1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 */
27
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <strings.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <libintl.h>
35 #include <sys/types.h>
36 #include <sys/dkio.h>
37 #include <sys/vtoc.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/ddi.h>
44
45 static struct uuid_to_ptag {
46 struct uuid uuid;
47 } conversion_array[] = {
48 { EFI_UNUSED },
49 { EFI_BOOT },
50 { EFI_ROOT },
51 { EFI_SWAP },
52 { EFI_USR },
53 { EFI_BACKUP },
54 { 0 }, /* STAND is never used */
55 { EFI_VAR },
56 { EFI_HOME },
57 { EFI_ALTSCTR },
58 { 0 }, /* CACHE is never used */
59 { EFI_RESERVED },
60 { EFI_SYSTEM },
61 { EFI_LEGACY_MBR },
62 { EFI_SYMC_PUB },
63 { EFI_SYMC_CDS },
64 { EFI_MSFT_RESV },
65 { EFI_DELL_BASIC },
66 { EFI_DELL_RAID },
67 { EFI_DELL_SWAP },
68 { EFI_DELL_LVM },
69 { EFI_DELL_RESV },
70 { EFI_AAPL_HFS },
71 { EFI_AAPL_UFS },
72 { EFI_BIOS_BOOT },
73 { EFI_FREEBSD_BOOT },
74 { EFI_FREEBSD_SWAP },
75 { EFI_FREEBSD_UFS },
76 { EFI_FREEBSD_VINUM },
77 { EFI_FREEBSD_ZFS }
78 };
79
80 /*
81 * Default vtoc information for non-SVr4 partitions
82 */
83 struct dk_map2 default_vtoc_map[NDKMAP] = {
84 { V_ROOT, 0 }, /* a - 0 */
85 { V_SWAP, V_UNMNT }, /* b - 1 */
86 { V_BACKUP, V_UNMNT }, /* c - 2 */
87 { V_UNASSIGNED, 0 }, /* d - 3 */
88 { V_UNASSIGNED, 0 }, /* e - 4 */
89 { V_UNASSIGNED, 0 }, /* f - 5 */
90 { V_USR, 0 }, /* g - 6 */
91 { V_UNASSIGNED, 0 }, /* h - 7 */
92
93 #if defined(_SUNOS_VTOC_16)
94
95 #if defined(i386) || defined(__amd64)
96 { V_BOOT, V_UNMNT }, /* i - 8 */
97 { V_ALTSCTR, 0 }, /* j - 9 */
98
99 #else
100 #error No VTOC format defined.
101 #endif /* defined(i386) */
102
103 { V_UNASSIGNED, 0 }, /* k - 10 */
104 { V_UNASSIGNED, 0 }, /* l - 11 */
105 { V_UNASSIGNED, 0 }, /* m - 12 */
106 { V_UNASSIGNED, 0 }, /* n - 13 */
107 { V_UNASSIGNED, 0 }, /* o - 14 */
108 { V_UNASSIGNED, 0 }, /* p - 15 */
109 #endif /* defined(_SUNOS_VTOC_16) */
110 };
111
112 #ifdef DEBUG
113 int efi_debug = 1;
114 #else
115 int efi_debug = 0;
116 #endif
117
118 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
119 static int efi_read(int, struct dk_gpt *);
120
121 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)122 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
123 {
124 struct dk_minfo disk_info;
125
126 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
127 return (errno);
128 *capacity = disk_info.dki_capacity;
129 *lbsize = disk_info.dki_lbsize;
130 return (0);
131 }
132
133 /*
134 * the number of blocks the EFI label takes up (round up to nearest
135 * block)
136 */
137 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
138 ((l) - 1)) / (l)))
139 /* number of partitions -- limited by what we can malloc */
140 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
141 sizeof (struct dk_part))
142
143 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)144 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
145 {
146 diskaddr_t capacity;
147 uint_t lbsize;
148 uint_t nblocks;
149 size_t length;
150 struct dk_gpt *vptr;
151 struct uuid uuid;
152
153 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
154 if (efi_debug)
155 (void) fprintf(stderr,
156 "couldn't read disk information\n");
157 return (-1);
158 }
159
160 nblocks = NBLOCKS(nparts, lbsize);
161 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
162 /* 16K plus one block for the GPT */
163 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
164 }
165
166 if (nparts > MAX_PARTS) {
167 if (efi_debug) {
168 (void) fprintf(stderr,
169 "the maximum number of partitions supported is %lu\n",
170 MAX_PARTS);
171 }
172 return (-1);
173 }
174
175 length = sizeof (struct dk_gpt) +
176 sizeof (struct dk_part) * (nparts - 1);
177
178 if ((*vtoc = calloc(length, 1)) == NULL)
179 return (-1);
180
181 vptr = *vtoc;
182
183 vptr->efi_version = EFI_VERSION_CURRENT;
184 vptr->efi_lbasize = lbsize;
185 vptr->efi_nparts = nparts;
186 /*
187 * add one block here for the PMBR; on disks with a 512 byte
188 * block size and 128 or fewer partitions, efi_first_u_lba
189 * should work out to "34"
190 */
191 vptr->efi_first_u_lba = nblocks + 1;
192 vptr->efi_last_lba = capacity - 1;
193 vptr->efi_altern_lba = capacity -1;
194 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
195
196 (void) uuid_generate((uchar_t *)&uuid);
197 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
198 return (0);
199 }
200
201 /*
202 * Read EFI - return partition number upon success.
203 */
204 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)205 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
206 {
207 int rval;
208 uint32_t nparts;
209 int length;
210
211 /* figure out the number of entries that would fit into 16K */
212 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
213 length = (int) sizeof (struct dk_gpt) +
214 (int) sizeof (struct dk_part) * (nparts - 1);
215 if ((*vtoc = calloc(length, 1)) == NULL)
216 return (VT_ERROR);
217
218 (*vtoc)->efi_nparts = nparts;
219 rval = efi_read(fd, *vtoc);
220
221 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
222 void *tmp;
223 length = (int) sizeof (struct dk_gpt) +
224 (int) sizeof (struct dk_part) *
225 ((*vtoc)->efi_nparts - 1);
226 nparts = (*vtoc)->efi_nparts;
227 if ((tmp = realloc(*vtoc, length)) == NULL) {
228 free (*vtoc);
229 *vtoc = NULL;
230 return (VT_ERROR);
231 } else {
232 *vtoc = tmp;
233 rval = efi_read(fd, *vtoc);
234 }
235 }
236
237 if (rval < 0) {
238 if (efi_debug) {
239 (void) fprintf(stderr,
240 "read of EFI table failed, rval=%d\n", rval);
241 }
242 free (*vtoc);
243 *vtoc = NULL;
244 }
245
246 return (rval);
247 }
248
249 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)250 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
251 {
252 void *data = dk_ioc->dki_data;
253 int error;
254
255 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
256 error = ioctl(fd, cmd, (void *)dk_ioc);
257 dk_ioc->dki_data = data;
258
259 return (error);
260 }
261
262 static int
check_label(int fd,dk_efi_t * dk_ioc)263 check_label(int fd, dk_efi_t *dk_ioc)
264 {
265 efi_gpt_t *efi;
266 uint_t crc;
267
268 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
269 switch (errno) {
270 case EIO:
271 return (VT_EIO);
272 default:
273 return (VT_ERROR);
274 }
275 }
276 efi = dk_ioc->dki_data;
277 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
278 if (efi_debug)
279 (void) fprintf(stderr,
280 "Bad EFI signature: 0x%llx != 0x%llx\n",
281 (long long)efi->efi_gpt_Signature,
282 (long long)LE_64(EFI_SIGNATURE));
283 return (VT_EINVAL);
284 }
285
286 /*
287 * check CRC of the header; the size of the header should
288 * never be larger than one block
289 */
290 crc = efi->efi_gpt_HeaderCRC32;
291 efi->efi_gpt_HeaderCRC32 = 0;
292
293 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
294 crc != LE_32(efi_crc32((unsigned char *)efi,
295 LE_32(efi->efi_gpt_HeaderSize)))) {
296 if (efi_debug)
297 (void) fprintf(stderr,
298 "Bad EFI CRC: 0x%x != 0x%x\n",
299 crc,
300 LE_32(efi_crc32((unsigned char *)efi,
301 sizeof (struct efi_gpt))));
302 return (VT_EINVAL);
303 }
304
305 return (0);
306 }
307
308 static int
efi_read(int fd,struct dk_gpt * vtoc)309 efi_read(int fd, struct dk_gpt *vtoc)
310 {
311 int i, j;
312 int label_len;
313 int rval = 0;
314 int vdc_flag = 0;
315 struct dk_minfo disk_info;
316 dk_efi_t dk_ioc;
317 efi_gpt_t *efi;
318 efi_gpe_t *efi_parts;
319 struct dk_cinfo dki_info;
320 uint32_t user_length;
321 boolean_t legacy_label = B_FALSE;
322
323 /*
324 * get the partition number for this file descriptor.
325 */
326 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
327 if (efi_debug) {
328 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
329 }
330 switch (errno) {
331 case EIO:
332 return (VT_EIO);
333 case EINVAL:
334 return (VT_EINVAL);
335 default:
336 return (VT_ERROR);
337 }
338 }
339
340 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
341 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
342 /*
343 * The controller and drive name "vdc" (virtual disk client)
344 * indicates a LDoms virtual disk.
345 */
346 vdc_flag++;
347 }
348
349 /* get the LBA size */
350 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
351 if (efi_debug) {
352 (void) fprintf(stderr,
353 "assuming LBA 512 bytes %d\n",
354 errno);
355 }
356 disk_info.dki_lbsize = DEV_BSIZE;
357 }
358 if (disk_info.dki_lbsize == 0) {
359 if (efi_debug) {
360 (void) fprintf(stderr,
361 "efi_read: assuming LBA 512 bytes\n");
362 }
363 disk_info.dki_lbsize = DEV_BSIZE;
364 }
365 /*
366 * Read the EFI GPT to figure out how many partitions we need
367 * to deal with.
368 */
369 dk_ioc.dki_lba = 1;
370 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
371 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
372 } else {
373 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
374 disk_info.dki_lbsize;
375 if (label_len % disk_info.dki_lbsize) {
376 /* pad to physical sector size */
377 label_len += disk_info.dki_lbsize;
378 label_len &= ~(disk_info.dki_lbsize - 1);
379 }
380 }
381
382 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
383 return (VT_ERROR);
384
385 dk_ioc.dki_length = disk_info.dki_lbsize;
386 user_length = vtoc->efi_nparts;
387 efi = dk_ioc.dki_data;
388 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
389 /*
390 * No valid label here; try the alternate. Note that here
391 * we just read GPT header and save it into dk_ioc.data,
392 * Later, we will read GUID partition entry array if we
393 * can get valid GPT header.
394 */
395
396 /*
397 * This is a workaround for legacy systems. In the past, the
398 * last sector of SCSI disk was invisible on x86 platform. At
399 * that time, backup label was saved on the next to the last
400 * sector. It is possible for users to move a disk from previous
401 * solaris system to present system. Here, we attempt to search
402 * legacy backup EFI label first.
403 */
404 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
405 dk_ioc.dki_length = disk_info.dki_lbsize;
406 rval = check_label(fd, &dk_ioc);
407 if (rval == VT_EINVAL) {
408 /*
409 * we didn't find legacy backup EFI label, try to
410 * search backup EFI label in the last block.
411 */
412 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
413 dk_ioc.dki_length = disk_info.dki_lbsize;
414 rval = check_label(fd, &dk_ioc);
415 if (rval == 0) {
416 legacy_label = B_TRUE;
417 if (efi_debug)
418 (void) fprintf(stderr,
419 "efi_read: primary label corrupt; "
420 "using EFI backup label located on"
421 " the last block\n");
422 }
423 } else {
424 if ((efi_debug) && (rval == 0))
425 (void) fprintf(stderr, "efi_read: primary label"
426 " corrupt; using legacy EFI backup label "
427 " located on the next to last block\n");
428 }
429
430 if (rval == 0) {
431 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
432 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
433 vtoc->efi_nparts =
434 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
435 /*
436 * Partition tables are between backup GPT header
437 * table and ParitionEntryLBA (the starting LBA of
438 * the GUID partition entries array). Now that we
439 * already got valid GPT header and saved it in
440 * dk_ioc.dki_data, we try to get GUID partition
441 * entry array here.
442 */
443 /* LINTED */
444 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
445 + disk_info.dki_lbsize);
446 if (legacy_label)
447 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
448 dk_ioc.dki_lba;
449 else
450 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
451 dk_ioc.dki_lba;
452 dk_ioc.dki_length *= disk_info.dki_lbsize;
453 if (dk_ioc.dki_length >
454 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
455 rval = VT_EINVAL;
456 } else {
457 /*
458 * read GUID partition entry array
459 */
460 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
461 }
462 }
463
464 } else if (rval == 0) {
465
466 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
467 /* LINTED */
468 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
469 + disk_info.dki_lbsize);
470 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
471 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
472
473 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
474 /*
475 * When the device is a LDoms virtual disk, the DKIOCGETEFI
476 * ioctl can fail with EINVAL if the virtual disk backend
477 * is a ZFS volume serviced by a domain running an old version
478 * of Solaris. This is because the DKIOCGETEFI ioctl was
479 * initially incorrectly implemented for a ZFS volume and it
480 * expected the GPT and GPE to be retrieved with a single ioctl.
481 * So we try to read the GPT and the GPE using that old style
482 * ioctl.
483 */
484 dk_ioc.dki_lba = 1;
485 dk_ioc.dki_length = label_len;
486 rval = check_label(fd, &dk_ioc);
487 }
488
489 if (rval < 0) {
490 free(efi);
491 return (rval);
492 }
493
494 /* LINTED -- always longlong aligned */
495 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
496
497 /*
498 * Assemble this into a "dk_gpt" struct for easier
499 * digestibility by applications.
500 */
501 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
502 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
503 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
504 vtoc->efi_lbasize = disk_info.dki_lbsize;
505 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
506 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
507 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
508 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
509 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
510
511 /*
512 * If the array the user passed in is too small, set the length
513 * to what it needs to be and return
514 */
515 if (user_length < vtoc->efi_nparts) {
516 return (VT_EINVAL);
517 }
518
519 for (i = 0; i < vtoc->efi_nparts; i++) {
520
521 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
522 efi_parts[i].efi_gpe_PartitionTypeGUID);
523
524 for (j = 0;
525 j < sizeof (conversion_array)
526 / sizeof (struct uuid_to_ptag); j++) {
527
528 if (bcmp(&vtoc->efi_parts[i].p_guid,
529 &conversion_array[j].uuid,
530 sizeof (struct uuid)) == 0) {
531 vtoc->efi_parts[i].p_tag = j;
532 break;
533 }
534 }
535 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
536 continue;
537 vtoc->efi_parts[i].p_flag =
538 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
539 vtoc->efi_parts[i].p_start =
540 LE_64(efi_parts[i].efi_gpe_StartingLBA);
541 vtoc->efi_parts[i].p_size =
542 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
543 vtoc->efi_parts[i].p_start + 1;
544 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
545 vtoc->efi_parts[i].p_name[j] =
546 (uchar_t)LE_16(
547 efi_parts[i].efi_gpe_PartitionName[j]);
548 }
549
550 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
551 efi_parts[i].efi_gpe_UniquePartitionGUID);
552 }
553 free(efi);
554
555 return (dki_info.dki_partition);
556 }
557
558 /* writes a "protective" MBR */
559 static int
write_pmbr(int fd,struct dk_gpt * vtoc)560 write_pmbr(int fd, struct dk_gpt *vtoc)
561 {
562 dk_efi_t dk_ioc;
563 struct mboot mb;
564 uchar_t *cp;
565 diskaddr_t size_in_lba;
566 uchar_t *buf;
567 int len;
568
569 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
570 buf = calloc(len, 1);
571
572 /*
573 * Preserve any boot code and disk signature if the first block is
574 * already an MBR.
575 */
576 dk_ioc.dki_lba = 0;
577 dk_ioc.dki_length = len;
578 /* LINTED -- always longlong aligned */
579 dk_ioc.dki_data = (efi_gpt_t *)buf;
580 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
581 (void) memcpy(&mb, buf, sizeof (mb));
582 bzero(&mb, sizeof (mb));
583 mb.signature = LE_16(MBB_MAGIC);
584 } else {
585 (void) memcpy(&mb, buf, sizeof (mb));
586 if (mb.signature != LE_16(MBB_MAGIC)) {
587 bzero(&mb, sizeof (mb));
588 mb.signature = LE_16(MBB_MAGIC);
589 }
590 }
591
592 bzero(&mb.parts, sizeof (mb.parts));
593 cp = (uchar_t *)&mb.parts[0];
594 /* bootable or not */
595 *cp++ = 0;
596 /* beginning CHS; 0xffffff if not representable */
597 *cp++ = 0xff;
598 *cp++ = 0xff;
599 *cp++ = 0xff;
600 /* OS type */
601 *cp++ = EFI_PMBR;
602 /* ending CHS; 0xffffff if not representable */
603 *cp++ = 0xff;
604 *cp++ = 0xff;
605 *cp++ = 0xff;
606 /* starting LBA: 1 (little endian format) by EFI definition */
607 *cp++ = 0x01;
608 *cp++ = 0x00;
609 *cp++ = 0x00;
610 *cp++ = 0x00;
611 /* ending LBA: last block on the disk (little endian format) */
612 size_in_lba = vtoc->efi_last_lba;
613 if (size_in_lba < 0xffffffff) {
614 *cp++ = (size_in_lba & 0x000000ff);
615 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
616 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
617 *cp++ = (size_in_lba & 0xff000000) >> 24;
618 } else {
619 *cp++ = 0xff;
620 *cp++ = 0xff;
621 *cp++ = 0xff;
622 *cp++ = 0xff;
623 }
624
625 (void) memcpy(buf, &mb, sizeof (mb));
626 /* LINTED -- always longlong aligned */
627 dk_ioc.dki_data = (efi_gpt_t *)buf;
628 dk_ioc.dki_lba = 0;
629 dk_ioc.dki_length = len;
630 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
631 free(buf);
632 switch (errno) {
633 case EIO:
634 return (VT_EIO);
635 case EINVAL:
636 return (VT_EINVAL);
637 default:
638 return (VT_ERROR);
639 }
640 }
641 free(buf);
642 return (0);
643 }
644
645 /* make sure the user specified something reasonable */
646 static int
check_input(struct dk_gpt * vtoc)647 check_input(struct dk_gpt *vtoc)
648 {
649 int resv_part = -1;
650 int i, j;
651 diskaddr_t istart, jstart, isize, jsize, endsect;
652
653 /*
654 * Sanity-check the input (make sure no partitions overlap)
655 */
656 for (i = 0; i < vtoc->efi_nparts; i++) {
657 /* It can't be unassigned and have an actual size */
658 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
659 (vtoc->efi_parts[i].p_size != 0)) {
660 if (efi_debug) {
661 (void) fprintf(stderr,
662 "partition %d is \"unassigned\" but has a size of %llu",
663 i,
664 vtoc->efi_parts[i].p_size);
665 }
666 return (VT_EINVAL);
667 }
668 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
669 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
670 continue;
671 /* we have encountered an unknown uuid */
672 vtoc->efi_parts[i].p_tag = 0xff;
673 }
674 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
675 if (resv_part != -1) {
676 if (efi_debug) {
677 (void) fprintf(stderr,
678 "found duplicate reserved partition at %d\n",
679 i);
680 }
681 return (VT_EINVAL);
682 }
683 resv_part = i;
684 }
685 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
686 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
687 if (efi_debug) {
688 (void) fprintf(stderr,
689 "Partition %d starts at %llu. ",
690 i,
691 vtoc->efi_parts[i].p_start);
692 (void) fprintf(stderr,
693 "It must be between %llu and %llu.\n",
694 vtoc->efi_first_u_lba,
695 vtoc->efi_last_u_lba);
696 }
697 return (VT_EINVAL);
698 }
699 if ((vtoc->efi_parts[i].p_start +
700 vtoc->efi_parts[i].p_size <
701 vtoc->efi_first_u_lba) ||
702 (vtoc->efi_parts[i].p_start +
703 vtoc->efi_parts[i].p_size >
704 vtoc->efi_last_u_lba + 1)) {
705 if (efi_debug) {
706 (void) fprintf(stderr,
707 "Partition %d ends at %llu. ",
708 i,
709 vtoc->efi_parts[i].p_start +
710 vtoc->efi_parts[i].p_size);
711 (void) fprintf(stderr,
712 "It must be between %llu and %llu.\n",
713 vtoc->efi_first_u_lba,
714 vtoc->efi_last_u_lba);
715 }
716 return (VT_EINVAL);
717 }
718
719 for (j = 0; j < vtoc->efi_nparts; j++) {
720 isize = vtoc->efi_parts[i].p_size;
721 jsize = vtoc->efi_parts[j].p_size;
722 istart = vtoc->efi_parts[i].p_start;
723 jstart = vtoc->efi_parts[j].p_start;
724 if ((i != j) && (isize != 0) && (jsize != 0)) {
725 endsect = jstart + jsize -1;
726 if ((jstart <= istart) &&
727 (istart <= endsect)) {
728 if (efi_debug) {
729 (void) fprintf(stderr,
730 "Partition %d overlaps partition %d.",
731 i, j);
732 }
733 return (VT_EINVAL);
734 }
735 }
736 }
737 }
738 /* just a warning for now */
739 if ((resv_part == -1) && efi_debug) {
740 (void) fprintf(stderr,
741 "no reserved partition found\n");
742 }
743 return (0);
744 }
745
746 /*
747 * add all the unallocated space to the current label
748 */
749 int
efi_use_whole_disk(int fd)750 efi_use_whole_disk(int fd)
751 {
752 struct dk_gpt *efi_label;
753 int rval;
754 int i;
755 uint_t phy_last_slice = 0;
756 diskaddr_t pl_start = 0;
757 diskaddr_t pl_size;
758
759 rval = efi_alloc_and_read(fd, &efi_label);
760 if (rval < 0) {
761 return (rval);
762 }
763
764 /* find the last physically non-zero partition */
765 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
766 if (pl_start < efi_label->efi_parts[i].p_start) {
767 pl_start = efi_label->efi_parts[i].p_start;
768 phy_last_slice = i;
769 }
770 }
771 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
772
773 /*
774 * If alter_lba is 1, we are using the backup label.
775 * Since we can locate the backup label by disk capacity,
776 * there must be no unallocated space.
777 */
778 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
779 >= efi_label->efi_last_lba)) {
780 if (efi_debug) {
781 (void) fprintf(stderr,
782 "efi_use_whole_disk: requested space not found\n");
783 }
784 efi_free(efi_label);
785 return (VT_ENOSPC);
786 }
787
788 /*
789 * If there is space between the last physically non-zero partition
790 * and the reserved partition, just add the unallocated space to this
791 * area. Otherwise, the unallocated space is added to the last
792 * physically non-zero partition.
793 */
794 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
795 EFI_MIN_RESV_SIZE) {
796 efi_label->efi_parts[phy_last_slice].p_size +=
797 efi_label->efi_last_lba - efi_label->efi_altern_lba;
798 }
799
800 /*
801 * Move the reserved partition. There is currently no data in
802 * here except fabricated devids (which get generated via
803 * efi_write()). So there is no need to copy data.
804 */
805 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
806 efi_label->efi_last_lba - efi_label->efi_altern_lba;
807 efi_label->efi_last_u_lba += efi_label->efi_last_lba
808 - efi_label->efi_altern_lba;
809
810 rval = efi_write(fd, efi_label);
811 if (rval < 0) {
812 if (efi_debug) {
813 (void) fprintf(stderr,
814 "efi_use_whole_disk:fail to write label, rval=%d\n",
815 rval);
816 }
817 efi_free(efi_label);
818 return (rval);
819 }
820
821 efi_free(efi_label);
822 return (0);
823 }
824
825
826 /*
827 * write EFI label and backup label
828 */
829 int
efi_write(int fd,struct dk_gpt * vtoc)830 efi_write(int fd, struct dk_gpt *vtoc)
831 {
832 dk_efi_t dk_ioc;
833 efi_gpt_t *efi;
834 efi_gpe_t *efi_parts;
835 int i, j;
836 struct dk_cinfo dki_info;
837 int nblocks;
838 diskaddr_t lba_backup_gpt_hdr;
839
840 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
841 if (efi_debug)
842 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
843 switch (errno) {
844 case EIO:
845 return (VT_EIO);
846 case EINVAL:
847 return (VT_EINVAL);
848 default:
849 return (VT_ERROR);
850 }
851 }
852
853 if (check_input(vtoc))
854 return (VT_EINVAL);
855
856 dk_ioc.dki_lba = 1;
857 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
858 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
859 } else {
860 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
861 vtoc->efi_lbasize) *
862 vtoc->efi_lbasize;
863 }
864
865 /*
866 * the number of blocks occupied by GUID partition entry array
867 */
868 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
869
870 /*
871 * Backup GPT header is located on the block after GUID
872 * partition entry array. Here, we calculate the address
873 * for backup GPT header.
874 */
875 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
876 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
877 return (VT_ERROR);
878
879 efi = dk_ioc.dki_data;
880
881 /* stuff user's input into EFI struct */
882 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
883 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
884 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
885 efi->efi_gpt_Reserved1 = 0;
886 efi->efi_gpt_MyLBA = LE_64(1ULL);
887 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
888 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
889 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
890 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
891 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
892 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
893 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
894
895 /* LINTED -- always longlong aligned */
896 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
897
898 for (i = 0; i < vtoc->efi_nparts; i++) {
899 for (j = 0;
900 j < sizeof (conversion_array) /
901 sizeof (struct uuid_to_ptag); j++) {
902
903 if (vtoc->efi_parts[i].p_tag == j) {
904 UUID_LE_CONVERT(
905 efi_parts[i].efi_gpe_PartitionTypeGUID,
906 conversion_array[j].uuid);
907 break;
908 }
909 }
910
911 if (j == sizeof (conversion_array) /
912 sizeof (struct uuid_to_ptag)) {
913 /*
914 * If we didn't have a matching uuid match, bail here.
915 * Don't write a label with unknown uuid.
916 */
917 if (efi_debug) {
918 (void) fprintf(stderr,
919 "Unknown uuid for p_tag %d\n",
920 vtoc->efi_parts[i].p_tag);
921 }
922 return (VT_EINVAL);
923 }
924
925 efi_parts[i].efi_gpe_StartingLBA =
926 LE_64(vtoc->efi_parts[i].p_start);
927 efi_parts[i].efi_gpe_EndingLBA =
928 LE_64(vtoc->efi_parts[i].p_start +
929 vtoc->efi_parts[i].p_size - 1);
930 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
931 LE_16(vtoc->efi_parts[i].p_flag);
932 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
933 efi_parts[i].efi_gpe_PartitionName[j] =
934 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
935 }
936 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
937 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
938 (void) uuid_generate((uchar_t *)
939 &vtoc->efi_parts[i].p_uguid);
940 }
941 bcopy(&vtoc->efi_parts[i].p_uguid,
942 &efi_parts[i].efi_gpe_UniquePartitionGUID,
943 sizeof (uuid_t));
944 }
945 efi->efi_gpt_PartitionEntryArrayCRC32 =
946 LE_32(efi_crc32((unsigned char *)efi_parts,
947 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
948 efi->efi_gpt_HeaderCRC32 =
949 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
950
951 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
952 free(dk_ioc.dki_data);
953 switch (errno) {
954 case EIO:
955 return (VT_EIO);
956 case EINVAL:
957 return (VT_EINVAL);
958 default:
959 return (VT_ERROR);
960 }
961 }
962
963 /* write backup partition array */
964 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
965 dk_ioc.dki_length -= vtoc->efi_lbasize;
966 /* LINTED */
967 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
968 vtoc->efi_lbasize);
969
970 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
971 /*
972 * we wrote the primary label okay, so don't fail
973 */
974 if (efi_debug) {
975 (void) fprintf(stderr,
976 "write of backup partitions to block %llu "
977 "failed, errno %d\n",
978 vtoc->efi_last_u_lba + 1,
979 errno);
980 }
981 }
982 /*
983 * now swap MyLBA and AlternateLBA fields and write backup
984 * partition table header
985 */
986 dk_ioc.dki_lba = lba_backup_gpt_hdr;
987 dk_ioc.dki_length = vtoc->efi_lbasize;
988 /* LINTED */
989 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
990 vtoc->efi_lbasize);
991 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
992 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
993 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
994 efi->efi_gpt_HeaderCRC32 = 0;
995 efi->efi_gpt_HeaderCRC32 =
996 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
997 sizeof (struct efi_gpt)));
998
999 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1000 if (efi_debug) {
1001 (void) fprintf(stderr,
1002 "write of backup header to block %llu failed, "
1003 "errno %d\n",
1004 lba_backup_gpt_hdr,
1005 errno);
1006 }
1007 }
1008 /* write the PMBR */
1009 (void) write_pmbr(fd, vtoc);
1010 free(dk_ioc.dki_data);
1011 return (0);
1012 }
1013
1014 void
efi_free(struct dk_gpt * ptr)1015 efi_free(struct dk_gpt *ptr)
1016 {
1017 free(ptr);
1018 }
1019
1020 /*
1021 * Input: File descriptor
1022 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1023 * Otherwise 0.
1024 */
1025 int
efi_type(int fd)1026 efi_type(int fd)
1027 {
1028 struct vtoc vtoc;
1029 struct extvtoc extvtoc;
1030
1031 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1032 if (errno == ENOTSUP)
1033 return (1);
1034 else if (errno == ENOTTY) {
1035 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1036 if (errno == ENOTSUP)
1037 return (1);
1038 }
1039 }
1040 return (0);
1041 }
1042
1043 void
efi_err_check(struct dk_gpt * vtoc)1044 efi_err_check(struct dk_gpt *vtoc)
1045 {
1046 int resv_part = -1;
1047 int i, j;
1048 diskaddr_t istart, jstart, isize, jsize, endsect;
1049 int overlap = 0;
1050
1051 /*
1052 * make sure no partitions overlap
1053 */
1054 for (i = 0; i < vtoc->efi_nparts; i++) {
1055 /* It can't be unassigned and have an actual size */
1056 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1057 (vtoc->efi_parts[i].p_size != 0)) {
1058 (void) fprintf(stderr,
1059 "partition %d is \"unassigned\" but has a size "
1060 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1061 }
1062 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1063 continue;
1064 }
1065 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1066 if (resv_part != -1) {
1067 (void) fprintf(stderr,
1068 "found duplicate reserved partition at "
1069 "%d\n", i);
1070 }
1071 resv_part = i;
1072 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1073 (void) fprintf(stderr,
1074 "Warning: reserved partition size must "
1075 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1076 }
1077 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1078 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1079 (void) fprintf(stderr,
1080 "Partition %d starts at %llu\n",
1081 i,
1082 vtoc->efi_parts[i].p_start);
1083 (void) fprintf(stderr,
1084 "It must be between %llu and %llu.\n",
1085 vtoc->efi_first_u_lba,
1086 vtoc->efi_last_u_lba);
1087 }
1088 if ((vtoc->efi_parts[i].p_start +
1089 vtoc->efi_parts[i].p_size <
1090 vtoc->efi_first_u_lba) ||
1091 (vtoc->efi_parts[i].p_start +
1092 vtoc->efi_parts[i].p_size >
1093 vtoc->efi_last_u_lba + 1)) {
1094 (void) fprintf(stderr,
1095 "Partition %d ends at %llu\n",
1096 i,
1097 vtoc->efi_parts[i].p_start +
1098 vtoc->efi_parts[i].p_size);
1099 (void) fprintf(stderr,
1100 "It must be between %llu and %llu.\n",
1101 vtoc->efi_first_u_lba,
1102 vtoc->efi_last_u_lba);
1103 }
1104
1105 for (j = 0; j < vtoc->efi_nparts; j++) {
1106 isize = vtoc->efi_parts[i].p_size;
1107 jsize = vtoc->efi_parts[j].p_size;
1108 istart = vtoc->efi_parts[i].p_start;
1109 jstart = vtoc->efi_parts[j].p_start;
1110 if ((i != j) && (isize != 0) && (jsize != 0)) {
1111 endsect = jstart + jsize -1;
1112 if ((jstart <= istart) &&
1113 (istart <= endsect)) {
1114 if (!overlap) {
1115 (void) fprintf(stderr,
1116 "label error: EFI Labels do not "
1117 "support overlapping partitions\n");
1118 }
1119 (void) fprintf(stderr,
1120 "Partition %d overlaps partition "
1121 "%d.\n", i, j);
1122 overlap = 1;
1123 }
1124 }
1125 }
1126 }
1127 /* make sure there is a reserved partition */
1128 if (resv_part == -1) {
1129 (void) fprintf(stderr,
1130 "no reserved partition found\n");
1131 }
1132 }
1133
1134 /*
1135 * We need to get information necessary to construct a *new* efi
1136 * label type
1137 */
1138 int
efi_auto_sense(int fd,struct dk_gpt ** vtoc)1139 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1140 {
1141
1142 int i;
1143
1144 /*
1145 * Now build the default partition table
1146 */
1147 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1148 if (efi_debug) {
1149 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1150 }
1151 return (-1);
1152 }
1153
1154 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1155 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1156 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1157 (*vtoc)->efi_parts[i].p_start = 0;
1158 (*vtoc)->efi_parts[i].p_size = 0;
1159 }
1160 /*
1161 * Make constants first
1162 * and variable partitions later
1163 */
1164
1165 /* root partition - s0 128 MB */
1166 (*vtoc)->efi_parts[0].p_start = 34;
1167 (*vtoc)->efi_parts[0].p_size = 262144;
1168
1169 /* partition - s1 128 MB */
1170 (*vtoc)->efi_parts[1].p_start = 262178;
1171 (*vtoc)->efi_parts[1].p_size = 262144;
1172
1173 /* partition -s2 is NOT the Backup disk */
1174 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1175
1176 /* partition -s6 /usr partition - HOG */
1177 (*vtoc)->efi_parts[6].p_start = 524322;
1178 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1179 - (1024 * 16);
1180
1181 /* efi reserved partition - s9 16K */
1182 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1183 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1184 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1185 return (0);
1186 }
1187