1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/conf.h>
34 #include <sys/types.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/devicestat.h>
38 #include <sys/errno.h>
39 #include <sys/fcntl.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/poll.h>
43 #include <sys/selinfo.h>
44 #include <sys/sdt.h>
45 #include <sys/sysent.h>
46 #include <sys/taskqueue.h>
47 #include <vm/uma.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50
51 #include <machine/bus.h>
52
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_xpt.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_compat.h>
61 #include <cam/cam_xpt_periph.h>
62
63 #include <cam/scsi/scsi_pass.h>
64
65 #define PERIPH_NAME "pass"
66
67 typedef enum {
68 PASS_FLAG_OPEN = 0x01,
69 PASS_FLAG_LOCKED = 0x02,
70 PASS_FLAG_INVALID = 0x04,
71 PASS_FLAG_INITIAL_PHYSPATH = 0x08,
72 PASS_FLAG_ZONE_INPROG = 0x10,
73 PASS_FLAG_ZONE_VALID = 0x20,
74 PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
75 PASS_FLAG_ABANDONED_REF_SET = 0x80
76 } pass_flags;
77
78 typedef enum {
79 PASS_STATE_NORMAL
80 } pass_state;
81
82 typedef enum {
83 PASS_CCB_BUFFER_IO,
84 PASS_CCB_QUEUED_IO
85 } pass_ccb_types;
86
87 #define ccb_type ppriv_field0
88 #define ccb_ioreq ppriv_ptr1
89
90 /*
91 * The maximum number of memory segments we preallocate.
92 */
93 #define PASS_MAX_SEGS 16
94
95 typedef enum {
96 PASS_IO_NONE = 0x00,
97 PASS_IO_USER_SEG_MALLOC = 0x01,
98 PASS_IO_KERN_SEG_MALLOC = 0x02,
99 PASS_IO_ABANDONED = 0x04
100 } pass_io_flags;
101
102 struct pass_io_req {
103 union ccb ccb;
104 union ccb *alloced_ccb;
105 union ccb *user_ccb_ptr;
106 camq_entry user_periph_links;
107 ccb_ppriv_area user_periph_priv;
108 struct cam_periph_map_info mapinfo;
109 pass_io_flags flags;
110 ccb_flags data_flags;
111 int num_user_segs;
112 bus_dma_segment_t user_segs[PASS_MAX_SEGS];
113 int num_kern_segs;
114 bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
115 bus_dma_segment_t *user_segptr;
116 bus_dma_segment_t *kern_segptr;
117 int num_bufs;
118 uint32_t dirs[CAM_PERIPH_MAXMAPS];
119 uint32_t lengths[CAM_PERIPH_MAXMAPS];
120 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
121 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
122 struct bintime start_time;
123 TAILQ_ENTRY(pass_io_req) links;
124 };
125
126 struct pass_softc {
127 pass_state state;
128 pass_flags flags;
129 uint8_t pd_type;
130 int open_count;
131 u_int maxio;
132 struct devstat *device_stats;
133 struct cdev *dev;
134 struct cdev *alias_dev;
135 struct task add_physpath_task;
136 struct task shutdown_kqueue_task;
137 struct selinfo read_select;
138 TAILQ_HEAD(, pass_io_req) incoming_queue;
139 TAILQ_HEAD(, pass_io_req) active_queue;
140 TAILQ_HEAD(, pass_io_req) abandoned_queue;
141 TAILQ_HEAD(, pass_io_req) done_queue;
142 struct cam_periph *periph;
143 char zone_name[12];
144 char io_zone_name[12];
145 uma_zone_t pass_zone;
146 uma_zone_t pass_io_zone;
147 size_t io_zone_size;
148 };
149
150 static d_open_t passopen;
151 static d_close_t passclose;
152 static d_ioctl_t passioctl;
153 static d_ioctl_t passdoioctl;
154 static d_poll_t passpoll;
155 static d_kqfilter_t passkqfilter;
156 static void passreadfiltdetach(struct knote *kn);
157 static int passreadfilt(struct knote *kn, long hint);
158
159 static periph_init_t passinit;
160 static periph_ctor_t passregister;
161 static periph_oninv_t passoninvalidate;
162 static periph_dtor_t passcleanup;
163 static periph_start_t passstart;
164 static void pass_shutdown_kqueue(void *context, int pending);
165 static void pass_add_physpath(void *context, int pending);
166 static void passasync(void *callback_arg, uint32_t code,
167 struct cam_path *path, void *arg);
168 static void passdone(struct cam_periph *periph,
169 union ccb *done_ccb);
170 static int passcreatezone(struct cam_periph *periph);
171 static void passiocleanup(struct pass_softc *softc,
172 struct pass_io_req *io_req);
173 static int passcopysglist(struct cam_periph *periph,
174 struct pass_io_req *io_req,
175 ccb_flags direction);
176 static int passmemsetup(struct cam_periph *periph,
177 struct pass_io_req *io_req);
178 static int passmemdone(struct cam_periph *periph,
179 struct pass_io_req *io_req);
180 static int passerror(union ccb *ccb, uint32_t cam_flags,
181 uint32_t sense_flags);
182 static int passsendccb(struct cam_periph *periph, union ccb *ccb,
183 union ccb *inccb);
184 static void passflags(union ccb *ccb, uint32_t *cam_flags,
185 uint32_t *sense_flags);
186
187 static struct periph_driver passdriver =
188 {
189 passinit, PERIPH_NAME,
190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196 .d_version = D_VERSION,
197 .d_flags = D_TRACKCLOSE,
198 .d_open = passopen,
199 .d_close = passclose,
200 .d_ioctl = passioctl,
201 .d_poll = passpoll,
202 .d_kqfilter = passkqfilter,
203 .d_name = PERIPH_NAME,
204 };
205
206 static const struct filterops passread_filtops = {
207 .f_isfd = 1,
208 .f_detach = passreadfiltdetach,
209 .f_event = passreadfilt
210 };
211
212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214 static void
passinit(void)215 passinit(void)
216 {
217 cam_status status;
218
219 /*
220 * Install a global async callback. This callback will
221 * receive async callbacks like "new device found".
222 */
223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225 if (status != CAM_REQ_CMP) {
226 printf("pass: Failed to attach master async callback "
227 "due to status 0x%x!\n", status);
228 }
229
230 }
231
232 static void
passrejectios(struct cam_periph * periph)233 passrejectios(struct cam_periph *periph)
234 {
235 struct pass_io_req *io_req, *io_req2;
236 struct pass_softc *softc;
237
238 softc = (struct pass_softc *)periph->softc;
239
240 /*
241 * The user can no longer get status for I/O on the done queue, so
242 * clean up all outstanding I/O on the done queue.
243 */
244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245 TAILQ_REMOVE(&softc->done_queue, io_req, links);
246 passiocleanup(softc, io_req);
247 uma_zfree(softc->pass_zone, io_req);
248 }
249
250 /*
251 * The underlying device is gone, so we can't issue these I/Os.
252 * The devfs node has been shut down, so we can't return status to
253 * the user. Free any I/O left on the incoming queue.
254 */
255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257 passiocleanup(softc, io_req);
258 uma_zfree(softc->pass_zone, io_req);
259 }
260
261 /*
262 * Normally we would put I/Os on the abandoned queue and acquire a
263 * reference when we saw the final close. But, the device went
264 * away and devfs may have moved everything off to deadfs by the
265 * time the I/O done callback is called; as a result, we won't see
266 * any more closes. So, if we have any active I/Os, we need to put
267 * them on the abandoned queue. When the abandoned queue is empty,
268 * we'll release the remaining reference (see below) to the peripheral.
269 */
270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271 TAILQ_REMOVE(&softc->active_queue, io_req, links);
272 io_req->flags |= PASS_IO_ABANDONED;
273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274 }
275
276 /*
277 * If we put any I/O on the abandoned queue, acquire a reference.
278 */
279 if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281 cam_periph_doacquire(periph);
282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283 }
284 }
285
286 static void
passdevgonecb(void * arg)287 passdevgonecb(void *arg)
288 {
289 struct cam_periph *periph;
290 struct mtx *mtx;
291 struct pass_softc *softc;
292 int i;
293
294 periph = (struct cam_periph *)arg;
295 mtx = cam_periph_mtx(periph);
296 mtx_lock(mtx);
297
298 softc = (struct pass_softc *)periph->softc;
299 KASSERT(softc->open_count >= 0, ("Negative open count %d",
300 softc->open_count));
301
302 /*
303 * When we get this callback, we will get no more close calls from
304 * devfs. So if we have any dangling opens, we need to release the
305 * reference held for that particular context.
306 */
307 for (i = 0; i < softc->open_count; i++)
308 cam_periph_release_locked(periph);
309
310 softc->open_count = 0;
311
312 /*
313 * Release the reference held for the device node, it is gone now.
314 * Accordingly, inform all queued I/Os of their fate.
315 */
316 cam_periph_release_locked(periph);
317 passrejectios(periph);
318
319 /*
320 * We reference the SIM lock directly here, instead of using
321 * cam_periph_unlock(). The reason is that the final call to
322 * cam_periph_release_locked() above could result in the periph
323 * getting freed. If that is the case, dereferencing the periph
324 * with a cam_periph_unlock() call would cause a page fault.
325 */
326 mtx_unlock(mtx);
327
328 /*
329 * We have to remove our kqueue context from a thread because it
330 * may sleep. It would be nice if we could get a callback from
331 * kqueue when it is done cleaning up resources.
332 */
333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334 }
335
336 static void
passoninvalidate(struct cam_periph * periph)337 passoninvalidate(struct cam_periph *periph)
338 {
339 struct pass_softc *softc;
340
341 softc = (struct pass_softc *)periph->softc;
342
343 /*
344 * De-register any async callbacks.
345 */
346 xpt_register_async(0, passasync, periph, periph->path);
347
348 softc->flags |= PASS_FLAG_INVALID;
349
350 /*
351 * Tell devfs this device has gone away, and ask for a callback
352 * when it has cleaned up its state.
353 */
354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355 }
356
357 static void
passcleanup(struct cam_periph * periph)358 passcleanup(struct cam_periph *periph)
359 {
360 struct pass_softc *softc;
361
362 softc = (struct pass_softc *)periph->softc;
363
364 cam_periph_assert(periph, MA_OWNED);
365 KASSERT(TAILQ_EMPTY(&softc->active_queue),
366 ("%s called when there are commands on the active queue!\n",
367 __func__));
368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369 ("%s called when there are commands on the abandoned queue!\n",
370 __func__));
371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372 ("%s called when there are commands on the incoming queue!\n",
373 __func__));
374 KASSERT(TAILQ_EMPTY(&softc->done_queue),
375 ("%s called when there are commands on the done queue!\n",
376 __func__));
377
378 devstat_remove_entry(softc->device_stats);
379
380 cam_periph_unlock(periph);
381
382 /*
383 * We call taskqueue_drain() for the physpath task to make sure it
384 * is complete. We drop the lock because this can potentially
385 * sleep. XXX KDM that is bad. Need a way to get a callback when
386 * a taskqueue is drained.
387 *
388 * Note that we don't drain the kqueue shutdown task queue. This
389 * is because we hold a reference on the periph for kqueue, and
390 * release that reference from the kqueue shutdown task queue. So
391 * we cannot come into this routine unless we've released that
392 * reference. Also, because that could be the last reference, we
393 * could be called from the cam_periph_release() call in
394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
395 * would deadlock. It would be preferable if we had a way to
396 * get a callback when a taskqueue is done.
397 */
398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400 /*
401 * It should be safe to destroy the zones from here, because all
402 * of the references to this peripheral have been freed, and all
403 * I/O has been terminated and freed. We check the zones for NULL
404 * because they may not have been allocated yet if the device went
405 * away before any asynchronous I/O has been issued.
406 */
407 if (softc->pass_zone != NULL)
408 uma_zdestroy(softc->pass_zone);
409 if (softc->pass_io_zone != NULL)
410 uma_zdestroy(softc->pass_io_zone);
411
412 cam_periph_lock(periph);
413
414 free(softc, M_DEVBUF);
415 }
416
417 static void
pass_shutdown_kqueue(void * context,int pending)418 pass_shutdown_kqueue(void *context, int pending)
419 {
420 struct cam_periph *periph;
421 struct pass_softc *softc;
422
423 periph = context;
424 softc = periph->softc;
425
426 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
427 knlist_destroy(&softc->read_select.si_note);
428
429 /*
430 * Release the reference we held for kqueue.
431 */
432 cam_periph_release(periph);
433 }
434
435 static void
pass_add_physpath(void * context,int pending)436 pass_add_physpath(void *context, int pending)
437 {
438 struct cam_periph *periph;
439 struct pass_softc *softc;
440 struct mtx *mtx;
441 char *physpath;
442
443 /*
444 * If we have one, create a devfs alias for our
445 * physical path.
446 */
447 periph = context;
448 softc = periph->softc;
449 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
450 mtx = cam_periph_mtx(periph);
451 mtx_lock(mtx);
452
453 if (periph->flags & CAM_PERIPH_INVALID)
454 goto out;
455
456 if (xpt_getattr(physpath, MAXPATHLEN,
457 "GEOM::physpath", periph->path) == 0
458 && strlen(physpath) != 0) {
459 mtx_unlock(mtx);
460 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
461 &softc->alias_dev, softc->dev,
462 softc->alias_dev, physpath);
463 mtx_lock(mtx);
464 }
465
466 out:
467 /*
468 * Now that we've made our alias, we no longer have to have a
469 * reference to the device.
470 */
471 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
472 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
473
474 /*
475 * We always acquire a reference to the periph before queueing this
476 * task queue function, so it won't go away before we run.
477 */
478 while (pending-- > 0)
479 cam_periph_release_locked(periph);
480 mtx_unlock(mtx);
481
482 free(physpath, M_DEVBUF);
483 }
484
485 static void
passasync(void * callback_arg,uint32_t code,struct cam_path * path,void * arg)486 passasync(void *callback_arg, uint32_t code,
487 struct cam_path *path, void *arg)
488 {
489 struct cam_periph *periph;
490
491 periph = (struct cam_periph *)callback_arg;
492
493 switch (code) {
494 case AC_FOUND_DEVICE:
495 {
496 struct ccb_getdev *cgd;
497 cam_status status;
498
499 cgd = (struct ccb_getdev *)arg;
500 if (cgd == NULL)
501 break;
502
503 /*
504 * Allocate a peripheral instance for
505 * this device and start the probe
506 * process.
507 */
508 status = cam_periph_alloc(passregister, passoninvalidate,
509 passcleanup, passstart, PERIPH_NAME,
510 CAM_PERIPH_BIO, path,
511 passasync, AC_FOUND_DEVICE, cgd);
512
513 if (status != CAM_REQ_CMP
514 && status != CAM_REQ_INPROG) {
515 const struct cam_status_entry *entry;
516
517 entry = cam_fetch_status_entry(status);
518
519 printf("passasync: Unable to attach new device "
520 "due to status %#x: %s\n", status, entry ?
521 entry->status_text : "Unknown");
522 }
523
524 break;
525 }
526 case AC_ADVINFO_CHANGED:
527 {
528 uintptr_t buftype;
529
530 buftype = (uintptr_t)arg;
531 if (buftype == CDAI_TYPE_PHYS_PATH) {
532 struct pass_softc *softc;
533
534 softc = (struct pass_softc *)periph->softc;
535 /*
536 * Acquire a reference to the periph before we
537 * start the taskqueue, so that we don't run into
538 * a situation where the periph goes away before
539 * the task queue has a chance to run.
540 */
541 if (cam_periph_acquire(periph) != 0)
542 break;
543
544 taskqueue_enqueue(taskqueue_thread,
545 &softc->add_physpath_task);
546 }
547 break;
548 }
549 default:
550 cam_periph_async(periph, code, path, arg);
551 break;
552 }
553 }
554
555 static cam_status
passregister(struct cam_periph * periph,void * arg)556 passregister(struct cam_periph *periph, void *arg)
557 {
558 struct pass_softc *softc;
559 struct ccb_getdev *cgd;
560 struct ccb_pathinq cpi;
561 struct make_dev_args args;
562 int error, no_tags;
563
564 cgd = (struct ccb_getdev *)arg;
565 if (cgd == NULL) {
566 printf("%s: no getdev CCB, can't register device\n", __func__);
567 return(CAM_REQ_CMP_ERR);
568 }
569
570 softc = (struct pass_softc *)malloc(sizeof(*softc),
571 M_DEVBUF, M_NOWAIT);
572
573 if (softc == NULL) {
574 printf("%s: Unable to probe new device. "
575 "Unable to allocate softc\n", __func__);
576 return(CAM_REQ_CMP_ERR);
577 }
578
579 bzero(softc, sizeof(*softc));
580 softc->state = PASS_STATE_NORMAL;
581 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
582 softc->pd_type = SID_TYPE(&cgd->inq_data);
583 else if (cgd->protocol == PROTO_SATAPM)
584 softc->pd_type = T_ENCLOSURE;
585 else
586 softc->pd_type = T_DIRECT;
587
588 periph->softc = softc;
589 softc->periph = periph;
590 TAILQ_INIT(&softc->incoming_queue);
591 TAILQ_INIT(&softc->active_queue);
592 TAILQ_INIT(&softc->abandoned_queue);
593 TAILQ_INIT(&softc->done_queue);
594 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
595 periph->periph_name, periph->unit_number);
596 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
597 periph->periph_name, periph->unit_number);
598 softc->io_zone_size = maxphys;
599 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
600
601 xpt_path_inq(&cpi, periph->path);
602
603 if (cpi.maxio == 0)
604 softc->maxio = DFLTPHYS; /* traditional default */
605 else if (cpi.maxio > maxphys)
606 softc->maxio = maxphys; /* for safety */
607 else
608 softc->maxio = cpi.maxio; /* real value */
609
610 if (cpi.hba_misc & PIM_UNMAPPED)
611 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
612
613 /*
614 * We pass in 0 for a blocksize, since we don't know what the blocksize
615 * of this device is, if it even has a blocksize.
616 *
617 * Note: no_tags is valid only for SCSI peripherals, but we don't do any
618 * devstat accounting for tags on any other transport. SCSI is the only
619 * transport that uses the tag_action (ata has only vestigial references
620 * to it, others ignore it entirely).
621 */
622 cam_periph_unlock(periph);
623 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
624 softc->device_stats = devstat_new_entry(PERIPH_NAME,
625 periph->unit_number, 0,
626 DEVSTAT_NO_BLOCKSIZE
627 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
628 softc->pd_type |
629 XPORT_DEVSTAT_TYPE(cpi.transport) |
630 DEVSTAT_TYPE_PASS,
631 DEVSTAT_PRIORITY_PASS);
632
633 /*
634 * Initialize the taskqueue handler for shutting down kqueue.
635 */
636 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
637 pass_shutdown_kqueue, periph);
638
639 /*
640 * Acquire a reference to the periph that we can release once we've
641 * cleaned up the kqueue.
642 */
643 if (cam_periph_acquire(periph) != 0) {
644 xpt_print(periph->path, "%s: lost periph during "
645 "registration!\n", __func__);
646 cam_periph_lock(periph);
647 return (CAM_REQ_CMP_ERR);
648 }
649
650 /*
651 * Acquire a reference to the periph before we create the devfs
652 * instance for it. We'll release this reference once the devfs
653 * instance has been freed.
654 */
655 if (cam_periph_acquire(periph) != 0) {
656 xpt_print(periph->path, "%s: lost periph during "
657 "registration!\n", __func__);
658 cam_periph_lock(periph);
659 return (CAM_REQ_CMP_ERR);
660 }
661
662 /* Register the device */
663 make_dev_args_init(&args);
664 args.mda_devsw = &pass_cdevsw;
665 args.mda_unit = periph->unit_number;
666 args.mda_uid = UID_ROOT;
667 args.mda_gid = GID_OPERATOR;
668 args.mda_mode = 0600;
669 args.mda_si_drv1 = periph;
670 args.mda_flags = MAKEDEV_NOWAIT;
671 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
672 periph->unit_number);
673 if (error != 0) {
674 cam_periph_lock(periph);
675 cam_periph_release_locked(periph);
676 return (CAM_REQ_CMP_ERR);
677 }
678
679 /*
680 * Hold a reference to the periph before we create the physical
681 * path alias so it can't go away.
682 */
683 if (cam_periph_acquire(periph) != 0) {
684 xpt_print(periph->path, "%s: lost periph during "
685 "registration!\n", __func__);
686 cam_periph_lock(periph);
687 return (CAM_REQ_CMP_ERR);
688 }
689
690 cam_periph_lock(periph);
691
692 TASK_INIT(&softc->add_physpath_task, /*priority*/0,
693 pass_add_physpath, periph);
694
695 /*
696 * See if physical path information is already available.
697 */
698 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
699
700 /*
701 * Add an async callback so that we get notified if
702 * this device goes away or its physical path
703 * (stored in the advanced info data of the EDT) has
704 * changed.
705 */
706 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
707 passasync, periph, periph->path);
708
709 if (bootverbose)
710 xpt_announce_periph(periph, NULL);
711
712 return(CAM_REQ_CMP);
713 }
714
715 static int
passopen(struct cdev * dev,int flags,int fmt,struct thread * td)716 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
717 {
718 struct cam_periph *periph;
719 struct pass_softc *softc;
720 int error;
721
722 periph = (struct cam_periph *)dev->si_drv1;
723 if (cam_periph_acquire(periph) != 0)
724 return (ENXIO);
725
726 cam_periph_lock(periph);
727
728 softc = (struct pass_softc *)periph->softc;
729
730 if (softc->flags & PASS_FLAG_INVALID) {
731 cam_periph_release_locked(periph);
732 cam_periph_unlock(periph);
733 return(ENXIO);
734 }
735
736 /*
737 * Don't allow access when we're running at a high securelevel.
738 */
739 error = securelevel_gt(td->td_ucred, 1);
740 if (error) {
741 cam_periph_release_locked(periph);
742 cam_periph_unlock(periph);
743 return(error);
744 }
745
746 /*
747 * Only allow read-write access.
748 */
749 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
750 cam_periph_release_locked(periph);
751 cam_periph_unlock(periph);
752 return(EPERM);
753 }
754
755 /*
756 * We don't allow nonblocking access.
757 */
758 if ((flags & O_NONBLOCK) != 0) {
759 xpt_print(periph->path, "can't do nonblocking access\n");
760 cam_periph_release_locked(periph);
761 cam_periph_unlock(periph);
762 return(EINVAL);
763 }
764
765 softc->open_count++;
766
767 cam_periph_unlock(periph);
768
769 return (error);
770 }
771
772 static int
passclose(struct cdev * dev,int flag,int fmt,struct thread * td)773 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
774 {
775 struct cam_periph *periph;
776 struct pass_softc *softc;
777 struct mtx *mtx;
778
779 periph = (struct cam_periph *)dev->si_drv1;
780 mtx = cam_periph_mtx(periph);
781 mtx_lock(mtx);
782
783 softc = periph->softc;
784 softc->open_count--;
785
786 if (softc->open_count == 0) {
787 struct pass_io_req *io_req, *io_req2;
788
789 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
790 TAILQ_REMOVE(&softc->done_queue, io_req, links);
791 passiocleanup(softc, io_req);
792 uma_zfree(softc->pass_zone, io_req);
793 }
794
795 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
796 io_req2) {
797 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
798 passiocleanup(softc, io_req);
799 uma_zfree(softc->pass_zone, io_req);
800 }
801
802 /*
803 * If there are any active I/Os, we need to forcibly acquire a
804 * reference to the peripheral so that we don't go away
805 * before they complete. We'll release the reference when
806 * the abandoned queue is empty.
807 */
808 io_req = TAILQ_FIRST(&softc->active_queue);
809 if ((io_req != NULL)
810 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
811 cam_periph_doacquire(periph);
812 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
813 }
814
815 /*
816 * Since the I/O in the active queue is not under our
817 * control, just set a flag so that we can clean it up when
818 * it completes and put it on the abandoned queue. This
819 * will prevent our sending spurious completions in the
820 * event that the device is opened again before these I/Os
821 * complete.
822 */
823 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
824 io_req2) {
825 TAILQ_REMOVE(&softc->active_queue, io_req, links);
826 io_req->flags |= PASS_IO_ABANDONED;
827 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
828 links);
829 }
830 }
831
832 cam_periph_release_locked(periph);
833
834 /*
835 * We reference the lock directly here, instead of using
836 * cam_periph_unlock(). The reason is that the call to
837 * cam_periph_release_locked() above could result in the periph
838 * getting freed. If that is the case, dereferencing the periph
839 * with a cam_periph_unlock() call would cause a page fault.
840 *
841 * cam_periph_release() avoids this problem using the same method,
842 * but we're manually acquiring and dropping the lock here to
843 * protect the open count and avoid another lock acquisition and
844 * release.
845 */
846 mtx_unlock(mtx);
847
848 return (0);
849 }
850
851 static void
passstart(struct cam_periph * periph,union ccb * start_ccb)852 passstart(struct cam_periph *periph, union ccb *start_ccb)
853 {
854 struct pass_softc *softc;
855
856 softc = (struct pass_softc *)periph->softc;
857
858 switch (softc->state) {
859 case PASS_STATE_NORMAL: {
860 struct pass_io_req *io_req;
861
862 /*
863 * Check for any queued I/O requests that require an
864 * allocated slot.
865 */
866 io_req = TAILQ_FIRST(&softc->incoming_queue);
867 if (io_req == NULL) {
868 xpt_release_ccb(start_ccb);
869 break;
870 }
871 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
872 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
873 /*
874 * Merge the user's CCB into the allocated CCB.
875 */
876 xpt_merge_ccb(start_ccb, &io_req->ccb);
877 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
878 start_ccb->ccb_h.ccb_ioreq = io_req;
879 start_ccb->ccb_h.cbfcnp = passdone;
880 io_req->alloced_ccb = start_ccb;
881 binuptime(&io_req->start_time);
882 devstat_start_transaction(softc->device_stats,
883 &io_req->start_time);
884
885 xpt_action(start_ccb);
886
887 /*
888 * If we have any more I/O waiting, schedule ourselves again.
889 */
890 if (!TAILQ_EMPTY(&softc->incoming_queue))
891 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
892 break;
893 }
894 default:
895 break;
896 }
897 }
898
899 static void
passdone(struct cam_periph * periph,union ccb * done_ccb)900 passdone(struct cam_periph *periph, union ccb *done_ccb)
901 {
902 struct pass_softc *softc;
903 struct ccb_hdr *hdr;
904
905 softc = (struct pass_softc *)periph->softc;
906
907 cam_periph_assert(periph, MA_OWNED);
908
909 hdr = &done_ccb->ccb_h;
910 switch (hdr->ccb_type) {
911 case PASS_CCB_QUEUED_IO: {
912 struct pass_io_req *io_req;
913
914 io_req = hdr->ccb_ioreq;
915 #if 0
916 xpt_print(periph->path, "%s: called for user CCB %p\n",
917 __func__, io_req->user_ccb_ptr);
918 #endif
919 if (((hdr->status & CAM_STATUS_MASK) != CAM_REQ_CMP) &&
920 ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
921 int error;
922 uint32_t cam_flags, sense_flags;
923
924 passflags(done_ccb, &cam_flags, &sense_flags);
925 error = passerror(done_ccb, cam_flags, sense_flags);
926
927 if (error == ERESTART) {
928 KASSERT(((sense_flags & SF_NO_RETRY) == 0),
929 ("passerror returned ERESTART with no retry requested\n"));
930 return;
931 }
932 }
933
934 /*
935 * Copy the allocated CCB contents back to the malloced CCB
936 * so we can give status back to the user when he requests it.
937 */
938 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
939
940 /*
941 * Log data/transaction completion with devstat(9).
942 */
943 switch (hdr->func_code) {
944 case XPT_SCSI_IO:
945 devstat_end_transaction(softc->device_stats,
946 done_ccb->csio.dxfer_len - done_ccb->csio.resid,
947 done_ccb->csio.tag_action & 0x3,
948 ((hdr->flags & CAM_DIR_MASK) ==
949 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
950 (hdr->flags & CAM_DIR_OUT) ?
951 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
952 &io_req->start_time);
953 break;
954 case XPT_ATA_IO:
955 devstat_end_transaction(softc->device_stats,
956 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
957 0, /* Not used in ATA */
958 ((hdr->flags & CAM_DIR_MASK) ==
959 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
960 (hdr->flags & CAM_DIR_OUT) ?
961 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
962 &io_req->start_time);
963 break;
964 case XPT_SMP_IO:
965 /*
966 * XXX KDM this isn't quite right, but there isn't
967 * currently an easy way to represent a bidirectional
968 * transfer in devstat. The only way to do it
969 * and have the byte counts come out right would
970 * mean that we would have to record two
971 * transactions, one for the request and one for the
972 * response. For now, so that we report something,
973 * just treat the entire thing as a read.
974 */
975 devstat_end_transaction(softc->device_stats,
976 done_ccb->smpio.smp_request_len +
977 done_ccb->smpio.smp_response_len,
978 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
979 &io_req->start_time);
980 break;
981 /* XXX XPT_NVME_IO and XPT_NVME_ADMIN need cases here for resid */
982 default:
983 devstat_end_transaction(softc->device_stats, 0,
984 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
985 &io_req->start_time);
986 break;
987 }
988
989 /*
990 * In the normal case, take the completed I/O off of the
991 * active queue and put it on the done queue. Notitfy the
992 * user that we have a completed I/O.
993 */
994 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
995 TAILQ_REMOVE(&softc->active_queue, io_req, links);
996 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
997 selwakeuppri(&softc->read_select, PRIBIO);
998 KNOTE_LOCKED(&softc->read_select.si_note, 0);
999 } else {
1000 /*
1001 * In the case of an abandoned I/O (final close
1002 * without fetching the I/O), take it off of the
1003 * abandoned queue and free it.
1004 */
1005 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1006 passiocleanup(softc, io_req);
1007 uma_zfree(softc->pass_zone, io_req);
1008
1009 /*
1010 * Release the done_ccb here, since we may wind up
1011 * freeing the peripheral when we decrement the
1012 * reference count below.
1013 */
1014 xpt_release_ccb(done_ccb);
1015
1016 /*
1017 * If the abandoned queue is empty, we can release
1018 * our reference to the periph since we won't have
1019 * any more completions coming.
1020 */
1021 if ((TAILQ_EMPTY(&softc->abandoned_queue))
1022 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1023 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1024 cam_periph_release_locked(periph);
1025 }
1026
1027 /*
1028 * We have already released the CCB, so we can
1029 * return.
1030 */
1031 return;
1032 }
1033 break;
1034 }
1035 }
1036 xpt_release_ccb(done_ccb);
1037 }
1038
1039 static int
passcreatezone(struct cam_periph * periph)1040 passcreatezone(struct cam_periph *periph)
1041 {
1042 struct pass_softc *softc;
1043 int error;
1044
1045 error = 0;
1046 softc = (struct pass_softc *)periph->softc;
1047
1048 cam_periph_assert(periph, MA_OWNED);
1049 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1050 ("%s called when the pass(4) zone is valid!\n", __func__));
1051 KASSERT((softc->pass_zone == NULL),
1052 ("%s called when the pass(4) zone is allocated!\n", __func__));
1053
1054 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1055 /*
1056 * We're the first context through, so we need to create
1057 * the pass(4) UMA zone for I/O requests.
1058 */
1059 softc->flags |= PASS_FLAG_ZONE_INPROG;
1060
1061 /*
1062 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1063 * so we cannot hold a mutex while we call it.
1064 */
1065 cam_periph_unlock(periph);
1066
1067 softc->pass_zone = uma_zcreate(softc->zone_name,
1068 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1069 /*align*/ 0, /*flags*/ 0);
1070
1071 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1072 softc->io_zone_size, NULL, NULL, NULL, NULL,
1073 /*align*/ 0, /*flags*/ 0);
1074
1075 cam_periph_lock(periph);
1076
1077 if ((softc->pass_zone == NULL)
1078 || (softc->pass_io_zone == NULL)) {
1079 if (softc->pass_zone == NULL)
1080 xpt_print(periph->path, "unable to allocate "
1081 "IO Req UMA zone\n");
1082 else
1083 xpt_print(periph->path, "unable to allocate "
1084 "IO UMA zone\n");
1085 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1086 goto bailout;
1087 }
1088
1089 /*
1090 * Set the flags appropriately and notify any other waiters.
1091 */
1092 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1093 softc->flags |= PASS_FLAG_ZONE_VALID;
1094 wakeup(&softc->pass_zone);
1095 } else {
1096 /*
1097 * In this case, the UMA zone has not yet been created, but
1098 * another context is in the process of creating it. We
1099 * need to sleep until the creation is either done or has
1100 * failed.
1101 */
1102 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1103 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1104 error = msleep(&softc->pass_zone,
1105 cam_periph_mtx(periph), PRIBIO,
1106 "paszon", 0);
1107 if (error != 0)
1108 goto bailout;
1109 }
1110 /*
1111 * If the zone creation failed, no luck for the user.
1112 */
1113 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1114 error = ENOMEM;
1115 goto bailout;
1116 }
1117 }
1118 bailout:
1119 return (error);
1120 }
1121
1122 static void
passiocleanup(struct pass_softc * softc,struct pass_io_req * io_req)1123 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1124 {
1125 union ccb *ccb;
1126 struct ccb_hdr *hdr;
1127 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1128 int i, numbufs;
1129
1130 ccb = &io_req->ccb;
1131 hdr = &ccb->ccb_h;
1132
1133 switch (hdr->func_code) {
1134 case XPT_DEV_MATCH:
1135 numbufs = min(io_req->num_bufs, 2);
1136
1137 if (numbufs == 1) {
1138 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1139 } else {
1140 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1141 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1142 }
1143 break;
1144 case XPT_SCSI_IO:
1145 case XPT_CONT_TARGET_IO:
1146 data_ptrs[0] = &ccb->csio.data_ptr;
1147 numbufs = min(io_req->num_bufs, 1);
1148 break;
1149 case XPT_ATA_IO:
1150 data_ptrs[0] = &ccb->ataio.data_ptr;
1151 numbufs = min(io_req->num_bufs, 1);
1152 break;
1153 case XPT_SMP_IO:
1154 numbufs = min(io_req->num_bufs, 2);
1155 data_ptrs[0] = &ccb->smpio.smp_request;
1156 data_ptrs[1] = &ccb->smpio.smp_response;
1157 break;
1158 case XPT_DEV_ADVINFO:
1159 numbufs = min(io_req->num_bufs, 1);
1160 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1161 break;
1162 case XPT_NVME_IO:
1163 case XPT_NVME_ADMIN:
1164 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1165 numbufs = min(io_req->num_bufs, 1);
1166 break;
1167 default:
1168 /* allow ourselves to be swapped once again */
1169 return;
1170 break; /* NOTREACHED */
1171 }
1172
1173 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1174 free(io_req->user_segptr, M_SCSIPASS);
1175 io_req->user_segptr = NULL;
1176 }
1177
1178 /*
1179 * We only want to free memory we malloced.
1180 */
1181 if (io_req->data_flags == CAM_DATA_VADDR) {
1182 for (i = 0; i < io_req->num_bufs; i++) {
1183 if (io_req->kern_bufs[i] == NULL)
1184 continue;
1185
1186 free(io_req->kern_bufs[i], M_SCSIPASS);
1187 io_req->kern_bufs[i] = NULL;
1188 }
1189 } else if (io_req->data_flags == CAM_DATA_SG) {
1190 for (i = 0; i < io_req->num_kern_segs; i++) {
1191 if ((uint8_t *)(uintptr_t)
1192 io_req->kern_segptr[i].ds_addr == NULL)
1193 continue;
1194
1195 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1196 io_req->kern_segptr[i].ds_addr);
1197 io_req->kern_segptr[i].ds_addr = 0;
1198 }
1199 }
1200
1201 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1202 free(io_req->kern_segptr, M_SCSIPASS);
1203 io_req->kern_segptr = NULL;
1204 }
1205
1206 if (io_req->data_flags != CAM_DATA_PADDR) {
1207 for (i = 0; i < numbufs; i++) {
1208 /*
1209 * Restore the user's buffer pointers to their
1210 * previous values.
1211 */
1212 if (io_req->user_bufs[i] != NULL)
1213 *data_ptrs[i] = io_req->user_bufs[i];
1214 }
1215 }
1216
1217 }
1218
1219 static int
passcopysglist(struct cam_periph * periph,struct pass_io_req * io_req,ccb_flags direction)1220 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1221 ccb_flags direction)
1222 {
1223 bus_size_t kern_watermark, user_watermark, len_to_copy;
1224 bus_dma_segment_t *user_sglist, *kern_sglist;
1225 int i, j, error;
1226
1227 error = 0;
1228 kern_watermark = 0;
1229 user_watermark = 0;
1230 len_to_copy = 0;
1231 user_sglist = io_req->user_segptr;
1232 kern_sglist = io_req->kern_segptr;
1233
1234 for (i = 0, j = 0; i < io_req->num_user_segs &&
1235 j < io_req->num_kern_segs;) {
1236 uint8_t *user_ptr, *kern_ptr;
1237
1238 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1239 kern_sglist[j].ds_len - kern_watermark);
1240
1241 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1242 user_ptr = user_ptr + user_watermark;
1243 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1244 kern_ptr = kern_ptr + kern_watermark;
1245
1246 user_watermark += len_to_copy;
1247 kern_watermark += len_to_copy;
1248
1249 if (direction == CAM_DIR_IN) {
1250 error = copyout(kern_ptr, user_ptr, len_to_copy);
1251 if (error != 0) {
1252 xpt_print(periph->path, "%s: copyout of %u "
1253 "bytes from %p to %p failed with "
1254 "error %d\n", __func__, len_to_copy,
1255 kern_ptr, user_ptr, error);
1256 goto bailout;
1257 }
1258 } else {
1259 error = copyin(user_ptr, kern_ptr, len_to_copy);
1260 if (error != 0) {
1261 xpt_print(periph->path, "%s: copyin of %u "
1262 "bytes from %p to %p failed with "
1263 "error %d\n", __func__, len_to_copy,
1264 user_ptr, kern_ptr, error);
1265 goto bailout;
1266 }
1267 }
1268
1269 if (user_sglist[i].ds_len == user_watermark) {
1270 i++;
1271 user_watermark = 0;
1272 }
1273
1274 if (kern_sglist[j].ds_len == kern_watermark) {
1275 j++;
1276 kern_watermark = 0;
1277 }
1278 }
1279
1280 bailout:
1281
1282 return (error);
1283 }
1284
1285 static int
passmemsetup(struct cam_periph * periph,struct pass_io_req * io_req)1286 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1287 {
1288 union ccb *ccb;
1289 struct ccb_hdr *hdr;
1290 struct pass_softc *softc;
1291 int numbufs, i;
1292 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1293 uint32_t lengths[CAM_PERIPH_MAXMAPS];
1294 uint32_t dirs[CAM_PERIPH_MAXMAPS];
1295 uint32_t num_segs;
1296 uint16_t *seg_cnt_ptr;
1297 size_t maxmap;
1298 int error;
1299
1300 cam_periph_assert(periph, MA_NOTOWNED);
1301
1302 softc = periph->softc;
1303
1304 error = 0;
1305 ccb = &io_req->ccb;
1306 hdr = &ccb->ccb_h;
1307 maxmap = 0;
1308 num_segs = 0;
1309 seg_cnt_ptr = NULL;
1310
1311 switch(hdr->func_code) {
1312 case XPT_DEV_MATCH:
1313 if (ccb->cdm.match_buf_len == 0) {
1314 printf("%s: invalid match buffer length 0\n", __func__);
1315 return(EINVAL);
1316 }
1317 if (ccb->cdm.pattern_buf_len > 0) {
1318 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns;
1319 lengths[0] = ccb->cdm.pattern_buf_len;
1320 dirs[0] = CAM_DIR_OUT;
1321 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches;
1322 lengths[1] = ccb->cdm.match_buf_len;
1323 dirs[1] = CAM_DIR_IN;
1324 numbufs = 2;
1325 } else {
1326 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches;
1327 lengths[0] = ccb->cdm.match_buf_len;
1328 dirs[0] = CAM_DIR_IN;
1329 numbufs = 1;
1330 }
1331 io_req->data_flags = CAM_DATA_VADDR;
1332 break;
1333 case XPT_SCSI_IO:
1334 case XPT_CONT_TARGET_IO:
1335 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1336 return(0);
1337
1338 /*
1339 * The user shouldn't be able to supply a bio.
1340 */
1341 if ((hdr->flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1342 return (EINVAL);
1343
1344 io_req->data_flags = hdr->flags & CAM_DATA_MASK;
1345
1346 data_ptrs[0] = &ccb->csio.data_ptr;
1347 lengths[0] = ccb->csio.dxfer_len;
1348 dirs[0] = hdr->flags & CAM_DIR_MASK;
1349 num_segs = ccb->csio.sglist_cnt;
1350 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1351 numbufs = 1;
1352 maxmap = softc->maxio;
1353 break;
1354 case XPT_ATA_IO:
1355 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1356 return(0);
1357
1358 /*
1359 * We only support a single virtual address for ATA I/O.
1360 */
1361 if ((hdr->flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1362 return (EINVAL);
1363
1364 io_req->data_flags = CAM_DATA_VADDR;
1365
1366 data_ptrs[0] = &ccb->ataio.data_ptr;
1367 lengths[0] = ccb->ataio.dxfer_len;
1368 dirs[0] = hdr->flags & CAM_DIR_MASK;
1369 numbufs = 1;
1370 maxmap = softc->maxio;
1371 break;
1372 case XPT_SMP_IO:
1373 io_req->data_flags = CAM_DATA_VADDR;
1374
1375 data_ptrs[0] = &ccb->smpio.smp_request;
1376 lengths[0] = ccb->smpio.smp_request_len;
1377 dirs[0] = CAM_DIR_OUT;
1378 data_ptrs[1] = &ccb->smpio.smp_response;
1379 lengths[1] = ccb->smpio.smp_response_len;
1380 dirs[1] = CAM_DIR_IN;
1381 numbufs = 2;
1382 maxmap = softc->maxio;
1383 break;
1384 case XPT_DEV_ADVINFO:
1385 if (ccb->cdai.bufsiz == 0)
1386 return (0);
1387
1388 io_req->data_flags = CAM_DATA_VADDR;
1389
1390 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1391 lengths[0] = ccb->cdai.bufsiz;
1392 dirs[0] = CAM_DIR_IN;
1393 numbufs = 1;
1394 break;
1395 case XPT_NVME_ADMIN:
1396 case XPT_NVME_IO:
1397 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1398 return (0);
1399
1400 io_req->data_flags = hdr->flags & CAM_DATA_MASK;
1401
1402 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1403 lengths[0] = ccb->nvmeio.dxfer_len;
1404 dirs[0] = hdr->flags & CAM_DIR_MASK;
1405 num_segs = ccb->nvmeio.sglist_cnt;
1406 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1407 numbufs = 1;
1408 maxmap = softc->maxio;
1409 break;
1410 default:
1411 return(EINVAL);
1412 break; /* NOTREACHED */
1413 }
1414
1415 io_req->num_bufs = numbufs;
1416
1417 /*
1418 * If there is a maximum, check to make sure that the user's
1419 * request fits within the limit. In general, we should only have
1420 * a maximum length for requests that go to hardware. Otherwise it
1421 * is whatever we're able to malloc.
1422 */
1423 for (i = 0; i < numbufs; i++) {
1424 io_req->user_bufs[i] = *data_ptrs[i];
1425 io_req->dirs[i] = dirs[i];
1426 io_req->lengths[i] = lengths[i];
1427
1428 if (maxmap == 0)
1429 continue;
1430
1431 if (lengths[i] <= maxmap)
1432 continue;
1433
1434 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1435 "bytes\n", __func__, lengths[i], maxmap);
1436 error = EINVAL;
1437 goto bailout;
1438 }
1439
1440 switch (io_req->data_flags) {
1441 case CAM_DATA_VADDR:
1442 /* Map or copy the buffer into kernel address space */
1443 for (i = 0; i < numbufs; i++) {
1444 uint8_t *tmp_buf;
1445
1446 /*
1447 * If for some reason no length is specified, we
1448 * don't need to allocate anything.
1449 */
1450 if (io_req->lengths[i] == 0)
1451 continue;
1452
1453 tmp_buf = malloc(lengths[i], M_SCSIPASS,
1454 M_WAITOK | M_ZERO);
1455 io_req->kern_bufs[i] = tmp_buf;
1456 *data_ptrs[i] = tmp_buf;
1457
1458 #if 0
1459 xpt_print(periph->path, "%s: malloced %p len %u, user "
1460 "buffer %p, operation: %s\n", __func__,
1461 tmp_buf, lengths[i], io_req->user_bufs[i],
1462 (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1463 #endif
1464 /*
1465 * We only need to copy in if the user is writing.
1466 */
1467 if (dirs[i] != CAM_DIR_OUT)
1468 continue;
1469
1470 error = copyin(io_req->user_bufs[i],
1471 io_req->kern_bufs[i], lengths[i]);
1472 if (error != 0) {
1473 xpt_print(periph->path, "%s: copy of user "
1474 "buffer from %p to %p failed with "
1475 "error %d\n", __func__,
1476 io_req->user_bufs[i],
1477 io_req->kern_bufs[i], error);
1478 goto bailout;
1479 }
1480 }
1481 break;
1482 case CAM_DATA_PADDR:
1483 /* Pass down the pointer as-is */
1484 break;
1485 case CAM_DATA_SG: {
1486 size_t sg_length, size_to_go, alloc_size;
1487 uint32_t num_segs_needed;
1488
1489 /*
1490 * Copy the user S/G list in, and then copy in the
1491 * individual segments.
1492 */
1493 /*
1494 * We shouldn't see this, but check just in case.
1495 */
1496 if (numbufs != 1) {
1497 xpt_print(periph->path, "%s: cannot currently handle "
1498 "more than one S/G list per CCB\n", __func__);
1499 error = EINVAL;
1500 goto bailout;
1501 }
1502
1503 /*
1504 * We have to have at least one segment.
1505 */
1506 if (num_segs == 0) {
1507 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1508 "but sglist_cnt=0!\n", __func__);
1509 error = EINVAL;
1510 goto bailout;
1511 }
1512
1513 /*
1514 * Make sure the user specified the total length and didn't
1515 * just leave it to us to decode the S/G list.
1516 */
1517 if (lengths[0] == 0) {
1518 xpt_print(periph->path, "%s: no dxfer_len specified, "
1519 "but CAM_DATA_SG flag is set!\n", __func__);
1520 error = EINVAL;
1521 goto bailout;
1522 }
1523
1524 /*
1525 * We allocate buffers in io_zone_size increments for an
1526 * S/G list. This will generally be maxphys.
1527 */
1528 if (lengths[0] <= softc->io_zone_size)
1529 num_segs_needed = 1;
1530 else {
1531 num_segs_needed = lengths[0] / softc->io_zone_size;
1532 if ((lengths[0] % softc->io_zone_size) != 0)
1533 num_segs_needed++;
1534 }
1535
1536 /* Figure out the size of the S/G list */
1537 sg_length = num_segs * sizeof(bus_dma_segment_t);
1538 io_req->num_user_segs = num_segs;
1539 io_req->num_kern_segs = num_segs_needed;
1540
1541 /* Save the user's S/G list pointer for later restoration */
1542 io_req->user_bufs[0] = *data_ptrs[0];
1543
1544 /*
1545 * If we have enough segments allocated by default to handle
1546 * the length of the user's S/G list,
1547 */
1548 if (num_segs > PASS_MAX_SEGS) {
1549 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1550 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1551 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1552 } else
1553 io_req->user_segptr = io_req->user_segs;
1554
1555 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1556 if (error != 0) {
1557 xpt_print(periph->path, "%s: copy of user S/G list "
1558 "from %p to %p failed with error %d\n",
1559 __func__, *data_ptrs[0], io_req->user_segptr,
1560 error);
1561 goto bailout;
1562 }
1563
1564 if (num_segs_needed > PASS_MAX_SEGS) {
1565 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1566 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1567 io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1568 } else {
1569 io_req->kern_segptr = io_req->kern_segs;
1570 }
1571
1572 /*
1573 * Allocate the kernel S/G list.
1574 */
1575 for (size_to_go = lengths[0], i = 0;
1576 size_to_go > 0 && i < num_segs_needed;
1577 i++, size_to_go -= alloc_size) {
1578 uint8_t *kern_ptr;
1579
1580 alloc_size = min(size_to_go, softc->io_zone_size);
1581 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1582 io_req->kern_segptr[i].ds_addr =
1583 (bus_addr_t)(uintptr_t)kern_ptr;
1584 io_req->kern_segptr[i].ds_len = alloc_size;
1585 }
1586 if (size_to_go > 0) {
1587 printf("%s: size_to_go = %zu, software error!\n",
1588 __func__, size_to_go);
1589 error = EINVAL;
1590 goto bailout;
1591 }
1592
1593 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1594 *seg_cnt_ptr = io_req->num_kern_segs;
1595
1596 /*
1597 * We only need to copy data here if the user is writing.
1598 */
1599 if (dirs[0] == CAM_DIR_OUT)
1600 error = passcopysglist(periph, io_req, dirs[0]);
1601 break;
1602 }
1603 case CAM_DATA_SG_PADDR: {
1604 size_t sg_length;
1605
1606 /*
1607 * We shouldn't see this, but check just in case.
1608 */
1609 if (numbufs != 1) {
1610 printf("%s: cannot currently handle more than one "
1611 "S/G list per CCB\n", __func__);
1612 error = EINVAL;
1613 goto bailout;
1614 }
1615
1616 /*
1617 * We have to have at least one segment.
1618 */
1619 if (num_segs == 0) {
1620 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1621 "set, but sglist_cnt=0!\n", __func__);
1622 error = EINVAL;
1623 goto bailout;
1624 }
1625
1626 /*
1627 * Make sure the user specified the total length and didn't
1628 * just leave it to us to decode the S/G list.
1629 */
1630 if (lengths[0] == 0) {
1631 xpt_print(periph->path, "%s: no dxfer_len specified, "
1632 "but CAM_DATA_SG flag is set!\n", __func__);
1633 error = EINVAL;
1634 goto bailout;
1635 }
1636
1637 /* Figure out the size of the S/G list */
1638 sg_length = num_segs * sizeof(bus_dma_segment_t);
1639 io_req->num_user_segs = num_segs;
1640 io_req->num_kern_segs = io_req->num_user_segs;
1641
1642 /* Save the user's S/G list pointer for later restoration */
1643 io_req->user_bufs[0] = *data_ptrs[0];
1644
1645 if (num_segs > PASS_MAX_SEGS) {
1646 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1647 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1648 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1649 } else
1650 io_req->user_segptr = io_req->user_segs;
1651
1652 io_req->kern_segptr = io_req->user_segptr;
1653
1654 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1655 if (error != 0) {
1656 xpt_print(periph->path, "%s: copy of user S/G list "
1657 "from %p to %p failed with error %d\n",
1658 __func__, *data_ptrs[0], io_req->user_segptr,
1659 error);
1660 goto bailout;
1661 }
1662 break;
1663 }
1664 default:
1665 case CAM_DATA_BIO:
1666 /*
1667 * A user shouldn't be attaching a bio to the CCB. It
1668 * isn't a user-accessible structure.
1669 */
1670 error = EINVAL;
1671 break;
1672 }
1673
1674 bailout:
1675 if (error != 0)
1676 passiocleanup(softc, io_req);
1677
1678 return (error);
1679 }
1680
1681 static int
passmemdone(struct cam_periph * periph,struct pass_io_req * io_req)1682 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1683 {
1684 struct pass_softc *softc;
1685 int error;
1686 int i;
1687
1688 error = 0;
1689 softc = (struct pass_softc *)periph->softc;
1690
1691 switch (io_req->data_flags) {
1692 case CAM_DATA_VADDR:
1693 /*
1694 * Copy back to the user buffer if this was a read.
1695 */
1696 for (i = 0; i < io_req->num_bufs; i++) {
1697 if (io_req->dirs[i] != CAM_DIR_IN)
1698 continue;
1699
1700 error = copyout(io_req->kern_bufs[i],
1701 io_req->user_bufs[i], io_req->lengths[i]);
1702 if (error != 0) {
1703 xpt_print(periph->path, "Unable to copy %u "
1704 "bytes from %p to user address %p\n",
1705 io_req->lengths[i],
1706 io_req->kern_bufs[i],
1707 io_req->user_bufs[i]);
1708 goto bailout;
1709 }
1710 }
1711 break;
1712 case CAM_DATA_PADDR:
1713 /* Do nothing. The pointer is a physical address already */
1714 break;
1715 case CAM_DATA_SG:
1716 /*
1717 * Copy back to the user buffer if this was a read.
1718 * Restore the user's S/G list buffer pointer.
1719 */
1720 if (io_req->dirs[0] == CAM_DIR_IN)
1721 error = passcopysglist(periph, io_req, io_req->dirs[0]);
1722 break;
1723 case CAM_DATA_SG_PADDR:
1724 /*
1725 * Restore the user's S/G list buffer pointer. No need to
1726 * copy.
1727 */
1728 break;
1729 default:
1730 case CAM_DATA_BIO:
1731 error = EINVAL;
1732 break;
1733 }
1734
1735 bailout:
1736 /*
1737 * Reset the user's pointers to their original values and free
1738 * allocated memory.
1739 */
1740 passiocleanup(softc, io_req);
1741
1742 return (error);
1743 }
1744
1745 static int
passioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1746 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1747 {
1748 int error;
1749
1750 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1751 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1752 }
1753 return (error);
1754 }
1755
1756 static int
passdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)1757 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1758 {
1759 struct cam_periph *periph;
1760 struct pass_softc *softc;
1761 int error;
1762 uint32_t priority;
1763
1764 periph = (struct cam_periph *)dev->si_drv1;
1765 cam_periph_lock(periph);
1766 softc = (struct pass_softc *)periph->softc;
1767
1768 error = 0;
1769
1770 switch (cmd) {
1771 case CAMIOCOMMAND:
1772 {
1773 union ccb *inccb;
1774 union ccb *ccb;
1775 int ccb_malloced;
1776
1777 inccb = (union ccb *)addr;
1778 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1779 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1780 inccb->csio.bio = NULL;
1781 #endif
1782
1783 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1784 error = EINVAL;
1785 break;
1786 }
1787
1788 /*
1789 * Some CCB types, like scan bus and scan lun can only go
1790 * through the transport layer device.
1791 */
1792 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1793 xpt_print(periph->path, "CCB function code %#x is "
1794 "restricted to the XPT device\n",
1795 inccb->ccb_h.func_code);
1796 error = ENODEV;
1797 break;
1798 }
1799
1800 /* Compatibility for RL/priority-unaware code. */
1801 priority = inccb->ccb_h.pinfo.priority;
1802 if (priority <= CAM_PRIORITY_OOB)
1803 priority += CAM_PRIORITY_OOB + 1;
1804
1805 /*
1806 * Non-immediate CCBs need a CCB from the per-device pool
1807 * of CCBs, which is scheduled by the transport layer.
1808 * Immediate CCBs and user-supplied CCBs should just be
1809 * malloced.
1810 */
1811 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1812 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1813 ccb = cam_periph_getccb(periph, priority);
1814 ccb_malloced = 0;
1815 } else {
1816 ccb = xpt_alloc_ccb_nowait();
1817
1818 if (ccb != NULL)
1819 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1820 priority);
1821 ccb_malloced = 1;
1822 }
1823
1824 if (ccb == NULL) {
1825 xpt_print(periph->path, "unable to allocate CCB\n");
1826 error = ENOMEM;
1827 break;
1828 }
1829
1830 error = passsendccb(periph, ccb, inccb);
1831
1832 if (ccb_malloced)
1833 xpt_free_ccb(ccb);
1834 else
1835 xpt_release_ccb(ccb);
1836
1837 break;
1838 }
1839 case CAMIOQUEUE:
1840 {
1841 struct pass_io_req *io_req;
1842 union ccb **user_ccb, *ccb;
1843 xpt_opcode fc;
1844
1845 #ifdef COMPAT_FREEBSD32
1846 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1847 error = ENOTTY;
1848 goto bailout;
1849 }
1850 #endif
1851 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1852 error = passcreatezone(periph);
1853 if (error != 0)
1854 goto bailout;
1855 }
1856
1857 /*
1858 * We're going to do a blocking allocation for this I/O
1859 * request, so we have to drop the lock.
1860 */
1861 cam_periph_unlock(periph);
1862
1863 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1864 ccb = &io_req->ccb;
1865 user_ccb = (union ccb **)addr;
1866
1867 /*
1868 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1869 * pointer to the user's CCB, so we have to copy the whole
1870 * thing in to a buffer we have allocated (above) instead
1871 * of allowing the ioctl code to malloc a buffer and copy
1872 * it in.
1873 *
1874 * This is an advantage for this asynchronous interface,
1875 * since we don't want the memory to get freed while the
1876 * CCB is outstanding.
1877 */
1878 #if 0
1879 xpt_print(periph->path, "Copying user CCB %p to "
1880 "kernel address %p\n", *user_ccb, ccb);
1881 #endif
1882 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1883 if (error != 0) {
1884 xpt_print(periph->path, "Copy of user CCB %p to "
1885 "kernel address %p failed with error %d\n",
1886 *user_ccb, ccb, error);
1887 goto camioqueue_error;
1888 }
1889 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1890 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1891 ccb->csio.bio = NULL;
1892 #endif
1893
1894 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1895 error = EINVAL;
1896 goto camioqueue_error;
1897 }
1898
1899 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1900 if (ccb->csio.cdb_len > IOCDBLEN) {
1901 error = EINVAL;
1902 goto camioqueue_error;
1903 }
1904 error = copyin(ccb->csio.cdb_io.cdb_ptr,
1905 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1906 if (error != 0)
1907 goto camioqueue_error;
1908 ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1909 }
1910
1911 /*
1912 * Some CCB types, like scan bus and scan lun can only go
1913 * through the transport layer device.
1914 */
1915 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1916 xpt_print(periph->path, "CCB function code %#x is "
1917 "restricted to the XPT device\n",
1918 ccb->ccb_h.func_code);
1919 error = ENODEV;
1920 goto camioqueue_error;
1921 }
1922
1923 /*
1924 * Save the user's CCB pointer as well as his linked list
1925 * pointers and peripheral private area so that we can
1926 * restore these later.
1927 */
1928 io_req->user_ccb_ptr = *user_ccb;
1929 io_req->user_periph_links = ccb->ccb_h.periph_links;
1930 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1931
1932 /*
1933 * Now that we've saved the user's values, we can set our
1934 * own peripheral private entry.
1935 */
1936 ccb->ccb_h.ccb_ioreq = io_req;
1937
1938 /* Compatibility for RL/priority-unaware code. */
1939 priority = ccb->ccb_h.pinfo.priority;
1940 if (priority <= CAM_PRIORITY_OOB)
1941 priority += CAM_PRIORITY_OOB + 1;
1942
1943 /*
1944 * Setup fields in the CCB like the path and the priority.
1945 * The path in particular cannot be done in userland, since
1946 * it is a pointer to a kernel data structure.
1947 */
1948 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1949 ccb->ccb_h.flags);
1950
1951 /*
1952 * Setup our done routine. There is no way for the user to
1953 * have a valid pointer here.
1954 */
1955 ccb->ccb_h.cbfcnp = passdone;
1956
1957 fc = ccb->ccb_h.func_code;
1958 /*
1959 * If this function code has memory that can be mapped in
1960 * or out, we need to call passmemsetup().
1961 */
1962 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1963 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1964 || (fc == XPT_DEV_ADVINFO)
1965 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1966 error = passmemsetup(periph, io_req);
1967 if (error != 0)
1968 goto camioqueue_error;
1969 } else
1970 io_req->mapinfo.num_bufs_used = 0;
1971
1972 cam_periph_lock(periph);
1973
1974 /*
1975 * Everything goes on the incoming queue initially.
1976 */
1977 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1978
1979 /*
1980 * If the CCB is queued, and is not a user CCB, then
1981 * we need to allocate a slot for it. Call xpt_schedule()
1982 * so that our start routine will get called when a CCB is
1983 * available.
1984 */
1985 if ((fc & XPT_FC_QUEUED)
1986 && ((fc & XPT_FC_USER_CCB) == 0)) {
1987 xpt_schedule(periph, priority);
1988 break;
1989 }
1990
1991 /*
1992 * At this point, the CCB in question is either an
1993 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1994 * and therefore should be malloced, not allocated via a slot.
1995 * Remove the CCB from the incoming queue and add it to the
1996 * active queue.
1997 */
1998 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1999 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
2000
2001 xpt_action(ccb);
2002
2003 /*
2004 * If this is not a queued CCB (i.e. it is an immediate CCB),
2005 * then it is already done. We need to put it on the done
2006 * queue for the user to fetch.
2007 */
2008 if ((fc & XPT_FC_QUEUED) == 0) {
2009 TAILQ_REMOVE(&softc->active_queue, io_req, links);
2010 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2011 }
2012 break;
2013
2014 camioqueue_error:
2015 uma_zfree(softc->pass_zone, io_req);
2016 cam_periph_lock(periph);
2017 break;
2018 }
2019 case CAMIOGET:
2020 {
2021 union ccb **user_ccb;
2022 struct pass_io_req *io_req;
2023 int old_error;
2024
2025 #ifdef COMPAT_FREEBSD32
2026 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2027 error = ENOTTY;
2028 goto bailout;
2029 }
2030 #endif
2031 user_ccb = (union ccb **)addr;
2032 old_error = 0;
2033
2034 io_req = TAILQ_FIRST(&softc->done_queue);
2035 if (io_req == NULL) {
2036 error = ENOENT;
2037 break;
2038 }
2039
2040 /*
2041 * Remove the I/O from the done queue.
2042 */
2043 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2044
2045 /*
2046 * We have to drop the lock during the copyout because the
2047 * copyout can result in VM faults that require sleeping.
2048 */
2049 cam_periph_unlock(periph);
2050
2051 /*
2052 * Do any needed copies (e.g. for reads) and revert the
2053 * pointers in the CCB back to the user's pointers.
2054 */
2055 error = passmemdone(periph, io_req);
2056
2057 old_error = error;
2058
2059 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2060 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2061
2062 #if 0
2063 xpt_print(periph->path, "Copying to user CCB %p from "
2064 "kernel address %p\n", *user_ccb, &io_req->ccb);
2065 #endif
2066
2067 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2068 if (error != 0) {
2069 xpt_print(periph->path, "Copy to user CCB %p from "
2070 "kernel address %p failed with error %d\n",
2071 *user_ccb, &io_req->ccb, error);
2072 }
2073
2074 /*
2075 * Prefer the first error we got back, and make sure we
2076 * don't overwrite bad status with good.
2077 */
2078 if (old_error != 0)
2079 error = old_error;
2080
2081 cam_periph_lock(periph);
2082
2083 /*
2084 * At this point, if there was an error, we could potentially
2085 * re-queue the I/O and try again. But why? The error
2086 * would almost certainly happen again. We might as well
2087 * not leak memory.
2088 */
2089 uma_zfree(softc->pass_zone, io_req);
2090 break;
2091 }
2092 default:
2093 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2094 break;
2095 }
2096
2097 bailout:
2098 cam_periph_unlock(periph);
2099
2100 return(error);
2101 }
2102
2103 static int
passpoll(struct cdev * dev,int poll_events,struct thread * td)2104 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2105 {
2106 struct cam_periph *periph;
2107 struct pass_softc *softc;
2108 int revents;
2109
2110 periph = (struct cam_periph *)dev->si_drv1;
2111 softc = (struct pass_softc *)periph->softc;
2112
2113 revents = poll_events & (POLLOUT | POLLWRNORM);
2114 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2115 cam_periph_lock(periph);
2116
2117 if (!TAILQ_EMPTY(&softc->done_queue)) {
2118 revents |= poll_events & (POLLIN | POLLRDNORM);
2119 }
2120 cam_periph_unlock(periph);
2121 if (revents == 0)
2122 selrecord(td, &softc->read_select);
2123 }
2124
2125 return (revents);
2126 }
2127
2128 static int
passkqfilter(struct cdev * dev,struct knote * kn)2129 passkqfilter(struct cdev *dev, struct knote *kn)
2130 {
2131 struct cam_periph *periph;
2132 struct pass_softc *softc;
2133
2134 periph = (struct cam_periph *)dev->si_drv1;
2135 softc = (struct pass_softc *)periph->softc;
2136
2137 kn->kn_hook = (caddr_t)periph;
2138 kn->kn_fop = &passread_filtops;
2139 knlist_add(&softc->read_select.si_note, kn, 0);
2140
2141 return (0);
2142 }
2143
2144 static void
passreadfiltdetach(struct knote * kn)2145 passreadfiltdetach(struct knote *kn)
2146 {
2147 struct cam_periph *periph;
2148 struct pass_softc *softc;
2149
2150 periph = (struct cam_periph *)kn->kn_hook;
2151 softc = (struct pass_softc *)periph->softc;
2152
2153 knlist_remove(&softc->read_select.si_note, kn, 0);
2154 }
2155
2156 static int
passreadfilt(struct knote * kn,long hint)2157 passreadfilt(struct knote *kn, long hint)
2158 {
2159 struct cam_periph *periph;
2160 struct pass_softc *softc;
2161 int retval;
2162
2163 periph = (struct cam_periph *)kn->kn_hook;
2164 softc = (struct pass_softc *)periph->softc;
2165
2166 cam_periph_assert(periph, MA_OWNED);
2167
2168 if (TAILQ_EMPTY(&softc->done_queue))
2169 retval = 0;
2170 else
2171 retval = 1;
2172
2173 return (retval);
2174 }
2175
2176 /*
2177 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
2178 * should be the CCB that is copied in from the user.
2179 */
2180 static int
passsendccb(struct cam_periph * periph,union ccb * ccb,union ccb * inccb)2181 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2182 {
2183 struct pass_softc *softc;
2184 struct cam_periph_map_info mapinfo;
2185 uint8_t *cmd;
2186 xpt_opcode fc;
2187 int error;
2188
2189 softc = (struct pass_softc *)periph->softc;
2190
2191 /*
2192 * There are some fields in the CCB header that need to be
2193 * preserved, the rest we get from the user.
2194 */
2195 xpt_merge_ccb(ccb, inccb);
2196
2197 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2198 cmd = __builtin_alloca(ccb->csio.cdb_len);
2199 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2200 if (error)
2201 return (error);
2202 ccb->csio.cdb_io.cdb_ptr = cmd;
2203 }
2204
2205 /*
2206 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2207 * Even if no data transfer is needed, it's a cheap check and it
2208 * simplifies the code.
2209 */
2210 fc = ccb->ccb_h.func_code;
2211 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2212 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2213 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2214 bzero(&mapinfo, sizeof(mapinfo));
2215
2216 /*
2217 * cam_periph_mapmem calls into proc and vm functions that can
2218 * sleep as well as trigger I/O, so we can't hold the lock.
2219 * Dropping it here is reasonably safe.
2220 */
2221 cam_periph_unlock(periph);
2222 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2223 cam_periph_lock(periph);
2224
2225 /*
2226 * cam_periph_mapmem returned an error, we can't continue.
2227 * Return the error to the user.
2228 */
2229 if (error)
2230 return(error);
2231 } else
2232 /* Ensure that the unmap call later on is a no-op. */
2233 mapinfo.num_bufs_used = 0;
2234
2235 /*
2236 * If the user wants us to perform any error recovery, then honor
2237 * that request. Otherwise, it's up to the user to perform any
2238 * error recovery.
2239 */
2240 {
2241 uint32_t cam_flags, sense_flags;
2242
2243 passflags(ccb, &cam_flags, &sense_flags);
2244 cam_periph_runccb(ccb, passerror, cam_flags,
2245 sense_flags, softc->device_stats);
2246 }
2247
2248 cam_periph_unlock(periph);
2249 error = cam_periph_unmapmem(ccb, &mapinfo);
2250 cam_periph_lock(periph);
2251
2252 ccb->ccb_h.cbfcnp = NULL;
2253 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2254 bcopy(ccb, inccb, sizeof(union ccb));
2255
2256 return (error);
2257 }
2258
2259 /*
2260 * Set the cam_flags and sense_flags based on whether or not the request wants
2261 * error recovery. In order to log errors via devctl, we need to do at least
2262 * minimal recovery. We do this by not retrying unit attention (we let the
2263 * requester do it, or not, if appropriate) and specifically asking for no
2264 * recovery, like we do during device probing.
2265 */
2266 static void
passflags(union ccb * ccb,uint32_t * cam_flags,uint32_t * sense_flags)2267 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags)
2268 {
2269 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) {
2270 *cam_flags = CAM_RETRY_SELTO;
2271 *sense_flags = SF_RETRY_UA | SF_NO_PRINT;
2272 } else {
2273 *cam_flags = 0;
2274 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT;
2275 }
2276 }
2277
2278 static int
passerror(union ccb * ccb,uint32_t cam_flags,uint32_t sense_flags)2279 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags)
2280 {
2281
2282 return(cam_periph_error(ccb, cam_flags, sense_flags));
2283 }
2284