xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the Sanitizer Allocator.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
14 #endif
15 
16 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
17 
18 // SizeClassAllocator64 -- allocator for 64-bit address space.
19 // The template parameter Params is a class containing the actual parameters.
20 //
21 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap.
23 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
24 // kSpaceSize is a power of two.
25 // At the beginning the entire space is mprotect-ed, then small parts of it
26 // are mapped on demand.
27 //
28 // Region: a part of Space dedicated to a single size class.
29 // There are kNumClasses Regions of equal size.
30 //
31 // UserChunk: a piece of memory returned to user.
32 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
33 
34 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
35 //
36 // A Region looks like this:
37 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
38 
39 struct SizeClassAllocator64FlagMasks {  //  Bit masks.
40   enum {
41     kRandomShuffleChunks = 1,
42   };
43 };
44 
45 template <typename Allocator>
46 class MemoryMapper {
47  public:
48   typedef typename Allocator::CompactPtrT CompactPtrT;
49 
MemoryMapper(const Allocator & allocator)50   explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {}
51 
GetAndResetStats(uptr & ranges,uptr & bytes)52   bool GetAndResetStats(uptr &ranges, uptr &bytes) {
53     ranges = released_ranges_count_;
54     released_ranges_count_ = 0;
55     bytes = released_bytes_;
56     released_bytes_ = 0;
57     return ranges != 0;
58   }
59 
MapPackedCounterArrayBuffer(uptr count)60   u64 *MapPackedCounterArrayBuffer(uptr count) {
61     buffer_.clear();
62     buffer_.resize(count);
63     return buffer_.data();
64   }
65 
66   // Releases [from, to) range of pages back to OS.
ReleasePageRangeToOS(uptr class_id,CompactPtrT from,CompactPtrT to)67   void ReleasePageRangeToOS(uptr class_id, CompactPtrT from, CompactPtrT to) {
68     const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id);
69     const uptr from_page = allocator_.CompactPtrToPointer(region_base, from);
70     const uptr to_page = allocator_.CompactPtrToPointer(region_base, to);
71     ReleaseMemoryPagesToOS(from_page, to_page);
72     released_ranges_count_++;
73     released_bytes_ += to_page - from_page;
74   }
75 
76  private:
77   const Allocator &allocator_;
78   uptr released_ranges_count_ = 0;
79   uptr released_bytes_ = 0;
80   InternalMmapVector<u64> buffer_;
81 };
82 
83 template <class Params>
84 class SizeClassAllocator64 {
85  public:
86   using AddressSpaceView = typename Params::AddressSpaceView;
87   static const uptr kSpaceBeg = Params::kSpaceBeg;
88   static const uptr kSpaceSize = Params::kSpaceSize;
89   static const uptr kMetadataSize = Params::kMetadataSize;
90   typedef typename Params::SizeClassMap SizeClassMap;
91   typedef typename Params::MapUnmapCallback MapUnmapCallback;
92 
93   static const bool kRandomShuffleChunks =
94       Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
95 
96   typedef SizeClassAllocator64<Params> ThisT;
97   typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
98   typedef MemoryMapper<ThisT> MemoryMapperT;
99 
100   // When we know the size class (the region base) we can represent a pointer
101   // as a 4-byte integer (offset from the region start shifted right by 4).
102   typedef u32 CompactPtrT;
103   static const uptr kCompactPtrScale = 4;
PointerToCompactPtr(uptr base,uptr ptr)104   CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
105     return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
106   }
CompactPtrToPointer(uptr base,CompactPtrT ptr32)107   uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
108     return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
109   }
110 
111   // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W
112   // at heap_start and places the heap there.  This mode requires kSpaceBeg ==
113   // ~(uptr)0.
114   void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
115     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
116     PremappedHeap = heap_start != 0;
117     if (PremappedHeap) {
118       CHECK(!kUsingConstantSpaceBeg);
119       NonConstSpaceBeg = heap_start;
120       uptr RegionInfoSize = AdditionalSize();
121       RegionInfoSpace =
122           address_range.Init(RegionInfoSize, PrimaryAllocatorName);
123       CHECK_NE(RegionInfoSpace, ~(uptr)0);
124       CHECK_EQ(RegionInfoSpace,
125                address_range.MapOrDie(RegionInfoSpace, RegionInfoSize,
126                                       "SizeClassAllocator: region info"));
127       MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize);
128     } else {
129       if (kUsingConstantSpaceBeg) {
130         CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
131         CHECK_EQ(kSpaceBeg,
132                  address_range.Init(TotalSpaceSize, PrimaryAllocatorName,
133                                     kSpaceBeg));
134       } else {
135         // Combined allocator expects that an 2^N allocation is always aligned
136         // to 2^N. For this to work, the start of the space needs to be aligned
137         // as high as the largest size class (which also needs to be a power of
138         // 2).
139         NonConstSpaceBeg = address_range.InitAligned(
140             TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
141         CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
142       }
143       RegionInfoSpace = SpaceEnd();
144       MapWithCallbackOrDie(RegionInfoSpace, AdditionalSize(),
145                            "SizeClassAllocator: region info");
146     }
147     SetReleaseToOSIntervalMs(release_to_os_interval_ms);
148     // Check that the RegionInfo array is aligned on the CacheLine size.
149     DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0);
150   }
151 
ReleaseToOSIntervalMs()152   s32 ReleaseToOSIntervalMs() const {
153     return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
154   }
155 
SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms)156   void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
157     atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
158                  memory_order_relaxed);
159   }
160 
ForceReleaseToOS()161   void ForceReleaseToOS() {
162     MemoryMapperT memory_mapper(*this);
163     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
164       Lock l(&GetRegionInfo(class_id)->mutex);
165       MaybeReleaseToOS(&memory_mapper, class_id, true /*force*/);
166     }
167   }
168 
CanAllocate(uptr size,uptr alignment)169   static bool CanAllocate(uptr size, uptr alignment) {
170     return size <= SizeClassMap::kMaxSize &&
171       alignment <= SizeClassMap::kMaxSize;
172   }
173 
ReturnToAllocator(MemoryMapperT * memory_mapper,AllocatorStats * stat,uptr class_id,const CompactPtrT * chunks,uptr n_chunks)174   NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper,
175                                   AllocatorStats *stat, uptr class_id,
176                                   const CompactPtrT *chunks, uptr n_chunks) {
177     RegionInfo *region = GetRegionInfo(class_id);
178     uptr region_beg = GetRegionBeginBySizeClass(class_id);
179     CompactPtrT *free_array = GetFreeArray(region_beg);
180 
181     Lock l(&region->mutex);
182     uptr old_num_chunks = region->num_freed_chunks;
183     uptr new_num_freed_chunks = old_num_chunks + n_chunks;
184     // Failure to allocate free array space while releasing memory is non
185     // recoverable.
186     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
187                                        new_num_freed_chunks))) {
188       Report("FATAL: Internal error: %s's allocator exhausted the free list "
189              "space for size class %zd (%zd bytes).\n", SanitizerToolName,
190              class_id, ClassIdToSize(class_id));
191       Die();
192     }
193     for (uptr i = 0; i < n_chunks; i++)
194       free_array[old_num_chunks + i] = chunks[i];
195     region->num_freed_chunks = new_num_freed_chunks;
196     region->stats.n_freed += n_chunks;
197 
198     MaybeReleaseToOS(memory_mapper, class_id, false /*force*/);
199   }
200 
GetFromAllocator(AllocatorStats * stat,uptr class_id,CompactPtrT * chunks,uptr n_chunks)201   NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
202                                  CompactPtrT *chunks, uptr n_chunks) {
203     RegionInfo *region = GetRegionInfo(class_id);
204     uptr region_beg = GetRegionBeginBySizeClass(class_id);
205     CompactPtrT *free_array = GetFreeArray(region_beg);
206 
207     Lock l(&region->mutex);
208 #if SANITIZER_WINDOWS
209     /* On Windows unmapping of memory during __sanitizer_purge_allocator is
210     explicit and immediate, so unmapped regions must be explicitly mapped back
211     in when they are accessed again. */
212     if (region->rtoi.last_released_bytes > 0) {
213       MmapFixedOrDie(region_beg, region->mapped_user,
214                                       "SizeClassAllocator: region data");
215       region->rtoi.n_freed_at_last_release = 0;
216       region->rtoi.last_released_bytes = 0;
217     }
218 #endif
219     if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
220       if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
221                                       n_chunks - region->num_freed_chunks)))
222         return false;
223       CHECK_GE(region->num_freed_chunks, n_chunks);
224     }
225     region->num_freed_chunks -= n_chunks;
226     uptr base_idx = region->num_freed_chunks;
227     for (uptr i = 0; i < n_chunks; i++)
228       chunks[i] = free_array[base_idx + i];
229     region->stats.n_allocated += n_chunks;
230     return true;
231   }
232 
PointerIsMine(const void * p)233   bool PointerIsMine(const void *p) const {
234     uptr P = reinterpret_cast<uptr>(p);
235     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
236       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
237     return P >= SpaceBeg() && P < SpaceEnd();
238   }
239 
GetRegionBegin(const void * p)240   uptr GetRegionBegin(const void *p) {
241     if (kUsingConstantSpaceBeg)
242       return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
243     uptr space_beg = SpaceBeg();
244     return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
245         space_beg;
246   }
247 
GetRegionBeginBySizeClass(uptr class_id)248   uptr GetRegionBeginBySizeClass(uptr class_id) const {
249     return SpaceBeg() + kRegionSize * class_id;
250   }
251 
GetSizeClass(const void * p)252   uptr GetSizeClass(const void *p) {
253     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
254       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
255     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
256            kNumClassesRounded;
257   }
258 
GetBlockBegin(const void * p)259   void *GetBlockBegin(const void *p) {
260     uptr class_id = GetSizeClass(p);
261     if (class_id >= kNumClasses) return nullptr;
262     uptr size = ClassIdToSize(class_id);
263     if (!size) return nullptr;
264     uptr chunk_idx = GetChunkIdx((uptr)p, size);
265     uptr reg_beg = GetRegionBegin(p);
266     uptr beg = chunk_idx * size;
267     uptr next_beg = beg + size;
268     const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
269     if (region->mapped_user >= next_beg)
270       return reinterpret_cast<void*>(reg_beg + beg);
271     return nullptr;
272   }
273 
GetActuallyAllocatedSize(void * p)274   uptr GetActuallyAllocatedSize(void *p) {
275     CHECK(PointerIsMine(p));
276     return ClassIdToSize(GetSizeClass(p));
277   }
278 
ClassID(uptr size)279   static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
280 
GetMetaData(const void * p)281   void *GetMetaData(const void *p) {
282     CHECK(kMetadataSize);
283     uptr class_id = GetSizeClass(p);
284     uptr size = ClassIdToSize(class_id);
285     if (!size)
286       return nullptr;
287     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
288     uptr region_beg = GetRegionBeginBySizeClass(class_id);
289     return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
290                                     (1 + chunk_idx) * kMetadataSize);
291   }
292 
TotalMemoryUsed()293   uptr TotalMemoryUsed() {
294     uptr res = 0;
295     for (uptr i = 0; i < kNumClasses; i++)
296       res += GetRegionInfo(i)->allocated_user;
297     return res;
298   }
299 
300   // Test-only.
TestOnlyUnmap()301   void TestOnlyUnmap() {
302     UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
303   }
304 
FillMemoryProfile(uptr start,uptr rss,bool file,uptr * stats)305   static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats) {
306     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
307       if (stats[class_id] == start)
308         stats[class_id] = rss;
309   }
310 
PrintStats(uptr class_id,uptr rss)311   void PrintStats(uptr class_id, uptr rss) {
312     RegionInfo *region = GetRegionInfo(class_id);
313     if (region->mapped_user == 0) return;
314     uptr in_use = region->stats.n_allocated - region->stats.n_freed;
315     uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
316     Printf(
317         "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
318         "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
319         "last released: %6lldK region: %p\n",
320         region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
321         region->mapped_user >> 10, region->stats.n_allocated,
322         region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
323         rss >> 10, region->rtoi.num_releases,
324         region->rtoi.last_released_bytes >> 10,
325         (void *)(SpaceBeg() + kRegionSize * class_id));
326   }
327 
PrintStats()328   void PrintStats() {
329     uptr rss_stats[kNumClasses];
330     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
331       rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
332     GetMemoryProfile(FillMemoryProfile, rss_stats);
333 
334     uptr total_mapped = 0;
335     uptr total_rss = 0;
336     uptr n_allocated = 0;
337     uptr n_freed = 0;
338     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
339       RegionInfo *region = GetRegionInfo(class_id);
340       if (region->mapped_user != 0) {
341         total_mapped += region->mapped_user;
342         total_rss += rss_stats[class_id];
343       }
344       n_allocated += region->stats.n_allocated;
345       n_freed += region->stats.n_freed;
346     }
347 
348     Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
349            "%zd allocations; remains %zd\n", total_mapped >> 20,
350            total_rss >> 20, n_allocated, n_allocated - n_freed);
351     for (uptr class_id = 1; class_id < kNumClasses; class_id++)
352       PrintStats(class_id, rss_stats[class_id]);
353   }
354 
355   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
356   // introspection API.
ForceLock()357   void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
358     for (uptr i = 0; i < kNumClasses; i++) {
359       GetRegionInfo(i)->mutex.Lock();
360     }
361   }
362 
ForceUnlock()363   void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
364     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
365       GetRegionInfo(i)->mutex.Unlock();
366     }
367   }
368 
369   // Iterate over all existing chunks.
370   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)371   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
372     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
373       RegionInfo *region = GetRegionInfo(class_id);
374       uptr chunk_size = ClassIdToSize(class_id);
375       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
376       uptr region_allocated_user_size =
377           AddressSpaceView::Load(region)->allocated_user;
378       for (uptr chunk = region_beg;
379            chunk < region_beg + region_allocated_user_size;
380            chunk += chunk_size) {
381         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
382         callback(chunk, arg);
383       }
384     }
385   }
386 
ClassIdToSize(uptr class_id)387   static uptr ClassIdToSize(uptr class_id) {
388     return SizeClassMap::Size(class_id);
389   }
390 
AdditionalSize()391   static uptr AdditionalSize() {
392     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
393                      GetPageSizeCached());
394   }
395 
396   typedef SizeClassMap SizeClassMapT;
397   static const uptr kNumClasses = SizeClassMap::kNumClasses;
398   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
399 
400   // A packed array of counters. Each counter occupies 2^n bits, enough to store
401   // counter's max_value. Ctor will try to allocate the required buffer via
402   // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
403   // whether the initialization was successful by checking IsAllocated() result.
404   // For the performance sake, none of the accessors check the validity of the
405   // arguments, it is assumed that index is always in [0, n) range and the value
406   // is not incremented past max_value.
407   class PackedCounterArray {
408    public:
409     template <typename MemoryMapper>
PackedCounterArray(u64 num_counters,u64 max_value,MemoryMapper * mapper)410     PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper)
411         : n(num_counters) {
412       CHECK_GT(num_counters, 0);
413       CHECK_GT(max_value, 0);
414       constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
415       // Rounding counter storage size up to the power of two allows for using
416       // bit shifts calculating particular counter's index and offset.
417       uptr counter_size_bits =
418           RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
419       CHECK_LE(counter_size_bits, kMaxCounterBits);
420       counter_size_bits_log = Log2(counter_size_bits);
421       counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
422 
423       uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
424       CHECK_GT(packing_ratio, 0);
425       packing_ratio_log = Log2(packing_ratio);
426       bit_offset_mask = packing_ratio - 1;
427 
428       buffer = mapper->MapPackedCounterArrayBuffer(
429           RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log);
430     }
431 
IsAllocated()432     bool IsAllocated() const {
433       return !!buffer;
434     }
435 
GetCount()436     u64 GetCount() const {
437       return n;
438     }
439 
Get(uptr i)440     uptr Get(uptr i) const {
441       DCHECK_LT(i, n);
442       uptr index = i >> packing_ratio_log;
443       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
444       return (buffer[index] >> bit_offset) & counter_mask;
445     }
446 
Inc(uptr i)447     void Inc(uptr i) const {
448       DCHECK_LT(Get(i), counter_mask);
449       uptr index = i >> packing_ratio_log;
450       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
451       buffer[index] += 1ULL << bit_offset;
452     }
453 
IncRange(uptr from,uptr to)454     void IncRange(uptr from, uptr to) const {
455       DCHECK_LE(from, to);
456       for (uptr i = from; i <= to; i++)
457         Inc(i);
458     }
459 
460    private:
461     const u64 n;
462     u64 counter_size_bits_log;
463     u64 counter_mask;
464     u64 packing_ratio_log;
465     u64 bit_offset_mask;
466     u64* buffer;
467   };
468 
469   template <class MemoryMapperT>
470   class FreePagesRangeTracker {
471    public:
FreePagesRangeTracker(MemoryMapperT * mapper,uptr class_id)472     FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id)
473         : memory_mapper(mapper),
474           class_id(class_id),
475           page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)) {}
476 
NextPage(bool freed)477     void NextPage(bool freed) {
478       if (freed) {
479         if (!in_the_range) {
480           current_range_start_page = current_page;
481           in_the_range = true;
482         }
483       } else {
484         CloseOpenedRange();
485       }
486       current_page++;
487     }
488 
Done()489     void Done() {
490       CloseOpenedRange();
491     }
492 
493    private:
CloseOpenedRange()494     void CloseOpenedRange() {
495       if (in_the_range) {
496         memory_mapper->ReleasePageRangeToOS(
497             class_id, current_range_start_page << page_size_scaled_log,
498             current_page << page_size_scaled_log);
499         in_the_range = false;
500       }
501     }
502 
503     MemoryMapperT *const memory_mapper = nullptr;
504     const uptr class_id = 0;
505     const uptr page_size_scaled_log = 0;
506     bool in_the_range = false;
507     uptr current_page = 0;
508     uptr current_range_start_page = 0;
509   };
510 
511   // Iterates over the free_array to identify memory pages containing freed
512   // chunks only and returns these pages back to OS.
513   // allocated_pages_count is the total number of pages allocated for the
514   // current bucket.
515   template <typename MemoryMapper>
ReleaseFreeMemoryToOS(CompactPtrT * free_array,uptr free_array_count,uptr chunk_size,uptr allocated_pages_count,MemoryMapper * memory_mapper,uptr class_id)516   static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
517                                     uptr free_array_count, uptr chunk_size,
518                                     uptr allocated_pages_count,
519                                     MemoryMapper *memory_mapper,
520                                     uptr class_id) {
521     const uptr page_size = GetPageSizeCached();
522 
523     // Figure out the number of chunks per page and whether we can take a fast
524     // path (the number of chunks per page is the same for all pages).
525     uptr full_pages_chunk_count_max;
526     bool same_chunk_count_per_page;
527     if (chunk_size <= page_size && page_size % chunk_size == 0) {
528       // Same number of chunks per page, no cross overs.
529       full_pages_chunk_count_max = page_size / chunk_size;
530       same_chunk_count_per_page = true;
531     } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
532         chunk_size % (page_size % chunk_size) == 0) {
533       // Some chunks are crossing page boundaries, which means that the page
534       // contains one or two partial chunks, but all pages contain the same
535       // number of chunks.
536       full_pages_chunk_count_max = page_size / chunk_size + 1;
537       same_chunk_count_per_page = true;
538     } else if (chunk_size <= page_size) {
539       // Some chunks are crossing page boundaries, which means that the page
540       // contains one or two partial chunks.
541       full_pages_chunk_count_max = page_size / chunk_size + 2;
542       same_chunk_count_per_page = false;
543     } else if (chunk_size > page_size && chunk_size % page_size == 0) {
544       // One chunk covers multiple pages, no cross overs.
545       full_pages_chunk_count_max = 1;
546       same_chunk_count_per_page = true;
547     } else if (chunk_size > page_size) {
548       // One chunk covers multiple pages, Some chunks are crossing page
549       // boundaries. Some pages contain one chunk, some contain two.
550       full_pages_chunk_count_max = 2;
551       same_chunk_count_per_page = false;
552     } else {
553       UNREACHABLE("All chunk_size/page_size ratios must be handled.");
554     }
555 
556     PackedCounterArray counters(allocated_pages_count,
557                                 full_pages_chunk_count_max, memory_mapper);
558     if (!counters.IsAllocated())
559       return;
560 
561     const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
562     const uptr page_size_scaled = page_size >> kCompactPtrScale;
563     const uptr page_size_scaled_log = Log2(page_size_scaled);
564 
565     // Iterate over free chunks and count how many free chunks affect each
566     // allocated page.
567     if (chunk_size <= page_size && page_size % chunk_size == 0) {
568       // Each chunk affects one page only.
569       for (uptr i = 0; i < free_array_count; i++)
570         counters.Inc(free_array[i] >> page_size_scaled_log);
571     } else {
572       // In all other cases chunks might affect more than one page.
573       for (uptr i = 0; i < free_array_count; i++) {
574         counters.IncRange(
575             free_array[i] >> page_size_scaled_log,
576             (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
577       }
578     }
579 
580     // Iterate over pages detecting ranges of pages with chunk counters equal
581     // to the expected number of chunks for the particular page.
582     FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id);
583     if (same_chunk_count_per_page) {
584       // Fast path, every page has the same number of chunks affecting it.
585       for (uptr i = 0; i < counters.GetCount(); i++)
586         range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
587     } else {
588       // Show path, go through the pages keeping count how many chunks affect
589       // each page.
590       const uptr pn =
591           chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
592       const uptr pnc = pn * chunk_size_scaled;
593       // The idea is to increment the current page pointer by the first chunk
594       // size, middle portion size (the portion of the page covered by chunks
595       // except the first and the last one) and then the last chunk size, adding
596       // up the number of chunks on the current page and checking on every step
597       // whether the page boundary was crossed.
598       uptr prev_page_boundary = 0;
599       uptr current_boundary = 0;
600       for (uptr i = 0; i < counters.GetCount(); i++) {
601         uptr page_boundary = prev_page_boundary + page_size_scaled;
602         uptr chunks_per_page = pn;
603         if (current_boundary < page_boundary) {
604           if (current_boundary > prev_page_boundary)
605             chunks_per_page++;
606           current_boundary += pnc;
607           if (current_boundary < page_boundary) {
608             chunks_per_page++;
609             current_boundary += chunk_size_scaled;
610           }
611         }
612         prev_page_boundary = page_boundary;
613 
614         range_tracker.NextPage(counters.Get(i) == chunks_per_page);
615       }
616     }
617     range_tracker.Done();
618   }
619 
620  private:
621   friend class MemoryMapper<ThisT>;
622 
623   ReservedAddressRange address_range;
624 
625   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
626   // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
627   // In the worst case it may require kRegionSize/SizeClassMap::kMinSize
628   // elements, but in reality this will not happen. For simplicity we
629   // dedicate 1/8 of the region's virtual space to FreeArray.
630   static const uptr kFreeArraySize = kRegionSize / 8;
631 
632   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
633   uptr NonConstSpaceBeg;
SpaceBeg()634   uptr SpaceBeg() const {
635     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
636   }
SpaceEnd()637   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
638   // kRegionSize should be able to satisfy the largest size class.
639   static_assert(kRegionSize >= SizeClassMap::kMaxSize,
640                 "Region size exceed largest size");
641   // kRegionSize must be <= 2^36, see CompactPtrT.
642   COMPILER_CHECK((kRegionSize) <=
643                  (1ULL << (sizeof(CompactPtrT) * 8 + kCompactPtrScale)));
644   // Call mmap for user memory with at least this size.
645   static const uptr kUserMapSize = 1 << 18;
646   // Call mmap for metadata memory with at least this size.
647   static const uptr kMetaMapSize = 1 << 16;
648   // Call mmap for free array memory with at least this size.
649   static const uptr kFreeArrayMapSize = 1 << 18;
650 
651   atomic_sint32_t release_to_os_interval_ms_;
652 
653   uptr RegionInfoSpace;
654 
655   // True if the user has already mapped the entire heap R/W.
656   bool PremappedHeap;
657 
658   struct Stats {
659     uptr n_allocated;
660     uptr n_freed;
661   };
662 
663   struct ReleaseToOsInfo {
664     uptr n_freed_at_last_release;
665     uptr num_releases;
666     u64 last_release_at_ns;
667     u64 last_released_bytes;
668   };
669 
670   struct alignas(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
671     Mutex mutex;
672     uptr num_freed_chunks;  // Number of elements in the freearray.
673     uptr mapped_free_array;  // Bytes mapped for freearray.
674     uptr allocated_user;  // Bytes allocated for user memory.
675     uptr allocated_meta;  // Bytes allocated for metadata.
676     uptr mapped_user;  // Bytes mapped for user memory.
677     uptr mapped_meta;  // Bytes mapped for metadata.
678     u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
679     bool exhausted;  // Whether region is out of space for new chunks.
680     Stats stats;
681     ReleaseToOsInfo rtoi;
682   };
683   COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
684 
GetRegionInfo(uptr class_id)685   RegionInfo *GetRegionInfo(uptr class_id) const {
686     DCHECK_LT(class_id, kNumClasses);
687     RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace);
688     return &regions[class_id];
689   }
690 
GetMetadataEnd(uptr region_beg)691   uptr GetMetadataEnd(uptr region_beg) const {
692     return region_beg + kRegionSize - kFreeArraySize;
693   }
694 
GetChunkIdx(uptr chunk,uptr size)695   uptr GetChunkIdx(uptr chunk, uptr size) const {
696     if (!kUsingConstantSpaceBeg)
697       chunk -= SpaceBeg();
698 
699     uptr offset = chunk % kRegionSize;
700     // Here we divide by a non-constant. This is costly.
701     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
702     if (offset >> (SANITIZER_WORDSIZE / 2))
703       return offset / size;
704     return (u32)offset / (u32)size;
705   }
706 
GetFreeArray(uptr region_beg)707   CompactPtrT *GetFreeArray(uptr region_beg) const {
708     return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
709   }
710 
MapWithCallback(uptr beg,uptr size,const char * name)711   bool MapWithCallback(uptr beg, uptr size, const char *name) {
712     if (PremappedHeap)
713       return beg >= NonConstSpaceBeg &&
714              beg + size <= NonConstSpaceBeg + kSpaceSize;
715     uptr mapped = address_range.Map(beg, size, name);
716     if (UNLIKELY(!mapped))
717       return false;
718     CHECK_EQ(beg, mapped);
719     MapUnmapCallback().OnMap(beg, size);
720     return true;
721   }
722 
MapWithCallbackOrDie(uptr beg,uptr size,const char * name)723   void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
724     if (PremappedHeap) {
725       CHECK_GE(beg, NonConstSpaceBeg);
726       CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize);
727       return;
728     }
729     CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
730     MapUnmapCallback().OnMap(beg, size);
731   }
732 
UnmapWithCallbackOrDie(uptr beg,uptr size)733   void UnmapWithCallbackOrDie(uptr beg, uptr size) {
734     if (PremappedHeap)
735       return;
736     MapUnmapCallback().OnUnmap(beg, size);
737     address_range.Unmap(beg, size);
738   }
739 
EnsureFreeArraySpace(RegionInfo * region,uptr region_beg,uptr num_freed_chunks)740   bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
741                             uptr num_freed_chunks) {
742     uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
743     if (region->mapped_free_array < needed_space) {
744       uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
745       CHECK_LE(new_mapped_free_array, kFreeArraySize);
746       uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
747                              region->mapped_free_array;
748       uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
749       if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
750                                     "SizeClassAllocator: freearray")))
751         return false;
752       region->mapped_free_array = new_mapped_free_array;
753     }
754     return true;
755   }
756 
757   // Check whether this size class is exhausted.
IsRegionExhausted(RegionInfo * region,uptr class_id,uptr additional_map_size)758   bool IsRegionExhausted(RegionInfo *region, uptr class_id,
759                          uptr additional_map_size) {
760     if (LIKELY(region->mapped_user + region->mapped_meta +
761                additional_map_size <= kRegionSize - kFreeArraySize))
762       return false;
763     if (!region->exhausted) {
764       region->exhausted = true;
765       Printf("%s: Out of memory. ", SanitizerToolName);
766       Printf("The process has exhausted %zuMB for size class %zu.\n",
767              kRegionSize >> 20, ClassIdToSize(class_id));
768     }
769     return true;
770   }
771 
PopulateFreeArray(AllocatorStats * stat,uptr class_id,RegionInfo * region,uptr requested_count)772   NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
773                                   RegionInfo *region, uptr requested_count) {
774     // region->mutex is held.
775     const uptr region_beg = GetRegionBeginBySizeClass(class_id);
776     const uptr size = ClassIdToSize(class_id);
777 
778     const uptr total_user_bytes =
779         region->allocated_user + requested_count * size;
780     // Map more space for chunks, if necessary.
781     if (LIKELY(total_user_bytes > region->mapped_user)) {
782       if (UNLIKELY(region->mapped_user == 0)) {
783         if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
784           // The random state is initialized from ASLR.
785           region->rand_state = static_cast<u32>(region_beg >> 12);
786         // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
787         // preventing just allocated memory from being released sooner than
788         // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
789         // for short lived processes.
790         // Do it only when the feature is turned on, to avoid a potentially
791         // extraneous syscall.
792         if (ReleaseToOSIntervalMs() >= 0)
793           region->rtoi.last_release_at_ns = MonotonicNanoTime();
794       }
795       // Do the mmap for the user memory.
796       const uptr user_map_size =
797           RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
798       if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
799         return false;
800       if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
801                                     user_map_size,
802                                     "SizeClassAllocator: region data")))
803         return false;
804       stat->Add(AllocatorStatMapped, user_map_size);
805       region->mapped_user += user_map_size;
806     }
807     const uptr new_chunks_count =
808         (region->mapped_user - region->allocated_user) / size;
809 
810     if (kMetadataSize) {
811       // Calculate the required space for metadata.
812       const uptr total_meta_bytes =
813           region->allocated_meta + new_chunks_count * kMetadataSize;
814       const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
815           RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
816       // Map more space for metadata, if necessary.
817       if (meta_map_size) {
818         if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
819           return false;
820         if (UNLIKELY(!MapWithCallback(
821             GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
822             meta_map_size, "SizeClassAllocator: region metadata")))
823           return false;
824         region->mapped_meta += meta_map_size;
825       }
826     }
827 
828     // If necessary, allocate more space for the free array and populate it with
829     // newly allocated chunks.
830     const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
831     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
832       return false;
833     CompactPtrT *free_array = GetFreeArray(region_beg);
834     for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
835          i++, chunk += size)
836       free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
837     if (kRandomShuffleChunks)
838       RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
839                     &region->rand_state);
840 
841     // All necessary memory is mapped and now it is safe to advance all
842     // 'allocated_*' counters.
843     region->num_freed_chunks += new_chunks_count;
844     region->allocated_user += new_chunks_count * size;
845     CHECK_LE(region->allocated_user, region->mapped_user);
846     region->allocated_meta += new_chunks_count * kMetadataSize;
847     CHECK_LE(region->allocated_meta, region->mapped_meta);
848     region->exhausted = false;
849 
850     // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
851     // MaybeReleaseToOS from releasing just allocated pages or protect these
852     // not yet used chunks some other way.
853 
854     return true;
855   }
856 
857   // Attempts to release RAM occupied by freed chunks back to OS. The region is
858   // expected to be locked.
859   //
860   // TODO(morehouse): Support a callback on memory release so HWASan can release
861   // aliases as well.
MaybeReleaseToOS(MemoryMapperT * memory_mapper,uptr class_id,bool force)862   void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id,
863                         bool force) {
864     RegionInfo *region = GetRegionInfo(class_id);
865     const uptr chunk_size = ClassIdToSize(class_id);
866     const uptr page_size = GetPageSizeCached();
867 
868     uptr n = region->num_freed_chunks;
869     if (n * chunk_size < page_size)
870       return;  // No chance to release anything.
871     if ((region->stats.n_freed -
872          region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
873       return;  // Nothing new to release.
874     }
875 
876     if (!force) {
877       s32 interval_ms = ReleaseToOSIntervalMs();
878       if (interval_ms < 0)
879         return;
880 
881       if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
882           MonotonicNanoTime()) {
883         return;  // Memory was returned recently.
884       }
885     }
886 
887     ReleaseFreeMemoryToOS(
888         GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
889         RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper,
890         class_id);
891 
892     uptr ranges, bytes;
893     if (memory_mapper->GetAndResetStats(ranges, bytes)) {
894       region->rtoi.n_freed_at_last_release = region->stats.n_freed;
895       region->rtoi.num_releases += ranges;
896       region->rtoi.last_released_bytes = bytes;
897     }
898     region->rtoi.last_release_at_ns = MonotonicNanoTime();
899   }
900 };
901