xref: /freebsd/contrib/ntp/ntpd/refclock_irig.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 /*
2  * refclock_irig - audio IRIG-B/E demodulator/decoder
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #if defined(REFCLOCK) && defined(CLOCK_IRIG)
9 
10 #include "ntpd.h"
11 #include "ntp_io.h"
12 #include "ntp_refclock.h"
13 #include "ntp_calendar.h"
14 #include "ntp_stdlib.h"
15 
16 #include <stdio.h>
17 #include <ctype.h>
18 #include <math.h>
19 #ifdef HAVE_SYS_IOCTL_H
20 #include <sys/ioctl.h>
21 #endif /* HAVE_SYS_IOCTL_H */
22 
23 #include "audio.h"
24 
25 /*
26  * Audio IRIG-B/E demodulator/decoder
27  *
28  * This driver synchronizes the computer time using data encoded in
29  * IRIG-B/E signals commonly produced by GPS receivers and other timing
30  * devices. The IRIG signal is an amplitude-modulated carrier with
31  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
32  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
33  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
34  & format is in use.
35  *
36  * The driver requires an audio codec or sound card with sampling rate 8
37  * kHz and mu-law companding. This is the same standard as used by the
38  * telephone industry and is supported by most hardware and operating
39  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
40  * implementation, only one audio driver and codec can be supported on a
41  * single machine.
42  *
43  * The program processes 8000-Hz mu-law companded samples using separate
44  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
45  * detector and automatic threshold corrector. Cycle crossings relative
46  * to the corrected slice level determine the width of each pulse and
47  * its value - zero, one or position identifier.
48  *
49  * The data encode 20 BCD digits which determine the second, minute,
50  * hour and day of the year and sometimes the year and synchronization
51  * condition. The comb filter exponentially averages the corresponding
52  * samples of successive baud intervals in order to reliably identify
53  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
54  * additional integration and interpolation to accurately determine the
55  * zero crossing of that cycle, which determines the reference
56  * timestamp. A pulse-width discriminator demodulates the data pulses,
57  * which are then encoded as the BCD digits of the timecode.
58  *
59  * The timecode and reference timestamp are updated once each second
60  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
61  * saved for later processing. At poll intervals of 64 s, the saved
62  * samples are processed by a trimmed-mean filter and used to update the
63  * system clock.
64  *
65  * An automatic gain control feature provides protection against
66  * overdriven or underdriven input signal amplitudes. It is designed to
67  * maintain adequate demodulator signal amplitude while avoiding
68  * occasional noise spikes. In order to assure reliable capture, the
69  * decompanded input signal amplitude must be greater than 100 units and
70  * the codec sample frequency error less than 250 PPM (.025 percent).
71  *
72  * Monitor Data
73  *
74  * The timecode format used for debugging and data recording includes
75  * data helpful in diagnosing problems with the IRIG signal and codec
76  * connections. The driver produces one line for each timecode in the
77  * following format:
78  *
79  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
80  *
81  * If clockstats is enabled, the most recent line is written to the
82  * clockstats file every 64 s. If verbose recording is enabled (fudge
83  * flag 4) each line is written as generated.
84  *
85  * The first field containes the error flags in hex, where the hex bits
86  * are interpreted as below. This is followed by the year of century,
87  * day of year and time of day. Note that the time of day is for the
88  * previous minute, not the current time. The status indicator and year
89  * are not produced by some IRIG devices and appear as zeros. Following
90  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
91  * modulation index (0-1), time constant (4-10), carrier phase error
92  * +-.5) and carrier frequency error (PPM). The last field is the on-
93  * time timestamp in NTP format.
94  *
95  * The error flags are defined as follows in hex:
96  *
97  * x01	Low signal. The carrier amplitude is less than 100 units. This
98  *	is usually the result of no signal or wrong input port.
99  * x02	Frequency error. The codec frequency error is greater than 250
100  *	PPM. This may be due to wrong signal format or (rarely)
101  *	defective codec.
102  * x04	Modulation error. The IRIG modulation index is less than 0.5.
103  *	This is usually the result of an overdriven codec, wrong signal
104  *	format or wrong input port.
105  * x08	Frame synch error. The decoder frame does not match the IRIG
106  *	frame. This is usually the result of an overdriven codec, wrong
107  *	signal format or noisy IRIG signal. It may also be the result of
108  *	an IRIG signature check which indicates a failure of the IRIG
109  *	signal synchronization source.
110  * x10	Data bit error. The data bit length is out of tolerance. This is
111  *	usually the result of an overdriven codec, wrong signal format
112  *	or noisy IRIG signal.
113  * x20	Seconds numbering discrepancy. The decoder second does not match
114  *	the IRIG second. This is usually the result of an overdriven
115  *	codec, wrong signal format or noisy IRIG signal.
116  * x40	Codec error (overrun). The machine is not fast enough to keep up
117  *	with the codec.
118  * x80	Device status error (Spectracom).
119  *
120  *
121  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
122  * within a few tens of microseconds relative to the IRIG-B signal.
123  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
124  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
125  * modulation.
126  *
127  * Unlike other drivers, which can have multiple instantiations, this
128  * one supports only one. It does not seem likely that more than one
129  * audio codec would be useful in a single machine. More than one would
130  * probably chew up too much CPU time anyway.
131  *
132  * Fudge factors
133  *
134  * Fudge flag4 causes the dubugging output described above to be
135  * recorded in the clockstats file. Fudge flag2 selects the audio input
136  * port, where 0 is the mike port (default) and 1 is the line-in port.
137  * It does not seem useful to select the compact disc player port. Fudge
138  * flag3 enables audio monitoring of the input signal. For this purpose,
139  * the monitor gain is set t a default value. Fudgetime2 is used as a
140  * frequency vernier for broken codec sample frequency.
141  *
142  * Alarm codes
143  *
144  * CEVNT_BADTIME	invalid date or time
145  * CEVNT_TIMEOUT	no IRIG data since last poll
146  */
147 /*
148  * Interface definitions
149  */
150 #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
151 #define	PRECISION	(-17)	/* precision assumed (about 10 us) */
152 #define	REFID		"IRIG"	/* reference ID */
153 #define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
154 #define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
155 #define SECOND		8000	/* nominal sample rate (Hz) */
156 #define BAUD		80	/* samples per baud interval */
157 #define OFFSET		128	/* companded sample offset */
158 #define SIZE		256	/* decompanding table size */
159 #define CYCLE		8	/* samples per bit */
160 #define SUBFLD		10	/* bits per frame */
161 #define FIELD		100	/* bits per second */
162 #define MINTC		2	/* min PLL time constant */
163 #define MAXTC		10	/* max PLL time constant max */
164 #define	MAXAMP		3000.	/* maximum signal amplitude */
165 #define	MINAMP		2000.	/* minimum signal amplitude */
166 #define DRPOUT		100.	/* dropout signal amplitude */
167 #define MODMIN		0.5	/* minimum modulation index */
168 #define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
169 
170 /*
171  * The on-time synchronization point is the positive-going zero crossing
172  * of the first cycle of the second. The IIR baseband filter phase delay
173  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
174  * due to the codec and other causes was determined by calibrating to a
175  * PPS signal from a GPS receiver.
176  *
177  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
178  * within .02 ms short-term with .02 ms jitter. The processor load due
179  * to the driver is 0.51 percent.
180  */
181 #define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
182 #define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */
183 
184 /*
185  * Data bit definitions
186  */
187 #define BIT0		0	/* zero */
188 #define BIT1		1	/* one */
189 #define BITP		2	/* position identifier */
190 
191 /*
192  * Error flags
193  */
194 #define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
195 #define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
196 #define IRIG_ERR_MOD	0x04	/* low modulation index */
197 #define IRIG_ERR_SYNCH	0x08	/* frame synch error */
198 #define IRIG_ERR_DECODE	0x10	/* frame decoding error */
199 #define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
200 #define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
201 #define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
202 
203 static	char	hexchar[] = "0123456789abcdef";
204 
205 /*
206  * IRIG unit control structure
207  */
208 struct irigunit {
209 	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
210 	l_fp	timestamp;	/* audio sample timestamp */
211 	l_fp	tick;		/* audio sample increment */
212 	l_fp	refstamp;	/* reference timestamp */
213 	l_fp	chrstamp;	/* baud timestamp */
214 	l_fp	prvstamp;	/* previous baud timestamp */
215 	double	integ[BAUD];	/* baud integrator */
216 	double	phase, freq;	/* logical clock phase and frequency */
217 	double	zxing;		/* phase detector integrator */
218 	double	yxing;		/* cycle phase */
219 	double	exing;		/* envelope phase */
220 	double	modndx;		/* modulation index */
221 	double	irig_b;		/* IRIG-B signal amplitude */
222 	double	irig_e;		/* IRIG-E signal amplitude */
223 	int	errflg;		/* error flags */
224 	/*
225 	 * Audio codec variables
226 	 */
227 	double	comp[SIZE];	/* decompanding table */
228 	double	signal;		/* peak signal for AGC */
229 	int	port;		/* codec port */
230 	int	gain;		/* codec gain */
231 	int	mongain;	/* codec monitor gain */
232 	int	seccnt;		/* second interval counter */
233 
234 	/*
235 	 * RF variables
236 	 */
237 	double	bpf[9];		/* IRIG-B filter shift register */
238 	double	lpf[5];		/* IRIG-E filter shift register */
239 	double	envmin, envmax;	/* envelope min and max */
240 	double	slice;		/* envelope slice level */
241 	double	intmin, intmax;	/* integrated envelope min and max */
242 	double	maxsignal;	/* integrated peak amplitude */
243 	double	noise;		/* integrated noise amplitude */
244 	double	lastenv[CYCLE];	/* last cycle amplitudes */
245 	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
246 	double	lastsig;	/* last carrier sample */
247 	double	fdelay;		/* filter delay */
248 	int	decim;		/* sample decimation factor */
249 	int	envphase;	/* envelope phase */
250 	int	envptr;		/* envelope phase pointer */
251 	int	envsw;		/* envelope state */
252 	int	envxing;	/* envelope slice crossing */
253 	int	tc;		/* time constant */
254 	int	tcount;		/* time constant counter */
255 	int	badcnt;		/* decimation interval counter */
256 
257 	/*
258 	 * Decoder variables
259 	 */
260 	int	pulse;		/* cycle counter */
261 	int	cycles;		/* carrier cycles */
262 	int	dcycles;	/* data cycles */
263 	int	lastbit;	/* last code element */
264 	int	second;		/* previous second */
265 	int	bitcnt;		/* bit count in frame */
266 	int	frmcnt;		/* bit count in second */
267 	int	xptr;		/* timecode pointer */
268 	int	bits;		/* demodulated bits */
269 };
270 
271 /*
272  * Function prototypes
273  */
274 static	int	irig_start	(int, struct peer *);
275 static	void	irig_shutdown	(int, struct peer *);
276 static	void	irig_receive	(struct recvbuf *);
277 static	void	irig_poll	(int, struct peer *);
278 
279 /*
280  * More function prototypes
281  */
282 static	void	irig_base	(struct peer *, double);
283 static	void	irig_rf		(struct peer *, double);
284 static	void	irig_baud	(struct peer *, int);
285 static	void	irig_decode	(struct peer *, int);
286 static	void	irig_gain	(struct peer *);
287 
288 /*
289  * Transfer vector
290  */
291 struct	refclock refclock_irig = {
292 	irig_start,		/* start up driver */
293 	irig_shutdown,		/* shut down driver */
294 	irig_poll,		/* transmit poll message */
295 	noentry,		/* not used (old irig_control) */
296 	noentry,		/* initialize driver (not used) */
297 	noentry,		/* not used (old irig_buginfo) */
298 	NOFLAGS			/* not used */
299 };
300 
301 
302 /*
303  * irig_start - open the devices and initialize data for processing
304  */
305 static int
306 irig_start(
307 	int	unit,		/* instance number (used for PCM) */
308 	struct peer *peer	/* peer structure pointer */
309 	)
310 {
311 	struct refclockproc *pp;
312 	struct irigunit *up;
313 
314 	/*
315 	 * Local variables
316 	 */
317 	int	fd;		/* file descriptor */
318 	int	i;		/* index */
319 	double	step;		/* codec adjustment */
320 
321 	/*
322 	 * Open audio device
323 	 */
324 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
325 	if (fd < 0)
326 		return (0);
327 #ifdef DEBUG
328 	if (debug)
329 		audio_show();
330 #endif
331 
332 	/*
333 	 * Allocate and initialize unit structure
334 	 */
335 	up = emalloc_zero(sizeof(*up));
336 	pp = peer->procptr;
337 	pp->io.clock_recv = irig_receive;
338 	pp->io.srcclock = peer;
339 	pp->io.datalen = 0;
340 	pp->io.fd = fd;
341 	if (!io_addclock(&pp->io)) {
342 		close(fd);
343 		pp->io.fd = -1;
344 		free(up);
345 		return (0);
346 	}
347 	pp->unitptr = up;
348 
349 	/*
350 	 * Initialize miscellaneous variables
351 	 */
352 	peer->precision = PRECISION;
353 	pp->clockdesc = DESCRIPTION;
354 	memcpy((char *)&pp->refid, REFID, 4);
355 	up->tc = MINTC;
356 	up->decim = 1;
357 	up->gain = 127;
358 
359 	/*
360 	 * The companded samples are encoded sign-magnitude. The table
361 	 * contains all the 256 values in the interest of speed.
362 	 */
363 	up->comp[0] = up->comp[OFFSET] = 0.;
364 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
365 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
366 	step = 2.;
367 	for (i = 3; i < OFFSET; i++) {
368 		up->comp[i] = up->comp[i - 1] + step;
369 		up->comp[OFFSET + i] = -up->comp[i];
370 		if (i % 16 == 0)
371 			step *= 2.;
372 	}
373 	DTOLFP(1. / SECOND, &up->tick);
374 	return (1);
375 }
376 
377 
378 /*
379  * irig_shutdown - shut down the clock
380  */
381 static void
382 irig_shutdown(
383 	int	unit,		/* instance number (not used) */
384 	struct peer *peer	/* peer structure pointer */
385 	)
386 {
387 	struct refclockproc *pp;
388 	struct irigunit *up;
389 
390 	pp = peer->procptr;
391 	up = pp->unitptr;
392 	if (-1 != pp->io.fd)
393 		io_closeclock(&pp->io);
394 	if (NULL != up)
395 		free(up);
396 }
397 
398 
399 /*
400  * irig_receive - receive data from the audio device
401  *
402  * This routine reads input samples and adjusts the logical clock to
403  * track the irig clock by dropping or duplicating codec samples.
404  */
405 static void
406 irig_receive(
407 	struct recvbuf *rbufp	/* receive buffer structure pointer */
408 	)
409 {
410 	struct peer *peer;
411 	struct refclockproc *pp;
412 	struct irigunit *up;
413 
414 	/*
415 	 * Local variables
416 	 */
417 	double	sample;		/* codec sample */
418 	u_char	*dpt;		/* buffer pointer */
419 	int	bufcnt;		/* buffer counter */
420 	l_fp	ltemp;		/* l_fp temp */
421 
422 	peer = rbufp->recv_peer;
423 	pp = peer->procptr;
424 	up = pp->unitptr;
425 
426 	/*
427 	 * Main loop - read until there ain't no more. Note codec
428 	 * samples are bit-inverted.
429 	 */
430 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
431 	L_SUB(&rbufp->recv_time, &ltemp);
432 	up->timestamp = rbufp->recv_time;
433 	dpt = rbufp->recv_buffer;
434 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
435 		sample = up->comp[~*dpt++ & 0xff];
436 
437 		/*
438 		 * Variable frequency oscillator. The codec oscillator
439 		 * runs at the nominal rate of 8000 samples per second,
440 		 * or 125 us per sample. A frequency change of one unit
441 		 * results in either duplicating or deleting one sample
442 		 * per second, which results in a frequency change of
443 		 * 125 PPM.
444 		 */
445 		up->phase += (up->freq + clock_codec) / SECOND;
446 		up->phase += pp->fudgetime2 / 1e6;
447 		if (up->phase >= .5) {
448 			up->phase -= 1.;
449 		} else if (up->phase < -.5) {
450 			up->phase += 1.;
451 			irig_rf(peer, sample);
452 			irig_rf(peer, sample);
453 		} else {
454 			irig_rf(peer, sample);
455 		}
456 		L_ADD(&up->timestamp, &up->tick);
457 		sample = fabs(sample);
458 		if (sample > up->signal)
459 			up->signal = sample;
460 		up->signal += (sample - up->signal) /
461 		    1000;
462 
463 		/*
464 		 * Once each second, determine the IRIG format and gain.
465 		 */
466 		up->seccnt = (up->seccnt + 1) % SECOND;
467 		if (up->seccnt == 0) {
468 			if (up->irig_b > up->irig_e) {
469 				up->decim = 1;
470 				up->fdelay = IRIG_B;
471 			} else {
472 				up->decim = 10;
473 				up->fdelay = IRIG_E;
474 			}
475 			up->irig_b = up->irig_e = 0;
476 			irig_gain(peer);
477 
478 		}
479 	}
480 
481 	/*
482 	 * Set the input port and monitor gain for the next buffer.
483 	 */
484 	if (pp->sloppyclockflag & CLK_FLAG2)
485 		up->port = 2;
486 	else
487 		up->port = 1;
488 	if (pp->sloppyclockflag & CLK_FLAG3)
489 		up->mongain = MONGAIN;
490 	else
491 		up->mongain = 0;
492 }
493 
494 
495 /*
496  * irig_rf - RF processing
497  *
498  * This routine filters the RF signal using a bandass filter for IRIG-B
499  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
500  * decimated by a factor of ten. Note that the codec filters function as
501  * roofing filters to attenuate both the high and low ends of the
502  * passband. IIR filter coefficients were determined using Matlab Signal
503  * Processing Toolkit.
504  */
505 static void
506 irig_rf(
507 	struct peer *peer,	/* peer structure pointer */
508 	double	sample		/* current signal sample */
509 	)
510 {
511 	struct refclockproc *pp;
512 	struct irigunit *up;
513 
514 	/*
515 	 * Local variables
516 	 */
517 	double	irig_b, irig_e;	/* irig filter outputs */
518 
519 	pp = peer->procptr;
520 	up = pp->unitptr;
521 
522 	/*
523 	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
524 	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
525 	 * phase delay 1.03 ms.
526 	 */
527 	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
528 	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
529 	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
530 	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
531 	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
532 	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
533 	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
534 	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
535 	up->bpf[0] = sample - irig_b;
536 	irig_b = up->bpf[0] * 4.952157e-003
537 	    + up->bpf[1] * -2.055878e-002
538 	    + up->bpf[2] * 4.401413e-002
539 	    + up->bpf[3] * -6.558851e-002
540 	    + up->bpf[4] * 7.462108e-002
541 	    + up->bpf[5] * -6.558851e-002
542 	    + up->bpf[6] * 4.401413e-002
543 	    + up->bpf[7] * -2.055878e-002
544 	    + up->bpf[8] * 4.952157e-003;
545 	up->irig_b += irig_b * irig_b;
546 
547 	/*
548 	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
549 	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
550 	 * 3.47 ms.
551 	 */
552 	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
553 	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
554 	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
555 	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
556 	up->lpf[0] = sample - irig_e;
557 	irig_e = up->lpf[0] * 3.215696e-003
558 	    + up->lpf[1] * -1.174951e-002
559 	    + up->lpf[2] * 1.712074e-002
560 	    + up->lpf[3] * -1.174951e-002
561 	    + up->lpf[4] * 3.215696e-003;
562 	up->irig_e += irig_e * irig_e;
563 
564 	/*
565 	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
566 	 */
567 	up->badcnt = (up->badcnt + 1) % up->decim;
568 	if (up->badcnt == 0) {
569 		if (up->decim == 1)
570 			irig_base(peer, irig_b);
571 		else
572 			irig_base(peer, irig_e);
573 	}
574 }
575 
576 /*
577  * irig_base - baseband processing
578  *
579  * This routine processes the baseband signal and demodulates the AM
580  * carrier using a synchronous detector. It then synchronizes to the
581  * data frame at the baud rate and decodes the width-modulated data
582  * pulses.
583  */
584 static void
585 irig_base(
586 	struct peer *peer,	/* peer structure pointer */
587 	double	sample		/* current signal sample */
588 	)
589 {
590 	struct refclockproc *pp;
591 	struct irigunit *up;
592 
593 	/*
594 	 * Local variables
595 	 */
596 	double	lope;		/* integrator output */
597 	double	env;		/* envelope detector output */
598 	double	dtemp;
599 	int	carphase;	/* carrier phase */
600 
601 	pp = peer->procptr;
602 	up = pp->unitptr;
603 
604 	/*
605 	 * Synchronous baud integrator. Corresponding samples of current
606 	 * and past baud intervals are integrated to refine the envelope
607 	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
608 	 * raw data and one baud (10 ms) of the integrated data.
609 	 */
610 	up->envphase = (up->envphase + 1) % BAUD;
611 	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
612 	    (5 * up->tc);
613 	lope = up->integ[up->envphase];
614 	carphase = up->envphase % CYCLE;
615 	up->lastenv[carphase] = sample;
616 	up->lastint[carphase] = lope;
617 
618 	/*
619 	 * Phase detector. Find the negative-going zero crossing
620 	 * relative to sample 4 in the 8-sample sycle. A phase change of
621 	 * 360 degrees produces an output change of one unit.
622 	 */
623 	if (up->lastsig > 0 && lope <= 0)
624 		up->zxing += (double)(carphase - 4) / CYCLE;
625 	up->lastsig = lope;
626 
627 	/*
628 	 * End of the baud. Update signal/noise estimates and PLL
629 	 * phase, frequency and time constant.
630 	 */
631 	if (up->envphase == 0) {
632 		up->maxsignal = up->intmax; up->noise = up->intmin;
633 		up->intmin = 1e6; up->intmax = -1e6;
634 		if (up->maxsignal < DRPOUT)
635 			up->errflg |= IRIG_ERR_AMP;
636 		if (up->maxsignal > 0)
637 			up->modndx = (up->maxsignal - up->noise) /
638 			    up->maxsignal;
639  		else
640 			up->modndx = 0;
641 		if (up->modndx < MODMIN)
642 			up->errflg |= IRIG_ERR_MOD;
643 		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
644 		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
645 			up->tc = MINTC;
646 			up->tcount = 0;
647 		}
648 
649 		/*
650 		 * Update PLL phase and frequency. The PLL time constant
651 		 * is set initially to stabilize the frequency within a
652 		 * minute or two, then increases to the maximum. The
653 		 * frequency is clamped so that the PLL capture range
654 		 * cannot be exceeded.
655 		 */
656 		dtemp = up->zxing * up->decim / BAUD;
657 		up->yxing = dtemp;
658 		up->zxing = 0.;
659 		up->phase += dtemp / up->tc;
660 		up->freq += dtemp / (4. * up->tc * up->tc);
661 		if (up->freq > MAXFREQ) {
662 			up->freq = MAXFREQ;
663 			up->errflg |= IRIG_ERR_FREQ;
664 		} else if (up->freq < -MAXFREQ) {
665 			up->freq = -MAXFREQ;
666 			up->errflg |= IRIG_ERR_FREQ;
667 		}
668 	}
669 
670 	/*
671 	 * Synchronous demodulator. There are eight samples in the cycle
672 	 * and ten cycles in the baud. Since the PLL has aligned the
673 	 * negative-going zero crossing at sample 4, the maximum
674 	 * amplitude is at sample 2 and minimum at sample 6. The
675 	 * beginning of the data pulse is determined from the integrated
676 	 * samples, while the end of the pulse is determined from the
677 	 * raw samples. The raw data bits are demodulated relative to
678 	 * the slice level and left-shifted in the decoding register.
679 	 */
680 	if (carphase != 7)
681 		return;
682 
683 	lope = (up->lastint[2] - up->lastint[6]) / 2.;
684 	if (lope > up->intmax)
685 		up->intmax = lope;
686 	if (lope < up->intmin)
687 		up->intmin = lope;
688 
689 	/*
690 	 * Pulse code demodulator and reference timestamp. The decoder
691 	 * looks for a sequence of ten bits; the first two bits must be
692 	 * one, the last two bits must be zero. Frame synch is asserted
693 	 * when three correct frames have been found.
694 	 */
695 	up->pulse = (up->pulse + 1) % 10;
696 	up->cycles <<= 1;
697 	if (lope >= (up->maxsignal + up->noise) / 2.)
698 		up->cycles |= 1;
699 	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
700 		if (up->pulse != 0)
701 			up->errflg |= IRIG_ERR_SYNCH;
702 		up->pulse = 0;
703 	}
704 
705 	/*
706 	 * Assemble the baud and max/min to get the slice level for the
707 	 * next baud. The slice level is based on the maximum over the
708 	 * first two bits and the minimum over the last two bits, with
709 	 * the slice level halfway between the maximum and minimum.
710 	 */
711 	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
712 	up->dcycles <<= 1;
713 	if (env >= up->slice)
714 		up->dcycles |= 1;
715 	switch(up->pulse) {
716 
717 	case 0:
718 		irig_baud(peer, up->dcycles);
719 		if (env < up->envmin)
720 			up->envmin = env;
721 		up->slice = (up->envmax + up->envmin) / 2;
722 		up->envmin = 1e6; up->envmax = -1e6;
723 		break;
724 
725 	case 1:
726 		up->envmax = env;
727 		break;
728 
729 	case 2:
730 		if (env > up->envmax)
731 			up->envmax = env;
732 		break;
733 
734 	case 9:
735 		up->envmin = env;
736 		break;
737 	}
738 }
739 
740 /*
741  * irig_baud - update the PLL and decode the pulse-width signal
742  */
743 static void
744 irig_baud(
745 	struct peer *peer,	/* peer structure pointer */
746 	int	bits		/* decoded bits */
747 	)
748 {
749 	struct refclockproc *pp;
750 	struct irigunit *up;
751 	double	dtemp;
752 	l_fp	ltemp;
753 
754         pp = peer->procptr;
755 	up = pp->unitptr;
756 
757 	/*
758 	 * The PLL time constant starts out small, in order to
759 	 * sustain a frequency tolerance of 250 PPM. It
760 	 * gradually increases as the loop settles down. Note
761 	 * that small wiggles are not believed, unless they
762 	 * persist for lots of samples.
763 	 */
764 	up->exing = -up->yxing;
765 	if (abs(up->envxing - up->envphase) <= 1) {
766 		up->tcount++;
767 		if (up->tcount > 20 * up->tc) {
768 			up->tc++;
769 			if (up->tc > MAXTC)
770 				up->tc = MAXTC;
771 			up->tcount = 0;
772 			up->envxing = up->envphase;
773 		} else {
774 			up->exing -= up->envxing - up->envphase;
775 		}
776 	} else {
777 		up->tcount = 0;
778 		up->envxing = up->envphase;
779 	}
780 
781 	/*
782 	 * Strike the baud timestamp as the positive zero crossing of
783 	 * the first bit, accounting for the codec delay and filter
784 	 * delay.
785 	 */
786 	up->prvstamp = up->chrstamp;
787 	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
788 	DTOLFP(dtemp, &ltemp);
789 	up->chrstamp = up->timestamp;
790 	L_SUB(&up->chrstamp, &ltemp);
791 
792 	/*
793 	 * The data bits are collected in ten-bit bauds. The first two
794 	 * bits are not used. The resulting patterns represent runs of
795 	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
796 	 * 8-bit run represents a soft error and is treated as 0.
797 	 */
798 	switch (up->dcycles & 0xff) {
799 
800 	case 0x00:		/* 0-1 bits (0) */
801 	case 0x80:
802 		irig_decode(peer, BIT0);
803 		break;
804 
805 	case 0xc0:		/* 2-4 bits (1) */
806 	case 0xe0:
807 	case 0xf0:
808 		irig_decode(peer, BIT1);
809 		break;
810 
811 	case 0xf8:		/* (5-7 bits (PI) */
812 	case 0xfc:
813 	case 0xfe:
814 		irig_decode(peer, BITP);
815 		break;
816 
817 	default:		/* 8 bits (error) */
818 		irig_decode(peer, BIT0);
819 		up->errflg |= IRIG_ERR_DECODE;
820 	}
821 }
822 
823 
824 /*
825  * irig_decode - decode the data
826  *
827  * This routine assembles bauds into digits, digits into frames and
828  * frames into the timecode fields. Bits can have values of zero, one
829  * or position identifier. There are four bits per digit, ten digits per
830  * frame and ten frames per second.
831  */
832 static void
833 irig_decode(
834 	struct	peer *peer,	/* peer structure pointer */
835 	int	bit		/* data bit (0, 1 or 2) */
836 	)
837 {
838 	struct refclockproc *pp;
839 	struct irigunit *up;
840 
841 	/*
842 	 * Local variables
843 	 */
844 	int	syncdig;	/* sync digit (Spectracom) */
845 	char	sbs[6 + 1];	/* binary seconds since 0h */
846 	char	spare[2 + 1];	/* mulligan digits */
847 	int	temp;
848 
849 	syncdig = 0;
850 	pp = peer->procptr;
851 	up = pp->unitptr;
852 
853 	/*
854 	 * Assemble frame bits.
855 	 */
856 	up->bits >>= 1;
857 	if (bit == BIT1) {
858 		up->bits |= 0x200;
859 	} else if (bit == BITP && up->lastbit == BITP) {
860 
861 		/*
862 		 * Frame sync - two adjacent position identifiers, which
863 		 * mark the beginning of the second. The reference time
864 		 * is the beginning of the second position identifier,
865 		 * so copy the character timestamp to the reference
866 		 * timestamp.
867 		 */
868 		if (up->frmcnt != 1)
869 			up->errflg |= IRIG_ERR_SYNCH;
870 		up->frmcnt = 1;
871 		up->refstamp = up->prvstamp;
872 	}
873 	up->lastbit = bit;
874 	if (up->frmcnt % SUBFLD == 0) {
875 
876 		/*
877 		 * End of frame. Encode two hexadecimal digits in
878 		 * little-endian timecode field. Note frame 1 is shifted
879 		 * right one bit to account for the marker PI.
880 		 */
881 		temp = up->bits;
882 		if (up->frmcnt == 10)
883 			temp >>= 1;
884 		if (up->xptr >= 2) {
885 			up->timecode[--up->xptr] = hexchar[temp & 0xf];
886 			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
887 			    0xf];
888 		}
889 		if (up->frmcnt == 0) {
890 
891 			/*
892 			 * End of second. Decode the timecode and wind
893 			 * the clock. Not all IRIG generators have the
894 			 * year; if so, it is nonzero after year 2000.
895 			 * Not all have the hardware status bit; if so,
896 			 * it is lit when the source is okay and dim
897 			 * when bad. We watch this only if the year is
898 			 * nonzero. Not all are configured for signature
899 			 * control. If so, all BCD digits are set to
900 			 * zero if the source is bad. In this case the
901 			 * refclock_process() will reject the timecode
902 			 * as invalid.
903 			 */
904 			up->xptr = 2 * SUBFLD;
905 			if (sscanf((char *)up->timecode,
906 			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
907 			    &syncdig, spare, &pp->day, &pp->hour,
908 			    &pp->minute, &pp->second) != 8)
909 				pp->leap = LEAP_NOTINSYNC;
910 			else
911 				pp->leap = LEAP_NOWARNING;
912 			up->second = (up->second + up->decim) % 60;
913 
914 			/*
915 			 * Raise an alarm if the day field is zero,
916 			 * which happens when signature control is
917 			 * enabled and the device has lost
918 			 * synchronization. Raise an alarm if the year
919 			 * field is nonzero and the sync indicator is
920 			 * zero, which happens when a Spectracom radio
921 			 * has lost synchronization. Raise an alarm if
922 			 * the expected second does not agree with the
923 			 * decoded second, which happens with a garbled
924 			 * IRIG signal. We are very particular.
925 			 */
926 			if (pp->day == 0 || (pp->year != 0 && syncdig ==
927 			    0))
928 				up->errflg |= IRIG_ERR_SIGERR;
929 			if (pp->second != up->second)
930 				up->errflg |= IRIG_ERR_CHECK;
931 			up->second = pp->second;
932 
933 			/*
934 			 * Wind the clock only if there are no errors
935 			 * and the time constant has reached the
936 			 * maximum.
937 			 */
938 			if (up->errflg == 0 && up->tc == MAXTC) {
939 				pp->lastref = pp->lastrec;
940 				pp->lastrec = up->refstamp;
941 				if (!refclock_process(pp))
942 					refclock_report(peer,
943 					    CEVNT_BADTIME);
944 			}
945 			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
946 			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
947 			    up->errflg, pp->year, pp->day,
948 			    pp->hour, pp->minute, pp->second,
949 			    up->maxsignal, up->gain, up->modndx,
950 			    up->tc, up->exing * 1e6 / SECOND, up->freq *
951 			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
952 			pp->lencode = strlen(pp->a_lastcode);
953 			up->errflg = 0;
954 			if (pp->sloppyclockflag & CLK_FLAG4) {
955 				record_clock_stats(&peer->srcadr,
956 				    pp->a_lastcode);
957 #ifdef DEBUG
958 				if (debug)
959 					printf("irig %s\n",
960 					    pp->a_lastcode);
961 #endif /* DEBUG */
962 			}
963 		}
964 	}
965 	up->frmcnt = (up->frmcnt + 1) % FIELD;
966 }
967 
968 
969 /*
970  * irig_poll - called by the transmit procedure
971  *
972  * This routine sweeps up the timecode updates since the last poll. For
973  * IRIG-B there should be at least 60 updates; for IRIG-E there should
974  * be at least 6. If nothing is heard, a timeout event is declared.
975  */
976 static void
977 irig_poll(
978 	int	unit,		/* instance number (not used) */
979 	struct peer *peer	/* peer structure pointer */
980 	)
981 {
982 	struct refclockproc *pp;
983 
984 	pp = peer->procptr;
985 
986 	if (pp->coderecv == pp->codeproc) {
987 		refclock_report(peer, CEVNT_TIMEOUT);
988 		return;
989 
990 	}
991 	refclock_receive(peer);
992 	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
993 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
994 #ifdef DEBUG
995 		if (debug)
996 			printf("irig %s\n", pp->a_lastcode);
997 #endif /* DEBUG */
998 	}
999 	pp->polls++;
1000 
1001 }
1002 
1003 
1004 /*
1005  * irig_gain - adjust codec gain
1006  *
1007  * This routine is called at the end of each second. It uses the AGC to
1008  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1009  * hunting. The routine also jiggles the input port and selectively
1010  * mutes the monitor.
1011  */
1012 static void
1013 irig_gain(
1014 	struct peer *peer	/* peer structure pointer */
1015 	)
1016 {
1017 	struct refclockproc *pp;
1018 	struct irigunit *up;
1019 
1020 	pp = peer->procptr;
1021 	up = pp->unitptr;
1022 
1023 	/*
1024 	 * Apparently, the codec uses only the high order bits of the
1025 	 * gain control field. Thus, it may take awhile for changes to
1026 	 * wiggle the hardware bits.
1027 	 */
1028 	if (up->maxsignal < MINAMP) {
1029 		up->gain += 4;
1030 		if (up->gain > MAXGAIN)
1031 			up->gain = MAXGAIN;
1032 	} else if (up->maxsignal > MAXAMP) {
1033 		up->gain -= 4;
1034 		if (up->gain < 0)
1035 			up->gain = 0;
1036 	}
1037 	audio_gain(up->gain, up->mongain, up->port);
1038 }
1039 
1040 
1041 #else
1042 NONEMPTY_TRANSLATION_UNIT
1043 #endif /* REFCLOCK */
1044