 			/*
3388 			 * Don't bother attempting to reopen the disks;
3389 			 * just do the split.
3390 			 */
3391 			attempt_reopen = B_FALSE;
3392 		} else {
3393 			/* attempt to re-online it */
3394 			vd[i]->vdev_offline = B_FALSE;
3395 		}
3396 	}
3397 
3398 	if (attempt_reopen) {
3399 		vdev_reopen(spa->spa_root_vdev);
3400 
3401 		/* check each device to see what state it's in */
3402 		for (extracted = 0, i = 0; i < gcount; i++) {
3403 			if (vd[i] != NULL &&
3404 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3405 				break;
3406 			++extracted;
3407 		}
3408 	}
3409 
3410 	/*
3411 	 * If every disk has been moved to the new pool, or if we never
3412 	 * even attempted to look at them, then we split them off for
3413 	 * good.
3414 	 */
3415 	if (!attempt_reopen || gcount == extracted) {
3416 		for (i = 0; i < gcount; i++)
3417 			if (vd[i] != NULL)
3418 				vdev_split(vd[i]);
3419 		vdev_reopen(spa->spa_root_vdev);
3420 	}
3421 
3422 	kmem_free(vd, gcount * sizeof (vdev_t *));
3423 }
3424 
3425 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3426 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3427 {
3428 	const char *ereport = FM_EREPORT_ZFS_POOL;
3429 	int error;
3430 
3431 	spa->spa_load_state = state;
3432 	(void) spa_import_progress_set_state(spa_guid(spa),
3433 	    spa_load_state(spa));
3434 	spa_import_progress_set_notes(spa, "spa_load()");
3435 
3436 	gethrestime(&spa->spa_loaded_ts);
3437 	error = spa_load_impl(spa, type, &ereport);
3438 
3439 	/*
3440 	 * Don't count references from objsets that are already closed
3441 	 * and are making their way through the eviction process.
3442 	 */
3443 	spa_evicting_os_wait(spa);
3444 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3445 	if (error) {
3446 		if (error != EEXIST) {
3447 			spa->spa_loaded_ts.tv_sec = 0;
3448 			spa->spa_loaded_ts.tv_nsec = 0;
3449 		}
3450 		if (error != EBADF) {
3451 			(void) zfs_ereport_post(ereport, spa,
3452 			    NULL, NULL, NULL, 0);
3453 		}
3454 	}
3455 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3456 	spa->spa_ena = 0;
3457 
3458 	(void) spa_import_progress_set_state(spa_guid(spa),
3459 	    spa_load_state(spa));
3460 
3461 	return (error);
3462 }
3463 
3464 #ifdef ZFS_DEBUG
3465 /*
3466  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3467  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3468  * spa's per-vdev ZAP list.
3469  */
3470 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3471 vdev_count_verify_zaps(vdev_t *vd)
3472 {
3473 	spa_t *spa = vd->vdev_spa;
3474 	uint64_t total = 0;
3475 
3476 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3477 	    vd->vdev_root_zap != 0) {
3478 		total++;
3479 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3480 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3481 	}
3482 	if (vd->vdev_top_zap != 0) {
3483 		total++;
3484 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3485 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3486 	}
3487 	if (vd->vdev_leaf_zap != 0) {
3488 		total++;
3489 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3490 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3491 	}
3492 
3493 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3494 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3495 	}
3496 
3497 	return (total);
3498 }
3499 #else
3500 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3501 #endif
3502 
3503 /*
3504  * Determine whether the activity check is required.
3505  */
3506 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3507 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3508     nvlist_t *config)
3509 {
3510 	uint64_t state = 0;
3511 	uint64_t hostid = 0;
3512 	uint64_t tryconfig_txg = 0;
3513 	uint64_t tryconfig_timestamp = 0;
3514 	uint16_t tryconfig_mmp_seq = 0;
3515 	nvlist_t *nvinfo;
3516 
3517 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3518 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3519 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3520 		    &tryconfig_txg);
3521 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3522 		    &tryconfig_timestamp);
3523 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3524 		    &tryconfig_mmp_seq);
3525 	}
3526 
3527 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3528 
3529 	/*
3530 	 * Disable the MMP activity check - This is used by zdb which
3531 	 * is intended to be used on potentially active pools.
3532 	 */
3533 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3534 		return (B_FALSE);
3535 
3536 	/*
3537 	 * Skip the activity check when the MMP feature is disabled.
3538 	 */
3539 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3540 		return (B_FALSE);
3541 
3542 	/*
3543 	 * If the tryconfig_ values are nonzero, they are the results of an
3544 	 * earlier tryimport.  If they all match the uberblock we just found,
3545 	 * then the pool has not changed and we return false so we do not test
3546 	 * a second time.
3547 	 */
3548 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3549 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3550 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3551 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3552 		return (B_FALSE);
3553 
3554 	/*
3555 	 * Allow the activity check to be skipped when importing the pool
3556 	 * on the same host which last imported it.  Since the hostid from
3557 	 * configuration may be stale use the one read from the label.
3558 	 */
3559 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3560 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3561 
3562 	if (hostid == spa_get_hostid(spa))
3563 		return (B_FALSE);
3564 
3565 	/*
3566 	 * Skip the activity test when the pool was cleanly exported.
3567 	 */
3568 	if (state != POOL_STATE_ACTIVE)
3569 		return (B_FALSE);
3570 
3571 	return (B_TRUE);
3572 }
3573 
3574 /*
3575  * Nanoseconds the activity check must watch for changes on-disk.
3576  */
3577 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3578 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3579 {
3580 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3581 	uint64_t multihost_interval = MSEC2NSEC(
3582 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3583 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3584 	    multihost_interval);
3585 
3586 	/*
3587 	 * Local tunables determine a minimum duration except for the case
3588 	 * where we know when the remote host will suspend the pool if MMP
3589 	 * writes do not land.
3590 	 *
3591 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3592 	 * these cases and times.
3593 	 */
3594 
3595 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3596 
3597 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3598 	    MMP_FAIL_INT(ub) > 0) {
3599 
3600 		/* MMP on remote host will suspend pool after failed writes */
3601 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3602 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3603 
3604 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3605 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3606 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3607 		    (u_longlong_t)MMP_FAIL_INT(ub),
3608 		    (u_longlong_t)MMP_INTERVAL(ub),
3609 		    (u_longlong_t)import_intervals);
3610 
3611 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3612 	    MMP_FAIL_INT(ub) == 0) {
3613 
3614 		/* MMP on remote host will never suspend pool */
3615 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3616 		    ub->ub_mmp_delay) * import_intervals);
3617 
3618 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3619 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3620 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3621 		    (u_longlong_t)MMP_INTERVAL(ub),
3622 		    (u_longlong_t)ub->ub_mmp_delay,
3623 		    (u_longlong_t)import_intervals);
3624 
3625 	} else if (MMP_VALID(ub)) {
3626 		/*
3627 		 * zfs-0.7 compatibility case
3628 		 */
3629 
3630 		import_delay = MAX(import_delay, (multihost_interval +
3631 		    ub->ub_mmp_delay) * import_intervals);
3632 
3633 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3634 		    "import_intervals=%llu leaves=%u",
3635 		    (u_longlong_t)import_delay,
3636 		    (u_longlong_t)ub->ub_mmp_delay,
3637 		    (u_longlong_t)import_intervals,
3638 		    vdev_count_leaves(spa));
3639 	} else {
3640 		/* Using local tunings is the only reasonable option */
3641 		zfs_dbgmsg("pool last imported on non-MMP aware "
3642 		    "host using import_delay=%llu multihost_interval=%llu "
3643 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3644 		    (u_longlong_t)multihost_interval,
3645 		    (u_longlong_t)import_intervals);
3646 	}
3647 
3648 	return (import_delay);
3649 }
3650 
3651 /*
3652  * Remote host activity check.
3653  *
3654  * error results:
3655  *          0 - no activity detected
3656  *  EREMOTEIO - remote activity detected
3657  *      EINTR - user canceled the operation
3658  */
3659 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3660 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3661     boolean_t importing)
3662 {
3663 	uint64_t txg = ub->ub_txg;
3664 	uint64_t timestamp = ub->ub_timestamp;
3665 	uint64_t mmp_config = ub->ub_mmp_config;
3666 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3667 	uint64_t import_delay;
3668 	hrtime_t import_expire, now;
3669 	nvlist_t *mmp_label = NULL;
3670 	vdev_t *rvd = spa->spa_root_vdev;
3671 	kcondvar_t cv;
3672 	kmutex_t mtx;
3673 	int error = 0;
3674 
3675 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3676 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3677 	mutex_enter(&mtx);
3678 
3679 	/*
3680 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3681 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3682 	 * the pool is known to be active on another host.
3683 	 *
3684 	 * Otherwise, the pool might be in use on another host.  Check for
3685 	 * changes in the uberblocks on disk if necessary.
3686 	 */
3687 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3688 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3689 		    ZPOOL_CONFIG_LOAD_INFO);
3690 
3691 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3692 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3693 			vdev_uberblock_load(rvd, ub, &mmp_label);
3694 			error = SET_ERROR(EREMOTEIO);
3695 			goto out;
3696 		}
3697 	}
3698 
3699 	import_delay = spa_activity_check_duration(spa, ub);
3700 
3701 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3702 	import_delay += import_delay * random_in_range(250) / 1000;
3703 
3704 	import_expire = gethrtime() + import_delay;
3705 
3706 	if (importing) {
3707 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3708 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3709 	}
3710 
3711 	int iterations = 0;
3712 	while ((now = gethrtime()) < import_expire) {
3713 		if (importing && iterations++ % 30 == 0) {
3714 			spa_import_progress_set_notes(spa, "Checking MMP "
3715 			    "activity, %llu ms remaining",
3716 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3717 		}
3718 
3719 		if (importing) {
3720 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3721 			    NSEC2SEC(import_expire - gethrtime()));
3722 		}
3723 
3724 		vdev_uberblock_load(rvd, ub, &mmp_label);
3725 
3726 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3727 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3728 			zfs_dbgmsg("multihost activity detected "
3729 			    "txg %llu ub_txg  %llu "
3730 			    "timestamp %llu ub_timestamp  %llu "
3731 			    "mmp_config %#llx ub_mmp_config %#llx",
3732 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3733 			    (u_longlong_t)timestamp,
3734 			    (u_longlong_t)ub->ub_timestamp,
3735 			    (u_longlong_t)mmp_config,
3736 			    (u_longlong_t)ub->ub_mmp_config);
3737 
3738 			error = SET_ERROR(EREMOTEIO);
3739 			break;
3740 		}
3741 
3742 		if (mmp_label) {
3743 			nvlist_free(mmp_label);
3744 			mmp_label = NULL;
3745 		}
3746 
3747 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3748 		if (error != -1) {
3749 			error = SET_ERROR(EINTR);
3750 			break;
3751 		}
3752 		error = 0;
3753 	}
3754 
3755 out:
3756 	mutex_exit(&mtx);
3757 	mutex_destroy(&mtx);
3758 	cv_destroy(&cv);
3759 
3760 	/*
3761 	 * If the pool is determined to be active store the status in the
3762 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3763 	 * available from configuration read from disk store them as well.
3764 	 * This allows 'zpool import' to generate a more useful message.
3765 	 *
3766 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3767 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3768 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3769 	 */
3770 	if (error == EREMOTEIO) {
3771 		const char *hostname = "<unknown>";
3772 		uint64_t hostid = 0;
3773 
3774 		if (mmp_label) {
3775 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3776 				hostname = fnvlist_lookup_string(mmp_label,
3777 				    ZPOOL_CONFIG_HOSTNAME);
3778 				fnvlist_add_string(spa->spa_load_info,
3779 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3780 			}
3781 
3782 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3783 				hostid = fnvlist_lookup_uint64(mmp_label,
3784 				    ZPOOL_CONFIG_HOSTID);
3785 				fnvlist_add_uint64(spa->spa_load_info,
3786 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3787 			}
3788 		}
3789 
3790 		fnvlist_add_uint64(spa->spa_load_info,
3791 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3792 		fnvlist_add_uint64(spa->spa_load_info,
3793 		    ZPOOL_CONFIG_MMP_TXG, 0);
3794 
3795 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3796 	}
3797 
3798 	if (mmp_label)
3799 		nvlist_free(mmp_label);
3800 
3801 	return (error);
3802 }
3803 
3804 /*
3805  * Called from zfs_ioc_clear for a pool that was suspended
3806  * after failing mmp write checks.
3807  */
3808 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3809 spa_mmp_remote_host_activity(spa_t *spa)
3810 {
3811 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3812 
3813 	nvlist_t *best_label;
3814 	uberblock_t best_ub;
3815 
3816 	/*
3817 	 * Locate the best uberblock on disk
3818 	 */
3819 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3820 	if (best_label) {
3821 		/*
3822 		 * confirm that the best hostid matches our hostid
3823 		 */
3824 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3825 		    spa_get_hostid(spa) !=
3826 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3827 			nvlist_free(best_label);
3828 			return (B_TRUE);
3829 		}
3830 		nvlist_free(best_label);
3831 	} else {
3832 		return (B_TRUE);
3833 	}
3834 
3835 	if (!MMP_VALID(&best_ub) ||
3836 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3837 	    MMP_FAIL_INT(&best_ub) == 0) {
3838 		return (B_TRUE);
3839 	}
3840 
3841 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3842 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3843 		zfs_dbgmsg("txg mismatch detected during pool clear "
3844 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3845 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3846 		    (u_longlong_t)best_ub.ub_txg,
3847 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3848 		    (u_longlong_t)best_ub.ub_timestamp);
3849 		return (B_TRUE);
3850 	}
3851 
3852 	/*
3853 	 * Perform an activity check looking for any remote writer
3854 	 */
3855 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3856 	    B_FALSE) != 0);
3857 }
3858 
3859 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3860 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3861 {
3862 	uint64_t hostid;
3863 	const char *hostname;
3864 	uint64_t myhostid = 0;
3865 
3866 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3867 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3868 		hostname = fnvlist_lookup_string(mos_config,
3869 		    ZPOOL_CONFIG_HOSTNAME);
3870 
3871 		myhostid = zone_get_hostid(NULL);
3872 
3873 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3874 			cmn_err(CE_WARN, "pool '%s' could not be "
3875 			    "loaded as it was last accessed by "
3876 			    "another system (host: %s hostid: 0x%llx). "
3877 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3878 			    "ZFS-8000-EY",
3879 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3880 			spa_load_failed(spa, "hostid verification failed: pool "
3881 			    "last accessed by host: %s (hostid: 0x%llx)",
3882 			    hostname, (u_longlong_t)hostid);
3883 			return (SET_ERROR(EBADF));
3884 		}
3885 	}
3886 
3887 	return (0);
3888 }
3889 
3890 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3891 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3892 {
3893 	int error = 0;
3894 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3895 	int parse;
3896 	vdev_t *rvd;
3897 	uint64_t pool_guid;
3898 	const char *comment;
3899 	const char *compatibility;
3900 
3901 	/*
3902 	 * Versioning wasn't explicitly added to the label until later, so if
3903 	 * it's not present treat it as the initial version.
3904 	 */
3905 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3906 	    &spa->spa_ubsync.ub_version) != 0)
3907 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3908 
3909 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3910 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3911 		    ZPOOL_CONFIG_POOL_GUID);
3912 		return (SET_ERROR(EINVAL));
3913 	}
3914 
3915 	/*
3916 	 * If we are doing an import, ensure that the pool is not already
3917 	 * imported by checking if its pool guid already exists in the
3918 	 * spa namespace.
3919 	 *
3920 	 * The only case that we allow an already imported pool to be
3921 	 * imported again, is when the pool is checkpointed and we want to
3922 	 * look at its checkpointed state from userland tools like zdb.
3923 	 */
3924 #ifdef _KERNEL
3925 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3926 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3927 	    spa_guid_exists(pool_guid, 0)) {
3928 #else
3929 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3930 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3931 	    spa_guid_exists(pool_guid, 0) &&
3932 	    !spa_importing_readonly_checkpoint(spa)) {
3933 #endif
3934 		spa_load_failed(spa, "a pool with guid %llu is already open",
3935 		    (u_longlong_t)pool_guid);
3936 		return (SET_ERROR(EEXIST));
3937 	}
3938 
3939 	spa->spa_config_guid = pool_guid;
3940 
3941 	nvlist_free(spa->spa_load_info);
3942 	spa->spa_load_info = fnvlist_alloc();
3943 
3944 	ASSERT(spa->spa_comment == NULL);
3945 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3946 		spa->spa_comment = spa_strdup(comment);
3947 
3948 	ASSERT(spa->spa_compatibility == NULL);
3949 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3950 	    &compatibility) == 0)
3951 		spa->spa_compatibility = spa_strdup(compatibility);
3952 
3953 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3954 	    &spa->spa_config_txg);
3955 
3956 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3957 		spa->spa_config_splitting = fnvlist_dup(nvl);
3958 
3959 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3960 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3961 		    ZPOOL_CONFIG_VDEV_TREE);
3962 		return (SET_ERROR(EINVAL));
3963 	}
3964 
3965 	/*
3966 	 * Create "The Godfather" zio to hold all async IOs
3967 	 */
3968 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3969 	    KM_SLEEP);
3970 	for (int i = 0; i < max_ncpus; i++) {
3971 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3972 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3973 		    ZIO_FLAG_GODFATHER);
3974 	}
3975 
3976 	/*
3977 	 * Parse the configuration into a vdev tree.  We explicitly set the
3978 	 * value that will be returned by spa_version() since parsing the
3979 	 * configuration requires knowing the version number.
3980 	 */
3981 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3982 	parse = (type == SPA_IMPORT_EXISTING ?
3983 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3984 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3985 	spa_config_exit(spa, SCL_ALL, FTAG);
3986 
3987 	if (error != 0) {
3988 		spa_load_failed(spa, "unable to parse config [error=%d]",
3989 		    error);
3990 		return (error);
3991 	}
3992 
3993 	ASSERT(spa->spa_root_vdev == rvd);
3994 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3995 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3996 
3997 	if (type != SPA_IMPORT_ASSEMBLE) {
3998 		ASSERT(spa_guid(spa) == pool_guid);
3999 	}
4000 
4001 	return (0);
4002 }
4003 
4004 /*
4005  * Recursively open all vdevs in the vdev tree. This function is called twice:
4006  * first with the untrusted config, then with the trusted config.
4007  */
4008 static int
4009 spa_ld_open_vdevs(spa_t *spa)
4010 {
4011 	int error = 0;
4012 
4013 	/*
4014 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4015 	 * missing/unopenable for the root vdev to be still considered openable.
4016 	 */
4017 	if (spa->spa_trust_config) {
4018 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4019 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4020 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4021 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4022 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4023 	} else {
4024 		spa->spa_missing_tvds_allowed = 0;
4025 	}
4026 
4027 	spa->spa_missing_tvds_allowed =
4028 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4029 
4030 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4031 	error = vdev_open(spa->spa_root_vdev);
4032 	spa_config_exit(spa, SCL_ALL, FTAG);
4033 
4034 	if (spa->spa_missing_tvds != 0) {
4035 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4036 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4037 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4038 			/*
4039 			 * Although theoretically we could allow users to open
4040 			 * incomplete pools in RW mode, we'd need to add a lot
4041 			 * of extra logic (e.g. adjust pool space to account
4042 			 * for missing vdevs).
4043 			 * This limitation also prevents users from accidentally
4044 			 * opening the pool in RW mode during data recovery and
4045 			 * damaging it further.
4046 			 */
4047 			spa_load_note(spa, "pools with missing top-level "
4048 			    "vdevs can only be opened in read-only mode.");
4049 			error = SET_ERROR(ENXIO);
4050 		} else {
4051 			spa_load_note(spa, "current settings allow for maximum "
4052 			    "%lld missing top-level vdevs at this stage.",
4053 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4054 		}
4055 	}
4056 	if (error != 0) {
4057 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4058 		    error);
4059 	}
4060 	if (spa->spa_missing_tvds != 0 || error != 0)
4061 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4062 
4063 	return (error);
4064 }
4065 
4066 /*
4067  * We need to validate the vdev labels against the configuration that
4068  * we have in hand. This function is called twice: first with an untrusted
4069  * config, then with a trusted config. The validation is more strict when the
4070  * config is trusted.
4071  */
4072 static int
4073 spa_ld_validate_vdevs(spa_t *spa)
4074 {
4075 	int error = 0;
4076 	vdev_t *rvd = spa->spa_root_vdev;
4077 
4078 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4079 	error = vdev_validate(rvd);
4080 	spa_config_exit(spa, SCL_ALL, FTAG);
4081 
4082 	if (error != 0) {
4083 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4084 		return (error);
4085 	}
4086 
4087 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4088 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4089 		    "some vdevs");
4090 		vdev_dbgmsg_print_tree(rvd, 2);
4091 		return (SET_ERROR(ENXIO));
4092 	}
4093 
4094 	return (0);
4095 }
4096 
4097 static void
4098 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4099 {
4100 	spa->spa_state = POOL_STATE_ACTIVE;
4101 	spa->spa_ubsync = spa->spa_uberblock;
4102 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4103 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4104 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4105 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4106 	spa->spa_claim_max_txg = spa->spa_first_txg;
4107 	spa->spa_prev_software_version = ub->ub_software_version;
4108 }
4109 
4110 static int
4111 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4112 {
4113 	vdev_t *rvd = spa->spa_root_vdev;
4114 	nvlist_t *label;
4115 	uberblock_t *ub = &spa->spa_uberblock;
4116 	boolean_t activity_check = B_FALSE;
4117 
4118 	/*
4119 	 * If we are opening the checkpointed state of the pool by
4120 	 * rewinding to it, at this point we will have written the
4121 	 * checkpointed uberblock to the vdev labels, so searching
4122 	 * the labels will find the right uberblock.  However, if
4123 	 * we are opening the checkpointed state read-only, we have
4124 	 * not modified the labels. Therefore, we must ignore the
4125 	 * labels and continue using the spa_uberblock that was set
4126 	 * by spa_ld_checkpoint_rewind.
4127 	 *
4128 	 * Note that it would be fine to ignore the labels when
4129 	 * rewinding (opening writeable) as well. However, if we
4130 	 * crash just after writing the labels, we will end up
4131 	 * searching the labels. Doing so in the common case means
4132 	 * that this code path gets exercised normally, rather than
4133 	 * just in the edge case.
4134 	 */
4135 	if (ub->ub_checkpoint_txg != 0 &&
4136 	    spa_importing_readonly_checkpoint(spa)) {
4137 		spa_ld_select_uberblock_done(spa, ub);
4138 		return (0);
4139 	}
4140 
4141 	/*
4142 	 * Find the best uberblock.
4143 	 */
4144 	vdev_uberblock_load(rvd, ub, &label);
4145 
4146 	/*
4147 	 * If we weren't able to find a single valid uberblock, return failure.
4148 	 */
4149 	if (ub->ub_txg == 0) {
4150 		nvlist_free(label);
4151 		spa_load_failed(spa, "no valid uberblock found");
4152 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4153 	}
4154 
4155 	if (spa->spa_load_max_txg != UINT64_MAX) {
4156 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4157 		    (u_longlong_t)spa->spa_load_max_txg);
4158 	}
4159 	spa_load_note(spa, "using uberblock with txg=%llu",
4160 	    (u_longlong_t)ub->ub_txg);
4161 	if (ub->ub_raidz_reflow_info != 0) {
4162 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4163 		    "state=%u offset=%llu",
4164 		    (int)RRSS_GET_STATE(ub),
4165 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4166 	}
4167 
4168 
4169 	/*
4170 	 * For pools which have the multihost property on determine if the
4171 	 * pool is truly inactive and can be safely imported.  Prevent
4172 	 * hosts which don't have a hostid set from importing the pool.
4173 	 */
4174 	activity_check = spa_activity_check_required(spa, ub, label,
4175 	    spa->spa_config);
4176 	if (activity_check) {
4177 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4178 		    spa_get_hostid(spa) == 0) {
4179 			nvlist_free(label);
4180 			fnvlist_add_uint64(spa->spa_load_info,
4181 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4182 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4183 		}
4184 
4185 		int error =
4186 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4187 		if (error) {
4188 			nvlist_free(label);
4189 			return (error);
4190 		}
4191 
4192 		fnvlist_add_uint64(spa->spa_load_info,
4193 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4194 		fnvlist_add_uint64(spa->spa_load_info,
4195 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4196 		fnvlist_add_uint16(spa->spa_load_info,
4197 		    ZPOOL_CONFIG_MMP_SEQ,
4198 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4199 	}
4200 
4201 	/*
4202 	 * If the pool has an unsupported version we can't open it.
4203 	 */
4204 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4205 		nvlist_free(label);
4206 		spa_load_failed(spa, "version %llu is not supported",
4207 		    (u_longlong_t)ub->ub_version);
4208 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4209 	}
4210 
4211 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4212 		nvlist_t *features;
4213 
4214 		/*
4215 		 * If we weren't able to find what's necessary for reading the
4216 		 * MOS in the label, return failure.
4217 		 */
4218 		if (label == NULL) {
4219 			spa_load_failed(spa, "label config unavailable");
4220 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4221 			    ENXIO));
4222 		}
4223 
4224 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4225 		    &features) != 0) {
4226 			nvlist_free(label);
4227 			spa_load_failed(spa, "invalid label: '%s' missing",
4228 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4229 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4230 			    ENXIO));
4231 		}
4232 
4233 		/*
4234 		 * Update our in-core representation with the definitive values
4235 		 * from the label.
4236 		 */
4237 		nvlist_free(spa->spa_label_features);
4238 		spa->spa_label_features = fnvlist_dup(features);
4239 	}
4240 
4241 	nvlist_free(label);
4242 
4243 	/*
4244 	 * Look through entries in the label nvlist's features_for_read. If
4245 	 * there is a feature listed there which we don't understand then we
4246 	 * cannot open a pool.
4247 	 */
4248 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4249 		nvlist_t *unsup_feat;
4250 
4251 		unsup_feat = fnvlist_alloc();
4252 
4253 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4254 		    NULL); nvp != NULL;
4255 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4256 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4257 				fnvlist_add_string(unsup_feat,
4258 				    nvpair_name(nvp), "");
4259 			}
4260 		}
4261 
4262 		if (!nvlist_empty(unsup_feat)) {
4263 			fnvlist_add_nvlist(spa->spa_load_info,
4264 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4265 			nvlist_free(unsup_feat);
4266 			spa_load_failed(spa, "some features are unsupported");
4267 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4268 			    ENOTSUP));
4269 		}
4270 
4271 		nvlist_free(unsup_feat);
4272 	}
4273 
4274 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4275 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4276 		spa_try_repair(spa, spa->spa_config);
4277 		spa_config_exit(spa, SCL_ALL, FTAG);
4278 		nvlist_free(spa->spa_config_splitting);
4279 		spa->spa_config_splitting = NULL;
4280 	}
4281 
4282 	/*
4283 	 * Initialize internal SPA structures.
4284 	 */
4285 	spa_ld_select_uberblock_done(spa, ub);
4286 
4287 	return (0);
4288 }
4289 
4290 static int
4291 spa_ld_open_rootbp(spa_t *spa)
4292 {
4293 	int error = 0;
4294 	vdev_t *rvd = spa->spa_root_vdev;
4295 
4296 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4297 	if (error != 0) {
4298 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4299 		    "[error=%d]", error);
4300 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4301 	}
4302 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4303 
4304 	return (0);
4305 }
4306 
4307 static int
4308 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4309     boolean_t reloading)
4310 {
4311 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4312 	nvlist_t *nv, *mos_config, *policy;
4313 	int error = 0, copy_error;
4314 	uint64_t healthy_tvds, healthy_tvds_mos;
4315 	uint64_t mos_config_txg;
4316 
4317 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4318 	    != 0)
4319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4320 
4321 	/*
4322 	 * If we're assembling a pool from a split, the config provided is
4323 	 * already trusted so there is nothing to do.
4324 	 */
4325 	if (type == SPA_IMPORT_ASSEMBLE)
4326 		return (0);
4327 
4328 	healthy_tvds = spa_healthy_core_tvds(spa);
4329 
4330 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4331 	    != 0) {
4332 		spa_load_failed(spa, "unable to retrieve MOS config");
4333 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4334 	}
4335 
4336 	/*
4337 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4338 	 * the verification here.
4339 	 */
4340 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4341 		error = spa_verify_host(spa, mos_config);
4342 		if (error != 0) {
4343 			nvlist_free(mos_config);
4344 			return (error);
4345 		}
4346 	}
4347 
4348 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4349 
4350 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4351 
4352 	/*
4353 	 * Build a new vdev tree from the trusted config
4354 	 */
4355 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4356 	if (error != 0) {
4357 		nvlist_free(mos_config);
4358 		spa_config_exit(spa, SCL_ALL, FTAG);
4359 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4360 		    error);
4361 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4362 	}
4363 
4364 	/*
4365 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4366 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4367 	 * paths. We update the trusted MOS config with this information.
4368 	 * We first try to copy the paths with vdev_copy_path_strict, which
4369 	 * succeeds only when both configs have exactly the same vdev tree.
4370 	 * If that fails, we fall back to a more flexible method that has a
4371 	 * best effort policy.
4372 	 */
4373 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4374 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4375 		spa_load_note(spa, "provided vdev tree:");
4376 		vdev_dbgmsg_print_tree(rvd, 2);
4377 		spa_load_note(spa, "MOS vdev tree:");
4378 		vdev_dbgmsg_print_tree(mrvd, 2);
4379 	}
4380 	if (copy_error != 0) {
4381 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4382 		    "back to vdev_copy_path_relaxed");
4383 		vdev_copy_path_relaxed(rvd, mrvd);
4384 	}
4385 
4386 	vdev_close(rvd);
4387 	vdev_free(rvd);
4388 	spa->spa_root_vdev = mrvd;
4389 	rvd = mrvd;
4390 	spa_config_exit(spa, SCL_ALL, FTAG);
4391 
4392 	/*
4393 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4394 	 * hostname may be different to the cached config in ways that should
4395 	 * prevent import.  Userspace can't discover this without a scan, but
4396 	 * we know, so we add these values to LOAD_INFO so the caller can know
4397 	 * the difference.
4398 	 *
4399 	 * Note that we have to do this before the config is regenerated,
4400 	 * because the new config will have the hostid and hostname for this
4401 	 * host, in readiness for import.
4402 	 */
4403 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4404 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4405 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4406 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4407 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4408 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4409 
4410 	/*
4411 	 * We will use spa_config if we decide to reload the spa or if spa_load
4412 	 * fails and we rewind. We must thus regenerate the config using the
4413 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4414 	 * pass settings on how to load the pool and is not stored in the MOS.
4415 	 * We copy it over to our new, trusted config.
4416 	 */
4417 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4418 	    ZPOOL_CONFIG_POOL_TXG);
4419 	nvlist_free(mos_config);
4420 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4421 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4422 	    &policy) == 0)
4423 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4424 	spa_config_set(spa, mos_config);
4425 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4426 
4427 	/*
4428 	 * Now that we got the config from the MOS, we should be more strict
4429 	 * in checking blkptrs and can make assumptions about the consistency
4430 	 * of the vdev tree. spa_trust_config must be set to true before opening
4431 	 * vdevs in order for them to be writeable.
4432 	 */
4433 	spa->spa_trust_config = B_TRUE;
4434 
4435 	/*
4436 	 * Open and validate the new vdev tree
4437 	 */
4438 	error = spa_ld_open_vdevs(spa);
4439 	if (error != 0)
4440 		return (error);
4441 
4442 	error = spa_ld_validate_vdevs(spa);
4443 	if (error != 0)
4444 		return (error);
4445 
4446 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4447 		spa_load_note(spa, "final vdev tree:");
4448 		vdev_dbgmsg_print_tree(rvd, 2);
4449 	}
4450 
4451 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4452 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4453 		/*
4454 		 * Sanity check to make sure that we are indeed loading the
4455 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4456 		 * in the config provided and they happened to be the only ones
4457 		 * to have the latest uberblock, we could involuntarily perform
4458 		 * an extreme rewind.
4459 		 */
4460 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4461 		if (healthy_tvds_mos - healthy_tvds >=
4462 		    SPA_SYNC_MIN_VDEVS) {
4463 			spa_load_note(spa, "config provided misses too many "
4464 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4465 			    (u_longlong_t)healthy_tvds,
4466 			    (u_longlong_t)healthy_tvds_mos);
4467 			spa_load_note(spa, "vdev tree:");
4468 			vdev_dbgmsg_print_tree(rvd, 2);
4469 			if (reloading) {
4470 				spa_load_failed(spa, "config was already "
4471 				    "provided from MOS. Aborting.");
4472 				return (spa_vdev_err(rvd,
4473 				    VDEV_AUX_CORRUPT_DATA, EIO));
4474 			}
4475 			spa_load_note(spa, "spa must be reloaded using MOS "
4476 			    "config");
4477 			return (SET_ERROR(EAGAIN));
4478 		}
4479 	}
4480 
4481 	error = spa_check_for_missing_logs(spa);
4482 	if (error != 0)
4483 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4484 
4485 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4486 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4487 		    "guid sum (%llu != %llu)",
4488 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4489 		    (u_longlong_t)rvd->vdev_guid_sum);
4490 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4491 		    ENXIO));
4492 	}
4493 
4494 	return (0);
4495 }
4496 
4497 static int
4498 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4499 {
4500 	int error = 0;
4501 	vdev_t *rvd = spa->spa_root_vdev;
4502 
4503 	/*
4504 	 * Everything that we read before spa_remove_init() must be stored
4505 	 * on concreted vdevs.  Therefore we do this as early as possible.
4506 	 */
4507 	error = spa_remove_init(spa);
4508 	if (error != 0) {
4509 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4510 		    error);
4511 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4512 	}
4513 
4514 	/*
4515 	 * Retrieve information needed to condense indirect vdev mappings.
4516 	 */
4517 	error = spa_condense_init(spa);
4518 	if (error != 0) {
4519 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4520 		    error);
4521 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4522 	}
4523 
4524 	return (0);
4525 }
4526 
4527 static int
4528 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4529 {
4530 	int error = 0;
4531 	vdev_t *rvd = spa->spa_root_vdev;
4532 
4533 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4534 		boolean_t missing_feat_read = B_FALSE;
4535 		nvlist_t *unsup_feat, *enabled_feat;
4536 
4537 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4538 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4539 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4540 		}
4541 
4542 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4543 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4544 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4545 		}
4546 
4547 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4548 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4549 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4550 		}
4551 
4552 		enabled_feat = fnvlist_alloc();
4553 		unsup_feat = fnvlist_alloc();
4554 
4555 		if (!spa_features_check(spa, B_FALSE,
4556 		    unsup_feat, enabled_feat))
4557 			missing_feat_read = B_TRUE;
4558 
4559 		if (spa_writeable(spa) ||
4560 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4561 			if (!spa_features_check(spa, B_TRUE,
4562 			    unsup_feat, enabled_feat)) {
4563 				*missing_feat_writep = B_TRUE;
4564 			}
4565 		}
4566 
4567 		fnvlist_add_nvlist(spa->spa_load_info,
4568 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4569 
4570 		if (!nvlist_empty(unsup_feat)) {
4571 			fnvlist_add_nvlist(spa->spa_load_info,
4572 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4573 		}
4574 
4575 		fnvlist_free(enabled_feat);
4576 		fnvlist_free(unsup_feat);
4577 
4578 		if (!missing_feat_read) {
4579 			fnvlist_add_boolean(spa->spa_load_info,
4580 			    ZPOOL_CONFIG_CAN_RDONLY);
4581 		}
4582 
4583 		/*
4584 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4585 		 * twofold: to determine whether the pool is available for
4586 		 * import in read-write mode and (if it is not) whether the
4587 		 * pool is available for import in read-only mode. If the pool
4588 		 * is available for import in read-write mode, it is displayed
4589 		 * as available in userland; if it is not available for import
4590 		 * in read-only mode, it is displayed as unavailable in
4591 		 * userland. If the pool is available for import in read-only
4592 		 * mode but not read-write mode, it is displayed as unavailable
4593 		 * in userland with a special note that the pool is actually
4594 		 * available for open in read-only mode.
4595 		 *
4596 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4597 		 * missing a feature for write, we must first determine whether
4598 		 * the pool can be opened read-only before returning to
4599 		 * userland in order to know whether to display the
4600 		 * abovementioned note.
4601 		 */
4602 		if (missing_feat_read || (*missing_feat_writep &&
4603 		    spa_writeable(spa))) {
4604 			spa_load_failed(spa, "pool uses unsupported features");
4605 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4606 			    ENOTSUP));
4607 		}
4608 
4609 		/*
4610 		 * Load refcounts for ZFS features from disk into an in-memory
4611 		 * cache during SPA initialization.
4612 		 */
4613 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4614 			uint64_t refcount;
4615 
4616 			error = feature_get_refcount_from_disk(spa,
4617 			    &spa_feature_table[i], &refcount);
4618 			if (error == 0) {
4619 				spa->spa_feat_refcount_cache[i] = refcount;
4620 			} else if (error == ENOTSUP) {
4621 				spa->spa_feat_refcount_cache[i] =
4622 				    SPA_FEATURE_DISABLED;
4623 			} else {
4624 				spa_load_failed(spa, "error getting refcount "
4625 				    "for feature %s [error=%d]",
4626 				    spa_feature_table[i].fi_guid, error);
4627 				return (spa_vdev_err(rvd,
4628 				    VDEV_AUX_CORRUPT_DATA, EIO));
4629 			}
4630 		}
4631 	}
4632 
4633 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4634 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4635 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4636 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4637 	}
4638 
4639 	/*
4640 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4641 	 * is now a dependency. If this pool has encryption enabled without
4642 	 * bookmark_v2, trigger an errata message.
4643 	 */
4644 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4645 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4646 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4647 	}
4648 
4649 	return (0);
4650 }
4651 
4652 static int
4653 spa_ld_load_special_directories(spa_t *spa)
4654 {
4655 	int error = 0;
4656 	vdev_t *rvd = spa->spa_root_vdev;
4657 
4658 	spa->spa_is_initializing = B_TRUE;
4659 	error = dsl_pool_open(spa->spa_dsl_pool);
4660 	spa->spa_is_initializing = B_FALSE;
4661 	if (error != 0) {
4662 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4663 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4664 	}
4665 
4666 	return (0);
4667 }
4668 
4669 static int
4670 spa_ld_get_props(spa_t *spa)
4671 {
4672 	int error = 0;
4673 	uint64_t obj;
4674 	vdev_t *rvd = spa->spa_root_vdev;
4675 
4676 	/* Grab the checksum salt from the MOS. */
4677 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4678 	    DMU_POOL_CHECKSUM_SALT, 1,
4679 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4680 	    spa->spa_cksum_salt.zcs_bytes);
4681 	if (error == ENOENT) {
4682 		/* Generate a new salt for subsequent use */
4683 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4684 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4685 	} else if (error != 0) {
4686 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4687 		    "MOS [error=%d]", error);
4688 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4689 	}
4690 
4691 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4692 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4693 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4694 	if (error != 0) {
4695 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4696 		    "[error=%d]", error);
4697 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4698 	}
4699 
4700 	/*
4701 	 * Load the bit that tells us to use the new accounting function
4702 	 * (raid-z deflation).  If we have an older pool, this will not
4703 	 * be present.
4704 	 */
4705 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4706 	if (error != 0 && error != ENOENT)
4707 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4708 
4709 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4710 	    &spa->spa_creation_version, B_FALSE);
4711 	if (error != 0 && error != ENOENT)
4712 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4713 
4714 	/*
4715 	 * Load the persistent error log.  If we have an older pool, this will
4716 	 * not be present.
4717 	 */
4718 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4719 	    B_FALSE);
4720 	if (error != 0 && error != ENOENT)
4721 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4722 
4723 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4724 	    &spa->spa_errlog_scrub, B_FALSE);
4725 	if (error != 0 && error != ENOENT)
4726 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4727 
4728 	/* Load the last scrubbed txg. */
4729 	error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4730 	    &spa->spa_scrubbed_last_txg, B_FALSE);
4731 	if (error != 0 && error != ENOENT)
4732 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4733 
4734 	/*
4735 	 * Load the livelist deletion field. If a livelist is queued for
4736 	 * deletion, indicate that in the spa
4737 	 */
4738 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4739 	    &spa->spa_livelists_to_delete, B_FALSE);
4740 	if (error != 0 && error != ENOENT)
4741 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4742 
4743 	/*
4744 	 * Load the history object.  If we have an older pool, this
4745 	 * will not be present.
4746 	 */
4747 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4748 	if (error != 0 && error != ENOENT)
4749 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4750 
4751 	/*
4752 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4753 	 * be present; in this case, defer its creation to a later time to
4754 	 * avoid dirtying the MOS this early / out of sync context. See
4755 	 * spa_sync_config_object.
4756 	 */
4757 
4758 	/* The sentinel is only available in the MOS config. */
4759 	nvlist_t *mos_config;
4760 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4761 		spa_load_failed(spa, "unable to retrieve MOS config");
4762 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4763 	}
4764 
4765 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4766 	    &spa->spa_all_vdev_zaps, B_FALSE);
4767 
4768 	if (error == ENOENT) {
4769 		VERIFY(!nvlist_exists(mos_config,
4770 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4771 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4772 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4773 	} else if (error != 0) {
4774 		nvlist_free(mos_config);
4775 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4776 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4777 		/*
4778 		 * An older version of ZFS overwrote the sentinel value, so
4779 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4780 		 * destruction to later; see spa_sync_config_object.
4781 		 */
4782 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4783 		/*
4784 		 * We're assuming that no vdevs have had their ZAPs created
4785 		 * before this. Better be sure of it.
4786 		 */
4787 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4788 	}
4789 	nvlist_free(mos_config);
4790 
4791 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4792 
4793 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4794 	    B_FALSE);
4795 	if (error && error != ENOENT)
4796 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4797 
4798 	if (error == 0) {
4799 		uint64_t autoreplace = 0;
4800 
4801 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4802 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4803 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4804 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4805 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4806 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4807 		    &spa->spa_dedup_table_quota);
4808 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4809 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4810 		spa->spa_autoreplace = (autoreplace != 0);
4811 	}
4812 
4813 	/*
4814 	 * If we are importing a pool with missing top-level vdevs,
4815 	 * we enforce that the pool doesn't panic or get suspended on
4816 	 * error since the likelihood of missing data is extremely high.
4817 	 */
4818 	if (spa->spa_missing_tvds > 0 &&
4819 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4820 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4821 		spa_load_note(spa, "forcing failmode to 'continue' "
4822 		    "as some top level vdevs are missing");
4823 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4824 	}
4825 
4826 	return (0);
4827 }
4828 
4829 static int
4830 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4831 {
4832 	int error = 0;
4833 	vdev_t *rvd = spa->spa_root_vdev;
4834 
4835 	/*
4836 	 * If we're assembling the pool from the split-off vdevs of
4837 	 * an existing pool, we don't want to attach the spares & cache
4838 	 * devices.
4839 	 */
4840 
4841 	/*
4842 	 * Load any hot spares for this pool.
4843 	 */
4844 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4845 	    B_FALSE);
4846 	if (error != 0 && error != ENOENT)
4847 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4848 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4849 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4850 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4851 		    &spa->spa_spares.sav_config) != 0) {
4852 			spa_load_failed(spa, "error loading spares nvlist");
4853 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4854 		}
4855 
4856 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4857 		spa_load_spares(spa);
4858 		spa_config_exit(spa, SCL_ALL, FTAG);
4859 	} else if (error == 0) {
4860 		spa->spa_spares.sav_sync = B_TRUE;
4861 	}
4862 
4863 	/*
4864 	 * Load any level 2 ARC devices for this pool.
4865 	 */
4866 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4867 	    &spa->spa_l2cache.sav_object, B_FALSE);
4868 	if (error != 0 && error != ENOENT)
4869 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4870 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4871 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4872 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4873 		    &spa->spa_l2cache.sav_config) != 0) {
4874 			spa_load_failed(spa, "error loading l2cache nvlist");
4875 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4876 		}
4877 
4878 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4879 		spa_load_l2cache(spa);
4880 		spa_config_exit(spa, SCL_ALL, FTAG);
4881 	} else if (error == 0) {
4882 		spa->spa_l2cache.sav_sync = B_TRUE;
4883 	}
4884 
4885 	return (0);
4886 }
4887 
4888 static int
4889 spa_ld_load_vdev_metadata(spa_t *spa)
4890 {
4891 	int error = 0;
4892 	vdev_t *rvd = spa->spa_root_vdev;
4893 
4894 	/*
4895 	 * If the 'multihost' property is set, then never allow a pool to
4896 	 * be imported when the system hostid is zero.  The exception to
4897 	 * this rule is zdb which is always allowed to access pools.
4898 	 */
4899 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4900 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4901 		fnvlist_add_uint64(spa->spa_load_info,
4902 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4903 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4904 	}
4905 
4906 	/*
4907 	 * If the 'autoreplace' property is set, then post a resource notifying
4908 	 * the ZFS DE that it should not issue any faults for unopenable
4909 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4910 	 * unopenable vdevs so that the normal autoreplace handler can take
4911 	 * over.
4912 	 */
4913 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4914 		spa_check_removed(spa->spa_root_vdev);
4915 		/*
4916 		 * For the import case, this is done in spa_import(), because
4917 		 * at this point we're using the spare definitions from
4918 		 * the MOS config, not necessarily from the userland config.
4919 		 */
4920 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4921 			spa_aux_check_removed(&spa->spa_spares);
4922 			spa_aux_check_removed(&spa->spa_l2cache);
4923 		}
4924 	}
4925 
4926 	/*
4927 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4928 	 */
4929 	error = vdev_load(rvd);
4930 	if (error != 0) {
4931 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4932 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4933 	}
4934 
4935 	error = spa_ld_log_spacemaps(spa);
4936 	if (error != 0) {
4937 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4938 		    error);
4939 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4940 	}
4941 
4942 	/*
4943 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4944 	 */
4945 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4946 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4947 	spa_config_exit(spa, SCL_ALL, FTAG);
4948 
4949 	return (0);
4950 }
4951 
4952 static int
4953 spa_ld_load_dedup_tables(spa_t *spa)
4954 {
4955 	int error = 0;
4956 	vdev_t *rvd = spa->spa_root_vdev;
4957 
4958 	error = ddt_load(spa);
4959 	if (error != 0) {
4960 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4961 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4962 	}
4963 
4964 	return (0);
4965 }
4966 
4967 static int
4968 spa_ld_load_brt(spa_t *spa)
4969 {
4970 	int error = 0;
4971 	vdev_t *rvd = spa->spa_root_vdev;
4972 
4973 	error = brt_load(spa);
4974 	if (error != 0) {
4975 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4976 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4977 	}
4978 
4979 	return (0);
4980 }
4981 
4982 static int
4983 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4984 {
4985 	vdev_t *rvd = spa->spa_root_vdev;
4986 
4987 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4988 		boolean_t missing = spa_check_logs(spa);
4989 		if (missing) {
4990 			if (spa->spa_missing_tvds != 0) {
4991 				spa_load_note(spa, "spa_check_logs failed "
4992 				    "so dropping the logs");
4993 			} else {
4994 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4995 				spa_load_failed(spa, "spa_check_logs failed");
4996 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4997 				    ENXIO));
4998 			}
4999 		}
5000 	}
5001 
5002 	return (0);
5003 }
5004 
5005 static int
5006 spa_ld_verify_pool_data(spa_t *spa)
5007 {
5008 	int error = 0;
5009 	vdev_t *rvd = spa->spa_root_vdev;
5010 
5011 	/*
5012 	 * We've successfully opened the pool, verify that we're ready
5013 	 * to start pushing transactions.
5014 	 */
5015 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5016 		error = spa_load_verify(spa);
5017 		if (error != 0) {
5018 			spa_load_failed(spa, "spa_load_verify failed "
5019 			    "[error=%d]", error);
5020 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5021 			    error));
5022 		}
5023 	}
5024 
5025 	return (0);
5026 }
5027 
5028 static void
5029 spa_ld_claim_log_blocks(spa_t *spa)
5030 {
5031 	dmu_tx_t *tx;
5032 	dsl_pool_t *dp = spa_get_dsl(spa);
5033 
5034 	/*
5035 	 * Claim log blocks that haven't been committed yet.
5036 	 * This must all happen in a single txg.
5037 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5038 	 * invoked from zil_claim_log_block()'s i/o done callback.
5039 	 * Price of rollback is that we abandon the log.
5040 	 */
5041 	spa->spa_claiming = B_TRUE;
5042 
5043 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5044 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5045 	    zil_claim, tx, DS_FIND_CHILDREN);
5046 	dmu_tx_commit(tx);
5047 
5048 	spa->spa_claiming = B_FALSE;
5049 
5050 	spa_set_log_state(spa, SPA_LOG_GOOD);
5051 }
5052 
5053 static void
5054 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5055     boolean_t update_config_cache)
5056 {
5057 	vdev_t *rvd = spa->spa_root_vdev;
5058 	int need_update = B_FALSE;
5059 
5060 	/*
5061 	 * If the config cache is stale, or we have uninitialized
5062 	 * metaslabs (see spa_vdev_add()), then update the config.
5063 	 *
5064 	 * If this is a verbatim import, trust the current
5065 	 * in-core spa_config and update the disk labels.
5066 	 */
5067 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5068 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5069 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5070 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5071 		need_update = B_TRUE;
5072 
5073 	for (int c = 0; c < rvd->vdev_children; c++)
5074 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5075 			need_update = B_TRUE;
5076 
5077 	/*
5078 	 * Update the config cache asynchronously in case we're the
5079 	 * root pool, in which case the config cache isn't writable yet.
5080 	 */
5081 	if (need_update)
5082 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5083 }
5084 
5085 static void
5086 spa_ld_prepare_for_reload(spa_t *spa)
5087 {
5088 	spa_mode_t mode = spa->spa_mode;
5089 	int async_suspended = spa->spa_async_suspended;
5090 
5091 	spa_unload(spa);
5092 	spa_deactivate(spa);
5093 	spa_activate(spa, mode);
5094 
5095 	/*
5096 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5097 	 * spa_unload(). We want to restore it back to the original value before
5098 	 * returning as we might be calling spa_async_resume() later.
5099 	 */
5100 	spa->spa_async_suspended = async_suspended;
5101 }
5102 
5103 static int
5104 spa_ld_read_checkpoint_txg(spa_t *spa)
5105 {
5106 	uberblock_t checkpoint;
5107 	int error = 0;
5108 
5109 	ASSERT0(spa->spa_checkpoint_txg);
5110 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5111 	    spa->spa_load_thread == curthread);
5112 
5113 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5114 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5115 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5116 
5117 	if (error == ENOENT)
5118 		return (0);
5119 
5120 	if (error != 0)
5121 		return (error);
5122 
5123 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5124 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5125 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5126 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5127 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5128 
5129 	return (0);
5130 }
5131 
5132 static int
5133 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5134 {
5135 	int error = 0;
5136 
5137 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5138 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5139 
5140 	/*
5141 	 * Never trust the config that is provided unless we are assembling
5142 	 * a pool following a split.
5143 	 * This means don't trust blkptrs and the vdev tree in general. This
5144 	 * also effectively puts the spa in read-only mode since
5145 	 * spa_writeable() checks for spa_trust_config to be true.
5146 	 * We will later load a trusted config from the MOS.
5147 	 */
5148 	if (type != SPA_IMPORT_ASSEMBLE)
5149 		spa->spa_trust_config = B_FALSE;
5150 
5151 	/*
5152 	 * Parse the config provided to create a vdev tree.
5153 	 */
5154 	error = spa_ld_parse_config(spa, type);
5155 	if (error != 0)
5156 		return (error);
5157 
5158 	spa_import_progress_add(spa);
5159 
5160 	/*
5161 	 * Now that we have the vdev tree, try to open each vdev. This involves
5162 	 * opening the underlying physical device, retrieving its geometry and
5163 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5164 	 * based on the success of those operations. After this we'll be ready
5165 	 * to read from the vdevs.
5166 	 */
5167 	error = spa_ld_open_vdevs(spa);
5168 	if (error != 0)
5169 		return (error);
5170 
5171 	/*
5172 	 * Read the label of each vdev and make sure that the GUIDs stored
5173 	 * there match the GUIDs in the config provided.
5174 	 * If we're assembling a new pool that's been split off from an
5175 	 * existing pool, the labels haven't yet been updated so we skip
5176 	 * validation for now.
5177 	 */
5178 	if (type != SPA_IMPORT_ASSEMBLE) {
5179 		error = spa_ld_validate_vdevs(spa);
5180 		if (error != 0)
5181 			return (error);
5182 	}
5183 
5184 	/*
5185 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5186 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5187 	 * get the list of features required to read blkptrs in the MOS from
5188 	 * the vdev label with the best uberblock and verify that our version
5189 	 * of zfs supports them all.
5190 	 */
5191 	error = spa_ld_select_uberblock(spa, type);
5192 	if (error != 0)
5193 		return (error);
5194 
5195 	/*
5196 	 * Pass that uberblock to the dsl_pool layer which will open the root
5197 	 * blkptr. This blkptr points to the latest version of the MOS and will
5198 	 * allow us to read its contents.
5199 	 */
5200 	error = spa_ld_open_rootbp(spa);
5201 	if (error != 0)
5202 		return (error);
5203 
5204 	return (0);
5205 }
5206 
5207 static int
5208 spa_ld_checkpoint_rewind(spa_t *spa)
5209 {
5210 	uberblock_t checkpoint;
5211 	int error = 0;
5212 
5213 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5214 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5215 
5216 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5217 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5218 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5219 
5220 	if (error != 0) {
5221 		spa_load_failed(spa, "unable to retrieve checkpointed "
5222 		    "uberblock from the MOS config [error=%d]", error);
5223 
5224 		if (error == ENOENT)
5225 			error = ZFS_ERR_NO_CHECKPOINT;
5226 
5227 		return (error);
5228 	}
5229 
5230 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5231 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5232 
5233 	/*
5234 	 * We need to update the txg and timestamp of the checkpointed
5235 	 * uberblock to be higher than the latest one. This ensures that
5236 	 * the checkpointed uberblock is selected if we were to close and
5237 	 * reopen the pool right after we've written it in the vdev labels.
5238 	 * (also see block comment in vdev_uberblock_compare)
5239 	 */
5240 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5241 	checkpoint.ub_timestamp = gethrestime_sec();
5242 
5243 	/*
5244 	 * Set current uberblock to be the checkpointed uberblock.
5245 	 */
5246 	spa->spa_uberblock = checkpoint;
5247 
5248 	/*
5249 	 * If we are doing a normal rewind, then the pool is open for
5250 	 * writing and we sync the "updated" checkpointed uberblock to
5251 	 * disk. Once this is done, we've basically rewound the whole
5252 	 * pool and there is no way back.
5253 	 *
5254 	 * There are cases when we don't want to attempt and sync the
5255 	 * checkpointed uberblock to disk because we are opening a
5256 	 * pool as read-only. Specifically, verifying the checkpointed
5257 	 * state with zdb, and importing the checkpointed state to get
5258 	 * a "preview" of its content.
5259 	 */
5260 	if (spa_writeable(spa)) {
5261 		vdev_t *rvd = spa->spa_root_vdev;
5262 
5263 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5264 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5265 		int svdcount = 0;
5266 		int children = rvd->vdev_children;
5267 		int c0 = random_in_range(children);
5268 
5269 		for (int c = 0; c < children; c++) {
5270 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5271 
5272 			/* Stop when revisiting the first vdev */
5273 			if (c > 0 && svd[0] == vd)
5274 				break;
5275 
5276 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5277 			    !vdev_is_concrete(vd))
5278 				continue;
5279 
5280 			svd[svdcount++] = vd;
5281 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5282 				break;
5283 		}
5284 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5285 		if (error == 0)
5286 			spa->spa_last_synced_guid = rvd->vdev_guid;
5287 		spa_config_exit(spa, SCL_ALL, FTAG);
5288 
5289 		if (error != 0) {
5290 			spa_load_failed(spa, "failed to write checkpointed "
5291 			    "uberblock to the vdev labels [error=%d]", error);
5292 			return (error);
5293 		}
5294 	}
5295 
5296 	return (0);
5297 }
5298 
5299 static int
5300 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5301     boolean_t *update_config_cache)
5302 {
5303 	int error;
5304 
5305 	/*
5306 	 * Parse the config for pool, open and validate vdevs,
5307 	 * select an uberblock, and use that uberblock to open
5308 	 * the MOS.
5309 	 */
5310 	error = spa_ld_mos_init(spa, type);
5311 	if (error != 0)
5312 		return (error);
5313 
5314 	/*
5315 	 * Retrieve the trusted config stored in the MOS and use it to create
5316 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5317 	 */
5318 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5319 	if (error == EAGAIN) {
5320 		if (update_config_cache != NULL)
5321 			*update_config_cache = B_TRUE;
5322 
5323 		/*
5324 		 * Redo the loading process with the trusted config if it is
5325 		 * too different from the untrusted config.
5326 		 */
5327 		spa_ld_prepare_for_reload(spa);
5328 		spa_load_note(spa, "RELOADING");
5329 		error = spa_ld_mos_init(spa, type);
5330 		if (error != 0)
5331 			return (error);
5332 
5333 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5334 		if (error != 0)
5335 			return (error);
5336 
5337 	} else if (error != 0) {
5338 		return (error);
5339 	}
5340 
5341 	return (0);
5342 }
5343 
5344 /*
5345  * Load an existing storage pool, using the config provided. This config
5346  * describes which vdevs are part of the pool and is later validated against
5347  * partial configs present in each vdev's label and an entire copy of the
5348  * config stored in the MOS.
5349  */
5350 static int
5351 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5352 {
5353 	int error = 0;
5354 	boolean_t missing_feat_write = B_FALSE;
5355 	boolean_t checkpoint_rewind =
5356 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5357 	boolean_t update_config_cache = B_FALSE;
5358 	hrtime_t load_start = gethrtime();
5359 
5360 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5361 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5362 
5363 	spa_load_note(spa, "LOADING");
5364 
5365 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5366 	if (error != 0)
5367 		return (error);
5368 
5369 	/*
5370 	 * If we are rewinding to the checkpoint then we need to repeat
5371 	 * everything we've done so far in this function but this time
5372 	 * selecting the checkpointed uberblock and using that to open
5373 	 * the MOS.
5374 	 */
5375 	if (checkpoint_rewind) {
5376 		/*
5377 		 * If we are rewinding to the checkpoint update config cache
5378 		 * anyway.
5379 		 */
5380 		update_config_cache = B_TRUE;
5381 
5382 		/*
5383 		 * Extract the checkpointed uberblock from the current MOS
5384 		 * and use this as the pool's uberblock from now on. If the
5385 		 * pool is imported as writeable we also write the checkpoint
5386 		 * uberblock to the labels, making the rewind permanent.
5387 		 */
5388 		error = spa_ld_checkpoint_rewind(spa);
5389 		if (error != 0)
5390 			return (error);
5391 
5392 		/*
5393 		 * Redo the loading process again with the
5394 		 * checkpointed uberblock.
5395 		 */
5396 		spa_ld_prepare_for_reload(spa);
5397 		spa_load_note(spa, "LOADING checkpointed uberblock");
5398 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5399 		if (error != 0)
5400 			return (error);
5401 	}
5402 
5403 	/*
5404 	 * Drop the namespace lock for the rest of the function.
5405 	 */
5406 	spa->spa_load_thread = curthread;
5407 	mutex_exit(&spa_namespace_lock);
5408 
5409 	/*
5410 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5411 	 */
5412 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5413 	error = spa_ld_read_checkpoint_txg(spa);
5414 	if (error != 0)
5415 		goto fail;
5416 
5417 	/*
5418 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5419 	 * from the pool and their contents were re-mapped to other vdevs. Note
5420 	 * that everything that we read before this step must have been
5421 	 * rewritten on concrete vdevs after the last device removal was
5422 	 * initiated. Otherwise we could be reading from indirect vdevs before
5423 	 * we have loaded their mappings.
5424 	 */
5425 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5426 	error = spa_ld_open_indirect_vdev_metadata(spa);
5427 	if (error != 0)
5428 		goto fail;
5429 
5430 	/*
5431 	 * Retrieve the full list of active features from the MOS and check if
5432 	 * they are all supported.
5433 	 */
5434 	spa_import_progress_set_notes(spa, "Checking feature flags");
5435 	error = spa_ld_check_features(spa, &missing_feat_write);
5436 	if (error != 0)
5437 		goto fail;
5438 
5439 	/*
5440 	 * Load several special directories from the MOS needed by the dsl_pool
5441 	 * layer.
5442 	 */
5443 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5444 	error = spa_ld_load_special_directories(spa);
5445 	if (error != 0)
5446 		goto fail;
5447 
5448 	/*
5449 	 * Retrieve pool properties from the MOS.
5450 	 */
5451 	spa_import_progress_set_notes(spa, "Loading properties");
5452 	error = spa_ld_get_props(spa);
5453 	if (error != 0)
5454 		goto fail;
5455 
5456 	/*
5457 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5458 	 * and open them.
5459 	 */
5460 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5461 	error = spa_ld_open_aux_vdevs(spa, type);
5462 	if (error != 0)
5463 		goto fail;
5464 
5465 	/*
5466 	 * Load the metadata for all vdevs. Also check if unopenable devices
5467 	 * should be autoreplaced.
5468 	 */
5469 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5470 	error = spa_ld_load_vdev_metadata(spa);
5471 	if (error != 0)
5472 		goto fail;
5473 
5474 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5475 	error = spa_ld_load_dedup_tables(spa);
5476 	if (error != 0)
5477 		goto fail;
5478 
5479 	spa_import_progress_set_notes(spa, "Loading BRT");
5480 	error = spa_ld_load_brt(spa);
5481 	if (error != 0)
5482 		goto fail;
5483 
5484 	/*
5485 	 * Verify the logs now to make sure we don't have any unexpected errors
5486 	 * when we claim log blocks later.
5487 	 */
5488 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5489 	error = spa_ld_verify_logs(spa, type, ereport);
5490 	if (error != 0)
5491 		goto fail;
5492 
5493 	if (missing_feat_write) {
5494 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5495 
5496 		/*
5497 		 * At this point, we know that we can open the pool in
5498 		 * read-only mode but not read-write mode. We now have enough
5499 		 * information and can return to userland.
5500 		 */
5501 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5502 		    ENOTSUP);
5503 		goto fail;
5504 	}
5505 
5506 	/*
5507 	 * Traverse the last txgs to make sure the pool was left off in a safe
5508 	 * state. When performing an extreme rewind, we verify the whole pool,
5509 	 * which can take a very long time.
5510 	 */
5511 	spa_import_progress_set_notes(spa, "Verifying pool data");
5512 	error = spa_ld_verify_pool_data(spa);
5513 	if (error != 0)
5514 		goto fail;
5515 
5516 	/*
5517 	 * Calculate the deflated space for the pool. This must be done before
5518 	 * we write anything to the pool because we'd need to update the space
5519 	 * accounting using the deflated sizes.
5520 	 */
5521 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5522 	spa_update_dspace(spa);
5523 
5524 	/*
5525 	 * We have now retrieved all the information we needed to open the
5526 	 * pool. If we are importing the pool in read-write mode, a few
5527 	 * additional steps must be performed to finish the import.
5528 	 */
5529 	spa_import_progress_set_notes(spa, "Starting import");
5530 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5531 	    spa->spa_load_max_txg == UINT64_MAX)) {
5532 		uint64_t config_cache_txg = spa->spa_config_txg;
5533 
5534 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5535 
5536 		/*
5537 		 * Before we do any zio_write's, complete the raidz expansion
5538 		 * scratch space copying, if necessary.
5539 		 */
5540 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5541 			vdev_raidz_reflow_copy_scratch(spa);
5542 
5543 		/*
5544 		 * In case of a checkpoint rewind, log the original txg
5545 		 * of the checkpointed uberblock.
5546 		 */
5547 		if (checkpoint_rewind) {
5548 			spa_history_log_internal(spa, "checkpoint rewind",
5549 			    NULL, "rewound state to txg=%llu",
5550 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5551 		}
5552 
5553 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5554 		/*
5555 		 * Traverse the ZIL and claim all blocks.
5556 		 */
5557 		spa_ld_claim_log_blocks(spa);
5558 
5559 		/*
5560 		 * Kick-off the syncing thread.
5561 		 */
5562 		spa->spa_sync_on = B_TRUE;
5563 		txg_sync_start(spa->spa_dsl_pool);
5564 		mmp_thread_start(spa);
5565 
5566 		/*
5567 		 * Wait for all claims to sync.  We sync up to the highest
5568 		 * claimed log block birth time so that claimed log blocks
5569 		 * don't appear to be from the future.  spa_claim_max_txg
5570 		 * will have been set for us by ZIL traversal operations
5571 		 * performed above.
5572 		 */
5573 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5574 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5575 
5576 		/*
5577 		 * Check if we need to request an update of the config. On the
5578 		 * next sync, we would update the config stored in vdev labels
5579 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5580 		 */
5581 		spa_import_progress_set_notes(spa, "Updating configs");
5582 		spa_ld_check_for_config_update(spa, config_cache_txg,
5583 		    update_config_cache);
5584 
5585 		/*
5586 		 * Check if a rebuild was in progress and if so resume it.
5587 		 * Then check all DTLs to see if anything needs resilvering.
5588 		 * The resilver will be deferred if a rebuild was started.
5589 		 */
5590 		spa_import_progress_set_notes(spa, "Starting resilvers");
5591 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5592 			vdev_rebuild_restart(spa);
5593 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5594 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5595 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5596 		}
5597 
5598 		/*
5599 		 * Log the fact that we booted up (so that we can detect if
5600 		 * we rebooted in the middle of an operation).
5601 		 */
5602 		spa_history_log_version(spa, "open", NULL);
5603 
5604 		spa_import_progress_set_notes(spa,
5605 		    "Restarting device removals");
5606 		spa_restart_removal(spa);
5607 		spa_spawn_aux_threads(spa);
5608 
5609 		/*
5610 		 * Delete any inconsistent datasets.
5611 		 *
5612 		 * Note:
5613 		 * Since we may be issuing deletes for clones here,
5614 		 * we make sure to do so after we've spawned all the
5615 		 * auxiliary threads above (from which the livelist
5616 		 * deletion zthr is part of).
5617 		 */
5618 		spa_import_progress_set_notes(spa,
5619 		    "Cleaning up inconsistent objsets");
5620 		(void) dmu_objset_find(spa_name(spa),
5621 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5622 
5623 		/*
5624 		 * Clean up any stale temporary dataset userrefs.
5625 		 */
5626 		spa_import_progress_set_notes(spa,
5627 		    "Cleaning up temporary userrefs");
5628 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5629 
5630 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5631 		spa_import_progress_set_notes(spa, "Restarting initialize");
5632 		vdev_initialize_restart(spa->spa_root_vdev);
5633 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5634 		vdev_trim_restart(spa->spa_root_vdev);
5635 		vdev_autotrim_restart(spa);
5636 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5637 		spa_import_progress_set_notes(spa, "Finished importing");
5638 	}
5639 	zio_handle_import_delay(spa, gethrtime() - load_start);
5640 
5641 	spa_import_progress_remove(spa_guid(spa));
5642 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5643 
5644 	spa_load_note(spa, "LOADED");
5645 fail:
5646 	mutex_enter(&spa_namespace_lock);
5647 	spa->spa_load_thread = NULL;
5648 	cv_broadcast(&spa_namespace_cv);
5649 
5650 	return (error);
5651 
5652 }
5653 
5654 static int
5655 spa_load_retry(spa_t *spa, spa_load_state_t state)
5656 {
5657 	spa_mode_t mode = spa->spa_mode;
5658 
5659 	spa_unload(spa);
5660 	spa_deactivate(spa);
5661 
5662 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5663 
5664 	spa_activate(spa, mode);
5665 	spa_async_suspend(spa);
5666 
5667 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5668 	    (u_longlong_t)spa->spa_load_max_txg);
5669 
5670 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5671 }
5672 
5673 /*
5674  * If spa_load() fails this function will try loading prior txg's. If
5675  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5676  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5677  * function will not rewind the pool and will return the same error as
5678  * spa_load().
5679  */
5680 static int
5681 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5682     int rewind_flags)
5683 {
5684 	nvlist_t *loadinfo = NULL;
5685 	nvlist_t *config = NULL;
5686 	int load_error, rewind_error;
5687 	uint64_t safe_rewind_txg;
5688 	uint64_t min_txg;
5689 
5690 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5691 		spa->spa_load_max_txg = spa->spa_load_txg;
5692 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5693 	} else {
5694 		spa->spa_load_max_txg = max_request;
5695 		if (max_request != UINT64_MAX)
5696 			spa->spa_extreme_rewind = B_TRUE;
5697 	}
5698 
5699 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5700 	if (load_error == 0)
5701 		return (0);
5702 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5703 		/*
5704 		 * When attempting checkpoint-rewind on a pool with no
5705 		 * checkpoint, we should not attempt to load uberblocks
5706 		 * from previous txgs when spa_load fails.
5707 		 */
5708 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5709 		spa_import_progress_remove(spa_guid(spa));
5710 		return (load_error);
5711 	}
5712 
5713 	if (spa->spa_root_vdev != NULL)
5714 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5715 
5716 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5717 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5718 
5719 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5720 		nvlist_free(config);
5721 		spa_import_progress_remove(spa_guid(spa));
5722 		return (load_error);
5723 	}
5724 
5725 	if (state == SPA_LOAD_RECOVER) {
5726 		/* Price of rolling back is discarding txgs, including log */
5727 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5728 	} else {
5729 		/*
5730 		 * If we aren't rolling back save the load info from our first
5731 		 * import attempt so that we can restore it after attempting
5732 		 * to rewind.
5733 		 */
5734 		loadinfo = spa->spa_load_info;
5735 		spa->spa_load_info = fnvlist_alloc();
5736 	}
5737 
5738 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5739 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5740 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5741 	    TXG_INITIAL : safe_rewind_txg;
5742 
5743 	/*
5744 	 * Continue as long as we're finding errors, we're still within
5745 	 * the acceptable rewind range, and we're still finding uberblocks
5746 	 */
5747 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5748 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5749 		if (spa->spa_load_max_txg < safe_rewind_txg)
5750 			spa->spa_extreme_rewind = B_TRUE;
5751 		rewind_error = spa_load_retry(spa, state);
5752 	}
5753 
5754 	spa->spa_extreme_rewind = B_FALSE;
5755 	spa->spa_load_max_txg = UINT64_MAX;
5756 
5757 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5758 		spa_config_set(spa, config);
5759 	else
5760 		nvlist_free(config);
5761 
5762 	if (state == SPA_LOAD_RECOVER) {
5763 		ASSERT3P(loadinfo, ==, NULL);
5764 		spa_import_progress_remove(spa_guid(spa));
5765 		return (rewind_error);
5766 	} else {
5767 		/* Store the rewind info as part of the initial load info */
5768 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5769 		    spa->spa_load_info);
5770 
5771 		/* Restore the initial load info */
5772 		fnvlist_free(spa->spa_load_info);
5773 		spa->spa_load_info = loadinfo;
5774 
5775 		spa_import_progress_remove(spa_guid(spa));
5776 		return (load_error);
5777 	}
5778 }
5779 
5780 /*
5781  * Pool Open/Import
5782  *
5783  * The import case is identical to an open except that the configuration is sent
5784  * down from userland, instead of grabbed from the configuration cache.  For the
5785  * case of an open, the pool configuration will exist in the
5786  * POOL_STATE_UNINITIALIZED state.
5787  *
5788  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5789  * the same time open the pool, without having to keep around the spa_t in some
5790  * ambiguous state.
5791  */
5792 static int
5793 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5794     nvlist_t *nvpolicy, nvlist_t **config)
5795 {
5796 	spa_t *spa;
5797 	spa_load_state_t state = SPA_LOAD_OPEN;
5798 	int error;
5799 	int locked = B_FALSE;
5800 	int firstopen = B_FALSE;
5801 
5802 	*spapp = NULL;
5803 
5804 	/*
5805 	 * As disgusting as this is, we need to support recursive calls to this
5806 	 * function because dsl_dir_open() is called during spa_load(), and ends
5807 	 * up calling spa_open() again.  The real fix is to figure out how to
5808 	 * avoid dsl_dir_open() calling this in the first place.
5809 	 */
5810 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5811 		mutex_enter(&spa_namespace_lock);
5812 		locked = B_TRUE;
5813 	}
5814 
5815 	if ((spa = spa_lookup(pool)) == NULL) {
5816 		if (locked)
5817 			mutex_exit(&spa_namespace_lock);
5818 		return (SET_ERROR(ENOENT));
5819 	}
5820 
5821 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5822 		zpool_load_policy_t policy;
5823 
5824 		firstopen = B_TRUE;
5825 
5826 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5827 		    &policy);
5828 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5829 			state = SPA_LOAD_RECOVER;
5830 
5831 		spa_activate(spa, spa_mode_global);
5832 
5833 		if (state != SPA_LOAD_RECOVER)
5834 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5835 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5836 
5837 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5838 		error = spa_load_best(spa, state, policy.zlp_txg,
5839 		    policy.zlp_rewind);
5840 
5841 		if (error == EBADF) {
5842 			/*
5843 			 * If vdev_validate() returns failure (indicated by
5844 			 * EBADF), it indicates that one of the vdevs indicates
5845 			 * that the pool has been exported or destroyed.  If
5846 			 * this is the case, the config cache is out of sync and
5847 			 * we should remove the pool from the namespace.
5848 			 */
5849 			spa_unload(spa);
5850 			spa_deactivate(spa);
5851 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5852 			spa_remove(spa);
5853 			if (locked)
5854 				mutex_exit(&spa_namespace_lock);
5855 			return (SET_ERROR(ENOENT));
5856 		}
5857 
5858 		if (error) {
5859 			/*
5860 			 * We can't open the pool, but we still have useful
5861 			 * information: the state of each vdev after the
5862 			 * attempted vdev_open().  Return this to the user.
5863 			 */
5864 			if (config != NULL && spa->spa_config) {
5865 				*config = fnvlist_dup(spa->spa_config);
5866 				fnvlist_add_nvlist(*config,
5867 				    ZPOOL_CONFIG_LOAD_INFO,
5868 				    spa->spa_load_info);
5869 			}
5870 			spa_unload(spa);
5871 			spa_deactivate(spa);
5872 			spa->spa_last_open_failed = error;
5873 			if (locked)
5874 				mutex_exit(&spa_namespace_lock);
5875 			*spapp = NULL;
5876 			return (error);
5877 		}
5878 	}
5879 
5880 	spa_open_ref(spa, tag);
5881 
5882 	if (config != NULL)
5883 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5884 
5885 	/*
5886 	 * If we've recovered the pool, pass back any information we
5887 	 * gathered while doing the load.
5888 	 */
5889 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5890 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5891 		    spa->spa_load_info);
5892 	}
5893 
5894 	if (locked) {
5895 		spa->spa_last_open_failed = 0;
5896 		spa->spa_last_ubsync_txg = 0;
5897 		spa->spa_load_txg = 0;
5898 		mutex_exit(&spa_namespace_lock);
5899 	}
5900 
5901 	if (firstopen)
5902 		zvol_create_minors_recursive(spa_name(spa));
5903 
5904 	*spapp = spa;
5905 
5906 	return (0);
5907 }
5908 
5909 int
5910 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5911     nvlist_t *policy, nvlist_t **config)
5912 {
5913 	return (spa_open_common(name, spapp, tag, policy, config));
5914 }
5915 
5916 int
5917 spa_open(const char *name, spa_t **spapp, const void *tag)
5918 {
5919 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5920 }
5921 
5922 /*
5923  * Lookup the given spa_t, incrementing the inject count in the process,
5924  * preventing it from being exported or destroyed.
5925  */
5926 spa_t *
5927 spa_inject_addref(char *name)
5928 {
5929 	spa_t *spa;
5930 
5931 	mutex_enter(&spa_namespace_lock);
5932 	if ((spa = spa_lookup(name)) == NULL) {
5933 		mutex_exit(&spa_namespace_lock);
5934 		return (NULL);
5935 	}
5936 	spa->spa_inject_ref++;
5937 	mutex_exit(&spa_namespace_lock);
5938 
5939 	return (spa);
5940 }
5941 
5942 void
5943 spa_inject_delref(spa_t *spa)
5944 {
5945 	mutex_enter(&spa_namespace_lock);
5946 	spa->spa_inject_ref--;
5947 	mutex_exit(&spa_namespace_lock);
5948 }
5949 
5950 /*
5951  * Add spares device information to the nvlist.
5952  */
5953 static void
5954 spa_add_spares(spa_t *spa, nvlist_t *config)
5955 {
5956 	nvlist_t **spares;
5957 	uint_t i, nspares;
5958 	nvlist_t *nvroot;
5959 	uint64_t guid;
5960 	vdev_stat_t *vs;
5961 	uint_t vsc;
5962 	uint64_t pool;
5963 
5964 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5965 
5966 	if (spa->spa_spares.sav_count == 0)
5967 		return;
5968 
5969 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5970 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5971 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5972 	if (nspares != 0) {
5973 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5974 		    (const nvlist_t * const *)spares, nspares);
5975 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5976 		    &spares, &nspares));
5977 
5978 		/*
5979 		 * Go through and find any spares which have since been
5980 		 * repurposed as an active spare.  If this is the case, update
5981 		 * their status appropriately.
5982 		 */
5983 		for (i = 0; i < nspares; i++) {
5984 			guid = fnvlist_lookup_uint64(spares[i],
5985 			    ZPOOL_CONFIG_GUID);
5986 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5987 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5988 			if (spa_spare_exists(guid, &pool, NULL) &&
5989 			    pool != 0ULL) {
5990 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5991 				vs->vs_aux = VDEV_AUX_SPARED;
5992 			} else {
5993 				vs->vs_state =
5994 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5995 			}
5996 		}
5997 	}
5998 }
5999 
6000 /*
6001  * Add l2cache device information to the nvlist, including vdev stats.
6002  */
6003 static void
6004 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6005 {
6006 	nvlist_t **l2cache;
6007 	uint_t i, j, nl2cache;
6008 	nvlist_t *nvroot;
6009 	uint64_t guid;
6010 	vdev_t *vd;
6011 	vdev_stat_t *vs;
6012 	uint_t vsc;
6013 
6014 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6015 
6016 	if (spa->spa_l2cache.sav_count == 0)
6017 		return;
6018 
6019 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6020 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6021 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6022 	if (nl2cache != 0) {
6023 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6024 		    (const nvlist_t * const *)l2cache, nl2cache);
6025 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6026 		    &l2cache, &nl2cache));
6027 
6028 		/*
6029 		 * Update level 2 cache device stats.
6030 		 */
6031 
6032 		for (i = 0; i < nl2cache; i++) {
6033 			guid = fnvlist_lookup_uint64(l2cache[i],
6034 			    ZPOOL_CONFIG_GUID);
6035 
6036 			vd = NULL;
6037 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6038 				if (guid ==
6039 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6040 					vd = spa->spa_l2cache.sav_vdevs[j];
6041 					break;
6042 				}
6043 			}
6044 			ASSERT(vd != NULL);
6045 
6046 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6047 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6048 			vdev_get_stats(vd, vs);
6049 			vdev_config_generate_stats(vd, l2cache[i]);
6050 
6051 		}
6052 	}
6053 }
6054 
6055 static void
6056 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6057 {
6058 	zap_cursor_t zc;
6059 	zap_attribute_t *za = zap_attribute_alloc();
6060 
6061 	if (spa->spa_feat_for_read_obj != 0) {
6062 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6063 		    spa->spa_feat_for_read_obj);
6064 		    zap_cursor_retrieve(&zc, za) == 0;
6065 		    zap_cursor_advance(&zc)) {
6066 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6067 			    za->za_num_integers == 1);
6068 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6069 			    za->za_first_integer));
6070 		}
6071 		zap_cursor_fini(&zc);
6072 	}
6073 
6074 	if (spa->spa_feat_for_write_obj != 0) {
6075 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6076 		    spa->spa_feat_for_write_obj);
6077 		    zap_cursor_retrieve(&zc, za) == 0;
6078 		    zap_cursor_advance(&zc)) {
6079 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6080 			    za->za_num_integers == 1);
6081 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6082 			    za->za_first_integer));
6083 		}
6084 		zap_cursor_fini(&zc);
6085 	}
6086 	zap_attribute_free(za);
6087 }
6088 
6089 static void
6090 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6091 {
6092 	int i;
6093 
6094 	for (i = 0; i < SPA_FEATURES; i++) {
6095 		zfeature_info_t feature = spa_feature_table[i];
6096 		uint64_t refcount;
6097 
6098 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6099 			continue;
6100 
6101 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6102 	}
6103 }
6104 
6105 /*
6106  * Store a list of pool features and their reference counts in the
6107  * config.
6108  *
6109  * The first time this is called on a spa, allocate a new nvlist, fetch
6110  * the pool features and reference counts from disk, then save the list
6111  * in the spa. In subsequent calls on the same spa use the saved nvlist
6112  * and refresh its values from the cached reference counts.  This
6113  * ensures we don't block here on I/O on a suspended pool so 'zpool
6114  * clear' can resume the pool.
6115  */
6116 static void
6117 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6118 {
6119 	nvlist_t *features;
6120 
6121 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6122 
6123 	mutex_enter(&spa->spa_feat_stats_lock);
6124 	features = spa->spa_feat_stats;
6125 
6126 	if (features != NULL) {
6127 		spa_feature_stats_from_cache(spa, features);
6128 	} else {
6129 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6130 		spa->spa_feat_stats = features;
6131 		spa_feature_stats_from_disk(spa, features);
6132 	}
6133 
6134 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6135 	    features));
6136 
6137 	mutex_exit(&spa->spa_feat_stats_lock);
6138 }
6139 
6140 int
6141 spa_get_stats(const char *name, nvlist_t **config,
6142     char *altroot, size_t buflen)
6143 {
6144 	int error;
6145 	spa_t *spa;
6146 
6147 	*config = NULL;
6148 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6149 
6150 	if (spa != NULL) {
6151 		/*
6152 		 * This still leaves a window of inconsistency where the spares
6153 		 * or l2cache devices could change and the config would be
6154 		 * self-inconsistent.
6155 		 */
6156 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6157 
6158 		if (*config != NULL) {
6159 			uint64_t loadtimes[2];
6160 
6161 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6162 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6163 			fnvlist_add_uint64_array(*config,
6164 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6165 
6166 			fnvlist_add_uint64(*config,
6167 			    ZPOOL_CONFIG_ERRCOUNT,
6168 			    spa_approx_errlog_size(spa));
6169 
6170 			if (spa_suspended(spa)) {
6171 				fnvlist_add_uint64(*config,
6172 				    ZPOOL_CONFIG_SUSPENDED,
6173 				    spa->spa_failmode);
6174 				fnvlist_add_uint64(*config,
6175 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6176 				    spa->spa_suspended);
6177 			}
6178 
6179 			spa_add_spares(spa, *config);
6180 			spa_add_l2cache(spa, *config);
6181 			spa_add_feature_stats(spa, *config);
6182 		}
6183 	}
6184 
6185 	/*
6186 	 * We want to get the alternate root even for faulted pools, so we cheat
6187 	 * and call spa_lookup() directly.
6188 	 */
6189 	if (altroot) {
6190 		if (spa == NULL) {
6191 			mutex_enter(&spa_namespace_lock);
6192 			spa = spa_lookup(name);
6193 			if (spa)
6194 				spa_altroot(spa, altroot, buflen);
6195 			else
6196 				altroot[0] = '\0';
6197 			spa = NULL;
6198 			mutex_exit(&spa_namespace_lock);
6199 		} else {
6200 			spa_altroot(spa, altroot, buflen);
6201 		}
6202 	}
6203 
6204 	if (spa != NULL) {
6205 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6206 		spa_close(spa, FTAG);
6207 	}
6208 
6209 	return (error);
6210 }
6211 
6212 /*
6213  * Validate that the auxiliary device array is well formed.  We must have an
6214  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6215  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6216  * specified, as long as they are well-formed.
6217  */
6218 static int
6219 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6220     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6221     vdev_labeltype_t label)
6222 {
6223 	nvlist_t **dev;
6224 	uint_t i, ndev;
6225 	vdev_t *vd;
6226 	int error;
6227 
6228 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6229 
6230 	/*
6231 	 * It's acceptable to have no devs specified.
6232 	 */
6233 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6234 		return (0);
6235 
6236 	if (ndev == 0)
6237 		return (SET_ERROR(EINVAL));
6238 
6239 	/*
6240 	 * Make sure the pool is formatted with a version that supports this
6241 	 * device type.
6242 	 */
6243 	if (spa_version(spa) < version)
6244 		return (SET_ERROR(ENOTSUP));
6245 
6246 	/*
6247 	 * Set the pending device list so we correctly handle device in-use
6248 	 * checking.
6249 	 */
6250 	sav->sav_pending = dev;
6251 	sav->sav_npending = ndev;
6252 
6253 	for (i = 0; i < ndev; i++) {
6254 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6255 		    mode)) != 0)
6256 			goto out;
6257 
6258 		if (!vd->vdev_ops->vdev_op_leaf) {
6259 			vdev_free(vd);
6260 			error = SET_ERROR(EINVAL);
6261 			goto out;
6262 		}
6263 
6264 		vd->vdev_top = vd;
6265 
6266 		if ((error = vdev_open(vd)) == 0 &&
6267 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6268 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6269 			    vd->vdev_guid);
6270 		}
6271 
6272 		vdev_free(vd);
6273 
6274 		if (error &&
6275 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6276 			goto out;
6277 		else
6278 			error = 0;
6279 	}
6280 
6281 out:
6282 	sav->sav_pending = NULL;
6283 	sav->sav_npending = 0;
6284 	return (error);
6285 }
6286 
6287 static int
6288 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6289 {
6290 	int error;
6291 
6292 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6293 
6294 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6295 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6296 	    VDEV_LABEL_SPARE)) != 0) {
6297 		return (error);
6298 	}
6299 
6300 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6301 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6302 	    VDEV_LABEL_L2CACHE));
6303 }
6304 
6305 static void
6306 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6307     const char *config)
6308 {
6309 	int i;
6310 
6311 	if (sav->sav_config != NULL) {
6312 		nvlist_t **olddevs;
6313 		uint_t oldndevs;
6314 		nvlist_t **newdevs;
6315 
6316 		/*
6317 		 * Generate new dev list by concatenating with the
6318 		 * current dev list.
6319 		 */
6320 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6321 		    &olddevs, &oldndevs));
6322 
6323 		newdevs = kmem_alloc(sizeof (void *) *
6324 		    (ndevs + oldndevs), KM_SLEEP);
6325 		for (i = 0; i < oldndevs; i++)
6326 			newdevs[i] = fnvlist_dup(olddevs[i]);
6327 		for (i = 0; i < ndevs; i++)
6328 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6329 
6330 		fnvlist_remove(sav->sav_config, config);
6331 
6332 		fnvlist_add_nvlist_array(sav->sav_config, config,
6333 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6334 		for (i = 0; i < oldndevs + ndevs; i++)
6335 			nvlist_free(newdevs[i]);
6336 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6337 	} else {
6338 		/*
6339 		 * Generate a new dev list.
6340 		 */
6341 		sav->sav_config = fnvlist_alloc();
6342 		fnvlist_add_nvlist_array(sav->sav_config, config,
6343 		    (const nvlist_t * const *)devs, ndevs);
6344 	}
6345 }
6346 
6347 /*
6348  * Stop and drop level 2 ARC devices
6349  */
6350 void
6351 spa_l2cache_drop(spa_t *spa)
6352 {
6353 	vdev_t *vd;
6354 	int i;
6355 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6356 
6357 	for (i = 0; i < sav->sav_count; i++) {
6358 		uint64_t pool;
6359 
6360 		vd = sav->sav_vdevs[i];
6361 		ASSERT(vd != NULL);
6362 
6363 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6364 		    pool != 0ULL && l2arc_vdev_present(vd))
6365 			l2arc_remove_vdev(vd);
6366 	}
6367 }
6368 
6369 /*
6370  * Verify encryption parameters for spa creation. If we are encrypting, we must
6371  * have the encryption feature flag enabled.
6372  */
6373 static int
6374 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6375     boolean_t has_encryption)
6376 {
6377 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6378 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6379 	    !has_encryption)
6380 		return (SET_ERROR(ENOTSUP));
6381 
6382 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6383 }
6384 
6385 /*
6386  * Pool Creation
6387  */
6388 int
6389 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6390     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6391 {
6392 	spa_t *spa;
6393 	const char *altroot = NULL;
6394 	vdev_t *rvd;
6395 	dsl_pool_t *dp;
6396 	dmu_tx_t *tx;
6397 	int error = 0;
6398 	uint64_t txg = TXG_INITIAL;
6399 	nvlist_t **spares, **l2cache;
6400 	uint_t nspares, nl2cache;
6401 	uint64_t version, obj, ndraid = 0;
6402 	boolean_t has_features;
6403 	boolean_t has_encryption;
6404 	boolean_t has_allocclass;
6405 	spa_feature_t feat;
6406 	const char *feat_name;
6407 	const char *poolname;
6408 	nvlist_t *nvl;
6409 
6410 	if (props == NULL ||
6411 	    nvlist_lookup_string(props,
6412 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6413 		poolname = (char *)pool;
6414 
6415 	/*
6416 	 * If this pool already exists, return failure.
6417 	 */
6418 	mutex_enter(&spa_namespace_lock);
6419 	if (spa_lookup(poolname) != NULL) {
6420 		mutex_exit(&spa_namespace_lock);
6421 		return (SET_ERROR(EEXIST));
6422 	}
6423 
6424 	/*
6425 	 * Allocate a new spa_t structure.
6426 	 */
6427 	nvl = fnvlist_alloc();
6428 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6429 	(void) nvlist_lookup_string(props,
6430 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6431 	spa = spa_add(poolname, nvl, altroot);
6432 	fnvlist_free(nvl);
6433 	spa_activate(spa, spa_mode_global);
6434 
6435 	if (props && (error = spa_prop_validate(spa, props))) {
6436 		spa_deactivate(spa);
6437 		spa_remove(spa);
6438 		mutex_exit(&spa_namespace_lock);
6439 		return (error);
6440 	}
6441 
6442 	/*
6443 	 * Temporary pool names should never be written to disk.
6444 	 */
6445 	if (poolname != pool)
6446 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6447 
6448 	has_features = B_FALSE;
6449 	has_encryption = B_FALSE;
6450 	has_allocclass = B_FALSE;
6451 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6452 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6453 		if (zpool_prop_feature(nvpair_name(elem))) {
6454 			has_features = B_TRUE;
6455 
6456 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6457 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6458 			if (feat == SPA_FEATURE_ENCRYPTION)
6459 				has_encryption = B_TRUE;
6460 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6461 				has_allocclass = B_TRUE;
6462 		}
6463 	}
6464 
6465 	/* verify encryption params, if they were provided */
6466 	if (dcp != NULL) {
6467 		error = spa_create_check_encryption_params(dcp, has_encryption);
6468 		if (error != 0) {
6469 			spa_deactivate(spa);
6470 			spa_remove(spa);
6471 			mutex_exit(&spa_namespace_lock);
6472 			return (error);
6473 		}
6474 	}
6475 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6476 		spa_deactivate(spa);
6477 		spa_remove(spa);
6478 		mutex_exit(&spa_namespace_lock);
6479 		return (ENOTSUP);
6480 	}
6481 
6482 	if (has_features || nvlist_lookup_uint64(props,
6483 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6484 		version = SPA_VERSION;
6485 	}
6486 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6487 
6488 	spa->spa_first_txg = txg;
6489 	spa->spa_uberblock.ub_txg = txg - 1;
6490 	spa->spa_uberblock.ub_version = version;
6491 	spa->spa_ubsync = spa->spa_uberblock;
6492 	spa->spa_load_state = SPA_LOAD_CREATE;
6493 	spa->spa_removing_phys.sr_state = DSS_NONE;
6494 	spa->spa_removing_phys.sr_removing_vdev = -1;
6495 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6496 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6497 
6498 	/*
6499 	 * Create "The Godfather" zio to hold all async IOs
6500 	 */
6501 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6502 	    KM_SLEEP);
6503 	for (int i = 0; i < max_ncpus; i++) {
6504 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6505 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6506 		    ZIO_FLAG_GODFATHER);
6507 	}
6508 
6509 	/*
6510 	 * Create the root vdev.
6511 	 */
6512 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6513 
6514 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6515 
6516 	ASSERT(error != 0 || rvd != NULL);
6517 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6518 
6519 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6520 		error = SET_ERROR(EINVAL);
6521 
6522 	if (error == 0 &&
6523 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6524 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6525 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6526 		/*
6527 		 * instantiate the metaslab groups (this will dirty the vdevs)
6528 		 * we can no longer error exit past this point
6529 		 */
6530 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6531 			vdev_t *vd = rvd->vdev_child[c];
6532 
6533 			vdev_metaslab_set_size(vd);
6534 			vdev_expand(vd, txg);
6535 		}
6536 	}
6537 
6538 	spa_config_exit(spa, SCL_ALL, FTAG);
6539 
6540 	if (error != 0) {
6541 		spa_unload(spa);
6542 		spa_deactivate(spa);
6543 		spa_remove(spa);
6544 		mutex_exit(&spa_namespace_lock);
6545 		return (error);
6546 	}
6547 
6548 	/*
6549 	 * Get the list of spares, if specified.
6550 	 */
6551 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6552 	    &spares, &nspares) == 0) {
6553 		spa->spa_spares.sav_config = fnvlist_alloc();
6554 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6555 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6556 		    nspares);
6557 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6558 		spa_load_spares(spa);
6559 		spa_config_exit(spa, SCL_ALL, FTAG);
6560 		spa->spa_spares.sav_sync = B_TRUE;
6561 	}
6562 
6563 	/*
6564 	 * Get the list of level 2 cache devices, if specified.
6565 	 */
6566 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6567 	    &l2cache, &nl2cache) == 0) {
6568 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6569 		    NV_UNIQUE_NAME, KM_SLEEP));
6570 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6571 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6572 		    nl2cache);
6573 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6574 		spa_load_l2cache(spa);
6575 		spa_config_exit(spa, SCL_ALL, FTAG);
6576 		spa->spa_l2cache.sav_sync = B_TRUE;
6577 	}
6578 
6579 	spa->spa_is_initializing = B_TRUE;
6580 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6581 	spa->spa_is_initializing = B_FALSE;
6582 
6583 	/*
6584 	 * Create DDTs (dedup tables).
6585 	 */
6586 	ddt_create(spa);
6587 	/*
6588 	 * Create BRT table and BRT table object.
6589 	 */
6590 	brt_create(spa);
6591 
6592 	spa_update_dspace(spa);
6593 
6594 	tx = dmu_tx_create_assigned(dp, txg);
6595 
6596 	/*
6597 	 * Create the pool's history object.
6598 	 */
6599 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6600 		spa_history_create_obj(spa, tx);
6601 
6602 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6603 	spa_history_log_version(spa, "create", tx);
6604 
6605 	/*
6606 	 * Create the pool config object.
6607 	 */
6608 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6609 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6610 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6611 
6612 	if (zap_add(spa->spa_meta_objset,
6613 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6614 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6615 		cmn_err(CE_PANIC, "failed to add pool config");
6616 	}
6617 
6618 	if (zap_add(spa->spa_meta_objset,
6619 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6620 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6621 		cmn_err(CE_PANIC, "failed to add pool version");
6622 	}
6623 
6624 	/* Newly created pools with the right version are always deflated. */
6625 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6626 		spa->spa_deflate = TRUE;
6627 		if (zap_add(spa->spa_meta_objset,
6628 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6629 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6630 			cmn_err(CE_PANIC, "failed to add deflate");
6631 		}
6632 	}
6633 
6634 	/*
6635 	 * Create the deferred-free bpobj.  Turn off compression
6636 	 * because sync-to-convergence takes longer if the blocksize
6637 	 * keeps changing.
6638 	 */
6639 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6640 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6641 	    ZIO_COMPRESS_OFF, tx);
6642 	if (zap_add(spa->spa_meta_objset,
6643 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6644 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6645 		cmn_err(CE_PANIC, "failed to add bpobj");
6646 	}
6647 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6648 	    spa->spa_meta_objset, obj));
6649 
6650 	/*
6651 	 * Generate some random noise for salted checksums to operate on.
6652 	 */
6653 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6654 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6655 
6656 	/*
6657 	 * Set pool properties.
6658 	 */
6659 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6660 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6661 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6662 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6663 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6664 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6665 	spa->spa_dedup_table_quota =
6666 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6667 
6668 	if (props != NULL) {
6669 		spa_configfile_set(spa, props, B_FALSE);
6670 		spa_sync_props(props, tx);
6671 	}
6672 
6673 	for (int i = 0; i < ndraid; i++)
6674 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6675 
6676 	dmu_tx_commit(tx);
6677 
6678 	spa->spa_sync_on = B_TRUE;
6679 	txg_sync_start(dp);
6680 	mmp_thread_start(spa);
6681 	txg_wait_synced(dp, txg);
6682 
6683 	spa_spawn_aux_threads(spa);
6684 
6685 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6686 
6687 	/*
6688 	 * Don't count references from objsets that are already closed
6689 	 * and are making their way through the eviction process.
6690 	 */
6691 	spa_evicting_os_wait(spa);
6692 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6693 	spa->spa_load_state = SPA_LOAD_NONE;
6694 
6695 	spa_import_os(spa);
6696 
6697 	mutex_exit(&spa_namespace_lock);
6698 
6699 	return (0);
6700 }
6701 
6702 /*
6703  * Import a non-root pool into the system.
6704  */
6705 int
6706 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6707 {
6708 	spa_t *spa;
6709 	const char *altroot = NULL;
6710 	spa_load_state_t state = SPA_LOAD_IMPORT;
6711 	zpool_load_policy_t policy;
6712 	spa_mode_t mode = spa_mode_global;
6713 	uint64_t readonly = B_FALSE;
6714 	int error;
6715 	nvlist_t *nvroot;
6716 	nvlist_t **spares, **l2cache;
6717 	uint_t nspares, nl2cache;
6718 
6719 	/*
6720 	 * If a pool with this name exists, return failure.
6721 	 */
6722 	mutex_enter(&spa_namespace_lock);
6723 	if (spa_lookup(pool) != NULL) {
6724 		mutex_exit(&spa_namespace_lock);
6725 		return (SET_ERROR(EEXIST));
6726 	}
6727 
6728 	/*
6729 	 * Create and initialize the spa structure.
6730 	 */
6731 	(void) nvlist_lookup_string(props,
6732 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6733 	(void) nvlist_lookup_uint64(props,
6734 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6735 	if (readonly)
6736 		mode = SPA_MODE_READ;
6737 	spa = spa_add(pool, config, altroot);
6738 	spa->spa_import_flags = flags;
6739 
6740 	/*
6741 	 * Verbatim import - Take a pool and insert it into the namespace
6742 	 * as if it had been loaded at boot.
6743 	 */
6744 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6745 		if (props != NULL)
6746 			spa_configfile_set(spa, props, B_FALSE);
6747 
6748 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6749 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6750 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6751 		mutex_exit(&spa_namespace_lock);
6752 		return (0);
6753 	}
6754 
6755 	spa_activate(spa, mode);
6756 
6757 	/*
6758 	 * Don't start async tasks until we know everything is healthy.
6759 	 */
6760 	spa_async_suspend(spa);
6761 
6762 	zpool_get_load_policy(config, &policy);
6763 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6764 		state = SPA_LOAD_RECOVER;
6765 
6766 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6767 
6768 	if (state != SPA_LOAD_RECOVER) {
6769 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6770 		zfs_dbgmsg("spa_import: importing %s", pool);
6771 	} else {
6772 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6773 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6774 	}
6775 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6776 
6777 	/*
6778 	 * Propagate anything learned while loading the pool and pass it
6779 	 * back to caller (i.e. rewind info, missing devices, etc).
6780 	 */
6781 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6782 
6783 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6784 	/*
6785 	 * Toss any existing sparelist, as it doesn't have any validity
6786 	 * anymore, and conflicts with spa_has_spare().
6787 	 */
6788 	if (spa->spa_spares.sav_config) {
6789 		nvlist_free(spa->spa_spares.sav_config);
6790 		spa->spa_spares.sav_config = NULL;
6791 		spa_load_spares(spa);
6792 	}
6793 	if (spa->spa_l2cache.sav_config) {
6794 		nvlist_free(spa->spa_l2cache.sav_config);
6795 		spa->spa_l2cache.sav_config = NULL;
6796 		spa_load_l2cache(spa);
6797 	}
6798 
6799 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6800 	spa_config_exit(spa, SCL_ALL, FTAG);
6801 
6802 	if (props != NULL)
6803 		spa_configfile_set(spa, props, B_FALSE);
6804 
6805 	if (error != 0 || (props && spa_writeable(spa) &&
6806 	    (error = spa_prop_set(spa, props)))) {
6807 		spa_unload(spa);
6808 		spa_deactivate(spa);
6809 		spa_remove(spa);
6810 		mutex_exit(&spa_namespace_lock);
6811 		return (error);
6812 	}
6813 
6814 	spa_async_resume(spa);
6815 
6816 	/*
6817 	 * Override any spares and level 2 cache devices as specified by
6818 	 * the user, as these may have correct device names/devids, etc.
6819 	 */
6820 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6821 	    &spares, &nspares) == 0) {
6822 		if (spa->spa_spares.sav_config)
6823 			fnvlist_remove(spa->spa_spares.sav_config,
6824 			    ZPOOL_CONFIG_SPARES);
6825 		else
6826 			spa->spa_spares.sav_config = fnvlist_alloc();
6827 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6828 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6829 		    nspares);
6830 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6831 		spa_load_spares(spa);
6832 		spa_config_exit(spa, SCL_ALL, FTAG);
6833 		spa->spa_spares.sav_sync = B_TRUE;
6834 		spa->spa_spares.sav_label_sync = B_TRUE;
6835 	}
6836 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6837 	    &l2cache, &nl2cache) == 0) {
6838 		if (spa->spa_l2cache.sav_config)
6839 			fnvlist_remove(spa->spa_l2cache.sav_config,
6840 			    ZPOOL_CONFIG_L2CACHE);
6841 		else
6842 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6843 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6844 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6845 		    nl2cache);
6846 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6847 		spa_load_l2cache(spa);
6848 		spa_config_exit(spa, SCL_ALL, FTAG);
6849 		spa->spa_l2cache.sav_sync = B_TRUE;
6850 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6851 	}
6852 
6853 	/*
6854 	 * Check for any removed devices.
6855 	 */
6856 	if (spa->spa_autoreplace) {
6857 		spa_aux_check_removed(&spa->spa_spares);
6858 		spa_aux_check_removed(&spa->spa_l2cache);
6859 	}
6860 
6861 	if (spa_writeable(spa)) {
6862 		/*
6863 		 * Update the config cache to include the newly-imported pool.
6864 		 */
6865 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6866 	}
6867 
6868 	/*
6869 	 * It's possible that the pool was expanded while it was exported.
6870 	 * We kick off an async task to handle this for us.
6871 	 */
6872 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6873 
6874 	spa_history_log_version(spa, "import", NULL);
6875 
6876 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6877 
6878 	mutex_exit(&spa_namespace_lock);
6879 
6880 	zvol_create_minors_recursive(pool);
6881 
6882 	spa_import_os(spa);
6883 
6884 	return (0);
6885 }
6886 
6887 nvlist_t *
6888 spa_tryimport(nvlist_t *tryconfig)
6889 {
6890 	nvlist_t *config = NULL;
6891 	const char *poolname, *cachefile;
6892 	spa_t *spa;
6893 	uint64_t state;
6894 	int error;
6895 	zpool_load_policy_t policy;
6896 
6897 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6898 		return (NULL);
6899 
6900 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6901 		return (NULL);
6902 
6903 	/*
6904 	 * Create and initialize the spa structure.
6905 	 */
6906 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6907 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6908 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6909 
6910 	mutex_enter(&spa_namespace_lock);
6911 	spa = spa_add(name, tryconfig, NULL);
6912 	spa_activate(spa, SPA_MODE_READ);
6913 	kmem_free(name, MAXPATHLEN);
6914 
6915 	/*
6916 	 * Rewind pool if a max txg was provided.
6917 	 */
6918 	zpool_get_load_policy(spa->spa_config, &policy);
6919 	if (policy.zlp_txg != UINT64_MAX) {
6920 		spa->spa_load_max_txg = policy.zlp_txg;
6921 		spa->spa_extreme_rewind = B_TRUE;
6922 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6923 		    poolname, (longlong_t)policy.zlp_txg);
6924 	} else {
6925 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6926 	}
6927 
6928 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6929 	    == 0) {
6930 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6931 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6932 	} else {
6933 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6934 	}
6935 
6936 	/*
6937 	 * spa_import() relies on a pool config fetched by spa_try_import()
6938 	 * for spare/cache devices. Import flags are not passed to
6939 	 * spa_tryimport(), which makes it return early due to a missing log
6940 	 * device and missing retrieving the cache device and spare eventually.
6941 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6942 	 * the correct configuration regardless of the missing log device.
6943 	 */
6944 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6945 
6946 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6947 
6948 	/*
6949 	 * If 'tryconfig' was at least parsable, return the current config.
6950 	 */
6951 	if (spa->spa_root_vdev != NULL) {
6952 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6953 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6954 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6955 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6956 		    spa->spa_uberblock.ub_timestamp);
6957 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6958 		    spa->spa_load_info);
6959 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6960 		    spa->spa_errata);
6961 
6962 		/*
6963 		 * If the bootfs property exists on this pool then we
6964 		 * copy it out so that external consumers can tell which
6965 		 * pools are bootable.
6966 		 */
6967 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6968 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6969 
6970 			/*
6971 			 * We have to play games with the name since the
6972 			 * pool was opened as TRYIMPORT_NAME.
6973 			 */
6974 			if (dsl_dsobj_to_dsname(spa_name(spa),
6975 			    spa->spa_bootfs, tmpname) == 0) {
6976 				char *cp;
6977 				char *dsname;
6978 
6979 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6980 
6981 				cp = strchr(tmpname, '/');
6982 				if (cp == NULL) {
6983 					(void) strlcpy(dsname, tmpname,
6984 					    MAXPATHLEN);
6985 				} else {
6986 					(void) snprintf(dsname, MAXPATHLEN,
6987 					    "%s/%s", poolname, ++cp);
6988 				}
6989 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6990 				    dsname);
6991 				kmem_free(dsname, MAXPATHLEN);
6992 			}
6993 			kmem_free(tmpname, MAXPATHLEN);
6994 		}
6995 
6996 		/*
6997 		 * Add the list of hot spares and level 2 cache devices.
6998 		 */
6999 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7000 		spa_add_spares(spa, config);
7001 		spa_add_l2cache(spa, config);
7002 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7003 	}
7004 
7005 	spa_unload(spa);
7006 	spa_deactivate(spa);
7007 	spa_remove(spa);
7008 	mutex_exit(&spa_namespace_lock);
7009 
7010 	return (config);
7011 }
7012 
7013 /*
7014  * Pool export/destroy
7015  *
7016  * The act of destroying or exporting a pool is very simple.  We make sure there
7017  * is no more pending I/O and any references to the pool are gone.  Then, we
7018  * update the pool state and sync all the labels to disk, removing the
7019  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7020  * we don't sync the labels or remove the configuration cache.
7021  */
7022 static int
7023 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7024     boolean_t force, boolean_t hardforce)
7025 {
7026 	int error = 0;
7027 	spa_t *spa;
7028 	hrtime_t export_start = gethrtime();
7029 
7030 	if (oldconfig)
7031 		*oldconfig = NULL;
7032 
7033 	if (!(spa_mode_global & SPA_MODE_WRITE))
7034 		return (SET_ERROR(EROFS));
7035 
7036 	mutex_enter(&spa_namespace_lock);
7037 	if ((spa = spa_lookup(pool)) == NULL) {
7038 		mutex_exit(&spa_namespace_lock);
7039 		return (SET_ERROR(ENOENT));
7040 	}
7041 
7042 	if (spa->spa_is_exporting) {
7043 		/* the pool is being exported by another thread */
7044 		mutex_exit(&spa_namespace_lock);
7045 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7046 	}
7047 	spa->spa_is_exporting = B_TRUE;
7048 
7049 	/*
7050 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7051 	 * and see if we can export.
7052 	 */
7053 	spa_open_ref(spa, FTAG);
7054 	mutex_exit(&spa_namespace_lock);
7055 	spa_async_suspend(spa);
7056 	if (spa->spa_zvol_taskq) {
7057 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7058 		taskq_wait(spa->spa_zvol_taskq);
7059 	}
7060 	mutex_enter(&spa_namespace_lock);
7061 	spa->spa_export_thread = curthread;
7062 	spa_close(spa, FTAG);
7063 
7064 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7065 		mutex_exit(&spa_namespace_lock);
7066 		goto export_spa;
7067 	}
7068 
7069 	/*
7070 	 * The pool will be in core if it's openable, in which case we can
7071 	 * modify its state.  Objsets may be open only because they're dirty,
7072 	 * so we have to force it to sync before checking spa_refcnt.
7073 	 */
7074 	if (spa->spa_sync_on) {
7075 		txg_wait_synced(spa->spa_dsl_pool, 0);
7076 		spa_evicting_os_wait(spa);
7077 	}
7078 
7079 	/*
7080 	 * A pool cannot be exported or destroyed if there are active
7081 	 * references.  If we are resetting a pool, allow references by
7082 	 * fault injection handlers.
7083 	 */
7084 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7085 		error = SET_ERROR(EBUSY);
7086 		goto fail;
7087 	}
7088 
7089 	mutex_exit(&spa_namespace_lock);
7090 	/*
7091 	 * At this point we no longer hold the spa_namespace_lock and
7092 	 * there were no references on the spa. Future spa_lookups will
7093 	 * notice the spa->spa_export_thread and wait until we signal
7094 	 * that we are finshed.
7095 	 */
7096 
7097 	if (spa->spa_sync_on) {
7098 		vdev_t *rvd = spa->spa_root_vdev;
7099 		/*
7100 		 * A pool cannot be exported if it has an active shared spare.
7101 		 * This is to prevent other pools stealing the active spare
7102 		 * from an exported pool. At user's own will, such pool can
7103 		 * be forcedly exported.
7104 		 */
7105 		if (!force && new_state == POOL_STATE_EXPORTED &&
7106 		    spa_has_active_shared_spare(spa)) {
7107 			error = SET_ERROR(EXDEV);
7108 			mutex_enter(&spa_namespace_lock);
7109 			goto fail;
7110 		}
7111 
7112 		/*
7113 		 * We're about to export or destroy this pool. Make sure
7114 		 * we stop all initialization and trim activity here before
7115 		 * we set the spa_final_txg. This will ensure that all
7116 		 * dirty data resulting from the initialization is
7117 		 * committed to disk before we unload the pool.
7118 		 */
7119 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7120 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7121 		vdev_autotrim_stop_all(spa);
7122 		vdev_rebuild_stop_all(spa);
7123 		l2arc_spa_rebuild_stop(spa);
7124 
7125 		/*
7126 		 * We want this to be reflected on every label,
7127 		 * so mark them all dirty.  spa_unload() will do the
7128 		 * final sync that pushes these changes out.
7129 		 */
7130 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7131 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7132 			spa->spa_state = new_state;
7133 			vdev_config_dirty(rvd);
7134 			spa_config_exit(spa, SCL_ALL, FTAG);
7135 		}
7136 
7137 		/*
7138 		 * If the log space map feature is enabled and the pool is
7139 		 * getting exported (but not destroyed), we want to spend some
7140 		 * time flushing as many metaslabs as we can in an attempt to
7141 		 * destroy log space maps and save import time. This has to be
7142 		 * done before we set the spa_final_txg, otherwise
7143 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7144 		 * spa_should_flush_logs_on_unload() should be called after
7145 		 * spa_state has been set to the new_state.
7146 		 */
7147 		if (spa_should_flush_logs_on_unload(spa))
7148 			spa_unload_log_sm_flush_all(spa);
7149 
7150 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7151 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7152 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7153 			    TXG_DEFER_SIZE + 1;
7154 			spa_config_exit(spa, SCL_ALL, FTAG);
7155 		}
7156 	}
7157 
7158 export_spa:
7159 	spa_export_os(spa);
7160 
7161 	if (new_state == POOL_STATE_DESTROYED)
7162 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7163 	else if (new_state == POOL_STATE_EXPORTED)
7164 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7165 
7166 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7167 		spa_unload(spa);
7168 		spa_deactivate(spa);
7169 	}
7170 
7171 	if (oldconfig && spa->spa_config)
7172 		*oldconfig = fnvlist_dup(spa->spa_config);
7173 
7174 	if (new_state == POOL_STATE_EXPORTED)
7175 		zio_handle_export_delay(spa, gethrtime() - export_start);
7176 
7177 	/*
7178 	 * Take the namespace lock for the actual spa_t removal
7179 	 */
7180 	mutex_enter(&spa_namespace_lock);
7181 	if (new_state != POOL_STATE_UNINITIALIZED) {
7182 		if (!hardforce)
7183 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7184 		spa_remove(spa);
7185 	} else {
7186 		/*
7187 		 * If spa_remove() is not called for this spa_t and
7188 		 * there is any possibility that it can be reused,
7189 		 * we make sure to reset the exporting flag.
7190 		 */
7191 		spa->spa_is_exporting = B_FALSE;
7192 		spa->spa_export_thread = NULL;
7193 	}
7194 
7195 	/*
7196 	 * Wake up any waiters in spa_lookup()
7197 	 */
7198 	cv_broadcast(&spa_namespace_cv);
7199 	mutex_exit(&spa_namespace_lock);
7200 	return (0);
7201 
7202 fail:
7203 	spa->spa_is_exporting = B_FALSE;
7204 	spa->spa_export_thread = NULL;
7205 
7206 	spa_async_resume(spa);
7207 	/*
7208 	 * Wake up any waiters in spa_lookup()
7209 	 */
7210 	cv_broadcast(&spa_namespace_cv);
7211 	mutex_exit(&spa_namespace_lock);
7212 	return (error);
7213 }
7214 
7215 /*
7216  * Destroy a storage pool.
7217  */
7218 int
7219 spa_destroy(const char *pool)
7220 {
7221 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7222 	    B_FALSE, B_FALSE));
7223 }
7224 
7225 /*
7226  * Export a storage pool.
7227  */
7228 int
7229 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7230     boolean_t hardforce)
7231 {
7232 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7233 	    force, hardforce));
7234 }
7235 
7236 /*
7237  * Similar to spa_export(), this unloads the spa_t without actually removing it
7238  * from the namespace in any way.
7239  */
7240 int
7241 spa_reset(const char *pool)
7242 {
7243 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7244 	    B_FALSE, B_FALSE));
7245 }
7246 
7247 /*
7248  * ==========================================================================
7249  * Device manipulation
7250  * ==========================================================================
7251  */
7252 
7253 /*
7254  * This is called as a synctask to increment the draid feature flag
7255  */
7256 static void
7257 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7258 {
7259 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7260 	int draid = (int)(uintptr_t)arg;
7261 
7262 	for (int c = 0; c < draid; c++)
7263 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7264 }
7265 
7266 /*
7267  * Add a device to a storage pool.
7268  */
7269 int
7270 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7271 {
7272 	uint64_t txg, ndraid = 0;
7273 	int error;
7274 	vdev_t *rvd = spa->spa_root_vdev;
7275 	vdev_t *vd, *tvd;
7276 	nvlist_t **spares, **l2cache;
7277 	uint_t nspares, nl2cache;
7278 
7279 	ASSERT(spa_writeable(spa));
7280 
7281 	txg = spa_vdev_enter(spa);
7282 
7283 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7284 	    VDEV_ALLOC_ADD)) != 0)
7285 		return (spa_vdev_exit(spa, NULL, txg, error));
7286 
7287 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7288 
7289 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7290 	    &nspares) != 0)
7291 		nspares = 0;
7292 
7293 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7294 	    &nl2cache) != 0)
7295 		nl2cache = 0;
7296 
7297 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7298 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7299 
7300 	if (vd->vdev_children != 0 &&
7301 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7302 		return (spa_vdev_exit(spa, vd, txg, error));
7303 	}
7304 
7305 	/*
7306 	 * The virtual dRAID spares must be added after vdev tree is created
7307 	 * and the vdev guids are generated.  The guid of their associated
7308 	 * dRAID is stored in the config and used when opening the spare.
7309 	 */
7310 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7311 	    rvd->vdev_children)) == 0) {
7312 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7313 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7314 			nspares = 0;
7315 	} else {
7316 		return (spa_vdev_exit(spa, vd, txg, error));
7317 	}
7318 
7319 	/*
7320 	 * We must validate the spares and l2cache devices after checking the
7321 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7322 	 */
7323 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7324 		return (spa_vdev_exit(spa, vd, txg, error));
7325 
7326 	/*
7327 	 * If we are in the middle of a device removal, we can only add
7328 	 * devices which match the existing devices in the pool.
7329 	 * If we are in the middle of a removal, or have some indirect
7330 	 * vdevs, we can not add raidz or dRAID top levels.
7331 	 */
7332 	if (spa->spa_vdev_removal != NULL ||
7333 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7334 		for (int c = 0; c < vd->vdev_children; c++) {
7335 			tvd = vd->vdev_child[c];
7336 			if (spa->spa_vdev_removal != NULL &&
7337 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7338 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7339 			}
7340 			/* Fail if top level vdev is raidz or a dRAID */
7341 			if (vdev_get_nparity(tvd) != 0)
7342 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7343 
7344 			/*
7345 			 * Need the top level mirror to be
7346 			 * a mirror of leaf vdevs only
7347 			 */
7348 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7349 				for (uint64_t cid = 0;
7350 				    cid < tvd->vdev_children; cid++) {
7351 					vdev_t *cvd = tvd->vdev_child[cid];
7352 					if (!cvd->vdev_ops->vdev_op_leaf) {
7353 						return (spa_vdev_exit(spa, vd,
7354 						    txg, EINVAL));
7355 					}
7356 				}
7357 			}
7358 		}
7359 	}
7360 
7361 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7362 		for (int c = 0; c < vd->vdev_children; c++) {
7363 			tvd = vd->vdev_child[c];
7364 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7365 				return (spa_vdev_exit(spa, vd, txg,
7366 				    ZFS_ERR_ASHIFT_MISMATCH));
7367 			}
7368 		}
7369 	}
7370 
7371 	for (int c = 0; c < vd->vdev_children; c++) {
7372 		tvd = vd->vdev_child[c];
7373 		vdev_remove_child(vd, tvd);
7374 		tvd->vdev_id = rvd->vdev_children;
7375 		vdev_add_child(rvd, tvd);
7376 		vdev_config_dirty(tvd);
7377 	}
7378 
7379 	if (nspares != 0) {
7380 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7381 		    ZPOOL_CONFIG_SPARES);
7382 		spa_load_spares(spa);
7383 		spa->spa_spares.sav_sync = B_TRUE;
7384 	}
7385 
7386 	if (nl2cache != 0) {
7387 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7388 		    ZPOOL_CONFIG_L2CACHE);
7389 		spa_load_l2cache(spa);
7390 		spa->spa_l2cache.sav_sync = B_TRUE;
7391 	}
7392 
7393 	/*
7394 	 * We can't increment a feature while holding spa_vdev so we
7395 	 * have to do it in a synctask.
7396 	 */
7397 	if (ndraid != 0) {
7398 		dmu_tx_t *tx;
7399 
7400 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7401 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7402 		    (void *)(uintptr_t)ndraid, tx);
7403 		dmu_tx_commit(tx);
7404 	}
7405 
7406 	/*
7407 	 * We have to be careful when adding new vdevs to an existing pool.
7408 	 * If other threads start allocating from these vdevs before we
7409 	 * sync the config cache, and we lose power, then upon reboot we may
7410 	 * fail to open the pool because there are DVAs that the config cache
7411 	 * can't translate.  Therefore, we first add the vdevs without
7412 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7413 	 * and then let spa_config_update() initialize the new metaslabs.
7414 	 *
7415 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7416 	 * if we lose power at any point in this sequence, the remaining
7417 	 * steps will be completed the next time we load the pool.
7418 	 */
7419 	(void) spa_vdev_exit(spa, vd, txg, 0);
7420 
7421 	mutex_enter(&spa_namespace_lock);
7422 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7423 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7424 	mutex_exit(&spa_namespace_lock);
7425 
7426 	return (0);
7427 }
7428 
7429 /*
7430  * Given a vdev to be replaced and its parent, check for a possible
7431  * "double spare" condition if a vdev is to be replaced by a spare.  When this
7432  * happens, you can get two spares assigned to one failed vdev.
7433  *
7434  * To trigger a double spare condition:
7435  *
7436  * 1. disk1 fails
7437  * 2. 1st spare is kicked in for disk1 and it resilvers
7438  * 3. Someone replaces disk1 with a new blank disk
7439  * 4. New blank disk starts resilvering
7440  * 5. While resilvering, new blank disk has IO errors and faults
7441  * 6. 2nd spare is kicked in for new blank disk
7442  * 7. At this point two spares are kicked in for the original disk1.
7443  *
7444  * It looks like this:
7445  *
7446  * NAME                                            STATE     READ WRITE CKSUM
7447  * tank2                                           DEGRADED     0     0     0
7448  *   draid2:6d:10c:2s-0                            DEGRADED     0     0     0
7449  *     scsi-0QEMU_QEMU_HARDDISK_d1                 ONLINE       0     0     0
7450  *     scsi-0QEMU_QEMU_HARDDISK_d2                 ONLINE       0     0     0
7451  *     scsi-0QEMU_QEMU_HARDDISK_d3                 ONLINE       0     0     0
7452  *     scsi-0QEMU_QEMU_HARDDISK_d4                 ONLINE       0     0     0
7453  *     scsi-0QEMU_QEMU_HARDDISK_d5                 ONLINE       0     0     0
7454  *     scsi-0QEMU_QEMU_HARDDISK_d6                 ONLINE       0     0     0
7455  *     scsi-0QEMU_QEMU_HARDDISK_d7                 ONLINE       0     0     0
7456  *     scsi-0QEMU_QEMU_HARDDISK_d8                 ONLINE       0     0     0
7457  *     scsi-0QEMU_QEMU_HARDDISK_d9                 ONLINE       0     0     0
7458  *     spare-9                                     DEGRADED     0     0     0
7459  *       replacing-0                               DEGRADED     0    93     0
7460  *         scsi-0QEMU_QEMU_HARDDISK_d10-part1/old  UNAVAIL      0     0     0
7461  *         spare-1                                 DEGRADED     0     0     0
7462  *           scsi-0QEMU_QEMU_HARDDISK_d10          REMOVED      0     0     0
7463  *           draid2-0-0                            ONLINE       0     0     0
7464  *       draid2-0-1                                ONLINE       0     0     0
7465  * spares
7466  *   draid2-0-0                                    INUSE     currently in use
7467  *   draid2-0-1                                    INUSE     currently in use
7468  *
7469  * ARGS:
7470  *
7471  * newvd:  New spare disk
7472  * pvd:    Parent vdev_t the spare should attach to
7473  *
7474  * This function returns B_TRUE if adding the new vdev would create a double
7475  * spare condition, B_FALSE otherwise.
7476  */
7477 static boolean_t
7478 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd)
7479 {
7480 	vdev_t *ppvd;
7481 
7482 	ppvd = pvd->vdev_parent;
7483 	if (ppvd == NULL)
7484 		return (B_FALSE);
7485 
7486 	/*
7487 	 * To determine if this configuration would cause a double spare, we
7488 	 * look at the vdev_op of the parent vdev, and of the parent's parent
7489 	 * vdev.  We also look at vdev_isspare on the new disk.  A double spare
7490 	 * condition looks like this:
7491 	 *
7492 	 * 1. parent of parent's op is a spare or draid spare
7493 	 * 2. parent's op is replacing
7494 	 * 3. new disk is a spare
7495 	 */
7496 	if ((ppvd->vdev_ops == &vdev_spare_ops) ||
7497 	    (ppvd->vdev_ops == &vdev_draid_spare_ops))
7498 		if (pvd->vdev_ops == &vdev_replacing_ops)
7499 			if (newvd->vdev_isspare)
7500 				return (B_TRUE);
7501 
7502 	return (B_FALSE);
7503 }
7504 
7505 /*
7506  * Attach a device to a vdev specified by its guid.  The vdev type can be
7507  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7508  * single device). When the vdev is a single device, a mirror vdev will be
7509  * automatically inserted.
7510  *
7511  * If 'replacing' is specified, the new device is intended to replace the
7512  * existing device; in this case the two devices are made into their own
7513  * mirror using the 'replacing' vdev, which is functionally identical to
7514  * the mirror vdev (it actually reuses all the same ops) but has a few
7515  * extra rules: you can't attach to it after it's been created, and upon
7516  * completion of resilvering, the first disk (the one being replaced)
7517  * is automatically detached.
7518  *
7519  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7520  * should be performed instead of traditional healing reconstruction.  From
7521  * an administrators perspective these are both resilver operations.
7522  */
7523 int
7524 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7525     int rebuild)
7526 {
7527 	uint64_t txg, dtl_max_txg;
7528 	vdev_t *rvd = spa->spa_root_vdev;
7529 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7530 	vdev_ops_t *pvops;
7531 	char *oldvdpath, *newvdpath;
7532 	int newvd_isspare = B_FALSE;
7533 	int error;
7534 
7535 	ASSERT(spa_writeable(spa));
7536 
7537 	txg = spa_vdev_enter(spa);
7538 
7539 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7540 
7541 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7542 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7543 		error = (spa_has_checkpoint(spa)) ?
7544 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7545 		return (spa_vdev_exit(spa, NULL, txg, error));
7546 	}
7547 
7548 	if (rebuild) {
7549 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7550 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7551 
7552 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7553 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7554 			return (spa_vdev_exit(spa, NULL, txg,
7555 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7556 		}
7557 	} else {
7558 		if (vdev_rebuild_active(rvd))
7559 			return (spa_vdev_exit(spa, NULL, txg,
7560 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7561 	}
7562 
7563 	if (spa->spa_vdev_removal != NULL) {
7564 		return (spa_vdev_exit(spa, NULL, txg,
7565 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7566 	}
7567 
7568 	if (oldvd == NULL)
7569 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7570 
7571 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7572 
7573 	if (raidz) {
7574 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7575 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7576 
7577 		/*
7578 		 * Can't expand a raidz while prior expand is in progress.
7579 		 */
7580 		if (spa->spa_raidz_expand != NULL) {
7581 			return (spa_vdev_exit(spa, NULL, txg,
7582 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7583 		}
7584 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7585 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7586 	}
7587 
7588 	if (raidz)
7589 		pvd = oldvd;
7590 	else
7591 		pvd = oldvd->vdev_parent;
7592 
7593 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7594 	    VDEV_ALLOC_ATTACH) != 0)
7595 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7596 
7597 	if (newrootvd->vdev_children != 1)
7598 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7599 
7600 	newvd = newrootvd->vdev_child[0];
7601 
7602 	if (!newvd->vdev_ops->vdev_op_leaf)
7603 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7604 
7605 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7606 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7607 
7608 	/*
7609 	 * log, dedup and special vdevs should not be replaced by spares.
7610 	 */
7611 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7612 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7613 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7614 	}
7615 
7616 	/*
7617 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7618 	 */
7619 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7620 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7621 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7622 	}
7623 
7624 	if (rebuild) {
7625 		/*
7626 		 * For rebuilds, the top vdev must support reconstruction
7627 		 * using only space maps.  This means the only allowable
7628 		 * vdevs types are the root vdev, a mirror, or dRAID.
7629 		 */
7630 		tvd = pvd;
7631 		if (pvd->vdev_top != NULL)
7632 			tvd = pvd->vdev_top;
7633 
7634 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7635 		    tvd->vdev_ops != &vdev_root_ops &&
7636 		    tvd->vdev_ops != &vdev_draid_ops) {
7637 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7638 		}
7639 	}
7640 
7641 	if (!replacing) {
7642 		/*
7643 		 * For attach, the only allowable parent is a mirror or
7644 		 * the root vdev. A raidz vdev can be attached to, but
7645 		 * you cannot attach to a raidz child.
7646 		 */
7647 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7648 		    pvd->vdev_ops != &vdev_root_ops &&
7649 		    !raidz)
7650 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7651 
7652 		pvops = &vdev_mirror_ops;
7653 	} else {
7654 		/*
7655 		 * Active hot spares can only be replaced by inactive hot
7656 		 * spares.
7657 		 */
7658 		if (pvd->vdev_ops == &vdev_spare_ops &&
7659 		    oldvd->vdev_isspare &&
7660 		    !spa_has_spare(spa, newvd->vdev_guid))
7661 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7662 
7663 		/*
7664 		 * If the source is a hot spare, and the parent isn't already a
7665 		 * spare, then we want to create a new hot spare.  Otherwise, we
7666 		 * want to create a replacing vdev.  The user is not allowed to
7667 		 * attach to a spared vdev child unless the 'isspare' state is
7668 		 * the same (spare replaces spare, non-spare replaces
7669 		 * non-spare).
7670 		 */
7671 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7672 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7673 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7674 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7675 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7676 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7677 		}
7678 
7679 		if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) {
7680 			vdev_dbgmsg(newvd,
7681 			    "disk would create double spares, ignore.");
7682 			return (spa_vdev_exit(spa, newrootvd, txg, EEXIST));
7683 		}
7684 
7685 		if (newvd->vdev_isspare)
7686 			pvops = &vdev_spare_ops;
7687 		else
7688 			pvops = &vdev_replacing_ops;
7689 	}
7690 
7691 	/*
7692 	 * Make sure the new device is big enough.
7693 	 */
7694 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7695 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7696 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7697 
7698 	/*
7699 	 * The new device cannot have a higher alignment requirement
7700 	 * than the top-level vdev.
7701 	 */
7702 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7703 		return (spa_vdev_exit(spa, newrootvd, txg,
7704 		    ZFS_ERR_ASHIFT_MISMATCH));
7705 	}
7706 
7707 	/*
7708 	 * RAIDZ-expansion-specific checks.
7709 	 */
7710 	if (raidz) {
7711 		if (vdev_raidz_attach_check(newvd) != 0)
7712 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7713 
7714 		/*
7715 		 * Fail early if a child is not healthy or being replaced
7716 		 */
7717 		for (int i = 0; i < oldvd->vdev_children; i++) {
7718 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7719 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7720 				return (spa_vdev_exit(spa, newrootvd, txg,
7721 				    ENXIO));
7722 			}
7723 			/* Also fail if reserved boot area is in-use */
7724 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7725 			    != 0) {
7726 				return (spa_vdev_exit(spa, newrootvd, txg,
7727 				    EADDRINUSE));
7728 			}
7729 		}
7730 	}
7731 
7732 	if (raidz) {
7733 		/*
7734 		 * Note: oldvdpath is freed by spa_strfree(),  but
7735 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7736 		 * move it to a spa_strdup-ed string.
7737 		 */
7738 		char *tmp = kmem_asprintf("raidz%u-%u",
7739 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7740 		oldvdpath = spa_strdup(tmp);
7741 		kmem_strfree(tmp);
7742 	} else {
7743 		oldvdpath = spa_strdup(oldvd->vdev_path);
7744 	}
7745 	newvdpath = spa_strdup(newvd->vdev_path);
7746 
7747 	/*
7748 	 * If this is an in-place replacement, update oldvd's path and devid
7749 	 * to make it distinguishable from newvd, and unopenable from now on.
7750 	 */
7751 	if (strcmp(oldvdpath, newvdpath) == 0) {
7752 		spa_strfree(oldvd->vdev_path);
7753 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7754 		    KM_SLEEP);
7755 		(void) sprintf(oldvd->vdev_path, "%s/old",
7756 		    newvdpath);
7757 		if (oldvd->vdev_devid != NULL) {
7758 			spa_strfree(oldvd->vdev_devid);
7759 			oldvd->vdev_devid = NULL;
7760 		}
7761 		spa_strfree(oldvdpath);
7762 		oldvdpath = spa_strdup(oldvd->vdev_path);
7763 	}
7764 
7765 	/*
7766 	 * If the parent is not a mirror, or if we're replacing, insert the new
7767 	 * mirror/replacing/spare vdev above oldvd.
7768 	 */
7769 	if (!raidz && pvd->vdev_ops != pvops) {
7770 		pvd = vdev_add_parent(oldvd, pvops);
7771 		ASSERT(pvd->vdev_ops == pvops);
7772 		ASSERT(oldvd->vdev_parent == pvd);
7773 	}
7774 
7775 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7776 
7777 	/*
7778 	 * Extract the new device from its root and add it to pvd.
7779 	 */
7780 	vdev_remove_child(newrootvd, newvd);
7781 	newvd->vdev_id = pvd->vdev_children;
7782 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7783 	vdev_add_child(pvd, newvd);
7784 
7785 	/*
7786 	 * Reevaluate the parent vdev state.
7787 	 */
7788 	vdev_propagate_state(pvd);
7789 
7790 	tvd = newvd->vdev_top;
7791 	ASSERT(pvd->vdev_top == tvd);
7792 	ASSERT(tvd->vdev_parent == rvd);
7793 
7794 	vdev_config_dirty(tvd);
7795 
7796 	/*
7797 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7798 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7799 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7800 	 */
7801 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7802 
7803 	if (raidz) {
7804 		/*
7805 		 * Wait for the youngest allocations and frees to sync,
7806 		 * and then wait for the deferral of those frees to finish.
7807 		 */
7808 		spa_vdev_config_exit(spa, NULL,
7809 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7810 
7811 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7812 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7813 		vdev_autotrim_stop_wait(tvd);
7814 
7815 		dtl_max_txg = spa_vdev_config_enter(spa);
7816 
7817 		tvd->vdev_rz_expanding = B_TRUE;
7818 
7819 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7820 		vdev_config_dirty(tvd);
7821 
7822 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7823 		    dtl_max_txg);
7824 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7825 		    newvd, tx);
7826 		dmu_tx_commit(tx);
7827 	} else {
7828 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7829 		    dtl_max_txg - TXG_INITIAL);
7830 
7831 		if (newvd->vdev_isspare) {
7832 			spa_spare_activate(newvd);
7833 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7834 		}
7835 
7836 		newvd_isspare = newvd->vdev_isspare;
7837 
7838 		/*
7839 		 * Mark newvd's DTL dirty in this txg.
7840 		 */
7841 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7842 
7843 		/*
7844 		 * Schedule the resilver or rebuild to restart in the future.
7845 		 * We do this to ensure that dmu_sync-ed blocks have been
7846 		 * stitched into the respective datasets.
7847 		 */
7848 		if (rebuild) {
7849 			newvd->vdev_rebuild_txg = txg;
7850 
7851 			vdev_rebuild(tvd);
7852 		} else {
7853 			newvd->vdev_resilver_txg = txg;
7854 
7855 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7856 			    spa_feature_is_enabled(spa,
7857 			    SPA_FEATURE_RESILVER_DEFER)) {
7858 				vdev_defer_resilver(newvd);
7859 			} else {
7860 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7861 				    dtl_max_txg);
7862 			}
7863 		}
7864 	}
7865 
7866 	if (spa->spa_bootfs)
7867 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7868 
7869 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7870 
7871 	/*
7872 	 * Commit the config
7873 	 */
7874 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7875 
7876 	spa_history_log_internal(spa, "vdev attach", NULL,
7877 	    "%s vdev=%s %s vdev=%s",
7878 	    replacing && newvd_isspare ? "spare in" :
7879 	    replacing ? "replace" : "attach", newvdpath,
7880 	    replacing ? "for" : "to", oldvdpath);
7881 
7882 	spa_strfree(oldvdpath);
7883 	spa_strfree(newvdpath);
7884 
7885 	return (0);
7886 }
7887 
7888 /*
7889  * Detach a device from a mirror or replacing vdev.
7890  *
7891  * If 'replace_done' is specified, only detach if the parent
7892  * is a replacing or a spare vdev.
7893  */
7894 int
7895 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7896 {
7897 	uint64_t txg;
7898 	int error;
7899 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7900 	vdev_t *vd, *pvd, *cvd, *tvd;
7901 	boolean_t unspare = B_FALSE;
7902 	uint64_t unspare_guid = 0;
7903 	char *vdpath;
7904 
7905 	ASSERT(spa_writeable(spa));
7906 
7907 	txg = spa_vdev_detach_enter(spa, guid);
7908 
7909 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7910 
7911 	/*
7912 	 * Besides being called directly from the userland through the
7913 	 * ioctl interface, spa_vdev_detach() can be potentially called
7914 	 * at the end of spa_vdev_resilver_done().
7915 	 *
7916 	 * In the regular case, when we have a checkpoint this shouldn't
7917 	 * happen as we never empty the DTLs of a vdev during the scrub
7918 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7919 	 * should never get here when we have a checkpoint.
7920 	 *
7921 	 * That said, even in a case when we checkpoint the pool exactly
7922 	 * as spa_vdev_resilver_done() calls this function everything
7923 	 * should be fine as the resilver will return right away.
7924 	 */
7925 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7926 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7927 		error = (spa_has_checkpoint(spa)) ?
7928 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7929 		return (spa_vdev_exit(spa, NULL, txg, error));
7930 	}
7931 
7932 	if (vd == NULL)
7933 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7934 
7935 	if (!vd->vdev_ops->vdev_op_leaf)
7936 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7937 
7938 	pvd = vd->vdev_parent;
7939 
7940 	/*
7941 	 * If the parent/child relationship is not as expected, don't do it.
7942 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7943 	 * vdev that's replacing B with C.  The user's intent in replacing
7944 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7945 	 * the replace by detaching C, the expected behavior is to end up
7946 	 * M(A,B).  But suppose that right after deciding to detach C,
7947 	 * the replacement of B completes.  We would have M(A,C), and then
7948 	 * ask to detach C, which would leave us with just A -- not what
7949 	 * the user wanted.  To prevent this, we make sure that the
7950 	 * parent/child relationship hasn't changed -- in this example,
7951 	 * that C's parent is still the replacing vdev R.
7952 	 */
7953 	if (pvd->vdev_guid != pguid && pguid != 0)
7954 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7955 
7956 	/*
7957 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7958 	 */
7959 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7960 	    pvd->vdev_ops != &vdev_spare_ops)
7961 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7962 
7963 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7964 	    spa_version(spa) >= SPA_VERSION_SPARES);
7965 
7966 	/*
7967 	 * Only mirror, replacing, and spare vdevs support detach.
7968 	 */
7969 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7970 	    pvd->vdev_ops != &vdev_mirror_ops &&
7971 	    pvd->vdev_ops != &vdev_spare_ops)
7972 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7973 
7974 	/*
7975 	 * If this device has the only valid copy of some data,
7976 	 * we cannot safely detach it.
7977 	 */
7978 	if (vdev_dtl_required(vd))
7979 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7980 
7981 	ASSERT(pvd->vdev_children >= 2);
7982 
7983 	/*
7984 	 * If we are detaching the second disk from a replacing vdev, then
7985 	 * check to see if we changed the original vdev's path to have "/old"
7986 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7987 	 */
7988 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7989 	    vd->vdev_path != NULL) {
7990 		size_t len = strlen(vd->vdev_path);
7991 
7992 		for (int c = 0; c < pvd->vdev_children; c++) {
7993 			cvd = pvd->vdev_child[c];
7994 
7995 			if (cvd == vd || cvd->vdev_path == NULL)
7996 				continue;
7997 
7998 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7999 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
8000 				spa_strfree(cvd->vdev_path);
8001 				cvd->vdev_path = spa_strdup(vd->vdev_path);
8002 				break;
8003 			}
8004 		}
8005 	}
8006 
8007 	/*
8008 	 * If we are detaching the original disk from a normal spare, then it
8009 	 * implies that the spare should become a real disk, and be removed
8010 	 * from the active spare list for the pool.  dRAID spares on the
8011 	 * other hand are coupled to the pool and thus should never be removed
8012 	 * from the spares list.
8013 	 */
8014 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
8015 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
8016 
8017 		if (last_cvd->vdev_isspare &&
8018 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
8019 			unspare = B_TRUE;
8020 		}
8021 	}
8022 
8023 	/*
8024 	 * Erase the disk labels so the disk can be used for other things.
8025 	 * This must be done after all other error cases are handled,
8026 	 * but before we disembowel vd (so we can still do I/O to it).
8027 	 * But if we can't do it, don't treat the error as fatal --
8028 	 * it may be that the unwritability of the disk is the reason
8029 	 * it's being detached!
8030 	 */
8031 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
8032 
8033 	/*
8034 	 * Remove vd from its parent and compact the parent's children.
8035 	 */
8036 	vdev_remove_child(pvd, vd);
8037 	vdev_compact_children(pvd);
8038 
8039 	/*
8040 	 * Remember one of the remaining children so we can get tvd below.
8041 	 */
8042 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
8043 
8044 	/*
8045 	 * If we need to remove the remaining child from the list of hot spares,
8046 	 * do it now, marking the vdev as no longer a spare in the process.
8047 	 * We must do this before vdev_remove_parent(), because that can
8048 	 * change the GUID if it creates a new toplevel GUID.  For a similar
8049 	 * reason, we must remove the spare now, in the same txg as the detach;
8050 	 * otherwise someone could attach a new sibling, change the GUID, and
8051 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
8052 	 */
8053 	if (unspare) {
8054 		ASSERT(cvd->vdev_isspare);
8055 		spa_spare_remove(cvd);
8056 		unspare_guid = cvd->vdev_guid;
8057 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
8058 		cvd->vdev_unspare = B_TRUE;
8059 	}
8060 
8061 	/*
8062 	 * If the parent mirror/replacing vdev only has one child,
8063 	 * the parent is no longer needed.  Remove it from the tree.
8064 	 */
8065 	if (pvd->vdev_children == 1) {
8066 		if (pvd->vdev_ops == &vdev_spare_ops)
8067 			cvd->vdev_unspare = B_FALSE;
8068 		vdev_remove_parent(cvd);
8069 	}
8070 
8071 	/*
8072 	 * We don't set tvd until now because the parent we just removed
8073 	 * may have been the previous top-level vdev.
8074 	 */
8075 	tvd = cvd->vdev_top;
8076 	ASSERT(tvd->vdev_parent == rvd);
8077 
8078 	/*
8079 	 * Reevaluate the parent vdev state.
8080 	 */
8081 	vdev_propagate_state(cvd);
8082 
8083 	/*
8084 	 * If the 'autoexpand' property is set on the pool then automatically
8085 	 * try to expand the size of the pool. For example if the device we
8086 	 * just detached was smaller than the others, it may be possible to
8087 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8088 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8089 	 */
8090 	if (spa->spa_autoexpand) {
8091 		vdev_reopen(tvd);
8092 		vdev_expand(tvd, txg);
8093 	}
8094 
8095 	vdev_config_dirty(tvd);
8096 
8097 	/*
8098 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8099 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8100 	 * But first make sure we're not on any *other* txg's DTL list, to
8101 	 * prevent vd from being accessed after it's freed.
8102 	 */
8103 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8104 	for (int t = 0; t < TXG_SIZE; t++)
8105 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8106 	vd->vdev_detached = B_TRUE;
8107 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8108 
8109 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8110 	spa_notify_waiters(spa);
8111 
8112 	/* hang on to the spa before we release the lock */
8113 	spa_open_ref(spa, FTAG);
8114 
8115 	error = spa_vdev_exit(spa, vd, txg, 0);
8116 
8117 	spa_history_log_internal(spa, "detach", NULL,
8118 	    "vdev=%s", vdpath);
8119 	spa_strfree(vdpath);
8120 
8121 	/*
8122 	 * If this was the removal of the original device in a hot spare vdev,
8123 	 * then we want to go through and remove the device from the hot spare
8124 	 * list of every other pool.
8125 	 */
8126 	if (unspare) {
8127 		spa_t *altspa = NULL;
8128 
8129 		mutex_enter(&spa_namespace_lock);
8130 		while ((altspa = spa_next(altspa)) != NULL) {
8131 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8132 			    altspa == spa)
8133 				continue;
8134 
8135 			spa_open_ref(altspa, FTAG);
8136 			mutex_exit(&spa_namespace_lock);
8137 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8138 			mutex_enter(&spa_namespace_lock);
8139 			spa_close(altspa, FTAG);
8140 		}
8141 		mutex_exit(&spa_namespace_lock);
8142 
8143 		/* search the rest of the vdevs for spares to remove */
8144 		spa_vdev_resilver_done(spa);
8145 	}
8146 
8147 	/* all done with the spa; OK to release */
8148 	mutex_enter(&spa_namespace_lock);
8149 	spa_close(spa, FTAG);
8150 	mutex_exit(&spa_namespace_lock);
8151 
8152 	return (error);
8153 }
8154 
8155 static int
8156 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8157     list_t *vd_list)
8158 {
8159 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8160 
8161 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8162 
8163 	/* Look up vdev and ensure it's a leaf. */
8164 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8165 	if (vd == NULL || vd->vdev_detached) {
8166 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8167 		return (SET_ERROR(ENODEV));
8168 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8169 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8170 		return (SET_ERROR(EINVAL));
8171 	} else if (!vdev_writeable(vd)) {
8172 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8173 		return (SET_ERROR(EROFS));
8174 	}
8175 	mutex_enter(&vd->vdev_initialize_lock);
8176 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8177 
8178 	/*
8179 	 * When we activate an initialize action we check to see
8180 	 * if the vdev_initialize_thread is NULL. We do this instead
8181 	 * of using the vdev_initialize_state since there might be
8182 	 * a previous initialization process which has completed but
8183 	 * the thread is not exited.
8184 	 */
8185 	if (cmd_type == POOL_INITIALIZE_START &&
8186 	    (vd->vdev_initialize_thread != NULL ||
8187 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8188 		mutex_exit(&vd->vdev_initialize_lock);
8189 		return (SET_ERROR(EBUSY));
8190 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8191 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8192 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8193 		mutex_exit(&vd->vdev_initialize_lock);
8194 		return (SET_ERROR(ESRCH));
8195 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8196 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8197 		mutex_exit(&vd->vdev_initialize_lock);
8198 		return (SET_ERROR(ESRCH));
8199 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8200 	    vd->vdev_initialize_thread != NULL) {
8201 		mutex_exit(&vd->vdev_initialize_lock);
8202 		return (SET_ERROR(EBUSY));
8203 	}
8204 
8205 	switch (cmd_type) {
8206 	case POOL_INITIALIZE_START:
8207 		vdev_initialize(vd);
8208 		break;
8209 	case POOL_INITIALIZE_CANCEL:
8210 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8211 		break;
8212 	case POOL_INITIALIZE_SUSPEND:
8213 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8214 		break;
8215 	case POOL_INITIALIZE_UNINIT:
8216 		vdev_uninitialize(vd);
8217 		break;
8218 	default:
8219 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8220 	}
8221 	mutex_exit(&vd->vdev_initialize_lock);
8222 
8223 	return (0);
8224 }
8225 
8226 int
8227 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8228     nvlist_t *vdev_errlist)
8229 {
8230 	int total_errors = 0;
8231 	list_t vd_list;
8232 
8233 	list_create(&vd_list, sizeof (vdev_t),
8234 	    offsetof(vdev_t, vdev_initialize_node));
8235 
8236 	/*
8237 	 * We hold the namespace lock through the whole function
8238 	 * to prevent any changes to the pool while we're starting or
8239 	 * stopping initialization. The config and state locks are held so that
8240 	 * we can properly assess the vdev state before we commit to
8241 	 * the initializing operation.
8242 	 */
8243 	mutex_enter(&spa_namespace_lock);
8244 
8245 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8246 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8247 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8248 
8249 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8250 		    &vd_list);
8251 		if (error != 0) {
8252 			char guid_as_str[MAXNAMELEN];
8253 
8254 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8255 			    "%llu", (unsigned long long)vdev_guid);
8256 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8257 			total_errors++;
8258 		}
8259 	}
8260 
8261 	/* Wait for all initialize threads to stop. */
8262 	vdev_initialize_stop_wait(spa, &vd_list);
8263 
8264 	/* Sync out the initializing state */
8265 	txg_wait_synced(spa->spa_dsl_pool, 0);
8266 	mutex_exit(&spa_namespace_lock);
8267 
8268 	list_destroy(&vd_list);
8269 
8270 	return (total_errors);
8271 }
8272 
8273 static int
8274 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8275     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8276 {
8277 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8278 
8279 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8280 
8281 	/* Look up vdev and ensure it's a leaf. */
8282 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8283 	if (vd == NULL || vd->vdev_detached) {
8284 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8285 		return (SET_ERROR(ENODEV));
8286 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8287 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8288 		return (SET_ERROR(EINVAL));
8289 	} else if (!vdev_writeable(vd)) {
8290 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8291 		return (SET_ERROR(EROFS));
8292 	} else if (!vd->vdev_has_trim) {
8293 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8294 		return (SET_ERROR(EOPNOTSUPP));
8295 	} else if (secure && !vd->vdev_has_securetrim) {
8296 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8297 		return (SET_ERROR(EOPNOTSUPP));
8298 	}
8299 	mutex_enter(&vd->vdev_trim_lock);
8300 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8301 
8302 	/*
8303 	 * When we activate a TRIM action we check to see if the
8304 	 * vdev_trim_thread is NULL. We do this instead of using the
8305 	 * vdev_trim_state since there might be a previous TRIM process
8306 	 * which has completed but the thread is not exited.
8307 	 */
8308 	if (cmd_type == POOL_TRIM_START &&
8309 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8310 	    vd->vdev_top->vdev_rz_expanding)) {
8311 		mutex_exit(&vd->vdev_trim_lock);
8312 		return (SET_ERROR(EBUSY));
8313 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8314 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8315 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8316 		mutex_exit(&vd->vdev_trim_lock);
8317 		return (SET_ERROR(ESRCH));
8318 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8319 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8320 		mutex_exit(&vd->vdev_trim_lock);
8321 		return (SET_ERROR(ESRCH));
8322 	}
8323 
8324 	switch (cmd_type) {
8325 	case POOL_TRIM_START:
8326 		vdev_trim(vd, rate, partial, secure);
8327 		break;
8328 	case POOL_TRIM_CANCEL:
8329 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8330 		break;
8331 	case POOL_TRIM_SUSPEND:
8332 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8333 		break;
8334 	default:
8335 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8336 	}
8337 	mutex_exit(&vd->vdev_trim_lock);
8338 
8339 	return (0);
8340 }
8341 
8342 /*
8343  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8344  * TRIM threads for each child vdev.  These threads pass over all of the free
8345  * space in the vdev's metaslabs and issues TRIM commands for that space.
8346  */
8347 int
8348 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8349     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8350 {
8351 	int total_errors = 0;
8352 	list_t vd_list;
8353 
8354 	list_create(&vd_list, sizeof (vdev_t),
8355 	    offsetof(vdev_t, vdev_trim_node));
8356 
8357 	/*
8358 	 * We hold the namespace lock through the whole function
8359 	 * to prevent any changes to the pool while we're starting or
8360 	 * stopping TRIM. The config and state locks are held so that
8361 	 * we can properly assess the vdev state before we commit to
8362 	 * the TRIM operation.
8363 	 */
8364 	mutex_enter(&spa_namespace_lock);
8365 
8366 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8367 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8368 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8369 
8370 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8371 		    rate, partial, secure, &vd_list);
8372 		if (error != 0) {
8373 			char guid_as_str[MAXNAMELEN];
8374 
8375 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8376 			    "%llu", (unsigned long long)vdev_guid);
8377 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8378 			total_errors++;
8379 		}
8380 	}
8381 
8382 	/* Wait for all TRIM threads to stop. */
8383 	vdev_trim_stop_wait(spa, &vd_list);
8384 
8385 	/* Sync out the TRIM state */
8386 	txg_wait_synced(spa->spa_dsl_pool, 0);
8387 	mutex_exit(&spa_namespace_lock);
8388 
8389 	list_destroy(&vd_list);
8390 
8391 	return (total_errors);
8392 }
8393 
8394 /*
8395  * Split a set of devices from their mirrors, and create a new pool from them.
8396  */
8397 int
8398 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8399     nvlist_t *props, boolean_t exp)
8400 {
8401 	int error = 0;
8402 	uint64_t txg, *glist;
8403 	spa_t *newspa;
8404 	uint_t c, children, lastlog;
8405 	nvlist_t **child, *nvl, *tmp;
8406 	dmu_tx_t *tx;
8407 	const char *altroot = NULL;
8408 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8409 	boolean_t activate_slog;
8410 
8411 	ASSERT(spa_writeable(spa));
8412 
8413 	txg = spa_vdev_enter(spa);
8414 
8415 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8416 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8417 		error = (spa_has_checkpoint(spa)) ?
8418 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8419 		return (spa_vdev_exit(spa, NULL, txg, error));
8420 	}
8421 
8422 	/* clear the log and flush everything up to now */
8423 	activate_slog = spa_passivate_log(spa);
8424 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8425 	error = spa_reset_logs(spa);
8426 	txg = spa_vdev_config_enter(spa);
8427 
8428 	if (activate_slog)
8429 		spa_activate_log(spa);
8430 
8431 	if (error != 0)
8432 		return (spa_vdev_exit(spa, NULL, txg, error));
8433 
8434 	/* check new spa name before going any further */
8435 	if (spa_lookup(newname) != NULL)
8436 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8437 
8438 	/*
8439 	 * scan through all the children to ensure they're all mirrors
8440 	 */
8441 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8442 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8443 	    &children) != 0)
8444 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8445 
8446 	/* first, check to ensure we've got the right child count */
8447 	rvd = spa->spa_root_vdev;
8448 	lastlog = 0;
8449 	for (c = 0; c < rvd->vdev_children; c++) {
8450 		vdev_t *vd = rvd->vdev_child[c];
8451 
8452 		/* don't count the holes & logs as children */
8453 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8454 		    !vdev_is_concrete(vd))) {
8455 			if (lastlog == 0)
8456 				lastlog = c;
8457 			continue;
8458 		}
8459 
8460 		lastlog = 0;
8461 	}
8462 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8463 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8464 
8465 	/* next, ensure no spare or cache devices are part of the split */
8466 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8467 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8468 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8469 
8470 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8471 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8472 
8473 	/* then, loop over each vdev and validate it */
8474 	for (c = 0; c < children; c++) {
8475 		uint64_t is_hole = 0;
8476 
8477 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8478 		    &is_hole);
8479 
8480 		if (is_hole != 0) {
8481 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8482 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8483 				continue;
8484 			} else {
8485 				error = SET_ERROR(EINVAL);
8486 				break;
8487 			}
8488 		}
8489 
8490 		/* deal with indirect vdevs */
8491 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8492 		    &vdev_indirect_ops)
8493 			continue;
8494 
8495 		/* which disk is going to be split? */
8496 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8497 		    &glist[c]) != 0) {
8498 			error = SET_ERROR(EINVAL);
8499 			break;
8500 		}
8501 
8502 		/* look it up in the spa */
8503 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8504 		if (vml[c] == NULL) {
8505 			error = SET_ERROR(ENODEV);
8506 			break;
8507 		}
8508 
8509 		/* make sure there's nothing stopping the split */
8510 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8511 		    vml[c]->vdev_islog ||
8512 		    !vdev_is_concrete(vml[c]) ||
8513 		    vml[c]->vdev_isspare ||
8514 		    vml[c]->vdev_isl2cache ||
8515 		    !vdev_writeable(vml[c]) ||
8516 		    vml[c]->vdev_children != 0 ||
8517 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8518 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8519 			error = SET_ERROR(EINVAL);
8520 			break;
8521 		}
8522 
8523 		if (vdev_dtl_required(vml[c]) ||
8524 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8525 			error = SET_ERROR(EBUSY);
8526 			break;
8527 		}
8528 
8529 		/* we need certain info from the top level */
8530 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8531 		    vml[c]->vdev_top->vdev_ms_array);
8532 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8533 		    vml[c]->vdev_top->vdev_ms_shift);
8534 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8535 		    vml[c]->vdev_top->vdev_asize);
8536 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8537 		    vml[c]->vdev_top->vdev_ashift);
8538 
8539 		/* transfer per-vdev ZAPs */
8540 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8541 		VERIFY0(nvlist_add_uint64(child[c],
8542 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8543 
8544 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8545 		VERIFY0(nvlist_add_uint64(child[c],
8546 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8547 		    vml[c]->vdev_parent->vdev_top_zap));
8548 	}
8549 
8550 	if (error != 0) {
8551 		kmem_free(vml, children * sizeof (vdev_t *));
8552 		kmem_free(glist, children * sizeof (uint64_t));
8553 		return (spa_vdev_exit(spa, NULL, txg, error));
8554 	}
8555 
8556 	/* stop writers from using the disks */
8557 	for (c = 0; c < children; c++) {
8558 		if (vml[c] != NULL)
8559 			vml[c]->vdev_offline = B_TRUE;
8560 	}
8561 	vdev_reopen(spa->spa_root_vdev);
8562 
8563 	/*
8564 	 * Temporarily record the splitting vdevs in the spa config.  This
8565 	 * will disappear once the config is regenerated.
8566 	 */
8567 	nvl = fnvlist_alloc();
8568 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8569 	kmem_free(glist, children * sizeof (uint64_t));
8570 
8571 	mutex_enter(&spa->spa_props_lock);
8572 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8573 	mutex_exit(&spa->spa_props_lock);
8574 	spa->spa_config_splitting = nvl;
8575 	vdev_config_dirty(spa->spa_root_vdev);
8576 
8577 	/* configure and create the new pool */
8578 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8579 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8580 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8581 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8582 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8583 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8584 	    spa_generate_guid(NULL));
8585 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8586 	(void) nvlist_lookup_string(props,
8587 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8588 
8589 	/* add the new pool to the namespace */
8590 	newspa = spa_add(newname, config, altroot);
8591 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8592 	newspa->spa_config_txg = spa->spa_config_txg;
8593 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8594 
8595 	/* release the spa config lock, retaining the namespace lock */
8596 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8597 
8598 	if (zio_injection_enabled)
8599 		zio_handle_panic_injection(spa, FTAG, 1);
8600 
8601 	spa_activate(newspa, spa_mode_global);
8602 	spa_async_suspend(newspa);
8603 
8604 	/*
8605 	 * Temporarily stop the initializing and TRIM activity.  We set the
8606 	 * state to ACTIVE so that we know to resume initializing or TRIM
8607 	 * once the split has completed.
8608 	 */
8609 	list_t vd_initialize_list;
8610 	list_create(&vd_initialize_list, sizeof (vdev_t),
8611 	    offsetof(vdev_t, vdev_initialize_node));
8612 
8613 	list_t vd_trim_list;
8614 	list_create(&vd_trim_list, sizeof (vdev_t),
8615 	    offsetof(vdev_t, vdev_trim_node));
8616 
8617 	for (c = 0; c < children; c++) {
8618 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8619 			mutex_enter(&vml[c]->vdev_initialize_lock);
8620 			vdev_initialize_stop(vml[c],
8621 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8622 			mutex_exit(&vml[c]->vdev_initialize_lock);
8623 
8624 			mutex_enter(&vml[c]->vdev_trim_lock);
8625 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8626 			mutex_exit(&vml[c]->vdev_trim_lock);
8627 		}
8628 	}
8629 
8630 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8631 	vdev_trim_stop_wait(spa, &vd_trim_list);
8632 
8633 	list_destroy(&vd_initialize_list);
8634 	list_destroy(&vd_trim_list);
8635 
8636 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8637 	newspa->spa_is_splitting = B_TRUE;
8638 
8639 	/* create the new pool from the disks of the original pool */
8640 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8641 	if (error)
8642 		goto out;
8643 
8644 	/* if that worked, generate a real config for the new pool */
8645 	if (newspa->spa_root_vdev != NULL) {
8646 		newspa->spa_config_splitting = fnvlist_alloc();
8647 		fnvlist_add_uint64(newspa->spa_config_splitting,
8648 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8649 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8650 		    B_TRUE));
8651 	}
8652 
8653 	/* set the props */
8654 	if (props != NULL) {
8655 		spa_configfile_set(newspa, props, B_FALSE);
8656 		error = spa_prop_set(newspa, props);
8657 		if (error)
8658 			goto out;
8659 	}
8660 
8661 	/* flush everything */
8662 	txg = spa_vdev_config_enter(newspa);
8663 	vdev_config_dirty(newspa->spa_root_vdev);
8664 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8665 
8666 	if (zio_injection_enabled)
8667 		zio_handle_panic_injection(spa, FTAG, 2);
8668 
8669 	spa_async_resume(newspa);
8670 
8671 	/* finally, update the original pool's config */
8672 	txg = spa_vdev_config_enter(spa);
8673 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8674 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
8675 	if (error != 0)
8676 		dmu_tx_abort(tx);
8677 	for (c = 0; c < children; c++) {
8678 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8679 			vdev_t *tvd = vml[c]->vdev_top;
8680 
8681 			/*
8682 			 * Need to be sure the detachable VDEV is not
8683 			 * on any *other* txg's DTL list to prevent it
8684 			 * from being accessed after it's freed.
8685 			 */
8686 			for (int t = 0; t < TXG_SIZE; t++) {
8687 				(void) txg_list_remove_this(
8688 				    &tvd->vdev_dtl_list, vml[c], t);
8689 			}
8690 
8691 			vdev_split(vml[c]);
8692 			if (error == 0)
8693 				spa_history_log_internal(spa, "detach", tx,
8694 				    "vdev=%s", vml[c]->vdev_path);
8695 
8696 			vdev_free(vml[c]);
8697 		}
8698 	}
8699 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8700 	vdev_config_dirty(spa->spa_root_vdev);
8701 	spa->spa_config_splitting = NULL;
8702 	nvlist_free(nvl);
8703 	if (error == 0)
8704 		dmu_tx_commit(tx);
8705 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8706 
8707 	if (zio_injection_enabled)
8708 		zio_handle_panic_injection(spa, FTAG, 3);
8709 
8710 	/* split is complete; log a history record */
8711 	spa_history_log_internal(newspa, "split", NULL,
8712 	    "from pool %s", spa_name(spa));
8713 
8714 	newspa->spa_is_splitting = B_FALSE;
8715 	kmem_free(vml, children * sizeof (vdev_t *));
8716 
8717 	/* if we're not going to mount the filesystems in userland, export */
8718 	if (exp)
8719 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8720 		    B_FALSE, B_FALSE);
8721 
8722 	return (error);
8723 
8724 out:
8725 	spa_unload(newspa);
8726 	spa_deactivate(newspa);
8727 	spa_remove(newspa);
8728 
8729 	txg = spa_vdev_config_enter(spa);
8730 
8731 	/* re-online all offlined disks */
8732 	for (c = 0; c < children; c++) {
8733 		if (vml[c] != NULL)
8734 			vml[c]->vdev_offline = B_FALSE;
8735 	}
8736 
8737 	/* restart initializing or trimming disks as necessary */
8738 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8739 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8740 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8741 
8742 	vdev_reopen(spa->spa_root_vdev);
8743 
8744 	nvlist_free(spa->spa_config_splitting);
8745 	spa->spa_config_splitting = NULL;
8746 	(void) spa_vdev_exit(spa, NULL, txg, error);
8747 
8748 	kmem_free(vml, children * sizeof (vdev_t *));
8749 	return (error);
8750 }
8751 
8752 /*
8753  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8754  * currently spared, so we can detach it.
8755  */
8756 static vdev_t *
8757 spa_vdev_resilver_done_hunt(vdev_t *vd)
8758 {
8759 	vdev_t *newvd, *oldvd;
8760 
8761 	for (int c = 0; c < vd->vdev_children; c++) {
8762 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8763 		if (oldvd != NULL)
8764 			return (oldvd);
8765 	}
8766 
8767 	/*
8768 	 * Check for a completed replacement.  We always consider the first
8769 	 * vdev in the list to be the oldest vdev, and the last one to be
8770 	 * the newest (see spa_vdev_attach() for how that works).  In
8771 	 * the case where the newest vdev is faulted, we will not automatically
8772 	 * remove it after a resilver completes.  This is OK as it will require
8773 	 * user intervention to determine which disk the admin wishes to keep.
8774 	 */
8775 	if (vd->vdev_ops == &vdev_replacing_ops) {
8776 		ASSERT(vd->vdev_children > 1);
8777 
8778 		newvd = vd->vdev_child[vd->vdev_children - 1];
8779 		oldvd = vd->vdev_child[0];
8780 
8781 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8782 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8783 		    !vdev_dtl_required(oldvd))
8784 			return (oldvd);
8785 	}
8786 
8787 	/*
8788 	 * Check for a completed resilver with the 'unspare' flag set.
8789 	 * Also potentially update faulted state.
8790 	 */
8791 	if (vd->vdev_ops == &vdev_spare_ops) {
8792 		vdev_t *first = vd->vdev_child[0];
8793 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8794 
8795 		if (last->vdev_unspare) {
8796 			oldvd = first;
8797 			newvd = last;
8798 		} else if (first->vdev_unspare) {
8799 			oldvd = last;
8800 			newvd = first;
8801 		} else {
8802 			oldvd = NULL;
8803 		}
8804 
8805 		if (oldvd != NULL &&
8806 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8807 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8808 		    !vdev_dtl_required(oldvd))
8809 			return (oldvd);
8810 
8811 		vdev_propagate_state(vd);
8812 
8813 		/*
8814 		 * If there are more than two spares attached to a disk,
8815 		 * and those spares are not required, then we want to
8816 		 * attempt to free them up now so that they can be used
8817 		 * by other pools.  Once we're back down to a single
8818 		 * disk+spare, we stop removing them.
8819 		 */
8820 		if (vd->vdev_children > 2) {
8821 			newvd = vd->vdev_child[1];
8822 
8823 			if (newvd->vdev_isspare && last->vdev_isspare &&
8824 			    vdev_dtl_empty(last, DTL_MISSING) &&
8825 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8826 			    !vdev_dtl_required(newvd))
8827 				return (newvd);
8828 		}
8829 	}
8830 
8831 	return (NULL);
8832 }
8833 
8834 static void
8835 spa_vdev_resilver_done(spa_t *spa)
8836 {
8837 	vdev_t *vd, *pvd, *ppvd;
8838 	uint64_t guid, sguid, pguid, ppguid;
8839 
8840 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8841 
8842 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8843 		pvd = vd->vdev_parent;
8844 		ppvd = pvd->vdev_parent;
8845 		guid = vd->vdev_guid;
8846 		pguid = pvd->vdev_guid;
8847 		ppguid = ppvd->vdev_guid;
8848 		sguid = 0;
8849 		/*
8850 		 * If we have just finished replacing a hot spared device, then
8851 		 * we need to detach the parent's first child (the original hot
8852 		 * spare) as well.
8853 		 */
8854 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8855 		    ppvd->vdev_children == 2) {
8856 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8857 			sguid = ppvd->vdev_child[1]->vdev_guid;
8858 		}
8859 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8860 
8861 		spa_config_exit(spa, SCL_ALL, FTAG);
8862 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8863 			return;
8864 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8865 			return;
8866 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8867 	}
8868 
8869 	spa_config_exit(spa, SCL_ALL, FTAG);
8870 
8871 	/*
8872 	 * If a detach was not performed above replace waiters will not have
8873 	 * been notified.  In which case we must do so now.
8874 	 */
8875 	spa_notify_waiters(spa);
8876 }
8877 
8878 /*
8879  * Update the stored path or FRU for this vdev.
8880  */
8881 static int
8882 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8883     boolean_t ispath)
8884 {
8885 	vdev_t *vd;
8886 	boolean_t sync = B_FALSE;
8887 
8888 	ASSERT(spa_writeable(spa));
8889 
8890 	spa_vdev_state_enter(spa, SCL_ALL);
8891 
8892 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8893 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8894 
8895 	if (!vd->vdev_ops->vdev_op_leaf)
8896 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8897 
8898 	if (ispath) {
8899 		if (strcmp(value, vd->vdev_path) != 0) {
8900 			spa_strfree(vd->vdev_path);
8901 			vd->vdev_path = spa_strdup(value);
8902 			sync = B_TRUE;
8903 		}
8904 	} else {
8905 		if (vd->vdev_fru == NULL) {
8906 			vd->vdev_fru = spa_strdup(value);
8907 			sync = B_TRUE;
8908 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8909 			spa_strfree(vd->vdev_fru);
8910 			vd->vdev_fru = spa_strdup(value);
8911 			sync = B_TRUE;
8912 		}
8913 	}
8914 
8915 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8916 }
8917 
8918 int
8919 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8920 {
8921 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8922 }
8923 
8924 int
8925 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8926 {
8927 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8928 }
8929 
8930 /*
8931  * ==========================================================================
8932  * SPA Scanning
8933  * ==========================================================================
8934  */
8935 int
8936 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8937 {
8938 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8939 
8940 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8941 		return (SET_ERROR(EBUSY));
8942 
8943 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8944 }
8945 
8946 int
8947 spa_scan_stop(spa_t *spa)
8948 {
8949 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8950 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8951 		return (SET_ERROR(EBUSY));
8952 
8953 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8954 }
8955 
8956 int
8957 spa_scan(spa_t *spa, pool_scan_func_t func)
8958 {
8959 	return (spa_scan_range(spa, func, 0, 0));
8960 }
8961 
8962 int
8963 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
8964     uint64_t txgend)
8965 {
8966 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8967 
8968 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8969 		return (SET_ERROR(ENOTSUP));
8970 
8971 	if (func == POOL_SCAN_RESILVER &&
8972 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8973 		return (SET_ERROR(ENOTSUP));
8974 
8975 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
8976 		return (SET_ERROR(ENOTSUP));
8977 
8978 	/*
8979 	 * If a resilver was requested, but there is no DTL on a
8980 	 * writeable leaf device, we have nothing to do.
8981 	 */
8982 	if (func == POOL_SCAN_RESILVER &&
8983 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8984 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8985 		return (0);
8986 	}
8987 
8988 	if (func == POOL_SCAN_ERRORSCRUB &&
8989 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8990 		return (SET_ERROR(ENOTSUP));
8991 
8992 	return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
8993 }
8994 
8995 /*
8996  * ==========================================================================
8997  * SPA async task processing
8998  * ==========================================================================
8999  */
9000 
9001 static void
9002 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel)
9003 {
9004 	if (vd->vdev_remove_wanted) {
9005 		vd->vdev_remove_wanted = B_FALSE;
9006 		vd->vdev_delayed_close = B_FALSE;
9007 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
9008 
9009 		/*
9010 		 * We want to clear the stats, but we don't want to do a full
9011 		 * vdev_clear() as that will cause us to throw away
9012 		 * degraded/faulted state as well as attempt to reopen the
9013 		 * device, all of which is a waste.
9014 		 */
9015 		vd->vdev_stat.vs_read_errors = 0;
9016 		vd->vdev_stat.vs_write_errors = 0;
9017 		vd->vdev_stat.vs_checksum_errors = 0;
9018 
9019 		vdev_state_dirty(vd->vdev_top);
9020 
9021 		/* Tell userspace that the vdev is gone. */
9022 		zfs_post_remove(spa, vd, by_kernel);
9023 	}
9024 
9025 	for (int c = 0; c < vd->vdev_children; c++)
9026 		spa_async_remove(spa, vd->vdev_child[c], by_kernel);
9027 }
9028 
9029 static void
9030 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
9031 {
9032 	if (vd->vdev_fault_wanted) {
9033 		vdev_state_t newstate = VDEV_STATE_FAULTED;
9034 		vd->vdev_fault_wanted = B_FALSE;
9035 
9036 		/*
9037 		 * If this device has the only valid copy of the data, then
9038 		 * back off and simply mark the vdev as degraded instead.
9039 		 */
9040 		if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
9041 		    vdev_dtl_required(vd)) {
9042 			newstate = VDEV_STATE_DEGRADED;
9043 			/* A required disk is missing so suspend the pool */
9044 			*suspend = B_TRUE;
9045 		}
9046 		vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
9047 	}
9048 	for (int c = 0; c < vd->vdev_children; c++)
9049 		spa_async_fault_vdev(vd->vdev_child[c], suspend);
9050 }
9051 
9052 static void
9053 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
9054 {
9055 	if (!spa->spa_autoexpand)
9056 		return;
9057 
9058 	for (int c = 0; c < vd->vdev_children; c++) {
9059 		vdev_t *cvd = vd->vdev_child[c];
9060 		spa_async_autoexpand(spa, cvd);
9061 	}
9062 
9063 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
9064 		return;
9065 
9066 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
9067 }
9068 
9069 static __attribute__((noreturn)) void
9070 spa_async_thread(void *arg)
9071 {
9072 	spa_t *spa = (spa_t *)arg;
9073 	dsl_pool_t *dp = spa->spa_dsl_pool;
9074 	int tasks;
9075 
9076 	ASSERT(spa->spa_sync_on);
9077 
9078 	mutex_enter(&spa->spa_async_lock);
9079 	tasks = spa->spa_async_tasks;
9080 	spa->spa_async_tasks = 0;
9081 	mutex_exit(&spa->spa_async_lock);
9082 
9083 	/*
9084 	 * See if the config needs to be updated.
9085 	 */
9086 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9087 		uint64_t old_space, new_space;
9088 
9089 		mutex_enter(&spa_namespace_lock);
9090 		old_space = metaslab_class_get_space(spa_normal_class(spa));
9091 		old_space += metaslab_class_get_space(spa_special_class(spa));
9092 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
9093 		old_space += metaslab_class_get_space(
9094 		    spa_embedded_log_class(spa));
9095 
9096 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9097 
9098 		new_space = metaslab_class_get_space(spa_normal_class(spa));
9099 		new_space += metaslab_class_get_space(spa_special_class(spa));
9100 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
9101 		new_space += metaslab_class_get_space(
9102 		    spa_embedded_log_class(spa));
9103 		mutex_exit(&spa_namespace_lock);
9104 
9105 		/*
9106 		 * If the pool grew as a result of the config update,
9107 		 * then log an internal history event.
9108 		 */
9109 		if (new_space != old_space) {
9110 			spa_history_log_internal(spa, "vdev online", NULL,
9111 			    "pool '%s' size: %llu(+%llu)",
9112 			    spa_name(spa), (u_longlong_t)new_space,
9113 			    (u_longlong_t)(new_space - old_space));
9114 		}
9115 	}
9116 
9117 	/*
9118 	 * See if any devices need to be marked REMOVED.
9119 	 */
9120 	if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) {
9121 		boolean_t by_kernel = B_TRUE;
9122 		if (tasks & SPA_ASYNC_REMOVE_BY_USER)
9123 			by_kernel = B_FALSE;
9124 		spa_vdev_state_enter(spa, SCL_NONE);
9125 		spa_async_remove(spa, spa->spa_root_vdev, by_kernel);
9126 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9127 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i],
9128 			    by_kernel);
9129 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9130 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i],
9131 			    by_kernel);
9132 		(void) spa_vdev_state_exit(spa, NULL, 0);
9133 	}
9134 
9135 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9136 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9137 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9138 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9139 	}
9140 
9141 	/*
9142 	 * See if any devices need to be marked faulted.
9143 	 */
9144 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9145 		spa_vdev_state_enter(spa, SCL_NONE);
9146 		boolean_t suspend = B_FALSE;
9147 		spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9148 		(void) spa_vdev_state_exit(spa, NULL, 0);
9149 		if (suspend)
9150 			zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9151 	}
9152 
9153 	/*
9154 	 * If any devices are done replacing, detach them.
9155 	 */
9156 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9157 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9158 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9159 		spa_vdev_resilver_done(spa);
9160 	}
9161 
9162 	/*
9163 	 * Kick off a resilver.
9164 	 */
9165 	if (tasks & SPA_ASYNC_RESILVER &&
9166 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9167 	    (!dsl_scan_resilvering(dp) ||
9168 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9169 		dsl_scan_restart_resilver(dp, 0);
9170 
9171 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9172 		mutex_enter(&spa_namespace_lock);
9173 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9174 		vdev_initialize_restart(spa->spa_root_vdev);
9175 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9176 		mutex_exit(&spa_namespace_lock);
9177 	}
9178 
9179 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9180 		mutex_enter(&spa_namespace_lock);
9181 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9182 		vdev_trim_restart(spa->spa_root_vdev);
9183 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9184 		mutex_exit(&spa_namespace_lock);
9185 	}
9186 
9187 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9188 		mutex_enter(&spa_namespace_lock);
9189 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9190 		vdev_autotrim_restart(spa);
9191 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9192 		mutex_exit(&spa_namespace_lock);
9193 	}
9194 
9195 	/*
9196 	 * Kick off L2 cache whole device TRIM.
9197 	 */
9198 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9199 		mutex_enter(&spa_namespace_lock);
9200 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9201 		vdev_trim_l2arc(spa);
9202 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9203 		mutex_exit(&spa_namespace_lock);
9204 	}
9205 
9206 	/*
9207 	 * Kick off L2 cache rebuilding.
9208 	 */
9209 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9210 		mutex_enter(&spa_namespace_lock);
9211 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9212 		l2arc_spa_rebuild_start(spa);
9213 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9214 		mutex_exit(&spa_namespace_lock);
9215 	}
9216 
9217 	/*
9218 	 * Let the world know that we're done.
9219 	 */
9220 	mutex_enter(&spa->spa_async_lock);
9221 	spa->spa_async_thread = NULL;
9222 	cv_broadcast(&spa->spa_async_cv);
9223 	mutex_exit(&spa->spa_async_lock);
9224 	thread_exit();
9225 }
9226 
9227 void
9228 spa_async_suspend(spa_t *spa)
9229 {
9230 	mutex_enter(&spa->spa_async_lock);
9231 	spa->spa_async_suspended++;
9232 	while (spa->spa_async_thread != NULL)
9233 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9234 	mutex_exit(&spa->spa_async_lock);
9235 
9236 	spa_vdev_remove_suspend(spa);
9237 
9238 	zthr_t *condense_thread = spa->spa_condense_zthr;
9239 	if (condense_thread != NULL)
9240 		zthr_cancel(condense_thread);
9241 
9242 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9243 	if (raidz_expand_thread != NULL)
9244 		zthr_cancel(raidz_expand_thread);
9245 
9246 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9247 	if (discard_thread != NULL)
9248 		zthr_cancel(discard_thread);
9249 
9250 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9251 	if (ll_delete_thread != NULL)
9252 		zthr_cancel(ll_delete_thread);
9253 
9254 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9255 	if (ll_condense_thread != NULL)
9256 		zthr_cancel(ll_condense_thread);
9257 }
9258 
9259 void
9260 spa_async_resume(spa_t *spa)
9261 {
9262 	mutex_enter(&spa->spa_async_lock);
9263 	ASSERT(spa->spa_async_suspended != 0);
9264 	spa->spa_async_suspended--;
9265 	mutex_exit(&spa->spa_async_lock);
9266 	spa_restart_removal(spa);
9267 
9268 	zthr_t *condense_thread = spa->spa_condense_zthr;
9269 	if (condense_thread != NULL)
9270 		zthr_resume(condense_thread);
9271 
9272 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9273 	if (raidz_expand_thread != NULL)
9274 		zthr_resume(raidz_expand_thread);
9275 
9276 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9277 	if (discard_thread != NULL)
9278 		zthr_resume(discard_thread);
9279 
9280 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9281 	if (ll_delete_thread != NULL)
9282 		zthr_resume(ll_delete_thread);
9283 
9284 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9285 	if (ll_condense_thread != NULL)
9286 		zthr_resume(ll_condense_thread);
9287 }
9288 
9289 static boolean_t
9290 spa_async_tasks_pending(spa_t *spa)
9291 {
9292 	uint_t non_config_tasks;
9293 	uint_t config_task;
9294 	boolean_t config_task_suspended;
9295 
9296 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9297 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9298 	if (spa->spa_ccw_fail_time == 0) {
9299 		config_task_suspended = B_FALSE;
9300 	} else {
9301 		config_task_suspended =
9302 		    (gethrtime() - spa->spa_ccw_fail_time) <
9303 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9304 	}
9305 
9306 	return (non_config_tasks || (config_task && !config_task_suspended));
9307 }
9308 
9309 static void
9310 spa_async_dispatch(spa_t *spa)
9311 {
9312 	mutex_enter(&spa->spa_async_lock);
9313 	if (spa_async_tasks_pending(spa) &&
9314 	    !spa->spa_async_suspended &&
9315 	    spa->spa_async_thread == NULL)
9316 		spa->spa_async_thread = thread_create(NULL, 0,
9317 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9318 	mutex_exit(&spa->spa_async_lock);
9319 }
9320 
9321 void
9322 spa_async_request(spa_t *spa, int task)
9323 {
9324 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9325 	mutex_enter(&spa->spa_async_lock);
9326 	spa->spa_async_tasks |= task;
9327 	mutex_exit(&spa->spa_async_lock);
9328 }
9329 
9330 int
9331 spa_async_tasks(spa_t *spa)
9332 {
9333 	return (spa->spa_async_tasks);
9334 }
9335 
9336 /*
9337  * ==========================================================================
9338  * SPA syncing routines
9339  * ==========================================================================
9340  */
9341 
9342 
9343 static int
9344 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9345     dmu_tx_t *tx)
9346 {
9347 	bpobj_t *bpo = arg;
9348 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9349 	return (0);
9350 }
9351 
9352 int
9353 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9354 {
9355 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9356 }
9357 
9358 int
9359 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9360 {
9361 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9362 }
9363 
9364 static int
9365 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9366 {
9367 	zio_t *pio = arg;
9368 
9369 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9370 	    pio->io_flags));
9371 	return (0);
9372 }
9373 
9374 static int
9375 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9376     dmu_tx_t *tx)
9377 {
9378 	ASSERT(!bp_freed);
9379 	return (spa_free_sync_cb(arg, bp, tx));
9380 }
9381 
9382 /*
9383  * Note: this simple function is not inlined to make it easier to dtrace the
9384  * amount of time spent syncing frees.
9385  */
9386 static void
9387 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9388 {
9389 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9390 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9391 	VERIFY(zio_wait(zio) == 0);
9392 }
9393 
9394 /*
9395  * Note: this simple function is not inlined to make it easier to dtrace the
9396  * amount of time spent syncing deferred frees.
9397  */
9398 static void
9399 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9400 {
9401 	if (spa_sync_pass(spa) != 1)
9402 		return;
9403 
9404 	/*
9405 	 * Note:
9406 	 * If the log space map feature is active, we stop deferring
9407 	 * frees to the next TXG and therefore running this function
9408 	 * would be considered a no-op as spa_deferred_bpobj should
9409 	 * not have any entries.
9410 	 *
9411 	 * That said we run this function anyway (instead of returning
9412 	 * immediately) for the edge-case scenario where we just
9413 	 * activated the log space map feature in this TXG but we have
9414 	 * deferred frees from the previous TXG.
9415 	 */
9416 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9417 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9418 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9419 	VERIFY0(zio_wait(zio));
9420 }
9421 
9422 static void
9423 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9424 {
9425 	char *packed = NULL;
9426 	size_t bufsize;
9427 	size_t nvsize = 0;
9428 	dmu_buf_t *db;
9429 
9430 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9431 
9432 	/*
9433 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9434 	 * information.  This avoids the dmu_buf_will_dirty() path and
9435 	 * saves us a pre-read to get data we don't actually care about.
9436 	 */
9437 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9438 	packed = vmem_alloc(bufsize, KM_SLEEP);
9439 
9440 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9441 	    KM_SLEEP) == 0);
9442 	memset(packed + nvsize, 0, bufsize - nvsize);
9443 
9444 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9445 
9446 	vmem_free(packed, bufsize);
9447 
9448 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9449 	dmu_buf_will_dirty(db, tx);
9450 	*(uint64_t *)db->db_data = nvsize;
9451 	dmu_buf_rele(db, FTAG);
9452 }
9453 
9454 static void
9455 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9456     const char *config, const char *entry)
9457 {
9458 	nvlist_t *nvroot;
9459 	nvlist_t **list;
9460 	int i;
9461 
9462 	if (!sav->sav_sync)
9463 		return;
9464 
9465 	/*
9466 	 * Update the MOS nvlist describing the list of available devices.
9467 	 * spa_validate_aux() will have already made sure this nvlist is
9468 	 * valid and the vdevs are labeled appropriately.
9469 	 */
9470 	if (sav->sav_object == 0) {
9471 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9472 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9473 		    sizeof (uint64_t), tx);
9474 		VERIFY(zap_update(spa->spa_meta_objset,
9475 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9476 		    &sav->sav_object, tx) == 0);
9477 	}
9478 
9479 	nvroot = fnvlist_alloc();
9480 	if (sav->sav_count == 0) {
9481 		fnvlist_add_nvlist_array(nvroot, config,
9482 		    (const nvlist_t * const *)NULL, 0);
9483 	} else {
9484 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9485 		for (i = 0; i < sav->sav_count; i++)
9486 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9487 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9488 		fnvlist_add_nvlist_array(nvroot, config,
9489 		    (const nvlist_t * const *)list, sav->sav_count);
9490 		for (i = 0; i < sav->sav_count; i++)
9491 			nvlist_free(list[i]);
9492 		kmem_free(list, sav->sav_count * sizeof (void *));
9493 	}
9494 
9495 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9496 	nvlist_free(nvroot);
9497 
9498 	sav->sav_sync = B_FALSE;
9499 }
9500 
9501 /*
9502  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9503  * The all-vdev ZAP must be empty.
9504  */
9505 static void
9506 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9507 {
9508 	spa_t *spa = vd->vdev_spa;
9509 
9510 	if (vd->vdev_root_zap != 0 &&
9511 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9512 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9513 		    vd->vdev_root_zap, tx));
9514 	}
9515 	if (vd->vdev_top_zap != 0) {
9516 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9517 		    vd->vdev_top_zap, tx));
9518 	}
9519 	if (vd->vdev_leaf_zap != 0) {
9520 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9521 		    vd->vdev_leaf_zap, tx));
9522 	}
9523 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9524 		spa_avz_build(vd->vdev_child[i], avz, tx);
9525 	}
9526 }
9527 
9528 static void
9529 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9530 {
9531 	nvlist_t *config;
9532 
9533 	/*
9534 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9535 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9536 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9537 	 * need to rebuild the AVZ although the config may not be dirty.
9538 	 */
9539 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9540 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9541 		return;
9542 
9543 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9544 
9545 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9546 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9547 	    spa->spa_all_vdev_zaps != 0);
9548 
9549 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9550 		/* Make and build the new AVZ */
9551 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9552 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9553 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9554 
9555 		/* Diff old AVZ with new one */
9556 		zap_cursor_t zc;
9557 		zap_attribute_t *za = zap_attribute_alloc();
9558 
9559 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9560 		    spa->spa_all_vdev_zaps);
9561 		    zap_cursor_retrieve(&zc, za) == 0;
9562 		    zap_cursor_advance(&zc)) {
9563 			uint64_t vdzap = za->za_first_integer;
9564 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9565 			    vdzap) == ENOENT) {
9566 				/*
9567 				 * ZAP is listed in old AVZ but not in new one;
9568 				 * destroy it
9569 				 */
9570 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9571 				    tx));
9572 			}
9573 		}
9574 
9575 		zap_cursor_fini(&zc);
9576 		zap_attribute_free(za);
9577 
9578 		/* Destroy the old AVZ */
9579 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9580 		    spa->spa_all_vdev_zaps, tx));
9581 
9582 		/* Replace the old AVZ in the dir obj with the new one */
9583 		VERIFY0(zap_update(spa->spa_meta_objset,
9584 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9585 		    sizeof (new_avz), 1, &new_avz, tx));
9586 
9587 		spa->spa_all_vdev_zaps = new_avz;
9588 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9589 		zap_cursor_t zc;
9590 		zap_attribute_t *za = zap_attribute_alloc();
9591 
9592 		/* Walk through the AVZ and destroy all listed ZAPs */
9593 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9594 		    spa->spa_all_vdev_zaps);
9595 		    zap_cursor_retrieve(&zc, za) == 0;
9596 		    zap_cursor_advance(&zc)) {
9597 			uint64_t zap = za->za_first_integer;
9598 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9599 		}
9600 
9601 		zap_cursor_fini(&zc);
9602 		zap_attribute_free(za);
9603 
9604 		/* Destroy and unlink the AVZ itself */
9605 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9606 		    spa->spa_all_vdev_zaps, tx));
9607 		VERIFY0(zap_remove(spa->spa_meta_objset,
9608 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9609 		spa->spa_all_vdev_zaps = 0;
9610 	}
9611 
9612 	if (spa->spa_all_vdev_zaps == 0) {
9613 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9614 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9615 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9616 	}
9617 	spa->spa_avz_action = AVZ_ACTION_NONE;
9618 
9619 	/* Create ZAPs for vdevs that don't have them. */
9620 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9621 
9622 	config = spa_config_generate(spa, spa->spa_root_vdev,
9623 	    dmu_tx_get_txg(tx), B_FALSE);
9624 
9625 	/*
9626 	 * If we're upgrading the spa version then make sure that
9627 	 * the config object gets updated with the correct version.
9628 	 */
9629 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9630 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9631 		    spa->spa_uberblock.ub_version);
9632 
9633 	spa_config_exit(spa, SCL_STATE, FTAG);
9634 
9635 	nvlist_free(spa->spa_config_syncing);
9636 	spa->spa_config_syncing = config;
9637 
9638 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9639 }
9640 
9641 static void
9642 spa_sync_version(void *arg, dmu_tx_t *tx)
9643 {
9644 	uint64_t *versionp = arg;
9645 	uint64_t version = *versionp;
9646 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9647 
9648 	/*
9649 	 * Setting the version is special cased when first creating the pool.
9650 	 */
9651 	ASSERT(tx->tx_txg != TXG_INITIAL);
9652 
9653 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9654 	ASSERT(version >= spa_version(spa));
9655 
9656 	spa->spa_uberblock.ub_version = version;
9657 	vdev_config_dirty(spa->spa_root_vdev);
9658 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9659 	    (longlong_t)version);
9660 }
9661 
9662 /*
9663  * Set zpool properties.
9664  */
9665 static void
9666 spa_sync_props(void *arg, dmu_tx_t *tx)
9667 {
9668 	nvlist_t *nvp = arg;
9669 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9670 	objset_t *mos = spa->spa_meta_objset;
9671 	nvpair_t *elem = NULL;
9672 
9673 	mutex_enter(&spa->spa_props_lock);
9674 
9675 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9676 		uint64_t intval;
9677 		const char *strval, *fname;
9678 		zpool_prop_t prop;
9679 		const char *propname;
9680 		const char *elemname = nvpair_name(elem);
9681 		zprop_type_t proptype;
9682 		spa_feature_t fid;
9683 
9684 		switch (prop = zpool_name_to_prop(elemname)) {
9685 		case ZPOOL_PROP_VERSION:
9686 			intval = fnvpair_value_uint64(elem);
9687 			/*
9688 			 * The version is synced separately before other
9689 			 * properties and should be correct by now.
9690 			 */
9691 			ASSERT3U(spa_version(spa), >=, intval);
9692 			break;
9693 
9694 		case ZPOOL_PROP_ALTROOT:
9695 			/*
9696 			 * 'altroot' is a non-persistent property. It should
9697 			 * have been set temporarily at creation or import time.
9698 			 */
9699 			ASSERT(spa->spa_root != NULL);
9700 			break;
9701 
9702 		case ZPOOL_PROP_READONLY:
9703 		case ZPOOL_PROP_CACHEFILE:
9704 			/*
9705 			 * 'readonly' and 'cachefile' are also non-persistent
9706 			 * properties.
9707 			 */
9708 			break;
9709 		case ZPOOL_PROP_COMMENT:
9710 			strval = fnvpair_value_string(elem);
9711 			if (spa->spa_comment != NULL)
9712 				spa_strfree(spa->spa_comment);
9713 			spa->spa_comment = spa_strdup(strval);
9714 			/*
9715 			 * We need to dirty the configuration on all the vdevs
9716 			 * so that their labels get updated.  We also need to
9717 			 * update the cache file to keep it in sync with the
9718 			 * MOS version. It's unnecessary to do this for pool
9719 			 * creation since the vdev's configuration has already
9720 			 * been dirtied.
9721 			 */
9722 			if (tx->tx_txg != TXG_INITIAL) {
9723 				vdev_config_dirty(spa->spa_root_vdev);
9724 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9725 			}
9726 			spa_history_log_internal(spa, "set", tx,
9727 			    "%s=%s", elemname, strval);
9728 			break;
9729 		case ZPOOL_PROP_COMPATIBILITY:
9730 			strval = fnvpair_value_string(elem);
9731 			if (spa->spa_compatibility != NULL)
9732 				spa_strfree(spa->spa_compatibility);
9733 			spa->spa_compatibility = spa_strdup(strval);
9734 			/*
9735 			 * Dirty the configuration on vdevs as above.
9736 			 */
9737 			if (tx->tx_txg != TXG_INITIAL) {
9738 				vdev_config_dirty(spa->spa_root_vdev);
9739 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9740 			}
9741 
9742 			spa_history_log_internal(spa, "set", tx,
9743 			    "%s=%s", nvpair_name(elem), strval);
9744 			break;
9745 
9746 		case ZPOOL_PROP_INVAL:
9747 			if (zpool_prop_feature(elemname)) {
9748 				fname = strchr(elemname, '@') + 1;
9749 				VERIFY0(zfeature_lookup_name(fname, &fid));
9750 
9751 				spa_feature_enable(spa, fid, tx);
9752 				spa_history_log_internal(spa, "set", tx,
9753 				    "%s=enabled", elemname);
9754 				break;
9755 			} else if (!zfs_prop_user(elemname)) {
9756 				ASSERT(zpool_prop_feature(elemname));
9757 				break;
9758 			}
9759 			zfs_fallthrough;
9760 		default:
9761 			/*
9762 			 * Set pool property values in the poolprops mos object.
9763 			 */
9764 			if (spa->spa_pool_props_object == 0) {
9765 				spa->spa_pool_props_object =
9766 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9767 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9768 				    tx);
9769 			}
9770 
9771 			/* normalize the property name */
9772 			if (prop == ZPOOL_PROP_INVAL) {
9773 				propname = elemname;
9774 				proptype = PROP_TYPE_STRING;
9775 			} else {
9776 				propname = zpool_prop_to_name(prop);
9777 				proptype = zpool_prop_get_type(prop);
9778 			}
9779 
9780 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9781 				ASSERT(proptype == PROP_TYPE_STRING);
9782 				strval = fnvpair_value_string(elem);
9783 				if (strlen(strval) == 0) {
9784 					/* remove the property if value == "" */
9785 					(void) zap_remove(mos,
9786 					    spa->spa_pool_props_object,
9787 					    propname, tx);
9788 				} else {
9789 					VERIFY0(zap_update(mos,
9790 					    spa->spa_pool_props_object,
9791 					    propname, 1, strlen(strval) + 1,
9792 					    strval, tx));
9793 				}
9794 				spa_history_log_internal(spa, "set", tx,
9795 				    "%s=%s", elemname, strval);
9796 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9797 				intval = fnvpair_value_uint64(elem);
9798 
9799 				if (proptype == PROP_TYPE_INDEX) {
9800 					const char *unused;
9801 					VERIFY0(zpool_prop_index_to_string(
9802 					    prop, intval, &unused));
9803 				}
9804 				VERIFY0(zap_update(mos,
9805 				    spa->spa_pool_props_object, propname,
9806 				    8, 1, &intval, tx));
9807 				spa_history_log_internal(spa, "set", tx,
9808 				    "%s=%lld", elemname,
9809 				    (longlong_t)intval);
9810 
9811 				switch (prop) {
9812 				case ZPOOL_PROP_DELEGATION:
9813 					spa->spa_delegation = intval;
9814 					break;
9815 				case ZPOOL_PROP_BOOTFS:
9816 					spa->spa_bootfs = intval;
9817 					break;
9818 				case ZPOOL_PROP_FAILUREMODE:
9819 					spa->spa_failmode = intval;
9820 					break;
9821 				case ZPOOL_PROP_AUTOTRIM:
9822 					spa->spa_autotrim = intval;
9823 					spa_async_request(spa,
9824 					    SPA_ASYNC_AUTOTRIM_RESTART);
9825 					break;
9826 				case ZPOOL_PROP_AUTOEXPAND:
9827 					spa->spa_autoexpand = intval;
9828 					if (tx->tx_txg != TXG_INITIAL)
9829 						spa_async_request(spa,
9830 						    SPA_ASYNC_AUTOEXPAND);
9831 					break;
9832 				case ZPOOL_PROP_MULTIHOST:
9833 					spa->spa_multihost = intval;
9834 					break;
9835 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9836 					spa->spa_dedup_table_quota = intval;
9837 					break;
9838 				default:
9839 					break;
9840 				}
9841 			} else {
9842 				ASSERT(0); /* not allowed */
9843 			}
9844 		}
9845 
9846 	}
9847 
9848 	mutex_exit(&spa->spa_props_lock);
9849 }
9850 
9851 /*
9852  * Perform one-time upgrade on-disk changes.  spa_version() does not
9853  * reflect the new version this txg, so there must be no changes this
9854  * txg to anything that the upgrade code depends on after it executes.
9855  * Therefore this must be called after dsl_pool_sync() does the sync
9856  * tasks.
9857  */
9858 static void
9859 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9860 {
9861 	if (spa_sync_pass(spa) != 1)
9862 		return;
9863 
9864 	dsl_pool_t *dp = spa->spa_dsl_pool;
9865 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9866 
9867 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9868 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9869 		dsl_pool_create_origin(dp, tx);
9870 
9871 		/* Keeping the origin open increases spa_minref */
9872 		spa->spa_minref += 3;
9873 	}
9874 
9875 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9876 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9877 		dsl_pool_upgrade_clones(dp, tx);
9878 	}
9879 
9880 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9881 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9882 		dsl_pool_upgrade_dir_clones(dp, tx);
9883 
9884 		/* Keeping the freedir open increases spa_minref */
9885 		spa->spa_minref += 3;
9886 	}
9887 
9888 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9889 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9890 		spa_feature_create_zap_objects(spa, tx);
9891 	}
9892 
9893 	/*
9894 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9895 	 * when possibility to use lz4 compression for metadata was added
9896 	 * Old pools that have this feature enabled must be upgraded to have
9897 	 * this feature active
9898 	 */
9899 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9900 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9901 		    SPA_FEATURE_LZ4_COMPRESS);
9902 		boolean_t lz4_ac = spa_feature_is_active(spa,
9903 		    SPA_FEATURE_LZ4_COMPRESS);
9904 
9905 		if (lz4_en && !lz4_ac)
9906 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9907 	}
9908 
9909 	/*
9910 	 * If we haven't written the salt, do so now.  Note that the
9911 	 * feature may not be activated yet, but that's fine since
9912 	 * the presence of this ZAP entry is backwards compatible.
9913 	 */
9914 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9915 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9916 		VERIFY0(zap_add(spa->spa_meta_objset,
9917 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9918 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9919 		    spa->spa_cksum_salt.zcs_bytes, tx));
9920 	}
9921 
9922 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9923 }
9924 
9925 static void
9926 vdev_indirect_state_sync_verify(vdev_t *vd)
9927 {
9928 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9929 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9930 
9931 	if (vd->vdev_ops == &vdev_indirect_ops) {
9932 		ASSERT(vim != NULL);
9933 		ASSERT(vib != NULL);
9934 	}
9935 
9936 	uint64_t obsolete_sm_object = 0;
9937 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9938 	if (obsolete_sm_object != 0) {
9939 		ASSERT(vd->vdev_obsolete_sm != NULL);
9940 		ASSERT(vd->vdev_removing ||
9941 		    vd->vdev_ops == &vdev_indirect_ops);
9942 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9943 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9944 		ASSERT3U(obsolete_sm_object, ==,
9945 		    space_map_object(vd->vdev_obsolete_sm));
9946 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9947 		    space_map_allocated(vd->vdev_obsolete_sm));
9948 	}
9949 	ASSERT(vd->vdev_obsolete_segments != NULL);
9950 
9951 	/*
9952 	 * Since frees / remaps to an indirect vdev can only
9953 	 * happen in syncing context, the obsolete segments
9954 	 * tree must be empty when we start syncing.
9955 	 */
9956 	ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
9957 }
9958 
9959 /*
9960  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9961  * async write queue depth in case it changed. The max queue depth will
9962  * not change in the middle of syncing out this txg.
9963  */
9964 static void
9965 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9966 {
9967 	ASSERT(spa_writeable(spa));
9968 
9969 	metaslab_class_balance(spa_normal_class(spa), B_TRUE);
9970 	metaslab_class_balance(spa_special_class(spa), B_TRUE);
9971 	metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
9972 }
9973 
9974 static void
9975 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9976 {
9977 	ASSERT(spa_writeable(spa));
9978 
9979 	vdev_t *rvd = spa->spa_root_vdev;
9980 	for (int c = 0; c < rvd->vdev_children; c++) {
9981 		vdev_t *vd = rvd->vdev_child[c];
9982 		vdev_indirect_state_sync_verify(vd);
9983 
9984 		if (vdev_indirect_should_condense(vd)) {
9985 			spa_condense_indirect_start_sync(vd, tx);
9986 			break;
9987 		}
9988 	}
9989 }
9990 
9991 static void
9992 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9993 {
9994 	objset_t *mos = spa->spa_meta_objset;
9995 	dsl_pool_t *dp = spa->spa_dsl_pool;
9996 	uint64_t txg = tx->tx_txg;
9997 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9998 
9999 	do {
10000 		int pass = ++spa->spa_sync_pass;
10001 
10002 		spa_sync_config_object(spa, tx);
10003 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
10004 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
10005 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
10006 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
10007 		spa_errlog_sync(spa, txg);
10008 		dsl_pool_sync(dp, txg);
10009 
10010 		if (pass < zfs_sync_pass_deferred_free ||
10011 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
10012 			/*
10013 			 * If the log space map feature is active we don't
10014 			 * care about deferred frees and the deferred bpobj
10015 			 * as the log space map should effectively have the
10016 			 * same results (i.e. appending only to one object).
10017 			 */
10018 			spa_sync_frees(spa, free_bpl, tx);
10019 		} else {
10020 			/*
10021 			 * We can not defer frees in pass 1, because
10022 			 * we sync the deferred frees later in pass 1.
10023 			 */
10024 			ASSERT3U(pass, >, 1);
10025 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
10026 			    &spa->spa_deferred_bpobj, tx);
10027 		}
10028 
10029 		brt_sync(spa, txg);
10030 		ddt_sync(spa, txg);
10031 		dsl_scan_sync(dp, tx);
10032 		dsl_errorscrub_sync(dp, tx);
10033 		svr_sync(spa, tx);
10034 		spa_sync_upgrades(spa, tx);
10035 
10036 		spa_flush_metaslabs(spa, tx);
10037 
10038 		vdev_t *vd = NULL;
10039 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10040 		    != NULL)
10041 			vdev_sync(vd, txg);
10042 
10043 		if (pass == 1) {
10044 			/*
10045 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10046 			 * the config. If that happens, this txg should not
10047 			 * be a no-op. So we must sync the config to the MOS
10048 			 * before checking for no-op.
10049 			 *
10050 			 * Note that when the config is dirty, it will
10051 			 * be written to the MOS (i.e. the MOS will be
10052 			 * dirtied) every time we call spa_sync_config_object()
10053 			 * in this txg.  Therefore we can't call this after
10054 			 * dsl_pool_sync() every pass, because it would
10055 			 * prevent us from converging, since we'd dirty
10056 			 * the MOS every pass.
10057 			 *
10058 			 * Sync tasks can only be processed in pass 1, so
10059 			 * there's no need to do this in later passes.
10060 			 */
10061 			spa_sync_config_object(spa, tx);
10062 		}
10063 
10064 		/*
10065 		 * Note: We need to check if the MOS is dirty because we could
10066 		 * have marked the MOS dirty without updating the uberblock
10067 		 * (e.g. if we have sync tasks but no dirty user data). We need
10068 		 * to check the uberblock's rootbp because it is updated if we
10069 		 * have synced out dirty data (though in this case the MOS will
10070 		 * most likely also be dirty due to second order effects, we
10071 		 * don't want to rely on that here).
10072 		 */
10073 		if (pass == 1 &&
10074 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10075 		    !dmu_objset_is_dirty(mos, txg)) {
10076 			/*
10077 			 * Nothing changed on the first pass, therefore this
10078 			 * TXG is a no-op. Avoid syncing deferred frees, so
10079 			 * that we can keep this TXG as a no-op.
10080 			 */
10081 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10082 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10083 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10084 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10085 			break;
10086 		}
10087 
10088 		spa_sync_deferred_frees(spa, tx);
10089 	} while (dmu_objset_is_dirty(mos, txg));
10090 }
10091 
10092 /*
10093  * Rewrite the vdev configuration (which includes the uberblock) to
10094  * commit the transaction group.
10095  *
10096  * If there are no dirty vdevs, we sync the uberblock to a few random
10097  * top-level vdevs that are known to be visible in the config cache
10098  * (see spa_vdev_add() for a complete description). If there *are* dirty
10099  * vdevs, sync the uberblock to all vdevs.
10100  */
10101 static void
10102 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10103 {
10104 	vdev_t *rvd = spa->spa_root_vdev;
10105 	uint64_t txg = tx->tx_txg;
10106 
10107 	for (;;) {
10108 		int error = 0;
10109 
10110 		/*
10111 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10112 		 * while we're attempting to write the vdev labels.
10113 		 */
10114 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10115 
10116 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10117 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10118 			int svdcount = 0;
10119 			int children = rvd->vdev_children;
10120 			int c0 = random_in_range(children);
10121 
10122 			for (int c = 0; c < children; c++) {
10123 				vdev_t *vd =
10124 				    rvd->vdev_child[(c0 + c) % children];
10125 
10126 				/* Stop when revisiting the first vdev */
10127 				if (c > 0 && svd[0] == vd)
10128 					break;
10129 
10130 				if (vd->vdev_ms_array == 0 ||
10131 				    vd->vdev_islog ||
10132 				    !vdev_is_concrete(vd))
10133 					continue;
10134 
10135 				svd[svdcount++] = vd;
10136 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10137 					break;
10138 			}
10139 			error = vdev_config_sync(svd, svdcount, txg);
10140 		} else {
10141 			error = vdev_config_sync(rvd->vdev_child,
10142 			    rvd->vdev_children, txg);
10143 		}
10144 
10145 		if (error == 0)
10146 			spa->spa_last_synced_guid = rvd->vdev_guid;
10147 
10148 		spa_config_exit(spa, SCL_STATE, FTAG);
10149 
10150 		if (error == 0)
10151 			break;
10152 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10153 		zio_resume_wait(spa);
10154 	}
10155 }
10156 
10157 /*
10158  * Sync the specified transaction group.  New blocks may be dirtied as
10159  * part of the process, so we iterate until it converges.
10160  */
10161 void
10162 spa_sync(spa_t *spa, uint64_t txg)
10163 {
10164 	vdev_t *vd = NULL;
10165 
10166 	VERIFY(spa_writeable(spa));
10167 
10168 	/*
10169 	 * Wait for i/os issued in open context that need to complete
10170 	 * before this txg syncs.
10171 	 */
10172 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10173 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10174 	    ZIO_FLAG_CANFAIL);
10175 
10176 	/*
10177 	 * Now that there can be no more cloning in this transaction group,
10178 	 * but we are still before issuing frees, we can process pending BRT
10179 	 * updates.
10180 	 */
10181 	brt_pending_apply(spa, txg);
10182 
10183 	/*
10184 	 * Lock out configuration changes.
10185 	 */
10186 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10187 
10188 	spa->spa_syncing_txg = txg;
10189 	spa->spa_sync_pass = 0;
10190 
10191 	/*
10192 	 * If there are any pending vdev state changes, convert them
10193 	 * into config changes that go out with this transaction group.
10194 	 */
10195 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10196 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10197 		/* Avoid holding the write lock unless actually necessary */
10198 		if (vd->vdev_aux == NULL) {
10199 			vdev_state_clean(vd);
10200 			vdev_config_dirty(vd);
10201 			continue;
10202 		}
10203 		/*
10204 		 * We need the write lock here because, for aux vdevs,
10205 		 * calling vdev_config_dirty() modifies sav_config.
10206 		 * This is ugly and will become unnecessary when we
10207 		 * eliminate the aux vdev wart by integrating all vdevs
10208 		 * into the root vdev tree.
10209 		 */
10210 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10211 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10212 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10213 			vdev_state_clean(vd);
10214 			vdev_config_dirty(vd);
10215 		}
10216 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10217 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10218 	}
10219 	spa_config_exit(spa, SCL_STATE, FTAG);
10220 
10221 	dsl_pool_t *dp = spa->spa_dsl_pool;
10222 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10223 
10224 	spa->spa_sync_starttime = gethrtime();
10225 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10226 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10227 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10228 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10229 
10230 	/*
10231 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10232 	 * set spa_deflate if we have no raid-z vdevs.
10233 	 */
10234 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10235 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10236 		vdev_t *rvd = spa->spa_root_vdev;
10237 
10238 		int i;
10239 		for (i = 0; i < rvd->vdev_children; i++) {
10240 			vd = rvd->vdev_child[i];
10241 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10242 				break;
10243 		}
10244 		if (i == rvd->vdev_children) {
10245 			spa->spa_deflate = TRUE;
10246 			VERIFY0(zap_add(spa->spa_meta_objset,
10247 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10248 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10249 		}
10250 	}
10251 
10252 	spa_sync_adjust_vdev_max_queue_depth(spa);
10253 
10254 	spa_sync_condense_indirect(spa, tx);
10255 
10256 	spa_sync_iterate_to_convergence(spa, tx);
10257 
10258 #ifdef ZFS_DEBUG
10259 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10260 	/*
10261 	 * Make sure that the number of ZAPs for all the vdevs matches
10262 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10263 	 * called if the config is dirty; otherwise there may be
10264 	 * outstanding AVZ operations that weren't completed in
10265 	 * spa_sync_config_object.
10266 	 */
10267 		uint64_t all_vdev_zap_entry_count;
10268 		ASSERT0(zap_count(spa->spa_meta_objset,
10269 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10270 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10271 		    all_vdev_zap_entry_count);
10272 	}
10273 #endif
10274 
10275 	if (spa->spa_vdev_removal != NULL) {
10276 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10277 	}
10278 
10279 	spa_sync_rewrite_vdev_config(spa, tx);
10280 	dmu_tx_commit(tx);
10281 
10282 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10283 	spa->spa_deadman_tqid = 0;
10284 
10285 	/*
10286 	 * Clear the dirty config list.
10287 	 */
10288 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10289 		vdev_config_clean(vd);
10290 
10291 	/*
10292 	 * Now that the new config has synced transactionally,
10293 	 * let it become visible to the config cache.
10294 	 */
10295 	if (spa->spa_config_syncing != NULL) {
10296 		spa_config_set(spa, spa->spa_config_syncing);
10297 		spa->spa_config_txg = txg;
10298 		spa->spa_config_syncing = NULL;
10299 	}
10300 
10301 	dsl_pool_sync_done(dp, txg);
10302 
10303 	/*
10304 	 * Update usable space statistics.
10305 	 */
10306 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10307 	    != NULL)
10308 		vdev_sync_done(vd, txg);
10309 
10310 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10311 	metaslab_class_evict_old(spa->spa_log_class, txg);
10312 	/* spa_embedded_log_class has only one metaslab per vdev. */
10313 	metaslab_class_evict_old(spa->spa_special_class, txg);
10314 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10315 
10316 	spa_sync_close_syncing_log_sm(spa);
10317 
10318 	spa_update_dspace(spa);
10319 
10320 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10321 		vdev_autotrim_kick(spa);
10322 
10323 	/*
10324 	 * It had better be the case that we didn't dirty anything
10325 	 * since vdev_config_sync().
10326 	 */
10327 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10328 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10329 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10330 
10331 	while (zfs_pause_spa_sync)
10332 		delay(1);
10333 
10334 	spa->spa_sync_pass = 0;
10335 
10336 	/*
10337 	 * Update the last synced uberblock here. We want to do this at
10338 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10339 	 * will be guaranteed that all the processing associated with
10340 	 * that txg has been completed.
10341 	 */
10342 	spa->spa_ubsync = spa->spa_uberblock;
10343 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10344 
10345 	spa_handle_ignored_writes(spa);
10346 
10347 	/*
10348 	 * If any async tasks have been requested, kick them off.
10349 	 */
10350 	spa_async_dispatch(spa);
10351 }
10352 
10353 /*
10354  * Sync all pools.  We don't want to hold the namespace lock across these
10355  * operations, so we take a reference on the spa_t and drop the lock during the
10356  * sync.
10357  */
10358 void
10359 spa_sync_allpools(void)
10360 {
10361 	spa_t *spa = NULL;
10362 	mutex_enter(&spa_namespace_lock);
10363 	while ((spa = spa_next(spa)) != NULL) {
10364 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10365 		    !spa_writeable(spa) || spa_suspended(spa))
10366 			continue;
10367 		spa_open_ref(spa, FTAG);
10368 		mutex_exit(&spa_namespace_lock);
10369 		txg_wait_synced(spa_get_dsl(spa), 0);
10370 		mutex_enter(&spa_namespace_lock);
10371 		spa_close(spa, FTAG);
10372 	}
10373 	mutex_exit(&spa_namespace_lock);
10374 }
10375 
10376 taskq_t *
10377 spa_sync_tq_create(spa_t *spa, const char *name)
10378 {
10379 	kthread_t **kthreads;
10380 
10381 	ASSERT(spa->spa_sync_tq == NULL);
10382 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10383 
10384 	/*
10385 	 * - do not allow more allocators than cpus.
10386 	 * - there may be more cpus than allocators.
10387 	 * - do not allow more sync taskq threads than allocators or cpus.
10388 	 */
10389 	int nthreads = spa->spa_alloc_count;
10390 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10391 	    nthreads, KM_SLEEP);
10392 
10393 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10394 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10395 	VERIFY(spa->spa_sync_tq != NULL);
10396 	VERIFY(kthreads != NULL);
10397 
10398 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10399 	for (int i = 0; i < nthreads; i++, ti++) {
10400 		ti->sti_thread = kthreads[i];
10401 		ti->sti_allocator = i;
10402 	}
10403 
10404 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10405 	return (spa->spa_sync_tq);
10406 }
10407 
10408 void
10409 spa_sync_tq_destroy(spa_t *spa)
10410 {
10411 	ASSERT(spa->spa_sync_tq != NULL);
10412 
10413 	taskq_wait(spa->spa_sync_tq);
10414 	taskq_destroy(spa->spa_sync_tq);
10415 	kmem_free(spa->spa_syncthreads,
10416 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10417 	spa->spa_sync_tq = NULL;
10418 }
10419 
10420 uint_t
10421 spa_acq_allocator(spa_t *spa)
10422 {
10423 	int i;
10424 
10425 	if (spa->spa_alloc_count == 1)
10426 		return (0);
10427 
10428 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10429 	uint_t r = spa->spa_allocs_use->sau_rotor;
10430 	do {
10431 		if (++r == spa->spa_alloc_count)
10432 			r = 0;
10433 	} while (spa->spa_allocs_use->sau_inuse[r]);
10434 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10435 	spa->spa_allocs_use->sau_rotor = r;
10436 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10437 
10438 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10439 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10440 		if (ti->sti_thread == curthread) {
10441 			ti->sti_allocator = r;
10442 			break;
10443 		}
10444 	}
10445 	ASSERT3S(i, <, spa->spa_alloc_count);
10446 	return (r);
10447 }
10448 
10449 void
10450 spa_rel_allocator(spa_t *spa, uint_t allocator)
10451 {
10452 	if (spa->spa_alloc_count > 1)
10453 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10454 }
10455 
10456 void
10457 spa_select_allocator(zio_t *zio)
10458 {
10459 	zbookmark_phys_t *bm = &zio->io_bookmark;
10460 	spa_t *spa = zio->io_spa;
10461 
10462 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10463 
10464 	/*
10465 	 * A gang block (for example) may have inherited its parent's
10466 	 * allocator, in which case there is nothing further to do here.
10467 	 */
10468 	if (ZIO_HAS_ALLOCATOR(zio))
10469 		return;
10470 
10471 	ASSERT(spa != NULL);
10472 	ASSERT(bm != NULL);
10473 
10474 	/*
10475 	 * First try to use an allocator assigned to the syncthread, and set
10476 	 * the corresponding write issue taskq for the allocator.
10477 	 * Note, we must have an open pool to do this.
10478 	 */
10479 	if (spa->spa_sync_tq != NULL) {
10480 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10481 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10482 			if (ti->sti_thread == curthread) {
10483 				zio->io_allocator = ti->sti_allocator;
10484 				return;
10485 			}
10486 		}
10487 	}
10488 
10489 	/*
10490 	 * We want to try to use as many allocators as possible to help improve
10491 	 * performance, but we also want logically adjacent IOs to be physically
10492 	 * adjacent to improve sequential read performance. We chunk each object
10493 	 * into 2^20 block regions, and then hash based on the objset, object,
10494 	 * level, and region to accomplish both of these goals.
10495 	 */
10496 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10497 	    bm->zb_blkid >> 20);
10498 
10499 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10500 }
10501 
10502 /*
10503  * ==========================================================================
10504  * Miscellaneous routines
10505  * ==========================================================================
10506  */
10507 
10508 /*
10509  * Remove all pools in the system.
10510  */
10511 void
10512 spa_evict_all(void)
10513 {
10514 	spa_t *spa;
10515 
10516 	/*
10517 	 * Remove all cached state.  All pools should be closed now,
10518 	 * so every spa in the AVL tree should be unreferenced.
10519 	 */
10520 	mutex_enter(&spa_namespace_lock);
10521 	while ((spa = spa_next(NULL)) != NULL) {
10522 		/*
10523 		 * Stop async tasks.  The async thread may need to detach
10524 		 * a device that's been replaced, which requires grabbing
10525 		 * spa_namespace_lock, so we must drop it here.
10526 		 */
10527 		spa_open_ref(spa, FTAG);
10528 		mutex_exit(&spa_namespace_lock);
10529 		spa_async_suspend(spa);
10530 		mutex_enter(&spa_namespace_lock);
10531 		spa_close(spa, FTAG);
10532 
10533 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10534 			spa_unload(spa);
10535 			spa_deactivate(spa);
10536 		}
10537 		spa_remove(spa);
10538 	}
10539 	mutex_exit(&spa_namespace_lock);
10540 }
10541 
10542 vdev_t *
10543 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10544 {
10545 	vdev_t *vd;
10546 	int i;
10547 
10548 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10549 		return (vd);
10550 
10551 	if (aux) {
10552 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10553 			vd = spa->spa_l2cache.sav_vdevs[i];
10554 			if (vd->vdev_guid == guid)
10555 				return (vd);
10556 		}
10557 
10558 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10559 			vd = spa->spa_spares.sav_vdevs[i];
10560 			if (vd->vdev_guid == guid)
10561 				return (vd);
10562 		}
10563 	}
10564 
10565 	return (NULL);
10566 }
10567 
10568 void
10569 spa_upgrade(spa_t *spa, uint64_t version)
10570 {
10571 	ASSERT(spa_writeable(spa));
10572 
10573 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10574 
10575 	/*
10576 	 * This should only be called for a non-faulted pool, and since a
10577 	 * future version would result in an unopenable pool, this shouldn't be
10578 	 * possible.
10579 	 */
10580 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10581 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10582 
10583 	spa->spa_uberblock.ub_version = version;
10584 	vdev_config_dirty(spa->spa_root_vdev);
10585 
10586 	spa_config_exit(spa, SCL_ALL, FTAG);
10587 
10588 	txg_wait_synced(spa_get_dsl(spa), 0);
10589 }
10590 
10591 static boolean_t
10592 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10593 {
10594 	(void) spa;
10595 	int i;
10596 	uint64_t vdev_guid;
10597 
10598 	for (i = 0; i < sav->sav_count; i++)
10599 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10600 			return (B_TRUE);
10601 
10602 	for (i = 0; i < sav->sav_npending; i++) {
10603 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10604 		    &vdev_guid) == 0 && vdev_guid == guid)
10605 			return (B_TRUE);
10606 	}
10607 
10608 	return (B_FALSE);
10609 }
10610 
10611 boolean_t
10612 spa_has_l2cache(spa_t *spa, uint64_t guid)
10613 {
10614 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10615 }
10616 
10617 boolean_t
10618 spa_has_spare(spa_t *spa, uint64_t guid)
10619 {
10620 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10621 }
10622 
10623 /*
10624  * Check if a pool has an active shared spare device.
10625  * Note: reference count of an active spare is 2, as a spare and as a replace
10626  */
10627 static boolean_t
10628 spa_has_active_shared_spare(spa_t *spa)
10629 {
10630 	int i, refcnt;
10631 	uint64_t pool;
10632 	spa_aux_vdev_t *sav = &spa->spa_spares;
10633 
10634 	for (i = 0; i < sav->sav_count; i++) {
10635 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10636 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10637 		    refcnt > 2)
10638 			return (B_TRUE);
10639 	}
10640 
10641 	return (B_FALSE);
10642 }
10643 
10644 uint64_t
10645 spa_total_metaslabs(spa_t *spa)
10646 {
10647 	vdev_t *rvd = spa->spa_root_vdev;
10648 
10649 	uint64_t m = 0;
10650 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10651 		vdev_t *vd = rvd->vdev_child[c];
10652 		if (!vdev_is_concrete(vd))
10653 			continue;
10654 		m += vd->vdev_ms_count;
10655 	}
10656 	return (m);
10657 }
10658 
10659 /*
10660  * Notify any waiting threads that some activity has switched from being in-
10661  * progress to not-in-progress so that the thread can wake up and determine
10662  * whether it is finished waiting.
10663  */
10664 void
10665 spa_notify_waiters(spa_t *spa)
10666 {
10667 	/*
10668 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10669 	 * happening between the waiting thread's check and cv_wait.
10670 	 */
10671 	mutex_enter(&spa->spa_activities_lock);
10672 	cv_broadcast(&spa->spa_activities_cv);
10673 	mutex_exit(&spa->spa_activities_lock);
10674 }
10675 
10676 /*
10677  * Notify any waiting threads that the pool is exporting, and then block until
10678  * they are finished using the spa_t.
10679  */
10680 void
10681 spa_wake_waiters(spa_t *spa)
10682 {
10683 	mutex_enter(&spa->spa_activities_lock);
10684 	spa->spa_waiters_cancel = B_TRUE;
10685 	cv_broadcast(&spa->spa_activities_cv);
10686 	while (spa->spa_waiters != 0)
10687 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10688 	spa->spa_waiters_cancel = B_FALSE;
10689 	mutex_exit(&spa->spa_activities_lock);
10690 }
10691 
10692 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10693 static boolean_t
10694 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10695 {
10696 	spa_t *spa = vd->vdev_spa;
10697 
10698 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10699 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10700 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10701 	    activity == ZPOOL_WAIT_TRIM);
10702 
10703 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10704 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10705 
10706 	mutex_exit(&spa->spa_activities_lock);
10707 	mutex_enter(lock);
10708 	mutex_enter(&spa->spa_activities_lock);
10709 
10710 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10711 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10712 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10713 	mutex_exit(lock);
10714 
10715 	if (in_progress)
10716 		return (B_TRUE);
10717 
10718 	for (int i = 0; i < vd->vdev_children; i++) {
10719 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10720 		    activity))
10721 			return (B_TRUE);
10722 	}
10723 
10724 	return (B_FALSE);
10725 }
10726 
10727 /*
10728  * If use_guid is true, this checks whether the vdev specified by guid is
10729  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10730  * is being initialized/trimmed. The caller must hold the config lock and
10731  * spa_activities_lock.
10732  */
10733 static int
10734 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10735     zpool_wait_activity_t activity, boolean_t *in_progress)
10736 {
10737 	mutex_exit(&spa->spa_activities_lock);
10738 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10739 	mutex_enter(&spa->spa_activities_lock);
10740 
10741 	vdev_t *vd;
10742 	if (use_guid) {
10743 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10744 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10745 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10746 			return (EINVAL);
10747 		}
10748 	} else {
10749 		vd = spa->spa_root_vdev;
10750 	}
10751 
10752 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10753 
10754 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10755 	return (0);
10756 }
10757 
10758 /*
10759  * Locking for waiting threads
10760  * ---------------------------
10761  *
10762  * Waiting threads need a way to check whether a given activity is in progress,
10763  * and then, if it is, wait for it to complete. Each activity will have some
10764  * in-memory representation of the relevant on-disk state which can be used to
10765  * determine whether or not the activity is in progress. The in-memory state and
10766  * the locking used to protect it will be different for each activity, and may
10767  * not be suitable for use with a cvar (e.g., some state is protected by the
10768  * config lock). To allow waiting threads to wait without any races, another
10769  * lock, spa_activities_lock, is used.
10770  *
10771  * When the state is checked, both the activity-specific lock (if there is one)
10772  * and spa_activities_lock are held. In some cases, the activity-specific lock
10773  * is acquired explicitly (e.g. the config lock). In others, the locking is
10774  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10775  * thread releases the activity-specific lock and, if the activity is in
10776  * progress, then cv_waits using spa_activities_lock.
10777  *
10778  * The waiting thread is woken when another thread, one completing some
10779  * activity, updates the state of the activity and then calls
10780  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10781  * needs to hold its activity-specific lock when updating the state, and this
10782  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10783  *
10784  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10785  * and because it is held when the waiting thread checks the state of the
10786  * activity, it can never be the case that the completing thread both updates
10787  * the activity state and cv_broadcasts in between the waiting thread's check
10788  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10789  *
10790  * In order to prevent deadlock, when the waiting thread does its check, in some
10791  * cases it will temporarily drop spa_activities_lock in order to acquire the
10792  * activity-specific lock. The order in which spa_activities_lock and the
10793  * activity specific lock are acquired in the waiting thread is determined by
10794  * the order in which they are acquired in the completing thread; if the
10795  * completing thread calls spa_notify_waiters with the activity-specific lock
10796  * held, then the waiting thread must also acquire the activity-specific lock
10797  * first.
10798  */
10799 
10800 static int
10801 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10802     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10803 {
10804 	int error = 0;
10805 
10806 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10807 
10808 	switch (activity) {
10809 	case ZPOOL_WAIT_CKPT_DISCARD:
10810 		*in_progress =
10811 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10812 		    zap_contains(spa_meta_objset(spa),
10813 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10814 		    ENOENT);
10815 		break;
10816 	case ZPOOL_WAIT_FREE:
10817 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10818 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10819 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10820 		    spa_livelist_delete_check(spa));
10821 		break;
10822 	case ZPOOL_WAIT_INITIALIZE:
10823 	case ZPOOL_WAIT_TRIM:
10824 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10825 		    activity, in_progress);
10826 		break;
10827 	case ZPOOL_WAIT_REPLACE:
10828 		mutex_exit(&spa->spa_activities_lock);
10829 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10830 		mutex_enter(&spa->spa_activities_lock);
10831 
10832 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10833 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10834 		break;
10835 	case ZPOOL_WAIT_REMOVE:
10836 		*in_progress = (spa->spa_removing_phys.sr_state ==
10837 		    DSS_SCANNING);
10838 		break;
10839 	case ZPOOL_WAIT_RESILVER:
10840 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10841 		if (*in_progress)
10842 			break;
10843 		zfs_fallthrough;
10844 	case ZPOOL_WAIT_SCRUB:
10845 	{
10846 		boolean_t scanning, paused, is_scrub;
10847 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10848 
10849 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10850 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10851 		paused = dsl_scan_is_paused_scrub(scn);
10852 		*in_progress = (scanning && !paused &&
10853 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10854 		break;
10855 	}
10856 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10857 	{
10858 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10859 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10860 		break;
10861 	}
10862 	default:
10863 		panic("unrecognized value for activity %d", activity);
10864 	}
10865 
10866 	return (error);
10867 }
10868 
10869 static int
10870 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10871     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10872 {
10873 	/*
10874 	 * The tag is used to distinguish between instances of an activity.
10875 	 * 'initialize' and 'trim' are the only activities that we use this for.
10876 	 * The other activities can only have a single instance in progress in a
10877 	 * pool at one time, making the tag unnecessary.
10878 	 *
10879 	 * There can be multiple devices being replaced at once, but since they
10880 	 * all finish once resilvering finishes, we don't bother keeping track
10881 	 * of them individually, we just wait for them all to finish.
10882 	 */
10883 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10884 	    activity != ZPOOL_WAIT_TRIM)
10885 		return (EINVAL);
10886 
10887 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10888 		return (EINVAL);
10889 
10890 	spa_t *spa;
10891 	int error = spa_open(pool, &spa, FTAG);
10892 	if (error != 0)
10893 		return (error);
10894 
10895 	/*
10896 	 * Increment the spa's waiter count so that we can call spa_close and
10897 	 * still ensure that the spa_t doesn't get freed before this thread is
10898 	 * finished with it when the pool is exported. We want to call spa_close
10899 	 * before we start waiting because otherwise the additional ref would
10900 	 * prevent the pool from being exported or destroyed throughout the
10901 	 * potentially long wait.
10902 	 */
10903 	mutex_enter(&spa->spa_activities_lock);
10904 	spa->spa_waiters++;
10905 	spa_close(spa, FTAG);
10906 
10907 	*waited = B_FALSE;
10908 	for (;;) {
10909 		boolean_t in_progress;
10910 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10911 		    &in_progress);
10912 
10913 		if (error || !in_progress || spa->spa_waiters_cancel)
10914 			break;
10915 
10916 		*waited = B_TRUE;
10917 
10918 		if (cv_wait_sig(&spa->spa_activities_cv,
10919 		    &spa->spa_activities_lock) == 0) {
10920 			error = EINTR;
10921 			break;
10922 		}
10923 	}
10924 
10925 	spa->spa_waiters--;
10926 	cv_signal(&spa->spa_waiters_cv);
10927 	mutex_exit(&spa->spa_activities_lock);
10928 
10929 	return (error);
10930 }
10931 
10932 /*
10933  * Wait for a particular instance of the specified activity to complete, where
10934  * the instance is identified by 'tag'
10935  */
10936 int
10937 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10938     boolean_t *waited)
10939 {
10940 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10941 }
10942 
10943 /*
10944  * Wait for all instances of the specified activity complete
10945  */
10946 int
10947 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10948 {
10949 
10950 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10951 }
10952 
10953 sysevent_t *
10954 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10955 {
10956 	sysevent_t *ev = NULL;
10957 #ifdef _KERNEL
10958 	nvlist_t *resource;
10959 
10960 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10961 	if (resource) {
10962 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10963 		ev->resource = resource;
10964 	}
10965 #else
10966 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10967 #endif
10968 	return (ev);
10969 }
10970 
10971 void
10972 spa_event_post(sysevent_t *ev)
10973 {
10974 #ifdef _KERNEL
10975 	if (ev) {
10976 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10977 		kmem_free(ev, sizeof (*ev));
10978 	}
10979 #else
10980 	(void) ev;
10981 #endif
10982 }
10983 
10984 /*
10985  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10986  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10987  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10988  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10989  * or zdb as real changes.
10990  */
10991 void
10992 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10993 {
10994 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10995 }
10996 
10997 /* state manipulation functions */
10998 EXPORT_SYMBOL(spa_open);
10999 EXPORT_SYMBOL(spa_open_rewind);
11000 EXPORT_SYMBOL(spa_get_stats);
11001 EXPORT_SYMBOL(spa_create);
11002 EXPORT_SYMBOL(spa_import);
11003 EXPORT_SYMBOL(spa_tryimport);
11004 EXPORT_SYMBOL(spa_destroy);
11005 EXPORT_SYMBOL(spa_export);
11006 EXPORT_SYMBOL(spa_reset);
11007 EXPORT_SYMBOL(spa_async_request);
11008 EXPORT_SYMBOL(spa_async_suspend);
11009 EXPORT_SYMBOL(spa_async_resume);
11010 EXPORT_SYMBOL(spa_inject_addref);
11011 EXPORT_SYMBOL(spa_inject_delref);
11012 EXPORT_SYMBOL(spa_scan_stat_init);
11013 EXPORT_SYMBOL(spa_scan_get_stats);
11014 
11015 /* device manipulation */
11016 EXPORT_SYMBOL(spa_vdev_add);
11017 EXPORT_SYMBOL(spa_vdev_attach);
11018 EXPORT_SYMBOL(spa_vdev_detach);
11019 EXPORT_SYMBOL(spa_vdev_setpath);
11020 EXPORT_SYMBOL(spa_vdev_setfru);
11021 EXPORT_SYMBOL(spa_vdev_split_mirror);
11022 
11023 /* spare statech is global across all pools) */
11024 EXPORT_SYMBOL(spa_spare_add);
11025 EXPORT_SYMBOL(spa_spare_remove);
11026 EXPORT_SYMBOL(spa_spare_exists);
11027 EXPORT_SYMBOL(spa_spare_activate);
11028 
11029 /* L2ARC statech is global across all pools) */
11030 EXPORT_SYMBOL(spa_l2cache_add);
11031 EXPORT_SYMBOL(spa_l2cache_remove);
11032 EXPORT_SYMBOL(spa_l2cache_exists);
11033 EXPORT_SYMBOL(spa_l2cache_activate);
11034 EXPORT_SYMBOL(spa_l2cache_drop);
11035 
11036 /* scanning */
11037 EXPORT_SYMBOL(spa_scan);
11038 EXPORT_SYMBOL(spa_scan_range);
11039 EXPORT_SYMBOL(spa_scan_stop);
11040 
11041 /* spa syncing */
11042 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11043 EXPORT_SYMBOL(spa_sync_allpools);
11044 
11045 /* properties */
11046 EXPORT_SYMBOL(spa_prop_set);
11047 EXPORT_SYMBOL(spa_prop_get);
11048 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11049 
11050 /* asynchronous event notification */
11051 EXPORT_SYMBOL(spa_event_notify);
11052 
11053 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11054 	"Percentage of CPUs to run a metaslab preload taskq");
11055 
11056 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11057 	"log2 fraction of arc that can be used by inflight I/Os when "
11058 	"verifying pool during import");
11059 
11060 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11061 	"Set to traverse metadata on pool import");
11062 
11063 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11064 	"Set to traverse data on pool import");
11065 
11066 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11067 	"Print vdev tree to zfs_dbgmsg during pool import");
11068 
11069 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11070 	"Percentage of CPUs to run an IO worker thread");
11071 
11072 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11073 	"Number of threads per IO worker taskqueue");
11074 
11075 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11076 	"Allow importing pool with up to this number of missing top-level "
11077 	"vdevs (in read-only mode)");
11078 
11079 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11080 	ZMOD_RW, "Set the livelist condense zthr to pause");
11081 
11082 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11083 	ZMOD_RW, "Set the livelist condense synctask to pause");
11084 
11085 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11086 	INT, ZMOD_RW,
11087 	"Whether livelist condensing was canceled in the synctask");
11088 
11089 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11090 	INT, ZMOD_RW,
11091 	"Whether livelist condensing was canceled in the zthr function");
11092 
11093 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11094 	ZMOD_RW,
11095 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11096 	"was being condensed");
11097 
11098 #ifdef _KERNEL
11099 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11100 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11101 	"Configure IO queues for read IO");
11102 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11103 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11104 	"Configure IO queues for write IO");
11105 #endif
11106 
11107 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11108 	"Number of CPUs per write issue taskq");
11109