xref: /freebsd/sys/security/audit/audit_worker.c (revision e453e498cbb88570a3ff7b3679de65c88707da95)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2008 Apple Inc.
5  * Copyright (c) 2006-2008, 2016, 2018 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Portions of this software were developed by BAE Systems, the University of
9  * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
10  * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
11  * Computing (TC) research program.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1.  Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  * 2.  Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
22  *     its contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
34  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/param.h>
39 #include <sys/condvar.h>
40 #include <sys/conf.h>
41 #include <sys/file.h>
42 #include <sys/filedesc.h>
43 #include <sys/fcntl.h>
44 #include <sys/ipc.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/protosw.h>
55 #include <sys/domain.h>
56 #include <sys/stdarg.h>
57 #include <sys/sx.h>
58 #include <sys/sysproto.h>
59 #include <sys/sysent.h>
60 #include <sys/systm.h>
61 #include <sys/ucred.h>
62 #include <sys/uio.h>
63 #include <sys/un.h>
64 #include <sys/unistd.h>
65 #include <sys/vnode.h>
66 
67 #include <bsm/audit.h>
68 #include <bsm/audit_internal.h>
69 #include <bsm/audit_kevents.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_pcb.h>
73 
74 #include <security/audit/audit.h>
75 #include <security/audit/audit_private.h>
76 
77 #include <vm/uma.h>
78 
79 /*
80  * Worker thread that will schedule disk I/O, etc.
81  */
82 static struct proc		*audit_thread;
83 
84 /*
85  * audit_cred and audit_vp are the stored credential and vnode to use for
86  * active audit trail.  They are protected by the audit worker lock, which
87  * will be held across all I/O and all rotation to prevent them from being
88  * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
89  * when the kernel has delivered a trigger to auditd to rotate the trail, and
90  * is cleared when the next rotation takes place.  It is also protected by
91  * the audit worker lock.
92  */
93 static int		 audit_file_rotate_wait;
94 static struct ucred	*audit_cred;
95 static struct vnode	*audit_vp;
96 static off_t		 audit_size;
97 static struct sx	 audit_worker_lock;
98 
99 #define	AUDIT_WORKER_LOCK_INIT()	sx_init(&audit_worker_lock, \
100 					    "audit_worker_lock");
101 #define	AUDIT_WORKER_LOCK_ASSERT()	sx_assert(&audit_worker_lock, \
102 					    SA_XLOCKED)
103 #define	AUDIT_WORKER_LOCK()		sx_xlock(&audit_worker_lock)
104 #define	AUDIT_WORKER_UNLOCK()		sx_xunlock(&audit_worker_lock)
105 
106 static void
audit_worker_sync_vp(struct vnode * vp,struct mount * mp,const char * fmt,...)107 audit_worker_sync_vp(struct vnode *vp, struct mount *mp, const char *fmt, ...)
108 {
109 	struct mount *mp1;
110 	int error;
111 	va_list va;
112 
113 	va_start(va, fmt);
114 	error = vn_start_write(vp, &mp1, 0);
115 	if (error == 0) {
116 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
117 		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
118 		VOP_UNLOCK(vp);
119 		vn_finished_write(mp1);
120 	}
121 	vfs_unbusy(mp);
122 	vpanic(fmt, va);
123 	va_end(va);
124 }
125 
126 /*
127  * Write an audit record to a file, performed as the last stage after both
128  * preselection and BSM conversion.  Both space management and write failures
129  * are handled in this function.
130  *
131  * No attempt is made to deal with possible failure to deliver a trigger to
132  * the audit daemon, since the message is asynchronous anyway.
133  */
134 static void
audit_record_write(struct vnode * vp,struct ucred * cred,void * data,size_t len)135 audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
136     size_t len)
137 {
138 	static struct timeval last_lowspace_trigger;
139 	static struct timeval last_fail;
140 	static int cur_lowspace_trigger;
141 	struct statfs *mnt_stat;
142 	struct mount *mp;
143 	int error;
144 	static int cur_fail;
145 	long temp;
146 
147 	AUDIT_WORKER_LOCK_ASSERT();
148 
149 	if (vp == NULL)
150 		return;
151 
152 	mp = vp->v_mount;
153 	if (mp == NULL) {
154 		error = EINVAL;
155 		goto fail;
156 	}
157 	error = vfs_busy(mp, 0);
158 	if (error != 0) {
159 		mp = NULL;
160 		goto fail;
161 	}
162 	mnt_stat = &mp->mnt_stat;
163 
164 	/*
165 	 * First, gather statistics on the audit log file and file system so
166 	 * that we know how we're doing on space.  Consider failure of these
167 	 * operations to indicate a future inability to write to the file.
168 	 */
169 	error = VFS_STATFS(mp, mnt_stat);
170 	if (error != 0)
171 		goto fail;
172 
173 	/*
174 	 * We handle four different space-related limits:
175 	 *
176 	 * - A fixed (hard) limit on the minimum free blocks we require on
177 	 *   the file system, and results in record loss, a trigger, and
178 	 *   possible fail stop due to violating invariants.
179 	 *
180 	 * - An administrative (soft) limit, which when fallen below, results
181 	 *   in the kernel notifying the audit daemon of low space.
182 	 *
183 	 * - An audit trail size limit, which when gone above, results in the
184 	 *   kernel notifying the audit daemon that rotation is desired.
185 	 *
186 	 * - The total depth of the kernel audit record exceeding free space,
187 	 *   which can lead to possible fail stop (with drain), in order to
188 	 *   prevent violating invariants.  Failure here doesn't halt
189 	 *   immediately, but prevents new records from being generated.
190 	 *
191 	 * Possibly, the last of these should be handled differently, always
192 	 * allowing a full queue to be lost, rather than trying to prevent
193 	 * loss.
194 	 *
195 	 * First, handle the hard limit, which generates a trigger and may
196 	 * fail stop.  This is handled in the same manner as ENOSPC from
197 	 * VOP_WRITE, and results in record loss.
198 	 */
199 	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
200 		error = ENOSPC;
201 		goto fail_enospc;
202 	}
203 
204 	/*
205 	 * Second, handle falling below the soft limit, if defined; we send
206 	 * the daemon a trigger and continue processing the record.  Triggers
207 	 * are limited to 1/sec.
208 	 */
209 	if (audit_qctrl.aq_minfree != 0) {
210 		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
211 		if (mnt_stat->f_bfree < temp) {
212 			if (ppsratecheck(&last_lowspace_trigger,
213 			    &cur_lowspace_trigger, 1)) {
214 				(void)audit_send_trigger(
215 				    AUDIT_TRIGGER_LOW_SPACE);
216 				printf("Warning: disk space low (< %d%% free) "
217 				    "on audit log file-system\n",
218 				    audit_qctrl.aq_minfree);
219 			}
220 		}
221 	}
222 
223 	/*
224 	 * If the current file is getting full, generate a rotation trigger
225 	 * to the daemon.  This is only approximate, which is fine as more
226 	 * records may be generated before the daemon rotates the file.
227 	 */
228 	if (audit_fstat.af_filesz != 0 &&
229 	    audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) {
230 		AUDIT_WORKER_LOCK_ASSERT();
231 
232 		audit_file_rotate_wait++;
233 		(void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
234 	}
235 
236 	/*
237 	 * If the estimated amount of audit data in the audit event queue
238 	 * (plus records allocated but not yet queued) has reached the amount
239 	 * of free space on the disk, then we need to go into an audit fail
240 	 * stop state, in which we do not permit the allocation/committing of
241 	 * any new audit records.  We continue to process records but don't
242 	 * allow any activities that might generate new records.  In the
243 	 * future, we might want to detect when space is available again and
244 	 * allow operation to continue, but this behavior is sufficient to
245 	 * meet fail stop requirements in CAPP.
246 	 */
247 	if (audit_fail_stop) {
248 		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
249 		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
250 		    (unsigned long)(mnt_stat->f_bfree)) {
251 			if (ppsratecheck(&last_fail, &cur_fail, 1))
252 				printf("audit_record_write: free space "
253 				    "below size of audit queue, failing "
254 				    "stop\n");
255 			audit_in_failure = 1;
256 		} else if (audit_in_failure) {
257 			/*
258 			 * Note: if we want to handle recovery, this is the
259 			 * spot to do it: unset audit_in_failure, and issue a
260 			 * wakeup on the cv.
261 			 */
262 		}
263 	}
264 
265 	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
266 	    IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
267 	if (error == ENOSPC)
268 		goto fail_enospc;
269 	else if (error)
270 		goto fail;
271 	AUDIT_WORKER_LOCK_ASSERT();
272 	audit_size += len;
273 
274 	/*
275 	 * Catch completion of a queue drain here; if we're draining and the
276 	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
277 	 * true, since audit_in_failure can only be set of audit_fail_stop is
278 	 * set.
279 	 *
280 	 * Note: if we handle recovery from audit_in_failure, then we need to
281 	 * make panic here conditional.
282 	 */
283 	if (audit_in_failure) {
284 		if (audit_q_len == 0 && audit_pre_q_len == 0) {
285 			audit_worker_sync_vp(vp, mp,
286 			    "Audit store overflow; record queue drained.");
287 		}
288 	}
289 
290 	vfs_unbusy(mp);
291 	return;
292 
293 fail_enospc:
294 	/*
295 	 * ENOSPC is considered a special case with respect to failures, as
296 	 * this can reflect either our preemptive detection of insufficient
297 	 * space, or ENOSPC returned by the vnode write call.
298 	 */
299 	if (audit_fail_stop) {
300 		audit_worker_sync_vp(vp, mp,
301 		    "Audit log space exhausted and fail-stop set.");
302 	}
303 	(void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
304 	audit_trail_suspended = 1;
305 	audit_syscalls_enabled_update();
306 
307 	/* FALLTHROUGH */
308 fail:
309 	/*
310 	 * We have failed to write to the file, so the current record is
311 	 * lost, which may require an immediate system halt.
312 	 */
313 	if (audit_panic_on_write_fail) {
314 		audit_worker_sync_vp(vp, mp,
315 		    "audit_worker: write error %d\n", error);
316 	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
317 		printf("audit_worker: write error %d\n", error);
318 	if (mp != NULL)
319 		vfs_unbusy(mp);
320 }
321 
322 /*
323  * Given a kernel audit record, process as required.  Kernel audit records
324  * are converted to one, or possibly two, BSM records, depending on whether
325  * there is a user audit record present also.  Kernel records need be
326  * converted to BSM before they can be written out.  Both types will be
327  * written to disk, and audit pipes.
328  */
329 static void
audit_worker_process_record(struct kaudit_record * ar)330 audit_worker_process_record(struct kaudit_record *ar)
331 {
332 	struct au_record *bsm;
333 	au_class_t class;
334 	au_event_t event;
335 	au_id_t auid;
336 	int error, sorf;
337 	int locked;
338 
339 	/*
340 	 * We hold the audit worker lock over both writes, if there are two,
341 	 * so that the two records won't be split across a rotation and end
342 	 * up in two different trail files.
343 	 */
344 	if (((ar->k_ar_commit & AR_COMMIT_USER) &&
345 	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
346 	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
347 		AUDIT_WORKER_LOCK();
348 		locked = 1;
349 	} else
350 		locked = 0;
351 
352 	/*
353 	 * First, handle the user record, if any: commit to the system trail
354 	 * and audit pipes as selected.
355 	 */
356 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
357 	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
358 		AUDIT_WORKER_LOCK_ASSERT();
359 		audit_record_write(audit_vp, audit_cred, ar->k_udata,
360 		    ar->k_ulen);
361 	}
362 
363 	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
364 	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
365 		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
366 
367 	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
368 	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
369 	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0 &&
370 	    (ar->k_ar_commit & AR_PRESELECT_DTRACE) == 0))
371 		goto out;
372 
373 	auid = ar->k_ar.ar_subj_auid;
374 	event = ar->k_ar.ar_event;
375 	class = au_event_class(event);
376 	if (ar->k_ar.ar_errno == 0)
377 		sorf = AU_PRS_SUCCESS;
378 	else
379 		sorf = AU_PRS_FAILURE;
380 
381 	error = kaudit_to_bsm(ar, &bsm);
382 	switch (error) {
383 	case BSM_NOAUDIT:
384 		goto out;
385 
386 	case BSM_FAILURE:
387 		printf("audit_worker_process_record: BSM_FAILURE\n");
388 		goto out;
389 
390 	case BSM_SUCCESS:
391 		break;
392 
393 	default:
394 		panic("kaudit_to_bsm returned %d", error);
395 	}
396 
397 	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
398 		AUDIT_WORKER_LOCK_ASSERT();
399 		audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
400 	}
401 
402 	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
403 		audit_pipe_submit(auid, event, class, sorf,
404 		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
405 		    bsm->len);
406 
407 #ifdef KDTRACE_HOOKS
408 	/*
409 	 * Version of the dtaudit commit hook that accepts BSM.
410 	 */
411 	if (ar->k_ar_commit & AR_PRESELECT_DTRACE) {
412 		if (dtaudit_hook_bsm != NULL)
413 			dtaudit_hook_bsm(ar, auid, event, class, sorf,
414 			    bsm->data, bsm->len);
415 	}
416 #endif
417 
418 	kau_free(bsm);
419 out:
420 	if (locked)
421 		AUDIT_WORKER_UNLOCK();
422 }
423 
424 /*
425  * The audit_worker thread is responsible for watching the event queue,
426  * dequeueing records, converting them to BSM format, and committing them to
427  * disk.  In order to minimize lock thrashing, records are dequeued in sets
428  * to a thread-local work queue.
429  *
430  * Note: this means that the effect bound on the size of the pending record
431  * queue is 2x the length of the global queue.
432  */
433 static void
audit_worker(void * arg)434 audit_worker(void *arg)
435 {
436 	struct kaudit_queue ar_worklist;
437 	struct kaudit_record *ar;
438 	int lowater_signal;
439 
440 	TAILQ_INIT(&ar_worklist);
441 	mtx_lock(&audit_mtx);
442 	while (1) {
443 		mtx_assert(&audit_mtx, MA_OWNED);
444 
445 		/*
446 		 * Wait for a record.
447 		 */
448 		while (TAILQ_EMPTY(&audit_q))
449 			cv_wait(&audit_worker_cv, &audit_mtx);
450 
451 		/*
452 		 * If there are records in the global audit record queue,
453 		 * transfer them to a thread-local queue and process them
454 		 * one by one.  If we cross the low watermark threshold,
455 		 * signal any waiting processes that they may wake up and
456 		 * continue generating records.
457 		 */
458 		lowater_signal = 0;
459 		while ((ar = TAILQ_FIRST(&audit_q))) {
460 			TAILQ_REMOVE(&audit_q, ar, k_q);
461 			audit_q_len--;
462 			if (audit_q_len == audit_qctrl.aq_lowater)
463 				lowater_signal++;
464 			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
465 		}
466 		if (lowater_signal)
467 			cv_broadcast(&audit_watermark_cv);
468 
469 		mtx_unlock(&audit_mtx);
470 		while ((ar = TAILQ_FIRST(&ar_worklist))) {
471 			TAILQ_REMOVE(&ar_worklist, ar, k_q);
472 			audit_worker_process_record(ar);
473 			audit_free(ar);
474 		}
475 		mtx_lock(&audit_mtx);
476 	}
477 }
478 
479 /*
480  * audit_rotate_vnode() is called by a user or kernel thread to configure or
481  * de-configure auditing on a vnode.  The arguments are the replacement
482  * credential (referenced) and vnode (referenced and opened) to substitute
483  * for the current credential and vnode, if any.  If either is set to NULL,
484  * both should be NULL, and this is used to indicate that audit is being
485  * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
486  * generating rotation requests to auditd.
487  */
488 void
audit_rotate_vnode(struct ucred * cred,struct vnode * vp)489 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
490 {
491 	struct ucred *old_audit_cred;
492 	struct vnode *old_audit_vp;
493 	struct vattr vattr;
494 
495 	KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
496 	    ("audit_rotate_vnode: cred %p vp %p", cred, vp));
497 
498 	if (vp != NULL) {
499 		vn_lock(vp, LK_SHARED | LK_RETRY);
500 		if (VOP_GETATTR(vp, &vattr, cred) != 0)
501 			vattr.va_size = 0;
502 		VOP_UNLOCK(vp);
503 	} else {
504 		vattr.va_size = 0;
505 	}
506 
507 	/*
508 	 * Rotate the vnode/cred, and clear the rotate flag so that we will
509 	 * send a rotate trigger if the new file fills.
510 	 */
511 	AUDIT_WORKER_LOCK();
512 	old_audit_cred = audit_cred;
513 	old_audit_vp = audit_vp;
514 	audit_cred = cred;
515 	audit_vp = vp;
516 	audit_size = vattr.va_size;
517 	audit_file_rotate_wait = 0;
518 	audit_trail_enabled = (audit_vp != NULL);
519 	audit_syscalls_enabled_update();
520 	AUDIT_WORKER_UNLOCK();
521 
522 	/*
523 	 * If there was an old vnode/credential, close and free.
524 	 */
525 	if (old_audit_vp != NULL) {
526 		vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
527 		    curthread);
528 		crfree(old_audit_cred);
529 	}
530 }
531 
532 void
audit_worker_init(void)533 audit_worker_init(void)
534 {
535 	int error;
536 
537 	AUDIT_WORKER_LOCK_INIT();
538 	error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
539 	    0, "audit");
540 	if (error)
541 		panic("audit_worker_init: kproc_create returned %d", error);
542 }
543